These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces  

E-print Network

When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured ...

Miljkovic, Nenad

2

Liquid Evaporation on Superhydrophobic and Superhydrophilic Nanostructured Surfaces  

E-print Network

Environmental scanning electron microscope (ESEM) images of water evaporation from superhydrophilic and superhydrophobic nanostructured surfaces are presented. The nanostructured surfaces consiste of an array of equidistant ...

Miljkovic, Nenad

3

Controlling ice formation on nanostructured superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

In this work we describe anti-icing properties of nanostructured superhydrophobic surfaces with well-defined regular arrays of micron and submicron surface features. Both open-cell and closed-cell structures are investigated. Dependence of ice formation dynamics on the temperature, details of the surface topography, substrate material, and other factors are investigated. We find that ice formation on these surfaces can be substantially retarded, with some of the surfaces showing no ice accumulation at temperatures as low as -20 C. The experimental results are in good quantitative agreement with the simple theoretical model based on the classical heterogeneous nucleation theory and wetting dynamics. The results of the work can provide new insight into design and optimization of anti-icing structures and coatings.

Krupenkin, Tom; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J. Ashley; Bahadur, Vaibhav; Aizenberg, Joanna

2010-03-01

4

Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces  

E-print Network

When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance ...

Miljkovic, Nenad

5

Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces  

E-print Network

Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie ...

Miljkovic, Nenad

6

Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces  

SciTech Connect

When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

2012-01-01

7

Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.  

PubMed

When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ? 30 ?m at moderate heat fluxes (q? > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes. PMID:24261667

Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

2013-12-23

8

Condensation on superhydrophobic copper oxide nanostructures .  

E-print Network

??Condensation is an important process in many power generation and water desalination technologies. Superhydrophobic nanostructured surfaces have unique condensation properties that may enhance heat transfer… (more)

Dou, Nicholas (Nicholas Gang)

2012-01-01

9

Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications  

NASA Astrophysics Data System (ADS)

In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc. were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. However, most polymer surfaces we prepared failed the purpose. Silica surfaces with excellent UV stability were prepared. This method consists of preparation of rough silica surfaces, thermal treatment and the following surface hydrophobization by fluoroalkyl silane treatment. Fluoroalkyl groups are UV stable and the underlying species are silica which is also UV stable (UV transparent). UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Metal (Au) assisted etching was employed to fabricate nanostructures on micrometer pyramid surfaces. The light reflection on the prepared surfaces was investigated. After surface texturing using KOH etching for micrometer pyramids and the following nanostructure using metal assisted etching, surface light reflection reduced to a minimum value which shows that this surface texturing technique is highly promising for improving the photovoltaic efficiency while imparting photovoltaics the self-cleaning feature. This surface is also expected to be UV stable due to the same fluoroalkyl silane used. Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plas

Xiu, Yonghao

10

Study of surface modification of tungsten nanostructures for superhydrophobic applications  

NASA Astrophysics Data System (ADS)

In this work, we studied the impact of the modification of the structure of tungsten surfaces through physical vapor deposition (magnetron sputtering), electrochemical (anodization and electropolishing), and thermal (annealing) processes on the wettability of the designed surfaces. We observed static contact angle values ranging from around 10° to above 150° showing the importance of the techniques used to produce the surfaces. We noticed that the annealing process tends to increase the wettability, transforming hydrophobic surfaces into hydrophilic surfaces. We also observed that electropolishing affects the wettability in such a way that the contact angles of pre-chemically treated tungsten foils tend to decrease after coating when the electrochemical process is judged efficient due to a shadowing effect during the glancing angle deposition. Finally, we introduce a novel technique to create a dual micro-/nano-structure, preferable for superhydrophobicity. This novel technique may have tremendous implications for anti-icing applications.

Alletru, Richard

11

Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films  

NASA Astrophysics Data System (ADS)

We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

2013-08-01

12

Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.  

PubMed

We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military. PMID:23857991

Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

2013-08-01

13

Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.  

PubMed

Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet morphologies to achieve enhanced heat and mass transfer during dropwise condensation. PMID:22293016

Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

2012-02-28

14

Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.  

PubMed

While superhydrophobic nanostructured surfaces have been shown to promote condensation heat transfer, the successful implementation of these coatings relies on the development of scalable manufacturing strategies as well as continued research into the fundamental physical mechanisms of enhancement. This work demonstrates the fabrication and characterization of superhydrophobic coatings using a simple scalable nanofabrication technique based on self-assembly of the Tobacco mosaic virus (TMV) combined with initiated chemical vapor deposition. TMV biotemplating is compatible with a wide range of surface materials and applicable over large areas and complex geometries without the use of any power or heat. The virus-structured coatings fabricated here are macroscopically superhydrophobic (contact angle >170°) and have been characterized using environmental electron scanning microscopy showing sustained and robust coalescence-induced ejection of condensate droplets. Additionally, full-field dynamic characterization of these surfaces during condensation in the presence of noncondensable gases is reported. This technique uses optical microscopy combined with image processing algorithms to track the wetting and growth dynamics of 100s to 1000s of microscale condensate droplets simultaneously. Using this approach, over 3 million independent measurements of droplet size have been used to characterize global heat transfer performance as a function of nucleation site density, coalescence length, and the apparent wetted surface area during dynamic loading. Additionally, the history and behavior of individual nucleation sites, including coalescence events, has been characterized. This work elucidates the nature of superhydrophobic condensation and its enhancement, including the role of nucleation site density during transient operation. PMID:24882117

Ölçero?lu, Emre; Hsieh, Chia-Yun; Rahman, Md Mahamudur; Lau, Kenneth K S; McCarthy, Matthew

2014-07-01

15

Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures  

NASA Astrophysics Data System (ADS)

In this study, functional copper surfaces combined with vivid structural colors and superhydrophobicity were fabricated by picosecond laser. Laser-induced periodic surface structures (LIPSS), i.e. ripples, were fabricated by picosecond laser nanostructuring to induce rainbow-like structural colors which are uniquely caused by the grating - type structure. The effects of laser processing parameters on the formation of ripples were investigated. We also discussed the formation mechanism of ripples. With different combinations of the laser processing parameters, ripples with various morphologies were fabricated. After the modification with triethoxyoctylsilane, different types of ripples exhibited different levels of wettability. The fine ripples with minimal redeposited nanoparticles exhibited high adhesive force to water. The increased amount of nanoscale structures decreased the adhesive force to water and increased the contact angle simultaneously. In particular, a specific type of ripples exhibited superhydrophobicity with a large contact angle of 153.9 ± 3.2° and a low sliding angle of 11 ± 3°.

Long, Jiangyou; Fan, Peixun; Zhong, Minlin; Zhang, Hongjun; Xie, Yongde; Lin, Chen

2014-08-01

16

Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.  

PubMed

We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°. PMID:21162520

Lee, Jung-Pil; Choi, Sinho; Park, Soojin

2011-01-18

17

Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface.  

PubMed

In this work, we describe self-assembled surfaces with a peculiar multiscale organization, from the nanoscale to the microscale, exhibiting the Cassie-Baxter wetting regime with extremely low water adhesion: floating drops regime with roll-off angles < 5°. These surfaces comprise bundles of hierarchical, quasi-one-dimensional (1D) TiO2 nanostructures functionalized with a fluorinated molecule (PFNA). While the hierarchical nanostructures are the result of a gas-phase self-assembly process, their bundles are the result of the capillary forces acting between them when the PFNA solvent evaporates. Nanometric features are found to influence the hydrophobic behavior of the surface, which is enhanced by the micrometric structures up to the achievement of the superhydrophobic Cassie-Baxter state (contact angle (CA) ? 150°). Thanks to their high total and diffuse transmittance and their self-cleaning properties, these surfaces could be interesting for several applications such as smart windows and photovoltaics where light management and surface cleanliness play a crucial role. Moreover, the multiscale analysis performed in this work contributes to the understanding of the basic mechanisms behind extreme wetting behaviors. PMID:25346328

Passoni, Luca; Bonvini, Giacomo; Luzio, Alessandro; Facibeni, Anna; Bottani, Carlo E; Di Fonzo, Fabio

2014-11-18

18

Condensation on Superhydrophobic Copper Oxide Nanostructures  

E-print Network

Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the ...

Enright, Ryan

19

Optically Transparent, Mechanically Durable, Nanostructured Superhydrophobic Surfaces Enabled by Spinodally Phase-Separated Glass Thin Films  

SciTech Connect

Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

Aytug, Tolga [ORNL; Christen, David K [ORNL; Hillesheim, Daniel A [ORNL; Hunter, Scott Robert [ORNL; Ivanov, Ilia N [ORNL; Jellison Jr, Gerald Earle [ORNL; Lupini, Andrew R [ORNL; Pennycook, Stephen J [ORNL; Trejo, Rosa M [ORNL; Winters, Kyle O. [University of Tennessee, Knoxville (UTK); Haynes, James A [ORNL; Simpson, John T [ORNL

2013-01-01

20

High surface water interaction in superhydrophobic nanostructured silicon surfaces: convergence between nanoscopic and macroscopic scale phenomena.  

PubMed

In the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches. The high interaction energy between water and surface is determined by measuring water contact angle (WCA) hysteresis, which reveals Wenzel wetting regime. Moreover, the morphological analysis of the surfaces by atomic force microscopy allows predicting WCA from a semiempiric model adapted to this material. PMID:22149025

Muñoz-Noval, Álvaro; Hernando Pérez, Mercedes; Torres Costa, Vicente; Martín Palma, Raúl J; de Pablo, Pedro J; Manso Silván, Miguel

2012-01-24

21

Nanostructured metal surfaces and their passivation for superhydrophobic and anti-icing applications  

NASA Astrophysics Data System (ADS)

Many systems and infrastructures developed by human beings frequently encounter deficiencies, stop functioning or even fail during severe weather conditions due to ice accumulation. One of the common methods to prevent snow and ice accumulation on exposed surfaces is the use of chemicals such as freezing point depressants. They should be applied during storms or just before ice accumulation which is practically difficult. Also these chemicals adversely affect the environment. New environment-friendly methods are necessary to be developed. An ideal solution can be covering the structures with a coating capable of inhibiting or reducing the bonding between snow or ice and solid surfaces. A solid surface with a water contact angle greater than 150° is called superhydrophobic. Desiring superhydrophobicity, a surface should satisfy two criteria, nano/micrometer scale roughness as well as low surface energy. Many applications in industry and in everyday-life can be benefited from this extreme water-repellence if one can develop a durable, environment-friendly superhydrophobic coating. In the present study, the hydrophobicity of the surfaces with submicron roughness prepared by spin-coating of metallic nanoparticle colloids on aluminum and copper substrates was studied. Three colloids of silver nanoparticles and two colloids of copper nanoparticles with different size distributions were synthesized by chemical reduction methods. Silver particles were found to be stable enough to make the model surfaces but copper particles were unstable and not suitable for this application. Regardless of nanoparticle type, hydrophobic surfaces could not be achieved by making rough surfaces by only one layer of coating. By adding a second layer of coating, all three types of silver nanoparticles resulted in coatings with high degree of superhydrophobicity on metallic substrates. Due to the similar shapes of nanoparticles, the difference in observed contact angles could be related to the particles sizes. The particles with the average size of ˜263 nm had the highest contact angles whereas the particles with average size of ˜195 nm or ˜360 nm showed lower values. The anti-icing behaviour of these superhydrophobic films was studied under atmospheric icing conditions. On aluminum, two layer coating of 263 nm particles could reduce the ice adhesion up to 8.1 times. This value was equal to 4 on copper substrates with similar coating. The copper based samples could keep their ice adhesion reduction even after five ice removal test.

Safaee, Alireza

22

Facile Synthesis of Three-Dimensional ZnO Nanostructure: Realization of a Multifunctional Stable Superhydrophobic Surface  

PubMed Central

Background After comprehensive study of various superhydrophobic phenomena in nature, it is no longer a puzzle for researchers to realize such fetching surfaces. However, the different types of artificial surfaces may get wetted and lose its water repellence if there exist defects or the liquid is under pressure. With respect to the industry applications, in which the resistance of wetting transition is critical important, new nanostructure satisfied a certain geometric criterion should be designed to hold a stable gas film at the base area to avoid the wet transition. Methodology A thermal deposition method was utilized to produce a thin ZnO seeds membrane on the aluminum foil. And then a chemical self-assemble technology was developed in present work to fabricate three-dimensional (3D) hierarchical dune-like ZnO architecture based on the prepared seeds membrane. Results Hierarchical ZnO with micro scale dune-like structure and core-sharing nanosheets was generated. The characterization results showed that there exist plenty of gaps and interfaces among the micro-dune and nanosheets, and thus the surface area was enlarged by such a unique morphology. Benefited from this unique 3D ZnO hierarchical nanostructure, the obtained surface exhibited stable water repellency after modification with Teflon, and furthermore, based on solid theory analysis, such 3D ZnO nanostructure would exhibit excellent sensing performance. PMID:22194987

Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping

2011-01-01

23

Condensation on Hydrophilic, Hydrophobic, Nanostructured Superhydrophobic and Oil-Infused Surfaces  

E-print Network

Color images of steady state water vapor condensing on smooth and nanostructured hydrophobic surfaces are presented. Figure 1a shows a snapshot of classical filmwise condensation on hydrophilic copper. A thin liquid film ...

Nenad, Miljkovic

24

Mechanically durable superhydrophobic surfaces.  

PubMed

Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future. PMID:21274919

Verho, Tuukka; Bower, Chris; Andrew, Piers; Franssila, Sami; Ikkala, Olli; Ras, Robin H A

2011-02-01

25

Water droplet bouncing and superhydrophobicity induced by multiscale hierarchical nanostructures.  

PubMed

Superhydrophobicity of multiscale hierarchical structures and bouncing phenomenon of a water droplet on the superhydrophobic surface were studied. The multiscale hierarchical structures of carbon nanotube/ZnO and ZnO/carbon nanofiber were produced by the hydrothermal method. The multiscale hierarchical structure showed superhydrophobicity with a static contact angle (CA) larger than 160° due to increased air pockets in the Cassie-Baxter state. The water bouncing effect observed on the multiscale hierarchical nanostructure was explained by the free energy barrier (FEB) analysis and finite element simulation. The multiscale hierarchical nanostructure showed low FEBs which provoke high CA and bouncing phenomenon due to small energy dissipation toward receding and advancing directions. PMID:22928700

Lee, Doo Jin; Kim, Hyung Min; Song, Young Seok; Youn, Jae Ryoun

2012-09-25

26

Superhydrophobic surface at low surface temperature  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces have aroused great attention for promising applications, e.g., anti-ice/frost. However, most surfaces which are superhydrophobic at room temperature lose their superhydrophobicity at low surface temperatures. Here, surfaces with different area fractions of the solid surface in contact with the liquid (f1) were designed. It is found that surfaces with f1 equal to or smaller than 0.068 maintain the superhydrophobicity when the surface temperature approaches the dew-point. These results are crucial to understand the correlation between the surface morphology and the superhydrophobicity around the dew-point, and design effective surfaces with desired wettability.

He, Min; Li, Huiling; Wang, Jianjun; Song, Yanlin

2011-02-01

27

Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces  

PubMed Central

A superhydrophobic xerogel coating synthesized from a mixture of nanostructured fluorinated silica colloids, fluoroalkoxysilane, and a backbone silane is reported. The resulting fluorinated surface was characterized using contact angle goniometry, SEM, and AFM. Quantitative bacterial adhesion studies performed using a parallel plate flow cell demonstrated that the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa were reduced by 2.08 ± 0.25 and 1.76 ± 0.12 log over controls, respectively. This simple superhydrophobic coating synthesis may be applied to any surface regardless of geometry and does not require harsh synthesis or processing conditions, making it an ideal candidate as a biopassivation strategy. PMID:21718023

Privett, Benjamin J.; Youn, Jonghae; Hong, Sung A; Lee, Jiyeon; Han, Junhee

2011-01-01

28

Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties  

NASA Astrophysics Data System (ADS)

Visible light transparent, UV-shielding and superhydrophobic nanostructured coatings have been successfully fabricated through a facile layer-by-layer deposition of TiO2 and SiO2 nanoparticles. The coatings are composed of an underlying UV-shielding TiO2 layer and a top fully covered protective SiO2 layer. The resulting coatings can block 100% of UVB and UVC and almost 85% of UVA. The fabricated surfaces have contact angles exceeding 165° after coating with organic PTES (1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane) molecules. The transparent superhydrophobic surfaces exhibit extremely strong UV stability. All coatings retain the initial UV-shielding and superhydrophobic properties even after exposure to 275 nm UV light with a light intensity of 75 mW cm - 2 for 12 h.

Wang, Taoye; Isimjan, Tayirjan T.; Chen, Jianfeng; Rohani, Sohrab

2011-07-01

29

Superhydrophobic surfaces fabricated by surface modification of alumina particles  

NASA Astrophysics Data System (ADS)

The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of <2°. Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

2012-10-01

30

Wettability of natural superhydrophobic surfaces.  

PubMed

Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 ?m) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. PMID:24556235

Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

2014-08-01

31

Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces  

NASA Astrophysics Data System (ADS)

Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

2010-10-01

32

Dropwise condensation on superhydrophobic surfaces with two-tier roughness  

NASA Astrophysics Data System (ADS)

Dropwise condensation can enhance heat transfer by an order of magnitude compared to film condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid removal of condensate drops; however, such promotion has not been reported on engineered surfaces. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes deposited on micromachined posts, a two-tier texture mimicking lotus leaves. On such micro-/nanostructured surfaces, the condensate drops prefer the Cassie state which is thermodynamically more stable than the Wenzel state. With a hexadecanethiol coating, superhydrophobicity is retained during and after condensation and rapid drop removal is enabled.

Chen, Chuan-Hua; Cai, Qingjun; Tsai, Chialun; Chen, Chung-Lung; Xiong, Guangyong; Yu, Ying; Ren, Zhifeng

2007-04-01

33

Nanostructured metal surfaces and their passivation for superhydrophobic and anti-icing applications  

Microsoft Academic Search

Many systems and infrastructures developed by human beings frequently encounter deficiencies, stop functioning or even fail during severe weather conditions due to ice accumulation. One of the common methods to prevent snow and ice accumulation on exposed surfaces is the use of chemicals such as freezing point depressants. They should be applied during storms or just before ice accumulation which

Alireza Safaee

2008-01-01

34

Flow condensation on copper-based nanotextured superhydrophobic surfaces.  

PubMed

Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications. PMID:23249322

Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos

2013-01-15

35

Highly stable superhydrophobic surfaces under flow conditions  

NASA Astrophysics Data System (ADS)

We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

2015-01-01

36

Robust biomimetic-structural superhydrophobic surface on aluminum alloy.  

PubMed

The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys. PMID:25545550

Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

2015-01-28

37

Superhydrophobicity for antifouling microfluidic surfaces.  

PubMed

Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or -enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of -polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol-gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials. PMID:23329449

Shirtcliffe, N J; Roach, P

2013-01-01

38

Anti-icing performance of superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size ˜80 ?m) in a wind tunnel at subzero temperature (-10 °C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

Farhadi, S.; Farzaneh, M.; Kulinich, S. A.

2011-05-01

39

Water drop friction on superhydrophobic surfaces  

Microsoft Academic Search

To investigate water drop friction on superhydrophobic surfaces, the motion of water drops on three different superhydrophobic surfaces has been studied by allowing drops to slide down an incline and capturing their motion using high-speed video. Two surfaces were prepared using crystallization of an alkyl ketene dimer (AKD) wax and the third surface was the leaf of a Lotus (Nelumbo

P. H. Olin; S. B. Lindström; T. Pettersson; L. Wågberg

2013-01-01

40

Wettability and Superhydrophobicity of 2-D Ordered Nano-structured Arrays Based on Colloidal Monolayers  

Microsoft Academic Search

Based on colloidal monolayers of polystyrene spheres, we have prepared various two-dimensional nanostructured arrays by solution routes and electrodeposition. Many ordered structured arrays generated using these methods are of surface roughness on the nano- and micro-scales, and could be superhydrophobic or superhydrophilic. The nano-devices based on such nano-structured arrays would be waterproof and selfcleaning, in addition to their special device

Weiping Cai; Yue Li; Guotao Duan

2008-01-01

41

A facile approach to fabricate superhydrophobic and corrosion resistant surface  

NASA Astrophysics Data System (ADS)

In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil–water separation.

Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

2015-01-01

42

Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons  

NASA Astrophysics Data System (ADS)

Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar+-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films.

Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

2015-01-01

43

Frost formation and ice adhesion on superhydrophobic surfaces  

E-print Network

We study frost formation and its impact on icephobic properties of superhydrophobic surfaces. Using an environmental scanning electron microscope, we show that frost nucleation occurs indiscriminately on superhydrophobic ...

Varanasi, Kripa K.

44

Superhydrophobic surfaces cannot reduce ice adhesion  

NASA Astrophysics Data System (ADS)

Understanding the mechanism of ice adhesion on surfaces is crucial for anti-icing surfaces, and it is not clear if superhydrophobic surfaces could reduce ice adhesion. Here, we investigate ice adhesion on model surfaces with different wettabilities. The results show that the superhydrophobic surface cannot reduce the ice adhesion, and the ice adhesion strength on the superhydrophilic surface and the superhydrophobic one is almost the same. This can be rationalized by the mechanical interlocking between the ice and the surface texture. Moreover, we find that the ice adhesion strength increases linearly with the area fraction of air in contact with liquid.

Chen, Jing; Liu, Jie; He, Min; Li, Kaiyong; Cui, Dapeng; Zhang, Qiaolan; Zeng, Xiping; Zhang, Yifan; Wang, Jianjun; Song, Yanlin

2012-09-01

45

Superhydrophobic surfaces engineered using diatomaceous earth.  

PubMed

We present a simple method to prepare superhydrophobic surfaces using siliceous exoskeleton of diatoms, a widespread group of algae. This makes diatomaceous earth an accessible and cheap natural material. A micro/nanoscale hierarchical topography was achieved by coating a glass surface with diatomaceous earth, giving rise to a superhydrophilic surface. Superhydrophobic surfaces were obtained by a further surface chemical modification through fluorosilanization. The wettability of the superhydrophobic surface can be modified by Argon plasma treatment in a controlled way by exposure time variation. The chemical surface modification by fluorosilanization and posterior fluorinated SH surface modification by plasma treatment was analyzed by XPS. Using appropriated hollowed masks only specific areas on the surface were exposed to plasma permitting to pattern hydrophilic features with different geometries on the superhydrophobic surface. We showed that the present strategy can be also applied in other substrates, including thermoplastics, enlarging the potential applicability of the resulting surfaces. PMID:23647196

Oliveira, Nuno M; Reis, Rui L; Mano, João F

2013-05-22

46

Superhydrophobic porous surfaces: dissolved oxygen sensing.  

PubMed

Porous polymer films are necessary for dissolved gas sensor applications that combine high sensitivity with selectivity. This report describes a greatly enhanced dissolved oxygen sensor system consisting of amphiphilic acrylamide-based polymers: poly(N-(1H, 1H-pentadecafluorooctyl)-methacrylamide) (pC7F15MAA) and poly(N-dodecylacrylamide-co-5- [4-(2-methacryloyloxyethoxy-carbonyl)phenyl]-10,15,20-triphenylporphinato platinum(II)) (p(DDA/PtTPP)). The nanoparticle formation capability ensures both superhydrophobicity with a water contact angle greater than 160° and gas permeability so that molecular oxygen enters the film from water. The film was prepared by casting a mixed solution of pC7F15MAA and p(DDA/PtTPP) with AK-225 and acetic acid onto a solid substrate. The film has a porous structure comprising nanoparticle assemblies with diameters of several hundred nanometers. The film shows exceptional performance as the oxygen sensitivity reaches 126: the intensity ratio at two oxygen concentrations (I0/I40) respectively corresponding to dissolved oxygen concentration 0 and 40 (mg L(-1)). Understanding and controlling porous nanostructures are expected to provide opportunities for making selective penetration/separation of molecules occurring at the superhydrophobic surface. PMID:25659178

Gao, Yu; Chen, Tao; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

2015-02-18

47

Shear flow on super-hydrophobic surfaces.  

SciTech Connect

Super-hydrophobic surfaces, which exhibit large contact angles, can give rise to slip flow of aqueous fluids. We present our work on shear flow of atomistic fluids over simple super-hydrophobic surfaces. Molecular dynamic simulations are employed to investigate the flow field of fluid between two parallel surfaces, one of which is moving. Exploring a range of fluid thermodynamic state points, we demonstrate the influence of fluid phase and structure near the surfaces on prevalence, and degree, of slip at the super-hydrophobic surface.

van Swol, Frank B.; Truesdell, Richard; Vorobieff, Peter V.; Challa, Sivakumar R.; Mammoli, Andrea A.

2007-10-01

48

Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.  

PubMed

We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance. PMID:25242264

Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

2014-11-01

49

Pancake bouncing on superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Engineering surfaces that promote rapid drop detachment is of importance to a wide range of applications including anti-icing, dropwise condensation and self-cleaning. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nanotextures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows a fourfold reduction in contact time compared with conventional complete rebound . We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures that behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

Liu, Yahua; Moevius, Lisa; Xu, Xinpeng; Qian, Tiezheng; Yeomans, Julia M.; Wang, Zuankai

2014-07-01

50

Marangoni convection in droplets on superhydrophobic surfaces  

E-print Network

We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate ...

Tam, Daniel

51

Vapor stabilizing surfaces for superhydrophobicity  

NASA Astrophysics Data System (ADS)

The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

Patankar, Neelesh

2010-11-01

52

Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc  

NASA Astrophysics Data System (ADS)

A novel approach was used to grow nanostructured Teflon-like superhydrophobic coatings on stainless steel (SS). In this method Teflon tailings were pyrolyzed to generate fluorocarbon precursor molecules, and an expanding plasma arc (EPA) was used to polymerize these precursors to deposit Teflon-like coating. The coating shows super hydrophobic behavior with water contact angle (WCA) of 165°. The coating was observed to be uniform. It consists of nanostructured (˜80-200 nm) features, which were confirmed by scanning electron microscopy. The chemical bond state of the film was determined by XPS and FTIR, which indicate the dominance of -CF 2 groups in the deposited coating. The combination of nanofeature induced surface roughness and the low surface energy imparted by Teflon-like coating is responsible for the observed superhydrophobic nature.

Satyaprasad, A.; Jain, V.; Nema, S. K.

2007-04-01

53

Scale effect on dropwise condensation on superhydrophobic surfaces.  

PubMed

Micro/nano (two-tier) structures are often employed to achieve superhydrophobicity. In condensation, utilizing such a surface is not necessarily advantageous because the macroscopically observed Cassie droplets are usually in fact partial Wenzel in condensation. The increase in contact angle through introducing microstructures on such two-tier roughened surfaces may result in an increase in droplet departure diameter and consequently deteriorate the performance. In the meantime, nanostructure roughened surfaces could potentially yield efficient shedding of liquid droplets, whereas microstructures roughened surfaces often lead to highly pinned Wenzel droplets. To attain efficient shedding of liquid droplets in condensation on a superhydrophobic surface, a Bond number (a dimensionless number for appraising dropwise condensation) and a solid-liquid fraction smaller than 0.1 and 0.3, respectively, are suggested. PMID:25069032

Lo, Ching-Wen; Wang, Chi-Chuan; Lu, Ming-Chang

2014-08-27

54

Completely superhydrophobic PDMS surfaces for microfluidics.  

PubMed

This study presents a straightforward two-step fabrication process of durable, completely superhydrophobic microchannels in PDMS. First, a composite material of PDMS/PTFE particles is prepared and used to replicate a master microstructure. Superhydrophobic surfaces are formed by subsequent plasma treatment, in which the PDMS is isotropically etched and PTFE particles are excavated. We compare the advancing and receding contact angles of intrinsic PDMS samples and composite PTFE/PDMS samples (1 wt %, 8 wt %, and 15 wt % PTFE particle concentration) and demonstrate that both the horizontal and vertical surfaces are indeed superhydrophobic. The best superhydrophobicity is observed for samples with a PTFE particle concentration of 15 wt %, which have advancing and receding contact angles of 159° ± 4° and 158° ± 3°, respectively. PMID:22590992

Tropmann, Artur; Tanguy, Laurent; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

2012-06-01

55

Influence of surface roughness on superhydrophobicity  

E-print Network

Superhydrophobic surfaces, with liquid contact angle theta greater than 150 degree, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D_f of the surface.

C. Yang; U. Tartaglino; B. N. J. Persson

2006-09-30

56

Influence of surface roughness on superhydrophobicity.  

PubMed

Superhydrophobic surfaces, with a liquid contact angle theta greater than 150 degrees , have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have a hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D(f) of the surface. PMID:17025908

Yang, C; Tartaglino, U; Persson, B N J

2006-09-15

57

Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2-Cu2O thin films  

NASA Astrophysics Data System (ADS)

By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO2-Cu2O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie-Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ˜172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO2, the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required.

Aytug, Tolga; Bogorin, Daniela F.; Paranthaman, Parans M.; Mathis, John E.; Simpson, John T.; Christen, David K.

2014-06-01

58

Water drop friction on superhydrophobic surfaces.  

PubMed

To investigate water drop friction on superhydrophobic surfaces, the motion of water drops on three different superhydrophobic surfaces has been studied by allowing drops to slide down an incline and capturing their motion using high-speed video. Two surfaces were prepared using crystallization of an alkyl ketene dimer (AKD) wax, and the third surface was the leaf of a Lotus (Nelumbo Nucifera). The acceleration of the water droplets on these superhydrophobic surfaces was measured as a function of droplet size and inclination of the surface. For small capillary numbers, we propose that the energy dissipation is dominated by intermittent pinning-depinning transitions at microscopic pinning sites along the trailing contact line of the drop, while at capillary numbers exceeding a critical value, energy dissipation is dominated by circulatory flow in the vicinity of the contacting disc between the droplet and the surface. By combining the results of the droplet acceleration with a theoretical model based on energy dissipation, we have introduced a material-specific coefficient called the superhydrophobic sliding resistance, b(sh). Once determined, this parameter is sufficient for predicting the motion of water drops on superhydrophobic surfaces of a general macroscopic topography. This theory also infers the existence of an equilibrium sliding angle, ?(eq), at which the drop acceleration is zero. This angle is decreasing with the radius of the drop and is in quantitative agreement with the measured tilt angles required for a stationary drop to start sliding down an incline. PMID:23721176

Olin, Pontus; Lindström, Stefan B; Pettersson, Torbjörn; Wågberg, Lars

2013-07-23

59

Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness  

NASA Astrophysics Data System (ADS)

We report a novel shell-like cobalt nanostructure prepared by galvanostatic electrochemical deposition which exhibit prominent superhydrophobic property. By adjusting the electroplating conditions, cobalt nanocrystals with different morphologies like nanocones and fluffy shells can be obtained while the hydrophobic and adhesive behavior of each after surface modification is observed. After a brief discussion on the growth mechanism of those shapes, we explained the lotus effect presented on such structures which would probably provide a strong evidence to the existing models of superhydrophobic surfaces. Based on the above, we propose a novel approach to modulate both adhesiveness and wettability of Co film by tuning of deposition parameters along with a simple heat treatment and dipping. With cobalt's anisotropic magnetic properties, such facile surface coating would be used in a wide range of applications such as commercial fabrication of tunable anti-corrosive magnetic devices.

Xiao, Han; Hu, Anmin; Hang, Tao; Li, Ming

2015-01-01

60

Superhydrophobic surfaces from hierarchically structured wrinkled polymers.  

PubMed

This work reports the creation of superhydrophobic wrinkled surfaces with hierarchical structures at both the nanoscale and microscale. A nanoscale structure with 500 nm line gratings was first fabricated on poly(hydroxyethyl methacrylate) films by nanoimprint lithography while a secondary micro-scale structure was created by spontaneous wrinkling. Compared with random wrinkles whose patterns show no specific orientation, the hierarchical wrinkles exhibit interesting orientation due to confinement effects of pre-imprinted line patterns. The hierarchically wrinkled surfaces have significantly higher water contact angles than random wrinkled surfaces, exhibiting superhydrophobicity with water contact angles higher than 160° and water sliding angle lower than 5°. The hierarchically structured wrinkled surfaces exhibit tunable wettability from hydrophobic to superhydrophobic and there is an observed transition from anisotropic to isotropic wetting behavior achievable by adjusting the initial film thickness. PMID:24131534

Li, Yinyong; Dai, Shuxi; John, Jacob; Carter, Kenneth R

2013-11-13

61

Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.  

PubMed

By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 ?m dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in the CB mode severely underpredicts both the drop formation time and the average heat transfer rate through the drop. PMID:22548441

Rykaczewski, Konrad

2012-05-22

62

Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation  

NASA Astrophysics Data System (ADS)

Droplet departure frequency is investigated using environmental scanning electron microscopy with implications to enhancing the rate of dropwise condensation on superhydrophobic surfaces. Superhydrophobic surfaces, formed by cupric hydroxide nanostructures, allow the condensate to depart from a surface with a tilt angle of 30° from the horizontal. The resulting decrease in drop departure size shifts the drop size distribution to smaller radii, which may enhance the heat transfer rate during dropwise condensation. The heat transfer enhancement is estimated by modifying the Rose and Le Fevre drop distribution function to account for a smaller maximum droplet size on a superhydrophobic surface.

Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y.

2010-07-01

63

Creation of a Superhydrophobic Surface from an Amphiphilic Polymer  

Microsoft Academic Search

Superhydrophobic surfaces, with a water contact angle (CA) greater than 1508, have attracted great interest for both fundamental research and practical applications.(1) Conven- tionally, superhydrophobic surfaces are fabricated by com- bining appropriate surface roughness with low-surface-energy materials (hydrophobic materials, CA greater than 908).(2-18) It has been commonly acknowledged that it is impossible to obtain superhydrophobic surfaces from amphiphilic materi- als.

Lin Feng; Yanlin Song; Jin Zhai; Biqian Liu; Jian Xu; Lei Jiang; Daoben Zhu

2003-01-01

64

Composite, nanostructured, super-hydrophobic material  

DOEpatents

A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

D'Urso, Brian R. (Clinton, TN); Simpson, John T. (Clinton, TN)

2007-08-21

65

Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.  

PubMed

A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

Su, Fenghua; Yao, Kai

2014-06-11

66

Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.  

PubMed

A simple aqueous solution-immersion process was established to fabricate highly dense ordered Cu2O nanorods on commercial phosphor-copper mesh, with which the preparation was accomplished in distilled water. The present method, with the advantages of simple operation, low cost, short reaction time, and environmental friendliness, can be well adopted to fabricate desired Cu2O nanostructures on the phosphor-copper mesh under mild conditions. After surface modification with 1-dodecanethiol, the Cu2O nanostructure obtained on the phosphor-copper mesh exhibits excellent superhydrophobicity and superoleophilicity. Besides, a "mini boat" made from the as-prepared superhydrophobic phosphor-copper mesh can float freely on water surface and in situ collect oil from water surface. This demonstrates that the present approach, being facile, inexpensive, and environmentally friendly, could find promising application in oil-water separation and off shore oil spill cleanup. PMID:25590434

Kong, Ling-Hao; Chen, Xin-Hua; Yu, Lai-Gui; Wu, Zhi-Shen; Zhang, Ping-Yu

2015-02-01

67

Effect of superhydrophobic surface morphology on evaporative deposition patterns  

NASA Astrophysics Data System (ADS)

Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation are vital in printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. This Letter presents surface wettability-based localization of evaporation-driven particulate deposition and the effect of superhydrophobic surface morphology on the distribution of deposits. Sessile water droplets containing suspended latex particles are evaporated on non-wetting textured surfaces with varying microstructure geometry at ambient conditions. The droplets are visualized throughout the evaporation process to track the temporal evolution of contact radius and apparent contact angle. The resulting particle deposits on the substrates are quantitatively characterized. The experimental results show that superhydrophobic surfaces suppress contact-line deposition during droplet evaporation, thereby providing an effective means of localizing the deposition of suspended particles. A correlation between deposit size and surface morphology, explained in terms of the interface pressure balance at the transition between wetting states, reveals an optimum surface morphology for minimizing the deposit coverage area.

Dicuangco, Mercy; Dash, Susmita; Weibel, Justin A.; Garimella, Suresh V.

2014-05-01

68

Superhydrophobic surfaces: from natural to biomimetic to functional.  

PubMed

Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly' wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar to a simple copying or duplicating of biological structures. In this feature article, we review the recent studies in both natural superhydrophobic surfaces and biomimetic superhydrophobic surfaces, and highlight some of the recent advances in the last four years, including the various smart routes to construct rough surfaces, and a lot of chemical modifications which lead to superhydrophobicity. We also review their functions and applications to date. Finally, the promising routes from biomimetic superhydrophobic surfaces in the next are proposed. PMID:20846662

Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

2011-01-15

69

Manipulating Liquids on the Tunable Nanostructured Surfaces  

NASA Astrophysics Data System (ADS)

Recently demonstrated electrically tunable nanostructured superhydrophobic surfaces provide a promising new way of manipulating liquids at both micro and macro scale. Dynamic control over the interaction of liquids with the solid substrate is of great interest to many research areas ranging from biology and chemistry to physics and nanotechnology. In this work the influence of the nano-scale topography on the liquid-solid interaction is further investigated. The dependence of the superhydrophobic -- wetting transition on the topography of the nanostructured layer, its electrical properties, and its surface coating is discussed. The reversibility of this transition and its dependence on the geometry of the nano-size features are addressed. Several emerging applications of these surfaces, including lab-on-a-chip, chemical microreactor, and skin drag reduction are discussed.

Krupenkin, Tom

2005-03-01

70

Superhydrophobic nature of nanostructures on an indigenous Australian eucalyptus plant and its potential application  

PubMed Central

In this preliminary study, the morphology and nanostructured features formed by the epicuticular waxes of the mottlecah (Eucalyptus macrocarpa) leaf were investigated and quantified. The surface features formed by the waxes give the leaf remarkable wetting and self-cleaning properties that enhance the plant’s survival in an arid climate. This paper also provides experimental evidence of the self-assembly properties of the epicuticular waxes. Analysis of the water contact angle measurements gave a mean static contact angle of 162.00 ± 6.10 degrees, which clearly indicated that the mottlecah’s leaf surface was superhydrophobic. Detailed field emission scanning electron microscopy examination revealed that the surface was covered by bumps approximately 20 ?m in diameter and regularly spaced at a distance of around 26 ?m. The bumps are capped by nanotubules/pillars with an average diameter of 280 nm at the tips. Self-cleaning experiments indicated that the mottlecah’s leaf could be effectively cleaned by a fine spray of water droplets that rolled over the surface picking up contaminants. Field emission scanning electron microscopy investigation of extracted epicuticular waxes revealed that the waxes were capable of self-reassembly and formed features similar to those of the original leaf surface. Furthermore, also reported is a simple technique for surface treating one side of a planar surface to produce a superhydrophobic surface that can be used as a planar floatation platform for microdevices. PMID:24198490

Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Fawcett, Derek

2011-01-01

71

Drag reduction using superhydrophobic sanded Teflon surfaces  

NASA Astrophysics Data System (ADS)

In this paper, a series of experiments are presented which demonstrate drag reduction for the laminar flow of water through microchannels using superhydrophobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated with a simple, inexpensive technique of sanding polytetrafluoroethylene (PTFE) with sandpaper having grit sizes between 120- and 600-grit. A microfluidic device was used to measure the pressure drop as a function of the flow rate to determine the drag reduction and slip length of each surface. A maximum pressure drop reduction of 27 % and a maximum apparent slip length of b = 20 ?m were obtained for the superhydrophobic surfaces created by sanding PTFE with a 240-grit sandpaper. The pressure drop reduction and slip length were found to increase with increasing mean particle size of the sandpaper up to 240-grit. Beyond that grit size, increasing the pitch of the surface roughness was found to cause the interface to transition from the Cassie-Baxter state to the Wenzel state. This transition was observed both as an increase in the contact angle hysteresis and simultaneously as a reduction in the pressure drop reduction. For these randomly rough surfaces, a correlation between the slip length and the contact angle hysteresis was found. The surfaces with the smallest contact angle hysteresis were found to also have the largest slip length. Finally, a number of sanding protocols were tested by sanding preferentially along the flow direction, across the flow direction and with a random circular pattern. In all cases, sanding in the flow direction was found to produce the largest pressure drop reduction.

Song, Dong; Daniello, Robert J.; Rothstein, Jonathan P.

2014-08-01

72

Porous polymer coatings: a versatile approach to superhydrophobic surfaces**  

PubMed Central

We present a facile and inexpensive approach to superhydrophobic polymer coatings. The method involves the in-situ polymerization of common monomers in the presence of a porogenic solvent to afford superhydrophobic surfaces with the desired combination of micro- and nano-scale roughness. The method is applicable to a variety of substrates and is not limited to small areas or flat surfaces. The polymerized material can be ground into a superhydrophobic powder, which, once applied to a surface, renders it superhydrophobic. The morphology of the porous polymer structure can be efficiently controlled by composition of the polymerization mixture, while surface chemistry can be adjusted by photografting. Morphology control is used to reduce the globule size of the porous architecture from micro down to nanoscale thereby affording a transparent material. The influence of both surface chemistry as well as the length scale of surface roughness on the superhydrophobicity is discussed. PMID:20160978

Levkin, Pavel A.; Svec, Frantisek

2009-01-01

73

Photoresponsive superhydrophobic surfaces for effective wetting control.  

PubMed

Dynamically tuning the surface wettability has long been a scientific challenge, but of great importance in surface science. Robust superhydrophobic surfaces, displaying switchable and tunable extreme wetting behaviors, are successfully developed by spraying photoresponsive hydrophobic nanoparticles onto various substrates. The surface wettability can be intelligently adjusted by applying irradiation with UV or visible light, which is assumed to initiate large conformation changes of azobenzene units at the coating surface, resulting in distinct surface energy change and thus controlled wetting behaviors. The underlying wetting mechanism about the resulting surfaces is systematically investigated and supported by the estimation of water contact angles using newly rewritten Cassie-Baxter and Wenzel relations and also by the evaluation of solid surface free energy adopting the Owens-Wendt approach. The methodology proposed may provide a novel way of tuning surface wettability and investigating the wetting transition mechanism and also promote applications in self-cleaning and smart fluid control. PMID:25322263

Pan, Shuaijun; Guo, Rui; Xu, Weijian

2014-12-01

74

Superhydrophobics  

ScienceCinema

A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

Schaeffer, Daniel; Winter, Kyle

2014-05-23

75

Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO  

PubMed Central

Background Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface. PMID:21209931

Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping

2010-01-01

76

Modeling superhydrophobic surfaces comprised of random roughness  

NASA Astrophysics Data System (ADS)

We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air--water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication.

Samaha, M. A.; Vahedi Tafreshi, H.; Gad-El-Hak, M.

2011-11-01

77

Superhydrophobic surfaces: From natural to biomimetic to functional  

Microsoft Academic Search

Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly’ wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar

Zhiguang Guo; Weimin Liu; Bao-Lian Su

2011-01-01

78

Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2-Cu2O thin films.  

PubMed

By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO2-Cu2O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie-Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ~172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO2, the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required. PMID:24857856

Aytug, Tolga; Bogorin, Daniela F; Paranthaman, Parans M; Mathis, John E; Simpson, John T; Christen, David K

2014-06-20

79

Laser microstructuring for fabricating superhydrophobic polymeric surfaces  

NASA Astrophysics Data System (ADS)

In this paper we show the fabrication of hydrophobic polymeric surfaces through laser microstructuring. By using 70-ps pulses from a Q-switched and mode-locked Nd:YAG laser at 532 nm, we were able to produce grooves with different width and separation, resulting in square-shaped pillar patterns. We investigate the dependence of the morphology on the surface static contact angle for water, showing that it is in agreement with the Cassie-Baxter model. We demonstrate the fabrication of a superhydrophobic polymeric surface, presenting a water contact angle of 157°. The surface structuring method presented here seems to be an interesting option to control the wetting properties of polymeric surfaces.

Cardoso, M. R.; Tribuzi, V.; Balogh, D. T.; Misoguti, L.; Mendonça, C. R.

2011-02-01

80

Superhydrophobic surfaces with excellent mechanical durability and easy repairability  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces with both excellent mechanical durability and easy repairability based on polytetrafluoroethylene/polyvinylidene fluoride (PTFE/PVDF) composites were prepared by a facile method. The surface energy of PVDF matrix was lowered by the incorporation of PTFE particles, and the rough micro textures on the surfaces of the composites were created by abrading. A water droplet on the surface exhibited a contact angle of about 163.5°, and a sliding angle lower than 5°. Such superhydrophobic surfaces showed strong mechanical durability because the surfaces were prepared in the way of mechanical abrasion. The scratch tests indicated that the surface micro textures were retained after the abrasion cycles, and the fresh exposed surfaces were still superhydrophobic. More importantly, such superhydrophobicity can be repaired by a simple abrading regeneration process within a few minutes when the surface is polluted by dust or organic contaminant.

Wang, F. J.; Lei, S.; Ou, J. F.; Xue, M. S.; Li, W.

2013-07-01

81

Anisotropic electro-osmotic flow over superhydrophobic surfaces  

E-print Network

Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either ...

Bazant, Martin Z.

82

Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination  

NASA Astrophysics Data System (ADS)

Surfaces exhibiting superhydrophobicity are attracting commercial and academic attention because of their potential applications in, for example, self-cleaning utensils, microfluidic systems, and microelectronic devices. In this study, we prepared a fluorinated superhydrophobic surface displaying nanoscale roughness, a superhydrophobic surface possessing a micro- and nanoscale binary structure, and a fluorinated superhydrophobic surface possessing such a binary structure. We investigated the effects of the (i) hierarchy of the surface topography and (ii) the surface chemical composition of the superhydrophobic carbon nanotube/polybenzoxazine coatings on their ability to retain superhydrophobicity upon contamination with particles and organic matter, an important characteristic for maintaining non-wetting properties under outdoor conditions. We have found that the topographical microstructure and the surface chemical composition are both important factors for preservation of the non-wetting properties of such superhydrophobic surfaces upon contamination with organic matter.

Wang, Chih-Feng; Hung, Shih-Wei; Kuo, Shiao-Wei; Chang, Chi-Jung

2014-11-01

83

Fabrication of superhydrophobic copper surface with excellent corrosion resistance  

NASA Astrophysics Data System (ADS)

This article presents an effective and facile method for preparing the superhydrophobic copper surface with excellent corrosion resistance. The superhydrophobic copper surfaces were fabricated by oxidizing, heat-treating, and alkyl chains' grafting. The resulting copper plates take on the binary structure which is composed of a great deal of nanosheets and needle-like/rod-like fibers. Just grounded on both the micro- and nanoscale hierarchical surface and the grafted long alkyl chains, the resulting copper plates are endued with the excellent water repellence, while the water contact angle and sliding angle can reach 157.3° and 5°, respectively. As a result, the superhydrophobic copper plates get the outstanding corrosion resistance.

Feng, Libang; Zhao, Libin; Qiang, Xiaohu; Liu, Yanhua; Sun, Zhiqiang; Wang, Bei

2014-12-01

84

Fabrication of a superhydrophobic surface on a wood substrate  

NASA Astrophysics Data System (ADS)

A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.

Wang, Shuliang; Shi, Junyou; Liu, Changyu; Xie, Cheng; Wang, Chengyu

2011-09-01

85

Delayed frost growth on jumping-drop superhydrophobic surfaces.  

PubMed

Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation. PMID:23286736

Boreyko, Jonathan B; Collier, C Patrick

2013-02-26

86

Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions  

SciTech Connect

In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

Sarshar, Mohammad Amin [Stevens Institute of Technology, Hoboken, New Jersey; Swarctz, Christopher [Stevens Institute of Technology, Hoboken, New Jersey; Hunter, Scott Robert [ORNL; Simpson, John T [ORNL; Choi, Chang-Hwan [Stevens Institute of Technology, Hoboken, New Jersey

2012-01-01

87

Particle deposition on superhydrophobic surfaces by sessile droplet evaporation  

NASA Astrophysics Data System (ADS)

Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is to explore the morphology of particles deposited on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex spheres. Droplet evaporation experiments are performed on non-wetting, textured surfaces with varying geometric parameters. The temporal evolution of the droplet contact radius and contact angle throughout the evaporation process are tracked by visualizing the transient droplet shape and wetting behavior. The droplets are observed to exhibit a combination of the following modes of evaporation: the constant contact radius mode, the constant contact angle mode, and the mixed mode in which the contact angle and the contact radius change simultaneously. After complete dry-out, the remaining particulate deposits are qualitatively and quantitatively characterized to describe their spatial distribution. In the first part of the study, the test surfaces are maintained at different temperatures. Experiments are conducted at ambient conditions and at elevated substrate temperatures of approximately 40°C, 50°C, and 60°C. The results show that droplet evaporation on superhydrophobic surfaces, driven by either mass diffusion at ambient conditions or by substrate heating, suppresses deposition of particles at the contact-line during droplet evaporation. This behavior provides an effective means of localizing the deposition of suspended particles. In the second part of the study, the droplets are allowed to evaporate at ambient conditions on test substrates with significant relative differences in surface morphology. These differing surfaces yield a wide range of surface wettability as a means to control the particulate deposition process. Analysis of the droplet wetting behavior throughout the evaporation process show that the droplet could either remain in the Cassie state (resting on top of the roughness elements) or transition into the Wenzel state (roughness elements flooded). Top- and side-view images of the droplet profile are visualized to confirm the droplet wetting state near the end of evaporation. Experimental observations are compared with a theoretical trend of the Cassie-to-Wenzel transition based on the capillary-Laplace pressure balance at transition between wetting states. The results reveal a relationship between localized deposit size and surface morphology based on this ultimate wetting state. An optimum surface morphology for minimizing the deposit coverage area is identified.

Dicuangco, Mercy Grace

88

Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method  

NASA Astrophysics Data System (ADS)

This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

2014-03-01

89

Drag reduction in turbulent flows over superhydrophobic surfaces Robert J. Daniello, Nicholas E. Waterhouse, and Jonathan P. Rothstein  

E-print Network

Drag reduction in turbulent flows over superhydrophobic surfaces Robert J. Daniello, Nicholas E, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain

Rothstein, Jonathan

90

A novel fabrication of superhydrophobic surfaces for universal applicability  

NASA Astrophysics Data System (ADS)

The present work reports a novel and facile approach to fabricate stable superhydrophobic surfaces for universal applicability in practice. Poly(furfuryl alcohol)/copper composite coatings were prepared on substrates via a brush-painting method; after being immersed in a stearic acid solution, the superhydrophobic surfaces were obtained due to the formation of copper stearate on the substrates. These products were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray powder diffraction and the X-ray photoelectron spectrum. Results demonstrate that the superhydrophobic surfaces formed originally on copper substrates can also be generated on other substrates without the copper element. Furthermore, this work will provide a simple and universal method to create large-scale superhydrophobic surfaces on various substrates.

Chen, Su-Wen; Guo, Bo-Long; Wu, Wang-Suo

2011-12-01

91

Viscous fluid streamlet flow down an inclined superhydrophobic surface  

NASA Astrophysics Data System (ADS)

The problem of a steady flow of a viscous streamlet down an inclined plane superhydrophobic surface in a gravity field is investigated. A nonlinear partial differential equation for determining the unknown form of the streamlet cross section is derived. A class of nonuniform superhydrophobic surfaces, which are characterized by an effective slip tensor, for which the construction of self-similar solutions of the problem under consideration is possible, is found. The necessary conditions for the existence of self-similar solutions are found. The self-similar shapes of the wetting region and the streamlet cross section are found numerically for two examples of superhydrophobic surfaces. The results of the investigation can be used when experimentally determining the effective characteristics of superhydrophobic surfaces, namely, the components of the effective slip tensor.

Ageev, A. I.; Osiptsov, A. N.

2014-10-01

92

Condensation and freezing of droplets on superhydrophobic surfaces.  

PubMed

Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface. PMID:24200089

Oberli, Linda; Caruso, Dean; Hall, Colin; Fabretto, Manrico; Murphy, Peter J; Evans, Drew

2014-08-01

93

Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion  

NASA Astrophysics Data System (ADS)

Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer thickness and pore dimensions at the aluminum surface. The results show that thicker oxide layers with larger pore sizes allow the nanostructured surface to retain more gas (air) and hence provide a more effective barrier to corrosion. The anodizing techniques are further advanced to design and produce hierarchical three-dimensional nanostructures for better retention of the gaseous barrier layer at the surface.

Jeong, Chanyoung

94

Superhydrophobic nanostructured coating for anti-icing applications  

NASA Astrophysics Data System (ADS)

In this work, anti-icing superhydrophobic (SHP) tungsten nanorod (WNR) surfaces were fabricated. The fabrication of WNR surfaces as rough surfaces was carried out using the Glancing Angle Deposition (GLAD) technique. Using the magnetron-sputtering deposition method, the deposition Ar pressure, Ar flow rate, and substrate tilting angle were varied to fabricate WNRs with different surface morphologies and porosities. The surface energy of the WNR films was lowered by coating them with a nano-layer (10-15nm) of Teflon AF2400 using an effusion cell. Static contact angle (SCA) measurements of the sessile water droplet gently dispensed on surfaces were used to characterize the static wetting properties of those surfaces. After surface treatment of the fabricated WNRs with different spacing, heights, and nanorod natural pyramidal tips, surfaces with tunable hydrophobic properties with SCAs ranging from 120° to 160° were obtained. The well-known classical Wenzel and Cassie models were used to predict the observed CAs. The proposed geometrically modified Cassie model showed consistent agreement with the observed high SCAs. The dynamic study of the wetting properties of the fabricated surfaces was carried out using water droplet evaporation on the surfaces. The kinetics of water droplet evaporation showed a significant influence of surface wetting properties, morphology, and porosity on the three modes of evaporation. Moreover, the contact angle hysteresis (CAH) of the surfaces was measured by the dynamic approach of adding/withdrawing water to/from the surfaces, respectively. The SHP-WNR films maintained a relatively low CAH of 30 degrees. The CAHs obtained by both kinetics of evaporation and the dynamic approach were consistent. Finally, the ability of the supercooled SHP-WNRs, kept at a temperature of -10 °C, to repel supercooled water droplets with a subzero temperature as low as -10 °C was tested. The SHP-WNRs' surfaces were able to repel supercooled water droplets released from a height of 15 mm with an impact velocity of 0.54 m/s. Calculations of energy dissipation in the course of bouncing due to the water droplets' physical properties and the surface wetting properties were performed. In addition to surface CAH and water droplet vibration, a significant energy loss due to an increase in supercooled water droplet viscosity as a function of its temperature was observed.

Khedir, Khedir R.

95

Topographical length scales of hierarchical superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

The morphology of hydrophobic CF4 plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent ? = 0.42 for length scales shorter than ?500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°)).

Dhillon, P. K.; Brown, P. S.; Bain, C. D.; Badyal, J. P. S.; Sarkar, S.

2014-10-01

96

Impalement transitions in droplets impacting microstructured superhydrophobic surfaces  

E-print Network

Liquid droplets impacting a superhydrophobic surface decorated with micro-scale posts often bounce off the surface. However, by decreasing the impact velocity droplets may land on the surface in a fakir state, and by increasing it posts may impale droplets that are then stuck on the surface. We use a two-phase lattice-Boltzmann model to simulate droplet impact on superhydrophobic surfaces, and show that it may result in a fakir state also for reasonable high impact velocities. This happens more easily if the surface is made more hydrophobic or the post height is increased, thereby making the impaled state energetically less favourable.

J. Hyväluoma; J. Timonen

2008-07-29

97

Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

Arscott, Steve

2013-06-01

98

Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.  

PubMed

Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces. PMID:21770147

Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

2011-06-01

99

Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface  

NASA Astrophysics Data System (ADS)

When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

Boreyko, Jonathan; Chen, Chuan-Hua

2009-11-01

100

Superhydrophobic surfaces: are they really ice-repellent?  

PubMed

This work investigates the anti-ice performance of various superhydrophobic surfaces under different conditions. The adhesion strength of glaze ice (similar to that deposited during "freezing rain") is used as a measure of ice-releasing properties. The results show that the ice-repellent properties of the materials deteriorate during icing/deicing cycles, as surface asperities appear to be gradually damaged. It is also shown that the anti-icing efficiency of superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top of and between surface asperities takes place, leading to significantly larger values of ice adhesion strength. This work thus shows that superhydrophobic surfaces are not always ice-repellent and their use as anti-ice materials may therefore be limited. PMID:21141839

Kulinich, S A; Farhadi, S; Nose, K; Du, X W

2011-01-01

101

Micro-and nanostructured silicon-based superomniphobic surfaces.  

PubMed

We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA>150° for water) and superoleophobic behavior (CA ? 140° for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids. PMID:24370432

Nguyen, Thi Phuong Nhung; Boukherroub, Rabah; Thomy, Vincent; Coffinier, Yannick

2014-02-15

102

Reversible switching between superhydrophobic states on a hierarchically structured surface  

PubMed Central

Nature offers exciting examples for functional wetting properties based on superhydrophobicity, such as the self-cleaning surfaces on plant leaves and trapped air on immersed insect surfaces allowing underwater breathing. They inspire biomimetic approaches in science and technology. Superhydrophobicity relies on the Cassie wetting state where air is trapped within the surface topography. Pressure can trigger an irreversible transition from the Cassie state to the Wenzel state with no trapped air—this transition is usually detrimental for nonwetting functionality and is to be avoided. Here we present a new type of reversible, localized and instantaneous transition between two Cassie wetting states, enabled by two-level (dual-scale) topography of a superhydrophobic surface, that allows writing, erasing, rewriting and storing of optically displayed information in plastrons related to different length scales. PMID:22689952

Verho, Tuukka; Korhonen, Juuso T.; Sainiemi, Lauri; Jokinen, Ville; Bower, Chris; Franze, Kristian; Franssila, Sami; Andrew, Piers; Ikkala, Olli; Ras, Robin H. A.

2012-01-01

103

Patterned superhydrophobic surface based on Pd-based metallic glass  

NASA Astrophysics Data System (ADS)

Without any modification or post-treatment, superhydrophobic surfaces with good stability were fabricated by hot-embossing honeycomb patterns on Pd40Cu30Ni10P20 bulk metallic glass (BMG). The water contact angle reaches above 150° when the pitch between adjacent cells is larger than the critical size of 115.5 ?m. The wetting behavior on the patterned BMG can be well rationalized in terms of the modified Cassie-Baxter theory [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)] by considering surface energy gradient. The achievement of the superhydrophobicity on BMG surface opens a window for the functional applications of metallic glasses.

Xia, Ting; Li, Ning; Wu, Yue; Liu, Lin

2012-08-01

104

Modeling and Optimization of Superhydrophobic Condensation  

E-print Network

Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding water droplets via coalescence-induced ...

Miljkovic, Nenad

105

Free-standing, flexible, multifunctional, and environmentally stable superhydrophobic composite film made of self-assembled organic micro/super-nanostructures through solution process.  

PubMed

A free-standing, flexible, transparent, and fluorescent superhydrophobic composite film is fabricated by drop-casting a layer of organic self-assembled flowerlike micro/super-nanostructures on top of a hydrophobic polyimide film. The solution process to grow the organic super-nanostructures, fabricate the composite film, and lift-off the film from the mother substrate, ensures the process simplicity, low-cost, and scalability. The water contact angle (CA) of the superhydrophobic composite films reaches as high as 159.6°, and the sliding angle (SA) is less than 2° without any further low surface energy treatment. The as-prepared film shows superhydrophobicity with a CA above 150° covering the entire pH range. Moreover, the composite film exhibits good environmental stability against both organic solvent treatment and being exposed to acidic and aqueous solutions. The fluorescence from the composite film extends the potential application of the film into the optoelectronic field. The results may open up an avenue to prepare smart and intelligent superhydrophobic films for application. PMID:25618240

Dong, Ting; Zhou, Yan; Hu, Diangang; Xiao, Peng; Wang, Qing; Wang, Jian; Pei, Jian; Cao, Yong

2015-05-01

106

Spatially controlled surface energy traps on superhydrophobic surfaces.  

PubMed

Water wetting and adhesion control on polymeric patterns are achieved by tuning the configuration of their surface's structural characteristics from single to dual and triple length-scale. In particular, surfaces with combined micro-, submicrometer-,and nanoroughness are developed, using photolithographically structured SU-8 micro-pillars as substrates for the consecutive spray deposition of polytetrafluoroethylene (PTFE) submicrometer particles and hydrophobically capped iron oxide colloidal nanoparticles. The PTFE particles alone or in combination with the nanoparticles render the SU-8 micropillars superhydrophobic. The water adhesion behaviour of the sprayed pillars is more complex since they can be tuned gradually from totally adhesive to completely non adhesive. The influence of the hierarchical geometrical features of the functionalized surfaces on this behaviour is discussed within the frame of the theory. Specially designed surfaces using the described technique are presented for selective drop deposition and evaporation. This simple method for liquid adhesion control on superhydrophobic surfaces can find various applications in the field of microfluidics, sensors, biotechnology, antifouling materials, etc. PMID:24386959

Milionis, Athanasios; Fragouli, Despina; Martiradonna, Luigi; Anyfantis, George C; Cozzoli, P Davide; Bayer, Ilker S; Athanassiou, Athanassia

2014-01-22

107

Graphene-based nanostructured hybrid materials for conductive and superhydrophobic functional coatings.  

PubMed

A bi-functional, conductive and superhydrophobic, graphene-based nanostructured hybrid material was fabricated. In order to construct the bi-functional hybrid material, carbon nanotubes (CNT) and polyhedral oligomeric silsesquioxane (POSS) were introduced. The water contact angle (WCA) of the graphene/POSS/CNT coating reached about 155 degrees and its conductivity was about 1-10 S/cm. Such graphene-based nanostructured hybrid materials could have great potential as an antistatic and self-cleaning coating in various applications. PMID:22097478

Jin, J; Wang, X; Song, M

2011-09-01

108

Characterization of underwater stability of superhydrophobic surfaces using quartz crystal microresonators.  

PubMed

We synthesized porous aluminum oxide nanostructures directly on a quartz crystal microresonator and investigated the properties of superhydrophobic surfaces, including the surface wettability, water permeation, and underwater superhydrophobic stability. After increasing the pore diameter to 80 nm (AAO80), a gold film was deposited onto the AAO80 membrane, and the pore entrance size was reduced to 30 nm (AAO30). The surfaces of the AAO80 and AAO30 were made to be hydrophobic through chemical modification by incubation with octadecanethiol (ODT) or octadecyltrichlorosilane (OTS), which produced three different types of superhydrophobic surfaces on quartz microresonators: OTS-modified AAO80 (OTS-AAO80), ODT-modified AAO30 (ODT-AAO30), and ODT-OTS-modified AAO30 (TS-AAO30). The loading of a water droplet onto a microresonator or the immersion of a resonator into water induced changes in the resonance frequency that corresponded to the water permeation into the nanopores. TS-AAO30 exhibited the best performance, with a low degree of water permeation, and a high stability. These features were attributed to the presence of sealed air pockets and the narrow pore entrance diameter. PMID:24978595

Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

2014-07-15

109

Superhydrophobic Surface Coatings for Microfluidics and MEMs.  

SciTech Connect

Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4

Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

2006-11-01

110

Mechanical stability of surface architecture--consequences for superhydrophobicity.  

PubMed

Wet chemistry methods such as sol-gel provide a facile means of preparing coatings with controlled surface chemistry and architecture. The manipulation of colloidal "building blocks," film constituents, and reaction conditions makes it a promising method for simple, scalable, and routine production of superhydrophobic coatings. Despite all of this, the practical application of superhydrophobic coatings remains limited by low mechanical durability. The translation of chemistry to mechanical strength within superhydrophobic films is severely hindered by the requisite physical structure. More specifically, porosity and the surface architecture of roughness in sol-gel-derived films contribute significantly to poor mechanical properties. These physical effects emphasize that collective structure and chemistry-based strategies are required. This challenge is not unique to superhydrophobics, and there are many principles that can be drawn upon to greatly improve performance. The delicate interplay between chemistry and physical structure has been highlighted through theory and characterization of porous and rough interfaces within and outside the framework of superhydrophobics. Insights can further be drawn from biology. Nature's capacity for self-repair remains extremely challenging to mimic in materials. However, nature does demonstrate strategies for structuring nano- and microbuilding blocks to achieve generally mutually exclusive properties. Difficulties with characterization and example mechanical characterization methods have also been emphasized. PMID:25318076

Dyett, Brendan P; Wu, Alex H; Lamb, Robert N

2014-11-12

111

Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions.  

PubMed

In this paper, we have comparatively investigated the stability of superhydrophobic behaviors of fresh and biomimetic lotus leaf surfaces under controlled water condensation conditions. The binary micro/nano structures of the superhydrophobic surfaces are observed with electron micrographs. Contact and sliding angles are evaluated by syringing water droplets on the substrates with surface temperatures and humidity precisely controlled between -10 and 30 °C, and RH = 10, 30, 60, and 90%. According to the calculations on the solid-liquid contact area fraction in different environmental conditions based on a micro/nano binary structure model, the effects of condensed water on superhydrophobic surfaces are assessed quantitatively. Both the calculated and experimental results indicate that the temperature difference between surface temperature and the dew point during measurement is essential to the occurrence of water condensation while the effect of condensation on the surface wettability also depends on the topology of hierarchical structured surfaces. The loss of water repellency that usually appears on the artificial superhydrophobic surface under low temperature and high humidity conditions is proved to be reversible, showing a bidirectional transition of the equilibrium state between Wenzel and Cassie-Baxter. PMID:21443252

Yin, Long; Zhu, Lin; Wang, Qingjun; Ding, Jianfu; Chen, Qingmin

2011-04-01

112

Superhydrophobic surface supported bioassay--an application in blood typing.  

PubMed

This study presents a new application of superhydrophobic surfaces in conducting biological assays for human blood typing using a liquid drop micro reactor. The superhydrophobic substrate was fabricated by a simple printing technique with Teflon powder. The non-wetting and weak hysteresis characteristics of superhydrophobic surfaces enable the blood and antibody droplets to have a near-spherical shape, making it easy for the haemagglutination reaction inside the droplet to be photographed or recorded by a digital camera and then analyzed by image analysis software. This novel blood typing method requires only a small amount of blood sample. The evaluation of assay results using image analysis techniques offers potential to develop high throughput operations of rapid blood typing assays for pathological laboratories. With the capability of identifying detailed red blood cell agglutination patterns and intensities, this method is also useful for confirming blood samples that have weak red blood cell antigens. PMID:23434709

Li, Lizi; Tian, Junfei; Li, Miaosi; Shen, Wei

2013-06-01

113

Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance  

NASA Astrophysics Data System (ADS)

Superhydrophobic surface with mechanical stability and corrosion resistance is long expected due to its practical applications. We show that a micro-nano scale hierarchical structured Pd-based metallic glass surface with superhydrophobic effect can be prepared by the thermoplastic forming, which is a unique and facile synthesis strategy for metallic glasses. The superhydrophobic metallic glass surface without modification of low surface energy chemical layer also exhibits superior mechanical stability and corrosion resistance compared with conventional superhydrophobic materials. Our results indicate that the metallic glass is a promising candidate superhydrophobic material for applications.

Ma, J.; Zhang, X. Y.; Wang, D. P.; Zhao, D. Q.; Ding, D. W.; Liu, K.; Wang, W. H.

2014-04-01

114

Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.  

PubMed

The evaporation characteristics of sessile water droplets on smooth hydrophobic and structured superhydrophobic heated surfaces are experimentally investigated. Droplets placed on the hierarchical superhydrophobic surface subtend a very high contact angle (?160°) and demonstrate low roll-off angle (?1°), while the hydrophobic substrate supports corresponding values of 120° and ?10°. The substrates are heated to different constant temperatures in the range of 40-60?°C, which causes the droplet to evaporate much faster than in the case of natural evaporation without heating. The geometric parameters of the droplet, such as contact angle, contact radius, and volume evolution over time, are experimentally tracked. The droplets are observed to evaporate primarily in a constant-contact-angle mode where the contact line slides along the surface. The measurements are compared with predictions from a model based on diffusion of vapor into the ambient that assumes isothermal conditions. This vapor-diffusion-only model captures the qualitative evaporation characteristics on both test substrates, but reasonable quantitative agreement is achieved only for the hydrophobic surface. The superhydrophobic surface demonstrates significant deviation between the measured evaporation rate and that obtained using the vapor-diffusion-only model, with the difference being amplified as the substrate temperature is increased. A simple model considering thermal diffusion through the droplet is used to highlight the important role of evaporative cooling at the droplet interface in determining the droplet evaporation characteristics on superhydrophobic surfaces. PMID:24827255

Dash, Susmita; Garimella, Suresh V

2014-04-01

115

Superhydrophobic surface as a fluid enhancement material in engineering applications  

NASA Astrophysics Data System (ADS)

In this study, a superhydrophobic surface and its relation to the enhancement of the droplet fluid dynamics to the surface of the object materials was investigated. As the comparison, hydrophilic and uncoated surface of an object also investigated. The investigations used height of impact at 89 mm. The high quality speed camera is employed to investigate the droplet dynamic on a copper foil and a calcium fluoride surfaces. Both of the materials are coated with superhydrophobic and hydrophilic surfaces separately. The droplet diameter was analyzed using the program PHANTOM. The droplet contact angle was analyzed by the Goniometry method. The water was dropped on the calcium fluoride and the copper foil using a syringe (sharp tip) with initial droplet diameter of 1.9 mm. To record the droplet fluid shape, the photo micro sensor was placed inside the trigger box below the syringe. The results showed that the superhydrophobic surface both on copper foil and calcium fluoride enhanced the mobility of a droplet compared to the hydrophilic and the uncoated surfaces. The results showed that the maximum droplet diameter on the copper foil coated by the superhydrophobic, the hydrophilic and the uncoated surfaces are 4.7, 5.0, 5.2 mm, respectively; and for the calcium fluoride are 4.5, 5.1 and 5.5 mm, respectively. Meanwhile, the results for the droplet contact angle on the copper foil coated by the superhydrophobic, the hydrophilic and the uncoated surfaces are 20°, 90°, 160°, respectively; and for the calcium fluoride are 25°, 95°, 165°, respectively.

Tetuko, Anggito P.; Khaerudini, Deni S.; Sardjono, Priyo; Sebayang, Perdamean; Rosengarten, Gary

2013-09-01

116

Surface Adhesive Forces: A Metric Describing the Drag-Reducing Effects of Superhydrophobic Coatings.  

PubMed

Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. PMID:25418808

Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

2014-11-22

117

Drag reduction in turbulent flows over superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.

2009-08-01

118

Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property  

NASA Astrophysics Data System (ADS)

Aluminum is extensively used metals in transmission lines, and the accumulation of ice on aluminum may inflict serious damage such as tower collapse and power failure. In this study, micro/nanostructured aluminum surface was fabricated using a continuous chemical etching method. The static and dynamic anti-icing behaviors of the as-prepared aluminum surface in different conditions were systematically investigated with a self-made device and artificial climate laboratory. Results showed that the as-prepared surface can mitigate freezing in glaze ice. Only several isolated ice points formed on the surface in glaze ice after 50 min. Due to the superhydrophobicity of the as-prepared aluminum surface, cold water sprayed on the surface aggregated into large drops and rolled off the surface before freezing, thus protecting the surface against excessive ice accumulation. The surface morphology and crystal structure of the samples were also characterized by scanning electron microscopy/energy-dispersive spectrometry and X-ray diffraction. This study offers insight into understanding the anti-icing behavior of the superhydrophobic aluminum surface and may favor the application of structured aluminum surface in power transmission lines against ice accumulation.

Liao, Ruijin; Zuo, Zhiping; Guo, Chao; Yuan, Yuan; Zhuang, Aoyun

2014-10-01

119

Studies of drag on the nanocomposite superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 ?m with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean

2015-01-01

120

Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes  

NASA Astrophysics Data System (ADS)

The effect of the secondary fluid enclosed in the indentations of a superhydrophobic surface on electro-osmotic flow is investigated. We derive analytical expressions for the net electro-osmotic flow over periodically structured surfaces, accounting for the influence of dissipation within the secondary fluid as well as for the role of charges at the fluid-fluid interfaces that are generated by auxiliary electrodes. Specifically, for a surface with rectangular grooves, the electro-osmotic flow velocity is related to the geometric parameters of the surface and the viscosity of an arbitrary secondary fluid filling the grooves. The results suggest that on specific superhydrophobic surfaces a flow enhancement by more than two orders of magnitude compared to unstructured surfaces can be expected.

Schönecker, Clarissa; Hardt, Steffen

2014-06-01

121

Structure irregularity impedes drop roll-off at superhydrophobic surfaces.  

PubMed

We study water drop roll-off at superhydrophobic surfaces with different surface patterns. Superhydrophobic microcavity surfaces were fabricated in silicon and coated with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS). For the more irregular surface patterns, the observed increase in roll-off angles is found to be caused by a decrease of the receding contact angle, which in turn is caused by an increase of the triple phase contact line of the drops for those more irregular surfaces. To understand the observation, we propose to treat the microdrops as rigid bodies and apply a torque balance between the torque exerted by the projected gravity force and the torque exerted by the adhesion force acting along the triple line on the receding side of the drop. This simple model provides a proper order of magnitude estimate of the measured effects. PMID:24735125

Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil; Taboryski, Rafael

2014-05-01

122

Microcavity-array superhydrophobic surfaces: Limits of the model  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces formed of microcavities can be designed with specific desired advancing and receding contact angles using a new model described by us in prior work. Here, we discuss the limits of validity of the model, and explore the application of the model to surfaces fabricated with small cavities of radius 250 nm and with large cavities of radius 40 ?m. The Wenzel model is discussed and used to calculate the advancing and receding contact angles for samples for which our model cannot be applied. We also consider the case of immersion of a sample containing microcavities in pressurized water. A consideration that then arises is that the air inside the cavities can be dissolved in the water, leading to complete water invasion into the cavities and compromising the superhydrophobic character of the surface. Here, we show that this effect does not destroy the surface hydrophobia when the surface is subsequently removed from the water.

Salvadori, M. C.; Oliveira, M. R. S.; Spirin, R.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

2013-11-01

123

Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.  

PubMed

Superhydrophobic polymer surfaces are typically fabricated by combining hierarchical micro-nanostructures. The surfaces have a great technological potential because of their special water-repellent and self-cleaning properties. However, the poor mechanical robustness of such surfaces has severely limited their use in practical applications. This study presents a simple and swift mass production method for manufacturing hierarchically structured polymer surfaces at micrometer scale. Polypropylene surface structuring was done using injection molding, where the microstructured molds were made with a microworking robot. The effect of the micro-microstructuring on the polymer surface wettability and mechanical robustness was studied and compared to the corresponding properties of micro-nanostructured surfaces. The static contact angles of the micro-microstructured surfaces were greater than 150° and the contact angle hysteresis was low, showing that the effect of hierarchy on the surface wetting properties works equally well at micrometer scale. Hierarchically micro-microstructured polymer surfaces exhibited the same superhydrophobic wetting properties as did the hierarchically micro-nanostructured surfaces. Micro-microstructures had superior mechanical robustness in wear tests as compared to the micro-nanostructured surfaces. The new microstructuring technique offers a precisely controlled way to produce superhydrophobic wetting properties to injection moldable polymers with sufficiently high intrinsic hydrophobicity. PMID:23009694

Huovinen, Eero; Hirvi, Janne; Suvanto, Mika; Pakkanen, Tapani A

2012-10-16

124

One-step process for the fabrication of superhydrophobic surfaces with easy repairability  

NASA Astrophysics Data System (ADS)

A simple technique for fabrication of superhydrophobic surfaces was developed by spraying copper stearate suspension on various substrates. The copper stearate suspension is prepared by the reaction of copper acetate and stearic acid in ethanol solution. The as-prepared surfaces exhibit both superhydrophobicity and self-cleaning properties. When the superhydrophobic surfaces were destroyed, the damaged surfaces could be easily repaired by spraying the copper stearate suspension on the wrecked surfaces again, and the superhydrophobicity of the surfaces was regenerated at the same time.

Li, Jian; Wan, Hongqi; Ye, Yinping; Zhou, Huidi; Chen, Jianmin

2012-01-01

125

Fabrication and wear protection performance of superhydrophobic surface on zinc  

NASA Astrophysics Data System (ADS)

A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N, N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156° and provide effective friction-reducing and wear protection for zinc substrate.

Wan, Yong; Wang, Zhongqian; Xu, Zhen; Liu, Changsong; Zhang, Junyan

2011-06-01

126

Programming nanostructured soft biological surfaces by atomic layer deposition  

NASA Astrophysics Data System (ADS)

Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature.

Miklós Szilágyi, Imre; Teucher, Georg; Härkönen, Emma; Färm, Elina; Hatanpää, Timo; Nikitin, Timur; Khriachtchev, Leonid; Räsänen, Markku; Ritala, Mikko; Leskelä, Markku

2013-06-01

127

Programming nanostructured soft biological surfaces by atomic layer deposition.  

PubMed

Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature. PMID:23680967

Szilágyi, Imre Miklós; Teucher, Georg; Härkönen, Emma; Färm, Elina; Hatanpää, Timo; Nikitin, Timur; Khriachtchev, Leonid; Räsänen, Markku; Ritala, Mikko; Leskelä, Markku

2013-06-21

128

Quantum Vacuum Photon Modes and Superhydrophobicity  

NASA Astrophysics Data System (ADS)

Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-mode alteration on van der Waals forces and thus on hydrophobicity. Using first-principles calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-mode tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as a function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.

Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Sarrazin, Michaël

2015-01-01

129

Quantum vacuum photon-modes and superhydrophobicity  

E-print Network

Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-modes alteration on van der Waals forces and thus on hydrophobicity. Using first-principle calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-modes tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.

Louis Dellieu; Olivier Deparis; Jerome Muller; Michael Sarrazin

2014-12-19

130

Drop impact and wettability: From hydrophilic to superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

2012-10-01

131

Electro-osmosis on anisotropic super-hydrophobic surfaces  

E-print Network

We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneously charged channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.

Belyaev, Aleksey V

2011-01-01

132

Electro-osmosis on anisotropic super-hydrophobic surfaces  

E-print Network

We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneous channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.

Aleksey V. Belyaev; Olga I. Vinogradova

2011-03-16

133

Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.  

PubMed

The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy. PMID:22424422

Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

2012-04-10

134

Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics  

PubMed Central

Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

2012-01-01

135

Dynamical force and imaging characterization of superhydrophobic surfaces.  

PubMed

We devised a dangling cantilever optical lever setup with imaging that permits dynamical studies of superhydrophobic surfaces without the effects of gravitational acceleration for better insight into the mechanics. The setup enabled us to ascertain liquid loss and ascribe it to the interaction of liquid that just touched the superhydrophobic surface as it translated at various constant lateral speeds. At lower speeds (20-60 ?m/s), the interactions were characterized by a strong initial liquid pin (at up to 0.6 nN force) and depin followed by a series of smaller force pin and depins before sufficient liquid loss led to total liquid detachment from the surface. At higher translation speeds (80-100 ?m/s), the interactions were characterized by liquid pinning and depinning processes at a sustained force (around 0.7 nN) in which liquid loss was low enough to engender a much later liquid detachment (beyond 100 s). A linear reduction of the receding contact angle with time, but not with the advancing contact angle, was found up to the point of first liquid depinning. This suggested a stronger role played by the receding contact line in establishing liquid adherence to the superhydrophobic surface. The detachment process from the surface was also characterized by a liquid bridge driven to rupture by way of liquid being conveyed away from the bridge. PMID:22081897

Ng, Tuck Wah; Panduputra, Yohannes

2012-01-10

136

Water-collecting behavior of nanostructured surfaces with special wettability  

NASA Astrophysics Data System (ADS)

Dew is commonly formed even in dry regions, and we examined the suitability of surfaces with superhydrophilic patterns on a superhydrophobic background as a dew-harvesting system. Nanostructured surfaces with mixed wettability were fabricated by ZnO and TiO2 nanorods. The condensation properties were investigated by environmental scanning electron microscopy (ESEM), and the water-collecting function of the patterned surfaces in an artificial environment was confirmed. Condensation and water-collecting behavior were evaluated as a function of surface inclination angle and pattern shape. We examined the collecting efficiency among the different wettabilities at various inclination angles and observed the condensation behavior for various superhydrophilic shapes.

Choo, Soyoung; Choi, Hak-Jong; Lee, Heon

2015-01-01

137

Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.  

PubMed

The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ?9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ?10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ?30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 ?L of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance. PMID:21823656

Goswami, Debmita; Medda, Samar Kumar; De, Goutam

2011-09-01

138

Deposition and tuning of nanostructured hydrocarbon deposits: From superhydrophobic to superhydrophilic and back  

SciTech Connect

Carbonaceous fluorine free nanoparticles synthesized in a low temperature acetylene discharge are used in a first step for the production of (super)hydrophobic coatings. In a second step, the influence of different plasma and UV induced functionalizations on the wetting characteristics of these materials is investigated. The experiments show that the superhydrophobic surfaces can be turned continuously and reversibly into hydrophilic (superhydrophilic) surfaces by means of the different treatment methods. The reversibility of these processes is studied in a third step. It is shown that the changes of the surface which are induced by the plasma treatment can be undone by means of EUV irradiation. The switchability of the surface due to external stimuli can be easily used for the controlled production of patterned surfaces. This is demonstrated by means of one simple example.

Berndt, J.; Acid, H.; Kovacevic, E.; Cachoncinlle, C.; Boufendi, L. [GREMI, Universite d'Orleans, Polytech'Orleans, F-45067 Orleans Cedex 2 (France); Strunskus, Th. [Christian-Albrechts-Universitaet zu Kiel, Institut fuer Materialwissenschaft-Materialverbunde, D-24143 Kiel (Germany)

2013-02-14

139

Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix.  

PubMed

Superhydrophobic surfaces are of immense scientific and technological interests for a broad range of applications. However, a major challenge remains in developing scalable methodologies that enable superhydrophobic coatings on versatile substrates with a combination of strong mechanical stability, optical transparency, and even stretchability. Herein, we developed a scalable methodology to versatile hydrophobic surfaces that combine with strong mechanical stability, optical transparency, and stretchability by using a self-assembled hydrogel as the template to in situ generate silica microstructures and subsequent silanization. The superhydrophobic coatings can be enabled on virtually any substrates via large-area deposition techniques like dip coating. Transparent surfaces with optical transmittance as high as 98% were obtained. Moreover, the coatings exhibit superior mechanical flexibility and robustness that it can sustain contact angles ? 160° even after 5000 cycles of mechanically stretching at 100% strain. The multifunctional surfaces can be used as screen filters and sponges for the oil/water separation that can selectively absorb oils up to 40× their weight. PMID:24977920

Wang, Yaqun; Shi, Ye; Pan, Lijia; Yang, Meng; Peng, Lele; Zong, Shi; Shi, Yi; Yu, Guihua

2014-08-13

140

Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate  

E-print Network

Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate Katrina M. Wisdoma-cleaning mechanism whereby the contaminated superhydro- phobic surface is exposed to condensing water vapor the superhydrophobic surface is powered by the sur- face energy released upon coalescence of the condensed water phase

Chen, Chuan-Hua

141

Super-hydrophobic bandages and method of making the same  

DOEpatents

A bandage that includes a material, which can be breathable, having a first surface, and a plurality of superhydrophobic particles attached to the first surface. The plurality of superhydrophobic particles ranging in size from about 100 nanometers to about 10 micrometers. The superhydrophobic particles including a protrusive material defining a plurality of nanopores and a plurality of spaced apart nanostructures that define an external boundary of the hydrophobic particles. The nanopores providing a flow through porosity. The first surface can be rendered superhydrophobic by the attached superhydrophobic particles. The material can have a second surface opposite the first surface that is hydrophilic. The superhydrophobic particles can be adhered to the first surface by a binder. Also included is a method of making the bandages described herein.

Simpson, John T. (Clinton, TN); D'Urso, Brian R. (Pittsburgh, PA)

2012-06-05

142

3D aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Only a few selected natural and artificial surfaces with water contact angles above 150 degrees retain their superhydrophobic characteristics during water condensation. On these robust superhydrophobic surfaces, individual droplets emerge out of a few micrometer wetted area between the nanostructures and initially grow mainly by increasing their contact angle. After reaching a nearly spherical shape with a diameter between 4 um and 6 um, the droplets grow in a near constant contact angle mode while remaining in an immobile Wenzel state. Microdroplets can depart the surface by coalescing with another large drop and forming a new drop in the mobile Cassie-Baxter state. Here we report that high contact angle primary drops can project over growing nano-to-microscale satellite droplets. We show that the large primary drops can sweep up the small satellite droplets without wetting their nucleation site, promoting rapid condensation of multiple satellite droplets from the same nucleation site. We discuss the effect of this coalescence mechanism on the drop size distribution and heat transfer during the dropwise condensation process.

Rykaczewski, Konrad; Scott, John Henry J.; Rajauria, Sukumar; Chinn, Jeff; Chinn, Amy M.; Jones, Wanda

2011-11-01

143

Self-propelled dropwise condensate on superhydrophobic surfaces.  

PubMed

In conventional dropwise condensation on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation. This Letter reports continuous dropwise condensation spontaneously occurring on a superhydrophobic surface without any external forces. The spontaneous drop removal results from the surface energy released upon drop coalescence, which leads to a surprising out-of-plane jumping motion of the coalesced drops at a speed as high as 1 m/s. The jumping follows an inertial-capillary scaling and gives rise to a micrometric average diameter at steady state. PMID:19905808

Boreyko, Jonathan B; Chen, Chuan-Hua

2009-10-30

144

Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces  

NASA Astrophysics Data System (ADS)

In conventional dropwise condensation on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation. This Letter reports continuous dropwise condensation spontaneously occurring on a superhydrophobic surface without any external forces. The spontaneous drop removal results from the surface energy released upon drop coalescence, which leads to a surprising out-of-plane jumping motion of the coalesced drops at a speed as high as 1m/s. The jumping follows an inertial-capillary scaling and gives rise to a micrometric average diameter at steady state.

Boreyko, Jonathan B.; Chen, Chuan-Hua

2009-10-01

145

Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators  

NASA Astrophysics Data System (ADS)

We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation.

Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

2015-01-01

146

Roughness-based Superhydrophobic Surfaces: Fundamentals and Future Directions  

NASA Astrophysics Data System (ADS)

Superhydrophobicity of rough surfaces has attracted global interest through the past decade. There are naturally occurring instances of such surfaces, e.g., lotus leaves, which led to the popular term ``lotus effect.'' Numerous applications in wide ranging areas such as drag reduction, self-cleaning, heat exchangers, energy conversion, condensation, anti-icing, textile, desalination, etc., are being explored by researchers worldwide. The signature configuration for superhydrophobicity has been ``bead-like'' drops on rough surfaces that roll-off easily. This becomes possible if the liquid does not impale the roughness grooves, and if the contact angle hysteresis is low. Finding appropriate surface roughness is therefore necessary. A thermodynamic framework to enable analysis of this problem will be presented. It will be noted that the success of rough superhydrophobic substrates relies on the presence of gas pockets in the roughness grooves underneath the liquid. These gas pockets could be those of air from the surrounding environment. Current design strategies rely on the availability of air. However, if the rough substrates are fully submerged in the liquid then the trapped air in the roughness grooves may not be sustained. A design approach based on sustaining a vapor phase of the liquid itself in the roughness grooves, instead of relying on the presence of air, will be presented. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling at dramatically low superheats, among others. The concept can be generalized to other transitions on the phase diagram, thus enabling the design of rough surfaces for phase manipulation in general.

Patankar, Neelesh

2011-11-01

147

Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process  

NASA Astrophysics Data System (ADS)

Superhydrophobic poly(tetrafluoro-ethylene) (PTFE) like thin films were grown on silicon wafers using a plasma-based hybrid process consisting on sputtering a carbon target in an Ar/CF4 atmosphere. The influence of the bias voltage applied to the substrate (VBias) as well as of the gas mixture composition (%CF4) on the chemical composition, the wettability and the morphology of the deposited thin films were evaluated. The chemical composition measured by X-ray Photoelectron Spectroscopy (XPS) has revealed that the F/C atomic ratio is always lower than for conventional PTFE (F/C = 2) and that it decreases when VBias increases (from F/C = 1 for VBias = - 100 V to F/C = 0.75 for VBias = - 200 V). This behavior is associated with the preferential sputtering of the fluorine atoms during the plasma-assisted growth of the films. Consecutively, a self-nanostructuration enhanced when increasing VBias is observed. As a consequence, the water contact angle (WCA) measurements range from 70° up to 150° depending on (i) the fluorine concentration and (ii) on the magnitude of the nanostructuration. In addition, for the films presenting the highest WCAs, a small hysteresis between the advancing and receding WCAs is observed (< 10°) allowing these films to fulfill completely the requirements of superhydrophobicity. The nanostructuration is probably due to the chemical etching by fluorine atoms of the fluorinated group. In order to get more understanding on the wettability mechanisms of these surfaces, the topography of the films has been evaluated by atomic force microscopy (AFM). The data have revealed, for all films, a dense and regular structure composed by conic objects (AvH is their average height and AvD is the average distance between them) for which the dimensions increase with VBias. A correlation between AvH/AvD, defined as the "morphological ratio", with the WCA was established. Theoretical evaluations of the WCA using the Wenzel and Cassie equations with, as inputs, the features of the deposited thin film surfaces measured by AFM suggest that the wetting regime is intermediate between these two ideal situations.

Henry, Frédéric; Renaux, Fabian; Coppée, Séverine; Lazzaroni, Roberto; Vandencasteele, Nicolas; Reniers, François; Snyders, Rony

2012-12-01

148

Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.  

PubMed

In many countries, the mornings in spring are graced with spectacular displays of dew drops hanging on spiders' webs and on leaves. Some leaves, in particular, sport particularly large droplets that last well into the morning. In this paper, we study a group of plants that show this effect on their superhydrophobic leaves to try to discover how and why they do it. We describe the structures they use to gather droplets and suggest that these droplets are used as a damper to absorb kinetic energy allowing water to be redirected from sideways motion into vertical motion. Model surfaces in the shape of leaves and as more general flat sheets show that this principle can be used to manipulate water passively, such as on the covers of solar panels, and could also be used in parts of microfluidic devices. The mode of transport can be switched between rolling droplets and rivulets to maximize control. PMID:20560556

Shirtcliffe, N J; McHale, G; Newton, M I

2009-12-15

149

Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser  

NASA Astrophysics Data System (ADS)

Inspired by the lotus leaf, a new superhydrophobic surface with hierarchical mesh-porous structure is fabricated by femtosecond laser irradiation on silicon. The fabricated surface shows a superhydrophobic character with water contact angle being found to reach up to 158?±1? and sliding angle of 4?±0.5?. The superhydrophobicity is stable even if the PH of solution changes from 1 to 14. And the surface also exhibits excellent self-cleaning effect and bouncing behavior, implying that the adhesion of the surface is extremely low. This work will enhance further understanding of the wettability of a solid surface with special surface morphology.

Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Bian, Hao; Ou, Yan; Si, Jinhai; Du, Guangqing; Hou, Xun

2013-04-01

150

Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings  

NASA Astrophysics Data System (ADS)

In this work, we have fabricated superhydrophobic aluminum surfaces by a facile chemical etching method. Surface morphology and composition were studied by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). To comparatively investigate the effect of environmental factors on superhydrophobic behaviors of surfaces with different low-surface-energy coatings under controllable condensation conditions, contact and sliding angles were measured from -10 °C to 30 °C under relative humidity (RH) of 30, 60 and 90%, respectively. The calculation of the solid-liquid contact area fraction quantitatively explained the increased wettability characterized by descending contact angle and ascending sliding angle under low temperature and high humidity, and indicated a transition of the equilibrium state from Cassie-Baxter to Wenzel on rough surfaces. The wettability restoration test showed that the loss of superhydrophobicity during condensation could be recovered completely after a drying process at room temperature.

Yin, Long; Wang, Yuanyi; Ding, Jianfu; Wang, Qingjun; Chen, Qingmin

2012-02-01

151

Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.  

PubMed

We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ? 160 deg), and negligible contact angle hysteresis (<1 deg). The droplet evaporation is observed to occur in a constant-contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ? 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation. PMID:23952149

Dash, Susmita; Garimella, Suresh V

2013-08-27

152

Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures  

E-print Network

Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures-assembly of nanowires during the evaporation of a colloid droplet of nanowires on nanoengineered superhydrophobic by the convective hydrodynamic flow and the receding three-phase contact line of the evaporating droplet

Yang, Eui-Hyeok

153

Dynamic contact of droplet with superhydrophobic surface in conditions favour icing  

NASA Astrophysics Data System (ADS)

Flight like droplet impact with superhydrophobic substrate in conditions favour icing is discussed in this work. Test stand with fast camera and equipment eligible to obtain temperatures and humidity at different ranges, lead to results which can prove, that superhydrophobic surface might be good ice repellent substrate. The influence of air humidity on droplet freezing was confirmed.

Remer, M.; Sobieraj, G.; Gumowski, K.; Rokicki, J.; Psarski, M.; Marczak, J.; Celichowski, G.

2014-08-01

154

Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel  

SciTech Connect

In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

Swarctz, Christopher [Stevens Institute of Technology, Hoboken, New Jersey; Alijallis, Elias [Stevens Institute of Technology, Hoboken, New Jersey; Hunter, Scott Robert [ORNL; Simpson, John T [ORNL; Choi, Chang-Hwan [Stevens Institute of Technology, Hoboken, New Jersey

2010-01-01

155

Switching fluid slippage on pH-responsive superhydrophobic surfaces.  

PubMed

Two stimuli-responsive polymer brushes, poly(dimethylaminoethyl methacrylate) and poly(methacrylic acid), were grafted from initiator-modified anodized alumina substrates to prepare two pH-responsive surfaces. By regulating the swelling states of the two polymers, water droplets can roll off or adhere onto the textured surface because of different adhesion forces. These forces also strongly affect boundary slippage. To determine the different slippage effects of fluid on our pH-responsive surfaces, a series of rheological experiments are carried out on two kinds of surfaces. A large slip length is obtained and reversibly regulated by changing the fluid pH. These responsive superhydrophobic surfaces with considerable slip length and pH-responsive properties have extensive potential applications in intelligent micro- and nanofluidic devices or biodevices, which can solve fluid flow problems. PMID:24845303

Wu, Yang; Liu, Zhilu; Liang, Yongmin; Pei, Xiaowei; Zhou, Feng; Xue, Qunji

2014-06-10

156

Reproducing superhydrophobic leaves as coatings by micromolding surface-initiated polymerization.  

PubMed

Micromolding surface-initiated polymerization enables the fabrication of polymer coatings that reproduce the microscale surface topography of superhydrophobic leaves onto solid supports. Here, the surfaces of superhydrophobic leaves from Trifolium repens and Aristolochia esperanzae are molded and reproduced as the topography of a partially fluorinated polymer coating through the surface-initiated ring-opening metathesis polymerization of 5-(perfluorooctyl)norbornene (NBF8). The polymer coatings have thicknesses exceeding 100 ?m, which can be tailored by the amount of monomer added to the mold. These coatings are robustly bound to the substrate, contain compositions not found in nature, and achieve superhydrophobicity that is comparable to the actual leaf. PMID:25283950

Escobar, Carlos A; Spellings, Matthew P; Cooksey, Tyler J; Jennings, G Kane

2014-11-01

157

Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness  

NASA Astrophysics Data System (ADS)

Quantitative correlation between the critical impact velocity of droplet and geometry of superhydrophobic surfaces with microstructures is systematically studied. Experimental data shows that the critical impact velocity induced wetting transition of droplet on the superhydrophobic surfaces is strongly determined by the perimeter of single micropillar, the space between the repeat pillars and the advancing contact angle of the sidewall of the micropillars. The proposed model agrees well with the experimental results, and clarifies that the underlying mechanism which is responsible for the superhydrophobic surface with hierarchical roughness could sustain a higher liquid pressure than the surfaces with microstructures.

Hao, PengFei; Lv, CunJing; Niu, FengLei; Yu, Yu

2014-07-01

158

Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses  

NASA Astrophysics Data System (ADS)

This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

2013-01-01

159

Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method  

NASA Astrophysics Data System (ADS)

Aluminum alloy surface can be etched easily in acid environment, but the microstructure of alloy surface hardly meets the customers' demand. In this work, a facile acidic-assistant surface oxidation technique has been employed to form reproducible super-hydrophobic surfaces on aluminum alloy plates. The samples immersed in three different acid solutions at ambient temperatures are studied and the results demonstrated that the aqueous mixture solution of oxalic acid and hydrochloric is easier to produce better faces and better stability. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrometer, X-ray photoelectron spectroscopy (XPS) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on aluminum substrates. The surfaces, configured of a labyrinth structure with convexity and concavity, are in different roughness and gloss because of the different recipe acid solutions used. Better roughness of the surface can be obtained by adjusting the concentration of Cl? and oxalate ions in acid solutions. The present research work provides a new strategy for the controllable preparation super-hydrophobic films of general materials on aluminum alloy for practical industrial applications.

Wu, Ruomei; Liang, Shuquan; Pan, Anqiang; Yuan, Zhiqing; Tang, Yan; Tan, Xiaoping; Guan, Dikai; Yu, Ya

2012-06-01

160

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention  

PubMed Central

Summary Superhydrophobic surfaces of plants and animals are of great interest for biomimetic applications. Whereas the self-cleaning properties of superhydrophobic surfaces have been extensively investigated, their ability to retain an air film while submerged under water has not, in the past, received much attention. Nevertheless, air retaining surfaces are of great economic and ecological interest because an air film can reduce friction of solid bodies sliding through the water. This opens perspectives for biomimetic applications such as low friction fluid transport or friction reduction on ship hulls. For such applications the durability of the air film is most important. While the air film on most superhydrophobic surfaces usually lasts no longer than a few days, a few semi-aquatic plants and insects are able to hold an air film over a longer time period. Currently, we found high air film persistence under hydrostatic conditions for the elytra of the backswimmer Notonecta glauca which we therefore have chosen for further investigations. In this study, we compare the micro- and nanostructure of selected body parts (sternites, upper side of elytra, underside of elytra) in reference to their air retaining properties. Our investigations demonstrate outstanding air film persistence of the upper side of the elytra of Notonecta glauca under hydrostatic and hydrodynamic conditions. This hierarchically structured surface was able to hold a complete air film under hydrostatic conditions for longer than 130 days while on other body parts with simple structures the air film showed gaps (underside of elytra) or even vanished completely after a few days (sternites). Moreover, the upper side of the elytra was able to keep an air film up to flow velocities of 5 m/s. Obviously the complex surface structure with tiny dense microtrichia and two types of larger specially shaped setae is relevant for this outstanding ability. Besides high air film persistence, the observation of a considerable fluid velocity directly at the air–water interface indicates the ability to reduce friction significantly. The combination of these two abilities makes these hierarchically structured surfaces extremely interesting as a biomimetic model for low friction fluid transport or drag reduction on ship hulls. PMID:21977425

Schneider, Erik S; Melskotte, Jan-Erik; Brede, Martin; Leder, Alfred

2011-01-01

161

Drop impact and rebound dynamics on an inclined superhydrophobic surface.  

PubMed

Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination. PMID:25216298

Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S

2014-10-14

162

Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing  

NASA Astrophysics Data System (ADS)

We report a simple and inexpensive method of producing superhydrophobic surfaces by directly replicating micro/nano-structures on to poly(dimethylsiloxane) (PDMS) from a replication master prepared by ultrafast-laser microtexturing process. No additional coatings on PDMS have been required to achieve contact angles greater than 154°. The contact angle can be controlled by changing the height of the microtextures in PDMS. Very low optical reflection properties of micro/nano textured surfaces combined with superhydrophobic characteristics make it an attractive encapsulating material for photovoltaics and other applications. Additionally, this replication method can be applied for large scale production of micro/nano textured superhydrophobic surfaces for commercial applications.

Nayak, Barada K.; Caffrey, Paul O.; Speck, Christian R.; Gupta, Mool C.

2013-02-01

163

EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.  

PubMed

Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL). PMID:21103534

Jönsson-Niedzió?ka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

2011-02-01

164

Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water  

NASA Astrophysics Data System (ADS)

A porous ceramic tube with superhydrophobic and superoleophilic surface was fabricated by sol-gel and then surface modification with polyurethane-polydimethysiloxane, and an oil-water separator based on the porous ceramic tube was erected to characterize superhydrophobic and superoleophilic surface's separation efficiency and velocity when being used to reclaim oil from oily water and complex oily water containing clay particle. The separator is fit for reclaiming oil from oily water.

Su, Changhong; Xu, Youqian; Zhang, Wei; Liu, Yang; Li, Jun

2012-01-01

165

Novel liquid-solid adhesion superhydrophobic surface fabricated using titanium dioxide and trimethoxypropyl silane  

NASA Astrophysics Data System (ADS)

The present paper reports the preparation of very simple and inexpensive superhydrophobic surfaces fabricated using titanium dioxide and lower alkyl chain silane (trimethoxypropyl silane) in aqueous or non-aqueous solvent. The superhydrophobic surfaces fabricated in aqueous or non-aqueous solvent had same static water contact angle, but showed different contact angle hysteresis and liquid-solid adhesion. Superhydrophobic surface fabricated in aqueous solvent showed high contact angle hysteresis (CAH). In addition, liquid-solid adhesion of superhydrophobic surface fabricated in aqueous solvent is different in which the water droplet roll on the surface but will not roll off out of the surface during tilting and fell down when turned upside down. The reason for such high contact angle hysteresis and novel liquid-solid adhesion behavior is explained on the basis of measurements on the superhydrophobic surface using water contact angle (WCA) data, profilometry, SEM images, XPS and FTIR-ATR analysis. These results are compared with the superhydrophobic surface fabricated in non-aqueous solvent which showed self-cleaning properties. Based on WCA, XPS and FTIR-ATR analysis, it is shown that the difference in the CAH is more chemical in origin than morphology.

Ramanathan, Rajajeyaganthan; Weibel, Daniel E.

2012-08-01

166

Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents.  

PubMed

Micro-nanometer scale structure of nubby clusters overlay was constructed on the surface of an AZ31 magnesium alloy by a wet chemical method. The super-hydrophobicity was achieved with a water contact angle of 142° and a sliding angle of about 5°. The microstructure and composition of the super-hydrophobic surface were characterized by SEM and FTIR. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to evaluate the corrosion behavior, and the hemocompatibility of the super-hydrophobic surface was investigated by means of hemolytic and platelet adhesion tests. Results showed that the super-hydrophobic treatment could improve the corrosion resistance of magnesium alloys in PBS and inhibit blood platelet adhesion on the surface, which implied excellent hemocompatibility with controlled degradation. PMID:23623110

Wan, Peng; Wu, Jingyao; Tan, LiLi; Zhang, Bingchun; Yang, Ke

2013-07-01

167

Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces  

E-print Network

We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction ...

Srinivasan, Siddarth

168

Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion  

NASA Astrophysics Data System (ADS)

In this paper, we demonstrate an effective approach for the three-dimensional (3D) pattern-structured superhydrophobic PDMS surfaces with controllable adhesion by using femtosecond laser etching method. By combining different laser power with a multi-layered etching way, various 3D patterns can be fabricated (for example, convex triangle array, round pit array, cylindrical array, convex rhombus array and concave triangle-cone array). The as-prepared surfaces with 3D patterns show superhydrophobic character and water controllable adhesion that range from ultralow to ultrahigh by designing different 3D patterns, on which the sliding angle can be controlled from 1° to 90° (the water droplet is firmly pinned on the superhydrophobic surface without any movement at any tilted angles). The 3D pattern-dependent adhesive property is attributed to the different contact modes. This work will provide a facile and promising strategy for the adhesion adjustment on superhydrophobic surfaces.

Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Bian, Hao; Si, Jinhai; Yun, Feng; Hou, Xun

2014-01-01

169

Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.  

PubMed

Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces. PMID:25529561

Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

2015-01-28

170

One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.  

PubMed

A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys. PMID:25559356

Liu, Qin; Chen, Dexin; Kang, Zhixin

2015-01-28

171

Raman lasing near 650 nm from pure water microdroplets on a superhydrophobic surface  

Microsoft Academic Search

We demonstrate Raman lasing near 650nm in pure water microdroplets located on a superhydrophobic surface. In the experiments, stationary, pure water microdroplets were prepared on a superhydrophobic surface and excited by a pulsed, frequency-doubled Nd:YAG laser at 532nm. Intense laser emission was observed at frequencies corresponding to the whispering gallery mode resonances of the water microdroplets near 650nm where Raman

A. Kiraz; S. Ç. Yorulmaz; M. Yorulmaz; A. Sennaroglu

2009-01-01

172

Superhydrophobic bull's-eye for surface-enhanced Raman scattering.  

PubMed

We present a micro-patterned silicon structure that enables the preparation of a substrate for surface-enhanced Raman scattering (SERS) and pre-concentration of the analyte molecules. The structure is designed to produce a hydrophobicity gradient. As a result, a water droplet placed on it will remain centred on the structure as it dries, enabling delivery of materials to its centre. The structure is therefore referred to as a superhydrophobic bull's-eye. A water droplet containing gold colloids placed on it dries to produce a cluster at the bull's-eye centre. A second water droplet placed on it, this time containing analyte molecules, dries such that the molecules are delivered to the gold colloid cluster. We demonstrate the detection of molecules at low concentrations (Rhodamine 6G at 10(-15) M) from small droplets. PMID:25141812

Song, Wuzhou; Psaltis, Demetri; Crozier, Kenneth B

2014-10-21

173

Evaporating behaviors of water droplet on superhydrophobic surface  

NASA Astrophysics Data System (ADS)

We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

Hao, PengFei; Lv, CunJing; He, Feng

2012-12-01

174

Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis  

E-print Network

The design of a robust superhydrophobic surface is a widely pursued topic.While many investigations are limited to applications with high impact velocities (for raindrops of the order of a few m/s), the essence of robustness is yet to be analyzed for applications involving quasi-static liquid transfer.To achieve robustness with high impact velocities, the surface parameters (geometrical details, chemistry) have to be selected from a narrow range of permissible values, which often entail additional manufacturing costs.From the dual perspectives of thermodynamics and mechanics, we analyze the significance of robustness for quasi-static drop impact, and present the range of permissible surface characteristics.For surfaces with a Youngs contact angle greater than 90{\\deg} and square micropillar geometry, we show that robustness can be enforced when an intermediate wetting state (sagged state) impedes transition to a wetted state (Wenzel state).From the standpoint of mechanics, we use available scientific data to prove that a surface with any topology must withstand a pressure of 117 Pa to be robust.Finally, permissible values of surface characteristics are determined, which ensure robustness with thermodynamics (formation of sagged state) and mechanics (withstanding 117 Pa).

Anjishnu Sarkar; Anne-Marie Kietzig

2014-12-17

175

Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.  

PubMed

Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing. PMID:25236438

Wei, Qiang; Schlaich, Christoph; Prévost, Sylvain; Schulz, Andrea; Böttcher, Christoph; Gradzielski, Michael; Qi, Zhenhui; Haag, Rainer; Schalley, Christoph A

2014-11-19

176

Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces  

NASA Astrophysics Data System (ADS)

Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 10 3 mm -2) of conical protuberances with an average height of 10.0 ± 2.0 ?m and a tip radius of 2.5 ± 0.5 ?m. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited "Ni crowns" with a larger radius of 6.0 ± 0.5 ?m on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.

Shafiei, Mehdi; Alpas, Ahmet T.

2009-11-01

177

Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser  

NASA Astrophysics Data System (ADS)

Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3°. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3° and at the same time, the sliding angle (SA) is 4.2°.

Wu, Bo; Zhou, Ming; Li, Jian; Ye, Xia; Li, Gang; Cai, Lan

2009-10-01

178

Preparation of superhydrophobic nanodiamond and cubic boron nitride films  

SciTech Connect

Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150 deg. and a sliding angle smaller than 10 deg. were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.

Zhou, Y. B.; Liu, W. M.; Wang, P. F. [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Y.; Ye, Q.; He, B.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T. [Department of Physics and Materials Sciences, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong (Hong Kong); Zou, Y. S. [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

2010-09-27

179

Study on Super-Hydrophobic and Oleophobic Surfaces Prepared by Chemical Adsorption Technique  

NASA Astrophysics Data System (ADS)

Preparation techniques for super-hydrophobic and oleophobic surfaces were studied by forming a fractally roughened surface and preparing a hydrophobic monolayer. In this study, the fractal structure on the surface of an aluminum substrate was formed by combining sand-blasting with electrolytical etching. Then, a hydrophobic monolayer was prepared on the roughened surface, without decreasing roughness. The surface of the treated substrate can be evaluated by contact angle measurement and field emission scanning electron microscopy (FE-SEM). The surface treated by a technique combining chemical adsorption, sandblasting, and electrolytical etching was super-hydrophobic and highly oleophobic.

Tsuji, Issei; Ohkubo, Yuji; Ogawa, Kazufumi

2009-04-01

180

Irradiation of poly(tetrafluoroethylene) surfaces by CF4 plasma to achieve robust superhydrophobic and enhanced oleophilic properties for biological applications.  

PubMed

Poly(tetrafluoroethylene) (PTFE) was irradiated by CF4 plasma produced in the gas discharge ion source facility to produce stable and robust superhydrophobic surfaces and to enhance the materials' oleophilic property for biological applications. The characterizations employed on the samples are contact angle measurements, analysis of the surface morphology (scanning electron microscopy), surface roughness measurements (atomic force microscopy) and analysis of the surface chemistry (Fourier transform infrared spectroscopy). Superhydrophobic behavior with water contact angles as high as 156° was observed. The wettability of all the treated samples was found to be stable in time as evidenced by the statistically insignificant differences in the hysteresis contact angles. The level of enhanced hydrophobicity depended on the plasma energies (i.e. irradiation times, discharge current, and discharge voltage); higher plasma energies produced surfaces with high hydrophobicity. The plasma treatment also enhanced the oleophilic property of the materials' surface as evidenced by the decrease in the PDMS-oil contact angle from 33° to as low as 10°. The superhydrophobicity of the modified PTFE and the enhancement of its oleophilic property were due to (1) the changes in the roughness of the surface, (2) the formation of nanoparticles or nanostructures on the surface, and (3) the changes in the surface chemistry. PMID:25491987

Salapare, Hernando S; Suarez, Beverly Anne T; Cosiñero, Hannah Shamina O; Bacaoco, Miguel Y; Ramos, Henry J

2015-01-01

181

Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity  

NASA Astrophysics Data System (ADS)

The emergence of miniaturization techniques for consumer electronics has brought forth the relatively new and exciting field of microelectromechanical systems (MEMS). However, due to the inherent forces that exist between surfaces at the micro- and nanoscale, scientists and semiconductor manufacturers are still struggling to improve the lifetime and reliability of complex microdevices. Due to the extremely large surface area-to-volume ratio of typical MEMS and microstructured surfaces, dominant interfacial forces exist which can be detrimental to their operational lifetime. In particular, van der Waals, capillary, and electrostatic forces contribute to the permanent adhesion, or stiction , of microfabricated surfaces. This strong adhesion force also contributes to the friction and wear of these silicon-based systems. The scope of this work was to examine the effect of utilizing nanoparticles as the basis for roughening surfaces for the purpose of creating films with anti-adhesive and/or superhydrophobic properties. All of the studies presented in this work are focused around a gas-expanded liquid (GXL) process that promotes the deposition of colloidal gold nanoparticles (AuNPs) into conformal thin films. The GXL particle deposition process is finalized by a critical point drying step which is advantageous to the microelectromechanical systems and semiconductor (IC) industries. In fact, preliminary results illustrated that the GXL particle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of AuNPs deposited onto the surfaces of silicon-based MEMS and tribology test devices were shown to have a dramatic effect on the adhesion of microstructures. In the various investigations, the apparent work of adhesion between surfaces was reduced by 2-4 orders of magnitude. This effect is greatly attributed to the roughening of the typically smooth silicon oxide surfaces which, in turn, dramatically decreases the "real are of contact" between two contacting surfaces. The studies found that AuNP thin films produced using the lowest initial concentrations of nanoparticles in solution produced estimated real contact areas of around 1%, reducing the adhesion of oxidized Si (100) surfaces from about 37 mJ/m2 down to 0.02 mJ/m 2. In addition, the reducing in real contact area effectively reduced the coefficient of static friction between silicon-based surfaces due to the extremely high dependence of stiction on friction and wear at the microscale. This work also investigated methods of permanently immobilizing AuNP-based films on the silicon surfaces of microstructures in order to create more mechanically robust coatings. The use of organic self-assembled monolayers (SAMs) functionalized with tail-groups known to bond to metallic surfaces were effective in producing much more durable coatings as opposed to non-immobilized AuNP films. Chemical vapor deposition (CVD) techniques were also used to coat rough AuNP films with very thin films of silica (SiO2) to create a robust, rough surface. This method was also very effective in creating a durable coating which is capable of reducing the adhesion energy and friction between two microscale surfaces for extended periods of time. Similar CVD techniques were also used to begin investigating the production of alumina nanoparticle-based superhydrophobic films for use in consumer electronics. Overall, the work presented in this dissertation illustrates that engineered nanoparticle-based surface modifications can be extremely effective in the reduction of the inherent interfacial phenomena that exist on microfabricated systems. This work is can potentially lead us into a new age of the miniaturization of mechanical and electronic devices.

Hurst, Kendall Matthew

2010-11-01

182

Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability  

NASA Astrophysics Data System (ADS)

Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6? water contact angle and 2? tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.

Song, Jin-long; Xu, Wen-ji; Liu, Xin; Lu, Yao; Sun, Jing

2012-09-01

183

Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.  

PubMed

In contrast to advancements in the fabrication of new superhydrophobic materials, the characterization of their water repellency and quality is often coarse and unsatisfactory. In view of the problems and inaccuracies, particularly in the measurement of very high contact angles, we developed alternative methods for the characterization of superhydrophobic surfaces. It was found that adhering water remnants after immersion are a useful criterion in determining the repellency quality. In this study, we introduce microscopy methods to detect traces of water-resembling test liquids on superhydrophobic surfaces by scanning electron microscopy (SEM) or fluorescence light microscopy (FLM). Diverse plant surfaces and some artificial superhydrophobic samples were examined. Instead of pure water, we used aqueous solutions containing a detectable stain and glycerol in order to prevent immediate evaporation of the microdroplets. For the SEM examinations, aqueous solutions of lead acetate were used, which could be detected in a frozen state at -90 °C with high sensitivity using a backscattered electron detector. For fluorescence microscopy, aqueous solutions of auramine were used. On different species of superhydrophobic plants, varying patterns of remaining microdroplets were found on their leaves. On some species, drop remnants occurred only on surface defects such as damaged epicuticular waxes. On others, microdroplets regularly decorated the locations of increased adhesion, particularly on hierarchically structured surfaces. Furthermore, it is demonstrated that the method is suitable for testing the limits of repellency under harsh conditions, such as drop impact or long-enduring contact. The supplementation of the visualization method by the measurement of the pull-off force between a water drop and the sample allowed us to determine the adhesive properties of superhydrophobic surfaces quantitatively. The results were in good agreement with former studies of the water repellency and contact angles. In contrast to contact angle measurements, the acqusition of SEM images with high resolution and wide depth of sharpness gives better insight into the wetting behavior and susceptibility of the structural elements of the superhydrophobic surfaces. PMID:22978578

Ensikat, Hans J; Mayser, Matthias; Barthlott, Wilhelm

2012-10-01

184

Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization.  

PubMed

Superhydrophobic and self-cleaning cellulose surfaces have been obtained via surface-confined grafting of glycidyl methacrylate using atom transfer radical polymerization combined with postmodification reactions. Both linear and branched graft-on-graft architectures were used for the postmodification reactions to obtain highly hydrophobic bio-fiber surfaces by functionalization of the grafts with either poly(dimethylsiloxane), perfluorinated chains, or alkyl chains, respectively. Postfunctionalization using alkyl chains yielded results similar to those of surfaces modified by perfluorination, in terms of superhydrophobicity, self-cleaning properties, and the stability of these properties over time. In addition, highly oleophobic surfaces have been obtained when modification with perfluorinated chains was performed. PMID:20356007

Nyström, Daniel; Lindqvist, Josefina; Ostmark, Emma; Antoni, Per; Carlmark, Anna; Hult, Anders; Malmström, Eva

2009-04-01

185

Tailoring the wettability of patterned silicon surfaces with dual-scale pillars: From hydrophilicity to superhydrophobicity  

NASA Astrophysics Data System (ADS)

Wettability tailoring of patterned silicon surface has great potential in fields producing integrated circuits, solar cells, sensors, detectors, and micro/nano electromechanical systems. The present paper presents a convenient yet effective method of combining reactive ion etching and catalyzed etching to prepare silicon surface with micro-nano dual-scale pillars. The experimental results indicate that the hydrophilic surface transformed to a superhydrophobic surface when micro-nano dual-scale pillars were formed. The surface preserved superhydrophobicity even when the geometric parameters of the micropillars were changed. Overhangs of water drops on steep micro-nano dual-scale pillars result in superhydrophobicity. This method offers a new way for tailoring the wettability of patterned silicon surfaces.

He, Yang; Jiang, Chengyu; Yin, Hengxu; Yuan, Weizheng

2011-06-01

186

Superhydrophobic stability of nanotube array surfaces under impact and static forces.  

PubMed

The surfaces of nanotube arrays were coated with poly(methyl methacrylate) (PMMA) using an imprinting method with an anodized alumina membrane as the template. The prepared nanotube array surfaces then either remained untreated or were coated with NH2(CH2)3Si(OCH3)3(PDNS) or CF3(CF2)7CH2CH2Si(OC2H5)3 (PFO). Thus, nanotube arrays with three different surfaces, PDNS, PMMA (without coating), and PFO, were obtained. All three surfaces (PDNS, PMMA, and PFO) exhibited superhydrophobic properties with contact angles (CA) of 155, 166, and 168°, respectively, and their intrinsic water contact angles were 30, 79, and 118°, respectively. The superhydrophobic stabilities of these three surfaces were examined under dynamic impact and static pressures in terms of the transition from the Cassie-Baxter mode to the Wenzel mode. This transition was determined by the maximum pressure (p(max)), which is dependent on the intrinsic contact angle and the nanotube density of the surface. A p(max) greater than 10 kPa, which is sufficiently large to maintain stable superhydrophobicity under extreme weather conditions, such as in heavy rain, was expected from the PFO surface. Interestingly, the PDNS surface, with an intrinsic CA of only 30°, also displayed superhydrophobicity, with a CA of 155°. This property was partially maintained under the dynamic impact and static pressure tests. However, under an extremely high pressure (0.5 MPa), all three surfaces transitioned from the Cassie-Baxter mode to the Wenzel mode. Furthermore, the lost superhydrophobicity could not be recovered by simply relieving the pressure. This result indicates that the best way to maintain superhydrophobicity is to increase the p(max) of the surface to a value higher than the applied external pressure by using low surface energy materials and having high-density binary nano-/microstructures on the surface. PMID:24873475

Zhu, Lin; Shi, Pan; Xue, Jian; Wang, Yuanyi; Chen, Qingmin; Ding, Jianfu; Wang, Qingjun

2014-06-11

187

Effect of ionizing radiation on the properties of superhydrophobic silicone surfaces  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces may be useful for a variety of optical applications as these surfaces exhibit high contact angles with water (>150°) and low-drag. These properties prevent the accumulation of water droplets on the optical surface that would otherwise occur due to condensation or the adhesion of droplets from precipitation. Challenges to producing robust superhydrophobic surfaces for optical applications include the development of cost-effective processes that are compatible with non-planar optical substrates as well as the identification of material systems that exhibit longterm reliability. We have developed a 3D printing technology to create superhydrophobic surfaces by dispensing arrays of high aspect ratio polymeric features onto optical substrates. In this paper, superhydrophobic surfaces were prepared by dispensing silicone elastomers into arrays of features on glass substrates. These samples were exposed to either Cobalt 60 gammarays or 63.8 MeV protons to simulate ionization-induced total dose environments that could be experienced in some space orbits. In addition exposure to other harsh environments, including salt water and 125°C temperatures were evaluated. The effects of these exposure conditions on superhydrophobic properties, as measured by slip angles, are reported. Near-term potential space applications will be discussed.

Lyons, Alan M.; Barahman, Mark; Mondal, Bikash; Taylor, Edward W.

2010-09-01

188

Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves  

NASA Astrophysics Data System (ADS)

While the air-water interface over superhydrophobic surfaces decorated with hierarchical micro- or nanosized geometrical features have shown improved stability under elevated pressures, their underwater longevity—-the time that it takes for the surface to transition to the Wenzel state—-has not been studied. The current work is devised to study the effects of such hierarchical features on the longevity of superhydrophobic surfaces. For the sake of simplicity, our study is limited to superhydrophobic surfaces composed of parallel grooves with side fins. The effects of fins on the critical pressure—-the pressure at which the surface starts transitioning to the Wenzel state—-and longevity are predicted using a mathematical approach based on the balance of forces across the air-water interface. Our results quantitatively demonstrate that the addition of hierarchical fins significantly improves the mechanical stability of the air-water interface, due to the high advancing contact angles that can be achieved when an interface comes in contact with the fins sharp corners. For longevity on the contrary, the hierarchical fins were only effective at hydrostatic pressures below the critical pressure of the original smooth-walled groove. Our results indicate that increasing the length of the fins decreases the critical pressure of a submerged superhydrophobic groove but increases its longevity. Increasing the thickness of the fins can improve both the critical pressure and longevity of a submerged groove. The mathematical framework presented in this paper can be used to custom-design superhydrophobic surfaces for different applications.

Hemeda, A. A.; Gad-el-Hak, M.; Tafreshi, H. Vahedi

2014-08-01

189

Surface Plasmons of Metal Nanostructure Arrays  

E-print Network

Surface Plasmons of Metal Nanostructure Arrays: From Nanoengineering to Active Plasmonics Yue Bing-effective and high-throughput techniques to fabricate metal nanostructure arrays of various geometries on solid substrates. Surface plasmons of these nanostructure arrays were investigated both experimentally

190

Fabrication of superhydrophobic surface on zinc substrate by 3-trifluoromethylbenzene diazonium tetrafluoroborate salts  

NASA Astrophysics Data System (ADS)

In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF3BD), which shows a water contact angle of 160° for a 4 ?l water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.

Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu

2014-09-01

191

Hemocompatibility of Polymeric Nanostructured Surfaces  

PubMed Central

Tissue integration is an important property when inducing transplant tolerance, however, the hemocompatibility of the biomaterial surface also plays an important role in the ultimate success of the implant. Therefore, in order to induce transplant tolerance, it is critical to understand the interaction of blood components with the material surfaces. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets and clotting kinetics of whole blood on flat polycaprolactone (PCL) surfaces, nanowire (NW) surfaces and nanofiber (NF) surfaces. Previous studies have shown that polymeric nanostructured surfaces improve cell adhesion, proliferation and viability; however it is unclear how these polymeric nanostructured surfaces interact with the blood and its components. Protein adsorption results indicate that while there were no significant differences in total albumin adsorption on PCL, NW and NF surfaces, NW surfaces had higher total fibrinogen and immunoglobulin-G adsorption compared to NF and PCL surfaces. In contrast, NF surfaces had higher surface FIB and IgG adsorption compared to PCL and NW surfaces. Platelet adhesion and viability studies show more adhesion and clustering of platelets on the NF surfaces as compared to PCL and NW surfaces. Platelet activation studies reveal that NW surfaces have the highest percentage of unactivated platelets, whereas NF surfaces have the highest percentage of fully activated platelets. Whole blood clotting results indicate that NW surfaces maintain an increased amount of free hemoglobin during the clotting process compared to PCL and NF surface, indicating less clotting and slower rate of clotting on their surfaces. PMID:23848447

Leszczak, Victoria; Smith, Barbara S.; Popat, Ketul C.

2013-01-01

192

Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings  

SciTech Connect

In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng, E-mail: wy3121685@163.com; Zhou, Zhi Ping [Department of Microelectronics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)] [Department of Microelectronics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

2014-03-15

193

Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings  

NASA Astrophysics Data System (ADS)

In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng; Zhou, Zhi Ping

2014-03-01

194

Fabrication of a superhydrophobic surface from porous polymer using phase separation  

NASA Astrophysics Data System (ADS)

The present work reports a simple method to fabricate superhydrophobic porous polymeric surfaces by a phase separation process. The method involves the in situ polymerization of butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) in the presence of co-porogens of 1,4-butanediol (BDO) and N-methyl-2-pyrrolidone (NMP) to afford superhydrophobic surfaces with the micro/nano roughness structure. The influences of the polymerization mixture on the morphology and hydrophobicity were investigated by adjusting the composition of the co-porogens and the mass ratio of monomers to co-porogens, respectively. And a precise description of the underlying mechanism of the microstructure formation was presented. The as-prepared surface shows a superhydrophobicity with water contact angle (WCA) of 159.5° and low sliding angle (SA) of 3.1°. Moreover, the superhydrophobic surface shows good chemical stability with better resistance to acid, alkali or salt aqueous solutions and excellent thermal stability. The method is simple and low-cost and can be used for the preparation of the self-cleaning superhydrophobic surfaces.

Liu, Jianfeng; Xiao, Xinyan; Shi, Yinlong; Wan, Caixia

2014-04-01

195

Robust Superhydrophobic Silicon without a Low Surface-Energy Hydrophobic Coating.  

PubMed

Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion. PMID:25522296

Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

2015-01-14

196

Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation  

NASA Astrophysics Data System (ADS)

Molecular dynamics simulations have been carried out to investigate the fluid wetting and flow in nanochannels whose surfaces are structured by an array of nanoscale triangular modules. We find that the surface nanostructures have a dual effect on the boundary slip and friction of the liquid nanoflow. On the one hand, the nanostructures can enhance the surface hydrophilicity for a hydrophilic liquid-solid interaction, and can increase the hydrophobicity for a hydrophobic interaction due to a nanoscale lotus effect. In particular, the nanostructured surface may show superhydrophobicity and lead to the large velocity slip of the liquid flow. On the other hand, simultaneously, the nanostructures distort the nanoscale streamlines of the liquid flow near the channel surfaces and block the nanoflow directly, which decreases the apparent slip length equivalently. The dual effect of the nanostructures on the surface wettability and the hydrodynamic disturbance results in a nonmonotonic dependence of the slip length on the nanostructure size. The simulations imply that the surface nanostructures can be applied to control the friction of liquid micro- and nanoflows.

Cao, Bing-Yang; Chen, Min; Guo, Zeng-Yuan

2006-12-01

197

Fabrication of superhydrophobic surfaces on flexible fluorinated foils by using dual-scale patterning  

NASA Astrophysics Data System (ADS)

This paper investigates the interest of combining NanoImprint Lithography with plasma treatment in order to easily create dual-scale superhydrophobic surfaces on flexible fluorinated foils. The studies were led on FEP and PCTFE materials with conditions compatible with standard NIL equipments. Different pattern geometries, densities and aspect ratio have been investigated and we show that patterning at a nanometer scale improves hydrophobic behaviour compared to microstructuration. Water-contact angle (WCA) of 154° (and water contact angle hysteresis of 11 ± 2°) were measured, which corresponds to a superhydrophobic surface. However, patterning large surfaces at nanoscale with a high aspect ratio is more difficult to achieve and limits the use of such a process for industrial applications. So, we have decided to induce a nanopatterning on microstructures previously printed using plasma etching. This plasma roughening leads to a highly superhydrophobic surface and WCA values as high as 170°.

Ferchichi, A. K.; Panabière, M.; Desplats, O.; Gourgon, C.

2014-04-01

198

Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces Jonathan B. Boreyko and Chuan-Hua Chen*  

E-print Network

Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces Jonathan B. Boreyko and Chuan on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation Dropwise condensation occurs on a surface not wetted by the condensate [1] and is typically 10 times more

Chen, Chuan-Hua

199

Nonfunctionalized polydimethyl siloxane superhydrophobic surfaces based on hydrophobic-hydrophilic interactions.  

PubMed

Superhydrophobic surfaces based on polydimethyl siloxane (PDMS) were fabricated using a 50:50 PDMS-poly(ethylene glycol) (PEG) blend. PDMS was mixed with PEG, and incomplete phase separation yielded a hierarchic structure. The phase-separated mixture was annealed at a temperature close to the crystallization temperature of the PEG. The PEG crystals were formed isothermally at the PDMS/PEG interface, leading to an engineered surface with PDMS spherulites. The resulting roughness of the surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDMS spherulites, a few micrometers in diameter observed from SEM images, were found to have an undulated (rippled) surface with nanometer-sized features. The combination of micrometer- and nanometer-sized surface features created a fractal surface and increased the water contact angle (WCA) of PDMS more than 60°, resulting in a superhydrophobic PDMS surface with WCA of >160°. The active surface layer for the superhydrophobicity was approximately 100 ?m thick, illustrating that the material had bulk superhydrophobicity compared to conventional fluorocarbon or fluorinated coated rough surfaces. Theoretical analysis of the fractal surface indicates that the constructed surface has a fractal dimension of 2.5, which corresponds to the Apollonian sphere packing. PMID:21294505

Polizos, Georgios; Tuncer, Enis; Qiu, Xiaofeng; Aytu?, Tolga; Kidder, Michelle K; Messman, Jamie M; Sauers, Isidor

2011-03-15

200

Nonfunctionalized Polydimethyl Siloxane Superhydrophobic Surfaces Based on Hydrophobic-Hydrophilic Interactions  

SciTech Connect

Superhydrophobic surfaces based on polydimethyl siloxane (PDMS) were fabricated using a 50:50 PDM-poly(ethylene glycol) (PEG) blend. PDMS was mixed with PEG, and incomplete phase separation yielded a hierarchic structure. The phase-separated mixture was annealed at a temperature close to the crystallization temperature of the PEG. The PEG crystals were formed isothermally at the PDMS/PEG interface, leading to an engineered surface with PDMS spherulites. The resulting roughness of the surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDMS spherulites, a few micrometers in diameter observed from SEM images, were found to have an undulated (rippled) surface with nanometer-sized features. The combination of micrometer- and nanometer-sized surface features created a fractal surface and increased the water contact angle (WCA) of PDMS more than 60, resulting in a superhydrophobic PDMS surface with WCA of >160 degrees. The active surface layer for the superhydrophobicity was approximately 100 mu m thick, illustrating that the material had bulk superhydrophobicity compared to conventional fluorocarbon or fluorinated coated rough surfaces. Theoretical analysis of the fractal surface indicates that the constructed surface has a fractal dimension of 2.5, which corresponds to the Apollonian sphere packing.

Polizos, Georgios [Oak Ridge National Laboratory (ORNL); Tuncer, Enis [ORNL; Qiu, Xiaofeng [ORNL; Aytug, Tolga [ORNL; Kidder, Michelle [ORNL; Messman, Jamie M [ORNL; Sauers, Isidor [ORNL

2011-01-01

201

Super-hydrophobic surfaces of SiO2-coated SiC nanowires: Fabrication, mechanism and ultraviolet-durable super-hydrophobicity.  

PubMed

The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. PMID:25585284

Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

2015-04-15

202

Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife  

PubMed Central

A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

2012-01-01

203

Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.  

PubMed

We study the nonwettability and transparency from the assembly of fluorosilane modified silica nanoparticles (F-SiO(2) NPs) via one-step spin-coating and dip-coating without any surface postpassivation steps. When spin-coating the hydrophobic NPs (100 nm in diameter) at a concentration ? 0.8 wt % in a fluorinated solvent, the surface exhibited superhydrophobicity with an advancing water contact angle greater than 150° and a water droplet (5 ?L) roll-off angle less than 5°. In comparison, superhydrophobicity was not achieved by dip-coating the same hydrophobic NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that NPs formed a nearly close-packed assembly in the superhydrophobic films, which effectively minimized the exposure of the underlying substrate while offering sufficiently trapped air pockets. In the dip-coated films, however, the surface coverage was rather random and incomplete. Therefore, the underlying substrate was exposed and water was able to impregnate between the NPs, leading to smaller water contact angle and larger water contact angle hysteresis. The spin-coated superhydrophobic film was also highly transparent with greater than 95% transmittance in the visible region. Further, we demonstrated that the one-step coating strategy could be extended to different polymeric substrates, including poly(methyl methacrylate) and polyester fabrics, to achieve superhydrophobicity. PMID:22292419

Xu, Lebo; Karunakaran, Raghuraman G; Guo, Jia; Yang, Shu

2012-02-01

204

Vicinal surfaces for functional nanostructures.  

PubMed

Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF(2), MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. PMID:21817211

Tegenkamp, Christoph

2009-01-01

205

Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil  

NASA Astrophysics Data System (ADS)

Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

Qu, Mengnan; He, Jinmei; Cao, Biyun

2010-10-01

206

Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.  

PubMed

Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials. PMID:24016423

Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

2013-09-25

207

Fabrication of superhydrophobic wood surface by a sol-gel process  

NASA Astrophysics Data System (ADS)

The superhydrophobic wood surface was fabricated via a sol-gel process followed by a fluorination treatment of 1H, 1H, 2H, 2H- perfluoroalkyltriethoxysilanes (POTS) reagent. The crystallization type of silica nanoparticles on wood surface was characterized using X-ray diffraction (XRD), the microstructure and chemical composition of the superhydrophobic wood surface were described by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the bonding force between the silica nanoparticles and POTS reagent was analyzed by Fourier transform infrared spectroscopy (FT-IR) and the superhydrophobic property of the treated sample was measured by contact angle (CA) measurements. An analytical characterization revealed that nanoscale silica spheres stacked uniformly over the wood surface, and with the combination of the high surface roughness of silica nanoparticles and the low surface free energy film of POTS on wood surface, the wood surface has turned its wetting property from hydrophilic into superhydrophobic with a water contact angle of 164° and sliding angle less than 3°.

Wang, Shuliang; Liu, Changyu; Liu, Guochao; Zhang, Ming; Li, Jian; Wang, Chengyu

2011-11-01

208

Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly  

NASA Astrophysics Data System (ADS)

Biomimic superhydrophobic surfaces with contact angle greater than 150° and low sliding angle on copper substrate were fabricated by means of a facile solution immersion and surface self-assembly method. The scanning electron microscopy showed a nanoneedle structure copper surface with sporadic flower-like aggregates after treatment with sodium hydroxide and potassium persulfate solution. X-ray photoelectron spectroscopy and X-ray diffraction results confirmed that the formed nanoneedles were crystallized Cu(OH) 2. And the hydrophilic Cu(OH) 2 surface can be further modified into superhydrophobic through surface self-assembly with dodecanoic acid.

Yin, Shiheng; Wu, Dongxiao; Yang, Ji; Lei, Shumei; Kuang, Tongchun; Zhu, Bin

2011-08-01

209

Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

2011-03-01

210

Nano-structuring of polymer surfaces by multi-beam laser interference for application in micro-fluidics  

NASA Astrophysics Data System (ADS)

The interference of three coherent laser beams of a HeCd-laser with a wavelength of 325 nm was used to create a periodic intensity distribution into the photo-resist AZ4562. The beam configuration for the laser beam interference was carefully chosen, so that well defined patterns of two-dimensional periodicity were generated in the photo-resist. Moulding tools were fabricated from the generated nano-structures via electroforming processes, allowing for a fast replication of the nano-structured surfaces via hot embossing. Hot embossed polymers were used to increase the effective surface of micro-fluidic devices like e.g. Polymerase-Chain-Reaction(PCR)-chips. The Nano-structured surfaces were characterized concerning their contact angles when wetted with de-ionized water. It was found that the nano-structures influenced the wetting behaviour of micro-fluidic chip surfaces clearly, especially Polypropylene (PP) surfaces showed a superhydrophobic behaviour.

Klotzbuecher, T.; Radke, A.; Tunayar, A.; Haverbeck, O.; Weinbender, E.; Wuesten, J.; Toufali, A.; Claussen, J.; Detemple, P.

2008-02-01

211

Liquid-encapsulating surfaces: overcoming the limitations of superhydrophobic surfaces for robust non-wetting and anti-icing surfaces  

NASA Astrophysics Data System (ADS)

In this work we address fundamental limitations of superhydrophobic surfaces for non-wetting and anti-icing applications by impregnating them with a hydrophobic liquid. The encapsulated liquid serves as a barrier to the penetration of impinging water droplets and forces preferential condensation and frost formation on texture tops. We conducted droplet impact and roll-off experiments to assess the robustness of liquid-encapsulating micro- and nano-scale textured surfaces and found that their ability to shed droplets was improved dramatically. Furthermore, environmental scanning electron microscope experiments demonstrated that frost formation as well as condensation occurs preferentially on these surfaces thereby limiting ice contact to texture tops only. Ice adhesion strength was quantified using a custom-built adhesion testing apparatus to demonstrate greatly enhanced anti-icing performance of the liquid-encapsulating surfaces compared to superhydrophobic surfaces.

Smith, J. David; Dhiman, Rajeev; Varanasi, Kripa

2011-11-01

212

A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property  

NASA Astrophysics Data System (ADS)

The present work reports a simple and time-saving method to fabricate cupric stearate film on zinc substrate by a solution-immersion process. Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering its surface energy. The fabrication of superhydrophobic cupric stearate surface is reported using a one-step process by immersing a zinc plate coated with copper into the stearic acid solution, simplifying the complexity of two different steps involved in the conventional methods. The surface of the zinc plate coated with copper is found to be covered with low surface energy cupric stearate film providing the water contact angle of 160 ± 1° with the rolling off properties. In addition, the damaged superhydrophobic surface can restore superhydrophobicity property by immersing the surface into the stearic acid solution again.

Li, Jian; Liu, Xiaohong; Ye, Yinping; Zhou, Huidi; Chen, Jianmin

2011-12-01

213

Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps  

NASA Astrophysics Data System (ADS)

This paper presents an experimental study on water drop oblique impacts onto hydrophobic and superhydrophobic tilted surfaces, with the objective of understanding drop impact dynamics and the conditions for drop rebound on low wetting surfaces. Drop impact experiments were performed with millimetric water drops with Weber numbers in the range 25 < We < 585, using different surfaces with advancing contact angles 111° < ? A < 160° and receding contact angles 104° < ? R < 155°. The analysis of oblique impacts onto tilted surfaces led to the definition of six different impact regimes: deposition, rivulet, sliding, rolling, partial rebound, and rebound. For superhydrophobic surfaces, surface tilting generally enhanced drop rebound and shedding from the surface, either by reducing drop rebound time up to 40 % or by allowing drop rebound even when impalement occurred in the vicinity of the impact region. On hydrophobic surfaces, rebound was never observed for tilt angles higher than 45°.

Antonini, C.; Villa, F.; Marengo, M.

2014-04-01

214

Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.  

PubMed

Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated. PMID:23889192

Xu, Qian Feng; Liu, Yang; Lin, Fang-Ju; Mondal, Bikash; Lyons, Alan M

2013-09-25

215

Fabrication of "Roll-off" and "Sticky" Superhydrophobic Cellulose Surfaces via Plasma Processing  

E-print Network

the internal roughness of each fiber and the micrometer scale roughness which is inherent to a cellulose paperFabrication of "Roll-off" and "Sticky" Superhydrophobic Cellulose Surfaces via Plasma Processing their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive

Breedveld, Victor

216

Fabrication of non-flaking, superhydrophobic surfaces using a one-step solution-immersion process on copper foams  

NASA Astrophysics Data System (ADS)

Non-flaking superhydrophobic surfaces were prepared using a simple one-step solution-immersion process on commercially obtained copper foam substrates. Copper foams were immersed in a 0.05 M ethanolic stearic acid solution at room temperature for several days. This formed coverage of copper stearate with micro- and nano-scale hierarchical surface morphology. The surface of the copper foam after 4 days of immersion demonstrates superhydrophobicity with a water contact angle of 156°. A sliding angel of 4° for a 5 ?L droplet indicates excellent non-sticking behavior. Compared with a flat copper plate, the superhydrophobic surfaces based on copper foams are much more robust and mechanically stable. This work provides a promising strategy for scalable fabrication of superhydrophobic surfaces on 3D porous structures.

Xu, Jia; Xu, Jinliang; Cao, Yang; Ji, Xianbing; Yan, Yuying

2013-12-01

217

Qualitative Observations of Droplet Impact on Superhydrophobic Surfaces with Micro-ribs for Three Fluids  

Microsoft Academic Search

Droplet impingement experiments on superhydrophobic surfaces with micro-ribs and a hydrophobic coating were performed using three fluid types: water, a 50\\/50 water\\/glycerine mixture, and ethanol. Also tested, for comparison, were patterned uncoated, smooth coated, and smooth uncoated surfaces. For surfaces with rib and cavity features, the droplet spread and retraction were observed to be asymmetric and at high Weber numbers

John Pearson; Daniel Maynes; Brent W. Webb

2010-01-01

218

Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination  

SciTech Connect

We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

Kim, Eun-Kyeong; Yeong Kim, Ji [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Sub Kim, Sang, E-mail: sangsub@inha.ac.kr [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

2013-01-15

219

Synthesis of Temperature-Responsive Dextran-MA\\/PNIPAAm Particles for Controlled Drug Delivery Using Superhydrophobic Surfaces  

Microsoft Academic Search

Purpose  To implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydrogel beads in which\\u000a the bioactive substance is introduced in the particles during their formation.\\u000a \\u000a \\u000a \\u000a \\u000a Methods   Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed\\u000a by photo-crosslinked dextran-methacrylated and thermal responsive poly(N-isopropylacrylamide) mixed with a protein (insulin or albumin) were dropped on the superhydrophobic

Ana Catarina Lima; Wenlong Song; Barbara Blanco-Fernandez; Carmen Alvarez-Lorenzo; João F. Mano

2011-01-01

220

Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces  

PubMed Central

Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

2015-01-01

221

Experimental evidence of slippage breakdown for a superhydrophobic surface in a microfluidic device  

E-print Network

A full characterization of the water flow past a silicon superhydrophobic surface with longitudinal micro-grooves enclosed in a microfluidic device is presented. Fluorescence microscopy images of the flow seeded with fluorescent passive tracers were digitally processed to measure both the velocity field and the position and shape of the liquid-air interfaces at the superhydrophobic surface. The simultaneous access to the meniscus and velocity profiles allows us to put under a strict test the no-shear boundary condition at the liquid-air interface. Surprisingly, our measurements show that air pockets in the surface cavities can sustain non-zero interfacial shear stresses, thereby hampering the friction reduction capabilities of the surface. The effects of the meniscus position and shape as well as of the liquid-air interfacial friction on the surface performances are separately assessed and quantified.

Guido Bolognesi; Cecile Cottin-Bizonne; Christophe Pirat

2014-06-12

222

Microscopic receding contact line dynamics on pillar and irregular superhydrophobic surfaces.  

PubMed

Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent "slide-snap" motion of the microscopic receding line as compared to the "stick-slip" dynamics reported in previous studies. Interface angles between 40-60° were measured for the pre-snap receding lines on all pillar surfaces. Similar "slide-snap" dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S

2015-01-01

223

Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy  

NASA Astrophysics Data System (ADS)

Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

Karmouch, Rachid; Ross, Guy G.

2010-11-01

224

Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system  

NASA Astrophysics Data System (ADS)

Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

2012-11-01

225

Nanostructured Surfaces of Dental Implants  

PubMed Central

The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years. PMID:23344062

Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

2013-01-01

226

An effect of silicon micro-nano-patterning arrays on superhydrophobic surface.  

PubMed

Superhydrophobic surface can be fabricated by creating a rough surface at very fine scale and modify it with low-surface energy material. To obtain the optimum superhydrophobicity, the surface roughness must be maximized. To avoid the limitation of scaling down the pattern size by using an expensive lithography tools, the surface roughness factor (r) was increased by means of changing an asperity shape so as to increase its overall surface area. In this paper, the patterns of the asperities under studied were wave stripes, line stripes, cylindrical pillars, square pillars, pentagonal pillars, hexagonal pillars, and octagonal pillars. All pillar shapes were arranged in square arrays, hexagonal arrays, and continuous stripes. The asperities sizes and the pitches were varied from 1 to 5 microm with 10 microm of asperity height. Then the patterned surfaces were coated with polydimethylsiloxane mixed with 10 wt% dicumylperoxide. It was found that the stripe asperities can generate only hydrophobic surface with water contact angle (WCA) of 135 degrees to 145 degrees. The pillars with square and hexagonal arrays had the WCA of 149 degrees to 158 degrees. The pentagonal pillars with square and hexagonal arrays achieved the highest WCA with an average WCA of 156 degrees. It was evident that the pillar shape had significant effect on the superhydrophobicity. PMID:22400288

Atthi, Nithi; Nimittrakoolchai, On-Uma; Supothina, Sitthisuntorn; Supadech, Jakrapong; Jeamsaksiri, Wutthinan; Pankiew, Apirak; Hruanun, Charndet; Poyai, Amporn

2011-10-01

227

Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic  

NASA Astrophysics Data System (ADS)

A series of Cu films with different surface structures were fabricated by an improved electric brush-plating technique. In the absence of surface chemical modification, the Cu films exhibited hydrophobic and even superhydrophobic behaviors due to their three-level hierarchical structures. Based on the classical Wenzel and Cassie models, the effects of two dimensionless geometrical parameters (the aspect ratio and the spacing factor of micro-scale structure) on the wetting behaviors of the Cu films were investigated. It was demonstrated that to obtain the stable Cassie superhydrophobic state, the aspect ratio and the water contact angle on the basal surface should be as large as possible and the spacing factor should be limited within a specific range for given aspect ratio and water contact angle on the basal surface.

Meng, Keke; Jiang, Yue; Jiang, Zhonghao; Lian, Jianshe; Jiang, Qing

2014-01-01

228

Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness  

NASA Astrophysics Data System (ADS)

Previous studies dedicated to modeling drag reduction and stability of the air-water interface on superhydrophobic surfaces were conducted for microfabricated coatings produced by placing hydrophobic microposts/microridges arranged on a flat surface in aligned or staggered configurations. In this paper, we model the performance of superhydrophobic surfaces comprised of randomly distributed roughness (e.g., particles or microposts) that resembles natural superhydrophobic surfaces, or those produced via random deposition of hydrophobic particles. Such fabrication method is far less expensive than microfabrication, making the technology more practical for large submerged bodies such as submarines and ships. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridges configurations for pipe flows. The present results are compared with theoretical and experimental studies reported in the literature. In particular, our simulation results are compared with work of Sbragaglia and Prosperetti, and good agreement has been observed for gas fractions up to about 0.9. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. This effect peaks at about 30% as the gas fraction increases to 0.98. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. It was found that at a given maximum allowable pressure, surfaces with random post distribution produce less drag reduction than those made up of staggered posts.

Samaha, Mohamed A.; Vahedi Tafreshi, Hooman; Gad-el-Hak, Mohamed

2011-01-01

229

Petal effect: a superhydrophobic state with high adhesive force.  

PubMed

Hierarchical micropapillae and nanofolds are known to exist on the petals' surfaces of red roses. These micro- and nanostructures provide a sufficient roughness for superhydrophobicity and yet at the same time a high adhesive force with water. A water droplet on the surface of the petal appears spherical in shape, which cannot roll off even when the petal is turned upside down. We define this phenomenon as the "petal effect" as compared with the popular "lotus effect". Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state. PMID:18312016

Feng, Lin; Zhang, Yanan; Xi, Jinming; Zhu, Ying; Wang, Nü; Xia, Fan; Jiang, Lei

2008-04-15

230

Bioinspired peony-like beta-Ni(OH)2 nanostructures with enhanced electrochemical activity and superhydrophobicity.  

PubMed

Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures. PMID:19998313

Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H

2010-02-01

231

A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.  

PubMed

In this paper, we present a new approach to the tunable adhesive superhydrophobic surfaces consisting of periodic hydrophobic patterns and superhydrophobic structures by femtosecond (fs) laser irradiation on silicon. The surfaces are composed of periodic hydrophobic patterns (triangle, circle, and rhombus) and superhydrophobic structures (dual-scale spikes induced by a fs laser). Our results reveal that the adhesive forces of as-prepared surfaces can be tuned by varying the area ratio (AR(s-h)) of superhydrophobic domain to hydrophobic domain, thus resulting in tunable static and dynamic wettabilities. By increasing AR(s-h), (i) the static wetting property, which is characterized by the minimum water droplet volume that enables a droplet to land on the surface, can be tailored from 1 ?L to 9 ?L; (ii) the sliding angle can be flexibly adjusted, ranging from >90° (a droplet cannot slide off when the sample is positioned upside down) to 5°; and (iii) the droplet rebound behaviors can be modulated from partial rebound to triple rebound. In addition, the Cassie-Baxter model and the sliding angle model are used to speculate the contact angles and sliding angles to provide potentially theoretical models to design slippery-to-sticky superhydrophobic surfaces. The tunable adhesive superhydrophobic surfaces achieved by fs laser microfabrication may be potentially used in microfluidic systems to modulate the mobility of liquid droplets. PMID:22909564

Zhang, Dongshi; Chen, Feng; Yang, Qing; Yong, Jiale; Bian, Hao; Ou, Yan; Si, Jinhai; Meng, Xiangwei; Hou, Xun

2012-09-26

232

Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly  

NASA Astrophysics Data System (ADS)

A novel approach was developed to fabricate a lotus-leaf-like superhydrophobic surface on a copper foil by simple self-assembly method with the assistance of the porous PDMS template which was used to adjust the oxidized parts of the copper foil surface before self-assembly. The results showed a series of beautiful flower-like microstructures resulting from the self-assembly of cupric stearate that were distributed at regular intervals on the as-prepared copper foil surface similar to the papillae of lotus leaf surface. The water contact angle of the as-prepared copper surface was up to 161° and its sliding angle was only 3°. Its great superhydrophobicity could be kept unchanged after 6 months in air. The formation mechanism of the lotus-leaf-like structure was discussed. This simple and low-cost method is expected to be applied to design and prepare complicated superhydrophobic surfaces with beautiful regular microstructures on different substrates such as stainless steel, zinc, and so on.

Yuan, Zhiqing; Wang, Xian; Bin, Jiping; Wang, Menglei; Peng, Chaoyi; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Chen, Hong

2014-09-01

233

Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates  

NASA Astrophysics Data System (ADS)

We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng; Zhou, Zhi Ping

2015-04-01

234

Facile fabrication of superhydrophobic polytetrafluoroethylene surface by cold pressing and sintering  

NASA Astrophysics Data System (ADS)

A series of superhydrophobic polytetrafluoroethylene (PTFE) surfaces were prepared by a facile cold pressing and sintering method, and their microstructures and wetting behaviors could be artificially tailored by altering sintering temperature and using different masks. Specifically, the microstructures mainly depended on the sintering temperature, whereas the wetting behaviors, water contact angle (WCA) and sliding angle (SA), greatly hinged on both the sintering temperature and mask. Then a preferable superhydrophobic surface with WCA of 162 ± 2° and SA of 7° could be obtained when the sintering temperature was 360 °C and the 1000 grit abrasive paper was used as a mask. In addition, it was worth noting that the as-prepared surfaces exhibited excellent stability under UV illumination, which was the most key factor for them toward practical applications.

Jiang, Cheng; Hou, Weixin; Wang, Qihua; Wang, Tingmei

2011-03-01

235

A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching  

NASA Astrophysics Data System (ADS)

A metal assisted chemical etching process was proposed to rapidly fabricate super-hydrophobic surfaces on Zn substrates. The influence of three assisting metal ions (Ag+, Cu2+, Cr3+) on the morphology of the fabricated surfaces, and their hydrophobicity after modification by fluorosilane, were studied. This work indicates that the metal ions play an important role on the structure and the hydrophobicity of the prepared surfaces. The rough structure required for super-hydrophobic surfaces, with contact angles of 158 ± 2° and 161 ± 2°, respectively, can be easily obtained within 5 s with Cu2+ or Ag+ assisted chemical etching process. The treatment conditions of Cu2+ assisted chemical etching method were optimized. The sample with the highest contact angle can be achieved when the concentration of Cu(NO3)2 is 0.08 mol L-1, the concentration of HNO3 is 0.6 mol L-1, and the etching time is 5 s at 30 °C. And the prepared superhydrophobic surfaces exhibited enough stability in the air.

Qi, Yi; Cui, Zhe; Liang, Bin; Parnas, Richard S.; Lu, Houfang

2014-06-01

236

Superhydrophobic micro/nano dual-scale structures.  

PubMed

In this paper, we present superhydrophobic micro/nano dual structures (MNDS). By KOH-etching of silicon, well-designed microstructures, including inverted pyramids and V-shape grooves, are first fabricated with certain geometry sizes. Nanostructures made of high-compact high-aspect-ratio nanopillars are then formed atop microstructures by an improved controllable deep reactive ion etching (DRIE) process without masks, thus forming MNDS. Resulting from both the minimized liquid-solid contact area and the fluorocarbon layer atop deposited during the DRIE process, the MNDS show a reliable superhydrophobicity. The contact angle and contact angle hysteresis are -165 degrees and less than 1 degrees, respectively. This superhydrophobicity of MNDS is very stable according to squeezing and dropping test, even in high voltage conditions with the electrowetting threshold voltage of -300 V. Therefore, this micro/nano dual-scale structure has strong potential applications to the self-cleaning surface and superhydrophobic micro/nano fluidics. PMID:23646678

Zhang, Xiaosheng; Di, Qianli; Zhu, Fuyun; Sun, Guangyi; Zhang, Haixia

2013-02-01

237

Superhydrophobic diatomaceous earth  

DOEpatents

A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

Simpson, John T. (Clinton, TN); D'Urso, Brian R. (Clinton, TN)

2012-07-10

238

Facile fabrication of superhydrophobic surfaces with low roughness on Ti-6Al-4V substrates via anodization  

NASA Astrophysics Data System (ADS)

The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H2O2 mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 ?m and good superhydrophobicity with a water contact angle of 158.5° ± 1.9° as well as a water tilting angle of 5.3° ± 1.1°, but also possess good long-term stability and abrasion resistance.

Gao, Yuze; Sun, Yuwen; Guo, Dongming

2014-09-01

239

Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation.  

PubMed

Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 ?L droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ? 9), acids (10 s in dilute HNO3, H2SO4 of pH ? 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria. PMID:25419984

Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

2014-12-24

240

Surface initiation from adsorbed polymer clusters: a rapid route to superhydrophobic coatings.  

PubMed

We introduce the use of a hydroborated polyisoprene (PIP) macroinitiator for the rapid surface-initiated growth of superhydrophobic polymethylene (PM) films. Rinsing of a dip-coated PIP film on a methyl-terminated surface atop silicon or gold substrates results in robustly bound, isolated PIP clusters. After hydroboration of the internal olefins, these clusters result in extremely rapid growth of polymethylene coatings upon exposure to a diazomethane solution in diethyl ether at -17 °C. The resulting PM films achieve 6 ?m thicknesses within 20 min of polymerization and become superhydrophobic with advancing and receding water contact angles of 166° and 156°, respectively, within 1 min. The PM films grown from these PIP clusters exhibit 3× greater propagation velocities, 30% lower termination rates, and more highly textured morphologies than PM films grown from hydroborated monolayers. PMID:23465650

Tuberquia, Juan C; Jennings, G Kane

2013-04-10

241

Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (?) on silicone based hydrophobic surfaces was ? 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

Bharathidasan, T.; Kumar, S. Vijay; Bobji, M. S.; Chakradhar, R. P. S.; Basu, Bharathibai J.

2014-09-01

242

Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature  

Microsoft Academic Search

This article considers Couette and Poiseuille flows past superhydrophobic surfaces containing alternating micro-grooves and\\u000a ribs aligned longitudinally to the flow. The effects of interface curvature on the effective slip length are quantified for\\u000a different shear-free fractions and groove–rib spatial periods normalized using the channel height. The numerical results obtained\\u000a demonstrate the importance of considering interface curvature effects in ascertaining the

C. J. Teo; B. C. Khoo

2010-01-01

243

Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer  

E-print Network

Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

Xiao, Rong, Ph. D. Massachusetts Institute of Technology

2013-01-01

244

Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (?100 nm).  

PubMed

We report a simple and versatile approach to creating a highly transparent superhydrophobic surface with dual-scale roughness on the nanoscale. 3-Aminopropyltrimethoxysilane (APTS)-functionalized silica nanoparticles of two different sizes (100 and 20 nm) were sequentially dip coated onto different substrates, followed by thermal annealing. After hydrophobilization of the nanoparticle film with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane for 30 min or longer, the surface became superhydrophobic with an advancing water contact angle of greater than 160° and a water droplet (10 ?L) roll-off angle of less than 5°. The order of nanoparticles dip coated onto the silicon wafer (i.e., 100 nm first and 20 nm second or vice versa) did not seem to have a significant effect on the resulting apparent water contact angle. In contrast, when the substrate was dip coated with monoscale nanoparticles (20, 50, and 100 nm), a highly hydrophobic surface (with an advancing water contact angle of up to 143°) was obtained, and the degree of hydrophobicity was found to be dependent on the particle size and concentration of the dip-coating solution. UV-vis spectra showed nearly 100% transmission in the visible region from the glass coated with dual-scale nanoparticles, similar to the bare one. The coating strategy was versatile, and superhydrophobicity was obtained on various substrates, including Si, glass, epoxy resin, and fabrics. Thermal annealing enhanced the stability of the nanoparticle coating, and superhydrophobicity was maintained against prolonged exposure to UV light under ambient conditions. PMID:21355577

Karunakaran, Raghuraman G; Lu, Cheng-Hsin; Zhang, Zanhe; Yang, Shu

2011-04-19

245

Sticking of droplets on slippery superhydrophobic surfaces by laser induced forward transfer  

NASA Astrophysics Data System (ADS)

Liquid jets created by the Laser Induced Forward Transfer (LIFT) technique can reach extremely high speeds exceeding 270 m/s. The impact of such a jet on a solid surface can create a dynamic pressure of 35 MPa, enabling the LIFT process to stick liquid droplets on highly slippery superhydrophobic surfaces. In this letter, we demonstrate how LIFT printing can be utilized in order to achieve selective sticky behavior on slippery surfaces, valuable for many biosensor applications, and we suggest it as a tool of evaluating the thermodynamic robustness of the so called Fakir states on various rough hydrophobic surfaces.

Boutopoulos, Christos; Papageorgiou, Dimitrios P.; Zergioti, Ioanna; Papathanasiou, Athanasios G.

2013-07-01

246

Liquid-impregnated surfaces: overcoming the limitations of superhydrophobic surfaces for robust non-wetting and anti-icing surface  

NASA Astrophysics Data System (ADS)

In this work we address fundamental limitations of superhydrophobic surfaces for non-wetting and anti-icing applications by impregnating them with a hydrophobic liquid. The impregnating liquid serves as a barrier to the penetration of impinging water droplets and forces preferential condensation and frost formation on texture tops. We predict the thermodynamically stable wetting states based on a free energy analysis, and model the behavior of rolling droplets on liquid-impregnating surfaces. We conducted droplet impact and roll-off experiments to assess the robustness of liquid-impregnateding micro- and nano-scale textured surfaces and found that their ability to shed droplets was improved dramatically. Furthermore, environmental scanning electron microscope experiments demonstrated that frost formation as well as condensation occurs preferentially on these surfaces thereby limiting ice contact to texture tops only. Ice adhesion strength was quantified using a custom-built adhesion testing apparatus to demonstrate greatly enhanced anti-icing performance of the liquid-impregnating surfaces compared to superhydrophobic surfaces.

Smith, J. David; Dhiman, Rajeev; Reza-Garduno, Ernesto; McKinley, Gareth; Cohen, Robert; Varanasi, Kripa

2012-02-01

247

Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces  

NASA Astrophysics Data System (ADS)

We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re =8.0 ×1 04 . We show that the mean skin friction coefficient Cf in the presence of the superhydrophobic coating can be fitted to a modified Prandtl-von Kármán-type relationship of the form (Cf/2 )-1 /2=M ln (Re (Cf/2 )1 /2) +N +(b /? r )Re (Cf/2 )1 /2 from which we extract an effective slip length of b ?19 ? m . The dimensionless effective slip length b+=b /??, where ?? is the viscous length scale, is the key parameter that governs the drag reduction and is shown to scale as b+˜Re1 /2 in the limit of high Re.

Srinivasan, Siddarth; Kleingartner, Justin A.; Gilbert, Jonathan B.; Cohen, Robert E.; Milne, Andrew J. B.; McKinley, Gareth H.

2015-01-01

248

Superhydrophobic surface-based magnetic electrochemical immunoassay for detection of Schistosoma japonicum antibodies.  

PubMed

In this paper, a magnetic electrochemical immunoassay that uses a superhydrophobic surface-based analytical platform (SSAP) has been initially developed for detection of Schistosoma japonicum (Sj) antibodies (SjAb). The SSAP is fabricated by modifying the inner surfaces of plastic test tubes with superhydrophobic polycarbonate coatings that show a water contact angle up to 160° and a water rolling angle less than 5°. In a noncompetitive sandwich format, the SjAb immunoassay with magnetic particles is based on sensitive stripping voltammetry analysis coupled with the copper enhanced Au nanoparticle tag amplification. This technique is quantitatively sensitive to SjAb concentrations ranging from 2 ng ml(-1) to 15 ?g ml(-1), with a detection limit of ?1.3 ngml(-1). Moreover, the results of assaying several serum specimens prove its feasibility of practical applications. The self-cleaning SSAP can be reused, because no aqueous samples reagents or contaminate the superhydrophobic polycarbonate during the experiments. The comparison study additionally demonstrates that the SSAP-based magnetic electrochemical immunoassays can offer preferable advantages over the existing approaches for SjAb detection, in terms of volumes of samples and reagents, assay time, and detection limit. PMID:22270051

Nie, Jinfang; Zhang, Yun; Wang, Hua; Wang, Shiping; Shen, Guoli

2012-03-15

249

The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces  

NASA Astrophysics Data System (ADS)

Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (Ra) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (Ra = 5.26 ?m) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

Kok, Mariana; Young, Trevor M.

2014-09-01

250

Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates.  

PubMed

Silica nanoparticles were spin-coated onto a flat/patterned (regular pillar-like) substrate to enhance the surface roughness. The surface was further modified by a self-assembled fluorosilanated monolayer. The advancing/receding contact angle and sliding angle measurements were performed to determine the wetting behavior of a water droplet on the surface. It is interesting to find that a transition from a Wenzel surface to a sticky superhydrophobic surface is observed due to the spin-coating silica nanoparticles. A slippery superhydrophobic surface can be further obtained after secondary spin-coating with silica nanoparticles to generate a multi-scale roughness structure. The prepared superhydrophobic substrates should be robust for practical applications. The adhesion between the substrate and nanoparticles is also examined and discussed. PMID:21979566

Cho, Kuan-Hung; Chen, Li-Jen

2011-11-01

251

Spontaneous ordering of nanostructures on crystal surfaces  

Microsoft Academic Search

A review is given of theoretical concepts and experimental results on spontaneous formation of periodically ordered nanometer-scale structures on crystal surfaces. Thermodynamic theory is reviewed for various classes of spontaneously ordered nanostructures, namely, for periodically faceted surfaces, for periodic surface structures of planar domains, and for ordered arrays of three-dimensional coherently strained islands. All these structures are described as equilibrium

Vitaliy A. Shchukin; Dieter Bimberg

1999-01-01

252

Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces  

SciTech Connect

Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below {approx}10 {mu}m account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

Rykaczewski, K.; Scott, J. H. J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Fedorov, A. G. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2011-02-28

253

Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 ?m account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

2011-02-01

254

Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

High repetition rate picosecond laser pulses are used to form hierarchical structures on titanium in air for the development of superhydrophobic surfaces. The treated titanium surfaces are used as masters for polymer replicas in soft lithography. The complex topography of the master has been shown to successfully transfer to UV-curable polymer replicas without significant change in morphology or wetting characteristics. This approach demonstrates a low-cost, high-efficiency process combining rapid picosecond laser-based fabrication and micro-replication technology for the reproduction of widely used functional plastic parts.

Jiang, Tao; Koch, Jürgen; Unger, Claudia; Fadeeva, Elena; Koroleva, Anastasia; Zhao, Qingliang; Chichkov, Boris N.

2012-09-01

255

Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.  

PubMed

A polydimethylsiloxane (PDMS) elastomer surface with perfectly ordered microstructures having an inverse-trapezoidal cross-sectional profile (simply PDMS trapezoids) showed superhydrophobic and transparent characteristics under visible light as reported in our previous work. The addition of a fluoropolymer (Teflon) coating enhances both features and provides oleophobicity. This paper focuses on the analytical modeling of the fabricated PDMS trapezoids structure and thermodynamic analysis based on the Gibbs free energy analysis. Additionally, the wetting characteristics of the fabricated PDMS trapezoids surface before and after the application of the Teflon coating are analytically explained. The Gibbs free energy analysis reveals that, due to the Teflon coating, the Cassie-Baxter state becomes energetically more favorable than the Wenzel state and the contact angle difference between the Cassie-Baxter state and the Wenzel state decreases. These two findings support the robustness of the superhydrophobicity of the fabricated Teflon-coated PDMS trapezoids. This is then verified via the impinging test of a water droplet at a high speed. The dependencies of the design parameters in the PDMS trapezoids on the hydrophobicity are also comprehensively studied through a thermodynamic analysis. Geometrical dependency on the hydrophobicity shows that overhang microstructures do not have a significant influence on the hydrophobicity. In contrast, the intrinsic contact angle of the structural material is most important in determining the apparent contact angle. On the other hand, the experimental results showed that the side angles of the overhangs are critical not for the hydrophobic but for the oleophobic property with liquids of a low surface tension. Understanding of design parameters in the PDMS trapezoids surface gives more information for implementation of superhydrophobic surfaces. PMID:20879754

Im, Maesoon; Im, Hwon; Lee, Joo-Hyung; Yoon, Jun-Bo; Choi, Yang-Kyu

2010-11-16

256

Replication of butterfly wing and natural lotus leaf nanostructures by nanoimprint on Silica Sol-gel films.  

E-print Network

1 Replication of butterfly wing and natural lotus leaf nanostructures by nanoimprint on Silica Sol applications are the lotus leaves and butterfly wings with their specific structure given a superhydrophobicity have chosen to imprint the lotus leaf and butterfly wings in order to obtain superhydrophobic surfaces

257

Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces.  

PubMed

Poly(tetrafluoroethylene) (PTFE) materials were exposed to low and high-energy oxygen plasma, and the stability of the materials' surface was evaluated using contact angle, surface roughness, and surface chemistry characterizations. Lower-energy oxygen plasma treatments exhibited hydrophilic behavior with contact angles as low as 87°, and the higher-energy oxygen plasma treatments exhibited superhydrophobic behavior with contact angles as high as 151°. The wettability of all the treated samples as stored in air and in water was found to be stable in time as evidenced by the statistically insignificant differences in the advancing, receding, and hysteresis contact angles. Low contact angle hysteresis (?H<5°) and low sliding angle (??4°) were exhibited by the superhydrophobic surface. The surface morphology was found to be responsible for the changes in the wettability of the PTFE samples since (1) there was an increase in the surface rms roughness as the plasma discharge energy was increased, and (2) there were no significant changes in the observed group frequencies of the FT-IR spectra of the treated PTFE from the untreated PTFE. PMID:23403114

Salapare, Hernando S; Guittard, Frédéric; Noblin, Xavier; Taffin de Givenchy, Elisabeth; Celestini, Franck; Ramos, Henry J

2013-04-15

258

Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al-Nb alloy columnar films  

NASA Astrophysics Data System (ADS)

A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.

Fujii, Takashi; Aoki, Yoshitaka; Habazaki, Hiroki

2011-07-01

259

Superhydrophobicity â The Lotus Effect  

NSDL National Science Digital Library

Students are introduced to superhydrophobic surfaces and the "lotus effect." Water spilled on a superhydrophobic surface does not wet the surface, but simply rolls off. Additionally, as water moves across the superhydrophobic surface, it picks up and carries away any foreign material, such as dust or dirt. Students learn how plants create and use superhydrophobic surfaces in nature and how engineers have created human-made products that mimic the properties of these natural surfaces. They also learn about the tendency of all superhydrophobic surfaces to develop water droplets that do not roll off the surface but become "pinned" under certain conditions, such as water droplets formed from condensation. They see how the introduction of mechanical energy can "unpin" these water droplets and restore the desirable properties of the superhydrophobic surface.

NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,

260

Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide–alkyl ketene dimer solution  

Microsoft Academic Search

Superhydrophobic alkyl ketene dimer (AKD) layers were successfully produced on top of untreated paper surfaces by a rapid expansion of supercritical CO2 solution (RESS) process. The new method resulted in a degree of hydrophobicity, as measured by contact angles of water droplets on AKD surfaces, dramatically higher, up to 173°, compared to a conventional method consisting in melting AKD granules

Can Quan; Oskar Werner; Lars Wågberg; Charlotta Turner

2009-01-01

261

Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method  

NASA Astrophysics Data System (ADS)

In this study, superamphiphobic coating was produced using low surface energy materials and fabrication of hierarchical structures on stainless steel surface. Hierarchical structure was fabricated by silica multilayer coatings and adequate control of particles size in each layer. The surface energy was decreased by fluoropolymer compounds. The maximum static contact angle of DI water, ethylene glycol and fuel oil droplets on the prepared surface increased from 64° to 166°, from 33° to 157° and from 0° to 116°, respectively. Also, the minimum sliding angles of DI water, ethylene glycol and fuel oil droplets on the prepared surface were less than 2°, 5° and 12°, respectively. These results confirmed the superhydrophobicity and superoleophobicity of coated surfaces. These films maintained their superamphiphobicity after 16 days of immersion in water. In electrochemical corrosion evaluation, the highest protection efficiency of fabricated films reached as high as 97.33%. These satisfied results confirmed that this simple method can be used to fabricate large scale samples.

Valipour Motlagh, N.; Birjandi, F. Ch.; Sargolzaei, J.; Shahtahmassebi, N.

2013-10-01

262

Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing.  

PubMed

Delayed frost growth on superhydrophobic surfaces (SHSs) with jumping condensates has been found by many researchers recently. However, the mechanism of this phenomenon has not been elucidated clearly. In this study, copper SHSs with or without jumping condensates were selected as the substrates for observing condensation icing at a relative humidity (RH) of 60%. The results showed that only SHS with jumping condensates showed delayed condensation icing. Moreover, when such SHSs were placed upward and the surface temperature was held at -10 °C, some discrete frozen drops first appeared on the SHSs. The following icing mainly occurred on these discrete global crystals and then expanded around them until covering the entire surface. Little macroscopic interdrop freezing phenomenon was found. The growth of the frost front is mainly dominated by jumping freezing (the condensed droplets jumped onto the ice crystals and were frozen) or direct vapor-ice deposition. Using microscopy, we found interdrop freezing occurred, in addition to the two mechanisms mentioned above. By placing the SHS downward at -10 °C and intentionally introducing or eliminating tiny dusts, we confirmed that there were no superhydrophobic defects on our SHSs. The discrete frozen drops first appearing on the SHSs were triggered by tiny dusts falling on the surface before or during condensation icing. The key approach in delaying or resisting frost growth on SHSs with jumping condensates is to retard initial ice crystal formation, e.g., eliminating the edge effect and keeping the SHSs clean. PMID:25466489

Hao, Quanyong; Pang, Yichuan; Zhao, Ying; Zhang, Jing; Feng, Jie; Yao, Shuhuai

2014-12-30

263

Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity.  

PubMed

Developing robust antibacterial materials is of importance for a wide range of applications such as in biomedical engineering, environment, and water treatment. Herein we report the development of a novel superhydrophobic surface featured with hierarchical architecture and bimetallic composition that exhibits enhanced antibacterial activity. The surface is created using a facile galvanic replacement reaction followed by a simple thermal oxidation process. Interestingly, we show that the surface's superhydrophobic property naturally allows for a minimal bacterial adhesion in the dry environment, and also can be deactivated in the wet solution to enable the release of biocidal agents. In particular, we demonstrate that the higher solubility nature of the thermal oxides created in the thermal oxidation process, together with the synergistic cooperation of bimetallic composition and hierarchical architecture, allows for the release of metal ions in a sustained and accelerated manner, leading to enhanced antibacterial performance in the wet condition as well. We envision that the ease of fabrication, the versatile functionalities, and the robustness of our surface will make it appealing for broad applications. PMID:25418198

Zhang, Mei; Wang, Ping; Sun, Hongyan; Wang, Zuankai

2014-12-24

264

One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys.  

PubMed

A simple and universal one-step process bas been developed to render light alloys (including AZ91D Mg alloy, 5083 Al alloy, and TC4 Ti alloy) superhydrophobic by immersing the substrates in a solution containing low-surface-energy molecules of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS, 20 ?L), ethanol (10 mL), and H2O (10 mL for Al and Mg alloy)/H2O2 (15%, 10 mL for Ti alloy). Field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle measurements have been performed to characterize the morphological features, chemical composition, and wettability of the surfaces, respectively. The results indicate that the treated light alloys are rough-structured and covered by PFOTS molecules; consequently, the surfaces show static contact angles higher than 150° and sliding angles lower than 10°. This research reveals that it is feasible to fabricate superhydrophobic surfaces (SHS) easily and effectively without involving the traditional two-step processes. Moreover, this one-step process may find potential application in the field of industrial preparation of SHS because of its simplicity and universality. PMID:23895507

Ou, Junfei; Hu, Weihua; Xue, Mingshan; Wang, Fajun; Li, Wen

2013-10-23

265

Au\\/Ag nanostructures on PMMA surface  

Microsoft Academic Search

Nanoholes distributed in PMMA surfaces were obtained, as well as nanostructures of Au or of Ag on these films. The PMMA films were prepared by dilution in chloroform and spin-coating at 3500 rpm rotation speed for a time of 10 s in environment conditions. Conform to AFM, the diameter and depth of the nanoholes formed on the films had presented

P. C. A. Brito; T. X. R. Souza; R. F. Gomes; N. S. Ferreira; M. A. Macêdo

266

Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers.  

PubMed

In the aim of creating superoleophobic surfaces using monomers with short perfluorinated chains, to avoid drawbacks associated with PFOA, original semifluorinated (C(4)F(9), C(6)F(13)) 3,4-ethylenedioxypyrrole derivatives were synthesized. These monomers were obtained using the faster synthetic method than previously described with some analogues, characterized and electrochemically polymerized on gold plates. The obtained surfaces exhibited superhydrophobic (contact angle with water of 157 degrees and 158 degrees, respectively) and oleophobic properties (contact angle with hexadecane: 88 degrees and 108 degrees, respectively). The comparison between these new monomers and already published analogue EDOP6 confirms the importance of the bipolaronic form of conductive polymer for obtaining surface nanoporosity and as a consequence improving surface oleophobicity. Thus, little change in the molecule design of the connector and the spacer of the monomer can have a significant influence on the surface oleophobicity. PMID:20695602

Zenerino, Arnaud; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frédéric

2010-08-17

267

Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.  

PubMed

The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported. PMID:21109250

Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

2011-02-15

268

Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques  

PubMed Central

Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. PMID:24971957

Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

2014-01-01

269

Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)  

NASA Astrophysics Data System (ADS)

Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

2013-03-01

270

Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.  

PubMed

We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

Zhao, Yuanyuan; Liu, Yang; Xu, Qianfeng; Barahman, Mark; Bartusik, Dorota; Greer, Alexander; Lyons, Alan M

2014-11-13

271

Article coated with flash bonded superhydrophobic particles  

DOEpatents

A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

2010-07-13

272

Superhydrophobic, antiadhesive, and antireflective surfaces mediated by hybrid biomimetic salvinia leaf with moth-eye structures  

NASA Astrophysics Data System (ADS)

In this paper, we successfully demonstrate multifunctional surfaces based on scaffolding biomimetic structures, namely, hybrid salvinia leaves with moth-eye structures (HSMSs). The novel fabrication process employs scalable polystyrene nanosphere lithography and a lift-off process. Systematic characterizations show the biomimetic HSMS exhibiting superhydrophobic, self-cleaning, antiadhesive, and antireflective properties. Furthermore, the resulting surface tension gradient (known as the Marangoni effect) leads to a superior air retention characteristic in the HSMS under water droplet impact, compared with the traditional hybrid lotus leaf with a moth-eye structure (HLMS). Such results and learnings pave the way towards the attainment and mass deployment of dielectric surfaces with multiple functionalities for versatile biological and optoelectronic applications.

Yang, Cho-Yun; Tsai, Yu-Lin; Yang, Cho-Yu; Sung, Cheng-Kuo; Yu, Peichen; Kuo, Hao-Chung

2014-08-01

273

Three-Dimensional Numerical Simulations of Liquid Laminar Flow over Superhydrophobic Surfaces with Post Geometries  

NASA Astrophysics Data System (ADS)

Frictional resistance reduction of liquid flow over surfaces has recently become a more important topic of research in the field of fluid dynamics. Scientific and technological progress and continued interest in nano and micro-technology have required new developments and approaches related to reducing frictional resistance, especially in liquid flow through nano and micro-channels. The application of superhydrophobic surfaces could be very effective in achieving the desired flow through such small channels. Superhydrophobic surfaces are created by intentionally creating roughnesses on the surface and applying a uniform hydrophobic coating to the entire surface. Liquid droplet tests have revealed that because of the trapped air within the cavities such surfaces could have contact angles as high as 179º. Such a property gives superhydrophobic surfaces liquid repelling characteristics making them very suitable for frictional resistance reduction in liquid flow through nano or micro-channels, provided wetting of the cavities could be avoided. This study presents 3-D numerical simulation results of liquid laminar flow over post patterned superhydrophobic surfaces. The research was performed in three phases, 1) pressure-driven flow with square micro-posts, 2) Couette flow with square micro-posts, and 3) pressure-driven flow with rectangular micro-posts at various aspect ratios. In phases (1) and (2) the influences of important parameters such as the cavity fraction, in the range of 0.0-0.9998, and the relative module width, from 0.01 to 1.5, on frictional resistance reduction in the creeping flow regime were explored. Phase (1) also addressed the effect of varying Reynolds number from 1 to 2500 on frictional resistance. Phase (3) was conducted for aspect ratios of 1/8, 1/4, 1/2, 2, 4, and 8 also in the creeping flow regime. The obtained results suggest that important parameters such as cavity fraction (relative area of the cavities), relative module width (combined post and cavity width relative to the channel hydraulic diameter), and the Reynolds number have great influence on the frictional resistance reduction. For pressure-driven flow at cavity fraction 0.9998, reductions as high as 97% in the frictional resistance were predicted compared with the classical channel flow. This reduction is directly related to the significant reduction in liquid-solid contact area. With respect to the effect of relative module width on the overall frictional resistance, a reduction of 93% in the frictional resistance was observed as the relative module width was increased from 0.1 to 1.5. This is indicative of the importance of the relative spacing size of the posts/cavities compared to the channel size in micro-channel liquid flow. The overall frictional resistance for post-patterned superhydrophobic surfaces was found to be independent of the Reynolds number up to a value of nominally 40 after which the non-dimensional frictional resistance increased at high values of the Reynolds number. However, at very high cavity fractions the frictional resistance was independent of Reynolds number only up to about 4. When the driving mechanism was a Couette flow, similar to the pressure-driven flow, as the cavity fraction and the relative module width increased the frictional resistance on the superhydrophobic surface decreased. At a cavity fraction of 0.9998 the reduction in the non-dimensional frictional resistance was approximately 96%, which was only 1% different from the similar pressure-driven scenario. However, a more significant difference was observed between the slip velocities for the two flow types, and it was determined that the pressure-driven flow resulted in greater apparent slip velocities than Couette flow. A maximum difference in normalized slip between the two scenarios of approximately 20% was obtained at relative module width 0.1 and Reynolds number 1. Results for superhydrophobic surfaces with rectangular micro-posts approached those reported in the literature for micro-ribs as the aspect ratio of the posts increased. When th

Amin, Abolfazl

2011-12-01

274

Creation of microstructured surfaces using Cu-Ni composite electrodeposition and their application to superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

This research analyzed the influence of the electrodeposition ratio of Cu-Ni on the creation of microstructure in Cu-Ni composite electrodeposition, and identified the microstructure generation mechanism with respect to the Cu-Ni electrodeposition ratio. The concentration of CuSO4 in the electrodeposition solution was varied to 0.00, 0.02, 0.04 M to control the electrodeposition ratio of Cu, and the applied voltage was varied to voltages of -0.9, -1.2, -1.5 V, which were applied to control the electrodeposition ratio of Ni. In the composite electrodeposition, Cu ions precipitated intensively at the top of the structure with a short ion diffusion length, and the Ni ions precipitated regularly throughout the entire area charge transferred. Therefore, the structure showed vertically oriented growth when Cu electrodeposition was dominant, and the structure showed isotropic growth when Ni electrodeposition was dominant. On the other hand, Cu ions precipitation concentration at the tip of the grown structure intensified as the height of the structure increased. Therefore, when a structure grows above a certain height, the excess Cu ions precipitate at the top of the grown structure and a cluster structure composed of spherical Cu particles develops. The microstructure produced in the electrodeposition solution with the CuSO4 concentration of 0.04 M had such a high structure generation density and aspect ratio that it was modified to a superhydrophobic surface with a contact angle higher than 150°, and it manifested an excellent self-cleaning ability.

Lee, Jae Min; Bae, Kong Myeong; Jung, Kyung Kuk; Jeong, Ji Hwan; Ko, Jong Soo

2014-01-01

275

Sustainable drag reduction in turbulent taylor-couette flows by depositing sprayable superhydrophobic surfaces.  

PubMed

We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re=8.0×10^{4}. We show that the mean skin friction coefficient C_{f} in the presence of the superhydrophobic coating can be fitted to a modified Prandtl-von Kármán-type relationship of the form (C_{f}/2)^{-1/2}=Mln?(Re(C_{f}/2)^{1/2})+N+(b/?r)Re(C_{f}/2)^{1/2} from which we extract an effective slip length of b?19???m. The dimensionless effective slip length b^{+}=b/?_{?}, where ?_{?} is the viscous length scale, is the key parameter that governs the drag reduction and is shown to scale as b^{+}?Re^{1/2} in the limit of high Re. PMID:25615472

Srinivasan, Siddarth; Kleingartner, Justin A; Gilbert, Jonathan B; Cohen, Robert E; Milne, Andrew J B; McKinley, Gareth H

2015-01-01

276

Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS)  

PubMed Central

We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be < 3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. PMID:23703091

Kiraly, Brian; Yang, Shikuan

2014-01-01

277

Fabrication of pillar-array superhydrophobic silicon surface and thermodynamic analysis on the wetting state transition  

NASA Astrophysics Data System (ADS)

Textured silicon (Si) substrates decorated with regular microscale square pillar arrays of nearly the same side length, height, but different intervals are fabricated by inductively coupled plasma, and then silanized by self-assembly octadecyl-trichlorosilane (OTS) film. The systematic water contact angle (CA) measurements and micro/nanoscale hierarchical rough structure models are used to analyze the wetting behaviors of original and silanized textured Si substrates each as a function of pillar interval-to-width ratio. On the original textured Si substrate with hydrophilic pillars, the water droplet possesses a larger apparent CAs (> 90°) and contact angle hysteresis (CAH), induced by the hierarchical roughness of microscale pillar arrays and nanoscale pit-like roughness. However, the silanized textured substrate shows superhydrophobicity induced by the low free energy OTS overcoat and the hierarchical roughness of microscale pillar arrays, and nanoscale island-like roughness. The largest apparent CA on the superhydrophobic surface is 169.8°. In addition, the wetting transition of a gently deposited water droplet is observed on the original textured substrate with pillar interval-to-width ratio increasing. Furthermore, the wetting state transition is analyzed by thermodynamic approach with the consideration of the CAH effect. The results indicate that the wetting state changed from a Cassie state to a pseudo-Wenzel during the transition.

Liu, Si-Si; Zhang, Chao-Hui; Zhang, Han-Bing; Zhou, Jie; He, Jian-Guo; Yin, Heng-Yang

2013-10-01

278

Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.  

PubMed

In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed. PMID:20020726

Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

2010-04-01

279

Conformal switchable superhydrophobic\\/hydrophilic surfaces for microscale flow control  

Microsoft Academic Search

The development of microvalves is essential to realize a fully integrated system for nano\\/microliter fluid handling in microfluidic devices. Microvalves that utilize passive fluidic manipulation employ a hydrophobic surface in a microchannel network in which the operation is controlled by the interfacial tension of the liquid–air–solid interface. In order to obtain a switchable valve in microfluidic channels, conformal hydrophobic\\/hydrophilic and

Anindarupa Chunder; Kenneth Etcheverry; Ghanashyam Londe; Hyoung J. Cho; Lei Zhai

2009-01-01

280

Superhydrophobic aluminium-based surfaces: Wetting and wear properties of different CVD-generated coating types  

NASA Astrophysics Data System (ADS)

In view of generating superhydrophobic aluminium-based surfaces, this work presents further results for the combination of anodic oxidation as the primary pretreatment method and chemical vapour deposition (CVD) variants for chemical modification producing coatings of 250-1000 nm thickness. In detail, CVD involved the utilisation of i - hexafluoropropylene oxide as precursor within the hot filament CVD process for the deposition of poly(tetrafluoroethylene) coatings at alternative conditions (PTFE-AC) and ii - 1,3,5-trivinyltrimethylcyclotrisiloxane for the deposition of polysiloxane coatings (PSi) by initiated CVD. The substrate material was Al Mg1 subjected to usual or intensified sulphuric acid anodisation pretreatments (SAAu, SAAi, respectively) affording various degrees of surface micro-roughness (SAAu < SAAi) to the oxidic layers. Performance characteristics were evaluated in the original as-coated states and after standardised artificial weathering and/or mild wear testing. Superhydrophobicity (SH) was observed with the system SAAi + PTFE-AC similarly to former findings with the standard hot filament CVD PTFE coating variant (SAAi + PTFE-SC). The results indicated that the specific coating morphology made an important contribution to the water-repellency, because even some of the SAAu-based samples tended to reveal SH. Subjecting samples to weathering treatment resulted in a general worsening of the wetting behaviour, primarily limited to the receding contact angles. These tendencies were correlated with the chemical composition of the sample surfaces as analysed by X-ray photoelectron spectroscopy. The wear tests showed, as evaluated by scanning electron microscopy and contact angle measurement, that the PTFE coatings were relatively sensitive to friction. This was connected with a dramatic deterioration of the water-repelling properties. PSi-coated surfaces generally showed rather poor water-repellency, but this coating type was surprisingly resistant towards the applied friction test. From these findings it may be concluded that the combination of hydrophobic fluorine containing structure elements and cross-linking of the polymeric chains would likely afford highly durable SH.

Thieme, M.; Streller, F.; Simon, F.; Frenzel, R.; White, A. J.

2013-10-01

281

Catalytic, Self-Cleaning Surface with Stable Superhydrophobic Properties: Printed Polydimethylsiloxane (PDMS) Arrays Embedded with TiO2 Nanoparticles.  

PubMed

Maintaining the long-term stability of superhydrophobic surfaces is challenging because of contamination from organic molecules and proteins that render the surface hydrophilic. Reactive oxygen species generated on a photocatalyst, such as TiO2, could mitigate this effect by oxidizing these contaminants. However, incorporation of such catalyst particles into a superhydrophobic surface is challenging because the particles become hydrophilic under UV exposure, causing the surface to transition to the Wenzel state. Here we show that a high concentration of hydrophilic TiO2 catalytic nanoparticles can be incorporated into a superhydrophobic surface by partially embedding the particles into a printed array of high aspect ratio polydimethylsiloxane posts. A stable Cassie state was maintained on these surfaces, even under UV irradiation, because of the significant degree of hierarchical roughness. By printing the surface on a porous support, oxygen could be flowed through the plastron, resulting in higher photooxidation rates relative to a static ambient. Rhodamine B and bovine serum albumin were photooxidized both in solution and after drying onto these TiO2-containing surfaces, and the effects of particle location and plastron gas composition were studied in static and flowing gas environments. This approach may prove useful for water purification, medical devices, and other applications where Cassie stability is required in the presence of organic compounds. PMID:25525836

Zhao, Yuanyuan; Liu, Yang; Xu, Qianfeng; Barahman, Mark; Lyons, Alan M

2015-02-01

282

Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface  

SciTech Connect

In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

Bao, Yubin [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)] [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Qiuying, E-mail: liqy@ecust.edu.cn [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China) [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Shanghai Key Laboratory Polymeric Materials (China); Key Laboratory of Ultrafine Materials of Ministry of Education (China); Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)] [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

2011-05-15

283

Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces  

PubMed Central

Summary Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

Reker, Meike; Barthlott, Wilhelm

2014-01-01

284

Superhydrophobicity of PHBV fibrous surface with bead-on-string structure.  

PubMed

A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions. PMID:18255089

Yoon, Young Il; Moon, Hyun Sik; Lyoo, Won Seok; Lee, Taek Seung; Park, Won Ho

2008-04-01

285

Volume of fluid simulations for droplet impact on dry and wetted hydrophobic and superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

An aircraft may experience in-flight ice accretion and corresponding reductions in performance and control when the vehicle encounters clouds of super-cooled water droplets. The EADS-IW Surface Engineering Group is investigating passive anti-icing possibilities, such as functional and ice phobic coatings. Ice-resistant coatings require investigating droplet impact on dry surfaces and wet films, including microscopic effects such as droplet splashing. To investigate droplet impacts, a volume of fluid (VOF) flow solver was used for droplets impacting dry and wetted hydrophobic and superhydrophobic surfaces, focusing on meso-scale simulations. The effects of structured, micro-scale surface roughness and the effects of a thin wet film on the surface, corresponding to a saturated surface under high humidity conditions, were investigated. Axisymmetric domains produced acceptable results for smooth, dry surfaces. It was determined that in order to properly predict behavior of droplets impacting surfaces with structured micro-scale roughness, three-dimensional simulations are recommended.

Burtnett, Emily Nicole

286

Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces  

NASA Astrophysics Data System (ADS)

Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting-dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C4F8 plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation.

Skarmoutsou, A.; Charitidis, C. A.; Gnanappa, A. K.; Tserepi, A.; Gogolides, E.

2012-12-01

287

Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina  

NASA Astrophysics Data System (ADS)

Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.

Tasaltin, Nevin; Sanli, Deniz; Jonáš, Alexandr; Kiraz, Alper; Erkey, Can

2011-08-01

288

Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina.  

PubMed

Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting. PMID:21827683

Tasaltin, Nevin; Sanli, Deniz; Jonáš, Alexandr; Kiraz, Alper; Erkey, Can

2011-01-01

289

Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface  

NASA Astrophysics Data System (ADS)

This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

2014-03-01

290

Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface  

PubMed Central

This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

2014-01-01

291

Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.  

PubMed

This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

2014-01-01

292

Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces  

NASA Astrophysics Data System (ADS)

In this paper we present a simple and robust method to realize highly ordered arrays of stretched and suspended DNA molecules over the millimeter length scale. To this end we used an ad hoc designed superhydrophobic surface made of high aspect-ratio silicon pillars, where we deposited a droplet containing genomic DNA. A precise positioning of DNA strands was achieved by shaping the silicon pillars so that sharpened features resembling tips were included. Such features allowed us to accurately control the droplet de-wetting dynamics, pinning DNA strands in a well-defined position above pillars. The proposed technique has the potential to positively impact on the development of novel DNA chips for genetic analysis.

Ciasca, G.; Businaro, L.; Papi, M.; Notargiacomo, A.; Chiarpotto, M.; De Ninno, A.; Palmieri, V.; Carta, S.; Giovine, E.; Gerardino, A.; De Spirito, M.

2013-12-01

293

Various curing conditions for controlling PTFE micro\\/nano-fiber texture of a bionic superhydrophobic coating surface  

Microsoft Academic Search

A simple and conventional coating-curing process to fabricate superhydrophobic coating surface with both the micro-nano-scale binary structure (MNBS) roughness, and the lowest surface energy hydrophobic groups (?CF3) on engineering materials of stainless steel or other metals was developed by control of curing conditions. Results show that higher temperature and longer cooling time resulted in longer crystallizing process, and the forming

Zhuangzhu Luo; Zhaozhu Zhang; Wenjing Wang; Weimin Liu; Qunji Xue

2010-01-01

294

Surface Nanostructures in Manganite Films  

PubMed Central

Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

2014-01-01

295

Surface nanostructures in manganite films.  

PubMed

Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

Gambardella, A; Graziosi, P; Bergenti, I; Prezioso, M; Pullini, D; Milita, S; Biscarini, F; Dediu, V A

2014-01-01

296

Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.  

PubMed

Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 ?m and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water. PMID:22931378

Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

2012-10-01

297

Hierarchically structured re-entrant microstructures for superhydrophobic surfaces with extremely low hysteresis  

NASA Astrophysics Data System (ADS)

This paper reports a new type of hierarchically structured surface consisting of re-entrant silicon micropillars with silicon nanowires atop for superhydrophobic surface with extremely low hysteresis. Re-entrant microstructures were fabricated on a silicon substrate through a customized one-mask microfabrication process while silicon nanopillars were created on the entire surface of microstructures, including sidewalls, by a metal-assisted-chemical etching process. The strategy of constructing hierarchical surfaces aims to reduce the actual contact area between liquid and top part of solid surface, thereby increasing the contact angle and reducing the sliding angle. The strategy of using re-entrant profile of the microstructure aims to prevent a liquid droplet from falling into cavities of roughened structures and decrease the actual contact area between the liquid droplet and sidewalls of solid structures, therefore reducing adhesion forces acting on the liquid droplet. Our measurement shows that the surface incorporating both hierarchical and re-entrant strategies exhibits a sliding angle as low as 0.5°, much lower than sliding angles of surfaces only incorporating either one of the strategies.

Hu, Huan; Swaminathan, Vikhram V.; Zamani Farahani, Mahmoud Reza; Mensing, Glennys; Yeom, Junghoon; Shannon, Mark A.; Zhu, Likun

2014-09-01

298

Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.  

PubMed

In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance. PMID:22913317

Li, Lester; Breedveld, Victor; Hess, Dennis W

2012-09-26

299

Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ˜108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy ( ?p), interfacial free energy ( ?pw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.

2011-08-01

300

Insight into drop runback on hydrophilic to superhydrophobic surfaces by shearing airflow  

NASA Astrophysics Data System (ADS)

Drop runback has many diverse applications including airfoil icing and fuel cell flooding. In this talk, we use surface science and fluid dynamics principles to explain incipient runback for a drop exposed to shearing airflow. Through experiments with single drops of water and hexadecane (0.5-100 ?l) on PMMA, Teflon, and a superhydrophobic aluminum surface (SHS), wetting parameters such as surface tension, drop shape and contact angle are found to be major controllers of the minimum required air velocity for drop shedding. Exponential functions are proposed that relate air velocity to drop base length and projected area. By normalizing the results, the three water systems can be collapsed to a single curve that also explains results from other researchers, vastly increasing predictive power. SHS are seen to shed drops more easily compared to the other surfaces, with evidence that the drops roll along the surface instead of sliding. Using high speed video, oscillating drop shape and variation of contact angles are also analyzed as they change with air and drop speed.

Milne, Andrew J. B.; Amirfazli, Alidad

2009-11-01

301

A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.  

PubMed

An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 ?L of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection. PMID:25380327

Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi

2014-12-28

302

Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces  

Microsoft Academic Search

Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30±4nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42GPa. The surface texture of the NC

Mehdi Shafiei; Ahmet T. Alpas

2009-01-01

303

Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.  

PubMed

In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ?160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. PMID:25460699

Ramos, S M M; Dias, J F; Canut, B

2015-02-15

304

Multipurpose ultra and superhydrophobic surfaces based on oligodimethylsiloxane-modified nanosilica.  

PubMed

Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications. PMID:25275966

de Francisco, Raquel; Tiemblo, Pilar; Hoyos, Mario; González-Arellano, Camino; García, Nuria; Berglund, Lars; Synytska, Alla

2014-11-12

305

Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites.  

PubMed

The fluoropolymer-SiO2 hybrid nanocomposite consisting of core-corona fluoropolymer-grafted SiO2 nanoparticle (NP) and poly(dodecafluoroheptyl methacrylate) (PDFHM) was obtained by radical solution polymerization of the vinyl trimethoxy silane (VTMS)-treated SiO2 NP with DFHM in this work. In H2O/tetrahydrofuran (THF) solution, PDFHM self-assembles into dendritic micelle and the increase in H2O volume is favorable for fluoropolymer-grafted SiO2 NPs to create dense fluoropolymer corona layer. It also shows that the addition of H2O to the THF suspension of fluoropolymer-SiO2 nanocomposite could cause a transfer for surface morphology of cast film from smooth film-covered aggregation to bare-exposed flaky aggregation and microsphere aggregation, which results in an increase in surface RMS roughness of cast film and induces a superhydrophobicity. Oleophobicity of cast film can be improved by thermal annealing, because strong surface self-segregation of PDFHM chains during thermal annealing process arouses a marked increase in surface fluorine content. PMID:25218050

Wang, Li; Liang, Junyan; He, Ling

2014-12-01

306

Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent  

NASA Astrophysics Data System (ADS)

Superhydrophobic and oleophobic rough copolymer surfaces containing micro- and nano-hierarchical ball-like islands having diameters between 100 nm and 7 ?m were formed using styrene-perfluoromethacrylate random copolymers which were dip-coated on glass slides from THF and MEK mixture containing methanol as nonsolvent. These copolymers were synthesized in a CO2-expanded monomer medium at 250 bar pressure and 80 °C. The sizes of the micro-islands can be controlled by varying the copolymer composition; and the degree of phase separation by adjusting the solvent/non-solvent ratio. Flat and lotus-like hierarchical surfaces of the copolymers were characterized using contact angle measurements and SEM. The increase in the perfluoromethacrylate content of the flat copolymers resulted in a decrease of the total surface free energy of the flat copolymer surfaces from 18.3 down to 14.2 mJ/m2. The increase in the methanol non-solvent fraction resulted in decrease of the micro-island diameter from 7 ?m down to 100 nm and the water contact angle increased from 117° up to 160° and hexadecane from 65° up to 90°.

Cengiz, Ugur; Erbil, H. Yildirim

2014-02-01

307

Needle-free drop deposition technique for contact angle measurements of superhydrophobic surfaces  

NASA Astrophysics Data System (ADS)

The study of wetting characteristics of low-energy (e.g., superhydrophobic) liquid-repellent surfaces is of great importance towards optimal design of such micro/nano-engineered surfaces. The most common technique to accomplish this involves bringing a drop generated at the needle-tip close to the characterizing substrate with a goal to deposit it on the substrate, which often becomes a challenge when the surface energy of the drop-substrate combination is comparable to the needle-drop system. In this paper, we proposed a new "needle-free" drop deposition technique, which overcomes this challenge for characterization the low-energy substrates. This is achieved by placing an additional low-energy substrate above the characterizing substrate and allowing the drop-needle combination to impact on this additional substrate. This technique is not only independent of the wetting properties of the needle and the characterizing substrate but is also independent of the liquid drop properties, thereby making it a very universal technique for characterizing substrate in air medium.

Waghmare, Prashant R.; Mitra, Sushanta K.

2014-09-01

308

Fabrication of Highly-Oleophobic and Superhydrophobic Surfaces on Microtextured al Substrates  

NASA Astrophysics Data System (ADS)

Theoretical calculations suggest that creating highly-oleophobic surfaces would require a surface energy lower than that of any known materials. In the present work, we demonstrate microtextured Al substrate surfaces with veins-like micro/nanostructures displaying apparent contact angles (CA) greater than 120°, even with nitromethane (surface tension ?1 = 37 mN/m). The Al substrate was microtextured by a chemical solution mixed by zinc nitrate hexahydrate, hexamethyltetramine and a little of hydrofluoric acid. A fluoroalkylsilane (FAS) agent was used to tune the surface wettability. The Al substrates were microtextured by veins-like micro/nanostructures and generating a solid-liquid-vapor composite interface. Combination with FAS modification, the Al surfaces resulted in an oleophobicity with CA for nitromethane was 126.3° (152.7° for diethylene glycol, ?1 = 45.2 mN/m). In addition, the Al surfaces demonstrated a low rolling-off angle with < 6° even for diethylene glycol. However, nitromethane droplet favored to pin on the sample surface even the sample stage is tilted to 90°. It is noted that this highly-oleophobic behavior is induced mainly by topography, which form a composite surface of air and solid with oil drop sitting partially on air. The results are expected to promote the study on self-cleaning applications, especially in the condition with oil contaminations.

Liu, Changsong; Zhou, Jigen; Zheng, Dongmei; Wan, Yong; Li, Zhiwen

2011-06-01

309

Droplet Impingement Cooling Experiments on Nano-structured Surfaces  

E-print Network

as well as on flat (smooth) surfaces. It is observed that nano-structured surfaces result in lower minimum wall temperatures, better heat transfer performance, and more uniform temperature distribution. A new variable, effective thermal diameter (de...

Lin, Yen-Po

2011-10-21

310

Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.  

PubMed

Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation. PMID:22456273

Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G

2012-04-24

311

Influence of Geometric Patterns of Microstructured Superhydrophobic Surfaces on Water-Harvesting Performance via Dewing.  

PubMed

On superhydrophobic (SHPo) surfaces, either of two wetting states-the Cassie state (i.e., nonwetted state) and the Wenzel state (i.e., wetted state)-can be observed depending on the thermodynamic energy of each state and external conditions. Each wetting state leads to quite a distinctive dynamic characteristic of the water drop on SHPo surfaces, and it has been of primary interest to understand or induce the desirable wetting state for relevant thermofluid engineering applications. In this study, we investigate how the wetting state of microstructured SHPo surfaces influences the water-harvesting performance via dewing by testing two different patterns, including posts and grates with varying structural parameters. On grates, the observed Cassie wetting state during condensation is well described by the thermodynamic energy criteria, and small condensates can be efficiently detached from the surfaces because of the small contact line pinning force of Cassie droplets. Meanwhile, on posts, the observed wetting state is dominantly the Wenzel state regardless of the thermodynamic energy of each state, and the condensates are shed only after they grow to a sufficiently large size to overcome the much larger pinning force of the Wenzel state. On the basis of the mechanical force balance model and energy barrier consideration, we attribute the difference in the droplet shedding characteristics to the different dynamic pathway from the Wenzel state to the Cassie state between posts and grates. Overall, the faster droplet shedding helps to enhance the water-harvesting performance of the SHPo surfaces by facilitating condensation on the droplet-free area, as evidenced by the best water-harvesting performance of grates on the Cassie state among the tested surfaces. PMID:25466626

Seo, Donghyun; Lee, Choongyeop; Nam, Youngsuk

2014-12-30

312

Neutralization of H- at Nanostructured Surfaces  

NASA Astrophysics Data System (ADS)

The charge transfer rates and the neutralization probabilities for hydrogen anions colliding with nanostructured (vicinal) surfaces are obtained by direct numerical integration of the time-dependent Schroedinger equation for the motion of the active electron in the field of the projectile-surface compound. The electronic structure of the surface is calculated from a Thomas-Fermi - von Weizsaecker statistical model with local density approximation for the exchange-correlation energy. In fixed-ion approximation, the decay rate of the electronic state of the anion in front of the surface is obtained by projecting the density of states of the collision system onto the unperturbed projectile level. The ion neutralization probability is calculated from this static width within a rate equation approach for a set of broken-straight-line collision trajectories for kinetic energies of 1 keV. The dependence of decay rates and neutralization probabilities on the surface morphology and the scattering trajectories, and a comparison of our numerical results with the experiments will be discussed.

Obreshkov, Boyan; Thumm, Uwe

2006-05-01

313

Rational nanostructuring of surfaces for extraordinary icephobicity  

NASA Astrophysics Data System (ADS)

Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours.Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours. Electronic supplementary information (ESI) available: Thermodynamic framework and statistical methods for data analyses; details of ice nucleation delay measurements and prediction of the delays around the median nucleation temperature; additional SEM and AFM images not shown in the main paper and complete contact angle characterization; derivation of the nanoscale interface confinement effect; an error assessment, detailed results of droplet impact experiments on hydrophilic and hydrophobic substrates; methods for surface preparation and characterization; description of the experimental set-up and protocols; five videos supporting the text. See DOI: 10.1039/c3nr06644d

Eberle, Patric; Tiwari, Manish K.; Maitra, Tanmoy; Poulikakos, Dimos

2014-04-01

314

Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.  

PubMed

In this paper, tunable adhesive superhydrophobic ZnO surfaces have been fabricated successfully by spraying ZnO nanoparticle (NP) suspensions onto desired substrates. We regulate the spray-coating process by changing the mass percentage of hydrophobic ZnO NPs (which were achieved by modifying hydrophilic ZnO NPs with stearic acid) in the hydrophobic/hydrophilic ZnO NP mixtures to control heterogeneous chemical composition of the ZnO surfaces. Thus, the water adhesion on the same superhydrophobic ZnO surface could be effectively tuned by controlling the surface chemical composition without altering the surface morphology. Compared with the conventional tunable adhesive superhydrophobic surfaces, on which there were only three different water sliding angle values: lower than 10°, 90° (the water droplet is firmly pinned on the surface at any tilted angles), and the value between the two ones, the water adhesion on the superhydrophobic ZnO surfaces has been tuned effectively, on which the sliding angle is controlled from 2 ± 1° to 9 ± 1°, 21 ± 2°, 39 ± 3°, and 90°. Accordingly, the adhesive force can be adjusted from extremely low (?2.5 ?N) to very high (?111.6 ?N). On the basis of the different adhesive forces of the tunable adhesive superhydrophobic surfaces, the selective transportation of microdroplets with different volumes was achieved, which has never been reported before. In addition, we demonstrated a proof of selective transportation of microdroplets with different volumes for application in the droplet-based microreactors via our tunable adhesive superhydrophobic surfaces for the quantitative detection of AgNO3 and NaOH. The results reported herein realize the selective transportation of microdroplets with different volumes and we believe that this method would potentially be used in many important applications, such as selective water droplet transportation, biomolecular quantitative detection and droplet-based biodetection. PMID:24807195

Li, Jian; Jing, Zhijiao; Zha, Fei; Yang, Yaoxia; Wang, Qingtao; Lei, Ziqiang

2014-06-11

315

Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions  

NASA Astrophysics Data System (ADS)

Superhydrophobic surfaces (SHS) are successfully prepared by 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (coded as PFOTS) chemically and physically adsorbed onto the etched Ti alloy substrate. The film formation and its structures are characterized by the measurements of water contact angle (WCA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the SHS in the NaCl solutions is investigated using the potentiodynamic polarization. The results show that the corrosion resistance of the substrate is improved greatly due to the composite wetting states or interfaces with numerous air pockets between SHS and NaCl solutions. Moreover, it is found that the stability and corrosion resistance of SHS is influenced greatly by the interfacial bonding between PFOTS and the substrate. The strong chemical interfacial bonding (i.e., Tisbnd Osbnd Si) between PFOTS and the oxidized titanium substrate accounts for a higher stability and much lower corrosion current density as compared by SHS with physically adsorbed PFOTS outerlayer.

Ou, Junfei; Liu, Mingzhi; Li, Wen; Wang, Fajun; Xue, Mingshan; Li, Changquan

2012-03-01

316

Nanocarpet effect induced superhydrophobicity.  

PubMed

By coating a fluorocarbon monolayer on a bundled Si nanorod array substrate, a superhydrophobic surface with contact angle approximately 167 degrees and sliding angle approximately 2 degrees is created due to the nanocarpet effect. Without forming the nanocarpet, we can only obtain a moderately hydrophobic surface with contact angle <151 degrees and sliding angle >17 degrees. Comparison between nanocarpets formed from nanorods with low and high densities confirms that the main reason for the superhydrophobicity is the formation of sharp pyramidal bundles, which effectively reduces the area of solid-liquid contact. Video recording and analysis of millimeter-sized water droplets bouncing on the solid surface are used to ascertain the superhydrophobicity, and the energy dissipation during a low speed impact is estimated to be several nanojoules. PMID:20218548

Fan, Jianguo; Zhao, Yiping

2010-06-01

317

Surface analysis of nanostructured carbonaceous materials  

NASA Astrophysics Data System (ADS)

The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling microscopy (STM), auger electron spectroscopy (AES), and XPS. Chemical and structural analysis of the clusters reveal that the oxidation state of the metal is tunable based on preparation conditions and that the oxidation state affects the mobility and structure of the clusters upon the graphite surfaces. Collectively, the results of these studies have shown the value of understanding the surface chemistry of a material in understanding their behavior even at the nanoscopic level.

Wepasnick, Kevin Andrew

318

Shear shedding of drops and the use of superhydrophobic surfaces in microgravity: PFC and ground based results  

NASA Astrophysics Data System (ADS)

In free fall, the absence of gravity poses many challenges for fluid handling systems. One such example of this is condensers. On earth, the condensed liquid is removed from the tilted condenser plate by gravity forced shedding. In microgravity, proposed solutions include the use of surfaces with gradients in wettability [1], the use of electrowetting [2], and shearing airflow [3]. In this talk, shear shedding results for a variety of surface (hydrophilic to superhydrophobic (extremely water repelling)) will be presented. Surface science and aerodynamics are used to reveal fundamental parameters controlling incipient motion for drops exposed to shearing airflow. It is found that wetting parameters such as contact angle and surface tension are very influential in determining the minimum required air velocity for drop shedding. Based on experimental results for drops of water and hexadecane (0.5-100 l) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for the water systems can be collapsed to a self similar curve by normalization, which also explains results from other researchers. Since shedding from superhydrophobic surfaces (SHS) is seen to be easier compared to other surfaces, the behaviour of SHS is also probed in this talk. SHS have space-based applications to shedding, self cleaning, anti-icing (spacecraft launch/re-entry), anti-fouling, fluid actuation, and decreased fluid friction. The mechanism for SHS is understood to be the existence of an air layer between large portions of the drop and solid. The first concrete visual evidence of this was gained performing a parabolic flight experiment with the ESA. Results of this experi-ment will be discussed, showing the extreme water repelling potential of SHS in microgravity, and demonstrating how the wetting behaviours seen (partial penetration, transition of wetting states, unpredicted contact angle behaviour) affect models of superhydrophobicity and the use of SHS to both space and Earth based applications. 1) Darhuber, A. A.; Troian, S. M. Annual Review of Fluid Mechanics 2005, 425-455. 2) Berthier, J.; Dubois, P.; Clementz, P.; Claustre, P.; Peponnet, C.; Fouillet, Y. Sensors and Actuators A: Physical 2007, 134, 471-479. 3) Milne, A. J. B.; Amirfazli, A. Langmuir 2009, 25, 14155-14164.

Milne, Andrew; Amirfazli, Alidad

319

Why a lotus-like superhydrophobic surface is self-cleaning? An explanation from surface force measurements and analysis.  

PubMed

The unique self-cleaning feature of the lotus-like superhydrophobic (SH) surface attracted worldwide interest in recent years. However, the mechanism of the self-cleaning phenomena remains unclear. Here, we attempt to provide a comprehensive understanding of why self-cleaning of the particles with a broad range of size can be realized on the lotus-like SH surfaces. After measurements and analysis of the force involved at the interface, we conclude that there are four main preconditions for self-cleaning: (1) contact angle (CA) > 90°, (2) low enough sliding angle, (3) low enough adhesion force, and (4) proper particle size. However, as far as the lotus-like SH surface and typical dust are concerned, all the preconditions will be satisfied automatically. We also observe that the particles with a broad range of size (from submicron level to the millimeter level) and density (virtually no limit) can be driven by a water droplet on the lotus-like SH surface. This interesting finding may be helpful for the design of novel engineering system at the micron-millimeter scale in the future. PMID:25335800

Yu, Miao; Chen, Sheng; Zhang, Bo; Qiu, Dengli; Cui, Shuxun

2014-11-18

320

A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect  

NASA Astrophysics Data System (ADS)

A low-cost filler (salt) water-dissolved method is developed to produce large-area and flexible super-hydrophobic surfaces by using poly(dimethylsiloxane) (PDMS) material. Five levels of salt grain sizes are used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The results show that the surfaces fabricated using grain sizes of 53-74 and 74-104 µm exhibit the lotus effect (cell adhesion (CA) > 150° and self-adhesion (SA) < 10°) whereas those using grain sizes of 0-25 µm and above 104 µm reveal the petal effect (CA > 150° and high adhesion even upside-down). The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers.

Lin, Yung-Tsan; Chou, Jung-Hua

2014-05-01

321

Superhydrophobicity - Magic Sand - Presentation  

NSDL National Science Digital Library

This pdf from the Midwest Regional Center for Nanotechnology Education (NANO-LINK) introduces the forces and interactions central to understanding nanotechnology. The presentation explores how surfaces respond to water by explaining hydrophobic, hydrophilic, and super-hydrophobic surfaces. Visitors must complete a quick and free registration to access materials.

322

Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture  

NASA Astrophysics Data System (ADS)

Direct numerical simulations of turbulent flow in a channel with superhydrophobic surfaces (SHS) were performed, and the effects of the surface texture on the turbulence and skin-friction coefficient were examined. The SHS is modeled as a planar boundary comprised of spanwise-alternating regions of no-slip and free-slip boundary conditions. Relative to the reference no-slip channel flow at the same bulk Reynolds number, the overall mean skin-friction coefficient is reduced by 21.6%. A detailed analysis of the turbulence kinetic energy budget demonstrates a reduction in production over the no-slip phases, which is explained by aid of quadrant analysis of the Reynolds shear stresses and statistical analysis of the turbulence structures. The results demonstrate a significant reduction in the strength of streamwise vortical structures in the presence of the SHS texture and a decrease in the Reynolds shear-stress component ?R12? which has a favorable influence on drag over the no-slip phases. A secondary flow which is set up at the edges of the texture also effects a beneficial change in drag. Nonetheless, the skin-friction coefficient on the no-slip features is higher than the reference levels in a simple no-slip channel flow. The increase in the skin-friction coefficient is attributed to two factors. First, spanwise diffusion of the mean momentum from free-slip to no-slip regions increases the local skin-friction coefficient on the edges of the no-slip features. Second, the drag-reducing capacity of the SHS is further reduced due to additional Reynolds stresses, ?R13?.

Jelly, T. O.; Jung, S. Y.; Zaki, T. A.

2014-09-01

323

Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface  

NASA Astrophysics Data System (ADS)

A nanostructutered superhydrophobic surface was elaborated by applying an RTV silicone rubber coating on electrochemically processed aluminium substrates. Study of anodisation voltage on surface morphology showed that higher anodising voltage led to larger pore sizes. Scanning electron microscopy image analysis showed bird's nest and beehive structures formed on anodised surfaces at 50 V and 80 V. Water static contact angle on the treated surfaces reached up to 160° at room temperature. Study of superhydrophobic surfaces at super cooled temperature showed important delayed freezing time for RTV hydrophobic surfaces when compared to non-treated aluminium. However, lower wettability was observed when surface temperature went down from 20 °C to -10 °C. Also, it was found that the capacitance of superhydrophobic surfaces decreased with increasing anodising voltage.

Momen, Gelareh; Farzaneh, Masoud; Jafari, Reza

2011-05-01

324

A bioinspired planar superhydrophobic microboat  

NASA Astrophysics Data System (ADS)

In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

2014-03-01

325

Fabrication of superhydrophobic silica-based surfaces with high transmittance by using tetraethoxysilane precursor and different polymeric species  

NASA Astrophysics Data System (ADS)

The preparation of superhydrophobic silica-based surfaces via the sol-gel process through the addition of different polymeric species into the precursor solution was done in this study. The surface roughness of the films was obtained by removing the organic polymer at a high temperature, and then the hydrophobic groups were bonded onto the films with a monolayer by chemical reaction with hexamethyldisilazane (HMDS). The characteristic properties of the as-prepared films were analyzed by contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption, and UV-vis scanning spectrophotometer. The experimental results revealed that the superhydrophobic thin films with high transmittance could easily be prepared using polypropylene (PPG), polyethylene (PEG), and poly(vinylpyrrolidone) (PVP). Surface roughness and pore size were enhanced using PPG polymeric species. The distribution of pore size was from the microporous to the mesoporous and marcoporous regions. In addition, the contact angles of the rough surfaces prepared at 500 °C without modification of HMDS were smaller than 5° but larger than 156° after modified by HMDS.

Chen, Yu-Kai; Chang, Kuei-Chien; Wu, Kuan-Yu; Tsai, Yen-Ling; Lu, Juhng-shu; Chen, Hui

2009-07-01

326

Superhydrophobic silica coating by dip coating method  

NASA Astrophysics Data System (ADS)

Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol-gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic-superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

Mahadik, Satish A.; parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S.; Wagh, Pratap B.; Gupta, Satish; Gurav, Jyoti

2013-07-01

327

Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution  

NASA Astrophysics Data System (ADS)

An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 ?L) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

2013-10-01

328

Plasmonic nanostructures for surface-enhanced Raman spectroscopy  

NASA Astrophysics Data System (ADS)

In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.

Jiang, Ruiqian

329

Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.  

PubMed

Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines. PMID:22680067

Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna

2012-08-28

330

Towards design rules for covalent nanostructures on metal surfaces.  

PubMed

The covalent molecular assembly on metal surfaces is explored, outlining the different types of applicable reactions. Density functional calculations for on-surface reactions are shown to yield valuable insights into specific reaction mechanisms and trends across the periodic table. Finally, it is shown how design rules could be derived for nanostructures on metal surfaces. PMID:24338925

Björk, Jonas; Hanke, Felix

2014-01-20

331

A non-aqueous electrodeposition process for fabrication of superhydrophobic surface with hierarchical micro/nano structure  

NASA Astrophysics Data System (ADS)

In this work, we present a novel facile electrodeposition approach to create micro/nano structure on an anodic copper plate with an alkali ethanol electrolyte solution. The electrolyte solution is composed of potassium hydroxide, potassium persulfate and ethanol. Hierarchical structures were formed on an anodic copper surface by an alkali assistant oxidation process, water immersion and fluorination, the as-prepared surface exhibits superhydrophobic property. The creation of morphological structures and chemical compositions on the treated surface was revealed by scanning electron microscopy (SEM) and X-ray diffraction techniques. The resulting surfaces composing of Cu(OH)2 arrays demonstrates that water contact angle is as high as 165° and the rolling angle is less than 3°. The study is expected to create a new avenue for the basic research as well as real application.

Hao, Limei; Chen, Zhi; Wang, Ruiping; Guo, Changli; Zhang, Pengli; Pang, Shaofang

2012-09-01

332

Carbon-based nanostructured surfaces for enhanced phase-change cooling  

NASA Astrophysics Data System (ADS)

To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.

Selvaraj Kousalya, Arun

333

Nano-structured surface plasmon resonance sensor for sensitivity enhancement  

NASA Astrophysics Data System (ADS)

A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

2008-08-01

334

An experimental investigation into the icing and melting process of a water droplet impinging onto a superhydrophobic surface  

NASA Astrophysics Data System (ADS)

The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence (LIF) technique. The superhydrophobic surface was prepared using a sol-gel method on a red copper test plate. From the obtained fluorescence images, the phase transition characteristics during the freezing and melting process of a water droplet were clearly observed. It was found that, at the beginning of the droplet freezing process, liquid water turned into ice at a very fast rate. Such phase transition process decreased gradually with time and the volume of frozen ice approached a constant value at the end of the icing process. In addition, the freezing time was found to reduce with the decrease of the test plate temperature. Besides, when the test plate temperature is relatively high, the effect of droplet volume on the freezing time is very significant. Over all, we provide some tentative insights into the microphysical process related to the icing and melting process of water droplets.

Jin, ZheYan; Jin, SongYue; Yang, ZhiGang

2013-11-01

335

Integrating anti-reflection and superhydrophobicity of moth-eye-like surface morphology on a large-area flexible substrate  

NASA Astrophysics Data System (ADS)

This paper proposes an ultraviolet nanoimprint lithography (UV-NIL) roll-to-roll (R2R) process with argon and oxygen (Ar-O2) plasma ashing and coating of a dilute perfluorodecyltrichlorosilane (FDTS) layer to fabricate the large-area moth-eye-like surface morphology on a polyethylene terephthalate substrate. By using Maxwell-Garnett's effective medium theory, the optimal dimensions of the moth-eye-like surface morphology was designed and fabricated with UV-NIL R2R process to obtain maximum transmittance ratio. In addition, the base angle (? = 30.1°) of the moth-eye-like surface morphology was modified with Ar-O2 plasma ashing and coated with a dilute FDTS layer to possess both superhydrophobic and air-retention properties. This increases both the transmittance ratio of 4% and contact angle to 153°.

Liu, Chia-Hsing; Niu, Pei-Lun; Sung, Cheng-Kuo

2014-01-01

336

Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: fluorine-enriching surface and superhydrophobic state with high adhesion to water.  

PubMed

The fluorination of hyperbranched polyurethane (HPU) was achieved by atom transfer radical grafting polymerization (ATRgP) of dodecafluoroheptyl methacrylate that was initiated from 2-bromoisobutyryl bromide-modified end groups of HPU. The nanofibrous membrane of fluorinated HPU was prepared by electrospinning. The structure of fluorinated HPU was characterized by Fourier-transform infrared spectroscopy (FTIR) and (1)H nuclear magnetic resonance spectrum (1H NMR). The surface of nanofibrous membrane was investigated with scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis, respectively. The results suggested that compared with the reported linear fluorine-containing polyurethane materials, rather high fluorine content up to 29.14% was achieved on the surface of fluorinated HPU nanofibrous membrane. Meanwhile, a superhydrophobic surface (WCA 159.7°) with high adhesion to water was successfully fabricated via a convenient electrospinning process. The prepared material is promising for the application in microfluidic devices. PMID:24594031

Zheng, Fei; Deng, Hongtao; Zhao, Xinjun; Li, Xia; Yang, Can; Yang, Yunyan; Zhang, Aidong

2014-05-01

337

Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering  

NASA Astrophysics Data System (ADS)

Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e

Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo

2013-02-01

338

Crystalline nanostructures on Ge surfaces induced by ion irradiation  

NASA Astrophysics Data System (ADS)

Besides conventional low efficiency lithographic techniques broad ion beam irradiation is a simple and potentially mass productive technique to fabricate nanoscale patterns on various semiconductor surfaces. The main drawback of this method is that the irradiated semiconductor surfaces are amorphized, which strongly limits the potential application of these nanostructures in electronic and optoelectronic devices. In this work we report that high-quality crystalline nanostructure patterns are formed on Ge surfaces via Ar+ irradiation at elevated temperatures. This pattern formation process resembles the pattern formation in homoepitaxy. Therefore, the process is discussed based on a 'reverse epitaxy' mechanism.

Ou, Xin; Facsko, Stefan

2014-12-01

339

Formation and chemical properties of nanostructured bimetallic surfaces  

E-print Network

experiments at nanostructured bimetallic surfaces and on density functional calculations of metal-metal and adsorbate-metal interactions. As model systems, we have chosen Pt(111), Pd(111), and Ru(0001) single crystal surfaces, which were modified by vapor deposition of different foreign metals (Au, Ag, Pt, Pd, Ru

Pfeifer, Holger

340

Interfacial forces are modified by the growth of surface nanostructures.  

PubMed

Nanostructures formed by chemical reaction can modify the interfacial forces present in aqueous solution near a surface. This study uses force-volume microscopyto explore this phenomenon for the growth of manganese oxide nanostructures on rhodochrosite. The interfacial forces above the oxide nanostructures are dominated by electrostatic repulsion for probe-surface separations greater than ca. 2 nm but are overtaken by van der Waals attraction for shorter distances. Across the investigated pH range 5.0-9.7, the maximum repulsive force occurs 2.4 (+/-1.1) nm above the oxide nanostructures. The magnitude of the repulsive force decreases from pH 5.0 to 6.5, reaches its minimum at 6.5, and then increases steadily up to pH 9.7. Specifically, fmax(pN) = 23(+/-4)[6.8(+/-2.1) - pH] for pH < 6.5 and fmax(pN)= 19(+/-2)[pH - 6.1(+/-1.0)] for pH > or = 6.5. This dependence indicates that oxide nanostructures have a point of zero charge in the pH range 6-7. In comparison to the nanostructures, the rhodochrosite substrate induces only small interfacial forces in the same pH range, suggesting a neutral or weakly charged surface. The quantitative mapping of interfacial forces, along with the associated influencing factors such as pH or growth of nanostructures, provides a basis for more sophisticated and accurate modeling of processes affecting contaminant immobilization and bacterial attachment on mineral surfaces under natural conditions. PMID:18853804

Na, Chongzheng; Martin, Scot T

2008-09-15

341

Formation of super-hydrophobic and water-repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmosperic pressure plasma polymerization  

Microsoft Academic Search

It has been reported that plasma treatments are to modify surface properties of polymers such as adhesivity, hydrophliicity and hydrophobicity. The plasma interaction with the surface produces modification of its chemical structure and morphology.In this study, surface modification of polyester fiber with high water-repellency and super-hydrophobic was carried out plasma polymerization coating. Polyester fiber with water-repellency was treated with atmospheric

Young-Yeon Ji; Yong-Cheol Hong; Suck-Hyun Lee; Sung-Dae Kim; Sang-Sik Kim

2008-01-01

342

Fabrication of superhydrophobic film by microcellular plastic foaming method  

NASA Astrophysics Data System (ADS)

To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.

Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk

2014-08-01

343

Superhydrophobic conductive carbon nanotube coatings for steel.  

PubMed

We report the synthesis of superhydrophobic coatings for steel using carbon nanotube (CNT)-mesh structures. The CNT coating maintains its structural integrity and superhydrophobicity even after exposure to extreme thermal stresses and has excellent thermal and electrical properties. The coating can also be reinforced by optimally impregnating the CNT-mesh structure with cross-linked polymers without significantly compromising on superhydrophobicity and electrical conductivity. These superhydrophobic conductive coatings on steel, which is an important structural material, open up possibilities for many new applications in the areas of heat transfer, solar panels, transport of fluids, nonwetting and nonfouling surfaces, temperature resilient coatings, composites, water-walking robots, and naval applications. PMID:19281157

Sethi, Sunny; Dhinojwala, Ali

2009-04-21

344

Nanostructured surfaces for anti-biofouling/anti-microbial applications  

NASA Astrophysics Data System (ADS)

Recent nanotechnology revolutions have cast increased challenges to biotechnology including bio-adhesion of cells. Surface topography and chemistry tailored by the nanotechnology exert significant effects on such applications so that it is necessary to understand how cells migrate and adhere on three-dimensional micro- and nanostructures. However, the effects of the surface topography and chemistry on cell adhesions have not been studied systematically and interactively yet mostly due to the inability to create well-controlled nanostructures over a relatively large surface area. In this paper, we report on the bio-adhesions of varying cell types on well-ordered (post and grate patterns), dense-array (230 nm in pattern periodicity), and sharp-tip (less than 10 nm in tip radius) nanostructures with varying three-dimensionalities (50- 500 nm in structural height). Significantly lower cell proliferation and smaller cell size were measured on tall nanostructures. On a grate pattern, significant cell elongation and alignment along the grate pattern were observed. On tall nanostructures, it was shown that cells were levitated by sharp tips and easily peeled off, suggesting that cell adherence to the tall and sharp-tip nanostructures was relatively weak. The control of cell growth and adherence by the nanoscale surface topographies can benefit the micro- and nanotechnogies-based materials, devices, and systems, such as for anti-biofouling and anti-microbial surfaces. The obtained knowledge by this investigation will also be useful to deal with engineering problems associated with the contact with biological substances such as biomaterials and biosensors.

Choi, Chang-Hwan; Kim, Chang-Jin

2009-05-01

345

Lattice Boltzmann modeling of droplet condensation on superhydrophobic nanoarrays.  

PubMed

Droplet nucleation and growth on superhydrophobic nanoarrays is simulated by employing a multiphase, multicomponent lattice Boltzmann (LB) model. Three typical preferential nucleation modes of condensate droplets are observed through LB simulations with various geometrical parameters of nanoarrays, which are found to influence the wetting properties of nanostructured surfaces significantly. The droplets nucleated at the top of posts (top nucleation) or in the upside interpost space of nanoarrays (side nucleation) will generate a nonwetting Cassie state, while the ones nucleated at the bottom corners between the posts of nanoarrays (bottom nucleation) produce a wetting Wenzel state. The simulated time evolutions of droplet pressures at different locations are analyzed, which offers insight into the underlying physics governing the motion of droplets growing from different nucleation modes. It is demonstrated that the nanostructures with taller posts and a high ratio of post height to interpost space (H/S) are beneficial to produce the top- and side-nucleation modes. The simulated wetting states of condensate droplets on the nanostructures, having various geometrical configurations, compare reasonably well with experimental observations. The established relationship between the geometrical parameters of nanoarrays and the preferential nucleation modes of condensate droplets provides guidance for the design of nanoarrays with desirable anticondensation superhydrophobic properties. PMID:25275954

Zhang, Qingyu; Sun, Dongke; Zhang, Youfa; Zhu, Mingfang

2014-10-28

346

Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection.  

PubMed

Heterohierarchical micro/nanostructure tetragonal array consisted of engineering materials of microprotrusion-like Cu and secondary nanostructured dendrite Ag have been fabricated via a primary cell-induced deposition and a facile galvanic displacement reaction combined with photolithography technique on Cu foil. Confined by the circle microwell tetragonal array of the photoresist template, regular microprotrusion-like Cu with the tunable size of diameter can be easily deposited on the surface of Cu foil. Then, the secondary dendritic Ag nanostructures in situ grow on the surface of microprotrusion via a galvanic displacement reaction, leading to the formation of heterohierarchical micro/nanostructure tetragonal array, which is similar to the surface microstructure of the lotus leaf. Inspired by this novel surface structure of imitating lotus leaf, its wettability has been systematically investigated. The results indicate that the fabricated heterohierarchical micro/nanostructure regular array after the surface fluoration presents a remarkable superhydrophobic performance. Initiated from its superhydrophobicity, an excellent self-cleaning property has also been demonstrated. In addition, the durability of the superhydrophobic surfaces is examined in the wide pH range of corrosive liquids. Notably, the fabricated superhydrophobic surface can be potentially used as concentrators, which presents a great perspective in the field of analysis through employing the SERS detection as an example. PMID:24080041

Zhang, Qiao-Xin; Chen, Yu-Xue; Guo, Zheng; Liu, Hong-Lin; Wang, Da-Peng; Huang, Xing-Jiu

2013-11-13

347

Induction of osteogenic differentiation by nanostructured alumina surfaces.  

PubMed

Permanent orthopedic implants are becoming increasingly important due to the demographic development. Their optimal osseointegration is key in obtaining good secondary stability. For anchorage dependent cells, topographic features of a surface play an essential role for cell adhesion, proliferation, differentiation and biomineralization. We studied the topographical effect of nanostructured alumina surfaces prepared by chemical vapor deposition on osteogenic differentiation and growth of human osteoblasts. Chemical vapor deposition of the single source precursor (tBuOAIH2)2 led to synthesis of one dimensional alumina nanostructures of high purity with a controlled stoichiometry. We fabricated different topographic features by altering the distribution density of deposited one dimensional nanostructures. Although the topography differed, all surfaces exhibited identical surface chemistry, which is the key requirement for systematically studying the effect of the topography on cells. Forty-eight hours after seeding, cell density and cell area were not affected by the nanotopography, whereas metabolic activity was reduced and formation of actin-fibres and focal adhesions was impaired compared to the uncoated control. Induction of osteogenic differentiation was demonstrated via up-regulation of alkaline phosphatase, bone sialoprotein, osteopontin and Runx2 at the mRNA level, demonstrating the potential of nanostructured surfaces to improve the osseointegration of permanent implants. PMID:24734536

Metzger, Wolfgang; Schwab, Benedikt; Miro, Marina M; Grad, Sibylle; Simpson, Angharad; Veith, Michael; Wennemuth, Gunther; Zaporojtchenko, Vladimir; Verrier, Sophie; Hayes, Jessica S; Bubel, Monika; Pohlemann, Tim; Oberringer, Martin; Aktas, Cenk

2014-05-01

348

Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging  

NASA Astrophysics Data System (ADS)

Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd's mirror interferometer to perform multiple exposures at multiple angles before developing. Precise control of the resonance position is shown by locating three SPR dips at predetermined wavenumbers of 5000, 4000, and 3000 cm-1, respectively. A set of three gratings, each having four closely spaced resonances is employed to show how the sensor response could be broadened. The work in Chapter 3 shows potential for simultaneous enhancement of multiple vibrational modes; the multiband approach might find application for modes at disparate locations within the IR spectrum, while the broadband approach may allow concurrent probing of broad single modes or clusters of narrow modes within a particular neighborhood of the spectrum. Chapter 4 uses the rigorous coupled-wave analysis (RCWA) method to numerically explore another facet of the nanostructure-based tunability of grating-baed SPR sensing. The work in this chapter illustrates how infrared signal enhancement could be tailored by through adjustment of the grating amplitude. Modeled infrared reflection absorption (IRRAS) spectra and electric field distributions were generated for several nanostructured grating configurations. It was found that there exists a critical amplitude value for a given grating pitch where the plasmon response achieves a maximum. Amplitudes greater than this critical value produce a broader and attenuated plasmon peak, while smaller amplitudes produce a plasmon resonance that is not as intense. Field simulations show how amplitudes nearer the critical amplitude resulted in large increases in the electric field within an analyte film atop the sensor surface, and the relative strength of the increased field is predictable based on the appearance of the IRRAS spectra. It is believed that these larger fields are the cause of observed enhanced absorption. Published reports pertaining to interactions of SPs with molecular resonance and to diffraction-based tracking of plasmons without a spectrometer are included in the Appendix to this thesis. In the first of the two reports, it is shown that plasmons

Petefish, Joseph W.

349

Imprinted and injection-molded nano-structured optical surfaces  

NASA Astrophysics Data System (ADS)

Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are well- known examples used for inspiration for such biomimetic research. In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of Black Silicon (BSi) random nanostructure surfaces. The optical transmission at normal incidence is measured for wavelengths from 400 nm to 900 nm. For samples with optimized nanostructures, the reflectance is reduced by 50 % compared to samples with planar surfaces. The specular and diffusive reflection of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed.

Christiansen, Alexander B.; Højlund-Nielsen, Emil; Clausen, Jeppe; Caringal, Gideon P.; Mortensen, N. Asger; Kristensen, Anders

2013-09-01

350

How superhydrophobicity breaks down  

PubMed Central

A droplet deposited or impacting on a superhydrophobic surface rolls off easily, leaving the surface dry and clean. This remarkable property is due to a surface structure that favors the entrainment of air cushions beneath the drop, leading to the so-called Cassie state. The Cassie state competes with the Wenzel (impaled) state, in which the liquid fully wets the substrate. To use superhydrophobicity, impalement of the drop into the surface structure needs to be prevented. To understand the underlying processes, we image the impalement dynamics in three dimensions by confocal microscopy. While the drop evaporates from a pillar array, its rim recedes via stepwise depinning from the edge of the pillars. Before depinning, finger-like necks form due to adhesion of the drop at the pillar’s circumference. Once the pressure becomes too high, or the drop too small, the drop slowly impales the texture. The thickness of the air cushion decreases gradually. As soon as the water–air interface touches the substrate, complete wetting proceeds within milliseconds. This visualization of the impalement dynamics will facilitate the development and characterization of superhydrophobic surfaces. PMID:23382197

Papadopoulos, Periklis; Mammen, Lena; Deng, Xu; Vollmer, Doris; Butt, Hans-Jürgen

2013-01-01

351

Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials  

NASA Astrophysics Data System (ADS)

Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

Hejazi, Vahid

352

Nonplanar Conductive Surfaces via "Bottom-Up" Nanostructured Gold Coating  

E-print Network

,7 Conventional silicon-based surfaces, predominant in current micro-elec- tronics, are generally rigid and thus. The simple two-step experimental scheme is based upon incubation of an amine-displaying polymer [the combines spontaneous assembly of nanostructured gold layers through incubation of Au(SCN)4 - with an amine-displaying

Jelinek, Raz

353

In situ separation and collection of oil from water surface via a novel superoleophilic and superhydrophobic oil containment boom.  

PubMed

We have prepared a porous, superoleophilic and superhydrophobic miniature oil containment boom (MOCB) for the in situ separation and collection of oils from the surface of water. The MOCB was fabricated by a one-step electrodepositing of Cu2O film on Cu mesh surface without using low surface energy materials. Oils on water surface could be fast contained in the MOCB while water was completely repelled out of the MOCB, thus achieving the separation of oil from water surface. In addition, the contained oil in the MOCB could be in situ collected easily by a dropper, thus achieving the collection of oil. Moreover, the MOCB could be reused for many times in the oil-water separating process with large separation abilities more than 90%. The MOCB also possessed excellent water pressure resistance for about 164 mm water column and good corrosion resistance in simulating seawater. Therefore, the findings in the present study might offer a simple, fast, and low-cost method for the in situ separation and collection of oil spills on seawater surface. PMID:24460039

Wang, Fajun; Lei, Sheng; Xue, Mingshan; Ou, Junfei; Li, Wen

2014-02-11

354

Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers.  

PubMed

Superhydrophobic and superamphiphobic toward superoleophobic polymeric surfaces of polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and polydimethyl siloxane (PDMS) are fabricated in a two-step process: (1) plasma texturing (i.e., ion-enhanced plasma etching with simultaneous roughening), with varying plasma chemistry depending on the polymer, and subsequently (2) grafting of self-assembled perfluorododecyltrichlorosilane monolayers (SAMs). Depending on the absence or not of an etch mask (i.e., colloidal microparticle self-assembly on it), random or ordered hierarchical micro-nanotexturing can be obtained. We demonstrate that stable organic monolayers can be grafted onto all these textured polymeric surfaces. After the monolayer deposition, the initially hydrophilic polymeric surfaces become superamphiphobic with static contact angles for water and oils>153°, for hexadecane>142°, and hysteresis<10° for all surfaces. This approach thus provides a simple and generic method to obtain superamphiphobicity on polymers toward superoleophobicity. Hydrolytic and hexadecane immersion tests prove that superamphiphobicity is stable for more than 14 days. We also perform nanoscratch and post nanoscratch tests to prove the scratch resistance of both the texture and the SAM and demonstrate lower coefficient of friction of the SAM compared to the uncoated surface. Scanning electron microscope observation after the nanoscratch tests confirms the scratch resistance of the surfaces. PMID:24749933

Ellinas, Kosmas; Pujari, Sidharam P; Dragatogiannis, Dimitrios A; Charitidis, Constantinos A; Tserepi, Angeliki; Zuilhof, Han; Gogolides, Evangelos

2014-05-14

355

In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces.  

PubMed

Superhydrophobic poly(methyl methacrylate) surfaces with contact angles of ?170° and high optical and X-ray transparencies have been fabricated through the use of optical lithography and plasma etching. The surfaces contain either a microscale pattern of micropillars or a random nanofibrillar pattern. Nanoscale asperities on top of the micropillars closely resemble Nelumbo nucifera lotus leaves. The evolution of the contact angle of water and lysozyme solution droplets during evaporation was studied on the micro- and nanopatterned surfaces, showing in particular contact-line pinning for the protein solution droplet on the nanopatterned surface. The microstructural evolution of lysozyme solution droplets was studied on both types of surfaces in situ under nearly contact-free conditions by synchrotron radiation microbeam wide-angle and small-angle X-ray scattering revealing the increasing protein concentration and the onset of precipitation. The solid residuals show hollow sphere morphologies. Rastermicrodiffraction of the detached residuals suggests about a 1/3 volume fraction of ?17 nm lysozyme nanocrystalline domains and about a 2/3 short-range-order volume fraction. About 5-fold larger nanocrystalline domains were observed at the attachment points of the sphere to the substrates, which is attributed to particle growth in a shear flow. Such surfaces represent nearly contact-free sample supports for studies of inorganic and organic solution droplets, which find applications in biochips. PMID:20804171

Accardo, Angelo; Gentile, Francesco; Mecarini, Federico; De Angelis, Francesco; Burghammer, Manfred; Di Fabrizio, Enzo; Riekel, Christian

2010-09-21

356

Mechanical durability of superhydrophobic and oleophobic copper meshes  

NASA Astrophysics Data System (ADS)

We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

2014-10-01

357

Superhydrophobic materials for drug delivery  

NASA Astrophysics Data System (ADS)

Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension. Superhydrophobicity is shown to be enhanced with further increases in PGC-C18 content and surface roughness (a decrease in fiber size). We demonstrate the utility of superhydrophobicity as a method for drug delivery. When the camptothecin derivatives SN-38 and CPT-11 are encapsulated within electrospun meshes, changes in air layer stability (due to changes in PGC-C18 content) dictate the rate of drug release by controlling the rate in which water can permeate into the porous 3D electrospun structure. Drug release can be tuned from 2 weeks to >10 weeks from 300 mum meshes, and meshes effectively kill a variety of cancer cell lines (lung, colon, breast) when utilized in a cytotoxicity assay. After determining that air could be used to control the rate of drug release, superhydrophobic 3D materials are explored for three applications. First, meshes are considered as a potential combination reinforcement-drug delivery device for use in resectable colorectal cancer. Second, removal of the air layer in superhydrophobic meshes is used as a method to trigger drug release. The pressure generated from high-intensity focused ultrasound (0.75-4.25 MPa) can remove the air layer spatially and temporally, allowing drug release to be controlled with application of a sufficient treatment. Third, "connective" electrosprayed coatings are deposited on chemically distinct material surfaces, which are both three-dimensional and mechanically robust. In summary, superhydrophobic 3D materials are fabricated and characterized, and are utilized as drug delivery devices. Controlled air removal from these materials offers an entirely new strategy for drug delivery, and is promising for the applications considered in this work as well as many others.

Yohe, Stefan Thomas

358

One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent.  

PubMed

We report a procedure to fabricate nanostructured Ni films via programmed electrochemical deposition from a choline-chloride-based ionic liquid at a high temperature of 90 °C. Three electrodeposition modes using constant voltage, pulse voltage, and reverse pulse voltage produce a variety of nanostructured Ni films with micro/nanobinary surface architectures, such as nanosheets, aligned nanostrips, and hierarchical flowers. The nanostructured Ni films possess face-centered cubic crystal structure. Amazingly, it is found that the electrodeposited Ni films deliver the superhydrophobic surfaces without any further modifications by low surface-energy materials, which might be attributed to the vigorous micro/nanobinary architectures and the surface chemical composition. The electrochemical measurements reveal that the superhydrophobic Ni film exhibit an obvious passivation phenomenon, which could provide enhanced corrosion resistance for the substrate in the aqueous solutions. PMID:21739965

Gu, Changdong; Tu, Jiangping

2011-08-16

359

Coherent ExcitonSurface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures  

E-print Network

Coherent Exciton­Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures polaritons (SPP) and quantum well excitons in a hybrid metal-semiconductor nanostructure. The hybrid when placed close to a metallic nanostructure due to its coupling to surface plasmon polaritons (SPPs

Oldenburg, Carl von Ossietzky Universität

360

Using sharp transitions in contact angle hysteresis to move, deflect, and sort droplets on a superhydrophobic surface  

NASA Astrophysics Data System (ADS)

In order to make an effective droplet-based microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. In a typical three-dimensional device, these processes are well understood. However, for planar or open microfluidic devices, many of these processes have yet to be demonstrated. In this paper, a series of superhydrophobic surfaces created by sanding Teflon are used as the microfluidics platform. The superhydrophobic surfaces used in this study all have advancing contact angles of 150° but have contact angle hysteresis that were varied smoothly from 3° to 30° as the grit size of the sandpaper is changed. Drop motion was initiated by placing the surface on an inclined plane. To deflect and move droplets along the surface, single and multiple transition lines in receding contact angle were created by spatially varying the surface roughness of the Teflon. The degree of droplet deflection was studied as a function of droplet size, droplet speed, and the angle that the transition line in contact angle hysteresis made with the principle direction of droplet motion. Droplet deflections across a single transition as large as 140% the droplet diameter were observed. The droplet deflection was found to increase with increasing difference in contact angle hysteresis across the transition and increasing transition angles up to about 40°. The largest deflections were observed over a very narrow range of droplet velocities corresponding to a range in Weber numbers between 0.1 and 0.2. This narrow range in Weber number suggests that transitions in receding contact angle can be used to sort drops based on velocity, size or wetting properties with a strong degree of selectivity. The direction of deflection was observed to change depending on whether the drops transitioned from a region of low to high or high to low contact angle hysteresis. In a transition from low to high hysteresis, a large portion of the drop's kinetic energy is converted into interfacial energy as the receding contact line of the drop is deformed. Alternatively, a transition from high to low hysteresis results in some of the drop's interfacial energy converted into kinetic energy as the deformation of the droplet is reduced. The result is either a reduction or increase in the droplet's velocity normal to the line of transition depending on the sign of the transition in contact angle hysteresis. Finally, single and multiple stripes of different contact angle hysteresis are also shown to be effective at deflecting droplets.

Nilsson, Michael A.; Rothstein, Jonathan P.

2012-06-01

361

Universal dispersion of surface plasmons in flat nanostructures  

PubMed Central

Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons. Here we find that, in contrast to excitonic systems, the mode dispersions in plasmonic structures of different dimensionality are related by simple scaling rules. Employing electron energy loss spectroscopy, we show that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films. We thereby introduce a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks. PMID:24717682

Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenester, Ulrich; Hohenau, Andreas; Hofer, Ferdinand; Krenn, Joachim R.

2014-01-01

362

Preparation of superhydrophobic surface with a novel sol-gel system  

NASA Astrophysics Data System (ADS)

Sol-gel method is a simple and cheap way to prepare superhydrophobic coatings or films, however, most of the researches on sol-gel focus on silica or ZnO sol-gel. The present paper proposes a novel sol-gel which is made from hydrolysis and condensation of the by-product of polymethylhydrosiloxane (PMHS) reacting with ?-aminopropyltriethoxysilane (KH550). The mechanism of formation of the by-product and the sol-gel is discussed and the by-product is characterized by FT-IR. The mass ratio of KH550/PMHS of the sol-gel influences the water contact angle (WCA) and water sliding angle (WSA) of the film made of spraying the sol-gel to microscope glass. When the mass ratio of KH550/PMHS of the sol-gel reaches 0.25, WCA of the corresponding film is 157° and WSA of it is less than 1°. The mechanism of formation of the sol-gel is discussed, and the size of the sol-gel is characterized by polarization microscope as well. The morphology of the film made of the sol-gel is analyzed by means of scanning electron microscope (SEM). It was found that the diameter of the particle of the superhydrophobic film is about 40 ?m, nevertheless, from the larger magnification picture, the particle is found to be composed of micro-balls whose diameter is about 2 ?m, and the micro-ball is composed of nano-sphere whose diameter is less than 200 nm.

Su, Dong; Huang, Chengya; Hu, You; Jiang, Qiangwei; Zhang, Long; Zhu, Yunfeng

2011-11-01

363

Superhydrophobic graphene foams.  

PubMed

The static and dynamic wetting properties of a 3D graphene foam network are reported. The foam is synthesized using template-directed chemical vapor deposition and contains pores several hundred micrometers in dimension while the walls of the foam comprise few-layer graphene sheets that are coated with Teflon. Water contact angle measurements reveal that the foam is superhydrophobic with an advancing contact angle of ?163 degrees while the receding contact angle is ?143 degrees. The extremely water repellent nature of the foam is also confirmed when impacting water droplets are able to completely rebound from the surface. Such superhydrophobic graphene foams show potential in a variety of applications ranging from anti-sticking and self-cleaning to anti-corrosion and low-friction coatings. PMID:22911509

Singh, Eklavya; Chen, Zongping; Houshmand, Farzad; Ren, Wencai; Peles, Yoav; Cheng, Hui-Ming; Koratkar, Nikhil

2013-01-14

364

Dropwise Condensation on Micro- and Nanostructured Surfaces  

E-print Network

In this review we cover recent developments in the area of surface- enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro- ...

Miljkovic, Nenad

365

Impact of surface nanostructure on ice nucleation  

NASA Astrophysics Data System (ADS)

Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

2014-09-01

366

Surface nanostructures by single highly charged ions.  

PubMed

It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced. PMID:21715750

Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

2009-06-01

367

Table of Contents Superhydrophilic and Superhydrophobic Nanostructured Surfaces for Microfluidics and Thermal Management 4-1  

E-print Network

, Microfabricated Solid Oxide Fuel Cells (SOFCs) 4-47 Microscale Singlet Oxygen Generator for MEMS-based COIL Lasers and Pumps 4-6 Nanofluidic System for Single-particle Manipulation and Analysis 4-7 Microfluidic Systems Deformability 4-12 Microfluidic System for Screening Stem Cell Microenvironments 4-13 Self-assembly of Cell

Voldman, Joel

368

Electrostatic charging of jumping droplets on superhydrophobic nanostructured surfaces : fundamental study and applications  

E-print Network

Condensation is a ubiquitous process often observed in nature and harnessed in many industrial processes such as power generation, desalination, thermal management, and building environmental control. Recent advancements ...

Preston, Daniel J. (Daniel John)

2014-01-01

369

Periodically nanostructured substrates for surface enhanced Raman spectroscopy  

NASA Astrophysics Data System (ADS)

Surface Enhanced Raman Spectroscopy (SERS) is a technique capable of specifically detecting trace amounts of a given substance, based on the vibrational molecular signature. Developing cutting-edge applications and furthering a detailed understanding of SERS relies strongly on controling the nano- and micro-scale morphology of metal nanostructured SERS substrates. In this review, we present the most widespread classes of SERS substrates comprising periodic surface features, and the corresponding nanofabrication methods. A brief discussion on surface plasmon polaritons, in the context of the electromagnetic enhancement mechanism, explains the need for SERS substrates of controlled morphology.

Farcau, Cosmin; Astilean, Simion

2014-09-01

370

Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis  

NASA Astrophysics Data System (ADS)

Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly impact the field. Due to the rise in micro and nanofabrication techniques borrowed from the advances in the microelectronics industry, previously unattainable nanostructured surfaces on a variety of biomaterials can be generated. We investigated how nanostructured surfaces with varying nanofeature aspect ratios can influence fibrosis. Thus, nanostructured surfaces show substantial progress for therapeutic applications in drug delivery and wound healing.

Kam, Kimberly Renee

371

Tunable reflection minima of nanostructured antireflective surfaces  

Microsoft Academic Search

Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the

S. A. Boden; D. M. Bagnall

2008-01-01

372

Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.  

PubMed

Studies regarding the wettability transition of micro- and nano-structured metal surfaces over time are frequently reported, but there seems to be no generally accepted theory that explains this phenomenon. In this paper, we aim to clarify the mechanism underlying the transition of picosecond laser microstructured aluminum surfaces from a superhydrophilic nature to a superhydrophobic one under ambient conditions. The aluminum surface studied exhibited superhydrophilicity immediately after being irradiated by a picosecond laser. However, the contact angles on the surface increased over time, eventually becoming large enough to classify the surface as superhydrophobic. The storage conditions significantly affected this process. When the samples were stored in CO2, O2 and N2 atmospheres, the wettability transition was restrained. However, the transition was accelerated in atmosphere that was rich with organic compounds. Moreover, the superhydrophobic surface could recover their original superhydrophilicity by low temperature annealing. A detailed XPS analysis indicated that this wettability transition process was mainly caused by the adsorption of organic compounds from the surrounding atmosphere onto the oxide surface. PMID:25481645

Long, Jiangyou; Zhong, Minlin; Zhang, Hongjun; Fan, Peixun

2015-03-01

373

Nanostructuring of Silicon Surfaces Using Selective Photodesorption  

NASA Astrophysics Data System (ADS)

The role of electronic point defects induced by substitutional doping in semiconductors can profoundly influence both their surface chemistry and morphology on an atomic scale. This results from a convolution of atomic site-specific photodesorption processes and the quantum mechanical enhancement of surface chemical reactions induced by uv-photon radation as a function of laser fluence. Substantial alterations of the surface nano-scale structure occurs by selective photodesorption from the chlorinated surface.Creation of hot holes and electrons coupled with field-induced charge transport and field build- up at the surface produces new chemical reaction channels which result in specific nano-scale structural effects, New film compositional measurements are correlated with previously reported results on chemisorption kinetics, reaction energetics and STM observations to produce models and mechanisms for the interpretation of the unique atomic-scale morphology resulting from selective photodesorption from well-defined chlorinated Si(111) and Si(100) surfaces. Supported: NSF-DMR-87-05680 & MSC-DMR-88-18558-A02. ("Overview on Surface Microstructuring by Photodesorption Etching of Chlorinated Silicon".Prog.Surf.Sci.54(1997)287-314.) THIS SECTION IS FOR APS USE ONLY

Rhodin, Thor; Paulsen-Boaz, Carlotta

1998-03-01

374

Femtosecond surface plasmon interferometry with gold nanostructures  

E-print Network

We measure the ultrafast electron dynamics in gold via ultrafast surface plasmon interferometry. A new plasmonic microinterferometer with tilted slit-groove pair is used to unambiguously determine changes of real and ...

Temnov, Vasily V.

375

Rapid Drop Dynamics During Superhydrophobic Condensation  

NASA Astrophysics Data System (ADS)

Rapid drop motion is observed on superhydrophobic surfaces during condensation; condensate drops with diameter of order 10 ?m can move at above 100G and 0.1 m/s. When water vapor condenses on a horizontal superhydrophobic surface, condensate drops move in a seemingly random direction. The observed motion is attributed to the energy released through coalescence of neighboring condensate drops. A scaling analysis captured the initial acceleration and terminal velocity. Our work is a step forward in understanding the dynamics of superhydrophobic condensation occurring in both natural water-repellant plants and engineered dropwise condensers.

Zhang, Xiaodong; Boreyko, Jonathan; Chen, Chuan-Hua

2008-11-01

376

Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state.  

PubMed

Condensed drops usually display a Wenzel state on a superhydrophobic surface (SHS) only with microrough architecture, while Cassie drops easily appear on a surface with micro-nano hierarchical roughness. The mechanism of this is not very clear. It is important to understand how the hierarchical structure affects the states of condensation drops so that a good SHS can be designed to achieve the highly efficient dropwise condensation. In this study, the interface free energy (IFE) of a local condensate, which comes from the growth and combination of numerous initial condensation nuclei, was calculated during its shape changes from the early flat shape to a Wenzel or Cassie state. The final state of a condensed drop was determined by whether the IFE continuously decreased or a minimum value existed. The calculation results indicate that the condensation drops on the surface only with microroughness display a Wenzel state because the IFE curve of a condensed drop first decreases and then increases, existing at a minimum value corresponding to a Wenzel drop. On a surface with proper hierarchical roughness, however, the interface energy curve of a condensed drop will continuously decline until reaching a Cassie state. Therefore, a condensed drop on a hierarchical roughness surface can spontaneously change into a Cassie state. Besides, the states and apparent contact angles of condensed drops on a SHS with different structural parameters published in the literature were calculated and compared with experimental observations. The results show that the calculated condensed drop states are well-coordinated with experimental clarifications. We can conclude that micro-nano hierarchical roughness is the key structural factor for sustaining condensed drops in a Cassie state on a SHS. PMID:20726606

Liu, Tianqing; Sun, Wei; Sun, Xiangyu; Ai, Hongru

2010-09-21

377

Engineering atomic and molecular nanostructures at surfaces  

Microsoft Academic Search

The fabrication methods of the microelectronics industry have been refined to produce ever smaller devices, but will soon reach their fundamental limits. A promising alternative route to even smaller functional systems with nanometre dimensions is the autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces. This approach combines ease of fabrication with exquisite control over the shape,

Johannes V. Barth; Giovanni Costantini; Klaus Kern

2005-01-01

378

Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.  

DOEpatents

A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

Pipino, Andrew C. R. (Gaithersburg, MD)

2003-02-04

379

Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide  

SciTech Connect

Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1?keV and 23.3?keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

El-Said, A. S., E-mail: elsaid@kfupm.edu.sa, E-mail: a.s.el-said@hzdr.de [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Djebli, M. [Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers (Algeria)

2014-06-09

380

Tunable reflection minima of nanostructured antireflective surfaces  

NASA Astrophysics Data System (ADS)

Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application.

Boden, S. A.; Bagnall, D. M.

2008-09-01

381

Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface.  

PubMed

Light-responsive hydrogel particles with multi-compartmental structure are useful for applications in microreactors, drug delivery and tissue engineering because of their remotely-triggerable releasing ability and combinational functionalities. The current methods of synthesizing multi-compartmental hydrogel particles typically involve multi-step interrupted gelation of polysaccharides or complicated microfluidic procedures with limited throughput. In this study, a two-step sequential gelation process is developed to produce agarose/alginate double network multi-compartmental hydrogel particles using droplets assemblies induced by superhydrophobic surface as templates. The agarose/alginate double network multi-compartmental hydrogel particles can be formed with diverse hierarchical structures showing combinational functionalities. The synthesized hydrogel particles, when loaded with polypyrrole (PPy) nanoparticles that act as photothermal nanotransducers, are demonstrated to function as near-infrared (NIR) light triggerable and deformation-free hydrogel materials. Periodic NIR laser switching is applied to stimulate these hydrogel particles, and pulsatile release profiles are collected. Compared with massive reagents released from single-compartmental hydrogel particles, more regulated release profiles of the multi-compartmental hydrogel particles are observed. PMID:25059988

Luo, Rongcong; Cao, Ye; Shi, Peng; Chen, Chia-Hung

2014-12-01

382

An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.  

PubMed

The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (rW > -1/?cos??Y, where ?Y is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface. PMID:25469488

Bottiglione, F; Carbone, G

2015-01-14

383

An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces  

NASA Astrophysics Data System (ADS)

The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (rW > ?1/?cos??Y, where ?Y is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.

Bottiglione, F.; Carbone, G.

2015-01-01

384

Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.  

PubMed

Optical surfaces that can repel both water and oil have much potential for applications in a diverse array of technologies including self-cleaning solar panels, anti-icing windows and windshields for automobiles and aircrafts, low-drag surfaces, and antismudge touch screens. By exploiting a hierarchical geometry made of two-tier nanostructures, primary nanopillars of length scale ? 100-200 nm superposed with secondary branching nanostructures made of nanoparticles of length scale ? 10-30 nm, we have achieved static contact angles of more than 170° and 160° for water and oil, respectively, while the sliding angles were lower than 4°. At the same time, with respect to the initial flat bare glass, the nanotextured surface presented significantly reduced reflection (<0.5%), increased transmission (93.8% average over the 400 to 700 nm wavelength range), and very low scattering values (about 1% haze). To the authors' knowledge, these are the highest optical performances in conjunction with superomniphobicity reported to date in the literature. The primary nanopillars are monolithically integrated in the glass surface using lithography-free metal dewetting followed by reactive ion etching,1 while the smaller and higher surface area branching structure made of secondary nanoparticles are deposited by the NanoSpray2 combustion chemical vapor deposition (CCVD). PMID:24988148

Mazumder, Prantik; Jiang, Yongdong; Baker, David; Carrilero, Albert; Tulli, Domenico; Infante, Daniel; Hunt, Andrew T; Pruneri, Valerio

2014-08-13

385

Titanium nanostructural surface processing for improved biocompatibility  

SciTech Connect

X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L. [School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China)and Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China) and Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 110, Taiwan (China); Division of Oral and Maxillofacial Surgery, Kaohsiung Military General Hospital, Kaohsiung 807, Taiwan (China); Graduate Institute of Oral Sciences, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

2006-10-23

386

Emission of terahertz pulses from nanostructured metal surfaces  

NASA Astrophysics Data System (ADS)

When (nanostructured) metals, such as gold and silver, are illuminated with laser pulses having a duration in the femtosecond range, they can emit pulses of THz light. Most of these experiments have been performed using amplified lasers, giving rise to energy densities on the sample on the order of mJ cm-2. The results of the different experiments are surprisingly inconsistent in both the measurements of the THz fluence as a function of laser fluence and in the interpretation of the results. This paper reviews the current state of affairs of this interesting topic and discusses some effects related to surface preparation that may influence the emission THz light on metals, particularly silver and copper. We also show results of measurements on nanostructured metals using unamplified laser pulses, which emphasize the role played by plasmons in the generation of THz light. When increasing the optical energy density on a specially nanostructured sample, we observe a transition from a ‘classical’ second-order non-linear optical process to a higher-order process as the source of the THz radiation. This supports recent results on a differently structured metal by Polyushkin et al (2014 Phys. Rev. B 89 125426), who also observe two different power regimes when decreasing the intensity coming from the high energy density side.

Ramanandan, G. K. P.; Ramakrishnan, G.; Kumar, N.; Adam, A. J. L.; Planken, P. C. M.

2014-09-01

387

Light trapping by direction-dependent light transmission in front-surface photonic nanostructures  

NASA Astrophysics Data System (ADS)

Front-surface photonic nanostructures contribute both reduced reflection loss and light trapping to increase optical absorption in solar cells. We investigated the effect of sub-wavelength photonic nanostructures on light trapping in thin-film crystalline silicon solar cells. We clarified that, even though the angle distribution of scattered light is small compared with that in the case of Lambertian scattering, light trapping enhances with increasing depth of the surface photonic nanostructure, which originates from the direction-dependent light transmission in the surface photonic nanostructure. Our findings indicate that this direction-dependent light transmission contributes to the advanced photon management in thin-film solar cells.

Tayagaki, Takeshi; Kishimoto, Yuko; Hoshi, Yusuke; Usami, Noritaka

2014-12-01

388

Drug delivery: near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface (small 23/2014).  

PubMed

A two-step sequential gelation process is developed by C.-H. Chen and co-workers to produce agarose/alginate double network multi-compartmental hydrogel particles, using droplet assemblies induced by superhydrophobic surfaces as templates. The hydrogel particles can be formed with diverse hierarchical structures, showing combinational functionalities. On page 4886 it is shown how the synthesized hydrogel particles, when loaded with polypyrrole (PPy) nanoparticles that act as photothermal nanotransducers, function as NIR light-triggered and deformation-free hydrogel materials. PMID:25471608

Luo, Rongcong; Cao, Ye; Shi, Peng; Chen, Chia-Hung

2014-12-01

389

Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.  

PubMed

The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

2010-05-25

390

Nanostructuring of surfaces by ultra-short laser pulses  

NASA Astrophysics Data System (ADS)

Nanostructuring of an extended surface area is performed by ultra-short-pulse laser ablation in the low-fluence regime. A layer of micrometer-sized quartz spheres is used as a lens array in direct contact with the sample. The thickness of a transparent spacer layer under the spheres is adjusted so that the sample is struck by an array of well-focused spots. The threshold character of the ablation process allows the formation of sub-diffraction-limited structures, down to 500-nm holes with 800-nm light. The deposition of the lens array directly on the surface makes the technique broadly applicable, also to samples that show great variations in height.

Vestentoft, K.; Olesen, J. A.; Christensen, B. H.; Balling, P.

2005-02-01

391

Au-coated ZnO nanostructures for surface enhanced Raman spectroscopy applications  

SciTech Connect

Thin ZnO nanostructured films were produced by pulsed laser deposition (PLD) for surface enhanced Raman spectroscopy (SERS) studies. The experimental conditions used for preparation of the samples were chosen to obtain different types of ZnO nanostructures. The Raman spectra of rhodamine 6G (R6G) were measured at an excitation wavelength of 785 nm after coating the ZnO nanostructures with a thin Au layer. The influence of the surface morphology on the Raman signal obtained from the samples was investigated. High SERS signal enhancement was observed from all Au-coated ZnO nanostructures.

Dikovska, A O; Nedyalkov, N N; Imamova, S E; Atanasova, G B; Atanasov, P A

2012-03-31

392

Titanium Surfaces with Nanostructures Influence on Osteoblasts Proliferation: a Systematic Review  

PubMed Central

ABSTRACT Objectives Nanothechnology found to be increasingly implemented in implantology sphere over the recent years and it shows encouraging effect in this field. The aim of present review is to compare, based on the recent evidence, the influence of various nanostructure surface modifications of titanium for implants, on osteoblasts proliferation. Material and Methods A literature review of English articles was conducted by using MEDLINE database restricted to 2009 - 2014 and constructed according PRISMA guidelines. Search terms included “Titanium implant”, “Titanium surface with nanostructure”, “Osteoblast”. Additional studies were identified in bibliographies. Only in vitro and/or in vivo studies on nano structured implant surfaces plus control sample, with specific evaluation method for osteoblasts proliferation and at least one Ti sample with nanostructure, were included in the review. Results 32 studies with 122 groups of examined samples were selected for present review. Each study conducted in vitro experiment, two studies conducted additional in vivo experiments. All studies were dispensed by type of surface modification into two major groups; “Direct ablative titanium implant surface nano-modifications” with 19 studies and ”Nanocomposite additive implant surface modifications” with 13 studies. Overall 24 studies reporting on positive effect of nanostructured surface, 2 studies found no significant advantage and 6 studies reported on negative effect compared to other structure scales. Conclusions From examination of selected articles we can notice marked advantage in implementation of various nanostructures onto implant surface. Yet for discovering the ultimate implant surface nanostructure, further comparable investigations of Ti surface nanostructures need to be done. PMID:25386228

Juodzbalys, Gintaras; Vilkinis, Valdas

2014-01-01

393

Enhancement of antireflection property of silicon using nanostructured surface combined with a polymer deposition  

PubMed Central

Silicon (Si) nanostructures that exhibit a significantly low reflectance in ultraviolet (UV) and visible light wavelength regions are fabricated using a hydrogen etching process. The fabricated Si nanostructures have aperiodic subwavelength structures with pyramid-like morphologies. The detailed morphologies of the nanostructures can be controlled by changing the etching condition. The nanostructured Si exhibited much more reduced reflectance than a flat Si surface: an average reflectance of the nanostructured Si was approximately 6.8% in visible light region and a slight high reflectance of approximately 17% in UV region. The reflectance was further reduced in both UV and visible light region through the deposition of a poly(dimethylsiloxane) layer with a rough surface on the Si nanostructure: the reflectance can be decreased down to 2.5%. The enhancement of the antireflection properties was analyzed with a finite difference time domain simulation method. PMID:24397945

2014-01-01

394

Enhancement of antireflection property of silicon using nanostructured surface combined with a polymer deposition.  

PubMed

Silicon (Si) nanostructures that exhibit a significantly low reflectance in ultraviolet (UV) and visible light wavelength regions are fabricated using a hydrogen etching process. The fabricated Si nanostructures have aperiodic subwavelength structures with pyramid-like morphologies. The detailed morphologies of the nanostructures can be controlled by changing the etching condition. The nanostructured Si exhibited much more reduced reflectance than a flat Si surface: an average reflectance of the nanostructured Si was approximately 6.8% in visible light region and a slight high reflectance of approximately 17% in UV region. The reflectance was further reduced in both UV and visible light region through the deposition of a poly(dimethylsiloxane) layer with a rough surface on the Si nanostructure: the reflectance can be decreased down to 2.5%. The enhancement of the antireflection properties was analyzed with a finite difference time domain simulation method. PMID:24397945

Ha, Jun Mok; Yoo, Sung Ho; Cho, Jong Hoi; Cho, Yong Hoon; Cho, Sung Oh

2014-01-01

395

Self-assembled biomimetic superhydrophobic hierarchical arrays.  

PubMed

Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 ?m) and small (300 nm) silica s