Sample records for nanostructured mgfe2o4 synthesized

  1. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    PubMed

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  3. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Yang, Shaogui; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng

    2016-08-01

    A novel microwave (MW) catalyst, MgFe2O4 loaded on SiC (MgFe2O4-SiC), was successfully synthesized by sol-gel method, and pure MgFe2O4 was used as reference. The MgFe2O4 and MgFe2O4-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe2O4-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe2O4-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe2O4-SiC indicated that degradation efficiency of DB BN (20 mg L-1) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe2O4-SiC obviously decreased. The good stability and applicability of MgFe2O4-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation of DB BN demonstrated that the C-S, C-N and azo bonds in the DB BN molecule were destroyed gradually. MW-induced rad OH and holes could be responsible for the efficient removal involved in the system. These findings make MgFe2O4-SiC become an excellent MW absorbent as well as an effective MW catalyst with rapid degradation of DB BN. Therefore, it may be promising for MgFe2O4-SiC under MW radiation to deal with various dyestuffs and other toxic organic pollutants.

  4. Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis.

    PubMed

    Fan, Weiqiang; Li, Meng; Bai, Hongye; Xu, Dongbo; Chen, Chao; Li, Chunfa; Ge, Yilin; Shi, Weidong

    2016-02-16

    A novel one-dimensional MgFe2O4/MoS2 heterostructure has been successfully designed and fabricated. The bare MgFe2O4 was obtained as uniform nanowires through electrospinning, and MoS2 thin film appeared on the surface of MgFe2O4 after further chemical vapor deposition. The structure of the MgFe2O4/MoS2 heterostructure was systematic investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS), and Raman spectra. According to electrochemical impedance spectroscopy (EIS) results, the MgFe2O4/MoS2 heterostructure showed a lower charge-transfer resistance compared with bare MgFe2O4, which indicated that the MoS2 played an important role in the enhancement of electron/hole mobility. MgFe2O4/MoS2 heterostructure can efficiently degrade tetracycline (TC), since the superoxide free-radical can be produced by sample under illumination due to the active species trapping and electron spin resonance (ESR) measurement, and the optimal photoelectrochemical degradation rate of TC can be achieved up to 92% (radiation intensity: 47 mW/cm(2), 2 h). Taking account of its unique semiconductor band gap structure, MgFe2O4/MoS2 can also be used as an photoelectrochemical anode for hydrogen production by water splitting, and the hydrogen production rate of MgFe2O4/MoS2 was 5.8 mmol/h·m(2) (radiation intensity: 47 mW/cm(2)), which is about 1.7 times that of MgFe2O4.

  5. Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Shetty, Krushitha; Lokesh, S. V.; Rangappa, Dinesh; Nagaswarupa, H. P.; Nagabhushana, H.; Anantharaju, K. S.; Prashantha, S. C.; Vidya, Y. S.; Sharma, S. C.

    2017-02-01

    Here, a green route has been reported to convert Graphene Oxide (GO) to reduced graphene oxide (RGO) using clove extract. A modest and eco-accommodating sol-gel strategy has been employed to prepare MgFe2O4 nanoparticles, MgFe2O4-RGO nanocomposite samples. The samples were analyzed by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-Visible Spectroscopy, Scanning Electron Microcopy (SEM), Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Electrochemical Impedance Spectroscopy (EIS). PXRD result revealed that the prepared samples were cubic spinel in nature. SEM results uncovered flake like surface morphology of the prepared nanomaterial. Better PL emission signature was observed when excited at 329 nm. PL studies demonstrated that the present samples were potential for the fabrication of white component of white light emitting diodes (WLEDs). Further, MgFe2O4-RGO nanocomposite showed enhanced photocatalytic movement (PCM) and photostability under Sunlight in the decomposition of Malachite Green (MG) compared to MgFe2O4. This can be attributed to the interaction of MgFe2O4 surface with RGO sheets which results in PL quenching, demonstrates that the recombination of photo-induced electrons and holes in MgFe2O4-RGO nanocomposite is more effectively inhibited. A possible mechanism for the enhanced properties of MgFe2O4-RGO nanocomposite was discussed. Moreover, MgFe2O4-RGO photocatalyst also showed easy magnetic separation with high reusability. These results unveil that the synthesized sample can be used in display applications and also as a potential photocatalyst.

  6. Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application

    NASA Astrophysics Data System (ADS)

    Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori

    2014-05-01

    Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.

  7. Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders

    NASA Astrophysics Data System (ADS)

    Al-Najar, B.; Khezami, L.; Judith Vijaya, J.; Lemine, O. M.; Bououdina, M.

    2017-01-01

    In this study, MgFe2O4 nanopowders were synthesized through two different methods, sol-gel method (SG) and modified sol-gel with Ammonia (MSG-A). The influence of synthesis route was investigated in terms of phase stability, pores size and surface area, magnetic properties and uptake of Ni and Cd metals from aqueous solution. Rietveld refinements of x-ray diffraction patterns confirmed the formation of single spinel phase for SG sample, while minor impurity was detected for SGM-A sample (few amount of MgO). The crystallite size was found to be sensitive to the preparation method; it ranges from 4 nm for SG to 15 nm for MSG-A. Magnetization experiment at room temperature showed ferromagnetic behavior with a saturation magnetization ( M s) ranging from 5.39 emu/g for SG to 9.93 emu/g for MSG-A. Preliminary results showed that SG and MSG-A samples are efficient adsorbent for Ni and Cd metal ions from aqueous solution. Maximum quantity of 62.67 and 61.2 mg of Ni(II) and 36.49 and 32.84 mg of Cd(II) was adsorbed per gram of MgFe2O4 synthesized by SG and MSG-A, respectively.

  8. Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions.

    PubMed

    Jung, Kyung-Won; Lee, Soonjae; Lee, Young Jae

    2017-12-01

    In this work, magnesium ferrite (MgFe 2 O 4 )/biochar magnetic composites (MFB-MCs) were prepared and utilized to remove phosphate from aqueous solutions. MFB-MCs were synthesized via co-precipitation of Fe and Mg ions onto a precursor, followed by pyrolysis. Characterization results confirmed that MgFe 2 O 4 nanoparticles with a cubic spinel structure were successfully embedded in the biochar matrix, and this offered magnetic separability with superparamagnetic behavior and enabled higher phosphate adsorption performance than that of pristine biochar and sole MgFe 2 O 4 nanoparticles. Batch experiments indicated that phosphate adsorption on the MFB-MCs is highly dependent on the pH, initial phosphate concentration, and temperature, while it was less affected by ionic strength. Analysis of activation and thermodynamic parameters as well as the isosteric heat of adsorption demonstrated that the phosphate adsorption is an endothermic and physisorption process. Lastly, highly efficient recyclability of the MFB-MCs suggested that they are a promising adsorbent for phosphate removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    NASA Astrophysics Data System (ADS)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  10. Nanometric MgFe2O4: Synthesis, characterization and its application towards supercapacitor and electrochemical uric acid sensor

    NASA Astrophysics Data System (ADS)

    Majumder, S.; Kumar, S.; Banerjee, S.

    2017-05-01

    In this paper, we have synthesized nanocrystalline MgFe2O4 (S1) by auto-combustion assisted sol-gel method. The structure and morphology and elemental study of S1 are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FESEM) and energy dispersive X-ray spectroscopic (EDS) techniques. The FESEM images reveal that the morphology of the sample is rough and average particle size is 50 nm. The PXRD study indicates that the samples are well crystalline and single phase in nature. Moreover, we have performed supercapacitor study by electrochemical galvanostatic charge-discharge (GCD) measurement, which shows pseudo capacitive behavior. S1 contains a high specific capacitance of 428.9 Fg-1 at the current density 0.0625 Ag-1 and can deliver high energy and power density of 18.01 Wh kg-1 and 21468 Wkg-1 respectively. Moreover, uric acid (UA) sensing study has also been performed by cyclic voltmetry (CV) and electrochemical impedance spectroscopy measurement (EIS) of S1. We can use nanocrystalline MgFe2O4 as supercapacitor and UA sensor applications purpose.

  11. Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3

    NASA Astrophysics Data System (ADS)

    Shabrawy, S. El; Bocker, C.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-01-01

    An iron containing magnesium borate glass with the mol% composition 51.7 B2O3/9.3 K2O /1 P2O5/27.6MgO/10.4Fe2O3was prepared by the conventional melts quenching method followed by a thermal treatment process at temperatures in the range from 530 to 604 °C.The thermally treated samples were characterized by X-ray diffraction, scanning and transmission electron microscopy. It was shown that superparamagnetic MgFe2O4 nanoparticles were formed during thermal treatment. The size of the spinel type crystals was in the range from 6 to 15 nm. Mössbauer spectra of the powdered glass ceramic samples and the extracted nanoparticles after dissolving the glass matrix in diluted acid were recorded at room temperature. The deconvolution of the spectra revealed the crystallization of two spinel phases MgFe2O4 (as a dominant phase) and superparamagnetic maghemite, γ-Fe2O3 (as a secondary phase). Room temperature magnetic measurements showed that, increasing the crystallization temperature changed the superparamagnetic behavior of the samples to ferrimagnetic behavior. The Curie temperatures of the samples were measured and showed a higher value than that of the pure bulk MgFe2O4.

  12. Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Prabu, D.; Srinivas, V.

    2017-05-01

    Magnesium ferrite, MgFe2O4, (MgFO) nanoparticles (NPs) have been synthesized through sol-gel process. Subsequently, as prepared particles were coated with Zinc-oxide (ZnO) layer(s) through ultrasonication process. Thermal stability, structure and magnetic properties of as-prepared (AP) and annealed samples in the temperature range of 350 °C-1200 °C have been investigated. Structural data suggests that AP MgFO NPs and samples annealed below 500 °C in air exhibit stable ferrite phase. However, α-Fe2O3 and a small fraction of MgO secondary phases appear along with ferrite phase on annealing in the temperatures range 500 °C- 1000 °C. This results in significant changes in magnetic moment for AP NPs 0.77 μB increases to 0.92 μB for 1200 °C air annealed sample. The magnetic properties decreased at intermediate temperatures due to the presence of secondary phases. On the other hand, pure ferrite phase could be stabilized with an optimum amount of ZnO coated MgFO NPs for samples annealed in the temperature range 500 °C-1000 °C with improvement in magnetic behavior compared to that of MgFO samples.

  13. Antimicrobial activity of TiO2 nanostructures synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Surah, Shivani Singh; Sirohi, Siddharth; Nain, Ratyakshi; Kumar, Gulshan

    2018-02-01

    Titania nanostructures were synthesized by hydrothermal method. Titanium tetrachloride was used as a precursor, sodium hydroxide was used as a solvent. Effect on their morphology by variation of parameters like temperature (110°C, 160°C and 180°C), time (15h,18h, 20h, 22h, 24h) and concentration of the solvent NaOH (5M, 8M, 10 M, 12M) were studied. The obtained TiO2 nanostructures were washed with deionized water. The structure, size, morphology of the prepared nanostructures were analyzed by SEM (scanning electron microscope), DLS (dynamic light scattering), TEM (transmission electron microscope). SEM and TEM revealed the shape, size of the nanostructures. DLS reported the particle size of prepared TiO2 nanoparticles. Polymeric films based on polyvinyl alcohol (PVA) doped with titanium dioxide nanostructures at different weight percentage (0.5, 0.75, 1,2 TiO2/PVA) were prepared using the ultra sonication and solution casting techniques. The appropriate weight of PVA was dissolved in deionized water. The mixture was magnetically stirred continuously and heated (80°C) for 4 hours, until the solution mixture becomes homogenous. Different weight percentage of TiO2 nanostructures were added to deionized water and sonicated for 3 hours to prevent the nanostructures agglomeration. The mixture was mixed with the PVA solution and magnetically stirred for 1 hour to get good dispersion without agglomeration. The final PVA /TiO2 mixture were casted in glass Petridish, were left until dry. Ultrasonication was used as a major factor for preparation in order to get better dispersion. Nanocomposite films were characterized using SEM and were found to exhibit antimicrobial properties when treated with E.coli and pseudomonas.

  14. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method

    NASA Astrophysics Data System (ADS)

    Kurian, Jessyamma; Mathew, M. Jacob

    2018-04-01

    In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.

  15. A review on methods of synthesizing nanostructures TiO2

    NASA Astrophysics Data System (ADS)

    Munirah, S.; Nadzirah, Sh.; Khusaimi, Z.; Fazlena, H.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) is a well-known materials and being extensively investigated due to the stability of the chemical structure, optical, physical, and electrical properties, also its biocompatibility. There are a lot of efforts have been done to synthesis TiO2 since the previous years by using different kind of methods. In this review paper, we summarize the methods of synthesizing nanostructured TiO2.

  16. Comparison of structural and optical properties of TeO2 nanostructures synthesized using various substrate conditions

    NASA Astrophysics Data System (ADS)

    Jung, Taek-Kyun; Ryou, Min; Lee, Ji-Woon; Hyun, Soong-Keun; Na, Han Gil; Jin, Changhyun

    2017-11-01

    Several TeO2 low-dimensional nanostructures were prepared by thermal evaporation using four substrate conditions: (1) a bare substrate, (2) a scratched substrate, (3) a Au-catalyst-assisted substrate, and (4) a multi-walled carbon nanotube (MWCNT)-assisted substrate. Scanning electron microscopy and transmission electron microscopy analysis reveals that the morphologies of the nanostructures synthesized using these methods gradually changed from nanoparticles to ultra-thin nanowires with single tetragonal-type TeO2. Photoluminescence (PL) spectra reveal that the PL intensities of the TeO2 nanomaterials obtained using methods (1) and (2) are slightly increased, whereas the intensities of the TeO2 nanostructures obtained using methods (3) and (4) differ significantly depending on the initial substrate conditions. The emission peak is also blue-shifted from 440 nm to 430 nm for the scratched surface condition due to an excitonic transition. The increase in the blue emission for the MWCNT-assisted condition is attributed to the degree and type of excitons and defects in the TeO2 nanostructures.

  17. Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method.

    PubMed

    Manohar, A; Krishnamoorthi, C

    2017-08-01

    Biocompatible Mg 1-x Zn x Fe 2 O 4 (x=0.2, 0.4, 0.5, 0.6 & 0.8) nanoparticles were synthesized by solvothermal reflux method. All compounds were crystallized in cubic spinel structure with slightly enhance of lattice parameter with biocompatible substituent Zn 2+ concentration. All compounds were shown spherical geometry with average particle diameter is around 12nm (colloidal size). The spinel structure formation was confirmed by X-ray diffraction,electron diffraction, infrared, Raman shift measurements. Infrared analysis shows oleic acid coating on the surface of nanoparticles and TGA analysis shows that oleic acid desorbs from nanoparticle by decomposition at around 400°C. UV-Vis-NIR spectra show all the compounds show energy band gap in the semiconductor range (≈ 1.9eV). All compounds show superparamagnetic characteristics at room temperature with enhanced saturated mass magnetization (M s ) with Zn 2+ concentration up to x=0.5 and then reduces with further enhance of x up to 0.8. The M s changes were ascribed to occupation of Zn 2+ at tetrahedral sites and proportional enhance of Fe 3+ at octahedral sites. The enhanced Fe 3+ concentration at octahedral sublattice leads to formation Fe 3+ -O 2- -Fe 3+ networks which favor antiferromagnetic interactions due to superexchange phenomenon. Photocatalytic activity of all compounds were studied through methylene blue (MB) degradation analysis. All compounds show ≈ 96% degradation of MB upon 70min irradiation of light on photoreactor vessel. In addition, photocatalytic activity (degradation efficiency) enhances with Zn 2+ concentration in MgFe 2 O 4 . The Zn 2+ substitution enhances both M s and photocatalytic activity biocompatible of MgFe 2 O 4 nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  18. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles-A study of surface area and spinel inversion influence

    NASA Astrophysics Data System (ADS)

    Zampiva, Rúbia Young Sun; Kaufmann Junior, Claudir Gabriel; Pinto, Juliano Schorne; Panta, Priscila Chaves; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2017-11-01

    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully.

  19. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  20. Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.

    2018-06-01

    We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.

  1. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-01-01

    Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells.Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry

  2. Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Kumar, Ravi

    2016-05-01

    We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  3. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    NASA Astrophysics Data System (ADS)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  4. The optical properties of α-Fe2O3 nanostructures synthesized with different immersion time

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, nanostructured hematite (α-Fe2O3) thin films have been prepared successfully by sonicated immersion method on fluorine-doped tin oxide (FTO) coated glass substrate. The effect of the immersion time on the structural and optical properties of α-Fe2O3 nanostructure were investigated for a variation of immersion time ranging from 1 to 4 hour. From the characterization results, the surface morphology of the sample prepared in 4 hours immersion process has exhibited highest porosity, and the highest absorbance properties were found in the same sample. These results suggest that the different time duration during immersion process play important roles in optical properties of α-Fe2O3 nanostructures.

  5. Synthesis of ZnGa2O4 Hierarchical Nanostructure by Au Catalysts Induced Thermal Evaporation

    PubMed Central

    2010-01-01

    In this paper, ZnGa2O4 hierarchical nanostructures with comb-like morphology are fabricated by a simple two-step chemical vapor deposition (CVD) method: first, the Ga2O3 nanowires were synthesized and employed as templates for the growth of ZnGa2O4 nanocombs; then, the as-prepared Ga2O3 nanowires were reacted with ZnO vapor to form ZnGa2O4 nanocombs. Before the reaction, the Au nanoparticles were deposited on the surfaces of Ga2O3 nanowires and used as catalysts to control the teeth growth of ZnGa2O4 nanocombs. The as-prepared ZnGa2O4 nanocombs were highly crystallized with cubic spinel structure. From the photoluminescence (PL) spectrum, a broad band emission in the visible light region was observed of as-prepared ZnGa2O4 nanocombs, which make it promising application as an optical material. PMID:20802787

  6. Comprehensive structural and chemical (CO2, Fe/Fe Mg, H2O) investigations of Mg-Fe cordierite with micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haefeker, U.; Kaindl, R.; Tropper, P.

    2012-04-01

    The Mg-Fe silicate cordierite with the idealized formula (Fe, Mg)2Al4Si5O18 occurs as a hexagonal and an orthorhombic polymorph with disordered/ordered Al-Si distribution on the tetrahedral sites. Most of the natural cordierites are fully ordered. Six-membered rings of (Si,Al)O4 are piled in the direction of the crystallographic c-axis and form channels, laterally and vertically linked by additional (Al, Si) tetrahedrons. Mg and Fe in varying fractions occupy the octahedrally coordinated M-sites. CO2 and H2O (and other volatiles) can be incorporated into the structural channels, thus cordierite can be used for paleofluid reconstruction. The vibration energies of incorporated volatiles, their interaction with the lattice and variations of certain lattice-vibration energies caused by the Mg-Fe exchange can be determined with Raman spectroscopy, allowing chemical quantifications and structural investigations. A method for the semi-quantitative determination of CO2-contents of natural cordierites by Kaindl et al. (2006) was optimized and enhanced by Haefeker et al. (2007). CO2 contents can be measured in single crystals and thin sections with an error of ± 0.05 - 0.09 wt.-%. Based on the Mg-Fe exchange with garnet, cordierite can be used as a geothermobarometer. Recent investigations of synthetic Mg-Fe cordierites with XFe = 0 - 1 have shown a linear downshift of six selected lattice peaks between 100 and 1250 cm-1 with the Mg-Fe contents. Correlation diagrams allow an estimation of the Mg-Fe contents in synthetic and natural samples. The experimental data are in good agreement with the results of quantum-mechanical calculations of the Raman spectra of Mg- and Fe cordierite (Kaindl et al., 2011) allowing the assignment of the peaks to specific vibrations of tetrahedral and octahedral sites. Natural Mg-Fe cordierites are mainly orthorhombic with a fully ordered Al/Si distribution on the tetrahedral sites. However, the disordered hexagonal polymorph is observed in many

  7. Photoelectrochemical enhancement of ZnO/BiVO4/ZnFe2O4/rare earth oxide hetero-nanostructures

    NASA Astrophysics Data System (ADS)

    She, Xuefeng; Zhang, Zhuo; Baek, Minki; Yong, Kijung

    2018-01-01

    Over the decades, researchers have made great efforts to turn the world into a cleaner place through efficient recycling of industrial waste and developing of green energy. Here we demonstrate a prototype heterostructure photoelectrochemical (PEC) cell fabricated using recycled industrial waste. ZnFe2O4 (ZFO) nanorod (NR) clusters were synthesized on the BiVO4@ZnO hetero-nanostructures using recycled rare earth oxide (REO) slags as Fe source. The NR-based PEC cell exhibited a significantly enhanced photon to hydrogen conversion efficiency over the entire UV and visible spectrum. Further study demonstrates that the photo-carrier separation and migration processes can be facilitated by the cascade band alignment of the heterostructure and the clustered nanostructure network. In addition, the life-time of the photo-carriers can be enhanced by the REO passivation layer, leading to a further increased PEC performance. Our results present a novel approach for high efficiency PEC cells, and offer great promises to the efficient recycling of industrial waste for clean renewable energy applications.

  8. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  9. Structural and spectroscopic study of mechanically synthesized SnO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vij, Ankush, E-mail: vij-anx@yahoo.com; Kumar, Ravi; Presently at Beant College of Engineering and Technology, Gurdaspur-143521

    2016-05-23

    We report the single step synthesis of SnO{sub 2} nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO{sub 2} nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A{sub 1g} Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  10. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density.

    PubMed

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C P; Liu, Hong

    2015-09-14

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg(-1) at a power density of 600 W kg(-1). The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.

  11. Effect of annealing on morphology and photoluminescence of beta-Ga2O3 nanostructures.

    PubMed

    Zhang, Shiying; Zhuang, Huizhao; Xue, Chengshan; Li, Baoli

    2008-07-01

    A novel method was applied to prepare one-dimensional beta-Ga2O3 nanostructure films. In this method, beta-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga22O3/Mo films for differernt time under flowing ammonia. The as-synthesized beta-Ga2O3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results show that the formed nanostructures are single-crystalline Ga2O3 with monoclinic structure. The annealing time of the samples has an evident influence on the morphology and optical property of the nanostructured beta-Ga2O3 synthesized. The representative photoluminescence spectrum at room temperature exhibits a strong and broad emission band centered at 411.5 nm and a relatively weak emission peak located at 437.6 nm. The growth mechanism of the beta-Ga2O3 nanostructured materials is also discussed briefly.

  12. Ammonia Vapor-Assisted Synthesis of Cu(OH)2 and CuO Nanostructures: Anionic (Cl-, NO3 -, SO4 2-) Influence on the Product Morphology

    NASA Astrophysics Data System (ADS)

    Mansournia, Mohammadreza; Arbabi, Akram

    2017-01-01

    Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.

  13. Tunable growth of TiO2 nanostructures on Ti substrates

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng

    2005-10-01

    A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.

  14. Enhanced photodegradation of 2,4-dichlorophenoxyacetic acid using a novel TiO2@MgFe2O4 core@shell structure.

    PubMed

    Huy, Bui The; Jung, Da-Som; Kim Phuong, Nguyen Thi; Lee, Yong-Ill

    2017-10-01

    A novel TiO 2 @MgO-Fe 2 O 3 core-shell structure has been synthesized via a hydrolysis and co-precipitation method followed by calcination at 500 °C and has proven to be an efficient photocatalyst. The obtained TiO 2 @MgO-Fe 2 O 3 core-shell was characterized by scanning electron microscopy, X-ray diffraction, and UV-Vis diffused reflectance techniques. Its photocatalytic activity toward 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated in aqueous solutions with and without visible light irradiation in the presence and absence of hydrogen peroxide. It was revealed that a strong electronic coupling exists between two components within the TiO 2 @MgO-Fe 2 O 3 core-shell structure. The present findings clearly highlight that TiO 2 @MgO-Fe 2 O 3 exhibits excellent photocatalytic activity under visible light irradiation in the presence of H 2 O 2 . More than 83% degradation of 2,4-D was observed within 240 min, at an initial concentration of 100 mg L -1 with 0.5 g of catalyst per liter. Moreover, the material showed high chemical stability after four consecutive experiments with no significant difference in the rate of photocatalytic degradation. Therefore, the results reported herein offer a green, low cost and highly efficient photocatalyst for environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  16. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  17. Synthesis of Co3O4 Cotton-Like Nanostructures for Cholesterol Biosensor

    PubMed Central

    Elhag, Sami; Ibupoto, Zafar Hussain; Nour, Omer; Willander, Magnus

    2014-01-01

    The use of templates to assist and possess a control over the synthesis of nanomaterials has been an attractive option to achieve this goal. Here we have used sodium dodecyl sulfate (SDS) to act as a template for the low temperature synthesis of cobalt oxide (Co3O4) nanostructures. The use of SDS has led to tune the morphology, and the product was in the form of “cotton-like” nanostructures instead of connected nanowires. Moreover, the variation of the amount of the SDS used was found to affect the charge transfer process in the Co3O4. Using Co3O4 synthesized using the SDS for sensing of cholesterol was investigated. The use of the Co3O4 synthesized using the SDS was found to yield an improved cholesterol biosensor compared to Co3O4 synthesized without the SDS. The improvement of the cholesterol sensing properties upon using the SDS as a template was manifested in increasing the sensitivity and the dynamic range of detection. The results achieved in this study indicate the potential of using template assisted synthesis of nanomaterials in improving some properties, e.g., cholesterol sensing. PMID:28787929

  18. Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films.

    PubMed

    He, Ziming; Xu, Qingchi; Tan, Timothy Thatt Yang

    2011-12-01

    TiO(2)-InVO(4) nanostructured films were coated onto glass substrates and systematically investigated for their bactericidal activities using Escherichia coli (E. coli) as the model bacterium under ambient light illumination. The uniform TiO(2)-InVO(4) nanostructured films were prepared using titanium isopropoxide (TTIP) as the precursor via a simple sol-gel approach. Polyethylenimine (PEI) was used as a surfactant to ensure uniform dispersion of InVO(4) and a sacrificial pore-inducing agent, generating nanostructured films. Compared to unmodified TiO(2) film, the current TiO(2)-InVO(4) films exhibited enhanced bactericidal activities under ambient light illumination. Bacterial cell "photo-fixation" was demonstrated to be crucial in enhancing the bactericidal activity. A bacterial-nanostructured surface interaction mechanism was proposed for the current ambient-light activated nanostructured film.

  19. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. H2O2-assisted photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Kőrösi, László; Prato, Mirko; Scarpellini, Alice; Kovács, János; Dömötör, Dóra; Kovács, Tamás; Papp, Szilvia

    2016-03-01

    Hierarchically assembled flower-like rutile TiO2 (FLH-R-TiO2) nanostructures were successfully synthesized from TiCl4 at room temperature without the use of surfactants or templates. An initial sol-gel synthesis at room temperature allowed long-term hydrolysis and condensation of the precursors. The resulting FLH-R-TiO2 possessed relatively high crystallinity (85 wt%) and consisted of rod-shaped subunits assembling into cauliflower-like nanostructures. Hydrothermal evolution of FLH-R-TiO2 at different temperatures (150, 200 and 250 °C) was followed by means of X-ray diffraction, transmission and scanning electron microscopy. These FLH-R-TiO2 nanostructures were tested as photocatalysts under simulated daylight (full-spectrum lighting) in the degradation of methyl orange and in the inactivation of a multiresistant bacterium, Klebsiella pneumoniae. The effects of hydrothermal treatment on the structure, photocatalytic behavior and antibacterial activity of FLH-R-TiO2 are discussed.

  1. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Zima, Tatyana.; Bataev, Ivan

    2016-11-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO2-SnO2/Sn3O4-Sn3O4-SnO phase transformations. A single-phase Sn3O4 in the form of the well-separated hexagonal nanoplates and mixed SnO2/Sn3O4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed.

  2. Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications.

    PubMed

    Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping

    2009-09-22

    We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 < x < 1) intermediate. The transformed ferrites nanocrystals retain the hollow structure and single-crystalline nature of the original templates. However, the crystallographic orientation-relationships of cubic spinel ferrites and trigonal hematite show strong correlation with their morpologies. The hollow-structured MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.

  3. Rational design and synthesis of yolk-shell ZnGa2O4@C nanostructure with enhanced lithium storage properties

    NASA Astrophysics Data System (ADS)

    Han, Nao; Xia, Yuguo; Han, Yanyang; Jiao, Xiuling; Chen, Dairong

    2018-03-01

    The ability to create hybrid nanostructure with synergistic effect and confined morphology to achieve high performance and long-term stability is high desirable in lithium ion batteries. Although transition metal oxides as anode material reveal high theoretical capacities, the significant volume changes during repeated lithium insertion and extraction cause pulverization of electrode materials, resulting in rapid fade in capacity. Herein, yolk-shell nanostructure of ZnGa2O4 encapsulated by amorphous carbon is rationally designed and synthesized through two-step surface coating followed by thermal treatment and etching process. It is noteworthy that ZnGa2O4@C with yolk-shell structure is superior to pristine ZnGa2O4 and ZnGa2O4@C with core-shell structure in term of lithium storage. The stable reversible capacity of yolk-shell ZnGa2O4@C can be retained at 657.2 mAh g-1 at current density of 1 A g-1 after completion of 300 cycles, which also reveals superior rate performance. The appropriate carbon shell and void space involved in the yolk-shell structure are considered to be the crucial factor in accommodating volume expansion as well as preserving the structural integrity of yolk-shell ZnGa2O4@C.

  4. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

    PubMed Central

    Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew

    2014-01-01

    An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903

  5. Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Lina; Zhai, Wei; Chen, Long; Li, Deping; Ma, Xiaoxin; Ai, Qing; Xu, Xiaoyan; Hou, Guangmei; Zhang, Lin; Feng, Jinkui; Si, Pengchao; Ci, Lijie

    2018-07-01

    Nanostructured spinel LiMn2O4 and super P composite with much enhanced electrochemical performance especially ultrahigh rate capability as the cathode for aqueous hybrid supercapacitors is synthesized by ball milling commercial LiMn2O4 particles together with super P. The as-prepared composite delivers a high capacitance of 306 F g-1 at the current density of 1 A g-1 and superb rate ability of 228.6 F g-1 at 40 A g-1 in 1 M Li2SO4 aqueous electrolyte. The capacitance of the nanostructured composite is 3.5 times higher than that of pristine LiMn2O4 even being charged and discharged 80 times faster. The excellent performances are ascribed to the nanosized LiMn2O4 well dispersed into the conductive carbon matrix. LiMn2O4 and super P composite//active carbon hybrid supercapacitor is assembled and the energy density can reach up to 21.58 Wh kg-1 at 293.16 W kg-1 and 13 Wh kg-1 at 5200 W kg-1. The hybrid device also shows an excellent cycling performance, which retains 85% of the initial capacitance after 4500 cycles. This work provides an effectively facile way to produce high performance LiMn2O4-based cathodes for hybrid suercapacitors in practical applications.

  6. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zima, Tatyana, E-mail: zima@solid.nsc.ru; Novosibirsk State Technical University, 20 K. Marx Prospect, Novosibirsk 630092; Bataev, Ivan

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO{sub 2} powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations.more » A single-phase Sn{sub 3}O{sub 4} in the form of the well-separated hexagonal nanoplates and mixed SnO{sub 2}/Sn{sub 3}O{sub 4} phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO{sub 2} in crystal structure. • A pure phase Sn{sub 3}O{sub 4} nanoplates and SnO{sub 2}/Sn{sub 3}O{sub 4} hierarchical structures are formed.« less

  7. Mesoporous Co3O4 nanostructured material synthesized by one-step soft-templating: A magnetic study

    NASA Astrophysics Data System (ADS)

    Poyraz, Altug S.; Hines, William A.; Kuo, Chung-Hao; Li, Nan; Perry, David M.; Suib, Steven L.

    2014-03-01

    A combined magnetization and zero-field 59Co spin-echo nuclear magnetic resonance (NMR) study has been carried out on one member of a recently developed class of highly ordered mesoporous nanostructured materials, mesoporous Co3O4 (designated UCT-8, University of Connecticut, mesoporous materials). The material was synthesized using one-step soft-templating by an inverse micelles packing approach. Characterization of UCT-8 by powder x-ray diffraction and electron microscopy reveals that the mesostructure consists of random close-packed Co3O4 nanoparticles ≈ 12 nm in diameter. The N2 sorption isotherm for UCT-8, which is type IV with a type H1 hysteresis loop, yields a 134 m2/g BET surface area and a 7.7 nm BJH desorption pore diameter. The effect of heat treatment on the structure is discussed. The antiferromagnetic Co3O4 nanoparticles have a Néel temperature TN = 27 K, somewhat lower than the bulk. A fit to the Curie-Weiss law over the temperature range 75 K ≤ T ≤ 300 K yields an effective magnetic moment of μeff = 4.36 μB for the Co2+ ions, indicative of some orbital contribution, and a Curie-Weiss temperature Θ = -93.5 K, consistent with antiferromagnetic ordering. The inter-sublattice and intra-sublattice exchange constants for the Co2+ ions are J1/kB = (-)4.75 K and J2/kB = (-)0.87 K, respectively, both corresponding to antiferromagnetic coupling. The presence of uncompensated surface spins is observed below TN with shifts in the hysteresis loops, i.e., an exchange-bias effect. The 59Co NMR spectrum for UCT-8, which is attributed to Co2+ ions at the tetrahedral A sites, is asymmetrically broadened with a peak at ≈55 MHz (T = 4.2 K). Since there is cubic symmetry at the A-sites, the broadening is indicative of a magnetic field distribution due to the uncompensated surface spins. The spectrum is consistent with antiferromagnetically ordered particles that are nanometer in size and single domain.

  8. Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.

    2018-04-01

    Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.

  9. Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection

    PubMed Central

    Gao, Wanlin; Wang, Qiang; Umar, Ahmad

    2018-01-01

    In this paper, we systematically investigated the influence of fluoride on the morphology and electrochemical property of Co3O4 nanostructures for hydrazine detection. The results showed that with the introduction of NH4F during the synthesis process of Co3O4, both Co(CO3)0.5(OH)·0.11H2O and Co(OH)F precursors would be generated. To understand the influence of F on the morphology and electrochemical property of Co3O4, three Co3O4 nanostructures that were respectively obtained from bare Co(CO3)0.5(OH)·0.11H2O, Co(OH)F and Co(CO3)0.5(OH)·0.11H2O mixtures and bare Co(OH)F were successfully synthesized. The electrochemical tests revealed the sensing performance of prepared Co3O4 nanostructures decreased with the increase in the fluoride contents of precursors. The more that dosages of NH4F were used, the higher crystallinity and smaller specific surface area of Co3O4 was gained. Among these three Co3O4 nanostructures, the Co3O4 that was obtained from bare Co(CO3)0.5(OH)·0.11H2O-based hydrazine sensor displayed the best performances, which exhibited a great sensitivity (32.42 μA·mM−1), a low detection limit (9.7 μΜ), and a wide linear range (0.010–2.380 mM), together with good selectivity, great reproducibility and longtime stability. To the best of our knowledge, it was revealed for the first time that the sensing performance of prepared Co3O4 nanostructures decreased with the increase in fluoride contents of precursors. PMID:29382161

  10. Influence of TiCl4 precursor in hydrothermal synthesis of TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Kartikay, Purnendu; Nemala, Siva Sankar; Mallick, Sudhanshu

    2017-05-01

    Rutile TiO2 films were deposited on the FTO substrate by the hydrothermal process using TTIP and TiCl4 as the titania precursor. Our study manifestly exhibits the influence of TiCl4 precursor on the hydrothermal growth of the TiO2 structure. The morphology of prepared film varies from nano-cauliflower to nano-flower to nano-parallelepiped rod-like structure with the addition of TiCl4 as the precursor. When TiCl4 is introduced in the precursor HCl corresponding to four times of the Ti4+ concentration is generated as a by-product during the reaction, these additional HCl promotes the etching of the nanostructure enabling the nanostructure to unfurl. We conclude that the tailoring of the nanostructure can be performed by addition of TiCl4 in the precursor

  11. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-11-01

    In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4 emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Surface functionalized Zr(0.75)Sn(0.25)O4 by SrO2 thick films as H2S gas sensors

    NASA Astrophysics Data System (ADS)

    Shelke, G. B.; Patil, D. R.

    2018-05-01

    Thick films of bulk tin oxide powder were observed to be less sensitive to polluting, hazardous and inflammable gases. So, nanostructured ZrxSn1-xO4 powder was synthesized by disc type ultrasonicated microwave assisted centrifuge technique. Thick films of nanostructured pure Zr(0.75)Sn(0.25)O4 powder were fabricated by screen printing technique. These films were surface functionalized by SrO2 for different intervals of time followed by firing at 450°C for 30 min. The surface morphology, chemical composition, crystal structure, electrical and gas sensing performance of the unmodified and surface functionalized nanostructured Zr(0.75)Sn(0.25)O4 powder by SrO2 have been investigated by FESEM, E-DAX, XRD, etc.

  13. Cd2SiO4/Graphene nanocomposite: Ultrasonic assisted synthesis, characterization and electrochemical hydrogen storage application.

    PubMed

    Masjedi-Arani, Maryam; Salavati-Niasari, Masoud

    2018-05-01

    For the first time, a simple and rapid sonochemical technique for preparing of pure Cd 2 SiO 4 nanostructures has been developed in presence of various surfactants of SDS, CTAB and PVP. Uniform and fine Cd 2 SiO 4 nanoparticle was synthesized using of polymeric PVP surfactant and ultrasonic irradiation. The optimized cadmium silicate nanostructures added to graphene sheets and Cd 2 SiO 4 /Graphene nanocomposite synthesized through pre-graphenization. Hydrogen storage capacity performances of Cd 2 SiO 4 nanoparticle and Cd 2 SiO 4 /Graphene nanocomposite were compared. Obtained results represent that Cd 2 SiO 4 /Graphene nanocomposites have higher hydrogen storage capacity than Cd 2 SiO 4 nanoparticles. Cd 2 SiO 4 /Graphene nanocomposites and Cd 2 SiO 4 nanoparticles show hydrogen storage capacity of 3300 and 1300 mAh/g, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Santara, Batakrushna; Giri, P. K.; Imakita, Kenji; Fujii, Minoru

    2014-05-01

    We have investigated the microscopic origin of lattice expansion and contraction in undoped rutile TiO2 nanostructures by employing several structural and optical spectroscopic tools. Rutile TiO2 nanostructures with morphologies such as nanorods, nanopillars and nanoflowers, depending upon the growth conditions, are synthesized by an acid-hydrothermal process. Depending on the growth conditions and post-growth annealing, lattice contraction and expansion are observed in the nanostructures and it is found to correlate with the nature and density of intrinsic defects in rutile TiO2. The change in lattice volume correlates well with the optical bandgap energy. Irrespective of growth conditions, theTiO2 nanostructures exhibit strong near infrared (NIR) photoluminescence (PL) at 1.43 eV and a weak visible PL, which are attributed to the Ti interstitials and O vacancies, respectively, in rutile TiO2 nanostructures. Further, ESR study reveals the presence of singly ionized oxygen vacancy defects. It is observed that lattice distortion depends systematically on the relative concentration and type of defects such as oxygen vacancies and Ti interstitials. XPS analyses revealed a downshift in energy for both Ti 2p and O 1s core level spectra for various growth conditions, which is believed to arise from the lattice distortions. It is proposed that the Ti4+ interstitial and F+ oxygen vacancy defects are primarily responsible for lattice expansion, whereas the electrostatic attraction between Ti4+ interstitial and O2- interstitial defects causes the lattice contraction in the undoped TiO2 nanostructures. The control of lattice parameters through the intrinsic defects may provide new routes to achieving novel functionalities in advanced materials that can be tailored for future technological applications.

  15. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyson, D.; Laboratorio de Ensino de Ciencias, DME Universidade Federal da Paraiba, PB; Volanti, D.P.

    This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 {mu}m. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m{sup 2}/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed.

  16. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    PubMed

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    NASA Astrophysics Data System (ADS)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  18. Scalable Synthesis of Triple-Core-Shell Nanostructures of TiO2 @MnO2 @C for High Performance Supercapacitors Using Structure-Guided Combustion Waves.

    PubMed

    Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon

    2018-03-01

    Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Manikandan, A.; Sridhar, R.; Arul Antony, S.; Ramakrishna, Seeram

    2014-11-01

    Nanocrystalline magnetic spinel CoFe2O4 was synthesized by a simple microwave combustion method (MCM) using ferric nitrate, cobalt nitrate and Aloe vera plant extracted solution. For the comparative study, it was also prepared by a conventional combustion method (CCM). Powder X-ray diffraction, energy dispersive X-ray and selected-area electron diffraction results indicate that the as-synthesized samples have only single-phase spinel structure with high crystallinity and without the presence of other phase impurities. The crystal structure and morphology of the powders were revealed by high resolution scanning electron microscopy and transmission electron microscopy, show that the MCM products of CoFe2O4 samples contain sphere-like nanoparticles (SNPs), whereas the CCM method of samples consist of flake-like nanoplatelets (FNPs). The band gap of the samples was determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy. The magnetization (Ms) results showed a ferromagnetic behavior of the CoFe2O4 nanostructures. The Ms value of CoFe2O4-SNPs is higher i.e. 77.62 emu/g than CoFe2O4-FNPs (25.46 emu/g). The higher Ms value of the sample suggest that the MCM technique is suitable for preparing high quality nanostructures for magnetic applications. Both the samples were successfully tested as catalysts for the conversion of benzyl alcohol. The resulting spinel ferrites were highly selective for the oxidation of benzyl alcohol and exhibit important difference among their activities. It was found that CoFe2O4-SNPs catalyst show the best performance, whereby 99.5% selectivity of benzaldehyde was achieved at close to 93.2% conversion.

  20. Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films

    NASA Astrophysics Data System (ADS)

    Zhen, Congmian; Zhang, XiaoZhe; Wei, Wengang; Guo, Wenzhe; Pant, Ankit; Xu, Xiaoshan; Shen, Jian; Ma, Li; Hou, Denglu

    2018-04-01

    Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the NiCo2O4 (1 1 1)/MgAl2O4 (1 1 1) and the NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, they show metallic and semiconducting electrical transport, respectively. Post-growth annealing decreases the resistivity of NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films, but the annealed films are still semiconducting. While the semiconductivity and the large magnetoresistance in NiCo2O4 (1 1 1)/Al2O3 (0 0 1) films cannot be accounted for in terms of non-optimal valence mixing and spinel inversion, the presence of anti-phase boundaries between nano-sized crystallites, generated by the structural mismatch between NiCo2O4 and Al2O3, may explain all the experimental observations in this work. These results reveal nanostructural disorder as being another key factor for controlling the electrical transport of NiCo2O4, with potentially large magnetoresistance for spintronics applications.

  1. Enhancement of photocatalytic activity of combustion-synthesized CeO2/C3N4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Dong-Feng; Yang, Ke; Wang, Xiao-qin; Ma, Ya-Li; Huang, Gui-Fang; Huang, Wei-Qing

    2015-09-01

    Nanocrystalline CeO2/C3N4 was synthesized via a one-step solution combustion method using urea as fuel for the first time. The effects of the molar ratio of urea to cerium chloride on the photocatalytic activity of the synthesized samples were investigated. The synthesized nanocrystalline CeO2/C3N4 shows small size and large surface exposure area. Photocatalytic degradation of methylene blue demonstrates that the synthesized nanocrystalline CeO2/C3N4 possesses enhanced photocatalytic activity. It is proposed that the enhanced photocatalytic activity might be related to the favorable morphology and structure, and the effective charge separation between C3N4 and CeO2 in the photocatalytic process.

  2. Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells

    PubMed Central

    Wu, Wu-Qiang; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-01-01

    The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titanate nanowire arrays, which is further performed the second step hydrothermal reaction to obtain the oriented anatase single crystalline TiO2 nanostructures such as TiO2 nanoarrays assembly with truncated octahedral TiO2 nanocrystals in the presence of NH4F aqueous or hierarchical TiO2 nanotubes with walls made of nanocrystals in the presence of pure water. Subsequently, these TiO2 nanostructures were utilized to produce dye-sensitized solar cells in a backside illumination pattern, yielding a significant high power conversion efficiency (PCE) of 4.66% (TNAs, JSC = 7.46 mA cm−2, VOC = 839 mV, FF = 0.75) and 5.84% (HNTs, JSC = 10.02 mA cm−2, VOC = 817 mV, FF = 0.72), respectively. PMID:23715529

  3. Mg Doping Induced Effects on Structural, Optical, and Electrical Properties as Well as Cytotoxicity of CeO2 Nanostructures

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Jan, Tariq; Awan, M. S.; Naqvi, Sajjad Haider; Badshah, Noor; ullah, Asmat; Abbas, Fazzal

    2016-04-01

    Here, Mg x Ce1- x O2 (where x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) nanostructures have been successfully synthesized by using a simple, easy, and cost-effective soft chemical method. X-ray diffraction (XRD) patterns substantiate the single-phase formation of a CeO2 cubic fluorite structure for all samples. Infrared spectroscopy results depict the presence of peaks only related to Ce-O bonding, which confirms the XRD results. It has been observed via ultraviolet (UV)-visible spectroscopy that Mg doping has tuned the optical band gap of CeO2 significantly. The electrical conductivity of CeO2 nanostructures has been found to increase with Mg doping, which is attributed to enhancement in carrier concentration due to the different valance states of dopant and host ions. Selective cytotoxic behavior of Mg x Ce1- x O2 nanostructures has been determined for neuroblastoma (SH-SY5Y) cancerous and HEK-293 healthy cells. Both doped and undoped CeO2 nanostructures have been found to be toxic for cancer cells and safe toward healthy cells. This selective toxic behavior of the synthesized nanostructures has been assigned to the different levels of reactive oxygen species (ROS) generation in different types of cells. This makes the synthesized nanostructures a potential option for cancer therapy in the near future.

  4. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis.

    PubMed

    Pang, Huan; Gao, Feng; Chen, Qun; Liu, Rongmei; Lu, Qingyi

    2012-05-21

    Dendrite-like Co(3)O(4) nanostructure, made up of many nanorods with diameters of 15-20 nm and lengths of 2-3 μm, has been successfully prepared by calcining the corresponding nanostructured Co-8-hydroxyquinoline coordination precursor in air. The Co(3)O(4) nanostructure was evaluated as an electrochemical sensor for H(2)O(2) detection and the results reveal that it has good linear dependence and high sensitivity to H(2)O(2) concentration changes. As an electrode material of a supercapacitor, it was found that the nanostructured Co(3)O(4) electrode exhibits high specific capacitance and long cycle life. The Co(3)O(4) nanostructure also has good catalytic properties and is steadily active for CO oxidation, giving 100% CO conversion at low temperatures. The multifunctional Co(3)O(4) nanostructure would be a promising functional nanomaterial applied in multi industrialized fields.

  5. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br; Moreira, Eduardo Ceretta; Dias, Fábio Teixeira

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{submore » 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.« less

  6. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  7. Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis

    NASA Astrophysics Data System (ADS)

    Sirohi, Sidhharth; Singh, Anandpreet; Dagar, Chakit; Saini, Gajender; Pani, Balaram; Nain, Ratyakshi

    2017-11-01

    In this article, we present a novel fabrication of microporous SiO2/triangular Ag nanoparticles for dye (methylene blue) adsorption and plasmon-mediated degradation. Microporous SiO2 nanoparticles with pore size <2 nm were synthesized using cetyltrimethylammonium bromide as a structure-directing agent and functionalized with APTMS ((3-aminopropyl) trimethoxysilane) to introduce amine groups. Amine-functionalized microporous silica was used for adsorption of triangular silver (Ag) nanoparticles. The synthesized microporous SiO2 nanostructures were investigated for adsorption of different dyes including methylene blue, congo red, direct green 26 and curcumin crystalline. Amine-functionalized microporous SiO2/triangular Ag nanostructures were used for plasmon-mediated photocatalysis of methylene blue. The experimental results revealed that the large surface area of microporous silica facilitated adsorption of dye. Triangular Ag nanoparticles, due to their better charge carrier generation and enhanced surface plasmon resonance, further enhanced the photocatalysis performance.

  8. Growth of different V2O5 nanostructures as a function of deposition duration

    NASA Astrophysics Data System (ADS)

    Saini, Sujit K.; Sharma, Rabindar K.; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2018-05-01

    Vanadium pentoxide nanostructured thin films are synthesized using plasma assisted sublimation process (PASP). The effect of deposition duration on the growth of V2O5 nanostructured thin films (NSTs) is studied in present paper. Raman and XRD results depict that all films exhibited only orthorhombic crystalline phase of vanadium oxide (i.e. V2O5). As duration increases the growth of V2O5 nanostructures preferentially aligned along (101) crystallographic plane. Scanning electron micrographs show that different morphologies are obtained with different duration of deposition. For low durations (i.e. 30 and 40 min.) the 1D nanostructures with random alignments are obtained, whereas for prolonged durations of deposition (50 and 60 min) the embedded nanopillers having vertical alignments with uniform distribution on entire substrate are found. The occurrence of remarkable increase in visible radiation from 8% to 13% on increasing duration again implies that the crystallinity and alignments of V2O5 nanostructures is getting improved with duration.

  9. Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yana; Hou, Xianhua; Li, Yajie; Ru, Qiang; Wang, Shaofeng; Hu, Shejun; Lam, Kwok-ho

    2017-09-01

    Hierarchical CoMn2O4 microspheres assembled by nanoparticles have been successfully synthesized by a facile hydrothermal method and a subsequent annealing treatment. XRD detection indicate the crystal structure. SEM and TEM results reveal the 3-dimensional porous and micro-/nanostructural microsphere assembled by nanoparticles with a size of 20-100 nm. The CoMn2O4 electrode show initial specific discharge capacity of approximately 1546 mAh/g at the current rates 100 mA/g with a coulombic efficiency of 66.7% and remarkable specific capacities (1029-485 mAh/g) at various current rates (100-2800 mA/g). [Figure not available: see fulltext.

  10. Preparation and photocatalytic activities of 3D flower-like CuO nanostructures

    NASA Astrophysics Data System (ADS)

    Qingfei, Fan; Qi, Lan; Meili, Zhang; Ximei, Fan; Zuowan, Zhou; Chaoliang, Zhang

    2016-08-01

    Hierarchical 3D flower-like CuO nanostructures on the Cu substrates were synthesized by a wet chemical method and subsequent heat treatment. The synthesis, structure and morphologies of obtained samples under different concentrations of Na2S2O3 were investigated in detail and the possible growth mechanisms of the 3D flower-like CuO nanostructures were discussed. Na2S2O3 plays a key role in the generation of the 3D flower-like CuO nanostructures. When the concentration of Na2S2O3 is more than 0.4 mol/L, the 3D flower-like CuO nanostructures can be prepared on the Cu foils. The photocatalytic performances were studied by analyzing the degradation of methyl orange (MO) in aqueous solution in the presence of hydroxide water (H2O2). The 3D flower-like CuO nanostructures exhibit higher photocatalytic activity (96.2% degradation rate) than commercial CuO particles (36.3% degradation rate). The origin of the higher photocatalytic activity of the 3D flower-like CuO nanostructures was also discussed. Project supported by the High-Tech Research and Development Program of China (No. 2009AA03Z427).

  11. Optical, electrical and magnetic properties of nanostructured Mn3O4 synthesized through a facile chemical route

    NASA Astrophysics Data System (ADS)

    Bose, Vipin C.; Biju, V.

    2015-02-01

    Nanostructured Mn3O4 sample with an average crystallite size of ˜15 nm is synthesized via the reduction of potassium permanganate using hydrazine. The average particle size obtained from the Transmission Electron Microscopy analysis is in good agreement with the average crystallite size estimated from X-ray diffraction analysis. The presence of Mn4+ ions at the octahedral sites is inferred from the results of Raman, UV-visible absorption and X-ray photoelectron spectroscopy analyzes. DC electrical conductivity of the sample in the temperature range 313-423 K, is about five orders of magnitude larger than that reported for single crystalline Mn3O4 sample. The dominant conduction mechanism is identified to be of the polaronic hopping of holes between cations in the octahedral sites. The zero field cooled and field cooled magnetization of the sample is studied in the range 20-300 K. The Curie temperature for the sample is about 45 K, below which the sample is ferrimagnetic. A blocking temperature of 35 K is observed in the field cooled curve. It is observed that the sample shows hysteresis at temperatures below the Curie temperature with no saturation, even at an applied field (20 kOe). The presence of an ordered core and disordered surface of spin arrangements is observed from the magnetization studies. Above the Curie temperature, the sample shows linear dependence of magnetization on applied field with no hysteresis characteristic of paramagnetic phase.

  12. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Zhou, Zhenfang; Nie, Sen; Wang, Honghu; Peng, Hongrui; Li, Guicun; Chen, Kezheng

    2014-12-01

    Flower-like hydrogenated TiO2(B) nanostructures have been synthesized via a facile solvothermal approach combined with hydrogenation treatment. The obtained TiO2(B) nanostructures show uniform and hierarchical flower-like morphology with a diameter of 124 ± 5 nm, which are further constructed by primary nanosheets with a thickness of 10 ± 1.2 nm. The Ti3+ species and/or oxygen vacancies are well introduced into the structures of TiO2(B) after hydrogen reduction, resulting in an enhancement in the electronic conductivity (up to 2.79 × 10-3 S cm-1) and the modified surface electrochemical activity. When evaluated for lithium storage capacity, the hydrogenated TiO2(B) nanostructures exhibit enhanced electrochemical energy storage performances compared to the pristine TiO2(B) nanostructures, including high capacity (292.3 mA h g-1 at 0.5C), excellent rate capability (179.6 mA h g-1 at 10C), and good cyclic stability (98.4% capacity retention after 200 cycles at 10C). The reasons for these improvements are explored in terms of the increased electronic conductivity and the facilitation of lithium ion transport arising from the introduction of oxygen vacancies and the unique flower-like morphologies.

  13. Crystallization behaviour of nanostructured hybrid SiO2-TiO2 gel glasses to nanocomposites.

    PubMed

    Tsvetelina, Gerganova; Yordanka, Ivanova; Yuliya, Vueva; Miranda, Salvado Isabel M; Helena, Fernandes Maria

    2010-04-01

    The crystallization behaviour of hybrid SiO2-TiO2 nanocomposites derived from titanosiloxanes by sol-gel method has been investigated depending on the type of siloxane precursor and the pirolysis temperature. The resulting hybrid titanosiloxanes, crosslinked with trimethylsilil isocyanate (nitrogen-modified) or methyltrietoxisilane (carbon-modified), were pirolyzed in an inert atmosphere in the temperature range between 600 to 1100 degrees C in order to form C-(N)-Si-O-TiO2 nanocomposites. By means of XRD, FTIR, 29Si NMR, SEM, TEM and AFM investigations have been established that the transformation of the nanostructured SiO2-TiO2 hybrid materials into nanocomposites as well as the crystalline size depend on the titanium content and the type of cross-linking agents used in the synthesizes.

  14. Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures

    NASA Astrophysics Data System (ADS)

    Lian, Dandan; Shi, Bing; Dai, Rongrong; Jia, Xiaohua; Wu, Xiangyang

    2017-12-01

    A kind of novel ZnSnO3/SnO2 hollow urchin nanostructure was synthesized by a facile, eco-friendly two-step liquid-phase process. The structure, morphology, and composition of samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption techniques. The results revealed that many tiny needle-like SnO2 nanowires with the average diameter of 5 nm uniformly grew on the surface of the ZnSnO3 hollow microspheres and the ZnSnO3/SnO2 hollow urchin nanostructures with different SnO2 content also were successfully prepared. In order to comprehend the evolution process of the ZnSnO3/SnO2 hollow urchin nanostructures, the possible growth mechanism of samples was illustrated via several experiments in different reaction conditions. Moreover, the gas-sensing performance of as-prepared samples was investigated. The results showed that ZnSnO3/SnO2 hollow urchin nanostructures with high response to various concentration levels of acetone enhanced selectivity, satisfying repeatability, and good long-term stability for acetone detection. Specially, the 10 wt% ZnSnO3/SnO2 hollow urchin nanostructure exhibited the best gas sensitivity (17.03 for 50 ppm acetone) may be a reliable biomarker for the diabetes patients, which could be ascribed to its large specific surface area, complete pore permeability, and increase of chemisorbed oxygen due to the doping of SnO2.

  15. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  16. Morphology-controlled synthesis of α-Fe 2O 3 nanostructures with magnetic property and excellent electrocatalytic activity for H 2O 2

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie

    2011-12-01

    α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.

  17. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  18. Hydrothermal Synthesis of Nanostructured MnO2 and Gamma Radiation Effects on Rechargeable Lithium Battery Performance.

    PubMed

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Nanostructured manganese dioxide (MnO2) was synthesized by the hydrothermal method under various experimental conditions such as reaction time and concentration in order to obtain nanostructure material with different morphologies, and it was found that the morphology of the MnO2 obtained had a nanoparticle-like structure, urchin-like structure, or nanorod-like structure depending on the experimental conditions. Among the as-prepared MnO2 samples, the highest surface area was seen for the urchin-like structure, and this was irradiated by γ-rays with a total radiation dose of 30 kGy at a rate 1.0 x 10(4) Gy/h in order to determine the effect of γ-irradiation on battery performance. There was a decrease in battery performance in terms of capacity and stability for irradiated samples during 100 cycles.

  19. Magnetic multi-metal co-doped magnesium ferrite nanoparticles: An efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore.

    PubMed

    Diao, Yifei; Yan, Zhikai; Guo, Min; Wang, Xidong

    2018-02-15

    Magnetic nanoparticles of multi-metal co-doped magnesium ferrite (MgFe 2 O 4 ) were synthesized from saprolite laterite ore by a hydrothermal method, and firstly proposed as a heterogeneous photon-Fenton-like catalyst for degradation of Rhodamine B (RhB). The factors that influence the degradation reaction including pH value, the concentration of H 2 O 2 and the amount of catalyst, were systematically investigated. The doped MgFe 2 O 4 exhibited a degradation efficiency up to 96.8%, and the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies about 85.6% and 68.3%, respectively, under visible light illumination for 180min. The high activity is mainly attributed to the high specific surface area of the catalyst and the synergistic interaction between photo-catalytic oxidation and Fenton-like oxidation. Moreover, the catalyst also showed good stability and recycling performance for degrading RhB. After five consecutive degradation cycles, the activity decayed no more than 10%. Compared to other catalysts prepared from pure chemical agents, the multi-metal co-doped MgFe 2 O 4 is more competitive due to its high activity, good stability, ease of recollection, and especially the use of saprolite laterite ore as precursor. This work may provide a new avenue to synthesize efficient ferrite catalysts for degrading organic pollutants in wastewater by using natural minerals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries.

    PubMed

    Deng, Chao; Zhang, Sen

    2014-06-25

    Tailoring materials into nanostructure offers unprecedented opportunities in the utilization of their functional properties. High-purity Na7V4(P2O7)4(PO4) with 1D nanostructure is prepared as a cathode material for rechargeable Na-ion batteries. An efficient synthetic approach is developed by carefully controlling the crystal growth in the molten sodium phosphate. Based on the XRD, XPS, TG, and morphological characterization, a molten-salt assisted mechanism for nanoarchitecture formation is revealed. The prepared Na7V4(P2O7)4(PO4) nanorod has rectangle sides and preferential [001] growth orientation. GITT evaluation indicates that the sodium de/intercalation of Na7V4(P2O7)4(PO4) nanorod involves V(3+)/V(4+) redox reaction and Na5V(3.5+)4(P2O7)4(PO4) as intermediate phase, which results in two pairs of potential plateaus at the equilibrium potentials of 3.8713 V (V(3+)/V(3.5+)) and 3.8879 V (V(3.5+)/V(4+)), respectively. The unique nanoarchitecture of the phase-pure Na7V4(P2O7)4(PO4) facilitates its reversible sodium de/intercalation, which is beneficial to the high-rate capability and the cycling stability. The Na7V4(P2O7)4(PO4) cathode delivers 80% of the capacity (obtained at C/20) at the 10 C rate and 95% of the initial capacity after 200 cycles. Therefore, it is feasible to design and fabricate an advanced rechargeable sodium-ion battery by employment of 1D nanostructured Na7V4(P2O7)4(PO4) as the cathode material.

  1. Structural characterization of Mg substituted on A/B sites in NiFe_2O_4 nanoparticles using autocombustion method

    NASA Astrophysics Data System (ADS)

    De, Manojit; Tewari, H. S.

    2017-07-01

    In the present paper, we are reporting the synthesis of pure nickel and magnesium ferrite [NiFe_2O_4, MgFe_2O_4] and magnesium-substituted nickel ferrite (Ni_{1-x}Mg_{x/y}Fe_{2-y}O_4; x=y=0.60) on A/B sites with particles size in nanometer range using autocombustion technique. In this study, it has been observed that with increase in sintering temperature, the estimated bulk density of the materials increases. The XRD patterns of the samples show the formation of single-phase materials and the lattice parameters are estimated from XRD patterns. From Raman spectra, the Raman shift of pure NiFe_2O_4 and MgFe_2O_4 are comparable with the experimental values reported in literature. The Raman spectra give five Raman active modes (A_{{1g}} + Eg + 3F_{2g}) which are expected in the spinel structure.

  2. A Resumable Fluorescent Probe BHN-Fe3O4@SiO2 Hybrid Nanostructure for Fe3+ and its Application in Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Wang, Yujiao; Peng, Qi; Liu, Weisheng

    2017-12-01

    A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5 × 10-5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25 × 10-8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.

  3. Electrodeposited nanostructured MnO{sub 2} for non-enzymatic hydrogen peroxide sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, B., E-mail: barnamala.saha@gmail.com; Jana, S. K.; Banerjee, S.

    2015-06-24

    Electrodeposited MnO{sub 2} nanostructure was synthesized on indium tin oxide coated glass electrode by cyclic voltammetry. The as obtained samples were subsequently characterized by atomic force microscopy and their electro-catalytic response towards hydrogen peroxide in alkaline medium of 0.1M NaOH was studied using cyclic voltammetry and amperometry.

  4. Voltammetric Sensor Based on Fe-doped ZnO and TiO2 Nanostructures-modified Carbon-paste Electrode for Determination of Levodopa

    NASA Astrophysics Data System (ADS)

    Anaraki Firooz, Azam; Hosseini Nia, Bahram; Beheshtian, Javad; Ghalkhani, Masoumeh

    2017-10-01

    In this study, undoped and 1 wt.% Fe-doped with ZnO, and TiO2 nanostructures were synthesized by a simple hydrothermal method without using templates. The influence of the Fe dopant on structural, optical and electrochemical response was studied by x-ray diffraction, scanning electron microscopy, UV-Vis spectra, photoluminescence spectra and electrochemical characterization system. The electrochemical response of the carbon paste electrode modified with synthesized nanostructures (undoped ZnO and TiO2 as well as doped with Fe ions) toward levodopa (L-Dopa) was studied. Cyclic voltammetry using provided modified electrodes showed electro-catalytic properties for electro-oxidation of L-Dopa and a significant reduction was observed in the anodic overvoltage compared to the bare electrode. The results indicated the presence of the sufficient dopants. The best response was obtained in terms of the current enhancement, overvoltage reduction, and reversibility improvement of the L-Dopa oxidation reaction under experimental conditions by the modified electrode with TiO2 nanoparticles doped with Fe ions.

  5. Pulsed current activated synthesis and rapid consolidation of a nanostructured Mg2Al4Si5O18 and its mechanical properties

    NASA Astrophysics Data System (ADS)

    Shon, In-Jin; Kang, Hyun-Su; Doh, Jung-Mann; Yoon, Jin-Kook

    2015-03-01

    Nanocrystalline materials have received much attention as advanced engineering materials, with improved mechanical properties. Attention has been directed to the application of nanomaterials, as they possess excellent mechanical properties (high strength, high hardness, excellent ductility and toughness). A singlestep synthesis and consolidation of nanostructured Mg2Al4Si5O18 was achieved by pulsed current heating, using the stoichiometric mixture of MgO, Al2O3 and SiO2 powders. Before sintering, the powder mixture was high-energy ball milled for 10 h. From the milled powder mixture, a highly dense nanostructured Mg2Al4Si5O18 compound could be obtained within one minute, under the simultaneous application of 80 MPa pressure, and a pulsed current. The advantage of this process is that it allows an instant densification to the near theoretical density, while sustaining the nanosized microstructure of raw powders. The sintering behavior, microstructure and mechanical properties of Mg2Al4Si5O18 were evaluated. The fracture toughness of a nanostructured Mg2Al4Si5O18 compound was higher than that of sub-micron Mg2Al4Si5O18 compound.

  6. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  7. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pransisco, Prengki, E-mail: prengkipransisco@gmail.com; Badan Lingkungan Hidup Derah Kabupaten Empat Lawang South of Sumatera; Shafie, Afza, E-mail: afza@petronas.com.my

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize,more » shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.« less

  8. Morphology dependent catalytic activity of TiO{sub 2} nanostructures towards photodegradation of Rose Bengal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Ritu; Kumar, Ashok; Rana, Pawan S., E-mail: drpawansrana.phy@dcrustm.org

    2015-08-28

    This work deals with the synthesis of TiO{sub 2} nanostructures using sol-gel and hydrothermal method for evaluating their photodegradation performance towards decolorization of Rose Bengal (RB). A combination of characterization techniques including X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy were utilized to evaluate the structural, morphological and optical properties of the obtained nanostructures. It was observed that the TiO{sub 2} nanoparticles prepared using hydrothermal method were highly crystalline and possess higher band gap value, even when same conditions of temperature, pressure, precursor ratios and solvent amount was kept constant while synthesizing TiO{sub 2} nanostructures viamore » sol-gel method. The obvious effect of porous morphology exhibited by TiO{sub 2} nanoparticles prepared using hydrothermal route is reflected in its decolorization performance whereby 92.5% of the RB dye solution was degraded in 70 min of irradiation time.« less

  9. Nanostructured TiO2 and ZnO prepared by using pressurized hot water and their eco-toxicological evaluation

    NASA Astrophysics Data System (ADS)

    Troppová, Ivana; Matějová, Lenka; Sezimová, Hana; Matěj, Zdeněk; Peikertová, Pavlína; Lang, Jaroslav

    2017-06-01

    The eco-toxicological effects of unconventionally prepared nanostructured TiO2 and ZnO were evaluated in this study, since both oxides are keenly investigated semiconductor photocatalysts in the last three decades. Unconventional processing by pressurized hot water was applied in order to crystallize oxide materials as an alternative to standard calcination. Acute biological toxicity of the synthesized oxides was evaluated using germination of Sinapis alba seed (ISO 11269-1) and growth of Lemna minor fronds (ISO 20079) and was compared to commercially available TiO2 Degussa P25. Toxicity results revealed that synthesized ZnO as well as TiO2 is toxic contrary to commercial TiO2 Degussa P25 which showled stimulation effect to L. minor and no toxicity to S. alba. ZnO was significantly more toxic than TiO2. The effect of crystallite size was considered, and it was revealed that small crystallite size and large surface area are not the toxicity-determining factors. Factors such as the rate of nanosized crystallites aggregation and concentration, shape and surface properties of TiO2 nanoparticles affect TiO2 toxicity to both plant species. Seriously, the dissolution of Ti4+ ions from TiO2 was also observed which may contribute to its toxicity. In case of ZnO, the dissolution of Zn2+ ions stays the main cause of its toxicity.

  10. Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Han, Hyun Soo; Shin, Sun; Noh, Jun Hong; Cho, In Sun; Hong, Kug Sun

    2014-04-01

    Hierarchically organized nanostructures were fabricated by growing SnO2 nanoparticles on a fluorine-doped tin oxide/glass substrate via a laser ablation method. Cauliflower-like clusters consisting of agglomerated nanoparticles were deposited and aligned with respect to the substrate with a large internal surface area and open channels of pores. The morphological changes of SnO2 nanostructured films were investigated as a function of the oxygen working pressure in the range of 100-500 mTorr. A nanostructured scaffold prepared at an oxygen working pressure of 100 mTorr exhibited the best photoelectrochemical (PEC) performance. A Ti:Fe2O3-SnO2 nanostructured photoanode showed the photocurrent that was 34% larger than that of a Ti:Fe2O3 flat photoanode when the amount of Ti:Fe2O3 sensitizer was identical for the two photoanodes. The larger surface area and longer electron lifetime of the Ti:Fe2O3-SnO2 nanostructured photoanode explains its improved PEC performance.

  11. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Iqbal, Javed; Maqbool, Qaisar; Jan, Tariq; Ullah, Muhammad Obaid; Nawaz, Bushra; Nazar, Mudassar; Naqvi, M. S. Hussain; Ahmad, Ishaq

    2017-09-01

    To grapple with cancer, implementation of differentially cytotoxic nanomedicines have gained prime attention of the researchers across the globe. Now, ceria (CeO2) at nanoscale has emerged as a cut out therapeutic agent for malignancy treatment. Keeping this in view, we have fabricated SnxCe1-xO2 nanostructures by facile, eco-friendly, and biocompatible hydrothermal method. Structural examinations via XRD and FT-IR spectroscopy have revealed single phase cubic-fluorite morphology while SEM analysis has depicted particle size ranging 30-50nm for pristine and doped nanostructures. UV-Vis spectroscopy investigation explored that Sn doping significantly tuned the band gap (eV) energies of SnxCe1-xO2 nanostructures which set up the base for tremendous cellular reactive oxygen species (ROS) generations involved in cancer cells' death. To observe cytotoxicity, synthesized nanostructures were found selectively more toxic to neuroblastoma cell lines as compared to HEK-293 healthy cells. This study anticipates that SnxCe1-xO2 nanostructures, in future, might be used as nanomedicine for safer cancer therapy.

  12. Highly sensitive nanostructure SnO2 based gas sensor for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Korgaokar, Sushil; Moradiya, Meet; Prajapati, Om; Thakkar, Pranav; Pala, Jay; Savaliya, Chirag; Parikh, Sachin; Markna, J. H.

    2017-05-01

    A major quantity of pollutants are produced from industries and vehicles in the form of gas. New approaches are needed to solve well-known environmental pollutants like CO, CO2, NO2, SOx. Therefore detection with effective gas sensors is a vital part of pollution prevention efforts. There is a need to develop fast, rapid, cost-effective, highly sensitive, low power, and non-intrusive rugged sensors that can be easily installed. In the present study, nanostructured SnO2 used as a sensitive material in the devices and synthesized using hydrothermal process. The detailed development of the fabrication of SnO2 nanostructures gas sensor is described, which shows the remarkable change in the sensing properties with varying particle size. Additionally, we have used X-ray diffraction, scanning electron microscopy (SEM) for characterization and carefully examined the relative parameters like response magnitude (sensitivity) and selectivity of SnO2 nano structures with different particle size.

  13. Structural and optical studies of hydrothermally synthesized MoS{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Levna; Swetha, A. K.; Aneesh, P. M., E-mail: aneeshpm@cukerala.ac.in

    2016-05-06

    Transition-metal dichalcogenides like molybdenum disulphide have intrigued intensive interest as two-dimensional (2D) materials beyond extensively studied graphene due to their unique electronic and optical properties. Here we report the hydrothermal synthesis of MoS{sub 2} nanostructures without the addition of any surfactants. The structural and optical properties of the synthesized samples were characterized by various techniques, including X-ray diffraction (XRD), UV-Vis absorption, photoluminescence (PL), and Raman analysis. XRD and Raman spectroscopic studies confirm the formation of hexagonal phase and well ordered stacking of S-Mo-S layers. The increased lattice parameters of MoS{sub 2} samples are due to the stress or strain inducedmore » bending and folding of the layers. The synthesized MoS{sub 2} nanostructures shows a large optical absorption in 300-700 nm region and strong luminescence at 640 nm. In addition, the optical results demonstrates the quantum confinement in layered d-electron material MoS{sub 2} that can lead to engineer its various properties for electronic and optoelectronic applications.« less

  14. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and

  15. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong

    2011-09-01

    We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO

  16. Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling, E-mail: zouyunling1999@126.com; Li, Yan; Guo, Ying

    Highlights: ► Flower-like and corn-like CuO nanostructures were synthesized by a simple method. ► Cotton fibers purchased from commercially are used as template. ► The concentration of Cu(NO{sub 3}){sub 2} solution is an important parameter. -- Abstract: Flower-like and corn-like CuO nanostructures composed of CuO nanoparticles were successfully synthesized via ultrasound-assisted template method, respectively, by controlling the initial concentration of Cu(NO{sub 3}){sub 2} solution. Here, cotton fibers were used as template agent. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The results demonstrated that the initialmore » concentration of Cu(NO{sub 3}){sub 2} solution was an important parameter for determining whether CuO nanoparticles assembled into flower-like structures or corn-like structures. The mechanism of forming different nanostructures of CuO was discussed.« less

  17. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  18. Enhanced Photocatalytic Activity of Two-Pot-Synthesized BiFeO3-ZnFe2O4 Heterojunction Nanocomposite

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Hasheminiasari, M.; Masoudpanah, S. M.; Safizade, B.

    2018-04-01

    BiFeO3-ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron-hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.

  19. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  20. Tuning magnetic properties of magnetoelectric BiFeO 3-NiFe 2O 4 nanostructures

    NASA Astrophysics Data System (ADS)

    Crane, S. P.; Bihler, C.; Brandt, M. S.; Goennenwein, S. T. B.; Gajek, M.; Ramesh, R.

    2009-02-01

    Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars.

  1. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. Electronic supplementary information (ESI) available: Synthesis of TiO2 microspheres; synthesis of Fe3O4@SiO2@TiO2 nanospheres; synthesis of Ag@Fe3O4@TiO2 nanospheres; SEM images of the as-prepared products: (a) Ag@Fe3O4, (b) Ag@Fe3O4@SiO2 and (c) Ag@Fe3O4@SiO2@TiO2 (Fig. S1); TEM images of the Ag@Fe3O4@SiO2 synthesized with adding different amount of TEOS (Fig. S2); SEM, TEM and EDS spectrum of Fe3O4@SiO2@TiO2 NPs (Fig. S3); SEM and TEM images of as-prepared TiO2 microspheres (Fig. S4); nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe3O4@SiO2@TiO2 and TiO2

  2. Hierarchical Cu4V2.15O9.38 micro-/nanostructures: a lithium intercalating electrode material

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Cui, Wangjun; Wu, Jiamin; Zhao, Qingfei; Li, Hexing; Xia, Yongyao; Wang, Yunhua; Yu, Chengzhong

    2011-03-01

    Hierarchical Cu4V2.15O9.38 micro-/nanostructures have been prepared by a facile ``forced hydrolysis'' method, from an aqueous peroxovanadate and cupric nitrate solution in the presence of urea. The hierarchical architectures with diameters of 10-20 µm are assembled from flexible nanosheets and rigid nanoplates with widths of 2-4 µm and lengths of 5-10 µm in a radiative way. The preliminary electrochemical properties of Cu4V2.15O9.38 have been investigated for the first time and correlated with its structure. This material delivers a large discharge capacity of 471 mA h g-1 above 1.5 V, thus making it an interesting electrode material for primary lithium ion batteries used in implantable cardioverter defibrillators.Hierarchical Cu4V2.15O9.38 micro-/nanostructures have been prepared by a facile ``forced hydrolysis'' method, from an aqueous peroxovanadate and cupric nitrate solution in the presence of urea. The hierarchical architectures with diameters of 10-20 µm are assembled from flexible nanosheets and rigid nanoplates with widths of 2-4 µm and lengths of 5-10 µm in a radiative way. The preliminary electrochemical properties of Cu4V2.15O9.38 have been investigated for the first time and correlated with its structure. This material delivers a large discharge capacity of 471 mA h g-1 above 1.5 V, thus making it an interesting electrode material for primary lithium ion batteries used in implantable cardioverter defibrillators. Electronic supplementary information (ESI) available: SEM images of hierarchical Cu4V2.15O9.38, CV curves of the electrode and discharge profiles of the cell made from Cu4V2.15O9.38 hierarchical structures, XRD pattern and SEM images of layered vanadium oxide hydrate, structure model of Cu4V2.15O9.38. See DOI: 10.1039/c0nr00657b

  3. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.

    PubMed

    Johari, Anima; Bhatnagar, M C; Rana, Vikas

    2012-10-01

    We report on controlling the morphology of tin oxide (SnO2) nanostructures and the study of the effect of surface morphology on structural and optical properties of SnO2 nanostuctures. In present work, Tin oxide (SnO2) nanostructures such as nanowires and nanorods have been grown by thermal evaporation of SnO2 powder. To demonstrate the effect of different substrates on the morphology of grown SnO2 nanostructures, the thermal evaporation of SnO2 powder was carried out on Si and gold catalyzed Si (Au/Si) substrates. The scanning-electron-microscopic analysis shows the growth of SnO2 nanowires on Au/Si substrate and growth of SnO2 nanorods on Si substrate. The scanning-and transmission-electron-microscopic analysis shows that the diameter of SnO2 nanowires and nanorods are about 70 nm and 95 nm respectively and their length is about 80 microm and 30 microm respectively. The vapor-liquid-solid (VLS) growth of SnO2 nanowires and vapor-solid (VS) growth of SnO2 nanorods is also confirmed with the help of TEM and EDX spectra. The synthesized SnO2 nanowires show tetragonal rutile structure of SnO2, whereas SnO2 nanorods show tetragonal rutile as well as cassiterite structure of SnO2. UV-Vis absorption spectra showed the optical band gaps of 4.1 eV and 3.8 eV for the SnO2 nanowires and the nanorods, respectively. The SnO2 nanowires and nanorods show photoluminescence with broad emission peaks centred at around 600 nm and 580 nm respectively. Raman spectra of SnO2 nanowires shows three Raman shifts (478, 632, 773 cm(-1)) corresponding to Eg, A1g and B2g vibration modes, whereas in Raman spectra of SnO2 nanorods, A1g peak is dramatically reduced and the B2g mode is totally quenched.

  4. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    PubMed

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiyastuti, W., E-mail: widi@chem-eng.its.ac.id; Machmudah, Siti; Kusdianto,

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changingmore » the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.« less

  6. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Kusdianto, Nurtono, Tantular; Winardi, Sugeng

    2015-12-01

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.

  7. A study on photoelectrochemical properties of ZnO@ZnS nanostructures synthesized via facile ion-exchange approach

    NASA Astrophysics Data System (ADS)

    Sharma, Akash; Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this work, ZnO nanorods (NRs) were fabricated, on cleaned ITO substrates by using sol-gel spin coating followed by hydrothermal technique. In order to coat zinc sulphide (ZnS) layers on the earlier prepared NRs a facile ion-exchange approach was adopted. The ZnO@ZnS nanostructures so prepared were characterised by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible spectroscopy and photoelectrochemical study. XRD spectra confirmed the hexagonal wurtzite structure of all the samples along with preferential c-axis orientation. Further it was also observed from the FESEM images that sulfidation process doesn't affect the structure of ZnO NRs arrays. From the absorption spectra it can be clearly observed that the light absorbing property has increased in within the visible range due to the formation of ZnS layer on the ZnO nanostructures, which is not possible for either of the material individually. The cyclic voltammetry results indicates the enhancement in photocurrent density after illumination for the synthesized nanostructures. The electrocatalytic behaviour of ZnO@ZnS electrodes have been studied using a 3-electrode system in presence of 0.1M NaOH electrolyte solution with respect to an Ag/AgCl reference electrode.

  8. Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables

    NASA Astrophysics Data System (ADS)

    Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.

    2018-03-01

    Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.

  9. Morphology-controlled synthesis of Co{sub 3}O{sub 4} by one step template-free hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Keqing; Liu, Jiajia; Wen, Panyue

    2015-07-15

    Highlights: • Co{sub 3}O{sub 4} crystals had been synthesized by one step template-free hydrothermal method. • The H{sub 2}O{sub 2} plays a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. • The morphology has significant effect on the optical property of Co{sub 3}O{sub 4}. - Abstract: We had developed a facile synthetic route of Co{sub 3}O{sub 4} crystals with different morphologies via one step template-free hydrothermal method. The phase and composition of the Co{sub 3}O{sub 4} were investigated by X-ray powder diffraction and Raman spectrum. The morphology and structure of the synthesized samples were characterized by scanning electronmore » microscopy and transmission electron microscopy. The H{sub 2}O{sub 2} played a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. It only obtained Co-based precursor in the absence of H{sub 2}O{sub 2}. On the contrary, the Co{sub 3}O{sub 4} with different morphologies including nanoparticles, nano-discs and well-defined octahedral nanostructures were synthesized in the presence of H{sub 2}O{sub 2}. In addition, the optical property of the obtained Co{sub 3}O{sub 4} samples was investigated by UV–vis spectra.« less

  10. Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2018-05-01

    Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.

  11. Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures

    NASA Astrophysics Data System (ADS)

    Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-03-01

    Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.

  12. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor.

    PubMed

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D

    2018-01-15

    Fabrication and characterization of a surface plasmon resonance based fiber optic xanthine sensor using entrapment of xanthine oxidase (XO) enzyme in several nanostructures of tantalum (v) oxide (Ta 2 O 5 ) have been reported. Chemical route was adopted for synthesizing Ta 2 O 5 nanoparticles, nanorods, nanotubes and nanowires while Ta 2 O 5 nanofibers were prepared by electrospinning technique. The synthesized Ta 2 O 5 nanostructures were characterized by photoluminescence, scanning electron microscopy, UV-Visible spectra and X-ray diffraction pattern. The probes were fabricated by coating an unclad core of the fiber with silver layer followed by the deposition of XO entrapped Ta 2 O 5 nanostructures. The crux of sensing mechanism relies on the modification of dielectric function of sensing layer upon exposure to xanthine solution of diverse concentrations, reflected in terms of shift in resonance wavelength. The sensing probe coated with XO entrapped Ta 2 O 5 nanofibers has been turned out to possess maximum sensitivity amongst the synthesized nanostructures. The probe was optimized in terms of pH of the sample and the concentration of XO entrapped in Ta 2 O 5 nanofibers. The optimized sensing probe possesses a remarkably good sensitivity of 26.2nm/µM in addition to linear range from 0 to 3µM with an invincible LOD value of 0.0127µM together with a response time of 1min. Furthermore, probe selectivity with real sample analysis ensure the usage of the sensor for practical scenario. The results reported open a novel perspective towards a sensitive, rapid, reliable and selective detection of xanthine. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Systematics of Activity-Composition Relations in Mg-Fe2+ Oxide and Silicate Solid Solutions

    NASA Astrophysics Data System (ADS)

    O'Neill, H. S.

    2006-12-01

    The need to quantify activity-composition relations of mineral solid solutions for petrologic modelling has prompted many experimental studies, but different studies on the same system often appear to show a startling lack of consistency. A good example is Mg-Fe2+ mixing in garnet (the pyrope-almandine join). This is understandable because the energies of mixing in solid solutions are often obtained experimentally as small difference between large numbers. In particular, the fallacy of using a sequential approach to data fitting to a thermodynamic model leads to the accumulated errors being artificially concentrated onto the last step of the fitting process, which is usually that part of the model dealing with the excess energies of mixing. This gives rise to erroneous activity-composition relations, often apparently showing complex deviations from ideality. Systemizing the results of many studies can reveal underlying patterns of behaviour while also identifying outliers and anomalies that may be worth reinvestigating. Davies and Navrotsky [1] showed that the energies of mixing of many different pairs of ions with the same charge correlated well with the difference in molar volumes of the end-members, within a particular crystal structure. This empirical work is now supported by theoretical calculations. It underlies the modern approach to melt/crystal trace-element partitioning. Provided an internally consistent dataset is used, an analogous correlation may be demonstrated across different crystal structures for the mixing of one pair of ions, such as Mg and Fe2+. Activity-composition relations in MgO-"FeO" magnesiowuestite solutions in equilibrium with iron metal were used to obtain the properties of Mg-Fe olivine solutions from magnesiowuestite/olivine partitioning [2]. New results at 1400 K, 1 bar and 1473 K, 25 kb (O'Neill and Pownceby, in prep.) confirm previous work that mixing in Mg-Fe olivine is regular (symmetrical) with W Mg-Fe = 2.5 kJ/mol, with an

  14. Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption

    NASA Astrophysics Data System (ADS)

    Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan

    2015-11-01

    Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.

  15. Grain size tuning of nanostructured Cu{sub 2}O films through vapour phase supersaturation control and their characterization for practical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anu, A.; Abdul Khadar, M., E-mail: mabdulkhadar@rediffmail.com

    2015-09-15

    A strategy for creating nanostructured films is the alignment of nanoparticles into ordered superstructures as living organisms synthesize biomaterials with superior physical properties using nanoparticle building blocks. We synthesized nanostructured films of Cu{sub 2}O of variable grain size by establishing the condition of supersaturation for creation of nanoparticles of copper which deposited as nanograined films and which was then oxidized. This technique has the advantage of being compatible with conventional vacuum processes for electronic device fabrication. The Cu{sub 2}O film samples consisted of a secondary structure of spherical particles of almost uniform size, each particle being an agglomerate of primarymore » nanocrystals. Fractal analysis of the AFM images of the samples is carried out for studying the aggregation mechanism. Grain size tuning of the nanostructured Cu{sub 2}O films has been studied using XRD, and micro-Raman and photoluminescence spectroscopy.« less

  16. Structural and magnetic properties of nanostructured composites (SrFe12O19)x(CaCu3Ti4O12)1-x

    NASA Astrophysics Data System (ADS)

    Gavrilova, T. P.; Deeva, J. A.; Yatsyk, I. V.; Yagfarova, A. R.; Gilmutdinov, I. F.; Lyadov, N. M.; Milovich, F. O.; Chupakhina, T. I.; Eremina, R. M.

    2018-05-01

    (SrFe12O19)x(CaCu3Ti4O12)1-x (x = 0.01, 0.03, 0.07, 0.1) composites were synthesized using a solid state method, while the pre-synthesized strontium hexaferrite SrFe12O19 (SFO) was added to the stoichiometric amount of CaO, CuO and TiO oxides to form the CaCu3Ti4O12 (CCTO) structure around SFO microinclusions. The structural and microstructural properties of obtained composites were studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The magnetic properties were studied by electron spin resonance and magnetometry methods. Based on all experimental data we can conclude, that SFOxCCTO1-x nanostructured composites were formed only for concentrations x = 0.03 and x = 0.07, where SFO nanoinclusions are inside CCTO matrix, that leads to the strong mutual influence of the magnetic properties of both component.

  17. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles.

    PubMed

    Villani, M; Rimoldi, T; Calestani, D; Lazzarini, L; Chiesi, V; Casoli, F; Albertini, F; Zappettini, A

    2013-04-05

    A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with 'tetrapod' morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m(2) kg(-1)), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis.

  18. Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Kai-Li; Shang, Xiao; Li, Zhen; Dong, Bin; Li, Xiao; Gao, Wen-Kun; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Designing mixed metal oxides with unique nanostructures as efficient electrocatalysts for water electrolysis has been an attractive approach for the storage of renewable energies. The ternary mixed metal spinel oxides FexNi1-xCo2O4 (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1) have been synthesized by a facile hydrothermal approach and calcination treatment using nickel foam as substrate. Fe/Ni ratios have been proved to affect the nanostructures of FexNi1-xCo2O, which imply different intrinsic activity for oxygen evolution reaction (OER). SEM images show that Fe0.5Ni0.5Co2O4 has the uniform nanowires morphology with about 30 nm of the diameter and 200-300 nm of the length. The OER measurements show that Fe0.5Ni0.5Co2O4 exhibits the better electrocatalytic performances with lower overpotential of 350 mV at J = 10 mA cm-2. In addition, the smaller Tafel slope of 27 mV dec-1 than other samples with different Fe/Ni ratios for Fe0.5Ni0.5Co2O4 is obtained. The improved OER activity of Fe0.5Ni0.5Co2O4 may be attributed to the synergistic effects from ternary mixed metals especially Fe-doping and the uniform nanowires supported on NF. Therefore, synthesizing Fe-doped multi-metal oxides with novel nanostructures may be a promising strategy for excellent OER electrocatalysts and it also provides a facile way for the fabrication of high-activity ternary mixed metal oxides electrocatalysts.

  19. Investigating the Unrevealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO2 Film as an Environmental Photocatalyst.

    PubMed

    Choi, Mingi; Lim, Jonghun; Baek, Minki; Choi, Wonyong; Kim, Wooyul; Yong, Kijung

    2017-05-17

    Among three polymorphs of TiO 2 , the brookite is the least known phase in many aspects of its properties and photoactivities (especially comparable to anatase and rutile) because it is the rarest phase to be synthesized in the standard environment among the TiO 2 polymorphs. In this study, we address the unrevealed photocatalytic properties of pure brookite TiO 2 film as an environmental photocatalyst. Highly crystalline brookite nanostructures were synthesized on titanium foil using a well-designed hydrothermal reaction, without harmful precursors and selective etching of anatase, to afford pure brookite. The photocatalytic degradation of rhodamine B, tetramethylammonium chloride, and 4-chlorophenol on UV-illuminated pure brookite were investigated and compared with those on anatase and rutile TiO 2 . The present research explores the generation of OH radicals as main oxidants on brookite. In addition, tetramethylammonium, as a mobile OH radical indicator, was degraded over both pure anatase and brookite phases, but not rutile. The brookite phase showed much higher photoactivity among TiO 2 polymorphs, despite its smaller surface area compared with anatase. This result can be ascribed to the following properties of the brookite TiO 2 film: (i) the higher driving force with more negative flat-band potential, (ii) the efficient charge transfer kinetics with low resistance, and (iii) the generation of more hydroxyl radicals, including mobile OH radicals. The brookite-nanostructured TiO 2 electrode facilitates photocatalyst collection and recycling with excellent stability, and readily controls photocatalytic degradation rates with facile input of additional potential.

  20. Nanostructure ZnFe2O4 with Bacillus subtilis for Detection of LPG at Low Temperature

    NASA Astrophysics Data System (ADS)

    Goutham, Solleti; Kumar, Devarai Santhosh; Sadasivuni, Kishor Kumar; Cabibihan, John-John; Rao, Kalagadda Venkateswara

    2017-04-01

    The present study deals with the development of a chemical sensor for the detection of liquefied petroleum gas (LPG) at a low operating temperature using Zinc ferrite (ZnFe2O4)/ Bacillus subtilis ( B. subtilis) hybrid nanostructures. The nanostructure ZnFe2O4 and B. subtilis powder, taken in equal proportion was made into films using the spin coating technique. X-ray diffraction, thermal analysis, scanning electron microscopy, and transmission electron microscopy were used to study morphology, structure and crystallite size. The sensing properties of the hybrid structure were studied and excellent response was observed in the temperature range of 50-55°C for 400 ppm LPG, when compared to the individual components of the hybrid. The signal output of the proposed sensor were extremely stable for more than 30 days. This method proposes the usage of the biomolecule/metal oxide composites in electronics and helps to reduce the metal oxide usage.

  1. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  2. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Cao, Tieping; Liu, Yichun

    2011-02-01

    In the present work, 2,9,16,23-tetranitrophthalocyanine copper(II) (TNCuPc)/TiO(2) hierarchical nanostructures were successfully fabricated by a simple combination method of electrospinning technique and solvothermal processing. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), UV-vis diffuse reflectance (DR), Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric and differential thermal analysis (TG-DTA) were used to characterize the as-synthesized TNCuPc/TiO(2) hierarchical nanostructures. The results showed that the secondary TNCuPc nanostructures were not only successfully grown on the primary TiO(2) nanofibers substrates but also uniformly distributed without aggregation. By adjusting the solvothermal fabrication parameters, the TNCuPc nanowires or nanoflowers were facilely fabricated, and also the loading amounts of TNCuPc could be controlled on the TNCuPc/TiO(2) hierarchical nanostructural nanofibers. And, there might exist the interaction between TNCuPc and TiO(2). A possible mechanism for the formation of TNCuPc/TiO(2) hierarchical nanostructures was suggested. The photocatalytic studies revealed that the TNCuPc/TiO(2) hierarchical nanostructures exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TNCuPc or TiO(2) nanofibers under visible-light irradiation.

  3. ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries.

    PubMed

    Hu, Xiaofei; Han, Xiaopeng; Hu, Yuxiang; Cheng, Fangyi; Chen, Jun

    2014-04-07

    A sponge-like ε-MnO2 nanostructure was synthesized by direct growth of ε-MnO2 on Ni foam through a facile electrodeposition route. When applied as a self-supporting, binder-free cathode material for rechargeable nonaqueous lithium-oxygen batteries, the ε-MnO2/Ni electrode exhibits considerable high-rate capability (discharge capacity of ∼6300 mA h g(-1) at a current density of 500 mA g(-1)) and enhanced cyclability (exceeding 120 cycles) without controlling the discharge depth. The superior performance is proposed to be associated with the 3D nanoporous structures and abundant oxygen defects as well as the absence of side reactions related to carbon-based conductive additives and binders.

  4. Anthocyanin extracted from Hibiscus (Hibiscus rosa sinensis L.) as a photosensitizer on nanostructured-TiO2 dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Rosyida, N. A.; Supriyanto, E.; Saputro, S.; Hanif, Q. A.; Rinawati, L.

    2016-02-01

    Anthocyanin extracted from Hibiscus (Hibiscus rosa sinensis L) as a photosensitizer in nanostructured-TiO2 dye sensitized solar cells has been fabricated. Ultravisible visible absorption spectra of anthocyanin show an ability absorbing light in the visible region. While the nanostructed-TiO2 powder in this research was prepared by sol-gel method following annealled at a temperature of 600°C. Subsequently, the TiO2 nanostructures were characterized by XRD, XRF, and SEM. The difractogram X-ray results shown that TiO2 was built from f anatase and rutile phase. Element analysis of synthesized TiO2 by X-ray Fluorecence (XRF) shown the TiO2 content of 98,67 wt%. TiO2 layer prepared at different thickness showed the average size of cavity about 0.83 µm. These several thickness of solar cells were fabricated and were immersed into anthocyanin for 24 hours to gain sensitized TiO2 photoanode for Dye sensitised solar cells (DSSCs). These DSSCS performance were measured using I-V Keithley 2602A. The results exhibited that the sample with a TiO2 layer thickness of 4.75 ± 0.8 µm has the highest efficiency.

  5. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.

  6. Syntheses and crystal structures of two topologically related modifications of Cs(2)[(UO(2))(2)(MoO(4))(3)].

    PubMed

    Krivovichev, S V; Cahill, C L; Burns, P C

    2002-01-14

    Two polymorphs of Cs(2)(UO(2))(2)(MoO(4))(3) have been synthesized by hydrothermal (alpha-phase) and high-temperature (beta-phase) routes. Both were characterized by single-crystal X-ray diffraction: alpha-Cs(2)(UO(2))(2)(MoO(4))(3), orthorhombic, Pna2(1), a = 20.4302(15) A, b = 8.5552(7) A, c = 9.8549(7) A, Z = 4; beta-Cs(2)(UO(2))(2)(MoO(4))(3), tetragonal, P4(2)/n, a = 10.1367(8) A, c = 16.2831(17) A, Z = 4. The structures of both phases consist of linked UO(7) pentagonal bipyramids and MoO(4) tetrahedra: alpha-Cs(2)(UO(2))(2)(MoO(4))(3) is a framework compound with large channels parallel to the c axis. Two cesium sites are located in these channels and are coordinated by 8 and 10 oxygen atoms. The structure of beta-Cs(2)(UO(2))(2)(MoO(4))(3) contains corrugated [(UO(2))(2)(MoO(4))(3)] sheets that are parallel to (001). The cesium cations are located between the sheets and are coordinated by eight oxygen atoms. The structures are topologically related; both can be described in terms of chains of 5-connected UO(7) pentagonal bipyramids and 3- and 4-connected MoO(4) tetrahedra.

  7. Understanding the effect models of ionic liquids in the synthesis of NH4-Dw and γ-AlOOH nanostructures and their conversion into porous γ-Al2O3.

    PubMed

    Duan, Xiaochuan; Kim, Tongil; Li, Di; Ma, Jianmin; Zheng, Wenjun

    2013-05-03

    Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption

  8. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  9. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation.

    PubMed

    Zhou, Xiongtu; Lin, Tihang; Liu, Yuhui; Wu, Chaoxing; Zeng, Xiangyao; Jiang, Dong; Zhang, Yong-ai; Guo, Tailiang

    2013-10-23

    High-quality tetrapod-shaped Sn-doped ZnO (T-SZO) nanostructures have been successfully synthesized via the thermal evaporation of mixed Zn and Sn powder. The effects of the Sn dopant on the morphology, microstructure, optical, and field-emission (FE) properties of T-SZO were investigated. It was found that the growth direction of the legs of T-SZO is parallel to the [0001] crystal c-axis direction and that the incorporation of Sn in the ZnO matrix increases the aspect ratio of the tetrapods, leads to blue shift in the UV region, and considerably improves the FE performance. The results also show that tetrapod cathodes with around a 0.84 atom % Sn dosage have the best FE properties, with a turn-on field of 1.95 V/μm, a current density of 950 μA/cm2 at a field of 4.5 V/μm, and a field-enhancement factor as high as 9556.

  10. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Abraham, A. Godlyn; Manikandan, A.; Manikandan, E.; Vadivel, S.; Jaganathan, S. K.; Baykal, A.; Renganathan, P. Sri

    2018-04-01

    In this study, spinel magnesium cobalt ferrite (CoxMg1-xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanocomposites were synthesized successfully by modified sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as the source of divalent (Mg2+ and Co2+) and trivalent (Fe3+) cations, respectively and urea were used as the reducing (fuel) agent. The effects of cobalt ions on morphology, structural, optical, magnetic and photo-catalytic properties of spinel CoxMg1-xFe2O4 nanocomposites were investigated. Various characterization methods, including X-ray powder diffraction (XRD), high resolution scanning electron microscope (HR-SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and photo-catalytic degradation (PCD) activity were used to study the phase purity, microstructure, particle size, elemental composition, functional group determination, band gap calculation, magnetic properties and degradation efficiency of nanoparticles, respectively. The observed results showed that the final products consists cubic spinel phase with sphere-like nanoparticles morphologies. Furthermore, spinel Co0.6Mg0.4Fe2O4 nanocomposite showed highest PCD efficiency (98.55%) than other composition of ferrite nanoparticles.

  11. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.

    PubMed

    Wang, Hsin-Yi; Xiao, Fang-Xing; Yu, Le; Liu, Bin; Lou, Xiong Wen David

    2014-08-13

    A facile two-step solution-phase method has been developed for the preparation of hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures. Ultralong α-MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1-x Mnx Oy nanoflakes were grown on α-MnO2 nanowires to form core-shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution-phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one-dimensional (1D) α-MnO2 nanowires in hierarchical core-shell nanostructures offer a stable and efficient backbone for charge transport; while the two-dimensional (2D) Ni1-x Mnx Oy nanoflakes on α-MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core-shell α-MnO2 @Ni1-x Mnx Oy nanostructures (x = 0.75) is as high as 657 F g(-1) at a current density of 250 mA g(-1) , and stable charging-discharging cycling over 1000 times at a current density of 2000 mA g(-1) has been realized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermal replacement reaction: a novel route for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-nanostructures by replacing cadmium with indium and their photoelectrochemical and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Choi, Mingi; Baek, Minki; Yong, Kijung

    2015-05-01

    A novel route called thermal replacement reaction was demonstrated for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-structural nanowires on FTO glass by replacing the element cadmium with indium for the first time. The indium layer was coated on the surface of the ZnO nanowires beforehand, then CdSe quantum dots were deposited onto the coated indium layer, and finally the CdSe quantum dots were converted to γ-In2Se3 quantum dots by annealing under vacuum at 350 °C for one hour. The prepared ZnO@γ-In2Se3 hetero-nanostructures exhibit stable photoelectrochemical properties that can be ascribed to the protection of the In2O3 layer between the ZnO nanowire and γ-In2Se3 quantum dots and better photocatalytic performance in the wide wavelength region from 400 nm to nearly 750 nm. This strategy for preparing the ZnO@γ-In2Se3 hetero-nanostructures not only enriches our understanding of the single replacement reaction where the active element cadmium can be replaced with indium, but also opens a new way for the in situ conversion of cadmium-based to eco-friendly indium-based nano-devices.

  13. Thermal replacement reaction: a novel route for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-nanostructures by replacing cadmium with indium and their photoelectrochemical and photocatalytic performances.

    PubMed

    Zhang, Zhuo; Choi, Mingi; Baek, Minki; Yong, Kijung

    2015-05-21

    A novel route called thermal replacement reaction was demonstrated for synthesizing eco-friendly ZnO@γ-In2Se3 hetero-structural nanowires on FTO glass by replacing the element cadmium with indium for the first time. The indium layer was coated on the surface of the ZnO nanowires beforehand, then CdSe quantum dots were deposited onto the coated indium layer, and finally the CdSe quantum dots were converted to γ-In2Se3 quantum dots by annealing under vacuum at 350 °C for one hour. The prepared ZnO@γ-In2Se3 hetero-nanostructures exhibit stable photoelectrochemical properties that can be ascribed to the protection of the In2O3 layer between the ZnO nanowire and γ-In2Se3 quantum dots and better photocatalytic performance in the wide wavelength region from 400 nm to nearly 750 nm. This strategy for preparing the ZnO@γ-In2Se3 hetero-nanostructures not only enriches our understanding of the single replacement reaction where the active element cadmium can be replaced with indium, but also opens a new way for the in situ conversion of cadmium-based to eco-friendly indium-based nano-devices.

  14. Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation.

    PubMed

    Agarwal, Shilpi; Tyagi, Inderjeet; Gupta, Vinod Kumar; Sohrabi, Maryam; Mohammadi, Sanaz; Golikand, Ahmad Nozad; Fakhri, Ali

    2017-01-01

    Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO 2 /Co 3 O 4 nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV-Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15min, pH6 and 0.1g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO 2 /Co 3 O 4 nanocomposites Fe doped SnO 2 /Co 3 O 4 nanocomposites possess greater photocatalytic efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    PubMed

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  16. Evaluation of SiO{sub 2}@CoFe{sub 2}O{sub 4} nano-hollow spheres through THz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakshit, Rupali, E-mail: rupali12@bose.res.in; Pal, Monalisa; Chaudhuri, Arka

    2016-05-06

    We have synthesized cobalt ferrite (CFO) nanoparticles (NPs) of diameter 100 nm and nano-hollow spheres (NHSs) of diameter 100, 160, 250, and 350 nm by a facile one step template free solvothermal technique and carried out SiO{sub 2} coating on their surface following Stöber method. The phase and morphology of the nanostructures were confirmed by X-ray diffraction and transmission electron microscope. The magnetic measurements were carried out by vibrating sample magnetometer in order to study the influence of SiO{sub 2} coating on the magnetic properties of bare CFO nanostructures. Furthermore, we have applied THz time domain spectroscopy to investigate the THz absorptionmore » property of these nanostructures in the frequency range 1.0–2.5 THz. Detailed morphology and size dependent THz absorption study unfolds that the absorption property of these nanostructures sensitively carries the unique signature of its dielectric property.« less

  17. CdO-based nanostructures as novel CO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Krishnakumar, T.; Jayaprakash, R.; Prakash, T.; Sathyaraj, D.; Donato, N.; Licoccia, S.; Latino, M.; Stassi, A.; Neri, G.

    2011-08-01

    Crystalline Cd(OH)2/CdCO3 nanowires, having lengths in the range from 0.3 up to several microns and 5-30 nm in diameter, were synthesized by a microwave-assisted wet chemical route and used as a precursor to obtain CdO nanostructures after a suitable thermal treatment in air. The morphology and microstructure of the as-synthesized and annealed materials have been investigated by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and thermogravimetry-differential scanning calorimetry. The change in morphology and electrical properties with temperature has revealed a wire-to-rod transformation along with a decreases of electrical resistance. Annealed samples were printed on a ceramic substrate with interdigitated contacts to fabricate resistive solid state sensors. Gas sensing properties were explored by monitoring CO2 in synthetic air in the concentration range 0.2-5 v/v% (2000-50 000 ppm). The effect of annealing temperature, working temperature and CO2 concentration on sensing properties (sensitivity, response/recovery time and stability) were investigated. The results obtained demonstrate that CdO-based thick films have good potential as novel CO2 sensors for practical applications.

  18. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.

    PubMed

    Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho

    2012-12-05

    Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Fabrication by Electrophoretic Deposition of Nano-Fe3O4 and Fe3O4@SiO2 3D Structure on Carbon Fibers as Supercapacitor Materials

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Abouzari-Lotf, Ebrahim; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Kianvash, Abbas

    2018-05-01

    Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder ( 11.26 emu/g) compared with Fe3O4 powder ( 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.

  20. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay; Gupta, Shubhra; Miura, Norio

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo 2O 4 spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo 2O 4 spinel thin film exhibited a high specific capacitance value of 580 F g -1 and an energy density of 32 Wh kg -1 at the power density of 4 kW kg -1, accompanying with good cyclic stability.

  1. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    PubMed

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  2. Development of nanostructured EuAl2O4 phosphors with strong long-UV excitation.

    PubMed

    Hirata, Gustavo A; Bosze, Eric J; McKittrick, Joanna

    2008-12-01

    Fueled by the need to develop novel materials for applications in solid state white-emitting lamps we have improved a new low-cost, clean and efficient technique to produce high luminescence phosphors with strong excitation in the long-UV range (350-400 nm) which makes them useful for applications in GaN-based solid state lamps. In this work, pressurized combustion synthesis has been successfully used to develop EuAl2O4 (europium aluminate), a new green photoluminescent material with monoclinic structure. The combustion synthesis reaction conditions can be adjusted to produce either the AlEuO3 orthorhombic phase at low pressures (0.1 MPa), or the new monoclinic EuAl2O4 phase, which is apparently more thermodynamically favorable at higher combustion reaction pressures (1.4 MPa). The luminescent material is a high surface area powder (approximately 50 m2/g) composed mainly of nanostructured needles and plates with 5-10 nm in diameter and 100-150 nm in length. A broad emission peak centered at 530 nm with a decay time of 1.5 approximately 2 ms is obtained at the maximum excitation wavelength lambda(exc) = 370 nm.

  3. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: (I) Synthesis, structural and microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.

    Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less

  4. A hierarchical nanostructure consisting of amorphous MnO 2, Mn 3O 4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chi-Chang; Hung, Ching-Yun; Chang, Kuo-Hsin; Yang, Yi-Lin

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO 2 (a-MnO 2), Mn 3O 4 nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn 3O 4 nanocrystals and a-MnO 2 nanorods into an amorphous manganese oxide, the cycle stability of a-MnO 2 is obviously enhanced by adding Mn 3O 4. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g -1 in CaCl 2), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  5. Study of the formation of the apatite-type phases La9.33+x(SiO4)6O2+3x/2 synthesized from a lanthanum oxycarbonate La2O2CO3

    NASA Astrophysics Data System (ADS)

    Pons, A.; Jouin, J.; Béchade, E.; Julien, I.; Masson, O.; Geffroy, P. M.; Mayet, R.; Thomas, P.; Fukuda, K.; Kagomiya, I.

    2014-12-01

    Lanthanum silicated apatites with nominal composition La9.33+x(SiO4)6O2+3x/2 (-0.2 < x < 0.27) have been successfully synthesized by solid state reaction using a new reagent La2O2CO3 and amorphous SiO2 precursors. The formation mechanism of La2O2CO3 reagent, which cannot be purchased, has been followed by in-situ temperature depend XRD of La2O3 under CO2 atmosphere. The stability of this reagent during the synthesis step allowed to limit the formation of secondary phase La2Si2O7 and made the weighting of the reagent easier. High purity powders could be synthesized at the temperature of 1400 °C. Dense pellets (more than 98.5%) were obtained by isostatic pressing of powders calcined at 1200 °C and then sintered at 1550 °C. Traces of La2SiO5 secondary phase present in synthesized powder disappeared after densification and pure oxyapatite materials were obtained for all the compositions. Electrical measurements confirmed that conductivity behaviors of the sintered pellets were dependent to the oxygen over-stoichiometry. Indeed, a relatively high conductivity of 1 × 10-2 S cm-1 was exhibited at 800 °C for the nominal composition La9.60(SiO4)6O2.405 with low activation energy around 0.79 eV. The ionic conductivity properties were comparable with that of the earlier obtained materials.

  6. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  7. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors

    PubMed Central

    Zhang, Genqiang; (David) Lou, Xiong Wen

    2013-01-01

    Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities. PMID:23503561

  8. Non-centrosymmetric Au-SnO2 hybrid nanostructures with strong localization of plasmonic for enhanced photocatalysis application

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Liao, Lei; Zhang, Shaofeng; Zhou, Juan; Xiao, Xiangheng; Ren, Feng; Sun, Lingling; Dai, Zhigao; Jiang, Changzhong

    2013-05-01

    We present an innovative approach to the production of sub-100 nm hollow Au-SnO2 hybrid nanospheres, employing a low-cost, surfactant-free and environmentally friendly solution-based route. The hollow hybrid nanostructures were synthesized using a seed-mediated hydrothermal method, which can be divided into two stages: (1) formation of multicore-shell Au@SnO2 nanoparticles (NPs) and (2) thermal diffusion and ripening to form hollow Au-SnO2 hybrid NPs. The morphology, optical properties and formation mechanism were determined by a collection of joint techniques. Photocatalytic degradation of Rhodamine B (RhB) in the liquid phase served as a probe reaction to evaluate the activity of the as-prepared hollow hybrid Au-SnO2 NPs under the irradiation of both visible light and ultraviolet light. Significantly, the as-obtained Au-SnO2 hybrid nanostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to commercial pure SnO2 products and P25 TiO2, mainly owing to the effective electron hole separation at the SnO2-Au interfaces and strong localization of plasmonic near-fields effects.We present an innovative approach to the production of sub-100 nm hollow Au-SnO2 hybrid nanospheres, employing a low-cost, surfactant-free and environmentally friendly solution-based route. The hollow hybrid nanostructures were synthesized using a seed-mediated hydrothermal method, which can be divided into two stages: (1) formation of multicore-shell Au@SnO2 nanoparticles (NPs) and (2) thermal diffusion and ripening to form hollow Au-SnO2 hybrid NPs. The morphology, optical properties and formation mechanism were determined by a collection of joint techniques. Photocatalytic degradation of Rhodamine B (RhB) in the liquid phase served as a probe reaction to evaluate the activity of the as-prepared hollow hybrid Au-SnO2 NPs under the irradiation of both visible light and ultraviolet light. Significantly, the as-obtained Au-SnO2 hybrid nanostructures

  9. Syntheses and characterization of phosphonates and diphosphonates of molybdenum, A4[(MoO3)5(O3PR)2]·xH2O, A2[Mo2O5(O3PR)2] and A2[Mo2O5(O3P-R-PO3)] (A = K, Rb, Cs, Tl, NH4).

    PubMed

    Elias Jesu Packiam, D; Vidyasagar, Kanamaluru

    2017-11-28

    Twenty new molybdenum phosphonates and diphosphonates have been synthesized and structurally characterized by single crystal and powder X-ray diffraction, CHN analyses, spectroscopic and thermal studies. Four of them are molecular phenyl- and benzyl-phosphonates containing discrete [(MoO 3 ) 5 (O 3 PR) 2 ] 4- (R = Ph or CH 2 Ph) cyclic anions. The sixteen non-molecular compounds are layered isostructural phenylphosphonates, A 2 [Mo 2 O 5 (O 3 PPh) 2 ] (A = NH 4 , Tl, Rb, Cs) and K 1.5 (H 3 O) 0.5 [Mo 2 O 5 (O 3 PPh) 2 ] and the corresponding diphosphonate compounds with pillared anionic layers, A 2 [Mo 2 O 5 (O 3 P(CH 2 ) 3 PO 3 )], A 2 [Mo 2 O 5 (O 3 P(CH 2 ) 4 PO 3 )] and A 2 [Mo 2 O 5 (O 3 P(C 6 H 4 )PO 3 )]. The A + ions reside in the interlayer region as well as in the cavities within the anionic layers.

  10. Confocal Raman microscopy of one dimensional ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Gupta, Maneesh; Yang, Rusen; Wang, Zhong; Tsukruk, Vladimir

    2009-03-01

    ZnO nanostructures with various shapes (vertically aligned nanorods, nanobelts, nanohelixes, nanorings) have been synthesized using both vapor phase and solution growth methods. In the simplest example of a nanobelt, the fast growth direction can be either (21 1 0) or (011 0) or (0001). Here, we show that confocal Raman microscopy can be employed as a fast and nondestructive analytical technique to identify the crystal planes and reveal the relative orientation of the ZnO nanostructure. Various features of the Raman spectrum of ZnO nanostructures (presence of the A1(TO) mode, width of the E2 mode) were found to be sensitive to relative orientation of the incident source laser and the crystal plane. Furthermore, owing to the optical anisotropy of ZnO, Raman scattering from the substrate is modulated (either enhanced or suppressed with respect to the background) depending on the polarization of the incident light with respect to orientation of the nanobelt. The results presented here describe a novel method to nondestructively identify the growth, relative orientation, and the waveguiding properties of the ZnO nanostructures.

  11. Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Sobhani-Nasab, Ali; Zahraei, Zohreh; Akbari, Maryam; Maddahfar, Mahnaz; Hosseinpour-Mashkani, S. Mostafa

    2017-07-01

    In this research, for the first time, ZnLaFe2O4/NiTiO3 nanocomposites have been synthesized through a polyol assistant sol-gel method. To investigate the effect of different surfactants on the morphology and particle size of ZnLaFe2O4 nanostructure, cetrimonium bromide, sodium dodecyl sulfate, polyvinylpyrrolidone, polyvinyl alcohol, and oleic acid were used as surfactant agents. Based on the SEM results, it was found that morphology and particle size of the products could be affected by these surfactants. Furthermore, study on antibacterial effect of ZnLaFe2O4/NiTiO3 nanocomposites by colony forming unit (CFU) reduction assay showed that ZnLaFe2O4/NiTiO3 nanocomposites have antibacterial activity against Gram-negative Escherchia coli (ATCC 10536) and Gram-positive Staphylococcus aureus (ATCC 29737). Antibacterial results demonstrate that nanocomposite significantly reduced the growth rate of E. coli bacteria and S. aureus after 120 min. The structure and morphology of the resulting particles were characterized by XRD, FT-IR, EDX, and SEM analysis.

  12. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  13. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  14. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors.

    PubMed

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-26

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  15. Thermoluminescence properties of Li2B4O7:Cu, B phosphor synthesized using solution combustion technique

    NASA Astrophysics Data System (ADS)

    Ozdemir, A.; Altunal, V.; Kurt, K.; Depci, T.; Yu, Y.; Lawrence, Y.; Nur, N.; Guckan, V.; Yegingil, Z.

    2017-12-01

    To determine the effects of various concentrations of the activators copper (Cu) and boron (B) on the thermoluminescence (TL) properties of lithium tetraborate, the phosphor was first synthesized and doped with five different concentrations of copper (0.1-0.005 wt%) using solution combustion method. 0.01 wt% Cu was the concentration which showed the most significant increase in the sensitivity of the phosphor. The second sort of Li2B4O7:Cu material was prepared by adding B (0.001-0.03 wt%) to it. The newly developed copper-boron activated lithium tetraborate (Li2B4O7:Cu, B) material with 0.01 wt% Cu and 0.001 wt% B impurity concentrations was shown to have promise as a TL phosphor. The material formation was examined using powder x-Ray Diffraction (XRD) analysis and Scanning Electron Microscope (SEM) imaging. Fourier Transform Infrared (FT-IR) spectrum of the synthesized polycrystalline powder sample was also recorded. The TL glow curves were analyzed to determine various dosimetric characteristics of the synthesized luminophosphors. The dose response increased in a ;linear; way with the beta-ray exposure between 0.1-20 Gy, a dose range being interested in medical dosimetry. The response with changing photon and electron energy was studied. The rate of decay of the TL signal was investigated both for dark storage and under direct sunlight. Li2B4O7:Cu, B showed no individual variation of response in 9 recycling measurements. The fluorescence spectrum was determined. The kinetic parameters were estimated by different methods and the results discussed. The studied properties of synthesized Li2B4O7:Cu, B were found all favorable for dosimetric purposes.

  16. Synthesis and characterization of a novel tube-in-tube nanostructured PPy/MnO{sub 2}/CNTs composite for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Juan, E-mail: lj-panpan@163.com; Beijing National Laboratory for Molecular Sciences; Que, Tingli

    2013-02-15

    Graphical abstract: A novel tube-in-tube nanostructured PPy/MnO{sub 2}/CNTs composite have been successfully fabricated. Its inner tubules are CNTs and the outer tubules are template-synthesized PPy. Most MnO{sub 2} nanoparticles are sandwiched between the inner and outer wall, some relatively large particles are also latched onto the outside wall of the PPy tube. The composite yields a good electrochemical reversibility through 1000 cycles’ cyclic voltammogram (CV) test and galvanostatic charge–discharge experiments at different current densities. Display Omitted Highlights: ► We fabricate a ternary organic–inorganic complex of PPy/MnO{sub 2}/CNTs composite. ► We characterize its morphological structures and properties by several techniques. ►more » The composite possesses the typical tube-in-tube nanostructures. ► Most MnO{sub 2} nanoparticles are sandwiched between the inner CNTs and outer PPy wall. ► The composite has good electrochemical reversibility for supercapacitor. -- Abstract: Ternary organic–inorganic complex of polypyrrole/manganese dioxide/carbon nanotubes (PPy/MnO{sub 2}/CNTs) composite was prepared by in situ chemical oxidation polymerization of pyrrole in the host of inorganic matrix of MnO{sub 2} and CNTs, using complex of methyl orange (MO)/FeCl{sub 3} was used as a reactive self-degraded soft-template. The morphological structures of the composite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopic (HRTEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), respectively. All the results indicate that the PPy/MnO{sub 2}/CNTs composite possesses the typical tube-in-tube nanostructures: the inner tubules are CNTs and the outer tubules are template-synthesized PPy. MnO{sub 2} nanoparticles may either sandwich the space between the inner and outer tubules or directly latch onto the wall of the PPy tubes. The

  17. Growth and characterization of nanostructured CuO films via CBD approach for oxygen gas sensing

    NASA Astrophysics Data System (ADS)

    Nurfazliana, M. F.; Sahdan, M. Z.; Saim, H.

    2017-01-01

    Nanostructured copper oxide (CuO) films were grown on portable IDE circuit silicon-based by low-cost chemical bath deposition (CBD) technique at three different deposition times (3 h, 5 h and 7 h). The effect of deposition times on the morphological, structural, optical and sensing properties of the nanostructured films were investigated. From the morphological and structural properties, the nanostructured film deposited at 5 h was found to have homogenous surface of CuO nanowhiskers and high crystallinity with tenorite phase compared to 3 h and 7 h films. Besides, there is no heat treatment required in order to produce CuO nanostructures film with tenorite phase. The sensing response (resistance changes) of as-synthesized films to concentration of oxygen (O2) gas also was compared. Film resistance of CuO nanostructures was studied in an environment of dry air loaded (gas sensor chamber) with 30 % of O2 gas. The results revealed that the deposition time causes significant effect on the sensing performance of nanostructured CuO to O2 gas.

  18. Nanostructural Tailoring to Induce Flexibility in Thermoelectric Ca3Co4O9 Thin Films

    PubMed Central

    2017-01-01

    Because of their inherent rigidity and brittleness, inorganic materials have seen limited use in flexible thermoelectric applications. On the other hand, for high output power density and stability, the use of inorganic materials is required. Here, we demonstrate a concept of fully inorganic flexible thermoelectric thin films with Ca3Co4O9-on-mica. Ca3Co4O9 is promising not only because of its high Seebeck coefficient and good electrical conductivity but also because of the abundance, low cost, and nontoxicity of its constituent raw materials. We show a promising nanostructural tailoring approach to induce flexibility in inorganic thin-film materials, achieving flexibility in nanostructured Ca3Co4O9 thin films. The films were grown by thermally induced phase transformation from CaO–CoO thin films deposited by reactive rf-magnetron cosputtering from metallic targets of Ca and Co to the final phase of Ca3Co4O9 on a mica substrate. The pattern of nanostructural evolution during the solid-state phase transformation is determined by the surface energy and strain energy contributions, whereas different distributions of CaO and CoO phases in the as-deposited films promote different nanostructuring during the phase transformation. Another interesting fact is that the Ca3Co4O9 film is transferable onto an arbitrary flexible platform from the parent mica substrate by etch-free dry transfer. The highest thermoelectric power factor obtained is above 1 × 10–4 W m–1 K–2 in a wide temperature range, thus showing low-temperature applicability of this class of materials. PMID:28699345

  19. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light.

    PubMed

    Kulkarni, Aniruddha K; Praveen, C S; Sethi, Yogesh A; Panmand, Rajendra P; Arbuj, Sudhir S; Naik, Sonali D; Ghule, Anil V; Kale, Bharat B

    2017-11-07

    The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb 2 O 5-x N x ) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H 2 S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb 2 O 5-x N x was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb 2 O 5-x N x were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb 2 O 5-x N x was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb 2 O 5-x N x exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 μmol h -1 g -1 ) for water splitting and (9358 μmol h -1 g -1 ) for H 2 S splitting under visible light. The enhanced photocatalytic activity of Nb 2 O 5-x N x was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H 2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.

  20. 3D Nanostructured materials: TiO2 nanoparticles incorporated gellan gum scaffold for photocatalyst and biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hasmizam Razali, Mohd; Arifah Ismail, Nur; Zulkafli, Mohd Farhan Azly Mohd; Anuar Mat Amin, Khairul

    2018-03-01

    A unique three-dimensional (3D) nanostructured gellan gum (GG) is fabricated by incorporating TiO2 nanoparticles (GG + TiO2NPs) scaffold by freeze-drying. The fabricated GG + TiO2NPs were characterized using Fourier transform infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) to study their physiochemical properties. FTIR was used to investigate the intermolecular interactions in the scaffolds. The crystal structure was determined by bulk analysis using XRD and SEM for microstructure observation of scaffold surfaces. The performance of synthesized GG + TiO2NPs scaffold 3D nanostructured materials was evaluated as a photocatalyst for methyl orange (MO) degradation and for biomedical applications. The results showed that the scaffold possessed good photocatalytic activity for removal of methyl orange with 88.24% degradation after 3 h of UV irradiation. The scaffold also induces the cell growth, thus offering a good candidate for biomedical applications.

  1. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O4·3Zn(OH)2 and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Cui, Jiashan; Sun, Jianbo; Liu, Xin; Li, Jinwei; Ma, Xinzhi; Chen, Tingting

    2014-07-01

    ZnO materials with porous and hierarchical flower-like structure were synthesized through mild hydrothermal and simple calcination approach, in which the flower-like layered zinc oxalate hydroxide (ZnC2O4·3Zn(OH)2) precursor was first synthesized and then calcined at 600 °C. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopic (TEM), Brunauer-Emmett-Teller (BET) and thermogravimetric (TG) analysis. We proposed the possible growth mechanism of the material via studying the time evolution experiment results. In the process of reaction, oxalic acid as a structure-directing agent hydrolyzed and then formed primarily sheets-like intermediate ZnC2O4·2H2O. Hexamethylenetetramine (HMT) as surfactant, with directional adsorption, leads to the formation of layered zinc oxalate hydroxide precursor. Furthermore, the gas sensitivity also can be characterized, whose results indicated that the synthesized materials had a preferable selectivity to ethanol gas. The fast response rate and reversible performance can be attributed to the produced greater specific surface area produced, which was caused by the porous and hierarchical flower-like structure.

  2. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2.

    PubMed

    Prathap, M U Anu; Kaur, Balwinder; Srivastava, Rajendra

    2012-03-15

    In this paper, we report on the amino acids-/citric acid-/tartaric acid-assisted morphologically controlled hydrothermal synthesis of micro-/nanostructured crystalline copper oxides (CuO). These oxides were characterized by means of X-ray diffraction, nitrogen sorption, scanning electron microscopy, Fourier transform infrared, and UV-visible spectroscopy. The surface area of metal oxides depends on the amino acid used in the synthesis. The formation mechanisms were proposed based on the experimental results, which show that amino acid/citric acid/tartaric acid and hydrothermal time play an important role in tuning the morphology and structure of CuO. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H(2)O(2)). CuO synthesized using tyrosine was found to be the best catalyst compared to a variety of CuO synthesized in this study. CuO (synthesized in this study)-modified electrodes were used for the construction of non-enzymatic sensors, which displayed excellent electrocatalytic response for the detection of H(2)O(2) and glucose compared to conventional CuO. The high electrocatalytic response observed for the CuO synthesized using tyrosine can be correlated with the large surface area, which enhances the accessibility of H(2)O(2)/glucose molecule to the active site that results in high observed current. The methodology adopted in the present study provides a new platform for the fabrication of CuO-based high-performance glucose and other biosensors. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Particle size and shape modification of hydroxyapatite nanostructures synthesized via a complexing agent-assisted route.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud

    2014-07-01

    In this work, hydroxyapatite (HAP), Ca10(PO4)6(OH)2, nanostructures including nanorods, nanobundles and nanoparticles have been prepared via a simple precipitation method. In the present method, Ca(NO3)2·4H2O and (NH4)2HPO4 were used as calcium and phosphorus precursors, respectively. Besides, the Schiff bases derived from 2-hydroxyacetophenone and different diamines were used as complexing agents for the in situ formation of Ca(2+) complexes. The formation mechanism of 0-D and 1-D nanostructures of HAP was also considered. When the complexing agents could coordinate to the Ca(2+) ions through N and O atoms to form the [CaN2O2](2+) complexes, HAP nanoparticles were generated. On the other hand, nanorods and nanobundles of HAP were obtained by forming the [CaN2](2+) as well as [CaO2](2+) complexes in the reaction solution. This work is the first successful synthesis of pure HAP nanostructures in the presence of Schiff bases instead of using the common surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. New vanadium tellurites: Syntheses, structures, optical properties of noncentrosymmetric VTeO{sub 4}(OH), centrosymmetric Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ming-Li; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002; Marsh, Matthew

    Two new vanadium tellurites, VTeO{sub 4}(OH) (1) and Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2), have been synthesized successfully with the use of hydrothermal reactions. The crystal structures of the two compounds were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the polar space group Pca2{sub 1} (No. 29) while compound 2 crystallizes in the centrosymmetric space group C2/c (No. 15). The topography of compound 1 reveals a two-dimensional, layered structure comprised of VO{sub 6} octahedral chains and TeO{sub 3}(OH) zig-zag chains. Compound 2, on the contrary, features a three-dimensional [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic framework withmore » Ba{sup 2+} ions filled into the 10-member ring helical tunnels. The [V{sub 4}O{sub 8}(Te{sub 3}O{sub 10})]{sup 4-} anionic network is the first 3D vanadium tellurite framework to be discovered in the alkaline-earth vanadium tellurite system. Powder second harmonic generation (SHG) measurements indicate that compound 1 shows a weak SHG response of about 0.3×KDP (KH{sub 2}PO{sub 4}) under 1064 nm laser radiation. Infrared spectroscopy, elemental analysis, thermal analysis, and dipole moment calculations have also been carried out. - Graphical abstract: VTeO{sub 4}(OH) (1) crystallizes in the noncentrosymmetric space group Pca2{sub 1} (No. 29) while Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) crystallizes in the centrosymmetric space group C2/c (No. 15). - Highlights: • VTeO{sub 4}(OH) (1) and Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) have been synthesized successfully with the use of hydrothermal reactions. • VTeO{sub 4}(OH) (1) crystallizes in the noncentrosymmetric space group Pca2{sub 1} and displays a weak SHG response. • VTeO{sub 4}(OH) (1) represents only the fourth SHG-active material found in vanadium tellurite systems. • Ba{sub 2}V{sub 4}O{sub 8}(Te{sub 3}O{sub 10}) (2) exhibits a novel three-dimensional [V{sub 4}O{sub 8}(Te{sub 3}O

  5. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1- x Ru x O2 by the microemulsion method

    NASA Astrophysics Data System (ADS)

    Saraswathy, Ramanathan

    2017-12-01

    Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  6. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Yayuan; Cao, Shubo; Zhang, Ang; Zhang, Chen; Qu, Ting; Zhao, Yongbin; Chen, Aihua

    2018-07-01

    It is of great importance to extend the UV response of anatase TiO2 into the visible light range for the practical applications. Here, a facile rout to carbon and nitrogen co-doped, Au loaded bowl-like TiO2 nanostructures with tunable size are proposed by using self-assembled polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) spherical micelles as templates. Amphiphilic PS-b-P4VP self-assembles to form PS@P4VP core-shell spherical micelles with P4VP as the out layer in an evaporable mixed solvents of ethanol/tetrahydrofuran (THF). The size of uniform PS@P4VP spherical micelles can be precisely tuned in the range of a few nm to several hundred nm by controlling the molecular composition of the BCPs. Bowl-like TiO2 nanostructures with a replicate size loaded with highly dispersed Au nanoparticles (NPs) of ∼5 nm in diameter are fabricated from these spherical micelles because of strong complex ability of pyridine groups. PS-b-P4VP provides carbon and nitrogen sources to dope the resulting samples simultaneously. The special carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures exhibit much higher photocatalytic activity in the photodegradation of rhodamine B (RhB) compared to Au/P25 under visible light irradiation. Furthermore, the photocatalytic activity is significantly influenced by the BCP molecular composition due to different surface area and loading capacity of the resulting samples. This study provides a facile way to synthesize multi-element doped hollow or bowl-like nanoparticles with tunable size in the nanometer range which have potential application at photocatalysis, oxygen reduction reaction, etc.

  7. Synthesis and properties of 2'-O-methyl-4'-thioRNA.

    PubMed

    Takahashi, Mayumi; Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira

    2005-01-01

    In this presentation, we will discuss the synthesis and properties of 2'-O-methyl-4'-thioRNA, an RNA molecule consisting of 2'-O-methyl-4'-thionucleosides. We first synthesized 2'-O-methyl-4'-thiouridine and -cytidine derivatives via 2,2'-O-anhydro-4'-thiouridine. The RNA consisting of 2'-O-methyl-4'-thiopyrimidine nucleosides and 2'-O-methylpurine nucleosides, 2'-OMe-4'-thioRNA, was synthesized on a DNA synthesizer according to the standard phosphoramidite protocol.

  8. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure ofmore » the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.« less

  9. Experimental investigation and micromagnetic simulations of hybrid CoCr2O4/Ni coaxial nanostructures.

    PubMed

    Li, W J; Wang, C J; Zhang, X M; Irfan, M; Khan, U; Liu, Y W; Han, X F

    2018-06-15

    Multiphase CoCr 2 O 4 /Ni core-shell nanowires (NWs) have been synthesized within anodic aluminum oxide membranes by the combination of the sol-gel method with electrodeposition techniques. X-ray diffraction and x-ray photoemission spectroscopy results confirmed the formation of a cubic spinel structure of CoCr 2 O 4 shell with space group Fd-3m (227). The morphology and composition of the as-grown NWs were studied by field emission scanning electron microscopy, as well as transmission electron microscopy. The magnetic properties of the CoCr 2 O 4 NT shell and hybrid CoCr 2 O 4 /Ni NWs were measured at low temperature using a physical property measurement system. The temperature dependence of the magnetization curves showed that CoCr 2 O 4 NTs undergo a transition from a paramagnetic state to a ferrimagnetic state at about 90 K and a spiral ordering transition temperature near 22 K. An enhanced coercivity and saturation field were observed for the CoCr 2 O 4 /Ni core-shell NWs compared to the single-phase Ni NWs. Micromagnetic simulation results indicated that there is a strong coupling between the shell and core layers during the magnetization reversal process. The combination of hard CoCr 2 O 4 and soft Ni in a single NW structure may have potential applications in future multifunctional devices.

  10. Experimental investigation and micromagnetic simulations of hybrid CoCr2O4/Ni coaxial nanostructures

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Wang, C. J.; Zhang, X. M.; Irfan, M.; Khan, U.; Liu, Y. W.; Han, X. F.

    2018-06-01

    Multiphase CoCr2O4/Ni core–shell nanowires (NWs) have been synthesized within anodic aluminum oxide membranes by the combination of the sol–gel method with electrodeposition techniques. X-ray diffraction and x-ray photoemission spectroscopy results confirmed the formation of a cubic spinel structure of CoCr2O4 shell with space group Fd-3m (227). The morphology and composition of the as-grown NWs were studied by field emission scanning electron microscopy, as well as transmission electron microscopy. The magnetic properties of the CoCr2O4 NT shell and hybrid CoCr2O4/Ni NWs were measured at low temperature using a physical property measurement system. The temperature dependence of the magnetization curves showed that CoCr2O4 NTs undergo a transition from a paramagnetic state to a ferrimagnetic state at about 90 K and a spiral ordering transition temperature near 22 K. An enhanced coercivity and saturation field were observed for the CoCr2O4/Ni core–shell NWs compared to the single-phase Ni NWs. Micromagnetic simulation results indicated that there is a strong coupling between the shell and core layers during the magnetization reversal process. The combination of hard CoCr2O4 and soft Ni in a single NW structure may have potential applications in future multifunctional devices.

  11. Self-organization in complex oxide thin films: from 2D to 0D nanostructures of SrRuO3 and CoCr2O4

    NASA Astrophysics Data System (ADS)

    Sánchez, F.; Lüders, U.; Herranz, G.; Infante, I. C.; Fontcuberta, J.; García-Cuenca, M. V.; Ferrater, C.; Varela, M.

    2005-05-01

    We report here on the controlled fabrication of nanostructures of varied dimensionality by self-organization processes in the heteroepitaxial growth of SrRuO3 (SRO) and CoCr2O4 (CCO) films. The surface of SRO films on SrTiO3(001) substrates can show extremely smooth terraces (2D objects) separated by atomic steps, a structure of faceted islands (0D objects), a cross-hatch morphology (1D objects), an array of finger-like units (1D objects), or an array of giant bunched steps (1D objects). The surface can be tailored to a particular structure by controlling the vicinality of the substrate and the growth rate and nominal thickness of the film. In the case of CCO films, grown on (001)-oriented MgAl2O4 or MgO substrates, high aspect ratio {111}-faceted pyramids and hut clusters (0D objects), highly oriented and having a similar size, appear above a critical thickness. The size and spatial density can be tuned by varying deposition temperature, nominal thickness, and substrate. This dependence allows the fabrication of surfaces being fully faceted (2D objects), or having arrays of dislocated pyramids of up to micrometric size, or small coherently lattice strained pyramids having a nanometric size. We discuss the driving forces that originate the peculiar SRO and CCO nanostructures. The findings illustrate that the growth of complex oxides can promote a variety of novel self-organized morphologies, and suggest original strategies to fabricate templates or hybrid structures of oxides combining varied functionalities.

  12. Synthesis of Fe3O4 nanostructures by backward plume deposition and influence of ambient gas pressure on their morphology

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Mahmood, S.; Zhang, T.; Hassan, S. M.; White, T.; Ramanujan, R. V.; Lee, P.; Rawat, R. S.

    2007-04-01

    Iron oxide nanostructures with significantly fewer droplets were successfully synthesized by pulsed laser deposition using a special target-substrate geometry, which is coined backward plume deposition. The morphology of deposited nanostructures for backward plume deposition is found to be strongly controlled by the ambient gas pressure and changes from a thin film to an assemble of nanoclusters to nanoclusters with loosely bound floccule-like network with the increase in ambient gas pressure. The post-annealing considerably changes the structural properties of deposited materials, which were determined to be magnetite FCC-Fe3O4. It also causes the relaxation of long range stress in the film and hence leads to an increase in the saturation magnetization. The coercivity is found to decrease upon annealing due to the growth of randomly oriented Fe3O4 nanocrystallite as well as the relaxation of internal stress.

  13. Investigation of temperature, catalyst thickness and substrate effects in In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2017-12-01

    This study successfully synthesized In2O3 nanotowers (NTs), nanowires (NWs), nanochains (NChs) and nanocrystals (NCs) on n-type Si(100) and quartz substrates at temperature of 900-1000 °C by using Au catalysts via the Chemical Vapor Deposition (CVD) technique. The analyses of experimental results revealed that In2O3 nanostructures (NSs) grew in different morphologies due to variable parameters, such as temperature, thickness of catalyst and substrate type. This was because these In2O3 NSs were formed by both the Vapor-Liquid-Solid (VLS) and the Vapor-Solid (VS) growth mechanisms. For instance, In2O3 NTs and NChs were formed by the VLS growth mechanism; In2O3 NCs were formed by the VS growth mechanism and In2O3 NWs were formed by both the VLS and VS growth mechanisms. Morphology and crystal structures were identified through X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Moreover, photoluminescence (PL) peaks of In2O3 NSs were measured to be 367 nm, 470 nm, and 630 nm at room temperature (RT). These measurement results indicated that structural, morphological, compositional and optical properties of synthesized In2O3 NSs correlated with growth parameters.

  14. Oxidized guar gum-ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Singh, Vandana; Dwivedi, Lalit Mohan; Baranwal, Kirti; Asthana, Sugandha; Sundaram, Shanthy

    2018-04-01

    In the present study, guar gum (GG) and oxidized guar gum (OGG) have been used for modulating the antibacterial activity of ZnO. Oxidized guar gum-zinc oxide (OGG-ZnO) or guar gum-zinc oxide (GG-ZnO) nanostructures were synthesized by adding aqueous ammonia to zinc acetate solution in the presence of OGG or GG, respectively. OGG could significantly enhance the antibacterial activity of ZnO for a range of Gram-negative and Gram-positive bacterial strains and this enhancement was most pronounced for Bacillus subtilis and Salmonella typhi. At the same time, GG-ZnO nanostructures were found to be less bioactive than the pure ZnO for the same strains. TEM analysis revealed that optimum OGG-ZnO nanostructure (Z4) is of 200 nm size, oblong in shape, and has slightly clustered texture, while XRD confirmed its crystalline structure with hexagonal phase. The extra surface oxygen species (thus oxygen deficiency) has been assigned for better antibacterial behavior of OGG-ZnO. The study may be extended for other polysaccharide/derivatives to obtain ZnO nanostructures with enhanced antibacterial properties.

  15. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  16. SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  17. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor.

    PubMed

    Zhu, Fangfang; Liu, Yu; Yan, Ming; Shi, Weidong

    2018-02-15

    In this work, the novel hierarchical FeCo 2 O 4 @MnO 2 core-shell nanosheet arrays have been synthesized by a facile hydrothermal method, which are grown directly on a flexible carbon fiber (CF) as an integrated electrode for supercapacitors. Scanning electron microscopy and high-resolution transmission electron microscopy measurements illustrate that MnO 2 nanoflakes uniformly wrap around the surface of two-dimensional FeCo 2 O 4 nanosheets. The electrode exhibits high areal capacitance of 4.8Fcm -2 at a current density of 1mAcm -2 . Moreover, an asymmetric FeCo 2 O 4 @MnO 2 //active carbon (AC) cell is successfully fabricated. The asymmetric supercapacitor (ASC) displays high energy density/power density (22.68Whkg -1 at 406.01Wkg -1 and 7.06Whkg -1 at 1802.5Wkg -1 ), as well as excellent cycling stability with 90.1% of the initial capacitance after 5000 continuous cycles. Moreover, two ASCs connected in series can light a LED. These performances demonstrate great potential of the designed ASC in the field of energy storage due to their remarkable electrochemical properties. Copyright © 2017. Published by Elsevier Inc.

  18. Improved Photo-Detection Using Zigzag TiO2 Nanostructures as an Active Medium.

    PubMed

    Tiwari, A K; Mondal, A; Mahajan, B K; Choudhuri, B; Goswami, T; Sarkar, M B; Chakrabartty, S; Ngangbam, C; Saha, S

    2015-07-01

    Zigzag TiO2 nanostructures were fabricated using oblique angle deposition technique. The field emission gun-scanning electron microscope (FEG-SEM) image shows that the TiO2 zigzag nanostructures were ~500 nm in length. Averagely two times enhanced UV-Vis absorption was recorded for zigzag structure compared to perpendicular TiO2 nanowires. The main band transition was observed at ~3.4 eV. The zigzag TiO2 exhibited high turn on voltage (+11 V) than that of nanowire (+2 V) detector under dark which were reduced to +0.2 V and +1.0 V under white light illumination, respectively. A maximum ~6 fold photo-responsivity was observed for the zigzag TiO2 compared with nanowire device at + 1.0 V applied potential. The maximum photo-responsivity of 0.36 A/W at 370 nm was measured for the zigzag TiO2 detector. The TiO2 zigzag detector showed slow response with rise time of 10.2 s and fall time of 10.3 s respectively. The UV (370 nm) to visible (450 nm) wavelength rejection ratio of photo-responsivity was recorded ~4 times for the detector.

  19. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    PubMed Central

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong; Mølhave, Kristian; Liu, Yanguo; Zhao, Yanyan; Wang, Xun; Xu, Shengming; Zhu, Jing

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg−1 after 50 cycles at a current density of 0.2 C (1 C = 890 mAg−1), good cycling stability and rate capability. PMID:26846434

  20. Short belt-like Ca 2 B 2 O 5 ·H 2 O nanostructures: Hydrothermal formation, FT-IR, thermal decomposition, and optical properties

    NASA Astrophysics Data System (ADS)

    Zhu, Wancheng; Zhang, Xiao; Wang, Xiaoli; Zhang, Heng; Zhang, Qiang; Xiang, Lan

    2011-10-01

    Uniform high crystallinity short belt-like Ca 2B 2O 5·H 2O nanostructures (nanobelts) were facilely synthesized through a room temperature coprecipitation of CaCl 2, H 3BO 3, and NaOH solutions, followed by a mild hydrothermal treatment (180 °C, 12.0 h). By a preferential growth parallel to the (1 0 0) planes, Ca 2B 2O 5·H 2O nanobelts with a length of 1-5 μm, a width of 100-400 nm, and a thickness of 55-90 nm were obtained. The calcination of the nanobelts at 500 °C for 2.0 h led to short Ca 2B 2O 5 nanobelts with well preserved 1D morphology. Calcination at 800 °C led to a mixture of Ca 2B 2O 5 and Ca 3B 2O 6. The products were with belt-like and quasi-polyhedron morphology, while they turned into pore-free micro-rod like and polyhedron morphology when the calcination was taken in the presence of NaCl. NaCl assisted high temperature calcination at 900 °C promoted the formation of Ca 3B 2O 6 in the products. When dispersed in deionized water or absolute ethanol, the Ca 2B 2O 5·H 2O nanobelts and Ca 2B 2O 5 nanobelts showed good transparency from the ultraviolet to the visible region. The as-synthesized Ca 2B 2O 5·H 2O and Ca 2B 2O 5 nanobelts can be employed as novel metal borate nanomaterials for further potential applications in the area of glass fibers, antiwear additive, ceramic coatings, and so on.

  1. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning

    NASA Astrophysics Data System (ADS)

    Ramos, Pierre G.; Flores, Edson; Sánchez, Luis A.; Candal, Roberto J.; Hojamberdiev, Mirabbos; Estrada, Walter; Rodriguez, Juan

    2017-12-01

    In this work, ZnO/TiO2 nanostructures were fabricated by an electrostatically modified electrospinning technique using zinc acetate and commercially available TiO2-P25, polyvinyl alcohol, and a solvent. The ZnO/TiO2 nanostructures were fabricated on fluorine-doped tin oxide (FTO) glass substrate by electrospinning of aqueous solution containing different amounts of zinc acetate. The TiO2-P25 nanoparticles were immobilized within zinc acetate/PVA nanofibers. The precursor nanofibers obtained were converted into polycrystalline ZnO and ZnO/TiO2 by calcination at 600 °C. The structure and morphology of the obtained nanostructures were characterized by X-ray diffraction and field emission scanning electron microscopy, respectively. It was found that the TiO2-P25 nanoparticles were attached to the ZnO nanostructures, and the mean diameter of the nanoparticles forming the nanostructures ranged from 31 to 52 nm with increasing the amount of zinc acetate. The incident photon-to-current efficiency (IPCE) spectra of the fabricated nanostructures were measured in a three-electrode cell. The photocatalytic activities of ZnO and ZnO/TiO2 nanostructures were evaluated toward the decomposition of methyl orange. The obtained results evidenced that the coupling of TiO2 with ZnO enhanced the IPCE and improved the photocatalytic activity of ZnO. Particularly, the ZnO/TiO2 nanostructures fabricated with a zinc acetate-to-PVA ratio of 2:3 exhibited the highest IPCE and photocatalytic activity.

  2. Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires

    DTIC Science & Technology

    2008-11-01

    Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core

  3. Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

    PubMed Central

    Kusior, Anna; Trenczek-Zajac, Anita

    2016-01-01

    2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor. PMID:28144521

  4. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures

    NASA Astrophysics Data System (ADS)

    Babu, Binson; Shaijumon, M. M.

    2017-06-01

    Hybrid Na-ion capacitors bridge the performance gap between Na-ion batteries and supercapacitors and offer excellent energy and power characteristics. However, designing efficient anode and cathode materials with improved kinetics and long cycle life is essential for practical implementation of this technology. Herein, layered sodium titanium oxide hydroxide, Na2Ti2O4(OH)2, synthesized through hydrothermal technique, is studied as efficient anode material for hybrid Na-ion capacitor. Half-cell electrochemical studies vs. Na/Na+ showed excellent performance for Na2Ti2O4(OH)2 electrode, with ∼57.2% of the total capacity (323.3 C g-1 at 1.0 mV s-1) dominated by capacitive behavior and the remaining due to Na-intercalation. The obtained values are in good agreement with Trasatti plots indicating the potential of this material as efficient anode for hybrid Na-ion capacitor. Further, a full cell Na-ion capacitor is fabricated with Na2Ti2O4(OH)2 as anode and chemically activated Rice Husk Derived Porous Carbon (RHDPC-KOH) as cathode by using organic electrolyte. The hybrid device, operated at a maximum cell voltage of 4 V, exhibits stable electrochemical performance with a maximum energy density of ∼65 Wh kg-1 (at 500 W kg-1, 0.20 A g-1) and with more than ∼ 93% capacitive retention after 3000 cycles.

  5. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    PubMed

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  6. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

    PubMed

    Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu

    2012-05-01

    1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

  7. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Guohui; Ji, Shaozheng; Sang, Yuanhua; Chang, Sujie; Wang, Yana; Hao, Pin; Claverie, Jerome; Liu, Hong; Yu, Guangwei

    2015-02-01

    A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with single phase nanostructures of Sn3O4 and TiO2, the scaly hybrid nanobelts exhibited markedly enhanced photoelectrochemical (PEC) response, which caused higher photocatalytic hydrogen evolution even without the assistance of Pt as a co-catalyst, and enhanced the degradation ability of organic pollutants under both UV and visible light irradiation. In addition to the increased exposure of active facets and broad light absorption, the outstanding performance is ascribed to the matching energy band structure between Sn3O4 and TiO2 at the two sides of the heterostructure, which efficiently reduces the recombination of photo-excited electron-hole pairs and prolongs the lifetime of charge carriers. Both photocatalytic assessment and PEC tests revealed that Sn3O4/TiO2 heterostructures with a molar ratio of Sn/Ti of 2/1 exhibited the highest photocatalytic activity. This study provides a facile and low-cost method for the large scale production of Sn3O4 based materials in various applications.A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with single phase nanostructures of Sn3O4 and TiO2, the scaly hybrid nanobelts exhibited markedly enhanced photoelectrochemical (PEC) response, which caused higher photocatalytic hydrogen evolution even without the

  8. Facial synthesis of nanostructured ZnCo2O4 on carbon cloth for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Patil, Swati J.; Park, Jungsung; Lee, Dong-Weon

    2017-12-01

    In this work, we have synthesized the ZnCo2O4 electrode by a facial one-step hydrothermal method on a carbon cloth for the supercapacitor application. The structural and phase purity of the prepared electrode material was confirmed by X-ray diffraction (XRD) technique. The surface morphology and elemental stoichiometry were studied using field emission scanning electron microscopy (FE-SEM). The FE-SEM micrograph illustrates that the ZnCo2O4 material is composed of microstrips with a ~0.5 μm width and length in micron uniformly covered the carbon cloth surface. The ZnCo2O4 electrode material further investigated for electrochemical analyses. The cyclic voltammetry results showed that the ZnCo2O4 microstrips electrode exhibited the highest specific capacitance of 1084 F/g at 2 mV/s scan rate. Remarkably, a maximum energy density of 12.5 Wh/kg was attained at a current density of 2 mA/cm2 with the power density of 3.6 kW/kg for the ZnCo2O4 microstrips electrode. Furthermore, the 96.2 % capacitive retention is obtained at a higher scan rate of 100 mV/s after 1000 CV cycles, indicating excellent cycling stability of the ZnCo2O4 microstrips electrode. The frequency-dependent rate capability and an ideal capacitive behaviour of the ZnCo2O4 microstrips electrode were analyzed using impedance analyses; a representing the ion diffusion structure of the material. These results show that the ZnCo2O4 microstrips electrode could be a promising material for supercapacitor application.

  9. LiMn2O4–yBryNanoparticles Synthesized by a Room Temperature Solid-State Coordination Method

    PubMed Central

    2009-01-01

    LiMn2O4–yBrynanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn2O4–yBrypowders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn2O4–yBrypowders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br−were investigated to optimize the ideal condition for preparing LiMn2O4–yBrywith the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br−is 0.05. The initial discharge capacity of LiMn2O3.95Br0.05obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn2O4, indicating introduction of Br−in LiMn2O4is quite effective in improving the initial discharge capacity. PMID:20628635

  10. Few-layered CoHPO4 · 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors.

    PubMed

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-07-07

    Ultrathin cobalt phosphate (CoHPO4 · 3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4 · 3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g(-1), and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.

  11. Magnetic anomalies in self-assembled SrRuO3 -CoFe2O4 nanostructures studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Huang, Yen-Chin; Chien, Chia-Hsien; Liu, Heng-Jui; Chu, Ying-Hao

    2015-03-01

    Self-assembled nanostructures with high interface-to-volume ratio usually possess interesting physical properties through the coupling between neighboring materials. In complex-oxide nanocomposites, the interplay of spin, charge, orbital, and lattice degrees of freedom especially provides various functionalities. Our recent study had shown photo-induced magnetization switching in a self-assembled system, CoFe2O4 (CFO)- SrRuO3(SRO), where the CFO nanopillars were embedded in the SRO matrix. Moreover, this system also has significant magnetoresistance behaviors. In this study, we used Raman spectroscopy to investigate the magnetic coupling mechanisms in CFO-SRO nanostructures. Compared to the pure CFO films, the CFO nano-pillars under out-of-plane compressive strain show a slightly increase of A1g(Co)/A1g(Fe) intensity ratio, which corresponds to a migration of Co ions from O-site (oxygen octahedron) to T-site (oxygen tetrahedron). This behavior can be further tuned by external stimulus, such as magnetic fields and temperatures. A strong increase of A1g(Co)/A1g(Fe) ratio together with a discontinuous A1g frequency shift occur at the SRO magnetic transition temperature. This result indicated that the spin-orbital interaction in CFO can be modulated by the SRO magnetic orderings.

  12. Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xiuling; Yuan, Anbao; Wang, Yuqin

    In the present work, a nanostructured manganese dioxide material was synthesized by a sol-gel method starting with manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, and characterized by X-ray diffraction, infrared spectroscopic and transmission electron microscope techniques. The electrochemical properties and the influence of temperature on supercapacitive behaviors of the nano-MnO 2 electrode in 1 M LiOH electrolyte were investigated using electrochemical methods. Experimental results show that the MnO 2 electrode can exhibit an excellent pseudocapacitive behavior in 1 M LiOH electrolyte, and a high specific capacitance of 317 F g -1 can be obtained at a charge/discharge current rate of 100 mA g -1 and at the temperature of 25 °C. We found that temperature has a crucial influence on the discharge specific capacitance of the electrode. The specific capacitance at 25 °C is higher than that at 15 or 35 °C.

  13. Method for synthesizing N.sub.2 O.sub.5

    DOEpatents

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1985-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 includes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  14. Atomic-deficient nanostructurization in water-sorption alumomagnesium spinel ceramics MgAl2O4

    NASA Astrophysics Data System (ADS)

    Ingram, A.

    2018-02-01

    Atomic-deficient nanostructurization in alumomagnesium MgAl2O4 ceramics sintered at 1100-1400 °C caused by water sorption are studied employing positron annihilation lifetime spectroscopy. Detected PAL spectra are reconstructed from unconstrained x4-term decomposition, and further transformed to x3-term form to be applicable for analysis with x3-x2-CDA (coupling decomposition algorithm). It is proved that water-immersion processes reduce positronium (Ps) decaying in large-size holes of ceramics (1.70-1.84 nm in radius) at the expense of enhanced trapping in tiny ( 0.2 nm in radius) Ps-traps. The water sorption is shown to be more pronounced in structurally imperfect ceramics sintered at T s = 1100-1200 °C due to irreversible transformations between constituting phases, while reversible physical-sorption processes are dominated in structurally uniform ceramics composed of main spinel phase.

  15. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    PubMed

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  16. Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors.

    PubMed

    Zhu, Shi Jin; Jia, Jia Qi; Wang, Tian; Zhao, Dong; Yang, Jian; Dong, Fan; Shang, Zheng Guo; Zhang, Yu Xin

    2015-10-14

    Two kinds of novel CeO2@MnO2 nanostructures have been synthesized via a self-assembly strategy. The as-prepared CeO2 nanowire@MnO2 nanostructures exhibited unprecedented pseudocapacitance performance (255 F g(-1)) with outstanding rate capability. A new mechanism based on the synergistic effect between CeO2 and MnO2 was proposed to interpret this phenomenon. When assembled as an asymmetric supercapacitor, an energy density of 27.5 W h kg(-1) with a maximum power density of 1.6 kW kg(-1) was achieved for CeO2 nanowire@MnO2 nanostructures.

  17. Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

    PubMed

    Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang

    2015-11-21

    Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.

  18. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  19. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  20. Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB)

    NASA Astrophysics Data System (ADS)

    Bharathi, S.; Nataraj, D.; Mangalaraj, D.; Masuda, Y.; Senthil, K.; Yong, K.

    2010-01-01

    Single-crystalline porous hematite nanorods and spindle-like nanostructures were successfully synthesized by a low temperature reflux condensation method. Two different iron sources, namely, FeCl3·6H2O and Fe(NO3)3·9H2O, were hydrolyzed in the presence of urea to selectively prepare nanorods and spindle-like nanostructures. Initially, the akagenite phase was obtained by refluxing the precursor for 12 h and then the as-prepared akagenite nanostructures were transformed to porous hematite nanostructures upon calcination at 300 °C for 1 h. The shape and the aspect ratio of the 12 h refluxed sample was retained even after calcination and this shows the topotactic transformation of the nanostructure. TEM and HRTEM investigations have shown the porous nature of the prepared sample. Brunauer-Emmett-Teller and Barret-Joyner-Halenda measurements have shown a large surface area and distribution of mesopores in the nanorods sample. The photocatalytic activity of the prepared nanostructures towards RhB has reflected this variation in the pore size distribution and specific surface area, by showing a higher activity for the nanorods sample. Magnetic studies by VSM have shown a weak ferromagnetic behaviour in both the samples due to shape anisotropy.

  1. Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures.

    PubMed

    Xu, Liang; Su, Yong; Li, Sen; Chen, Yiqing; Zhou, Qingtao; Yin, Song; Feng, Yi

    2007-02-01

    We report on the realization of novel 3-D hierarchical heterostructures with 6-and 4-fold symmetries by a transport and condensation technique. It was found that the major core nanowires or nanobelts are single-crystalline In2O3, and the secondary nanorods are single-crystalline monoclinic beta-Ga2O3 and grow either perpendicular on or slanted to all the facets of the core In2O3 nanobelts. Depending on the diameter of the core In2O3 nanostructures, the secondary Ga2O3 nanorods grow either as a single row or multiple rows. The one-step growth of the unique Ga2O3/In2O3 heteronanostructures is a spontaneous and self-organized process. The simultaneous control of nanocrystal size and shape together with the possibility of growing heterostructures on certain nanocrystal facets opens up novel routes to the synthesis of more sophisticated heterostructures as building blocks for opto- and nanoelectronics.

  2. The structural properties of flower-like ZnO nanostructures on porous silicon

    NASA Astrophysics Data System (ADS)

    Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah

    2018-05-01

    The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.

  3. Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts

    NASA Astrophysics Data System (ADS)

    Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi

    2014-03-01

    We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).

  4. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    PubMed

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  5. Structural and optical studies of CuO nanostructures

    NASA Astrophysics Data System (ADS)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2014-04-01

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.

  6. High-pressure Phase Relation In The MgAl2O4-Mg2SiO4 System

    NASA Astrophysics Data System (ADS)

    Kojitani, H.; Hisatomi, R.; Akaogi, M.

    2005-12-01

    High-pressure and high-temperature experiments indicate that high-pressure phases of oceanic basalts contain Al-rich phases. MgAl2O4 with calcium ferrite-type crystal structure is considered as a main component of such the Al-rich phases. Since the calcium ferrite-type MgAl2O4 can be synthesized at only the maximum pressure of a Kawai-type high-pressure apparatus with tungsten carbide (WC) anvils, the amount of a synthesized sample is very limited. Therefore, the crystal structure of the calcium ferrite-type MgAl2O4 has been hardly known in detail due to these difficulties in sample synthesis. In our high-pressure experiments in the MgO-Al2O3-SiO2 system, it was shown that Mg2SiO4 component could be dissolved in the MgAl2O4 calcium ferrite. In this study, we tried to synthesize a single phase MgAl2O4 calcium ferrite sample and to make the Rietveld refinement of the XRD pattern of the sample. The high-pressure phase relations in the MgAl2O4-Mg2SiO4 system were studied to know the stability field of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions. Lattice parameters-composition relation of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions was also determined. High-pressure and high-temperature experiments were performed by using a Kawai-type high-pressure apparatus at Gakushuin University. WC anvils with truncated edge length of 1.5 mm were used. Heating was made by a Re heater. Temperature was measured by a Pt/Pt-13%Rh thermocouple. Starting materials for the phase relation experiments were the mixture of MgO, Al2O3 and SiO2 with bulk compositions of MgAl2O4:Mg2SiO4 = 90:10, 78:22, 70:30 and 50:50. The starting materials were held at 21-27 GPa and 1600 °C for 3 hours and then were recovered by the quenching method. The MgAl2O4 calcium ferrite sample for the Rietveld analysis was prepared by heating MgAl2O4 spinel at 27 GPa and about 2200 °C for one hour. Powder X-ray diffraction (XRD) profiles of obtained samples were measured by using a X-ray diffractometer

  7. Preparation of cauliflower-like CdS/ZnS/ZnO nanostructure and its photoelectric properties

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Guo, Keying; Wang, Yun; Zheng, Xuerong; Ya, Jing; Li, Junwei; Han, Li; Liu, Zhichao; Han, Jianhua

    2014-06-01

    Cauliflower-like CdS/ZnS/ZnO nanostructure is fabricated via a simple hydrothermal method. Factors such as concentration of reaction solution, reaction temperature, as well as reaction time in the synthetic process are investigated, and the working mechanism of the nanostructure is suggested. Hydrogen generation efficiency of 4.69 % at 0.29 V versus saturated calomel electrode is achieved using synthesized nanostructure as electrode due to the improved absorption and appropriate energy gap structure, which is confirmed by enhanced absorption spectrum. The expected products have potential application in photoelectrochemical water splitting.

  8. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    PubMed

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    PubMed

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. In2O3-ZnO heterostructure development in electrical and photoluminescence properties of In2O3 1-D nanostructures

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Ghafouri, V.

    2014-05-01

    Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.

  11. Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature

    NASA Astrophysics Data System (ADS)

    Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.

    In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.

  12. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    PubMed

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  13. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    NASA Astrophysics Data System (ADS)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  14. Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles.

    PubMed

    Hsu, Cheng-Liang; Lin, Yu-Hong; Wang, Liang-Kai; Hsueh, Ting-Jen; Chang, Sheng-Po; Chang, Shoou-Jinn

    2017-05-03

    UV- and visible-light photoresponse was achieved via p-type K-doped ZnO nanowires and nanosheets that were hydrothermally synthesized on an n-ZnO/glass substrate and peppered with Au nanoparticles. The K content of the p-ZnO nanostructures was 0.36 atom %. The UV- and visible-light photoresponse of the p-ZnO nanostructures/n-ZnO sample was roughly 2 times higher than that of the ZnO nanowires. The Au nanoparticles of various densities and diameter sizes were deposited on the p-ZnO nanostructures/n-ZnO samples by a simple UV photochemical reaction method yielding a tunable and enhanced UV- and visible-light photoresponse. The maximum UV and visible photoresponse of the Au nanoparticle sample was obtained when the diameter size of the Au nanoparticle was approximately 5-35 nm. On the basis of the localized surface plasmon resonance effect, the UV, blue, and green photocurrent/dark current ratios of Au nanoparticle/p-ZnO nanostructures/n-ZnO are ∼1165, ∼94.6, and ∼9.7, respectively.

  15. Synthesis and photocatalytic properties of TiO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, X.H.; Liang, Y.; Wang, Z.

    2008-08-04

    TiO{sub 2} particles, rods, flowers and sheets were prepared by hydrothermal method via adjusting the temperature, the pressure and the concentration of TiCl{sub 4}. The as-prepared TiO{sub 2} powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra and N{sub 2} adsorption-desorption measurements. It was found that pressure is the most important factor influencing the morphology of TiO{sub 2}. The photocatalytic activity of the products was evaluated by the photodegradation of aqueous brilliant red X-3B solution under UV light. Among the as-prepared nanostructures, the flower-like TiO{sub 2}more » exhibited the highest photocatalytic activity.« less

  16. Porous α-Fe2O3 nanostructures and their lithium storage properties as full cell configuration against LiFePO4

    NASA Astrophysics Data System (ADS)

    Veluri, P. S.; Shaligram, A.; Mitra, S.

    2015-10-01

    A two step approach for synthesis of porous α-Fe2O3 nanostructures has been realized via polyol method by complexing iron oxalate with ethylene glycol. Crystalline Fe2O3 samples with different porosities are obtained by calcination of Fe-Ethylene glycol complex at various temperatures. The as-prepared porous Fe2O3 structures exhibit promising lithium storage performance at high current rates. It is observed that the calcination temperature and the resultant porosity have a significant effect on capacity and cycling stability. Samples calcined at high temperature (600 °C) demonstrates stable cycle life with capacity retention of 1077 mAh g-1 at 500 mA g-1 current rate after 50 charge-discharge cycles. Samples calcined at temperatures of 500 and 600 °C display stable cycle life and high rate capability with reversible capacity of 930 mAh g-1 and 688 mAh g-1 at 5 A g-1, respectively. Impregnation of electrodes with electrolyte before cell fabrication shows enhanced electrochemical performance. The viability of Fe2O3 porous nanostructures as prospective anode material examined against commercial LiFePO4 cathode shows promising electrochemical performance.

  17. Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, S.; Papachan, Seethal; Gopalakrishnan, N.

    2017-05-01

    CuO nanostructures and CuO-MnO2 nanocomposite were successfully synthesized using hydrothermal method without any aid of growth controlling agents. The synthesized CuO nanostructures have monoclinic structure. The XRD pattern of CuO-MnO2 observed with mixed phases of monoclinic CuO and birnessite-type MnO2 which confirms the formation of nanocomposite. SEM images revealed the turmeric-like morphology for CuO and intercalated sheets with flowers on the surface for CuO-MnO2. The length and breadth of turmeric-like structure is about 642.2 nm and 141.8 nm, respectively. The band gap of 1.72 eV for CuO nanostructure and 1.9 eV for CuO-MnO2 nanocomposite were observed from the absorption spectra. The free standing devices of CuO-MnO2 showed nearly a 3 fold increase sensing response to ammonia at room temperature when compared to the constituent CuO. The composite sensor showed response time of 120 s and recovered within 600 s. This enhanced response can be asserted to the peculiar morphology of the composite that provides more adsorption site for gas diffusion to take place.

  18. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  19. Biologically synthesized titanium oxide nanostructures combined with morphogenetic protein as wound healing agent in the femoral fracture after surgery.

    PubMed

    Zhang, Yushu; Zhang, Chuanlian; Liu, Kemiao; Zhu, Xia; Liu, Fang; Ge, Xiaofen

    2018-05-01

    The aim of the present study is to develop novel approach for the green synthesis of titanium oxide nanoparticles (TiO 2 NPs) using Eichhornia crassipes extract and calcined at different temperatures for evaluate the wound healing activity in the femoral fracture. The synthesized TiO 2 are formed different (plate and rod-like) nanostructures at various calcination temperatures. These samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), Field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). Microscopic studies of TiO 2 NPs revealed that the synthesized TiO 2 NPs are formed well-defined rod-like structures at 400 °C with size ranged from 200 nm to 500 nm. The characterized plate and rod-like TiO 2 NPs are combined with human morphogenetic protein (HbMP) to improving its wound healing activity and osteoblast properties on femoral fractures. The biocompatibility was tested by using human bone marrow mesenchymal stem cells (BMSC) cells and antibacterial efficacy analyzed using human pathogenica bacteria Staphylococcus aureus and Escherichia coli through agar well diffusion assay. The green synthesized rod-like TiO 2 NPs combined with HbMP has been exhibited effective bone fusion behaviors with biomechanical properties and also improved antibacterial activity against pathogenic bacteria. From this study results, it is suggested that green synthesized TiO 2 NPs could be used effectively in biomedical application. Copyright © 2018. Published by Elsevier B.V.

  20. Polarization induced conductive AFM on cobalt doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pradosh Kumar; Mangamma, G.; Rajesh, A.; Kamruddin, M.; Dash, S.

    2017-05-01

    In the present work cobalt doped ZnO (CZO) nanostructures (NS) have been synthesized by of sol-gel and spin coating process. After the crystal phase confirmation by GIXRD and Raman spectroscopy, Conductive Atomic Force Microscopy (C-AFM) measurement was performed on CZO NS which shows the random distribution of electrically conducting zones on the surface of the material exhibiting current in the range 4-170 pA. We provide the possible mechanisms for variation in current distribution essential for quantitative understanding of transport properties of ZnO NS in doped and undoped forms.

  1. A new strategy on utilizing nitrogen doped TiO{sub 2} in nanostructured solar cells: Embedded multifunctional N-TiO{sub 2} scattering particles in mesoporous photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shogh, Shiva; Mohammadpour, Raheleh; Iraji zad, Azam, E-mail: Iraji@sharif.edu

    2015-12-15

    Highlights: • N-doped TiO{sub 2} scattering particles were synthesized for embedding into commercial photoanode of dye sensitized solar cells. • Embedded scatterers improved optical and electrical features of the cells. • These multifunctional scatterers increased cell performance up to 17%. - Abstract: Aggregated sub-micron size nitrogen doped TiO{sub 2} (N-TiO{sub 2}) particles with superior optical and electrical features were successfully synthesized for embedding into commercial mesoporous TiO{sub 2} photoelectrode of dye sensitized solar cells (DSSCs) as the light scattering particles compared to undoped one. X-ray photoelectron spectroscopy and absorption spectra confirmed that the titanium dioxide is sufficiently doped by nitrogenmore » in N-TiO{sub 2} sample. Employing these high-surface N-TiO{sub 2} in mesoporous photoelectrode of solar cells, the power conversion efficiency of 8% has been achieved which shows 17% improvement for the optimum embedded level of doping (30 wt%) compared to commercial photoelectrode without additive; while enhanced efficiency is only 3% embedding undoped sub-micron size TiO{sub 2} particles. These results can introduce the novel multifunctional photoelectrode for nanostructured solar cells with enhanced values of scattering efficiency and improved electrical features including trap states density reduction in comparison to commercial mesoporous photoelectrodes.« less

  2. Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors.

    PubMed

    Yuan, Yuliang; Wang, Weicheng; Yang, Jie; Tang, Haichao; Ye, Zhizhen; Zeng, Yujia; Lu, Jianguo

    2017-10-10

    Design of new materials with sophisticated nanostructure has been proven to be an efficient strategy to improve their properties in many applications. Herein, we demonstrate the successful combination of high electron conductive materials of NiCo 2 O 4 with high capacitance materials of MnMoO 4 by forming a core-shell nanostructure. The NiCo 2 O 4 @MnMoO 4 core-shell nanoarrays (CSNAs) electrode possesses high capacitance of 1169 F g -1 (4.24 F cm -2 ) at a current density of 2.5 mA cm -2 , obviously larger than the pristine NiCo 2 O 4 electrode. The asymmetric supercapacitors (ASCs), assembled with NiCo 2 O 4 @MnMoO 4 CSNAs as binder-free cathode and active carbon (AC) as anode, exhibit high energy density of 15 Wh kg -1 and high power density of 6734 W kg -1 . Cycle performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs, conducted at current density of 20 mA cm -2 , remain 96.45% of the initial capacitance after 10,000 cycles, demonstrating its excellent long-term cycle stability. Kinetically decoupled analysis reveals that the capacitive capacitance is dominant in the total capacitance of NiCo 2 O 4 @MnMoO 4 CSNAs electrode, which may be the reason for ultra long cycle stability of ASCs. Our assembled button ASC can easily light up a red LED for 30 min and a green LED for 10 min after being charged for 30 s. The remarkable electrochemical performance of NiCo 2 O 4 @MnMoO 4 CSNAs//AC ASCs is attributed to its enhanced surface area, abundant electroactive sites, facile electrolyte infiltration into the 3D NiCo 2 O 4 @MnMnO 4 nanoarrays and fast electron and ion transport path.

  3. Syntheses and structures of [UO2( L)5](ClO4)2 and [U( L')4(H2O)4](ClO4)4 ( L is dimethylformamide, L' is N,N-dimethylcarbamide)

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Vologzhanina, A. V.; Pushkin, D. V.; Astashkina, D. A.; Savchenkov, A. V.; Serezhkina, L. B.

    2017-09-01

    The reaction of aqueous solutions of uranyl perchlorate with selected organic amides was studied in the dark and under the sunlight. The complexes [UVIO2(C3H7NO)5](ClO4)2 ( I) and [UIV(C3H8N2O)4(H2O)4](ClO4)4 ( II), where C3H7NO is N,N-dimethylformamide ( Dmfa) and C3H8N2O is N,N-dimethylcarbamide ( a-Dmur), were studied by X-ray diffraction. Complex II and the complex UIV( s-Dmur)4(H2O)4(ClO4)4 ( III), where s-Dmur is N,N'-dimethylcarbamide, were studied by IR spectroscopy. Crystals I and II are composed of mononuclear [UO2( Dmfa)5]2+ and [U( Dmur)4(H2O)4]4+ groups as uranium-containing structural units belonging to the crystal-chemical groups AM 7 1 ( A = UVI, M 1 = O2- and Dmfa) and AM 8 1 ( A = UIV, M 1 = Dmur and H2O) of uranium complexes, respectively. The mononuclear uranium- containing complexes in the crystals of U(IV) and U(VI) perchlorates were found to obey the 14 neighbors rule.

  4. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  5. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    PubMed

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  6. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  7. Highly sensitive H2 gas sensor of Co doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bhati, Vijendra Singh; Ranwa, Sapana; Kumar, Mahesh

    2018-04-01

    In this report, the hydrogen gas sensing properties based on Co doped ZnO nanostructures are explored. The undoped and Co doped nanostructures were grown by RF magnetron sputtering system, and its structural, morphological, and hydrogen sensing behavior are investigated. The maximum relative response was occurred by the 2.5% Co doped ZnO nanostructures among undoped and other doped sensors. The enhancement of relative response might be due to large chemisorbed sites formation on the ZnO surface for the reaction to hydrogen gas.

  8. Tailoring Co(OH)2 hollow nanostructures via Cu2O template etching for high performance supercapacitors.

    PubMed

    Yang, Huan; Xie, Jiale; Bao, Shu juan; Li, Chang Ming

    2015-11-01

    Co(OH)2 hollow nanostructures including cube, octahedron and flower are delicately tailored via a simple and fast one-step Cu2O template etching method. The as-prepared materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscope (FESEM), N2 adsorption-desorption and electrochemical methods and X-ray photoelectron spectroscopy (XPS). In particular, the supercapacitive behaviors of the as-prepared materials were investigated to explore relation of capacitance versus nanostructure. Results indicate that the as-prepared Co(OH)2 samples inherit the size and shape of the Cu2O templates but with an inside hollow, and the differently nanostructured Co(OH)2 exhibits different capacitive behaviors. Among various morphologies, the flower Co(OH)2 has the largest specific capacitance of 1350 F/g, while octahedron Co(OH)2 has the smallest one of 986.4 F/g. This is mainly because the flower Co(OH)2 not only has the largest available surface area, but also offers the fast interfacial electron transfer for higher pseudocapacitance and enhanced electrolyte ion diffusion rate for high power density, which is supported by both theoretical calculation, measured BET data and ac impedance measurements. This work may provide a vivid example to rationally design a nanostructure and further explore its fundamental insights for high performance supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Photocatalytic Degradation of Isopropanol Over PbSnO3Nanostructures Under Visible Light Irradiation

    PubMed Central

    2009-01-01

    Nanostructured PbSnO3photocatalysts with particulate and tubular morphologies have been synthesized from a simple hydrothermal process. As-prepared samples were characterized by X-ray diffraction, Brunauer–Emmet–Teller surface area, transmission electron microscopy, and diffraction spectroscopy. The photoactivities of the PbSnO3nanostructures for isopropanol (IPA) degradation under visible light irradiation were investigated systematically, and the results revealed that these nanostructures show much higher photocatalytic properties than bulk PbSnO3material. The possible growth mechanism of tubular PbSnO3catalyst was also investigated briefly. PMID:20596379

  10. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    PubMed

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  11. Influence of the morphology of ZnO nanostructures on luminescent and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh.; Ilyassov, B. R.; Afanasyev, D. A.

    2017-03-01

    Arrays of ZnO nanorods and nanoplates are synthesized by the hydrothermal and electrochemical methods, respectively. The photoluminescence spectra indicate that the nanoplates have a more defective structure than the nanorods. The obtained ZnO nanostructures are used as the basis to construct dye-sensitized solar cells. The influence of morphology and defectiveness of ZnO nanostructures on the luminescent and photovoltaic properties of the cells is studied.

  12. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants

    NASA Astrophysics Data System (ADS)

    Raja, Vahini; Puvaneswaran, Senthil Kumar; Swaminathan, Karuthapandian

    2017-12-01

    In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like TiO2 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.

  13. Effect of Eu3+ doping on the structural, morphological and luminescence properties ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Vinoditha, U.; Balakrishna, K. M.; Sarojini, B. K.; Narayana, B.; Kumara, K.

    2018-05-01

    Pure and Eu3+ ions (1, 3, 5 atomic wt%) doped ZnO nanostructures are synthesized by a surfactant assisted hydrothermal method. The effect of doping concentrations on structural, morphological and optical properties of ZnO nanostructures is studied. The XRD analysis shows good crystallinity and the phase purity of the ZnO nanostructures. A shift in the standard Zn-O stretching mode after Eu3+ doping is observed in the FTIR spectra. The images of FESEM demonstrate the morphological variations from hexagonal nanorods to nanoflowers on varying the dopant concentrations. Substitution of Eu3+ ions into Zn2+ sites is confirmed by EDX analysis. The dominance of particle shape over the UV-Visible absorption properties of the prepared samples is noticed. The photoluminescence (PL) emission of undoped and doped ZnO nanostructures show dominant near band edge emission (NBE) in the UV region and minor defect induced deep level emissions in the visible region.

  14. Mesoporous Pd/Co3O4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Ren, Yanbiao; Zhang, Shichao; Li, Honglei; Wei, Xin; Xing, Yanlan

    2017-10-01

    In this work, two shapes of mesoporous Co3O4 nanoarrays (i.e., nanosheets, nanowires) were synthesized through a facile hydrothermal method on nickel foam (Ni foam) substrates and tested as the Li-O2 cathodes. The comparison of these two shapes of Co3O4 nanoarrays revealed that the single crystalline feature of Co3O4 nanosheets with a predominant high reactivity {112} exposed crystal plane, favorable nanostructure and high specific area displayed better catalytic performance. Furthermore, a new binder/carbon-free Pd nanoparticles (PdNPs) decorated Co3O4 nanosheets cathode was also fabricated through the chemical reduction method. The presence of PdNPs effectively promotes the uniform growth of a fluffy, porous discharge product Li2O2 layer on the surface of Pd/Co3O4 electrode. The Pd/Co3O4 electrode catalyzed Li-O2 battery exhibited a higher specific capacity (1551 mAh g-1 at 50 mA g-1), lower over-potential and longer cycle life over 72 cycles at 100 mA g-1 with the capacity limited at 300 mAh g-1. The superior catalytic performance for Li-O2 batteries is ascribed to the unique design in both component and architecture of Pd/Co3O4 electrode.

  15. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3)more » and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.« less

  16. The continuous and persistent periodical growth induced by substrate accommodation in In2O3 nanostructure chains and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2015-03-01

    The growth of pyramidal and triangular beaded In2O3 nanocrystal chains by using oxygen-assisted thermal evaporation, substrate accommodation and condensation method has been articulated. Self-assembled In2O3 nanocrystal chains have been synthesized by the vapor-solid (VS) and vapor-liquid-solid (VLS) growth mechanism and also through controlling the kinetics factors (saturation ratio). A periodical one-dimensional (1-D) and persistent (0-D) growth was proposed to explain the formation of lateral nanostructures, and this formation aspect was ascribed to the alternate 1-D and 0-D growth. Preparing the needed growth factor, the In2O3 nanocrystal chains extended to several micrometers. The growth mechanism analysis was useful to realize the relation between the kinetics factors and the complex nanostructure. The morphology and size of nanocrystals intensively were changed by oxygen concentration and led to interesting photoluminescence property.

  17. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd

    2017-09-01

    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  18. Defect-Tolerant Diffusion Channels for Mg 2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO 4 and Mg x Fe 2–xB 2O 5

    DOE PAGES

    Bo, Shou-Hang; Grey, Clare P.; Khalifah, Peter G.

    2015-06-10

    The reversible room temperature intercalation of Mg 2+ ions is difficult to achieve, but may offer substantial advantages in the design of next-generation batteries if this electrochemical process can be successfully realized. Two types of quadruple ribbon-type transition metal borates (Mg xFe 2-xB 2O 5 and MgVBO 4) with high theoretical capacities (186 mAh/g and 360 mAh/g) have been synthesized and structurally characterized through the combined Rietveld refinement of synchrotron and time-of-flight neutron diffraction data. Neither MgVBO 4 nor Mg xFe 2-xB 2O 5 can be chemically oxidized at room temperature, though Mg can be dynamically removed from themore » latter phase at elevated temperatures (approximately 200 - 500 °C). Findings show that Mg diffusion in the Mg xFe 2-xB 2O 5 structure is more facile for the inner two octahedral sites than for the two outer octahedral sites in the ribbons, a result supported by both the refined site occupancies after Mg removal and by bond valence sum difference map calculations of diffusion paths in the pristine material. Mg diffusion in this pyroborate Mg xFe 2-xB 2O 5 framework is also found to be tolerant to the presence of Mg/Fe disorder since Mg ions can diffuse through interstitial channels which bypass Fe-containing sites.« less

  19. Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor.

    PubMed

    Wang, Qingji; Kou, Xueying; Liu, Chang; Zhao, Lianjing; Lin, Tingting; Liu, Fangmeng; Yang, Xueli; Lin, Jun; Lu, Geyu

    2018-03-01

    In this work, ethanol gas sensor with high performance was fabricated successfully with hierarchical CoO/SnO 2 heterojunction by two-steps hydrothermal method. The response value of CoO/SnO 2 sensor is up to 145 at 250 °C when exposed to 100 ppm ethanol gas, which is much higher than that (13.5) of SnO 2 sensor. These good sensing performances mainly attribute to the formation of the CoO/SnO 2 heterojunction, which makes great variation of resistance in air and ethanol gas. Thus, the combination of n-type SnO 2 and p-type CoO provides an effective strategy to design new ethanol gas sensors. The unique nanostructure also played an important role in detecting ethanol, due to its contribution in facilitating the transport rate of the ethanol gas molecules. Also, we provide a general two-step strategy for designing the heterojunction based on the SnO 2 nanostructure. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  1. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

    2014-09-10

    Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise

  2. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  3. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures

    NASA Astrophysics Data System (ADS)

    Gaikwad, Vishwajit M.; Goyal, Saveena; Yanda, Premakumar; Sundaresan, A.; Chakraverty, Suvankar; Ganguli, Ashok K.

    2018-04-01

    Nanostructures of complex oxides [BiFexMn2-xO5 (x = 0, 1, 2)] have been designed to study their structural, optical and magnetic behaviour. X-ray diffraction data (XRD) revealed orthorhombic phase with Pbam space group. Noticeable expansion in unit cell parameters has been found from BiMn2O5 (x = 0) to BiFe2O4.5 (x = 2). The observed structural changes via tuning of B-site (x = 0-2) played an important role in overall magnetic properties. Transmission electron microscopic images confirm that the average particle size of all the materials are in nano domain range with different morphologies. From optical studies, it has been found that the observed energy band gap values are strongly related to 3d electron numbers. These values appear to be larger than that reported for bulk. Isothermal magnetization plots (at 5 K) show increase in coercivity (Hc) from x = 0 to x = 2. Temperature dependent magnetization studies implied anti-ferromagnetic interactions for BiMn2O5, frustrated magnet for BiFeMnO5 and ferromagnetic behaviour for BiFe2O4.5. Ferromagnetic state of nanostructured BiFe2O4.5 is in contrast with its bulk counterparts.

  4. Fe doped BaTiO3 sensitized by Fe3O4 nanoparticles for improved photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rishibrind Kumar; Sharma, Dipika

    2018-01-01

    Nanostructured powders of pristine Fe3O4, BaTiO3, and Fe-BaTiO3 were synthesized using hydrothermal method and BaTiO3/Fe3O4 and Fe-BaTiO3/Fe3O4 composite sample were also prepared by mixing the appropriate amount of pristine powders. All samples were characterized using x-ray diffraction, SEM and UV-vis spectrometry. Photoelectrochemical properties were investigated in a three-electrode cell system. Maximum photocurrent density of 2.1 mA cm-2 at 0.95 V/SCE was observed for Fe-BaTiO3/Fe3O4 composite sample. Increased photocurrent density offered by composite may be attributed to improved conductivity and better separation of the photogenerated charge carriers at interface.

  5. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    NASA Astrophysics Data System (ADS)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  6. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach

    NASA Astrophysics Data System (ADS)

    Fei, Xiang; Shao, Zhengzhong; Chen, Xin

    2013-08-01

    Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process.Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result

  7. Fabrication and electrochemical properties of activated CNF/Cu x Mn1- x Fe2O4 composite nanostructures

    NASA Astrophysics Data System (ADS)

    Nilmoung, Sukanya; Sonsupap, Somchai; Sawangphruk, Montree; Maensiri, Santi

    2018-06-01

    This work reports the fabrication and electrochemical properties of activated carbon nanofibers composited with copper manganese ferrite (ACNF/Cu x Mn1- x Fe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8) nanostructures. The obtained samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller analyzer, thermal gravimetric analysis, X-ray photoemission spectroscopy, and X-ray absorption spectroscopy. The supercapacitive behavior of the electrodes is tested using cyclic voltammetery, galvanostatic charge-discharge and electrochemical impedance spectroscopy. By varying ` x', the highest specific capacitance of 384 F/g at 2 mV/s using CV and 314 F/g at 2 A/g using GCD are obtained for the x = 0.2 electrode. The second one of 235 F/g at 2 mV/s using CV and 172 F/g at 2 A/g using GCD are observed for x = 0.8 electrode. The corresponding energy densities are 74 and 41 Wh/kg, respectively. It is observed that the cyclic stability of the prepared samples strongly depend on the amount of carbon, while the specific capacitance was enhanced by the sample with nearly proportional amount between carbon and CuMnFe2O4. Such results may arise from the synergetic effect between CuMnFe2O4 and ACNF.

  8. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  9. Synthesized Li4Ti5O12 from Technical Grade Raw Material by Excess LiOH.H2O as Anode Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Primasari, R. D.; Saptari, S. A.; Prihandoko, B.

    2017-07-01

    Li4Ti5O12 powder as anode lithium ion battery was synthesized via solid state reaction with excess LiOH.H2O. Technical grades raw materials like LiOH.H2O and TiO2 were used as starting materials. LiOH.H2O excess was varied from 0; 2.5; 5 and 7.5% to get higher optimum phases and capacity of Li4Ti5O12. All raw materials were mixed stoichiometry then followed by calcination and sintering process to get final products. The obtained products were characterized by XRD, SEM, and PSA to get properties of active materials and the electrochemical properties were done by cyclic voltametry and charge-discharge test. The XRD test showed that 5% excess have highest Li4Ti5O12 phases. All samples have same in morphology, agglomerate and same in particle size distribution. Sample with 5% excess showed good reversible process and chargedischarge test showed that increasing Li4Ti5O12 phase can improve specific capacity.

  10. Influence of reaction conditions on formation of ionic liquid-based nanostructured Bi2O3 as an efficient visible-light-driven photocatalyst

    NASA Astrophysics Data System (ADS)

    Bagheri, Mozhgan; Heydari, Mojgan; Vaezi, Mohammad Reza

    2018-01-01

    In this study, nanostructured bismuth oxide was synthesized based on the chemical reaction of bismuth nitrate and NaOH in the ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) under ultrasonic irradiation. The effect of sodium hydroxide with a different molar ratio of NaOH to bismuth in the range of 3-10 was investigated. The results of fourier-transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRD) showed that NaOH has a critical role in the formation of pure α-Bi2O3. So, at high concentrations of NaOH (NaOH:Bi ≥ 7.5), the chloride anion from the ionic liquid cannot be entered into the crystalline structure of bismuth oxide, which resulted in the formation of pure bismuth oxide, while at lower concentrations of NaOH (NaOH:Bi ≤ 5), Bi3O4Cl was formed with a layered structure. The XRD results revealed that the synthesized α-Bi2O3 has a monoclinic structure and scanning electron microscopy (SEM) images showed that the sample consists of needle like particles with an average thickness of 50 nm. The ionic liquid has an important role in the prevention of an agglomeration of particles in the Bi2O3 sample. The photocatalytic activity of the synthesized Bi2O3 was investigated to study the degradation of malachite green dye as a model pollutant under visible light. The effects of various parameters such as the pH, concentration of the dye, and the catalyst on the degradation of malachite green were also investigated.

  11. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)42-H2O)12(P2W15O56)4]32- and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14-

    NASA Astrophysics Data System (ADS)

    Gaunt, Andrew J.; May, Iain; Collison, David; Travis Holman, K.; Pope, Michael T.

    2003-08-01

    Two new composite polyoxotungstate anions with unprecedented structural features, [(UO2)12(μ3-O)42-H2O)12(P2W15O56)4]32- (1) and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14- (2) contain polyoxo-uranium and -zirconium clusters as bridging units. The anions are synthesized by reaction of Na12[P2W15O56] with solutions of UO2(NO3)2 and ZrCl4. The structure of 1 in the sodium salt contains four [P2W15O56]12- anions assembled into an overall tetrahedral cluster by means of trigonal bridging groups formed by three equatorial-edge-shared UO7 pentagonal bipyramids. The structure of anion 2 consists of a centrosymmetric assembly of two [P2W16O59]12- anions linked by a {Zr4O2(OH)2(H2O)4}10+ cluster. Both complexes in solution yield the expected two-line 31P-NMR spectra with chemical shifts of -2.95, -13.58 and -6.45, -13.69 ppm, respectively.

  12. Structural characterization of hydrothermally synthesized MnO2 nanorods

    NASA Astrophysics Data System (ADS)

    A'yuni, D. Q.; Alkian, I.; Sya'diyah, F. K.; Kadarisman; Darari, A.; Gunawan, V.; Subagio, A.

    2017-11-01

    We prepared the hydrothermal method to synthesize MnO2 nanorods with controlled structure. KMnO4 and HCl with the various molar ratio (1:2,1:6,1:8) reacted at 160°C for three hours to form MnO2 nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO2. The result revealed that MnO2 formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO2 and α-MnO2. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO2 ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO2 nanorods product would be potentially used in energy storage devices.

  13. Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Baji, Dona Susan; Jadhav, Harsharaj S.; Nair, Shantikumar V.; Rai, Alok Kumar

    2018-06-01

    Pyro synthesis is a method to coat nanoparticles by uniform layer of carbon without using any conventional carbon source. The resultant carbon coating can be evaporated in the form of CO or CO2 at high temperature with the creation of large number of nanopores on the sample surface. Hence, a porous MnCo2O4 is successfully synthesized here with the same above strategy. It is believed that the electrolyte can easily permeate through these nanopores into the bulk of the sample and allow rapid access of Li+ ions during charge/discharge cycling. In order to compare the superiority of the porous sample synthesized by pyro synthesis method, MnCo2O4 nanoparticles are also synthesized by sol-gel synthesis method at the same parameters. When tested as anode materials for lithium ion battery application, porous MnCo2O4 electrode shows high capacity with long lifespan at all the investigated current rates in comparison to MnCo2O4 nanoparticles electrode.

  14. Formation of Different Si3N4 Nanostructures by Salt-Assisted Nitridation.

    PubMed

    Liu, Xiongzhang; Guo, Ran; Zhang, Sengjing; Li, Qingda; Saito, Genki; Yi, Xuemei; Nomura, Takahiro

    2018-04-11

    Silicon nitride (Si 3 N 4 ) products with different nanostructure morphologies and different phases for Si 3 N 4 ceramic with high thermal conductivity were synthesized by a direct nitriding method. NaCl and NH 4 Cl were added to raw Si powders, and the reaction was carried out under a nitrogen gas flow of 100 mL/min. The phase composition and morphologies of the products were systemically characterized by X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. At 1450 °C, the NaCl content was 30 wt %, the NH 4 Cl content was 3 wt %, and the maximum α-Si 3 N 4 content was 96 wt %. The process of Si nitridation can be divided into three stages by analyzing the reaction schemes: in the first stage (25-900 °C), NH 4 Cl decomposition and the generation of stacked amorphous Si 3 N 4 occurs; in the second stage (900-1450 °C), NaCl melts and Si 3 N 4 generates; and in the third stage (>1450 °C), α-Si 3 N 4 → β-Si 3 N 4 phase change and the evaporation of NaCl occurs. The products are made of two layers: a thin upper layer of nanowires containing different nanostructures and a lower layer mainly comprising fluffy, blocky, and short needlelike products. The introduction of NaCl and NH 4 Cl facilitated the evaporation of Si powders and the decomposition of Al 2 O 3 from porcelain boat and furnace tube, which resulted in the mixing of N 2 , O 2 , Al 2 O, and Si vapors and generated Al x Si y O z nanowires with rough surfaces and lead to thin Si 3 N 4 nanowires, nanobranches by the vapor-solid (VS), vapor-liquid-solid (VLS), and the double-stage VLS base and VS tip growth mechanisms.

  15. Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite.

    PubMed

    Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten

    2010-12-20

    In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.

  16. Structural and magnetic properties of Gd3+ ion substituted magnesium ferrite nanopowders

    NASA Astrophysics Data System (ADS)

    Elkady, Ashraf S.; Hussein, Shaban I.; Rashad, Mohamed M.

    2015-07-01

    Nanocrystalline MgGdxFe2-xO4 powders (where x=0, 0.05, 0.1, 0.2, 0.25, 0.3) have been synthesized by the ethylene diamine tetraacetic acid (EDTA)-based sol-gel combustion method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) were applied in order to study the effect of variation of Gd3+ ion substitution and its impact on crystal structure, crystallite size, lattice parameters, nanostructure and magnetic properties of the formed powders. XRD indicated that, after doping and calcination at 400 °C for 2 h, all samples have two spinel ferrite structures namely cubic and tetragonal phases, which are dependent on Gd3+ ion concentration. The cubic phase is found to increase with increasing the Gd3+ ion molar ratio up to 0.1, compared to pure MgFe2O4 and higher Gd3+ content samples. Indeed, with increasing Gd3+ ion, the crystallite size was almost unchanged whereas the lattice parameter was found to increase. FT-IR spectrum showed broadening of the ν2 band and the presence of another band in the range (465-470 cm-1) upon adding Gd3+ ion, which confirm the presence of Gd3+ ion in addition to Fe3+ ion at octahedral site. Besides, these bands were assigned to the formation of (Gd3+-O2-) complexes at B-sites. HRTEM images showed that the studied samples consist of nanocrystallites having average particle sizes around 9 nm for pure MgFe2O4 up to 27 and 42 nm for the Gd3+ ion substituted MgFe2O4 of molar ratio 0.05 and 0.30, respectively. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Gd concentration incorporation up to x=0.1, as a result of the change of cubic and tetragonal spinel ratio and lattice parameters. Meanwhile, the formed powders exhibited superparamagnetic characteristics. Therefore, such newly synthesized superparamagnetic nanoparticles, containing Gd3+ ion can be considered as a

  17. Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst

    NASA Astrophysics Data System (ADS)

    Husni, H. N.; Mahmed, N.; Ngee, H. L.

    2016-07-01

    Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.

  18. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection.It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and

  19. Electrokinetic properties of PMAA functionalized NiFe2O4 nanoparticles synthesized by thermal plasma route

    NASA Astrophysics Data System (ADS)

    Bhosale, Shivaji V.; Mhaske, Pravin; Kanhe, N.; Navale, A. B.; Bhoraskar, S. V.; Mathe, V. L.; Bhatt, S. K.

    2014-04-01

    The magnetic nickel ferrite (NiFe2O4) nanoparticles with an average size of 30nm were synthesised by Transferred arc DC Thermal Plasma route. The synthesized nickel ferrite nanoparticles were characterized by TEM and FTIR techniques. The synthesized nickel ferrite nanoparticles were further functionalized with PMAA (polymethacrylic acid) by self emulsion polymerization method and subsequently were characterized by FTIR and Zeta Analyzer. The variation of zeta potential with pH was systematically studied for both PMAA functionalized (PNFO) and uncoated nickel ferrite nanoparticles (NFO). The IEP (isoelectric points) for PNFO and NFO was determined from the graph of zeta potential vs pH. It was observed that the IEP for NFO was at 7.20 and for PNFO it was 2.52. The decrease in IEP of PNFO was attributed to the COOH functional group of PMAA.

  20. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    PubMed

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  1. Tunable morphology and magnetic properties of Bi2Fe4O9 nanocrystal synthesized by hydrothermal method.

    PubMed

    Du, Yi; Cheng, Zhenxiang; Dou, Shixue; Wang, Xiaolin

    2011-03-01

    Bi2Fe4O9 nano and micron powders have been synthesized by a hydrothermal method. The as-obtained samples are pure phase and crystallize in the orthorhombic structure. Diverse particle morphologies, including nanoplates, nanospheres, microcubes, and microcylinders, are obtained under different synthesis conditions. The solvent N,N-Dimethylformamide (DMF), together with the mineralisers NaOH and NH4OH, are found to be the key factors for the formation of the particles with their diverse morphologies and sizes. The magnetization dependence of temperature (M-T), observed in a field of 1000 Oe from 10 to 340 K, and M-H loops measured at 10 K indicate that the Bi2Fe4O9 particles are paramagnetic at room temperature and undergo an antiferromagnetic transition at a Néel temperature (T(N)) of 250 K.

  2. Controlled synthesis of different metal oxide nanostructures by direct current arc discharge.

    PubMed

    Su, Yanjie; Zhang, Jing; Zhang, Liling; Zhang, Yafei

    2013-02-01

    Direct current (DC) arc discharge method gives high temperature in a short time, which has been widely used to prepare carbon nanotubes. We use this simple approach to synthesize metal oxide nanostructures (MgO, SnO2) without any catalyst. Different morphologies (nanowires, nanobelts, nanocubes, and nanodisks) of metal oxide nanostructures can be controllably synthesized by changing the content of air in buffer gas. The growth mechanisms for these nanostructures are discussed in detail. Oxygen partial pressure is supposed to be one of the most important key factors. The methodology might be used to synthesize similar nanostructures of other functional oxide materials and non-oxide materials.

  3. Surfactant modified SnO2 nanostructured thin film for improved sensing performance of LPG and ammonia

    NASA Astrophysics Data System (ADS)

    Kumari, K. Prasanna; Thomas, Boben

    2017-05-01

    SnO2 nanostructured thin films have been successfully synthesized by way of spray pyrolysis from surfactant added solution. The X-ray diffraction pattern discloses the tetragonal rutile phase of the deposited SnO2 films, which experience a grain size reduction from 35 nm to 19 nm, on the addition of PVP surfactant in precursor. Gas sensing investigations on the surfactant modified film show considerable LPG and NH3 response at a lower operating temperature of 150°C. Quick response (˜20s) and fast recovery (˜30s) are the main features of these sensors. The measurement of AC conductivity of the sample allows understanding the conduction mechanism and sensing action for to enhance the detection sensitivity greatly.

  4. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    NASA Astrophysics Data System (ADS)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  5. Branched nanostructures and method of synthesizing the same

    NASA Technical Reports Server (NTRS)

    Fonseca, Luis F. (Inventor); Sola, Francisco (Inventor); Resto, Oscar (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  6. High Curie temperature and coercivity performance of Fe3-xCrxSe4 nanostructures.

    PubMed

    Li, Shao-jie; Li, Da; Liu, Wei; Zhang, Zhidong

    2015-03-12

    Monoclinic Fe3-xCrxSe4 nanostructures (0≤x≤2.5) were synthesized using a high-temperature solution chemical method. With increasing the Cr doping, the peak positions in the X-ray diffraction (XRD) patterns of Fe3-xCrxSe4 nanostructures slightly shifted to lower 2θ values due to the changes in lattice parameters. Expansions in the unit cell volumes of Fe3-xCrxSe4 nanostructures (x>0.3) may have been responsible for enhancing the ferromagnetic (FM) interaction between magnetic ions, which resulted in a significant increase in the Curie temperature (TC) from 331 K for Fe3Se4 to 429 K for FeCr2Se4, distinctly differing from the magnetic properties of the corresponding bulk materials. A room-temperature coercivity (HC) analysis showed an obvious increase from 3.2 kOe for Fe3Se4 to 12 kOe for Fe2.3Cr0.7Se4 nanostructure, but gradually decreased upon further increasing the Cr content.

  7. Cadmium effect on structural properties of Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloys nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheam, A. S.; Al-Douri, Y., E-mail: yaldouri@yahoo.com; Hashim, U.

    The study report novel sensing plat of extended quinternart materials, Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures were fabricated onto oxidized silicon substrate by sol-gel method and characterized were synthesized by X-ray diffraction (XRD). The XRD peaks were shifted towered the lower angle side with increasing cadmium content. The practical size average of the Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures between 34.55 to 63.30 nm.

  8. Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material.

    PubMed

    Wang, LiLi; Lou, Zheng; Deng, Jianan; Zhang, Rui; Zhang, Tong

    2015-06-17

    Three-dimensional (3D) nanostructures of α-Fe2O3 materials, including both hollow sphere-shaped and yolk-shell (core-shell)-shaped, have been successfully synthesized via an environmentally friendly hydrothermal approach. By expertly adjusting the reaction time, the solid, hollow, and yolk-shell shaped α-Fe2O3 can be selectively synthesized. Yolk-shell α-Fe2O3 nanospheres display outer diameters of 350 nm, and the interstitial hollow spaces layer is intimately sandwiched between the inner and outer shell of α-Fe2O3 nanostructures. The possible growth mechanism of the yolk-shell nanostructure is proposed. The results showed that the well-defined bilayer interface effectively enhanced the sensing performance of the α-Fe2O3 nanostructures (i.e., yolk-shell α-Fe2O3@α-Fe2O3), owing predominantly to the unique nanostructure, thus facilitated the transport rate and augmented the adsorption quantity of the target gas molecule under gas detection.

  9. Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery.

    PubMed

    Flak, Dorota; Yate, Luis; Nowaczyk, Grzegorz; Jurga, Stefan

    2017-09-01

    In this study ZnPc@TiO 2 hybrid nanostructures, both nanoparticles and nanotubes, as potential photosensitizers for the photodynamic therapy, fluorescent bioimaging agents, as well as anti-cancer drug nanocarriers, were prepared via zinc phthalocyanine (ZnPc) deposition on TiO 2 . In order to provide the selectivity of prepared hybrid nanostructures towards cancer cells they were modified with folic acid molecules (FA). The efficient attachment of both ZnPc and FA molecules was confirmed with dynamic light scattering (DLS), zeta potential measurements and X-ray photoelectron spectroscopy (XPS). It was presented that ZnPc and FA attachment has a strong effect on fluorescence emission properties of TiO 2 nanostructures, which can be further used for their simultaneous visualization upon cellular uptake. ZnPc@TiO 2 and FA/ZnPc@TiO 2 hybrid nanotubes were then employed as doxorubicin nanocarriers. It was demonstrated that doxorubicin can be easily loaded on these hybrid nanostructures via an electrostatic interaction and then released. In vitro cytotoxicity and photo-cytotoxic activity studies showed that prepared hybrid nanostructures were selectively targeting to cancer cells. Doxorubicin loaded hybrid nanostructures were significantly more cytotoxic than un-loaded ones and their cytotoxic effect was even more severe upon irradiation. The cellular uptake of prepared hybrid nanostructures and their localization in cells was monitored in vitro in 2D cell culture and tumor-like 3D multicellular culture environment with fluorescent confocal microscopy. These hybrid nanostructures preferentially penetrated into human cervical cancer cells (HeLa) than into normal fibroblasts (MSU-1.1) and were mainly localized within the cell cytoplasm. HeLa cells spheroids were also efficiently labelled by prepared hybrid nanostructures. Fluorescent imaging of Hela cells treated with doxorubicin loaded hybrid nanostructures showed that doxorubicin was effectively delivered into cells

  10. A transmission electron microscopy study of CoFe2O4 ferrite nanoparticles in silica aerogel matrix using HREM and STEM imaging and EDX spectroscopy and EELS.

    PubMed

    Falqui, Andrea; Corrias, Anna; Wang, Peng; Snoeck, Etienne; Mountjoy, Gavin

    2010-04-01

    Magnetic nanocomposite materials consisting of 5 and 10 wt% CoFe2O4 nanoparticles in a silica aerogel matrix have been synthesized by the sol-gel method. For the CoFe2O4-10wt% sample, bright-field scanning transmission electron microscopy (BF STEM) and high-resolution transmission electron microscopy (HREM) images showed distinct, rounded CoFe2O4 nanoparticles, with typical diameters of roughly 8 nm. For the CoFe2O4-5wt% sample, BF STEM images and energy dispersive X-ray (EDX) measurements showed CoFe2O4 nanoparticles with diameters of roughly 3 +/- 1 nm. EDX measurements indicate that all nanoparticles consist of stoichiometric CoFe2O4, and electron energy-loss spectroscopy measurements from lines crossing nanoparticles in the CoFe2O4-10wt% sample show a uniform composition within nanoparticles, with a precision of at best than +/-0.5 nm in analysis position. BF STEM images obtained for the CoFe2O4-10wt% sample showed many "needle-like" nanostructures that typically have a length of 10 nm and a width of 1 nm, and frequently appear to be attached to nanoparticles. These needle-like nanostructures are observed to contain layers with interlayer spacing 0.33 +/- 0.1 nm, which could be consistent with Co silicate hydroxide, a known precursor phase in these nanocomposite materials.

  11. Syntheses, characterization and nonlinear optical properties of sodium-scandium carbonate Na5Sc(CO3)4·2H2O

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Luo, Min; Ye, Ning

    2014-10-01

    A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.

  12. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  13. Synthesis of polycrystalline CoFe2O4 and NiFe2O4 powders by auto-combustion method using a novel amino-based gel

    NASA Astrophysics Data System (ADS)

    Jiang, Linwen; Yang, Shanshan; Zheng, Mengyao; Wu, Anhua; Chen, Hongbing

    2017-12-01

    Polycrystalline CoFe2O4/NiFe2O4 powders were prepared by auto-combustion method using a novel amino-based gel. The thermal evolution of gel precursors, as well as the microstructure, morphology and magnetic properties of as-synthesized powders were studied in detail. Energy dispersive x-ray spectroscopy indicated that the ratios of Ni:Fe was close to the theoretical value (Ni:Fe  =  1:2), suggesting high purity of synthesized NiFe2O4 powders. The saturated magnetization (M s) and residual magnetization (M r) of CoFe2O4 were highly dependent upon the annealed temperatures. The M s increased from 77.5 to 84.7 emu g-1, and M r increased from 37.7 emu g-1 to 42.5 emu g-1 by annealing from room temperature to 600 °C. The M s of NiFe2O4 was 38.7 emu g-1, much lower than that of CoFe2O4. The experimental results indicated that this auto-combustion method using amino-based gel was a suitable method for synthesizing high-quality CoFe2O4/NiFe2O4 powders.

  14. H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi

    2015-06-01

    Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  15. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO2 composite by pulsed current activated sintering

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Su; Ko, In-Yong; Yoon, Jin-Kook; Doh, Jung-Mann; Hong, Kyung-Tae; Shon, In-Jin

    2011-02-01

    Nanopowders of Fe and ZrO2 were synthesized from Fe2O3 and Zr by high-energy ball milling. The powder sizes of Fe and ZrO2 were 70 nm and 12 nm, respectively. Highly dense nanostructured 4/3Fe-ZrO2 composite was consolidated by a pulsed current activated sintering method within 1 minute from the mechanically synthesized powders (Fe-ZrO2) and horizontal milled Fe2O3+Zr powders under the 1 GPa pressure. The grain sizes of Fe and ZrO2 in the composite were calculated. The average hardness and fracture toughness values of nanostuctured 4/3Fe-ZrO2 composite were investigated.

  16. Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors.

    PubMed

    Gnana Sundara Raj, Balasubramaniam; Asiri, Abdullah M; Qusti, Abdullah H; Wu, Jerry J; Anandan, Sambandam

    2014-11-01

    In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282Fg(-1) in the presence of 1M Ca(NO3)2 as an electrolyte at a current density of 0.5mAcm(-2) in the potential range from 0.0 to 1.0V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Jeffery, B.; Peppler, M.; Lima, R. S.; McDonald, A.

    2010-01-01

    Titanium dioxide (TiO2) has been shown to exhibit photocatalytic bactericidal activity. This preliminary study focused on examining the photocatalytic activity of high-velocity oxy-fuel (HVOF) sprayed nanostructured TiO2 coatings to kill Pseudomonas aeruginosa. The surfaces of the nanostructured TiO2 coatings were lightly polished before addition of the bacterial solution. Plates of P. aeruginosa were grown, and then suspended in a phosphate buffer saline (PBS) solution. The concentration of bacteria used was determined by a photo-spectrometer, which measured the amount of light absorbed by the bacteria-filled solution. This solution was diluted and pipetted onto the coating, which was exposed to white light in 30-min intervals, up to 120 min. It was found that on polished HVOF-sprayed coatings exposed to white light, 24% of the bacteria were killed after exposure for 120 min. On stainless steel controls, approximately 6% of the bacteria were not recovered. These preliminary results show that thermal-sprayed nanostructured TiO2 coatings exhibited photocatalytic bactericidal activity with P. aeruginosa.

  18. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power

  19. Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis.

    PubMed

    Li, Qianwen; Wang, Donghui; Qiu, Jiajun; Peng, Feng; Liu, Xuanyong

    2018-05-01

    Hard tissue implant materials which can cause a suitable alkaline microenvironment are thought to be beneficial for stimulating osteoblast differentiation while suppressing osteoclast generation. To make the local pH around the interface between materials and cells controllable, we prepared a series of Mg-Fe layered double hydroxide (LDH) films on acid-etched pure titanium surfaces via hydrothermal treatment. By adjusting the Mg/Fe proportion ratio, the interlayer spacing of Mg-Fe LDHs was regulated, making their OH- exchange abilities adjustable, and this ultimately resulted in a microenvironment with a controllable pH value. In vitro experiments demonstrated that the Mg-Fe LDH film-modified titanium surface possessed good biocompatibility and osteogenic activity, especially the Mg-Fe LDH film with Mg/Fe proportion ratio of 4, which could form a suitable alkaline microenvironment for the growth and osteogenetic differentiation of stem cells. These results demonstrate the potential application of the prepared Mg-Fe LDH films in enhancing the osteogenesis of implant materials while providing a new way into the design of controllable alkaline environment.

  20. Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    PubMed Central

    2009-01-01

    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292

  1. Reduced graphene Oxide/ZnO nanostructures based rectifier diode

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Sameeksha; Kumar, Ravi; Sharma, Monika; Kuanr, Bijoy K.

    2017-05-01

    We report on the fabrication and characterization of graphene oxide and reduced graphene oxide/ZnO nanostructures on ITO-coated glass substrates for the rectification properties of a heterojunction device. The composites of GO/ZnO and rGO/ZnO were synthesized by the modified Hummers method followed by annealing process in N2 and H2 ambient atmosphere at various temperatures. The structural and compositional analysis of the composite material have been investigated using X-ray diffraction spectroscopy and Raman spectroscopy. The optical properties of the composite films were studied by UV-visible spectroscopy and the band-gap was obtained by Tauc's plot. The band-gap reduces to 2.4 eV for the composite film as compared to ZnO film 3.26 eV. The I-V characteristics of ZnO thin films and rGO/ZnO films were done for different light conditions viz dark, ambient light and UV-illumination. It has been observed that the threshold voltage decreases when the sample was placed in UV-illumination. A direct variation in photo-response is revealed with the bias voltage as well as UV illumination. The fabricated device could be used as an Ultraviolet Photo-detector.

  2. Cr diffusion in MgAl2O4 synthetic spinels: preliminary results

    NASA Astrophysics Data System (ADS)

    Freda, C.; Celata, B.; Andreozzi, G.; Perinelli, C.; Misiti, V.

    2012-04-01

    Chromian spinel is an accessory phase common in crustal and mantle rocks, including peridotites, gabbros and basalts. Spinel, it has been identified as one of the most effective, sensible, and versatile petrogenetic indicator in mafic and ultramafic rock systems due to the strict interdependence between its physico-chemical properties (chemical composition, cation configuration etc.) and genetic conditions (temperature, pressure, and chemical characteristics of the system). In particular, studies on intra- and inter-crystalline Mg-Fe2+, Cr-Al exchange demonstrated the close relationship between spinel composition and both degree of partial melting and equilibrium temperature of spinel-peridotites. Moreover, studies focused on the chemical zoning of Mg-Fe2+ and/or Cr-Al components in spinel have been used, combined with a diffusion model, to provide quantitative information on peridotites and gabbros pressure-temperature paths and on deformation mechanisms. Although these potentials, most of the experimental studies have been performed on spinels hosting a limited content of divalent iron (sensu stricto, MgAl2O4), whereas the scarce studies on Cr-Al inter-diffusion coefficient have been performed at 3-7 GPa as pressure boundary condition. In order to contribute to the understanding of processes occurring in the lithospheric mantle, we have initiated an experimental research project aiming at determining the Cr-Al inter-diffusion in spinel at 2 GPa pressure and temperature ranging from 1100 to 1250 °C. The experiments were performed in a end-loaded piston cylinder by using a 19 mm assembly and graphite-Pt double capsules. As starting materials we used synthetic Mg-Al spinel (200-300 μm in size) and Cr2O3 powder. Microanalyses of experimental charge were performed on polished carbon-coated mounts by electronic microprobe. Line elemental analyses were made perpendicular to the contact surface between Cr2O3 powder and spinel, at interval of 2 μm. By processing these

  3. Highly transparent supercapacitors based on ZnO/MnO2 nanostructures.

    PubMed

    Borysiewicz, M A; Ekielski, M; Ogorzałek, Z; Wzorek, M; Kaczmarski, J; Wojciechowski, T

    2017-06-08

    The recent rapid development of transparent electronics, notably displays and control circuits, requires the development of highly transparent energy storage devices, such as supercapacitors. The devices reported to date utilize carbon-based electrodes for high performance, however at the cost of their low transparency around 50%, insufficient for real transparent devices. To overcome this obstacle, in this communication highly transparent supercapacitors were fabricated based on ZnO/MnO 2 nanostructured electrodes. ZnO served as an intrinsically transparent skeleton for increasing the electrode surface, while MnO 2 nanoparticles were applied for high capacitance. Two MnO 2 synthesis routes were followed, based on the reaction of KMnO 4 with Mn(Ac) 2 and PAH, leading to the synthesis of β-MnO 2 with minority α-MnO 2 nanoparticles and amorphous MnO 2 with embedded β-MnO 2 , respectively. The devices based on such electrodes showed high capacitances of 2.6 mF cm -2 and 1.6 mF cm -2 , respectively, at a scan rate of 1 mV s -1 and capacitances of 104 μF cm -2 and 204 μF cm -2 at a very high rate of 1 V s -1 , not studied for transparent supercapacitors previously. Additionally, the Mn(Ac) 2 devices exhibited very high transparencies of 86% vs. air, far superior to other transparent energy storage devices reported with similar charge storage properties. This high device performance was achieved with a non-acidic LiCl gel electrolyte, reducing corrosion and handling risks associated with conventional highly concentrated acidic electrolytes, enabling applications in safe, wearable, transparent devices.

  4. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.

    PubMed

    Wang, Dewei; Wang, Qihua; Wang, Tingmei

    2011-07-18

    In this work, one-dimensional and layered parallel folding of cobalt oxalate nanostructures have been selectively prepared by a one-step, template-free, water-controlled precipitation approach by simply altering the solvents used at ambient temperature and pressure. Encouragingly, the feeding order of solutions played an extraordinary role in the synthesis of nanorods and nanowires. After calcination in air, the as-prepared cobalt oxalate nanostructures were converted to mesoporous Co(3)O(4) nanostructures while their original frame structures were well maintained. The phase composition, morphology, and structure of the as-obtained products were studied in detail. Electrochemical properties of the Co(3)O(4) electrodes were carried out using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements by a three-electrode system. The electrochemical experiments revealed that the layered parallel folding structure of mesoporous Co(3)O(4) exhibited higher capacitance compared to that of the nanorods and nanowires. A maximum specific capacitance of 202.5 F g (-1) has been obtained in 2 M KOH aqueous electrolyte at a current density of 1 A g(-1) with a voltage window from 0 to 0.40 V. Furthermore, the specific capacitance decay after 1000 continuous charge-discharge cycles was negligible, revealing the excellent stability of the electrode. These characteristics indicate that the mesoporous Co(3)O(4) nanostructures are promising electrode materials for supercapacitors.

  5. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    NASA Astrophysics Data System (ADS)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2018-01-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  6. Studies of surface morphology and optical properties of ZnO nanostructures grown on different molarities of TiO{sub 2} seed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asib, N. A. M., E-mail: amierahasib@yahoo.com; Afaah, A. N.; Aadila, A.

    Titanium dioxide (TiO{sub 2}) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO{sub 2} seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO{sub 2} seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO{sub 2} seed layer of 0.100 M. PL spectramore » of the TiO{sub 2}: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO{sub 2} seed layer.« less

  7. Synthesis, characterization and biological studies of copper oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  8. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    PubMed

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  9. Structural and optical properties of NiFe2O4 synthesized via green technology

    NASA Astrophysics Data System (ADS)

    Patel, S.; Saleem, M.; Varshney, Dinesh

    2018-05-01

    The nanoparticles of NiFe2O4 were successfully synthesized via green technology using banana peel extract as the catalyst as well as the medium for reaction technique is reported. Analysis of X-ray diffraction spectrum revealed the cubic structure for the prepared spinel ferrite samples crystallized into cubic spinel structure with the space group Fd3m. The Retvield refinement was carried out which obeyed the results obtained from the XRD spectrum analysis of the sample. Raman spectrum provided confirmation for the spinel structure formation and five active Raman modes were observed. Since the optical band-gap value shows inverse response to the crystallite size, The UV-Vis spectrum study confirmed dual but reduced band-gap value.

  10. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    PubMed

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  11. Anodic electrochemical performances of MgCo{sub 2}O{sub 4} synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbar, Devendrasinh; Department of Mechanical Engineering, National University of Singapore, 117576; Department of Physics, National University of Singapore, 117542

    2016-01-15

    Highlights: • MgCo{sub 2}O{sub 4} was prepared by oxalate decomposition method and electrospinning technique. • Electrospun MgCo{sub 2}O{sub 4} shows the reversible capacity of 795 and 227 mAh g{sup −1} oxalate decomposition MgCo{sub 2}O{sub 4} after 50 cycle. • Electrospun MgCo{sub 2}O{sub 4} show good cycling stability and electrochemical performance. - Abstract: Magnesium cobalt oxide, MgCo{sub 2}O{sub 4} was synthesized by oxalate decomposition method and electrospinning technique. The electrochemical performances, structures, phase formation and morphology of MgCo{sub 2}O{sub 4} synthesized by both the methods are compared. Scanning electron microscope (SEM) studies show spherical and fiber type morphology, respectively for themore » oxalate decomposition and electrospinning method. The electrospun nanofibers of MgCo{sub 2}O{sub 4} calcined at 650 °C, showed a very good reversible capacity of 795 mAh g{sup −1} after 50 cycles when compared to bulk material capacity of 227 mAh g{sup −1} at current rate of 60 mA g{sup −1}. MgCo{sub 2}O{sub 4} nanofiber showed a reversible capacity of 411 mAh g{sup −1} (at cycle) at current density of 240 mA g{sup −1}. Improved performance was due to improved conductivity of MgO, which may act as buffer layer leading to improved cycling stability. The cyclic voltammetry studies at scan rate of 0.058 mV/s show main cathodic at around 1.0 V and anodic peaks at 2.1 V vs. Li.« less

  12. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojia; Yang, Xiaoyu; Li, Guang

    2018-01-01

    We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

  13. Radio frequency abnormal dielectric response of manganese chromite (MnCr{sub 2}O{sub 4}) nanoparticles synthesized by coprecipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, Muhammad, E-mail: mgul@upesh.edu.pk

    2016-04-15

    Highlights: • Uniform MnCr{sub 2}O{sub 4} nanoparticles synthesized by surfactant-free coprecipitation route. • XRD analysis confirmed the single spinel phase formation in the material. • Dielectric loss was found abnormal over certain lower frequencies. • AC conductivity proved the involvement of small polarons in conduction process. - Abstract: Radio frequency dielectric behavior of nanocrystalline MnCr{sub 2}O{sub 4} synthesized via surfactant-free controlled coprecipitation route has been studied. Keeping in view the necessity of particle size uniformity and phase purity for genuine performance, experimental conditions were optimized accordingly. The scanning electron micrographs of the synthesized product revealed the formation of monodispersed particlemore » system. X-ray diffraction analysis confirmed monophasic spinel structure formation with 65 nm crystallite size. Two characteristic peaks observed between 700 cm{sup −1} and 400 cm{sup −1} in the FTIR spectrum also supported the spinel phase purity of compound. The dielectric constant was found normal, but loss tangent of the sample showed abnormal behavior with frequency. The observed dielectric behavior of the synthesized product has been explained on the basis of space-charge polarization according to Maxwell–Wagner’s model and mutual contribution of n-type &p-type charge carriers (Rezlescu model). The ac conductivity linearly increased with frequency highlighting the existence of polaron hopping.« less

  14. CoFe2O4-TiO2 and CoFe2O4-ZnO thin film nanostructures elaborated from colloidal chemistry and atomic layer deposition.

    PubMed

    Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola

    2010-12-07

    CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.

  15. Studies on structural and electrical properties of nanostructured RMnO3 (R = Gd & Ho)

    NASA Astrophysics Data System (ADS)

    Sapana, Solanki; Dhruv, Davit; Joshi, Zalak; Gadani, Keval; Rathod, K. N.; Boricha, Hetal; Shrimali, V. G.; Trivedi, R. K.; Joshi, A. D.; Pandya, D. D.; Solanki, P. S.; Shah, N. A.

    2017-05-01

    We report the results of the studies on the structural and electrical properties of multiferroic GdMnO3 and HoMnO3 materials synthesized by sol-gel route. Structural analysis of the results of X-ray diffraction (XRD) measurement shows that materials are found to be crystallized in orthorhombic and hexagonal symmetry, respectively for GdMnO3 and HoMnO3. Frequency dependent dielectric properties of nanostructured GdMnO3 and HoMnO3 were carried out using LCR meter in the frequency range of 100Hz to 2MHz at room temperature. Dielectric constant decreases with increasing frequency for both the nanostructured multiferroics which can be attributed to the dipole relaxation process. AC conductivity (σAC) has been measured for both the samples and fitted theoretically by using power law equation.

  16. XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4

    NASA Astrophysics Data System (ADS)

    Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.

    2016-08-01

    X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  17. Three new d10 transition metal selenites containing PO4 tetrahedron: Cd7(HPO4)2(PO4)2(SeO3)2, Cd6(PO4)1.34(SeO3)4.66 and Zn3(HPO4)(SeO3)2(H2O)

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Xiang; Gong, Ya-Ping; Hu, Chun-li; Mao, Jiang-Gao; Kong, Fang

    2018-06-01

    Three new d10 transition metal selenites containing PO4 tetrahedron, namely, Cd7(HPO4)2(PO4)2(SeO3)2 (1), Cd6(PO4)1.34(SeO3)4.66 (2) and Zn3(HPO4)(SeO3)2(H2O) (3), have been synthesized by hydrothermal reaction. They feature three different structural types. Compound 1 exhibits a novel 3D network composed of 3D cadmium selenite open framework with phosphate groups filled in the 1D helical tunnels. The structure of compound 2 displays a new 3D framework consisted of 2D cadmium oxide layers bridged by SeO3 and PO4 groups. Compound 3 is isostructural with the reported solids of Co3(SeO3)3-x(PO3OH)x(H2O) when x is equal to 1.0. Its structure could be viewed as a 3D zinc oxide open skeleton with SeO3 and HPO4 polyhedra attached on the wall of the tunnels. They represent the only examples in metal selenite phosphates in addition to the above cobalt compounds. Optical diffuse reflectance spectra revealed that these solids are insulators, which are consistent with the results of band structure computations based on DFT algorithm.

  18. Improvements in electrical and dielectric properties of substituted multiferroic LaMnO{sub 3} based nanostructures synthesized by co-precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, Azhar; Warsi, Muhammad Farooq, E-mail: Farooq.warsi@iub.edu.pk; Ashiq, Muhammad Naeem

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Simultaneous double ion substitutions philosophy is introduced in LaMnO{sub 3}. ► La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles are not reported previously. ► La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles are synthesized by co-precipitation method. ► The 12 fold increase in resistivity of LaMnO{sub 3} nanostructures is observed. -- Abstract: A series of La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles (where x, y = 0, 0.25, 0.50, 0.75 and 1.0) has been synthesized by the chemical co-precipitation method, involving double ion substitution philosophy. The nanoparticles were characterized by thermo gravimetric analysis (TGA), X-ray fluorescencemore » spectrometry (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometer (VSM), DC electrical resistivity and dielectric measurements. The XRD and FTIR analysis confirmed the single orthorhombic phase and the crystallite size were found in the range of 16–34 nm. DC resistivity exhibited very interesting behavior which increased from 1.41 × 10{sup 8} to 16.35 ± 0.2 × 10{sup 8} Ω cm upon complete double ions replacement of La and Mn with Gd and Cr, respectively. This very high resistivity variation upon substitution definitely would open new avenues for applications of these materials in microwave devices and other related areas. The dielectric properties of these nanoparticles were also studied at room temperature in the range of 6 kHz to 5 MHz and the maximum dielectric behavior (ε′ = 2.86 × 10{sup 3}, tan δ = 5.41, ε″ = 15.5 × 10{sup 3}) was exhibited by La{sub 0.75}Gd{sub 0.25}Mn{sub 0.75}Cr{sub 0.25}O{sub 3} at 6 kHz. Hysteresis loops measurements showed that the synthesized nanomaterials are paramagnetic in nature at room temperature.« less

  19. Structural and magnetic properties of Ni1-xZnxFe2O4 synthesized through the sol-gel method

    NASA Astrophysics Data System (ADS)

    Guan, Beh Hoe; Zahari, Muhammad Hanif; Chuan, Lee Kean

    2016-11-01

    Modification of crystal structure by means of substitution would result in the modification of the overall physical properties of crystallite materials especially in ferrites. This study aims to investigate the effect of non-magnetic Zn substitution in spinel NiFe2O4 and its direct effect towards its microstructural and magnetic properties. Magnetic nanoparticles of Nickel-Zinc ferrite with the chemical formula, Ni1-xZnxFe2O4 (x=0.00, 0.25, 0.50, 0.75) were synthesized through the sol-gel route. Phase formation and structural properties of the synthesized ferrite were identified through X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Magnetic properties such as the magnetic saturation, coercivity and remanence were measured by a vibrating sample magnetometer (VSM). XRD measurements reveals successful synthesis of single-phased Nickel ferrite and Nickel—Zinc ferrite. Both crystallite and grain size shows fluctuation with increasing Zn content. The ferrites were found to be ferrimagnetic in nature and show differing values with different x values.

  20. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  1. Syntheses, crystal structures, and characterization of two new Tl+-Cu2+-Te6+ oxides: Tl4CuTeO6 and Tl6CuTe2O10

    NASA Astrophysics Data System (ADS)

    Yeon, Jeongho; Kim, Sang-Hwan; Green, Mark A.; Bhatti, Kanwal Preet; Leighton, C.; Shiv Halasyamani, P.

    2012-12-01

    Crystals and polycrystalline powders of two new oxide materials, Tl4CuTeO6 and Tl6CuTe2O10, have been synthesized by hydrothermal and solid-state methods. The materials were structurally characterized by single-crystal X-ray diffraction. Tl4CuTeO6 and Tl6CuTe2O10 exhibit one dimensional anionic slabs of [CuTeO6]4- and [CuTe2O10]6-, respectively. Common to both slabs is the occurrence of Cu2+O4 distorted squares and Te6+O6 octahedra. The slabs are separated by Tl+ cations. For Tl4CuTeO6, magnetic measurements indicate a maximum at ∼8 K in the temperature dependence of the susceptibility. Low temperature neutron diffraction data confirm no long-range magnetic ordering occurs and the susceptibility was adequately accounted for by fits to a Heisenberg alternating chain model. For Tl6CuTe2O10 on the other hand, magnetic measurements revealed paramagnetism with no evidence of long-range magnetic ordering. Infrared, UV-vis spectra, thermogravimetric, and differential thermal analyses are also reported. Crystal data: Tl4CuTeO6, Triclinic, space group P-1 (No. 2), a=5.8629(8) Å, b=8.7848(11) Å, c=9.2572(12) Å, α=66.0460(10), β=74.2010(10), γ=79.254(2), V=417.70(9) Å3, and Z=2; Tl6CuTe2O10, orthorhombic, space group Pnma (No. 62), a=10.8628(6) Å, b=11.4962(7) Å, c=10.7238(6) Å, V=1339.20(13) Å3, and Z=4.

  2. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  3. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  4. The growth of ZnO nanostructures using Arginine

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman

    2018-05-01

    The growth mechanism of Zinc oxide (ZnO) nanomaterial with amino acid (Arginine) is explained at different shapes. The present study of ZnO nanostructures (NSs) in the presence of Arginine has enabled us to not only determine the growth mechanism of ZnO NSs but also to determine the effect of Arginine at different temperature of reactants. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that Arginine is responsible for formation of NSs. Based on these results, a plausible mechanism is explained.

  5. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries.

    PubMed

    Kumar, Ajay; Jayakumar, O D; Jagannath; Bashiri, Parisa; Nazri, G A; Naik, Vaman M; Naik, Ratna

    2017-10-14

    A series of porous Li 2 Fe 1-x Mg x SiO 4 /C (x = 0, 0.01, 0.02, 0.04) nanocomposites (LFS/C, 1Mg-LFS/C, 2Mg-LFS and 4Mg-LFS/C) have been synthesized via a solvo-thermal method using the Pluronic P123 polymer as an in situ carbon source. Rietveld refinement of the X-ray diffraction data of Li 2 Fe 1-x Mg x SiO 4 /C composites confirms the formation of the monoclinic P2 1 structure of Li 2 FeSiO 4 . The addition of Mg facilitates the growth of impurity-free Li 2 FeSiO 4 with increased crystallinity and particle size. Despite having the same percentage of carbon content (∼15 wt%) in all the samples, the 1Mg-LFS/C nanocomposite delivered the highest initial discharge capacity of 278 mA h g -1 (∼84% of the theoretical capacity) at the C/30 rate and also exhibited the best rate capability and cycle stability (94% retention after 100 charge-discharge cycles at 1C). This is attributed to its large surface area with a narrow pore size distribution and a lower charge transfer resistance with enhanced Li-ion diffusion coefficient compared to other nanocomposites.

  6. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-04-21

    A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD

  7. Well-ordered large-area arrays of epitaxial ferroelectric (Bi,La)4Ti3O12 nanostructures fabricated by gold nanotube-membrane lithography

    NASA Astrophysics Data System (ADS)

    Lee, Sung Kyun; Lee, Woo; Alexe, Marin; Nielsch, Kornelius; Hesse, Dietrich; Gösele, Ulrich

    2005-04-01

    Two-dimensionally well-ordered, large-area arrays of epitaxial, ferroelectric, La-substituted Bi4Ti3O12 (BLT) nanostructures are prepared using gold nanotube membranes as a liftoff mask. Epitaxial nanostructures with a height of about 65nm and a lateral size of about 150nm, with either (001) ("c-axis") orientation, or mixed (118)/(100) ("non-c-axis") orientation, are obtained on (001)- and (011)-oriented SrTiO3 substrates, respectively. The ferroelectric properties are probed by piezoresponse scanning force microscopy. Non-c-axis-oriented BLT nanostructures show an effective piezoresponse coefficient (2dzz) of about 38.0pm /V, whereas c-axis-oriented structures show one of only about 4.9pm/V.

  8. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, HongLing; Wu, JunHua; Min, Ji Hyun; Hou, Peng; Song, Ah-Young; Kim, Young Keun

    2011-02-01

    The Fe3O4-Ca3(PO4)2 core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe3O4 and the bioactive functions of Ca3(PO4)2 into single entities. The Fe3O4 nanoparticles were pre-formed first by thermal reduction of Fe(acac)3 and then the Ca3(PO4)2 layer was coated by simultaneous deposition of Ca2 + and PO43 - . The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca3(PO4)2 shell forms an hcp phase (a = 7.490 Å, c = 9.534 Å) on the Fe3O4 surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca3(PO4)2 and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe3O4 and Ca3(PO4)2 in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.

  9. Magnetic and photocatalytic studies on Zn1-xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method.

    PubMed

    Manohar, A; Krishnamoorthi, C

    2017-12-01

    Biocompatible magnetic semiconductor Zn 1-x Mg x Fe 2 O 4 (x=0, 0.1, 0.3, 0.5 & 0.7) nanoparticles of around 10nm diameter were synthesized by solvothermal reflux method. The method produces well separated and narrow size distributed nanoparticles. Crystal structure, morphology, particles surface properties, surfactant quantity, colloidal stability, magnetic properties and photocatalytic properties of the synthesized nanoparticles were studied. Different characterizations confirmed that all compounds were single crystals and superparamagnetic at room temperature. Saturation mass magnetization (M s =57.5emu/g) enhances with substituent Mg 2+ concentration due to promotion of mixed spinel (normal and inverse) structure. Photocatalytic activity of all synthesized magnetic semiconductor nanoparticles were studied through methylene blue degradation. The degradation of 98% methylene blue was observed on 60 min irradiation of light. It is observed that photocatalytic activity slightly enhances with substituent Mg 2+ concentration. The synthesized biocompatible magnetic semiconductor nanoparticles can be utilized as photocatalysts and could also be recycled and separated by applying an external magnetic field. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    NASA Astrophysics Data System (ADS)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  11. Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties

    PubMed Central

    Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi

    2013-01-01

    Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil. PMID:23666136

  12. Development of a pH sensor using nanoporous nanostructures of NiO.

    PubMed

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.

  13. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal.

    PubMed

    Fu, Wanlin; Dai, Yunqian; Tian, Jilan; Huang, Chaobo; Liu, Zhongche; Liu, Ken; Yin, Linzhi; Huang, Fangfang; Lu, Yingwei; Sun, Yueming

    2018-08-24

    Developing a facile strategy to synthesize template-free TiO 2 membrane with stable super-hydrophilic surface is still a daunting challenge. In this work, super-hydrophilicity (close to 0°) and underwater super-oleophobicity (165°) have been successfully demonstrated on a hierarchical Al 2 O 3 /TiO 2 membrane, which is prepared via a facile electrospinning method followed by simple calcination in air. The precisely-tuned Al 2 O 3 heterojunctions grew in situ and dispersed uniformly on the TiO 2 surface, resulting in an 'island in the sea' configuration. Such a unique feature allows not only achieving super-hydrophilicity by maximizing the surface roughness and enhancing the hydrogen bonding, but also improving the adsorption capacity toward different toxic dyes utilizing the abundant adsorption sites protected by the hierarchical nanostructure during sintering. The new Al 2 O 3 /TiO 2 nanofibrous membrane can serve as a novel filter for gravity driven oil/water separation along with dye removal, achieving 97.7% of oil/water separation efficiency and 98% of dye capture, thanks to their superb wettability and the sophisticated adsorptive performance. Our presented fabrication strategy can be extended to a wide range of ceramic materials and inspires their advanced applications in water purification under harsh liquid-phase environments.

  14. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  15. Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.

  16. Environment dependent enhanced photoluminescence and Boolean logic gates like behavior of Bi2O3 and Ag:Bi2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Hariharan, S.; Karthikeyan, B.

    2018-03-01

    In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.

  17. Flux-mediated syntheses, structural characterization and low-temperature polymorphism of the p-type semiconductor Cu2Ta4O11

    NASA Astrophysics Data System (ADS)

    King, Nacole; Sullivan, Ian; Watkins-Curry, Pilanda; Chan, Julia Y.; Maggard, Paul A.

    2016-04-01

    A new low-temperature polymorph of the copper(I)-tantalate, α-Cu2Ta4O11, has been synthesized in a molten CuCl-flux reaction at 665 °C for 1 h and characterized by powder X-ray diffraction Rietveld refinements (space group Cc (#9), a=10.734(1) Å, b = 6.2506(3) Å, c=12.887(1) Å, β = 106.070(4)°). The α-Cu2Ta4O11 phase is a lower-symmetry monoclinic polymorph of the rhombohedral Cu2Ta4O11 structure (i.e., β-Cu2Ta4O11 space group R 3 ̅ c (#167), a = 6.2190(2) Å, c=37.107(1) Å), and related crystallographically by ahex=amono/√3, bhex=bmono, and chex=3cmonosinβmono. Its structure is similar to the rhombohedral β-Cu2Ta4O11 and is composed of single layers of highly-distorted and edge-shared TaO7 and TaO6 polyhedra alternating with layers of nearly linearly-coordinated Cu(I) cations and isolated TaO6 octahedra. Temperature dependent powder X-ray diffraction data show the α-Cu2Ta4O11 phase is relatively stable under vacuum at 223 K and 298 K, but reversibly transforms to β-Cu2Ta4O11 by at least 523 K and higher temperatures. The symmetry-lowering distortions from β-Cu2Ta4O11 to α-Cu2Ta4O11 arise from the out-of-center displacements of the Ta 5d0 cations in the TaO7 pentagonal bipyramids. The UV-vis diffuse reflectance spectrum of the monoclinic α-Cu2Ta4O11 shows an indirect bandgap transition of ∼2.6 eV, with the higher-energy direct transitions starting at ∼2.7 eV. Photoelectrochemical measurements on polycrystalline films of α-Cu2Ta4O11 show strong cathodic photocurrents of ∼1.5 mA/cm2 under AM 1.5 G solar irradiation.

  18. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.; Jana, T.K.; Chatterjee, K., E-mail: kuntal2k@gmail.com

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposedmore » {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.« less

  19. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  20. Eu2+,Dy3+ codoped SrAl2O4 nanocrystalline phosphor for latent fingerprint detection in forensic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Das, Amrita; Kumar, Vinay

    2016-01-01

    In this work, europium and dysprosium doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) nanophosphor is synthesized and its novel application for the detection of latent fingerprints on various contact surfaces is reported. The SrAl2O4:Eu2+,Dy3+ is synthesized using a combustion method and shows long-lasting afterglow luminescence. The powder particles are characterized using field emission scanning electron microscopy (FE-SEM), SEM-energy dispersive x-ray analysis, x-ray diffraction and photoluminescence spectrophotometry. The FE-SEM image analysis reveals that the nanoparticles are mostly 8-15 nm in size with an irregular spherical shape. This nano-structured powder was applied to fresh and aged fingerprints deposited on porous, semi-porous and non-porous contact surfaces, such as ordinary colored paper, glossy paper, glass, aluminum foil, a yellow foil chocolate wrapper, a soft drink can, a PET bottle, a compact disc and a computer mouse. The results are reproducible and show great sensitivity and high contrast in the developed fingermark regions on these surfaces. These nanophosphor particles also show a strong and long-lasting afterglow property, making them a suitable candidate for use as a fingerprint developing agent on luminescent and highly patterned surfaces. These kinds of powders have shown that they can remove the interference from background luminescence, which is not possible using ordinary luminescent fingerprinting powders.

  1. Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core-Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes.

    PubMed

    Ma, Zhipeng; Shao, Guangjie; Fan, Yuqian; Wang, Guiling; Song, Jianjun; Shen, Dejiu

    2016-04-13

    Poor electrical conductivity and mechanical instability are two major obstacles to realizing high performance of MnO2 as pseudocapacitor material. The construction of unique hierarchical core-shell nanostructures, therefore, plays an important role in the efficient enhancement of the rate capacity and the stability of this material. We herein report the fabrication of a hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure by adopting a facile and practical solution-phase technique. The novel hierarchical nanostructures are composed of ultrathin δ-MnO2 nanosheets with a few atomic layers growing well on the surface of the ultralong α-MnO2 nanowires. The first specific capacitance of hierarchical core-shell nanostructure reached 153.8 F g(-1) at the discharge current density of as high as 20 A g(-1), and the cycling stability is retained at 98.1% after 10,000 charge-discharge cycles, higher than those in the literature. The excellent rate capacity and stability of the hierarchical core-shell nanostructures can be attributed to the structural features of the two MnO2 crystals, in which a 1D α-MnO2 nanowire core provides a stable structural backbone and the ultrathin 2D δ-MnO2 nanosheet shell creates more reactive active sites. The synergistic effects of different dimensions also contribute to the superior rate capability.

  2. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ashutosh K., E-mail: ashuvishen@gmail.com, E-mail: aksingh@bose.res.in; Mandal, Kalyan

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector,more » which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.« less

  3. Synthesis of TiO 2 nanostructured reservoir with temozolomide: Structural evolution of the occluded drug

    NASA Astrophysics Data System (ADS)

    López, T.; Sotelo, J.; Navarrete, J.; Ascencio, J. A.

    2006-10-01

    Sol-gel synthesized nanostructured TiO 2 matrix were produced with different channel sizes, where drug are immersed, producing a reservoir with Temozolomide (TMZ). This drug is particularly important for the treatment of cancer tumors, which are fundamentally a consequence of the uncontrolled reproduction of human cell. In this way the chemotherapy plays an important role in the treatment of both recurrent and newly diagnosed patients. In the handling of brain tumors TMZ has been discovered as a recent and efficient second generation drug employed in the control of advanced brain gliomas, and it is a welcome addition. Its active component binds to the cancerous DNA cells, thus preventing their disordered growth, destroying them. In this work, we report the synthesis of TiO 2 nanostructured reservoir with TMZ, focusing the effort to the understanding of structural effects on the TMZ configuration by using nuclear magnetic resonance, Raman and IR spectroscopy methods. Our results establish that TMZ molecules are quite sensible to chemical processes and it produces the activation of the molecule, which is followed and understood with help of quantum molecular simulation methods. The study of the molecules allows determining the conditions that produce the activation and chemical selectivity of the molecules, which determines the conditions of synthesis. This information gives parameters for the reservoir structural and chemical optimization.

  4. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  5. Plasma Spray Synthesis Of Nanostructured V2O5 Films For Electrical Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanda, Jagjit

    We demonstrate for the first time, the synthesis of nanostructured vanadium pentoxide (V2O5) films and coatings using plasma spray technique. V2O5 has been used in several applications such as catalysts, super-capacitors and also as an electrode material in lithium ion batteries. In the present studies, V2O5 films were synthesized using liquid precursors (vanadium oxychloride and ammonium metavanadate) and powder suspension. In our approach, the precursors were atomized and injected radially into the plasma gun for deposition on the substrates. During the flight towards the substrate, the high temperature of the plasma plume pyrolyzes the precursor particles resulting into the desiredmore » film coatings. These coatings were then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Differential Scanning Calorimetry (DSC). Among the precursors, vanadium oxychloride gave the best results in terms of nanocrystalline and monophasic films. Spraying of commercial powder suspension yielded multi-phasic mixture in the films. Our approach enables deposition of large area coatings of high quality nanocrystalline films of V2O5 with controllable particle morphology. This has been optimized by means of control over precursor composition and plasma spray conditions. Initial electrochemical studies of V2O5 film electrodes show potential for energy storage studies.« less

  6. Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Jinqing; Gong, Peiwei; Sun, Jinfeng; Niu, Lengyuan; Yang, Zhigang; Wang, Zhaofeng; Yang, Shengrong

    2014-12-01

    Electrodes with rationally designed hybrid nanostructures can offer many opportunities for the enhanced performance in electrochemical energy storage. In this work, the uniform 2D Co3O4-based building blocks have been prepared through a facile chemical etching assistant approach and a following treatment of thermal annealing. The obtained nanosheets array has been directly employed as 2D backbone for the subsequent construction of hybrid nanostructure of Co3O4@NiMoO4 by a simple hydrothermal synthesis. As a binder-free electrode, the constructed 3D hybrid nanostructures exhibit a high specific capacitance of 1526 F g-1 at a current density of 3 mA cm-2 and a capacitance retention of 72% with the increase of current density from 3 mA cm-2 to 30 mA cm-2. Moreover, an asymmetric supercapacitor based on this hybrid Co3O4@NiMoO4 and activated carbon can deliver a maximum energy density of 37.8 Wh kg-1 at a power density of 482 W kg-1. The outstanding electrochemical behaviors presented here suggest that this hybrid nanostructured material has potential applications in energy storage.

  7. Template-free fabrication of graphene-wrapped mesoporous ZnMn2O4 nanorings as anode materials for lithium-ion batteries.

    PubMed

    Zhou, Weiwei; Wang, Dong; Zhao, Limin; Ding, Chunyan; Jia, Xingtao; Du, Yu; Wen, Guangwu; Wang, Huatao

    2017-06-16

    We rationally designed a facile two-step approach to synthesize ZnMn 2 O 4 @G composite anode material for lithium-ion batteries (LIBs), involving a template-free fabrication of ZnMn 2 O 4 nanorings and subsequent coating of graphene sheets. Notably, it is the first time that ring-like ZnMn 2 O 4 nanostructure is reported. Moreover, our system has been demonstrated to be quite powerful in producing ZnMn 2 O 4 nanorings regardless of the types of Zn and Mn-containing metal salts reactants. The well-known inside-out Ostwald ripening process is tentatively proposed to clarify the formation mechanism of the hollow nanorings. When evaluated as anode material for LIBs, the resulting ZnMn 2 O 4 @G hybrid displays significantly improved lithium-storage performance with high specific capacity, good rate capability, and excellent cyclability. After 500 cycles, the ZnMn 2 O 4 @G hybrid can still deliver a reversible capacity of 958 mAh g -1 at a current density of 200 mA g -1 , much higher than the theoretical capacity of 784 mAh g -1 for pure ZnMn 2 O 4 . The outstanding electrochemical performance should be reasonably ascribed to the synergistic interaction between hollow and porous ZnMn 2 O 4 nanorings and the three-dimensional interconnected graphene sheets.

  8. Design, Fabrication, and Characterization of Hematite (α-Fe2O3) Nanostructures

    NASA Astrophysics Data System (ADS)

    Jansi Rani, B.; Mageswari, R.; Ravi, G.; Ganesh, V.; Yuvakkumar, R.

    2017-12-01

    The influence of processing parameters on the physicochemical properties of hematite α-Fe2O3 nanostructures was investigated. X-ray diffraction results revealed the hematite phase rhombohedral structure. Scanning electron microscope results explored nanospheres, nanohexagonal platelets, nanoellipsoids, distorted nanocubes, and interconnected platelets nanostructures. Rhombohedral single-phase hematite was confirmed through five Raman active modes. 2 P 3/2 (1) → 2 P 1/2 transition in photoluminescence spectra and Fourier-transform infrared spectroscopy band observed at 555 cm-1 revealed the hematite formation. The highest specific capacitance value of 151.09 F/g for scan rate of 10 mV/s was obtained for the hydrothermal-assisted product using an Fe(NO3)2·9H2O precursor in KOH electrolyte solutions.

  9. A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air

    PubMed Central

    Procek, Marcin; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Maciak, Erwin

    2015-01-01

    The paper deals with investigations concerning the construction of sensors based on a quartz crystal microbalance (QCM) containing a TiO2 nanostructures sensor layer. A chemical method of synthesizing these nanostructures is presented. The prepared prototype of the QCM sensing system, as well as the results of tests for detecting low NO2 concentrations in an atmosphere of synthetic air have been described. The constructed NO2 sensors operate at room temperature, which is a great advantage, because resistance sensors based on wide gap semiconductors often require much higher operation temperatures, sometimes as high as 500 °C. The sensors constructed by the authors can be used, among other applications, in medical and chemical diagnostics, and also for the purpose of detecting explosive vapours. Reactions of the sensor to nitroglycerine vapours are presented as an example of its application. The influence of humidity on the operation of the sensor was studied. PMID:25912352

  10. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Hongwen; Zhang, Liqiang; Wu, Kewei; Yu, Qing; Chen, Ru; Yang, Hangsheng; Peng, Xinsheng; Ye, Zhizhen

    2012-11-01

    A controllable synthesis of various morphologies of CuO nanostructures with tuning by hetero-metal cations has been developed in aqueous solution at room temperature. The morphologies of CuO can be engineered from nanosheets to nanoparticles with different length ratios of the long axis to the short axis. The formation of many metal-ion complexes plays an important role in slowing the release rate of OH- and affects the reaction kinetics further. We found that the effect of hetero-metal cations on the final morphology of the CuO nanostructures was the same as that of the cooling temperature. A series of temperature-controlled experiments demonstrated this. Furthermore, among all the synthesized CuO nanostructures, the fascinating colloidal mesoporous CuO quasi-monocrystalline nanosheets prepared at 25 °C with a thickness of ca. 10 nm and large specific surface area of 80.32 m2 g-1 is investigated intensively. These CuO nanosheets demonstrate a superior catalytic activity for CO oxidation, with features of high CO conversion efficiency (47.77 mmolCO g-1CuO h-1 at 200 °C), which is close to that reported for previously investigated supported-CuO catalysts, and a low apparent activation energy Ea (53.3 kJ mol-1).A controllable synthesis of various morphologies of CuO nanostructures with tuning by hetero-metal cations has been developed in aqueous solution at room temperature. The morphologies of CuO can be engineered from nanosheets to nanoparticles with different length ratios of the long axis to the short axis. The formation of many metal-ion complexes plays an important role in slowing the release rate of OH- and affects the reaction kinetics further. We found that the effect of hetero-metal cations on the final morphology of the CuO nanostructures was the same as that of the cooling temperature. A series of temperature-controlled experiments demonstrated this. Furthermore, among all the synthesized CuO nanostructures, the fascinating colloidal mesoporous CuO

  11. Fabrication and characterization of ZnS/ZnO core shell nanostructures on silver wires

    NASA Astrophysics Data System (ADS)

    Kao, Chyuan Haur; Su, Wei Ming; Li, Cheng Yuan; Weng, Wei Chih; Weng, Chen Yuan; Cheng, Chin-Chi; Lin, Yung-Sen; Lin, Chia Feng; Chen, Hsiang

    2018-06-01

    In this research, ZnS nanoparticles were synthesized on ZnO/silver wires to form ZnS/ZnO core shell structures. Various outward appearance and colors could be observed by different ZnO growth and sulfurization conditions. To evaluate the properties of these nanostructures, optical properties and chemical bindings were analyzed by photoluminescence, Raman analysis, and X-ray photoelectron spectroscopy. Furthermore, material characterizations including transmission electron microscopy and X-ray diffraction confirmed that cubic ZnS (311)/ZnO nanostructures were grown on silver wires for the first time. ZnS/ZnO core shell structures on silver wires are promising for future optoelectronic and biomedical applications.

  12. Fullerene-like Cs2O nanoparticles generated by concentrated sunlight

    NASA Astrophysics Data System (ADS)

    Albu-Yaron, Ana; Arad, Talmon; Levy, Moshe; Popovitz-Biro, Ronit; Tenne, Reshef; Gordon, Jeffrey M.; Feuermann, Daniel; Katz, Eugene A.; Jansen, Martin; Mühle, Claus

    2006-09-01

    We report the rapid high-yield generation of inorganic fullerene-like cesium oxide (IF-Cs2O) nanoparticles, activated by highly concentrated sunlight. The solar process represents an alternative to the only reported method for synthesizing IF-Cs2O nanostructures: laser ablation. IF-Cs2O formed at solar irradiation greater-than or equal to 6W, confirmed by high resolution transmission electron microscopy. These closed-cage Cs2O nanostructures are stable under electron microscope conditions, and also when exposed temporarily to air - of significance for their use in a variety of photonic devices.

  13. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

  14. Formation mechanism of self-assembled polarization-dependent periodic nanostructures in β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Shimotsuma, Y.; Sakakura, M.; Shimizu, M.; Miura, K.

    2018-02-01

    We have successfully observed self-assembled periodic nanostructures inside Si single crystal and GaP crystal, by the femtosecond double-pulse irradiation. These results experimentally indicate that the self-assembly of the periodic nanostructures inside semiconductors triggered by ultrashort pulses irradiation are possibly associated with a direct or an indirect band gap. More recently we have also empirically classified the photoinduced bulk nanogratings into the following three types: (1) structural deficiency, (2) compressed structure, (3) partial crystallization. We have still a big question about what material properties are involved in the bulk nanograting structure formation. In this study, to expand the selectivity of the material for bulk nanograting formation, we have employed β-Ga2O3 crystals (indirect bandgap Eg 4.8 eV) as a sample for femtosecond laser irradiation. The nanograting structure inside β-Ga2O3 crystal was aligned perpendicular to the laser polarization direction. Such phenomenon is similar to the nanograting in SiO2 glass (Eg 9 eV). Moreover, to clarify the band structure, we have also investigate the photoinduced structure in Sn doped β-Ga2O3 crystals, which exhibit direct bandgap according to the first principle calculation.

  15. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.

    PubMed

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying

    2016-01-01

    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structural transformation in nano-structured CuAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, D. K., E-mail: daxabjoshi@gmail.com; Chhantbar, M. C.; Joshi, H. H.

    Polycrystalline spinel ferrite system CuAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} (x=0.2, 0.6) was synthesized by solid-state reaction route. Nanoparticles of the samples have been prepared by using high energy ball milling technique with different milling durations and characterized by X-ray Diffraction and Tunneling Electron Microscope. It is observed that the structural transformation occurred from Cubic to tetragonal and particle size varied between 29 nm -14 nm with increase of milling time.

  17. Crystal structure of bis-[tetra-kis-(tetra-hydro-furan-κO)lithium] bis[μ-2,2',2''-methanetriyltris(4,6-di-tert-butylphenolato)-κ4O,O':O',O'']-dimagnesiate.

    PubMed

    Zhou, Hongyan; Wang, Lei

    2017-07-01

    The title ion-association metal complex, [Li(C 4 H 8 O) 4 ] 2 [Mg 2 (C 43 H 61 O 3 ) 2 ], has been synthesized from the tridentate phenolic ligand tris-(3,5-di- tert -butyl-2-hy-droxy-phen-yl)methane in tetra-hydro-furan (THF). The aryl-oxo magnesiate complex anion is binuclear with each Mg 2 O 4 complex unit inversion-related and bridged through the two tridentate chelating phenolate O-donors of the ligand. The complex centres have a distorted tetra-hedral stereochemistry [Mg-O range 1.8796 (17)-2.0005 (16) Å] and an Mg⋯Mg separation of 2.9430 (14) Å]. The LiO 4 coodination sphere of the cation comprises four THF O-donor atoms and has a slightly distorted tetra-hedral conformation [Li-O range 1.899 (5)- 1.953 (5) Å]. In the crystal, a number of stabilizing intra-anion C-H⋯O hydrogen-bonding inter-actions are present but no inter-species associations are found.

  18. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less

  19. Defluoridation technology for drinking water and tea by green synthesized Fe3O4/Al2O3 nanoparticles coated polyurethane foams for rural communities.

    PubMed

    Kumari, Sonu; Khan, Suphiya

    2017-08-14

    Fluoride (F) contaminated ground water poses a serious public health concern to rural population with unaffordable purification technologies. Therefore, development of a cost-effective, portable, environment and user-friendly defluoridation technique is imperative. In the present study, we report on the development of a green and cost-effective method that utilizes Fe 3 O 4 and Al 2 O 3 nanoparticles (NPs) that were synthesized using jojoba defatted meal. These NPs were impregnated on to polyurethane foam (PUF) and made into tea infusion bags. The Al 2 O 3 NPs-PUF displayed a higher water defluoridation capacity of 43.47 mg g -1 of F as compared to 34.48 mg g -1 of F with Fe 3 O 4 NPs-PUF. The synthesized Al 2 O 3 -PUF infusion bags removed the F that was under the permissible limit of 1.5 mg L -1 . The sorption experiments were conducted to verify the effect of different parameters such as pH, contact time, size of PUF and initial F concentration. The different properties of adsorbent were characterized using a combination of FESEM, EDX, XRD and FTIR techniques, respectively. The calculated total cost per NPs-PUF pouch developed is as low as US $0.05, which makes the technology most suitable for rural communities. This paper will be beneficial for researchers working toward further improvement in water purification technologies.

  20. Raman spectroscopic study of the mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3, a pegmatite phosphate mineral from Santa Ana pegmatite, Argentina.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Moreira, Caio; de Lena, Jorge Carvalho

    2013-10-01

    The pegmatite mineral qingheiite Na2(Mn(2+),Mg,Fe(2+))2(Al,Fe(3+))(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm(-1) assigned to the PO4(3-) symmetric stretching mode. Multiple Raman bands are observed in the PO4(3-) antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the ν4 and ν2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm(-1) are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  2. Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties

    NASA Astrophysics Data System (ADS)

    Yao, Libing; Su, Qingmei; Xiao, Yanling; Huang, Min; Li, Haojie; Deng, Huihui; Du, Gaohui

    2017-07-01

    Carbon-coated ZnFe2O4 spheres with sizes of 110-180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g-1 and maintains a reversible capacity of 775 mAh g-1 after 150 cycles at a current density of 500 mA g-1. After being tested at 2 A g-1 for 700 cycles, the capacity still retains 617 mAh g-1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating ( 3-6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries. [Figure not available: see fulltext.

  3. Electrochemical treatment of 2, 4-dichlorophenol using a nanostructured 3D-porous Ti/Sb-SnO2-Gr anode: Reaction kinetics, mechanism, and continuous operation.

    PubMed

    Asim, Sumreen; Zhu, Yunqing; Batool, Aisha; Hailili, Reshalaiti; Luo, Jianmin; Wang, Yuanhao; Wang, Chuanyi

    2017-10-01

    2, 4-dichlorophenol (2, 4-DCP) is considered to be a highly toxic, mutagenic, and possibly carcinogenic pollutant. This study is focused on the electrochemical oxidation of 2, 4-DCP on nanostructured 3D-porous Ti/Sb-SnO 2 -Gr anodes, with the aim of presenting a comprehensive elucidation of mineralization process through the investigation of influential kinetics, the reactivity of hydroxyl radical's and analysis of intermediates. High efficiency was achieved at pH of 3 using Na 2 SO 4 electrolytes at a current density of 30 mA cm -2 . Under the optimized conditions, a maximum removal of 2, 4-DCP of up to 99.9% was reached, whereas a TOC removal of 81% was recorded with the lowest EC TOC (0.49 kW h g -1 ) within 40 min of electrolysis. To explore the stability of the 3D-Ti/Sb-SnO 2 -Gr electrodes, a continuous electrochemical operation was established, and the consistent mineralization results indicated the effectiveness of the 3D-Ti/Sb-SnO 2 -Gr system concerning its durability and practical utilization. EPR studies demonstrated the abundant generation of OH radicals on 3D-Ti/Sb-SnO 2 -Gr, resulting in fast recalcitrant pollutant incineration. From dechlorination and the reactivity of the OH radicals, several intermediates including six cyclic byproducts and three aliphatic carboxylic acids were detected, and two possible degradation pathways were proposed that justify the complete mineralization of 2, 4-DCP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Controllable preparation of flower-like brookite TiO{sub 2} nanostructures via one-step hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin

    Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less

  5. Crystal structure of BaMn2(AsO4)2 containing discrete [Mn4O18]28- units.

    PubMed

    Alcantar, Salvador; Ledbetter, Hollis R; Ranmohotti, Kulugammana G S

    2017-12-01

    In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis-(arsenate), has been synthesized by employing a high-temperature RbCl flux. The crystal structure of BaMn 2 (AsO 4 ) 2 is made up of MnO 6 octa-hedra and AsO 4 tetra-hedra assembled by sharing corners and edges into infinite slabs with composition [Mn 2 (AsO 4 ) 2 ] 2- that extend parallel to the ab plane. The barium cations reside between parallel slabs maintaining the inter-slab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly inter-acting [Mn 4 O 18 ] 28- tetra-meric units. In each tetra-mer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetra-meric units are separated from each other by 6.614 (2) Å (Mn⋯Mn distances). The title compound has isostructural analogues amongst synthetic Sr M 2 ( X O 4 ) 2 compounds with M = Ni, Co, and X = As, P.

  6. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films

    NASA Astrophysics Data System (ADS)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun

    The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.

  7. Synthesis of ultrasmooth nanostructured diamond films by microwave plasma chemical vapor deposition using a He/H(2)/CH(4)/N(2) gas mixture.

    PubMed

    Chowdhury, S; Hillman, Damon A; Catledge, Shane A; Konovalov, Valery V; Vohra, Yogesh K

    2006-10-01

    Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti-6Al-4V medical grade substrates by adding helium in H(2)/CH(4)/N(2) plasma and changing the N(2)/CH(4) gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm(2). Grain size was 4-5 nm at 71% He in (H(2) + He) and N(2)/CH(4) gas flow ratio of 0.4 without deteriorating the hardness (~50-60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N(2)/CH(4) feedgas ratio (CH(4) was fixed) in He/H(2)/CH(4)/N(2) plasma, a substantial increase of CN radical (normalized by Balmer H(α) line) was observed along with a drop in surface roughness up to a critical N(2)/CH(4) ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.

  8. Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites

    NASA Astrophysics Data System (ADS)

    He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin

    2017-09-01

    Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.

  9. Cationic surfactant assisted sonochemical synthesis of Nd3+ doped Zn2SiO4 nanostructures for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Basavaraj, R. B.; Malleshappa, J.; Darshan, G. P.; Prasad, B. Daruka; Nagabhushana, H.

    2018-04-01

    For the first time cationic surfactant assisted ultrasound synthesis route has been used for the preparation of pure and Nd3+ (0.5-9 mol %) doped Zn2SiO4 nanophosphors. The shape, size and morphology of the products were tuned by controlling the various experimental parameters. The final product was well characterized by sophisticated techniques viz. powder X-ray diffraction (PXRD), Ultraviolet visible spectroscopy (UV-Vis) and photoluminescence (PL). The powder X-ray diffraction patterns confirmed that the synthesized samples exhibit hexagonal phase without any impurity. The DRS spectra showed major peaks at 275, 360, 529, 586, 680, 742 and 806 nm due to the transitions of the 4f electrons of Nd3+ from the ground-state 4I9/2 to 2F5/2, 4D3/2 + 4D5/2 + 2I11/2, 2K13/2 + 4G7/2 + 4G9/2, 4G5/2 + 2G7/2, 4F7/2 + 4S3/2, 4F5/2 + 2H9/2 and 4F3/2 respectively. The band energy gap (Eg) of the samples were estimated and found to be in the range 5.32 - 5.52 eV. Under 421 nm excitation, PL spectra exhibit strong near ultraviolet emission peaks at˜444 nm, 459 nm and 520 nm were attributed to 2P3/24I13/2, 2P3/24I15/2, 1I6 → 3H4, 2P1/24I9/2 and 4G7/24I9/2 transitions respectively. The photometric studies indicate that the synthesized Zn2SiO4: Nd3+ nanophosphors can be tuned from blue to pale green by varying the dopant concentration. The current synthesis route is rapid, environmentally benign, cost-effective and useful for industrial applications such as solid state lighting and display devices.

  10. Structure, microstructure, and size dependent catalytic properties of nanostructured ruthenium dioxide

    NASA Astrophysics Data System (ADS)

    Nowakowski, Pawel; Dallas, Jean-Pierre; Villain, Sylvie; Kopia, Agnieszka; Gavarri, Jean-Raymond

    2008-05-01

    Nanostructured powders of ruthenium dioxide RuO 2 were synthesized via a sol gel route involving acidic solutions with pH varying between 0.4 and 4.5. The RuO 2 nanopowders were characterized by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM). Rietveld refinement of mean crystal structure was performed on RuO 2 nanopowders and crystallized standard RuO 2 sample. Crystallite sizes measured from X-ray diffraction profiles and TEM analysis varied in the range of 4-10 nm, with a minimum of crystallite dimension for pH=1.5. A good agreement between crystallite sizes calculated from Williamson Hall approach of X-ray data and from direct TEM observations was obtained. The tetragonal crystal cell parameter (a) and cell volumes of nanostructured samples were characterized by values greater than the values of standard RuO 2 sample. In addition, the [Ru-O 6] oxygen octahedrons of rutile structure also depended on crystal size. Catalytic conversion of methane by these RuO 2 nanostructured catalysts was studied as a function of pH, catalytic interaction time, air methane composition, and catalysis temperature, by the way of Fourier transform infrared (FTIR) spectroscopy coupled to homemade catalytic cell. The catalytic efficiency defined as FTIR absorption band intensities I(CO 2) was maximum for sample prepared at pH=1.5, and mainly correlated to crystallite dimensions. No significant catalytic effect was observed from sintered RuO 2 samples.

  11. Microwave-assisted synthesis and humidity sensing of nanostructured {alpha}-Fe{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Rupali G.; Badadhe, Satish S.; Mulla, Imtiaz S.

    2009-05-06

    Nanocrystalline {alpha}-Fe{sub 2}O{sub 3} has been prepared on a large-scale by a facile microwave-assisted hydrothermal route from a solution of Fe(NO{sub 3}){sub 3}.9H{sub 2}O and pentaerythritol. A systematic study of the morphology, crystallinity and oxidation state of Fe using different characterization techniques, such as transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was performed. It reveals that nanostructured {alpha}-Fe{sub 2}O{sub 3} comprises bundles of nanorods with a rhombohedral crystalline structure. The individual nanorod has 8-10 nm diameter and {approx}50 nm length. The as-prepared nanostructured {alpha}-Fe{sub 2}O{sub 3} (sensor) gives selective response towards humidity. The sensor shows high sensitivity, fastmore » linear response to change in the humidity with almost 100% reproducibility. The sensor works at room temperature and rejuvenates without heat treatment. The as-prepared nanostructured {alpha}-Fe{sub 2}O{sub 3} appears to be a promising humidity sensing material with the potential for commercialization.« less

  12. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  13. Thermogravimetric and Magnetic Studies of the Oxidation and Reduction Reaction of SmCoO3 to Nanostructured Sm2O3 and Co

    NASA Astrophysics Data System (ADS)

    Kelly, Brian; Cichocki, Ronald; Poirier, Gerald; Unruh, Karl

    The SmCoO3 to nanostructured Sm2O3 and Co oxidation and reduction reaction has been studied by thermogravimetric analysis (TGA) measurements in forming gas (FG) and inert N2 atmospheres, x-ray diffraction (XRD) and vibrating sample magnetometry (VSM). The TGA measurements showed two clearly resolvable reduction processes when heating in FG, from the initial SmCoO3 phase through an intermediate nanostructured mixture of Sm2O3 and CoO when heated to 330°C for several minutes, and then the conversion of CoO to metallic Co when heated above 500°C. These phases were confirmed by XRD and VSM. Similar measurements in N2 yielded little mass change below 900°C and coupled reduction processes at higher temperatures. Isoconversional measurements of the CoO to Co reduction reaction in FG yielded activation energies above 2eV/atom in the nanostructured system. This value is several times larger than those reported in the literature or obtained by similar measurements of bulk mixtures of Sm2O3 and CoO, suggesting the nanostructuring was the source of the large increase in activation energy.

  14. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO

  15. Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase.

    PubMed

    Ndong, Landry Biyoghe Bi; Ibondou, Murielle Primaelle; Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian; Mbadinga, Serge Maurice

    2014-05-01

    Titanium dioxide (TiO2), which is the widely used photo-catalyst, has been synthesized by simple hydrothermal solution containing tetrabutyl titanate and hydrofluoric acid. The synthesized product has been applied to photo-degradation in aqueous phase of chlorinated solvents, namely tetrachloroethene (PCE), trichloroethene (TCE) and 1,1,1-trichloroethane (TCA). The photo-degradation results revealed that the degradation of these harmful chemicals was better in UV/synthesized TiO2 system compared to UV/commercial P25 system and UV only system. The photo-catalytic efficiency of the synthesized TiO2 was 1.4, 1.8 and 3.0 folds higher compared to the commercial P25 for TCA, TCE and PCE degradation, respectively. Moreover, using nitrobenzene (NB) as a probe of hydroxyl radical (·OH), the degradation rate was better over UV/synthesized TiO2, suggesting the high concentration of ·OH generated in UV/synthesized TiO2 system. In addition, ·OH concentration was confirmed by the strong peak displayed in EPR analysis over UV/synthesized TiO2 system. The characterization result using XRD and TEM showed that the synthesized TiO2 was in anatase form and consisted of well-defined sheet-shaped structures having a rectangular outline with a thickness of 4 nm, side length of 50 nm and width of 33 nm and a surface 90.3 m(2)/g. XPS analysis revealed that ≡Ti-F bond was formed on the surface of the synthesized TiO2. The above results on both photocatalytic activity and the surface analysis demonstrated the good applicability of the synthesized TiO2 nano-sheets for the remediation of chlorinated solvent contaminated groundwater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Na7Cr4(P2O7)4PO4

    PubMed Central

    Bourguiba Fakhar, Noura; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The title compound, hepta­sodium tetra­chromium(III) tetra­kis­(diphosphate) orthophosphate, was synthesized by solid-state reaction. Its structure is isotypic with that of Na7 M 4(P2O7)4PO4 (M = In, Al) compounds and is made up from a three-dimensional [(CrP2O7)4PO4]7− framework with channels running along [001]. The three Na+ cations are located in the voids of the framework. One of the cations is situated on a general position, one is equally disordered around a twofold rotation axis and one is on a fourfold rotoinversion axis. The isolated PO4 tetra­hedron of the anionic framework is also situated on the -4 axis. Structural relationships between the title compound and different diphosphates containing MP2O11 units (M = Mo, V) are discussed. PMID:23723751

  17. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  18. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  19. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  20. Two-step growth mechanism of supported Co3O4-based sea-urchin like hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Maurizio, Chiara; Edla, Raju; Michieli, Niccolo'; Orlandi, Michele; Trapananti, Angela; Mattei, Giovanni; Miotello, Antonio

    2018-05-01

    Supported 3D hierarchical nanostructures of transition metal oxides exhibit enhanced photocatalytic performances and long-term stability under working conditions. The growth mechanisms crucially determine their intimate structure, that is a key element to optimize their properties. We report on the formation mechanism of supported Co3O4 hierarchical sea urchin-like nanostructured catalyst, starting from Co-O-B layers deposited by Pulsed Laser Deposition (PLD). The particles deposited on the layer surface, that constitute the seeds for the urchin formation, have been investigated after separation from the underneath deposited layer, by X-ray diffraction, X-ray absorption spectroscopy and scanning electron microscopy. The comparison with PLD deposited layers without O and/or B indicates a crucial role of B for the urchin formation that (i) limits Co oxidation during the deposition process and (ii) induces a chemical reduction of Co, especially in the particle core, in the first step of air annealing (2 h, 500 °C). After 2 h heating Co oxidation proceeds and Co atoms outdiffuse from the Co fcc particle core likely through fast diffusion channel present in the shell and form Co3O4 nano-needles. The growth of nano-needles from the layer beneath the particles is prevented by a faster Co oxidation and a minimum fraction of metallic Co. This investigation shows how diffusion mechanisms and chemical effects can be effectively coupled to obtain hierarchical structures of transition metal oxides.

  1. Impression of plasma voltage on growth of α-V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-06-01

    In this communication, we synthesized vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) accompanied with nanoflakes/ nanoplates on the Ni-coated glass substrates employing plasma assisted sublimation process (PASP) as a function of plasma voltage (Vp). The effect of plasma voltage on structural, morphological, compositional, and vibrational properties have been studied systematically. The structural analysis divulged that all films deposited at different Vp have pure orthorhombic phase, no impurity phase is detected under resolution limit of XRD and XPS. The morphological studies of samples is carried out by SEM, revealed that features as well as alignment of V2O5 NSTs is greatly monitored by Vp and the film possessing the best features is obtained at 2500volt. In addition, XPS results reveal that V5+ oxidation state is the most prominent state in sample V2, which represents better stoichiometric nature of film. The vibrational study of all samples is performed by FTIR and strongly support the XRD observations. All the results are in consonance with each other.

  2. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  3. Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery.

    PubMed

    Li, Yu; Wu, Chuan; Bai, Ying; Liu, Lu; Wang, Hui; Wu, Feng; Zhang, Na; Zou, Yufeng

    2016-07-27

    Tuning hierarchical micro/nanostructure of electrode materials is a sought-after means to reinforce their electrochemical performance in the energy storage field. Herein, we introduce a type of hierarchical mesoporous Li[Li0.2Ni0.2Mn0.6]O2 microsphere composed of nanoparticles synthesized via an ice templating combined coprecipitation strategy. It is a low-cost, eco-friendly, and easily operated method using ice as a template to control material with homogeneous morphology and rich porous channels. The as-prepared material exhibits remarkably enhanced electrochemical performances with higher capacity, more excellent cycling stability and more superior rate property, compared with the sample prepared by conventional coprecipitation method. It has satisfactory initial discharge capacities of 280.1 mAh g(-1) at 0.1 C, 207.1 mAh g(-1) at 2 C, and 152.4 mAh g(-1) at 5 C, as well as good cycle performance. The enhanced electrochemical performance can be ascribed to the stable hierarchical microsized structure and the improved lithium-ion diffusion kinetics from the highly porous structure.

  4. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2.

    PubMed

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Szutkowski, Kosma; Mrówczyńska, Lucyna; Kaźmierczak, Zuzanna; Grzyb, Tomasz; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2016-11-01

    The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis and Structural Characterization of CdFe2O4 Nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H4)3], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H4)3] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.

  6. Growth of rutile TiO2 nanorods in Ti and Cu ion sequentially implanted SiO2 and the involved mechanisms

    NASA Astrophysics Data System (ADS)

    Mu, Xiaoyu; Liu, Xiaoyu; Wang, Xiaohu; Dai, Haitao; Liu, Changlong

    2018-01-01

    TiO2 in nanoscale exhibits unique physicochemical and optoelectronic properties and has attracted much more interest of the researchers. In this work, TiO2 nanostructures are synthesized in amorphous SiO2 slices by implanting Ti ions, or sequentially implanting Ti and Cu ions combined with annealing at high temperature. The morphology, structure, spatial distribution and optical properties of the formed nanostructures have been investigated in detail. Our results clearly show that the thermal growth of TiO2 nanostructures in SiO2 substrate is significantly enhanced by presence of post Cu ion implantation, which depends strongly on the applied Cu ion fluence, as well as the annealing atmosphere. Due to the formation of Cu2O in the substrate, rutile TiO2 nanorods of large size have been well fabricated in the Ti and Cu sequentially implanted SiO2 after annealing in N2 atmosphere, in which Cu2O plays a role as a catalyst. Moreover, the sample with well-fabricated TiO2 nanorods exhibits a narrowed band gap, an enhanced optical absorption in visible region, and catalase-/peroxidase-like catalytic characteristics. Our findings provide an effective route to fabricate functional TiO2 nanorods in SiO2 via ion implantation.

  7. Effect of different surfactants on structural and optical properties of Ce3+ and Tb3+ co-doped BiPO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Dao, T. D.; Chen, K.; Sharma, Manoj; Takeda, T.; Brik, M. G.; Kityk, I. V.; Singh, Sarabjot; Nagao, T.

    2015-01-01

    In this paper we report on the Ce3+ and Tb3+ ions co-doped bismuth phosphate (BiPO4) nanostructures that were synthesized by a simple precipitation method using different surfactants such as glycerol/H2O, glycerol/ethylene glycol, oleic acid, and ethylene glycol. The structural (X-ray diffraction, scanning electron microscopy, tunneling electron microscopy), functional groups analysis (Fourier transform infrared and Raman spectroscopy), thermal (thermogravimetry and differential thermal analysis), and optical (photoluminescence, photoluminescence-excitation) properties were investigated. The structural and morphological analysis confirms the pure hexagonal crystal structure of the synthesized nanostructures. From the measured Fourier transform infrared (FTIR) and Raman spectra various functional groups such as υ3 stretching vibration of the PO4 group, and δ(O-P-O) and υ4 (PO4) vibrations including the υ2 and υ1 bending modes of the PO4 units are identified. Based on the thermal analysis, for all the studied samples an exothermic peak between 680 °C and 700 °C was observed due to phase transition from hexagonal to high temperature monoclinic. The Ce3+and Tb3+ codoped samples show spectrally broad 5d → 4f luminescence in the blue (centered at 459 nm) wavelength region under the direct optical excitation of Ce3+ at 417 nm. Similarly, Tb3+ has revealed four main emission bands (5D4 → 7F6, 5, 4 and 3) at 490 nm, 545 nm, 585 nm and 621 nm with 378 nm (7F6 → 5G6) as the excitation wavelength, including three more weak emission bands at 647 nm, 669 nm, and 681 nm which could be assigned to 5D4 → 7F2, 1, 0 emission transitions. Among them, 545 nm (5D4 → 7F5) has shown bright green emission. The Ce3+ and Tb3+ codoped sample synthesized with pure oleic acid have shown relatively high green emission intensity for Tb3+, and relatively weak blue emission intensity for Ce3+ under their respective optical excitation wavelengths.

  8. A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application

    NASA Astrophysics Data System (ADS)

    Naghshbandi, Zhwan; Arsalani, Nasser; Zakerhamidi, Mohammad Sadegh; Geckeler, Kurt E.

    2018-06-01

    In recent year, the research is focused on the nanostructured catalyst with increase physiochemical properties. Herein, Different magnetic nanocomposites of graphene quantum dots (GQD) and MFe2O4 (M = Ni, Co) with intrinsic photoluminescent and ferromagnetic properties were synthesized by a convenient co-precipitation method. The structure, morphology, and properties of these nanocomposites as well as the catalytic activity of the nanocomposites for the reduction of p-nitrophenol were investigated. The catalytic activity was found to be in the order of NiFe2O4/GQD > CoFe2O4/GQD > NiFe2O4 > CoFe2O4. The sample NiFe2O4/GQD exhibited the best catalytic activity with an apparent rate constant of 3.56 min-1 and a reduction completion time to p-aminophenol of 60 s. The catalysts can be reused by a magnetic field and display good stability, which can be recycled for six successive experiment with a conversion percentage of more than 95%. These results demonstrate that the nanocomposite NiFe2O4/GQD is an efficient catalyst for the reduction of p-nitrophenol compound. Also, the new nanocomposites have shown a significant reduction in the direct and indirect energy bandgaps when compared to pure GQD and the corresponding magnetic metal oxides.

  9. Hydrothermal Synthesis and Acetylene Sensing Properties of Variety Low Dimensional Zinc Oxide Nanostructures

    PubMed Central

    Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324

  10. Dimensional-Hybrid Structures of 2D Materials with ZnO Nanostructures via pH-Mediated Hydrothermal Growth for Flexible UV Photodetectors.

    PubMed

    Lee, Young Bum; Kim, Seong Ku; Lim, Yi Rang; Jeon, In Su; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok

    2017-05-03

    Complementary combination of heterostructures is a crucial factor for the development of 2D materials-based optoelectronic devices. Herein, an appropriate solution for fabricating complementary dimensional-hybrid nanostructures comprising structurally tailored ZnO nanostructures and 2D materials such as graphene and MoS 2 is suggested. Structural features of ZnO nanostructures hydrothermally grown on graphene and MoS 2 are deliberately manipulated by adjusting the pH value of the growing solution, which will result in the formation of ZnO nanowires, nanostars, and nanoflowers. The detailed growth mechanism is further explored for the structurally tailored ZnO nanostructures on the 2D materials. Furthermore, a UV photodetector based on the dimensional-hybrid nanostructures is fabricated, which demonstrates their excellent photocurrent and mechanical durability. This can be understood by the existence of oxygen vacancies and oxygen-vacancies-induced band narrowing in the ZnO nanostructures, which is a decisive factor for determining their photoelectrical properties in the hybrid system.

  11. The orthorhombic to high-P monoclinic phase transition in Mg-Fe Pyroxenes: Can it produce a seismic discontinuity?

    NASA Astrophysics Data System (ADS)

    Woodland, Alan B.

    The orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene with a mantle-relevant composition (XFs = 0.1) is expected to occur at ˜300 km depth [Woodland and Angel, 1997]. However, the divariant nature of the phase transition in the Mg-Fe system leaves the question open as to whether this transition occurs over a narrow enough pressure interval to cause a seismic discontinuity. New experimental results with binary Mg-Fe pyroxenes constrain the divariant loop to be 0.2 GPa wide at the composition of XFs = 0.4 and on the order of 0.15 GPa for a mantle-relevant composition. This implies that the phase transition will be complete over a depth interval of about 5-6 km in the mantle and it is concluded that the divariant loop of the orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene is indeed narrow enough to produce a “jump” in seismic velocities. The experimentally observed metastable behavior of orthopyroxene could further reduce the effective depth interval of this phase transition. The expected location of this phase transition coincides with a small magnitude seismic discontinuity, the “X-discontinuity”, occasionally observed in seismic profiles at ˜300 km depth, and thus provides a viable petrologic explanation for the origin of this discontinuity, if it truly exists.

  12. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girija, K.; DRDO – BU CLS, Bharathiar University, Coimbatore 641046; Thirumalairajan, S.

    2013-06-01

    Highlights: ► Nanostructures of β-Ga{sub 2}O{sub 3} were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga{sub 2}O{sub 3} nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga{sub 2}O{submore » 3} nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.« less

  13. Construction of New Coordination Polymers from 4'-(2,4-disulfophenyl)- 3,2':6'3"-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Chao-Jie; He, Jia-En; Chen, Yin-Yu; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2016-01-01

    Nine new coordination compounds, namely, [Co(HDSPTP)2(H2O)44H2O (H2DSPTP=4'-(2,4-disulfophenyl)-3,2':6'3"-terpyridine, 1 and 2), {[Ni(DSPTP)(H2O)4]·3H2O}n (3), {[Cu(HDSPTP)2(H2O)3]·8H2O}n (4), {[Cu(HDSPTP)2(H2O)3]·6H2O}n (5), {[Cu(DSPTP)(H2O)2]·H2O}n (6), {[Zn(DSPTP)(H2O)22H2O}n (7), {[Cd(DSPTP)(H2O)22H2O}n (8), and [Ag2(DSPTP)(H2O)]n (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H2DSPTP with Co(NO3)2.6H2O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H2DSPTP with Ni(NO3)2·6H2O resulted in a 1D "S-shaped" coordination chain (compound 3). The reactions of Cu(II) with H2DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H2DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to μ7-mode) and conformations (cis-cis and cis-trans) of HDSPTP-/DSPTP2- ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits low thermal stability and undergo a crystalline-crystalline-amorphous phase transition as temperature increases from 25 °C to 200 °C, and show amorphous-crystalline phase transition when rehydrated

  14. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    PubMed Central

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-01-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior. PMID:26469886

  15. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  16. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts.

    PubMed

    Choi, Jongbok; Cui, Mingcan; Lee, Yonghyeon; Kim, Jeonggwan; Yoon, Yeomin; Jang, Min; Khim, Jeehyeong

    2018-05-01

    In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO 2 -incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO 2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO 2 -NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO 2 -GR composites was also investigated. Overall, the performance of TiO 2 -GRs prepared by the hydrothermal method was better than that of calcined TiO 2 -CNTs. Among TiO 2 -GRs, 5% GR incorporated media (TiO 2 -GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO 2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Xing, Meiying; Liu, J. Ping

    2018-05-01

    We demonstrate magnetic and hyperthermia properties of CoxFe3-xO4 (x = 0, 0.1, 0.3 and 0.5) nanoparticles synthesized via a simple cation exchange reaction of ˜12 nm Fe3O4 nanoparticles. The substitution of Fe cations with Co2+ ions leads to enhanced magnetocrystalline anisotropy and coercivity of the pristine superparamagnetic Fe3O4 nanoparticles. Hyperthermia measurement shows that by controlling the Co content (x = 0 to 0.5) in CoxFe3-xO4 nanoparticles, their specific absorption rate (SAR) can be greatly improved from 132 to 534 W/g. The strong enhancement in SAR value is attributed to the increased anisotropy and coercivity. Moreover, with the increase of ac magnetic field from 184 to 491 Oe, the SAR values of Fe3O4 and Co0.5Fe2.5O4 nanoparticles increase from 81 to 132 W/g and 220 to 534 W/g, respectively.

  18. Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4.

    PubMed

    Kwak, Byeong Sub; Do, Jeong Yeon; Park, No-Kuk; Kang, Misook

    2017-11-27

    Layered perovskite Sr 2 TiO 4 photocatalyst was synthesized by using sol-gel method with citric acid. In order to increase the surface area of layered perovskite Sr 2 TiO 4 , and thus to improve its photocatalytic activity for CO 2 reduction, its surface was modified via hydrogen treatment or exfoliation. The physical and chemical properties of the prepared catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy, elemental mapping analysis, energy-dispersive X-ray spectroscopy, N 2 adsorption-desorption, UV-Vis spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, and electrophoretic light scattering. CO 2 photoreduction was performed in a closed reactor under 6 W/cm 2 UV irradiation. The gaseous products were analyzed using a gas chromatograph equipped with flame ionization and thermal conductivity detectors. The exfoliated Sr 2 TiO 4 catalyst (E-Sr 2 TiO 4 ) exhibited a narrow band gap, a large surface area, and high dispersion. Owing to these advantageous properties, E-Sr 2 TiO 4 photocatalyst showed an excellent catalytic performance for CO 2 photoreduction reaction. The rate of CH 4 production from the photoreduction of CO 2 with H 2 O using E-Sr 2 TiO 4 was about 3431.77 μmol/g cat after 8 h.

  19. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation

    PubMed Central

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-01-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts. PMID:26828633

  20. High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors.

    PubMed

    Huang, Zi-Hang; Song, Yu; Feng, Dong-Yang; Sun, Zhen; Sun, Xiaoqi; Liu, Xiao-Xia

    2018-04-24

    Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO 2 with ultrahigh mass loading of 10 mg cm -2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO 2 nanosheets and secondary one-dimensional α-MnO 2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO 2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm -2 (or a specific capacitance of 304 F g -1 ) at 3 mA cm -2 and an excellent rate capability comparable to those of low mass loading MnO 2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO 2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm -3 at the power density of 0.28 W cm -3 for aqueous ASC and 8.0 mWh cm -3 at 0.65 W cm -3 for all-solid ASC), superior to most state-of-the-art supercapacitors.

  1. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  2. A sensitive turn on fluorescent probe for detection of biothiols using MnO2@carbon dots nanocomposites

    NASA Astrophysics Data System (ADS)

    Garg, Dimple; Mehta, Akansha; Mishra, Amit; Basu, Soumen

    2018-03-01

    Presently, the combination of carbon quantum dots (CQDs) and metal oxide nanostructures in one frame are being considered for the sensing of purine compounds. In this work, a combined system of CQDs and MnO2 nanostructures was used for the detection of anticancer drugs, 6-Thioguanine (6-TG) and 6-Mercaptopurine (6-MP). The CQDs were synthesized through microwave synthesizer and the MnO2 nanostructures (nanoflowers and nanosheets) were synthesized using facile hydrothermal technique. The CQDs exhibited excellent fluorescence emission at 420 nm when excited at 320 nm wavelength. By combining CQDs and MnO2 nanostructures, quenching of fluorescence was observed which was attributed to fluorescence resonance energy transfer (FRET) mechanism, where CQDs act as electron donor and MnO2 act as acceptor. This fluorescence quenching behaviour disappeared on the addition of 6-TG and 6-MP due to the formation of Mn-S bond. The detection limit for 6-TG (0.015 μM) and 6-MP (0.014 μM) was achieved with the linear range of concentration (0-50 μM) using both MnO2 nanoflowers and nanosheets. Moreover, the as-prepared fluorescence-sensing technique was successfully employed for the detection of bio-thiol group in enapril drug. Thus a facile, cost-effective and benign chemistry approach for biomolecule detection was designed.

  3. Mesoporous Cu2O-CeO2 composite nanospheres with enhanced catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Pang, Juanjuan; Li, Wenting; Cao, Zhenhao; Xu, Jingjing; Li, Xue; Zhang, Xiaokai

    2018-05-01

    In this paper, mesoporous Cu2O-CeO2 nanospheres were fabricated via a facile, low-temperature solution route in the presence of poly(2-vinylpyridine)-b-poly(ethylene Oxide) (P2VP-b-PEO) block copolymers. The prepared mesoporous Cu2O-CeO2 nanospheres were characterized systematically by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption. The formation mechanism of mesoporous Cu2O-CeO2 nanospheres was discussed. The results show that the molar ratios of Ce3+/Cu2+ and the reaction time have an important influence on the nanostructure of Cu2O-CeO2 composite spheres. The resultant Cu2O-CeO2 nanospheres exhibit superior catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. The activity factor (K = k/m) for the Cu2O-CeO2 nanospheres prepared with the molar ratio of Ce3+/Cu2+ of 5/1 is 3006.6 s-1 g-1, which is much higher than reported values. This paper demonstrates a highly controllable approach to the production of mesoporous Cu2O-CeO2 nanospheres, which have potential applications in the areas of catalysis, adsorption, sensors and so on.

  4. Construction of New Coordination Polymers from 4’-(2,4-disulfophenyl)- 3,2’:6’3”-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Li, Chao-Jie; He, Jia-En

    Nine new coordination compounds, namely, [Co(HDSPTP){sub 2}(H{sub 2}O){sub 4}]·4H{sub 2}O (H{sub 2}DSPTP=4’-(2,4-disulfophenyl)-3,2’:6’3”-terpyridine, 1 and 2), {[Ni(DSPTP)(H_2O)_4]·3H_2O}{sub n} (3), {[Cu(HDSPTP)_2(H_2O)_3]·8H_2O}{sub n} (4), {[Cu(HDSPTP)_2(H_2O)_3]·6H_2O}{sub n} (5), {[Cu(DSPTP)(H_2O)_2]·H_2O}{sub n} (6), {[Zn(DSPTP)(H_2O)_22H_2O}{sub n} (7), {[Cd(DSPTP)(H_2O)_22H_2O}{sub n} (8), and [Ag{sub 2}(DSPTP)(H{sub 2}O)]{sub n} (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H{sub 2}DSPTP with Co(NO{sub 3}){sub 2}.6H{sub 2}O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H{sub 2}DSPTP with Ni(NO{sub 3}){sub 2}·6H{sub 2}O resultedmore » in a 1D “S-shaped” coordination chain (compound 3). The reactions of Cu(II) with H{sub 2}DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H{sub 2}DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to µ{sub 7}-mode) and conformations (cis–cis and cis–trans) of HDSPTP{sup −}/DSPTP{sup 2−} ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6

  5. Dopant concentration dependent growth of Fe:ZnO nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com

    2016-05-23

    Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less

  6. Microemulsion-mediated solvothermal synthesis of tin(IV) hydrogen phosphate rose-like three-dimensional nanostructures and their electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Hui; He Xiaoyan; Cao Minhua

    2009-03-05

    Novel rose-like three-dimensional Sn(HPO{sub 4}){sub 2}.H{sub 2}O nanostructures self-assembled by tightly stacked nanopetals were successfully synthesized by a simple cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion system under solvothermal conditions for the first time. A series of compared experiments were carried out to investigate the factors that influence the morphology and size of the products. It was found that the molar ratio of water to CTAB and the concentration of SnCl{sub 4} aqueous solution play important roles in the formation of the rose-like nanostructures. A possible formation mechanism of rose-like nanostructures was proposed, which may be related to the crystal structure of Sn(HPO{submore » 4}){sub 2}.H{sub 2}O and the spherical micelles formed by the microemulsion. The electrochemical properties of Sn(HPO{sub 4}){sub 2}.H{sub 2}O were investigated through cyclic voltammetry (CV) measurements. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.« less

  7. Plasma assisted facile synthesis of vanadium oxide (V3O7) nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Saini, Sujit K.; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.

    2018-05-01

    Vanadium oxides nanostructured thin films are synthesized using plasma assisted sublimation process. The effect of temperatures on growth of V2O5 and V3O7 thin films is studied. Scanning electron micrographs shows different morphologies are obtained at different temperatures i.e. at 450 °C nano cubes-like structures are obtained, whereas at 550 °C and 650 °C nanorods are obtained. Sample deposited at 450 °C is entirely composed of V2O5 and sample at higher temperatures are composed of mixed phase of vanadium oxides i.e. V2O5 and V3O7. As temperature increased, so the content of V3O7 in the sample is increased as confirmed by XRD and Raman analyses.

  8. TiO2 Nanostructures as Anode Materials for Li/Na-ion Batteries.

    PubMed

    Vazquez-Santos, Maria B; Tartaj, Pedro; Morales, Enrique; Amarilla, Jose Manuel

    2018-03-14

    Here we summarize some results on the use of TiO 2 nanostructures as anode materials for more efficient Li-ion (LIBs) and Na-ion (NIBs) batteries. LIBs are the leader to power portable electronic devices, and represent in the short-term the most adequate technology to power electrical vehicles, while NIBs hold promise for large storage of energy generated from renewable sources. Specifically, TiO 2 an abundant, low cost, chemically stable and environmentally safe oxide represents in LIBs an alternative to graphite for applications in which safety is mandatory. For NIBs, TiO 2 anodes (or more precisely negative electrodes) work at low voltage, assuring acceptable energy density values. Finally, assembling different TiO 2 polymorphs in the form of nanostructures decreases diffusion distances, increases the number of contacts and offering additional sites for Na + storage, helping to improve power efficiency. More specifically, in this contribution we highlighted our work on TiO 2 anatase mesocrystals of colloidal size. These sophisticate materials; showing excellent textural properties, have remarkable electrochemical performance as anodes for Li/Na-ion batteries, with conventional alkyl carbonates electrolytes and safe electrolytes based on ionic liquids. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Xu, Huayun; Chen, Liang; Gu, Xin; Yang, Jian; Qian, Yitai

    2014-02-01

    MFe2O4 (M = Zn, Co, Ni) nanorods are synthesized by a template-engaged reaction, with β-FeOOH nanorods as precursors which are prepared by a hydrothermal method. The final products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical properties of the MFe2O4 (M = Zn, Co, Ni) nanorods are tested as the anode materials for lithium ion batteries. The reversible capacities of 800, 625 and 520 mAh g-1 are obtained for CoFe2O4, ZnFe2O4 and NiFe2O4, respectively, at the high current density of 1000 mA g-1 even after 300 cycles. The superior lithium-storage performances of MFe2O4 (M = Zn, Co, Ni) nanorods can be attributed to the one-dimensional (1D) nanostructure, which can shorten the diffusion paths of lithium ions and relax the strain generated during electrochemical cycling. These results indicate that this method is an effective, simple and general way to prepare good electrochemical properties of 1D spinel Fe-based binary transition metal oxides. In addition, the impact of different reaction temperatures on the electrochemical properties of MFe2O4 nanorods is also investigated.

  10. Investigations of inorganic and hybrid inorganic-organic nanostructures

    NASA Astrophysics Data System (ADS)

    Kam, Kinson Chihang

    This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are

  11. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films

    NASA Astrophysics Data System (ADS)

    Murali, Dhanya S.; Aryasomayajula, Subrahmanyam

    2018-03-01

    Among the three oxides of copper (CuO, Cu2O, and Cu4O3), Cu4O3 phase (paramelaconite is a natural, and very scarce mineral) is very difficult to synthesize. It contains copper in both + 1 and + 2 valence states, with an average composition Cu2 1+Cu2 2+O3. We have successfully synthesized Cu4O3 phase at room temperature (300 K) by reactive DC magnetron sputtering by controlling the oxygen flow rate (Murali and Subrahmanyam in J Phys D Appl Phys 49:375102, 2016). In the present communication, Cu4O3 thin films are converted to CuO phases by annealing in the air at 680 K and to Cu2O phase when annealed in argon at 720 K; these phase changes are confirmed by temperature-dependent Raman spectroscopy studies. Probably, this is the first report of the conversion of Cu4O3-CuO and Cu2O by thermal annealing. The temperature-dependent (300-200 K) electrical transport properties of Cu4O3 thin films show that the charge transport above 190 K follows Arrhenius-type behavior with activation energy of 0.14 eV. From photo-electron spectroscopy and electrical transport measurements of Cu4O3 thin films, a downward band bending is observed at the surface of the thin film, which shows its p-type semiconducting nature. The successful preparation of phase pure p-type semiconducting Cu4O3 could provide opportunities to further explore its potential applications.

  12. Synthesis and evaluation of optical and antimicrobial properties of Ag-SnO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Kumar Nair, Kishore; Kumar, Promod; Kumar, Vinod; Harris, R. A.; Kroon, R. E.; Viljoen, Bennie; Shumbula, P. M.; Mlambo, M.; Swart, H. C.

    2018-04-01

    We report on the sol-gel based room temperature synthesis of undoped SnO2 and Ag-SnO2 nanostructures. The synthesized nanostructures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and UV-visible spectroscopy. The XRD pattern confirmed that the obtained nanostructures have a tetragonally rutile structure. No extra phase changes were observed after Ag doping. UV-visible spectroscopy measurements indicated that the band gap of 3.59 eV for pure SnO2 nanostructures, decreased to 3.39 eV after doping. TEM analysis showed that no regular shape morphology existed and some rod-shaped particles were also detected in the nanostructures. The antibacterial activity of the nanostructures against E. coli was evaluated and a continuous decrease of microbial count was observed. The microbial population decreased from 6 × 105 cfu/ml to 7 × 104 cfu/ml and 5 × 104 cfu/ml on SnO2 and Ag-SnO2 treatments, respectively. Thus, the nanostructures can be used for the biorational management of E. coli for waste water treatment before discharge.

  13. In vitro and in vivo evaluation of anti-cancer activity: Shape-dependent properties of TiO2 nanostructures.

    PubMed

    Sree Latha, T; Reddy, Madhava C; Muthukonda, Shankar V; Srikanth, Vadali V S S; Lomada, Dakshayani

    2017-09-01

    Cancer is a complex and widespread disease, and it is going to be the first cause of death in the world. Chemotherapy has been used to treat cancer, but it is detrimental to immune cells and known to induce numerous side effects. Therefore it is imperative to develop new drugs for the treatment of cancer without any side effects and toxicity. TiO 2 nanomaterials are human safe, cost effective, chemically stable and have numerous biomedical applications. Spherical TiO 2 fine particles (TFP), TiO 2 nanosquares (TNS) and TiO 2 nanotubes (TNT) were developed and evaluated for anti-cancer activity in vitro and in vivo. Our data suggest that these nanostructured materials significantly inhibited proliferation of breast cancer MDAMB 231 cells in in vitro shape dependent manner. In addition, we found that TiO 2 nanostructures inhibited the migration and colony formation of breast cancer MDAMB231 cells. More importantly, we found that TNS/TNT/TFP had anti-angiogenic effect in CAM assay and TNT had comparable anti-angiogenic effect with the positive control staurosporine. Additional qRT-PCR data suggest that TiO 2 nanostructures induced the upregulation of tumor suppressor genes p53, MDA7, TRAIL and transcription factor STAT3, which suggests the probable mechanism for the anticancer activity of TiO 2 nanostructures. Finally, analysis of TEM confirms the dispersion and interaction of nanostructures in the cells. Thus these materials could be potential therapeutic targets for the treatment of cancer. Copyright © 2017. Published by Elsevier B.V.

  14. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel.

    PubMed

    Gund, Girish S; Dubal, Deepak P; Chodankar, Nilesh R; Cho, Jun Y; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D

    2015-07-24

    The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg(-1), about 2-fold of higher energy density (41.8 Wh kg(-1)) than symmetric SC and excellent mechanical flexibility. Furthermore, the "real-life" demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.

  15. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel

    PubMed Central

    Gund, Girish S.; Dubal, Deepak P.; Chodankar, Nilesh R.; Cho, Jun Y.; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D.

    2015-01-01

    The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0–1 V and 0–2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg−1, about 2-fold of higher energy density (41.8 Wh kg−1) than symmetric SC and excellent mechanical flexibility. Furthermore, the “real-life” demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC. PMID:26208144

  16. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel

    NASA Astrophysics Data System (ADS)

    Gund, Girish S.; Dubal, Deepak P.; Chodankar, Nilesh R.; Cho, Jun Y.; Gomez-Romero, Pedro; Park, Chan; Lokhande, Chandrakant D.

    2015-07-01

    The facile and economical electrochemical and successive ionic layer adsorption and reaction (SILAR) methods have been employed in order to prepare manganese oxide (MnO2) and iron oxide (Fe2O3) thin films, respectively with the fine optimized nanostructures on highly flexible stainless steel sheet. The symmetric and asymmetric flexible-solid-state supercapacitors (FSS-SCs) of nanostructured (nanosheets for MnO2 and nanoparticles for Fe2O3) electrodes with Na2SO4/Carboxymethyl cellulose (CMC) gel as a separator and electrolyte were assembled. MnO2 as positive and negative electrodes were used to fabricate symmetric SC, while the asymmetric SC was assembled by employing MnO2 as positive and Fe2O3 as negative electrode. Furthermore, the electrochemical features of symmetric and asymmetric SCs are systematically investigated. The results verify that the fabricated symmetric and asymmetric FSS-SCs present excellent reversibility (within the voltage window of 0-1 V and 0-2 V, respectively) and good cycling stability (83 and 91%, respectively for 3000 of CV cycles). Additionally, the asymmetric SC shows maximum specific capacitance of 92 Fg-1, about 2-fold of higher energy density (41.8 Wh kg-1) than symmetric SC and excellent mechanical flexibility. Furthermore, the “real-life” demonstration of fabricated SCs to the panel of SUK confirms that asymmetric SC has 2-fold higher energy density compare to symmetric SC.

  17. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  18. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO(2)(CrO(4))(IO(3))(H(2)O)], A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K, Rb, Cs), and K(2)[UO(2)(MoO(4))(IO(3))(2)].

    PubMed

    Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-10-07

    The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.

  19. Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS

    NASA Astrophysics Data System (ADS)

    Jang, Eue-Soon; Won, Jung-Hee; Kim, Young-Woon; Cheng, Zhen; Choy, Jin-Ho

    2010-08-01

    Zn based hydroxide double salts (Zn-HDS) with an interlayer spacing of 20 Å was produced by dissolving dumbbell-like ZnO crystal. The resulting Zn-HDS with a ribbon-like shape has a suitable morphology to explore the remarkably mild procedure for synthesis of ZnO nanobelts. We found that the intercalated water molecules into the Zn-HDS could play a key role in the ZnO nanobelts porosity. The nonporous ZnO nanobelts were successfully synthesized from the Zn-HDS by soft-solution process at 95 °C through mild dehydration agent as Na 2CO 3. As-synthesized ZnO nanobelts were grown along not only the [0 1 -1 0], but also the [2 -1 -1 0]. On the other hand, the porous ZnO nanobelts were obtained from the Zn-HDS by calcinations at 200 and 400 °C. In addition, flower-like ZnO multipod and hierarchical nanostructures were produced from the Zn-HDS by using of strong dehydration agent (NaOH) through hydrothermal reaction at 150 and 230 °C.

  20. Stepwise Splitting Growth and Pseudocapacitive Properties of Hierarchical Three-Dimensional Co3O4 Nanobooks

    PubMed Central

    Chen, Huilong; Lu, Shuang; Gong, Feilong; Liu, Huanzhen; Li, Feng

    2017-01-01

    Three-dimensional hierarchical Co3O4 nanobooks have been synthesized successfully on a large scale by calcining orthorhombic Co(CO3)0.5(OH)·0.11H2O precursors with identical morphologies. Based on the influence of reaction time and urea concentration on the nanostructures of the precursors, a stepwise splitting growth mechanism can be proposed to understand the formation of the 3D nanobooks. The 3D Co3O4 nanobooks exhibit excellent pseudocapacitive performances with specific capacitances of 590, 539, 476, 453, and 421 F/g at current densities of 0.5, 1, 2, 4, and 8 A/g, respectively. The devices can retain ca. 97.4% of the original specific capacitances after undergoing charge–discharge cycle tests 1000 times continuously at 4 A/g. PMID:28394297

  1. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  2. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    NASA Astrophysics Data System (ADS)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  3. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors

    PubMed Central

    Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill

    2016-01-01

    Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026

  4. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingjie; College of Medicine, Henan University, Kaifeng, Henan 475004; Cao, Jing

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu(en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O (1) has been synthesized by reaction of Sb{sub 2}O{sub 3}, Na{sub 2}WO{sub 42H{sub 2}O, CuCl{sub 22H{sub 2}O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW{sub 9}O{sub 33}]{sup 9−} subunits sandwiching a hexagonal (Cu{sub 2}Na{sub 4}) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magneticmore » measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu{sub 2}Na{sub 4}) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu{sub 2}Na{sub 4}) sandwiched tungstoantimonate [Cu(en){sub 2}(H{sub 2}O)]{sub 4}[Cu (en){sub 2}(H{sub 2}O){sub 2}][Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]·6H{sub 2}O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu{sub 2}Na{sub 4} sandwiched) tungstoantimonate [Cu{sub 2}Na{sub 4}(α-SbW{sub 9}O{sub 33}){sub 2}]{sup 10−}. • Ferromagnetic tungstoantimonate.« less

  5. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  6. Mechanochemical synthesis of nanostructured Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} solid-solution powders and their surface photovoltage responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xiaofeng; Luo Qiong; GlobalFoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406

    2012-05-15

    A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significantmore » Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.« less

  7. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth.

    PubMed

    Xu, Jing; Wang, Qiufan; Wang, Xiaowei; Xiang, Qingyi; Liang, Bo; Chen, Di; Shen, Guozhen

    2013-06-25

    We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0-1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm(3) at a power density of 13.29 W/cm(3) in aqueous electrolyte and an energy density of 1.44 mWh/cm(3) at the power density of 0.89 W/cm(3) in solid-state electrolyte, which are almost 10-fold higher than those reported in early ASC work. Moreover, they present excellent cycling performance at multirate currents and large currents after thousands of cycles. The high-performance nanostructured ASCs have significant potential applications in portable electronics and electrical vehicles.

  8. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    PubMed

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  9. Tungsten Bronze Barium Neodymium Titanate (Ba(6-3n)Nd(8+2n)Ti(18)O(54)): An Intrinsic Nanostructured Material and Its Defect Distribution.

    PubMed

    Azough, Feridoon; Cernik, Robert Joseph; Schaffer, Bernhard; Kepaptsoglou, Demie; Ramasse, Quentin Mathieu; Bigatti, Marco; Ali, Amir; MacLaren, Ian; Barthel, Juri; Molinari, Marco; Baran, Jakub Dominik; Parker, Stephen Charles; Freer, Robert

    2016-04-04

    We investigated the structure of the tungsten bronze barium neodymium titanates Ba(6-3n)Nd(8+2n)Ti(18)O(54), which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba(6-3n)Nd(8+2n)Ti(18)O(54) (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba(6-3n)Nd(8+2n)Ti(18)O(54) "perovskite" superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity.

  10. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Robles, J.; Das, R.; Glassell, M.; Phan, M. H.; Srikanth, H.

    2018-05-01

    We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (˜1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  11. Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Nagamuthu, Sadayappan; Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2016-12-01

    MnCo2O4 nanosheets and FeMn2O4 nanospheres were synthesized using a hydrothermal method. Choline chloride was used as the capping agent during the preparation of the nanoparticles. XRD patterns confirmed the spinel structure of MnCo2O4 and FeMn2O4. XPS measurements were used to determine the oxidation state of the prepared spinel metal oxides. HRTEM images revealed the formation of hexagonal nanosheets of MnCo2O4 and nanospheres of FeMn2O4. Electrochemical measurements were made for both positive and negative electrodes using three electrode systems. MnCo2O4 Exhibits 282C g-1 and FeMn2O4 yields 110C g-1 at a specific current of 1 A g-1. Hybrid supercapacitor device was fabricated using MnCo2O4 as the positive and FeMn2O4 as the negative electrode material. The hybrid supercapacitor device was delivered a maximum power of 37.57 kW kg-1.

  12. Solvent-controlled preparation and photocatalytic properties of nanostructured TiO{sub 2} thin films with different morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Gao, Yinyin; Wang, Peifang

    2014-01-01

    Graphical abstract: Low-temperature growth of nanostructured TiO{sub 2} thin films was presented by a solvent-controlled method. Nanoparticle structured films in anatase phase have been successfully fabricated with some adjustment. The effects of the solvent were investigated and the formation mechanism was proposed. - Highlights: • Nanostructured TiO{sub 2} thin films with different morphologies were obtained at low temperature. • The effects of the solvent on the morphologies of the products were investigated. • The effects of the solvent on the phtocatalytic activity were investigated. - Abstract: A low-temperature growth method of nanostructured TiO{sub 2} thin films with different morphologies wasmore » reported. Rod-like, grass-like and nanosheet structured films have been successfully fabricated just by adjusting the ratio of different solvents. The effects of the solvent on the morphologies of the TiO{sub 2} nanostructures were investigated. The formation mechanism of different morphologies was proposed based on the experiment results. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The photocatalytic activity of as-prepared samples for the degradation of methylene blue (MB) in water was evaluated under UV illumination. Results showed that the solvents exhibited important effect on the morphologies and photocatalytic activity of as-prepared nanostructured titania films.« less

  13. Nickel antimony oxide (NiSb2O6): A fascinating nanostructured material for gas sensing application

    NASA Astrophysics Data System (ADS)

    Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam

    2016-02-01

    Fabrication of nanocrystalline NiSb2O6 thin films via sol-gel spin coating method towards the development of liquefied petroleum gas (LPG) sensor operable at room temperature (25 °C) is being reported. Nanostructural, surface morphological and optical properties of trirutile-type NiSb2O6 have been investigated in order to explore the parameters of interest. The crystallite size has been found to be 19 nm. A detailed sensing performance (sensitivity, sensor response, response and recovery times, reproducibility and long term stability) of NiSb2O6 nanostructures grown on alumina substrate has been investigated.

  14. Fabrication of nanostructured electrodes and interfaces using combustion CVD

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well

  15. TiO2 nanofibers resembling 'yellow bristle grass' in morphology by a soft chemical transformation.

    PubMed

    Nandan, Sandeep; Deepak, T G; Nair, Shantikumar V; Nair, A Sreekumaran

    2015-05-28

    We synthesized a uniquely shaped one-dimensional (1-D) TiO2 nanostructure having the morphology of yellow bristle grass with high surface area by the titanate route under mild reaction conditions. The electrospun TiO2-SiO2 composite nanofibers upon treatment with concentrated NaOH at 80 °C under ambient pressure for 24 h resulted in sodium titanate (Na2Ti3O7) nanostructures. The Na2Ti3O7 nanostructures have an overall 1-D fibrous morphology but the highly porous fiber surfaces were decorated with layered thorn-like features (a morphology resembling that of yellow bristle grass) resulting in high surface area (113 m(2) g(-1)) and porosity. The Na2Ti3O7 nanostructures were converted into TiO2 nanostructures of the same morphology by acidification (0.1 N HCl) followed by low temperature sintering (110 °C) processes. Dye-sensitized solar cells (DSCs) constructed out of the material (cells of area 0.20 cm(2) and thickness 12 μm) showed a power conversion efficiency (η) of 8.02% in comparison with commercial P-25 TiO2 (η = 6.1%).

  16. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure

    NASA Astrophysics Data System (ADS)

    Senapati, Samarpita; Srivastava, Suneel K.; Singh, Shiv B.

    2012-09-01

    centered cubic Ni and hexagonal wurtzite ZnO without any traces of impurity. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nickel nanoparticles under solvothermal conditions. These nickel nanoparticles, when subjected to reflux, formed the hexagonal zinc oxide coated nickel nanostructure. Fourier transform infrared (FTIR) spectra, photoluminescence (PL) and Raman studies also confirmed the presence of zinc oxide in the hybrid nanostructure. The growth mechanism for the development of the hexagonal zinc oxide coated nickel (Ni/ZnO) nanostructure has also been proposed. The appearance of the hysteresis loop, in the as-prepared Ni/ZnO hybrid nanostructure, demonstrated its ferromagnetic character at room temperature. The hexagonal Ni/ZnO nanostructure also acts as an efficient photocatalyst in the degradation of methylene blue under ultraviolet light irradiation. It is observed that the catalytic efficiency of the hybrid nanocatalyst is better compared to pure zinc oxide. Most importantly, the Ni/ZnO catalyst could also be easily separated, simply by applying an external magnetic field, and reused. Electronic supplementary information (ESI) available: Fig. S1 Ni/ZnO hybrid nanostructure prepared using (a) 0.195 and (b) 0.25 M [Zn2+] at 90 °C Fig. S2 FTIR spectra of nickel nanoparticles prepared at 140 °C (a), and Ni/ZnO hybrid nanostructure prepared using (b) 0.063, (c) 0.125, (d) 0.195 and (e) 0.25 M [Zn2+]; Fig. S3 Raman spectra of Ni/ZnO nanostructure prepared using (a) 0.063, (b) 0.125, (c) 0.195 and (d) 0.25 M [Zn2+]; Fig. S4 Room temperature PL spectra of (a) ZnO and (b) Ni/ZnO nanostructure prepared using 0.25 M [Zn2+]. See DOI: 10.1039/c2nr31831h

  18. Self-catalytic crystal growth, formation mechanism, and optical properties of indium tin oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Zhong, Hua

    2013-08-01

    In-Sn-O nanostructures with rectangular cross-sectional rod-like, sword-like, and bowling pin-like morphologies were successfully synthesized through self-catalytic growth. Mixed metallic In and Sn powders were used as source materials, and no catalyst layer was pre-coated on the substrates. The distance between the substrate and the source materials affected the size of the Sn-rich alloy particles during crystal growth in a quartz tube. This caused In-Sn-O nanostructures with various morphologies to form. An X-ray photoelectron spectroscope and a transmittance electron microscope with an energy-dispersive X-ray spectrometer were used to investigate the elemental binding states and compositions of the as-synthesized nanostructures. The Sn doping and oxygen vacancies in the In2O3 crystals corresponded to the blue-green and yellow-orange emission bands of the nanostructures, respectively.

  19. Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants.

    PubMed

    Zhang, Hongfeng; He, Xiu; Zhao, Weiwei; Peng, Yu; Sun, Donglan; Li, Hao; Wang, Xiaocong

    2017-04-01

    Fe 3 O 4 /TiO 2 magnetic mesoporous composites were synthesized through a sol-gel method with tetra-n-butyl titanate as precursor and surfactant P123 as template. The as-prepared Fe 3 O 4 /TiO 2 composites were characterized by X-ray diffraction, diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherm and pore size distribution. The as-synthesized products were applied as photocatalysis for the degradation of Acid Black ATT and tannery wastewater under UV lamp irradiation. Fe 3 O 4 /TiO 2 -8 composites containing Fe 3 O 4 of 8 wt% were selected as model catalysts. The optimal catalyst dosage was 3 g/L in this photocalytic system. The magnetic Fe 3 O 4 /TiO 2 composites possessed good photocatalytic stability and durability. This approach may provide a platform to prepare a magnetic composite to optimize the catalytic ability.

  20. Dielectric Relaxation of CaCu3Ti4O12 synthesized from a pyrolysis method

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Mei, W. N.; Smith, R. W.; Hardy, J. R.

    2006-03-01

    Giant dielectric constant material CaCu3Ti4O12 has been synthesized by using a pyrolysis method. A stable solution was made by dissolving calcium nitrate, copper nitrate, and titanium isopropoxide in 2-methoxyethanol; the solution was then heated at 500 and 700 ^oC for 2 hours to obtain a pure phase of CaCu3Ti4O12. The frequency and temperature dependences of dielectric permittivity were examined in the ranges of 10-1˜10^6 Hz and -150˜200 ^oC. We found that the dielectric properties of the sample were the same as those made from solid state reaction. Specifically, there is a Debye-like relaxation at low temperature and its giant dielectric constant about 11000 is independent of the temperature and frequency over a wide range.

  1. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor

    NASA Astrophysics Data System (ADS)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H. R.; Zamani Zeinali, H.

    2016-05-01

    Pure gadolinium oxysulfide phosphor (Gd2O2S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd2O2S:Pr3+) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd2O2S:Pr3+ scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd2O2S:Pr3+ scintillator were studied. Luminescence spectra of Gd2O2S:Pr3+ under 320 nm UV excitation show a green emission at near 511 nm corresponding to the 3P0-3H4 of Pr ions. After scintillation properties of synthesized Gd2O2S:Pr3+ scintillator investigated, Gd2O2S:Pr3+ scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd2O2S:Pr3+ scintillator could be used for radiography applications in which good spatial resolution is needed.

  2. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.

    PubMed

    Regulacio, Michelle D; Han, Ming-Yong

    2016-03-15

    Semiconductor nanostructures that can effectively serve as light-responsive photocatalysts have been of considerable interest over the past decade. This is because their use in light-induced photocatalysis can potentially address some of the most serious environmental and energy-related concerns facing the world today. One important application is photocatalytic hydrogen production from water under solar radiation. It is regarded as a clean and sustainable approach to hydrogen fuel generation because it makes use of renewable resources (i.e., sunlight and water), does not involve fossil fuel consumption, and does not result in environmental pollution or greenhouse gas emission. Another notable application is the photocatalytic degradation of nonbiodegradable dyes, which offers an effective way of ridding industrial wastewater of toxic organic pollutants prior to its release into the environment. Metal oxide semiconductors (e.g., TiO2) are the most widely studied class of semiconductor photocatalysts. Their nanostructured forms have been reported to efficiently generate hydrogen from water and effectively degrade organic dyes under ultraviolet-light irradiation. However, the wide band gap characteristic of most metal oxides precludes absorption of light in the visible region, which makes up a considerable portion of the solar radiation spectrum. Meanwhile, nanostructures of cadmium chalcogenide semiconductors (e.g., CdS), with their relatively narrow band gap that can be easily adjusted through size control and alloying, have displayed immense potential as visible-light-responsive photocatalysts, but the intrinsic toxicity of cadmium poses potential risks to human health and the environment. In developing new nanostructured semiconductors for light-driven photocatalysis, it is important to choose a semiconducting material that has a high absorption coefficient over a wide spectral range and is safe for use in real-world settings. Among the most promising candidates

  3. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  4. Physical properties of nanostructured CeO2 thin films grown by SILAR method

    NASA Astrophysics Data System (ADS)

    Khan, Ishaque Ahmed; Belkhedkar, M. R.; Salodkar, R. V.; Ubale, A. U.

    2018-05-01

    Nanostructured CeO2 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrate using (CeNO3)3 6H2O and NaOH as cationic and anionic precursors respectively. The structural and morphological characterizations were carried out by means of X-ray diffraction, FTIR, FESEM and EDX studies. The highly resistive (1010 Ω cm) semiconducting CeO2 film exhibits 2.95 eV optical band gap.

  5. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.

    PubMed

    Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong

    2016-09-14

    Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.

  6. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Qi; Guo, Shao-Bo; Guo, Xiao-Hua; Ge, Hong-Guang

    2015-07-01

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol-gel TiO2, core-shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core-shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol-gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F- ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6-8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  7. Comparative dielectric studies of nanostructured BaTiO{sub 3}, CaCu{sub 3}Ti{sub 4}O{sub 12} and 0.5BaTiO{sub 3}⋅ 0.5CaCu{sub 3}Ti{sub 4}O{sub 12} nano-composites synthesized by modified sol–gel and solid state methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Laxman; Rai, Uma Shanker; Mandal, Kam Deo

    2014-10-15

    BaTiO{sub 3} (BTO), CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and 0.5BaTiO{sub 3}·0.5CaCu{sub 3}Ti{sub 4}O{sub 12} (BTO–CCTO), as a new nano-composite ceramic, were successfully designed and fabricated by a semi-wet gel route and a modified solid state method. The dielectric properties of the BTO–CCTO ceramic were compared to those of the BTO and CCTO ceramics at lower sintering temperatures and durations. The X-ray diffraction analysis revealed that the BTO and CCTO ceramics form a single crystalline phase and the average crystalline sizes calculated from X-ray diffraction data were in the range of 40–65 nm. The particle sizes of the BTO, CCTO, andmore » BTO–CCTO ceramics obtained from transmission electron microscopy images were in the ranges of 40–65 nm, 80–110 nm, and 70–95 nm, respectively. The phase composition and microstructure were studied by X-ray diffraction and scanning electron microscopy. The energy dispersive X-ray results demonstrated the purity and stoichiometry of the BTO–CCTO nano-composite. The grain sizes of the BTO, CCTO and BTO–CCTO ceramics were found to be in the ranges of 500 nm–1 μm, 4–24 μm, and 250 nm–4 μm, respectively. The AC conductivity as a function of frequency confirmed the semiconducting nature of all of the ceramics and obeyed the Jonscher's power law. The impedance spectrum measurement result showed that the CCTO ceramic possessed an exceptional grain boundary resistance, which supports the internal barrier layer capacitance (IBLC) mechanism present in this ceramic and is responsible for the high ε{sub r} values. - Highlights: • Nanostructured BaTiO{sub 3}, CaCu{sub 3}Ti{sub 4}O{sub 12}, and 0.5BaTiO{sub 3}⋅ 0.5CaCu{sub 3}Ti{sub 4}O{sub 12} have been synthesized. • XRD and TEM analysis confirmed the formation of nanoparticles, 40–65 and 50–90 nm. • Impedance analysis shows high grain-boundary resistance present in CCTO ceramic. • AC conductivity as a function of frequency confirms the

  8. Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian

    2018-05-01

    Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.

  9. Investigation of Ag-TiO2 nanostructures photocatalytic properties prepared by modified dip coating method

    NASA Astrophysics Data System (ADS)

    AlArfaj, Esam

    2016-05-01

    In this article, titanium dioxide and silver nanostructures were deposited on glass substrates using modified sol-gel methods and dip-coating technique. The films were characterised chemically and physically using different techniques (TLC, UV-Vis and XRD) and tested for environmental applications regarding degradation of aromatic hydrocarbons. The photocatalytic activity of the TiO2 nanostructures is tested with different small concentrations of phenol in water and reaction mechanisms discussed. Considerable enhancement is observed in the photodegradation activity of Ag-modified (3 wt.%) TiO2 compared to unmodified TiO2 nanostructures for phenol concentrations within the pseudo-first-order Langmuir-Hinshelwood (LH) model for reaction kinetics. The pseudo-first-order global degradation rate constant increased from <0.005 min-1 for TiO2 to 0.013 min-1 for 3 mol% Ag-modified TiO2. The enhancement is attributed to the incorporation of Ag which promotes the generation of reactive oxygen species and increases the carrier recombination life-time. In addition, Ag has been observed to extend the absorption to the visible region by its surface plasmon resonances and to suppress the anatase-rutile phase transformation. Moreover, TiO2 grain size prepared was found to be 10 nm which maximises the active surface area. For phenol initial concentrations as low as 0.0002 M, saturation trend in the degradation process occurred at 0.00014 M and the reaction rate can be fitted with half-order LH kinetics.

  10. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  11. In-situ preparation of hierarchical flower-like TiO2/carbon nanostructures as fillers for polymer composites with enhanced dielectric properties

    PubMed Central

    Xu, Nuoxin; Zhang, Qilong; Yang, Hui; Xia, Yuting; Jiang, Yongchang

    2017-01-01

    Novel three-dimensional hierarchical flower-like TiO2/carbon (TiO2/C) nanostructures were in-situ synthesized via a solvothermal method involving calcination of organic precursor under inert atmosphere. The composite films comprised of P (VDF-HFP) and as-prepared hierarchical flower-like TiO2/C were fabricated by a solution casting and hot-pressing approach. The results reveal that loading the fillers with a small amount of carbon is an effective way to improve the dielectric constant and suppress the dielectric loss. In addition, TiO2/C particles with higher carbon contents exhibit superiority in promoting the dielectric constants of composites when compared with their noncarbon counterparts. For instance, the highest dielectric constant (330.6) of the TiO2/C composites is 10 times over that of noncarbon-TiO2-filled ones at the same filler volume fraction, and 32 times over that of pristine P (VDF-HFP). The enhancement in the dielectric constant can be attributed to the formation of a large network, which is composed of local micro-capacitors with carbon particles as electrodes and TiO2 as the dielectric in between. PMID:28262766

  12. Highly Porous Thermoelectric Nanocomposites with LowThermalConductivityand High Figure of Merit from Large-Scale Solution-Synthesized Bi2Te2.5Se0.5HollowNanostructures

    DOE PAGES

    Xu, Biao; Ames Lab., Ames, IA; Feng, Tianli L.; ...

    2017-01-12

    In order to enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). We report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi 2Te 2.5Se 0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m -1 K -1) and the highest z T (1.18) among state-of-the-art Bi 2Te 3-xSe x materilas. Additional benefits ofmore » the unprecedented low relative density (68–77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields.« less

  13. Encapsulation of superparamagnetic Fe 3 O 4 @SiO 2 core/shell nanoparticles in MnO 2 microflowers with high surface areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu-Gang; Truong, Tu T.; Liu, Yu-Zi

    2015-02-01

    Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation. (C) 2014 Yu-Gangmore » Sun.« less

  14. Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haiqing; Moronta, Dominic; Li, Luyao

    In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as

  15. Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

    DOE PAGES

    Liu, Haiqing; Moronta, Dominic; Li, Luyao; ...

    2018-03-28

    In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as

  16. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein

    2016-04-01

    We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.

  17. Coherent 3D nanostructure of γ-Al{sub 2}O{sub 3}: Simulation of whole X-ray powder diffraction pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090

    2017-02-15

    The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scalemore » and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.« less

  18. TiO{sub 2} flower-like nanostructures decorated with CdS/PbS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenczek-Zajac, Anita, E-mail: anita.trenczek-zajac@agh.edu.pl; Kusior, Anna; Lacz, Agnieszka

    Highlights: • TiO{sub 2} flower-like nanostructures were prepared with the use of Ti foil and 30% H{sub 2}O{sub 2}. • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO{sub 2} with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO{sub 2} were prepared by immersing Ti foil in 30% H{sub 2}O{sub 2} at 80 °C for times varying from 15 to 240 min. Upon annealingmore » at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO{sub 2} nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO{sub 2} nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS.« less

  19. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Zou, Ping; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Chen, Gang; Kong, Xiangwang; Yang, Jinghai

    2014-12-01

    The Fe3O4@SiO2 core-shell nanoparticles (NPs) had been successfully fabricated via direct decomposition of tetraethyl orthosilicate (TEOS) in solution under the presence of as-synthesized Fe3O4 NPs prepared by chemical coprecipitation method. The structure and magnetic properties of Fe3O4@SiO2 NPs were characterized and the result indicated that Fe3O4@SiO2 NPs are about 12 nm in size with paramagnetic property. The possible growth and magnetic mechanism was discussed in detail.

  20. Microwave assisted combustion synthesis of nanocrystalline CoFe2O4 for LPG sensing

    NASA Astrophysics Data System (ADS)

    Chaudhari, Prashant; Acharya, S. A.; Darunkar, S. S.; Gaikwad, V. M.

    2015-08-01

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe2O4. The process takes only a few minutes to obtain as-synthesized CoFe2O4. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe2O4 prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe2O4 thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  1. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures.

    PubMed

    Baloach, Qurrat-Ul-Ain; Tahira, Aneela; Mallah, Arfana Begum; Abro, Muhammad Ishaq; Uddin, Siraj; Willander, Magnus; Ibupoto, Zafar Hussain

    2016-11-14

    The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification.

  2. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures

    PubMed Central

    Baloach, Qurrat-ul-Ain; Tahira, Aneela; Mallah, Arfana Begum; Abro, Muhammad Ishaq; Uddin, Siraj; Willander, Magnus; Ibupoto, Zafar Hussain

    2016-01-01

    The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification. PMID:27854253

  3. Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries

    PubMed Central

    Sathiya, Mariyappan; Prakash, Annigere S.; Ramesha, Kannadka; Shukla, Ashok K.

    2009-01-01

    An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2) is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2 cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries.

  4. Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.

    2018-02-01

    In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (< 95 °C). The samples were doped with Pd (0.17 at% Pd) and functionalized with PdO nanoparticles (NPs) using the PdCl2 aqueous solution and subsequent thermal annealing at 650 °C for 30 min. The morphological, micro-Raman and optical properties of Pd modified samples were investigated in detail and were demonstrated to have high crystallinity. Gas sensing studies unveiled that compared to pure ZnO films, the Pd-doped ZnO (ZnO:Pd) nanostructured films showed a decrease in ethanol vapor response and slight increase in H2 response with low selectivity. However, the PdO-functionalized samples showed excellent H2 gas sensing properties with possibility to detect H2 gas even at room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.

  5. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    PubMed

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  6. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  7. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    PubMed Central

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  8. Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen

    2018-05-01

    We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.

  9. Intense ultraviolet emission from needle-like WO3 nanostructures synthesized by noncatalytic thermal evaporation

    PubMed Central

    2011-01-01

    Photoluminescence measurements showed that needle-like tungsten oxide nanostructures synthesized at 590°C to 750°C by the thermal evaporation of WO3 nanopowders without the use of a catalyst had an intense near-ultraviolet (NUV) emission band that was different from that of the tungsten oxide nanostructures obtained in other temperature ranges. The intense NUV emission might be due to the localized states associated with oxygen vacancies and surface states. PMID:21752275

  10. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.

    PubMed

    Zheng, Jinmin; Dong, Yalei; Wang, Weifeng; Ma, Yanhua; Hu, Jing; Chen, Xiaojiao; Chen, Xingguo

    2013-06-07

    In this work, a facile approach was successfully developed for in situ catalyzing Au nanoparticles loaded on Fe3O4@SiO2 magnetic nanospheres via Sn(2+) linkage and reduction. After the Fe3O4@SiO2 MNPs were first prepared via a sol-gel process, only one step was needed to synthesize the Fe3O4@SiO2-Au magnetic nanocomposites (Fe3O4@SiO2-Au MNCs), so that both the synthesis step and the reaction cost were remarkably decreased. Significantly, the as-synthesized Fe3O4@SiO2-Au MNCs showed high performance in the catalytic reduction of 4-nitrophenol to 4-aminophenol and could be reused for several cycles with convenient magnetic separability. This approach provided a useful platform based on Fe3O4@SiO2 MNPs for the fabrication of Au or other noble metal magnetic nanocatalysts, which would be very useful in various catalytic reductions.

  11. Optimized nanostructured TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Topcu, Selda; Jodhani, Gagan; Gouma, Pelagia

    2016-07-01

    Titania is the most widely studied photocatalyst. In it’s mixed-phase configuration (anatase-rutile form) -as manifested in the commercially available P25 Degussa material- titania was previously found to exhibit the best photocatalytic properties reported for the pure system. A great deal of published research by various workers in the field have not fully explained the underlying mechanism for the observed behavior of mixed-phase titania photocatalysts. One of the prevalent hypothesis in the literature that is tested in this work involves the presence of small, active clusters of interwoven anatase and rutile crystallites or “catalytic “hot-spots””. Therefore, non-woven nanofibrous mats of titania were produced and upon calcination the mats consisted of nanostructured fibers with different anatase-rutile ratios. By assessing the photocatalytic and photoelectrochemical properties of these samples the optimized photocatalyst was determined. This consisted of TiO2 nanostructures annealed at 500˚C with an anatase /rutile content of 90/10. Since the performance of this material exceeded that of P25 complete structural characterization was employed to understand the catalytic mechanism involved. It was determined that the dominant factors controlling the photocatalytic behavior of the titania system are the relative particle size of the different phases of titania and the growth of rutile laths on anatase grains which allow for rapid electron transfer between the two phases. This explains how to optimize the response of the pure system.

  12. Influence of Ga vacancies, Mn and O impurities on the ferromagnetic properties of GaN micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Escudero, R.; Silva, R.; Herrera, M.

    2018-04-01

    We present a study of the influence of gallium vacancy (VGa) point defects on the ferromagnetic properties of GaN:Mn and GaN:Mn,O micro- and nanostructures. Results demonstrate that the generation of these point defects enhances the ferromagnetic signal of GaN:Mn microstructures, while incorporation of oxygen as an impurity inhibits this property. XPS measurements revealed that Mn impurities in ferromagnetic GaN:Mn samples mainly exhibit a valence state of 2+. Cathodoluminescence (CL) spectra from Mn-doped GaN samples displayed emissions centered at about 1.97 eV, attributed to transitions between the 4T1-6A1 states of the Mn2+ d orbitals, and emissions centered at 2.45 and 2.9 eV, associated with the presence of VGa. CL measurements also revealed a blue shift of the GaN band-edge emission generated by the expansion of the wurtzite lattice due to Mn incorporation, which was confirmed by XRD measurements. These latter measurements also revealed an amorphization of GaN:Mn due to the incorporation of oxygen as impurities. The GaN:Mn samples were synthesized by thermal evaporation of GaN and MnCO3 powders onto Ni0.8Cr0.2/Si(100) in a horizontal furnace operated at low vacuum. The residual air inside the system was used as a source of oxygen during the synthesis of Mn and O co-doped GaN nanostructures. Mn and O impurities were incorporated into the nanostructures at different concentrations by varying the growth temperature. Energy Dispersive Spectroscopy, XRD, and XPS measurements confirmed that the obtained samples predominantly consisted of GaN.

  13. Method and apparatus for synthesizing HMX and N/sub 2/O/sub 5/. [Patent application; cyclotetramethylenetetraamine

    DOEpatents

    McGuire, R.R.; Coon, C.L.; Harrar, J.E.; Pearson, R.K.

    1982-07-20

    A method and apparatus for electrochemically synthesizing N/sub 2/O/sub 5/ includes oxidizing a solution of N/sub 2/O/sub 4//HNO/sub 3/ at an anode, while maintaining a controlled potential between the N/sub 2/O/sub 4//HNO/sub 3/ solution and the anode. A potential of about 1.35 to 2.0V vs. SCE is preferred, while a potential of about 1.80V vs. SCE is most preferred. Thereafter, the N/sub 2/O/sub 5/ is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  14. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The ECmore » redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.« less

  15. Composite WO 3/TiO 2 nanostructures for high electrochromic activity

    DOE PAGES

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; ...

    2015-01-06

    A composite material consisting of TiO 2 nanotubes (NT) with WO 3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO 2 made from commercially available TiO 2 nanoparticles creates an interface for the TiO 2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WOmore » 3 concentration on the EC performance were studied. As a result, the composite WO 3/TiO 2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO 3 and TiO 2 materials« less

  16. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  17. Facile Synthesis of Three-Dimensional Sandwiched MnO2@GCs@MnO2 Hybrid Nanostructured Electrode for Electrochemical Capacitors.

    PubMed

    Jian, Xian; Liu, Shiyu; Gao, Yuqi; Zhang, Wanli; He, Weidong; Mahmood, Asif; M Subramaniyam, Chandrasekar; Wang, Xiaolin; Mahmood, Nasir; Dou, Shi Xue

    2017-06-07

    Designable control over the morphology and structure of active materials is highly desirable for achieving high-performance devices. Here, we develop a facile microwave-assisted synthesis to decorate MnO 2 nanocrystals on three-dimensional (3D) graphite-like capsules (GCs) to obtain sandwich nanostructures (3D MnO 2 @GCs@MnO 2 ) as electrode materials for electrochemical capacitors (ECs). A templated growth of the 3D GCs was carried out via catalytic chemical vapor deposition and MnO 2 was decorated on the exterior and interior surfaces of the GC walls through microwave irradiation to build an engineered architecture with robust structural and morphological stability. The unique sandwiched architecture has a large interfacial surface area, and allows for rapid electrolyte diffusion through its hollow/open framework and fast electronic motion via the carbon backbone. Furthermore, the tough and rigid nature of GCs provides the necessary structural stability, and the strong synergy between MnO 2 and GCs leads to high electrochemical activity in both neutral (265.1 F/g at 0.5 A/g) and alkaline (390 F/g at 0.5 A/g) electrolytes. The developed hybrid exhibits stable capacitance up to 6000 cycles in 1 M Na 2 SO 4 . The hybrid is a potential candidate for future ECs and the present study opens up an effective avenue to design hybrid materials for various applications.

  18. Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate

    PubMed Central

    2013-01-01

    Background A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation. PMID:23601826

  19. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.

    PubMed

    Lucky, R A; Charpentier, P A

    2009-05-13

    In this study the thermal behavior of bimetallic ZrO(2)-TiO(2) (10/90 mol/mol) nanotubes are discussed which were synthesized via a sol-gel process in supercritical carbon dioxide (scCO(2)). The effects of calcination temperature on the morphology, phase structure, mean crystallite size, specific surface area and pore volume of the nanotubes were investigated by using a variety of physiochemical techniques. We report that SEM and TEM images showed that the nanotubular structure was preserved at up to 800 degrees C calcination temperature. When exposed to higher temperatures (900-1000 degrees C) the ZrO(2)-TiO(2) tubes deformed and the crystallites fused together, forming larger crystallites, and a bimetallic ZrTiO(4) species was detected. These results were further examined using TGA, FTIR, XRD and HRTEM analysis. The BET textural properties demonstrated that the presence of a small amount of Zr in the TiO(2) matrix inhibited the grain growth, stabilized the anatase phase and increased the thermal stability.

  20. Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large-Scale Solution-Synthesized Bi2 Te2.5 Se0.5 Hollow Nanostructures.

    PubMed

    Xu, Biao; Feng, Tianli; Agne, Matthias T; Zhou, Lin; Ruan, Xiulin; Snyder, G Jeffery; Wu, Yue

    2017-03-20

    To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi 2 Te 2.5 Se 0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0.48 W m -1  K -1 ) and the highest z T (1.18) among state-of-the-art Bi 2 Te 3-x Se x materilas. Additional benefits of the unprecedented low relative density (68-77 %) are the large demand reduction of raw materials and the improved portability. This method can be adopted to fabricate other porous phase-transition and thermoelectric chalcogenide materials and will pave the way for the implementation of hollow nanostructures in other fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.

    PubMed

    Yang, Meicheng; Gao, Lipeng; Liu, Kai; Luo, Chunhua; Wang, Yiting; Yu, Lei; Peng, Hui; Zhang, Wen

    2015-01-01

    Core/shell/shell structured Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles were successfully synthesized. Their properties as a new type of T1-T2 dual model contrast agent for magnetic resonance imaging were investigated. Due to the introduce of a separating SiO2 layer, the magnetic coupling between Gd2O(CO3)2 and Fe3O4 could be modulated by the thickness of SiO2 layer and produce appropriate T1 and T2 signal. Additionally, the existence of Gd(3+) enhances the transverse relaxivity of Fe3O4 possibly because of the magnetic coupling between Gd(3+) and Fe3O4. The Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles exhibit good biocompatibility, showing great potential for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Complex and oriented ZnO nanostructures.

    PubMed

    Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  3. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  4. Bottom-up multiferroic nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang

    development of novel memory or logic devices through self assembly techniques. It also demonstrates a universal two-phase hard template application. Last, solid-state self assembly had been used recently to form pseudoperiodic chessboard-like nanoscale morphologies in a series of chemically homogeneous complex oxide systems. We improved on this approach by synthesizing a spontaneously phase separated nanolamellar BaTiO3-CoFe2O4 bi-crystal. The superlattice is magnetoelectric with a frequency dependent coupling. The BaTiO3 component is a ferroelectric relaxor with a Vogel-Fulcher temperature of 311 K. Since the material can be produced by standard ceramic processing methods, the discovery represents great potential for magnetoelectric devices.

  5. Antimicrobial activity of ZnO-TiO2 nanomaterials synthesized from three different precursors of ZnO: influence of ZnO/TiO2 weight ratio.

    PubMed

    Daou, Ikram; Moukrad, Najia; Zegaoui, Omar; Rhazi Filali, Fouzia

    2018-03-01

    In this study, ZnO-TiO 2 nanoparticles were synthesized from three different precursors for ZnO (zinc acetate di-hydrate, zinc nitrate hexahydrate and zinc sulfate heptahydrate) and titanium (IV) isopropoxide for TiO 2 . The prepared nanomaterials were calcined at 500 °C for 3 h and characterized by various physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (TEM-EDS). The obtained results showed that the crystalline structure, size and morphology of the ZnO-TiO 2 nanoparticles are strongly influenced by the nature of the precursor of ZnO, as well as the ZnO/TiO 2 weight ratio. The antibacterial and antifungal activities of the synthesized nanomaterials were evaluated, in the dark, against five multi-resistant of Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella Paratyphi A) bacteria and a fungus (Candida albicans), which are pathogenic for humans. The obtained results showed that pure TiO 2 anatase is inactive against the tested strains, while the addition of ZnO to TiO 2 improves noticeably the effectiveness of TiO 2 nanoparticles, depending on the nature of the precursor of ZnO and the ZnO/TiO 2 weight ratio.

  6. Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation

    NASA Astrophysics Data System (ADS)

    Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud

    2017-08-01

    Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.

  7. Effect of Ga incorporation on morphology and defect structures evolution in VLS grown 1D In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Ramos-Ramón, Jesús Alberto; Pal, Umapada; Cremades, Ana; Maestre, David

    2018-05-01

    Fabrication of 1D metal oxide nanostructures of controlled morphology and defect structure is of immense importance for their application in optoelectronics. While the morphology of these nanostructures depends primarily on growth parameters utilized in physical deposition processes, incorporation of foreign elements or dopants not only affects their morphology, but also affects their crystallinity and defect structure, which are the most important parameters for their device applications. Herein we report on the growth of highly crystalline 1D In2O3 nanostructures through vapor-liquid-solid process at relatively low temperature, and the effect of Ga incorporation on their morphology and defect structures. Through electron microscopy, Raman spectroscopy and cathodoluminescence spectroscopy techniques, we demonstrate that incorporation of Ga in In2O3 nanostructures not only strongly affects their morphology, but also generates new defect levels in the band gap of In2O3, shifting the overall emission of the nanostructures towards visible spectral range.

  8. Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Khanna, R.; Donn, B.

    1991-01-01

    Infrared spectra of H2O + CO2 and H2O + CO ices before and after proton irradiation showed that a major reaction in both mixtures was the interconversion of CO2 yields CO. Radiation synthesized organic compounds such as carbonic acid were identified in the H2O + CO2 ice. Different chemical pathways dominate in the H2O + CO ice in which formaldehyde, methanol, ethanol, and methane were identified. Sublimed material was also analyzed using a mass spectrometer. Implications of these results are discussed in reference to comets.

  9. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-11-01

    Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.

  10. The effect of calcination temperature on the performance of Co3O4-Bi2O3 as a heterogeneous catalyst of peroxymonosulfate

    NASA Astrophysics Data System (ADS)

    Zhang, Guangshan; Hu, Limin; Wang, Peng; Yuan, Yixing

    2017-11-01

    In this work, a time-saving microwave-assisted method for synthesis of Co3O4-Bi2O3 was reported. The synthesized Co3O4-Bi2O3 samples were characterized with different techniques to probe their crystalline structures and morphologies. The catalytic performances of synthesized Co3O4-Bi2O3 as peroxymonosulfate activator were evaluated by the degradation of bisphenol A. The effect of calcination temperature on Co3O4-Bi2O3 products was explored and the result showed that the sample calcined at 400 °C possessing superior catalytic activity.

  11. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar

    2017-06-01

    Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

  12. Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2.

    PubMed

    Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S

    2008-08-01

    Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail.

  13. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    PubMed

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nanostructured ZnO films for potential use in LPG gas sensors

    NASA Astrophysics Data System (ADS)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  15. Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong

    2018-05-01

    A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.

  16. Tailoring the nickel nanoparticles anchored on the surface of Fe3O4@SiO2 spheres for nanocatalysis.

    PubMed

    Ding, Lei; Zhang, Min; Zhang, Yanwei; Yang, Jinbo; Zheng, Jing; Hayat, Tasawar; Alharbi, Njud S; Xu, Jingli

    2017-08-25

    Herein, we report an efficient and universal strategy for synthesizing a unique triple-shell structured Fe 3 O 4 @SiO 2 @C-Ni hybrid composite. Firstly, the Fe 3 O 4 cores were synthesized by hydrothermal reaction, and sequentially coated with SiO 2 and a thin layer of nickel-ion-doped resin-formaldehyde (RF-Ni 2+ ) using an extended Stöber method. This was followed by carbonization to produce the Fe 3 O 4 @SiO 2 @C-Ni nanocomposites with metallic nickel nanoparticles embedded in an RF-derived thin graphic carbon layer. Interestingly, the thin SiO 2 spacer layer between RF-Ni 2+ and Fe 3 O 4 plays a critical role on adjusting the size and density of the nickel nanoparticles on the surface of Fe 3 O 4 @SiO 2 nanospheres. The detailed tailoring mechanism is explicitly discussed, and it is shown that the iron oxide core can react with the nickel nanoparticles without the SiO 2 spacer layer, and the size and density of the nickel nanoparticles can be effectively controlled when the SiO 2 layer exits. The multifunctional composites exhibit a significantly enhanced catalytic performance in the reduction of 4-nitrophenol (4-NP).

  17. Infrared extinction and microwave absorption properties of hybrid Fe3O4@SiO2@Ag nanospheres synthesized via a facile seed-mediated growth route.

    PubMed

    Chen, Yongpeng; Li, Shichuan; Wei, Xuebin; Tang, Runze; Zhou, Zunning

    2018-06-21

    Fe3O4@SiO2@Ag ternary hybrid nanoparticles were synthesized via a facile seed-mediated growth route. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the as-prepared product. The results indicated that the nanoparticles exhibited excellent magnetic properties and an extremely dense structure with Ag layer thicknesses of 30 nm, 40 nm, and 50 nm. Furthermore, the microwave shielding effectiveness exceeded 20 dB over almost the entire frequency range (2-18 GHz), and the effectiveness obviously improved as the thickness of the Ag layer increased. In addition, the IR extinction coefficient of the nanoparticles was calculated by a finite-difference time-domain (FDTD) method, which showed that the nanoparticles can inherit the extinction performance of pure silver when the Ag shell thickness was 30 nm. Specifically, after assembling into chains, the peak position of the IR extinction curves displayed a significant redshift and an intensity increase as the number of nanoparticles increased in the chain, which dramatically promoted the IR extinction capability. As a result, the Fe3O4@SiO2@Ag nanoparticles are expected to be used as a new multispectral interference material. © 2018 IOP Publishing Ltd.

  18. Second harmonic generation of template synthesized PbTiO 3 nanostructures

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Seog; Park, Yong-Heon; Bu, Sang-Don; Hernandez, Bernadette A.; Fisher, Ellen R.; Dorhout, Peter K.

    2007-09-01

    The lead titanate (PbTiO3) nanotubes were prepared with a chelate sol-gel of titanium isopropoxide (Ti(OiPr)4) and lead acetate (Pb(OAc)2-3H2O) by using AlOx template. Whatman® anodisc membranes (with a 200 nm pore size) served as the template. The template was dipped into the precursor, PbTiO3 solution, allowed to air dry, and then calcined at 650 °C. Recently, we have characterized a signal of second harmonic generation (SHG); 532 nm on 1064 nm of Nd:YAG laser beam in the PbTiO3 nanotubes with AlOx template.

  19. Ultrasonic tissue characterization for monitoring nanostructured TiO2-induced bone growth

    NASA Astrophysics Data System (ADS)

    Rus, G.; García-Martínez, J.

    2007-07-01

    The use of bioactive nanostructured TiO2 has recently been proposed for improving orthopaedic implant adhesion due to its improved biocompatibility with bone, since it induces: (i) osteoblast function, (ii) apatite nucleation and (iii) protein adsorption. The present work focuses on a non-ionizing radiation emitting technique for quantifying in real time the improvement in terms of mechanical properties of the surrounding bone due to the presence of the nanostructured TiO2 prepared by controlled precipitation and acid ageing. The mechanical strength is the ultimate goal of a bone implant and is directly related to the elastic moduli. Ultrasonics are high frequency mechanical waves and are therefore suited for characterizing elastic moduli. As opposed to echographic techniques, which are not correlated to elastic properties and are not able to penetrate bone, a low frequency ultrasonic transmission test is proposed, in which a P-wave is transmitted through the specimen and recorded. The problem is posed as an inverse problem, in which the unknown is a set of parameters that describe the mechanical constants of the sequence of layers. A finite element numerical model that depends on these parameters is used to predict the transformation of the waveform and compare to the measurement. The parameters that best describe the real tissue are obtained by minimizing the discrepancy between the real and numerically predicted waveforms. A sensitivity study to the uncertainties of the model is performed for establishing the feasibility of using this technique to investigate the macroscopic effect on bone growth of nanostructured TiO2 and its beneficial effect on implant adhesion.

  20. Syntheses, crystal structures and optical spectroscopy of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmierczak, Karolina; Hoeppe, Henning A., E-mail: henning@ak-hoeppe.d

    2011-05-15

    The lanthanide sulphate octahydrates Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and the respective tetrahydrate Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, a{sub Ho}=13.4421(4) A, b{sub Ho}=6.6745(2) A, c{sub Ho}=18.1642(5) A, {beta}{sub Ho}=102.006(1) A{sup 3} and a{sub Tm}=13.4118(14) A, b{sub Tm}=6.6402(6) A, c{sub Tm}=18.1040(16) A, {beta}{sub Tm}=101.980(8) A{sup 3}), Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O adopts space group P2{sub 1}/n (a=13.051(3) A, b=7.2047(14) A, c=13.316(3) A, {beta}=92.55(3) A{sup 3}). The vibrationalmore » and optical spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O are also reported. -- Graphical abstract: In the lanthanide sulphate octahydrates the cations form slightly undulated layers. Between the layers are voids in which sulphate tetrahedra and water molecules are located. The holmium compound exhibits an Alexandrite effect. Display Omitted Highlights: {yields} Determination of the optimum conditions for the growth of single-crystals of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O. {yields} Single-crystal structure elucidation of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) including hydrogen bonds. {yields} Single-crystal structure determination of Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O including hydrogen bonds. {yields} UV-vis spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted: Assignation of bands and clarification of the Alexandrite effect of the Ho compound. {yields} IR and Raman spectra of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted.« less

  1. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo

    2017-10-01

    Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.

  2. Round-patterned ZnO nanostructure coated with siloxane-based polymer for nerve agent detection

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Ji; Lee, Ji Won; Jeong, Dong-Cheol; Ha, Seonggyun; Song, Changsik; Boo, Jin-Hyo

    2018-01-01

    The alignment of zinc oxide (ZnO) nanostructures is expected to improve device sensitivities due to large surface areas which can be utilized to capture significant quantities of gas particles. In this study, we investigated patterned ZnO nanorods modified with polystyrene monolayers synthesized directly onto a quartz crystal microbalance (QCM) cell to increase the coating surface area of the sensing material. Also, we designed and synthesized a siloxane-based polymer (S1 polymer) as a sensing material. The patterned ZnO nanorods coated with S1 polymers were fabricated and used for the detection of dimethyl methylphosphonate (DMMP). The resonance frequency of QCM was shifted due to the adsorption and desorption of a compound at the surface of the modified electrodes. We have synthesized an S1 polymer that exhibited high sensitivity to DMMP. The patterned ZnO nanorods coated with the polymer also exhibited improved sensitivity due to an enhanced surface area capable of adsorbing more DMMP vapor.

  3. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    2014-01-01

    The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.

  4. Tetranuclear clusters containing a CrIII-doped MnIII4O2 core: syntheses, structures, and magnetic properties.

    PubMed

    Ma, Yun-Sheng; Li, Yi-Zhi; Song, You; Zheng, Li-Min

    2008-06-02

    The oxidation of MnII carboxylates by (NBu4)Cr2O7 in the presence of different phosphonic acids and chelating ligands results in six CrIII-doped tetranuclear manganese clusters formulated [Mn3CrO2(O2CCH3)4(O3PC5H4N)2(bpy)2] (1), [Mn3CrO2(O2CCH3)4(O3PC5H4N)2(phen)2] (2), [Mn3CrO2(O2CPh)4(O3PC5H4NO)2(phen)2] (3), [Mn3CrO2(O2CPh)4(O3PC6H11)2(bpy)2] (4), [Mn 3CrO2(O2CPh)4(O3PC6H11)2(phen) 2] (5), and [Mn3CrO2(O2CCH3)4(O3PC6H11)2(bpy)2] (6). Single-crystal X-ray analyses reveal that all the compounds contain similar [M4O2]8+ cores with the four metal sites arranged in planar topologies. The metal ions within the core are bridged by both carboxylate and phosphonate ligands. Temperature-dependent magnetic measurements show that in all cases dominant antiferromagnetic interactions are propagated between the metal centers. The ac magnetic measurements on compounds 5 and 6 reveal that both the in-phase and the out-of-phase signals are frequency dependent, characteristic of single-molecule magnet behaviors.

  5. Nanostructured Na2Ti9O19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability.

    PubMed

    Bhat, Swetha S M; Babu, Binson; Feygenson, Mikhail; Neuefeind, Joerg C; Shaijumon, M M

    2018-01-10

    Herein, we report a new Na-insertion electrode material, Na 2 Ti 9 O 19 , as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na 2 Ti 9 O 19 , synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na 2 Ti 9 O 19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na 2 Ti 9 O 19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO 6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na 2 Ti 9 O 19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s -1 , indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na 2 Ti 9 O 19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg -1 and a maximum power density of 5 kW kg -1 . Both structural insights and electrochemical investigation suggest that Na 2 Ti 9 O 19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors.

  6. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2}·H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 22H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene,more » L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl

  7. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  8. Facile one-pot transformation using structure-guided combustion waves of micro-nanostructured β-Bi2O3 to α-Bi2O3@C and analysis of electrochemical capacitance

    NASA Astrophysics Data System (ADS)

    Hwang, Hayoung; Shin, Jung-ho; Lee, Kang Yeol; Choi, Wonjoon

    2018-01-01

    Precise phase-transformation can facilitate control of the properties of various materials, while an organic coating surrounding inorganic materials can yield useful characteristics. Herein, we demonstrate facile, selective manipulation of micro-nanostructured bismuth oxide (Bi2O3) for phase transformation from microflower-like β-Bi2O3 to micropill-like α-Bi2O3, with carbon-coating layer deposition, using structure-guided combustion waves (SGCWs). Microflower-like β-Bi2O3 are synthesized as core materials and nitrocellulose is coated on their surfaces for the formation of core-shell hybrid structures of Bi2O3 and chemical fuel. The SGCWs, which propagate along the core-material and fuel interfaces, apply high thermal energy (550-600 °C) and deposit incompletely combusted carbonaceous fuel on the microflower-like β-Bi2O3 to enable transformation to α-phase and carbon-coating-layer synthesis. SGCW-induced improvements to the electrochemical characteristics of the developed micropill-like α-Bi2O3@C, compared with the microflower-like β-Bi2O3, are investigated. The enhanced stability from the α-phase Bi2O3 and micropill-like structures during charge-discharge cycling improves the specific capacitance, while the carbon-coating layers facilitate increased electrical conductivity. SGCW-based methods exhibit high potential for selective phase manipulation and synthesis of carbon coatings surrounding micro-nanomaterials. They constitute a low-cost, fast, large-scale process for metal oxides, ceramics, and hybrid materials, implemented through control of the processing parameters by tuning the temperature, chemical fuel, and ambient conditions.

  9. ZnO Nanostructures for Tissue Engineering Applications

    PubMed Central

    Laurenti, Marco; Cauda, Valentina

    2017-01-01

    This review focuses on the most recent applications of zinc oxide (ZnO) nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair. PMID:29113133

  10. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  11. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Miao, Ting-Ting; Guo, Yuan-Ru; Pan, Qing-Jiang

    2013-06-01

    Hierarchical ZnO nanoparticle-bar, nanomesh-lamina, and quasi-nanosphere structures have been successfully synthesized by the precipitation method with assistance of sodium lignosulphonate (SL). It is shown that the obtained ZnO nanomaterials are well crystallized and possess hexagonal wurtzite structure after calcination. Morphologies of ZnO with particle sizes ranging from 50 to 200 nm can be fabricated by tuning the SL amount in our synthetic route. Plenty of pores have been observed both in nanoparticle-bar and nanomesh-lamina ZnO. This may provide scaffold microenvironments to enhance their photocatalytic activity. It is evident that the synthesized ZnO exhibits good photocatalytic activity of degrading methylene blue, even under a very low-power UV illumination, which allows for the treatment of wastewater containing organic pollutants in an effective way. Among our synthesized nanomaterials, the nanomesh-lamina ZnO has the highest photodegradation efficiency, achieving nearly 100 % degradation only within 1.5 h (UV irradiation power of 12 W). As these ZnO nanomaterials are simply synthesized using SL which is a pulp industry by-product and their intrinsic hierarchical nanostructures show outstanding photocatalytic behavior, we expect the present controllable, environment-friendly, and cost-effective approach to be applied in the synthesis of small-sized ZnO materials.

  12. TL and OSL properties of Mn2+-doped MgGa2O4 phosphor

    NASA Astrophysics Data System (ADS)

    Luchechko, A.; Zhydachevskyy, Ya; Maraba, D.; Bulur, E.; Ubizskii, S.; Kravets, O.

    2018-04-01

    The oxide MgGa2O4 spinel ceramics doped with Mn2+ ions was synthesized by a solid-state reaction at 1200 °C in air. The activator concentration was equal 0.05 mol% of MnO. Phase purity of the synthesized samples was analyzed by X-ray diffraction technique. This spinel ceramics show efficient green emission in the range from 470 to 550 nm with a maximum at about 505 nm under UV or X-ray excitations, which is due to Mn2+ ions. MgGa2O4: Mn2+ exhibits intense thermoluminescence (TL) and optically stimulated luminescence (OSL) after influence of ionizing radiation. Are complex nature of the TL glow curves is associated with a significant number of structural defects that are responsible for the formation of shallow and deep electron traps. In this work, time-resolved OSL characteristics of the samples exposed to beta particles are reported for the first time. A light from green LED was used for optical stimulation. Obtained TL and OSL results suggest MgGa2O4:Mn2+ as perspective material for further research and possible application in radiation dosimetry.

  13. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ai, Taotao; Yu, Qi

    2017-02-01

    Boron-doped zinc oxide sheet-spheres were synthesized on PET-ITO flexible substrates using a hydrothermal method at 90 °C for 5 h. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicated that the B atoms were successfully doped into the ZnO lattice, the incorporation of B led to an increase in the lattice constant of ZnO and a change in its internal stress. The growth mechanism of pure ZnO nanorods and B-doped ZnO sheet-spheres was specifically investigated. The as-prepared BZO/PET-ITO heterojunction possessed obvious rectification properties and its positive turn-on voltage was 0.4 V. The carrier transport mechanisms involved three models such as hot carrier tunneling theory, tunneling recombination, and series-resistance effect were explored. The BZO/PET-ITO nanostructures were more effective than pure ZnO to degrade the RY 15, and the degradation rate reached 41.45%. The decomposition process with BZO nanostructure followed first-order reaction kinetics. The photocurrent and electrochemical impedance spectroscopy revealed that the B-doping could promote the separation of photo-generated electron-hole pairs, which was beneficial to enhance the photocatalytic activity. The photocurrent density of B-doped and pure ZnO/PET-ITO were 0.055 mA/cm2 and 0.016 mA/cm2, respectively. The photocatalytic mechanism of the sample was analyzed by the energy band theory.

  15. Degradation and Mineralization of Benzohydroxamic Acid by Synthesized Mesoporous La/TiO2

    PubMed Central

    Luo, Xianping; Wang, Junyu; Wang, Chunying; Zhu, Sipin; Li, Zhihui; Tang, Xuekun; Wu, Min

    2016-01-01

    Rare earth element La-doped TiO2 (La/TiO2) was synthesized by the sol-gel method. Benzohydroxamic acid was used as the objective pollutant to investigate the photocatalytic activity of La/TiO2. The physicochemical properties of the prepared materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, specific surface area and porosity, scanning electron microscopy and transmission electron microscopy. As a result, the doping of La could inhibit the crystal growth of TiO2, increase its specific surface area and expand its response to visible light, thus improving its photocatalytic activity. La/TiO2 with the doping ratio of 0.75% calcined at 500 °C, showing the highest photocatalytic activity to degrade benzohydroxamic acid under the irradiation of 300 W mercury lamp. About 94.1% of benzohydroxamic acid with the original concentration at 30 mg·L−1 was removed after 120 min in a solution of pH 4.4 with an La/TiO2 amount of 0.5 g·L−1. Furthermore, 88.5% of the total organic carbon was eliminated after 120 min irradiation. In addition, after four recycling runs, La/TiO2 still kept high photocatalytic activity on the photodegradation of benzohydroxamic acid. The interfacial charge transfer processes were also hypothesized. PMID:27735877

  16. MnFe2O4: Synthesis, morphology and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrikant; Thombare, Balu; Patil, Shankar

    2017-05-01

    MnFe2O4 has been synthesized by simple ammonia assisted co-precipitation method to obtain nanocrystalline powder. X-ray diffraction studies confirmed its crystallinity and phase purity. The MnFe2O4 calcined at 1000°C for 4 h has spinel crystal structure with Fd3m space group and lattice constant 8.511 Å. The electrode was prepared by dip coating method on stainless steel substrate and fired at 600°C for 2 h. Random shape grains of 0.2 to 1.5 micron with pores of 1-2 micron dimensions were observed in SEM images. The electrochemical studies of MnFe2O4 were carried out with 1 mole Na2SO4 electrolyte. The MnFe2O4 electrode shows highest specific capacitance of 27.53 F.g-1 and interfacial capacitance of 0.83 F.cm-2.

  17. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  18. Effect of nanostructured carbon support on copper electrocatalytic activity toward CO 2 electroreduction to hydrocarbon fuels

    DOE PAGES

    Baturina, Olga; Lu, Qin; Xu, Feng; ...

    2016-11-10

    The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less

  19. Effect of nanostructured carbon support on copper electrocatalytic activity toward CO 2 electroreduction to hydrocarbon fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturina, Olga; Lu, Qin; Xu, Feng

    The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less

  20. Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells

    NASA Technical Reports Server (NTRS)

    Skandan, Ganesh; Singhal, Amit

    2005-01-01

    Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.