Science.gov

Sample records for nanostructured superhydrophobic surfaces

  1. Thermal stability of superhydrophobic, nanostructured surfaces.

    PubMed

    Cha, Sung-Chul; Her, Eun Kyu; Ko, Tae-Jun; Kim, Seong Jin; Roh, Hyunchul; Lee, Kwang-Ryeol; Oh, Kyu Hwan; Moon, Myoung-Woon

    2013-02-01

    The thermal stability of superhydrophobic, nanostructured surfaces after thermal annealing was explored. Flat surfaces coated with hydrophobic diamond-like carbon (DLC) via plasma polymerization of hexamethyldisiloxane (HMDSO) showed a gradual decrease in the water contact angle from 90(o) to 60(o) while nanostructured surfaces maintained superhydrophobicity with more than 150° for annealing temperatures between 25 and 300°C. It was also found that surfaces with nanostructures having an aspect ratio of more than 5.2 may maintain superhydrophobicity for annealing temperatures as high as 350°C; above this temperature, however, the hydrophobicity on surfaces with lower aspect ratio nanostructures gradually degraded. It was observed that regardless of the aspect ratios of the nanostructure, all superhydrophobic surfaces became superhydrophilic after annealing at temperatures higher than 500°C. PMID:23116849

  2. Dynamic defrosting on nanostructured superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Srijanto, Bernadeta R; Nguyen, Trung Dac; Vega, Carlos; Fuentes-Cabrera, Miguel; Collier, C Patrick

    2013-07-30

    Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments. PMID:23822157

  3. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  4. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Wang, Evelyn N

    2013-01-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation. PMID:23190055

  5. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2013-01-09

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  6. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Wang, Evelyn

    2013-03-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface, as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations. This work not only shows significant condensation heat transfer enhancement, but promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  7. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ? 30 ?m at moderate heat fluxes (q? > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes. PMID:24261667

  8. Superhydrophobic surfaces

    DOEpatents

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  9. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Farzaneh, M.

    2011-01-01

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon®) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a "flower-like" structure in first few minutes of immersion. And as the immersion time lengthened, a "cornflake" structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle (˜164°) and low contact angle hysteresis (˜4°).

  10. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    NASA Astrophysics Data System (ADS)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc. were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. However, most polymer surfaces we prepared failed the purpose. Silica surfaces with excellent UV stability were prepared. This method consists of preparation of rough silica surfaces, thermal treatment and the following surface hydrophobization by fluoroalkyl silane treatment. Fluoroalkyl groups are UV stable and the underlying species are silica which is also UV stable (UV transparent). UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Metal (Au) assisted etching was employed to fabricate nanostructures on micrometer pyramid surfaces. The light reflection on the prepared surfaces was investigated. After surface texturing using KOH etching for micrometer pyramids and the following nanostructure using metal assisted etching, surface light reflection reduced to a minimum value which shows that this surface texturing technique is highly promising for improving the photovoltaic efficiency while imparting photovoltaics the self-cleaning feature. This surface is also expected to be UV stable due to the same fluoroalkyl silane used. Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plas

  11. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis

    NASA Astrophysics Data System (ADS)

    Bisetto, A.; Torresin, D.; Tiwari, M. K.; Del, D., Col; Poulikakos, D.

    2014-04-01

    It is well established that the dropwise condensation (DWC) mode can lead up to significant enhancement in heat transfer coefficients as compared to the filmwise mode (FWC). Typically, hydrophobic surfaces are expected to promote DWC, while hydrophilic ones induce FWC. To this end, superhydrophobic surfaces, where a combination of low surface energy and surface texturing is used to enhance the hydrophobicity, have recently been proposed as a promising approach to promote dropwise condensation. An attractive feature of using superhydrophobic surfaces is to facilitate easy roll-off of the droplets as they form during condensation, thus leading to a significant improvement in the heat transfer associated with the condensation process. High droplet mobility can be obtained acting on the surface chemistry, decreasing the surface energy, and on the surface structure, obtaining a micro- or nano- superficial roughness. The first part of this paper will present a literature review of the most relevant works about DWC on superhydrophobic nanotextured substrates, with particular attention on the fabrication processes. In the second part, experimental data about DWC on superhydrophobic nanotextured samples will be analyzed. Particular attention will be paid to the effect of vapour velocity on the heat transfer. Results clearly highlight the excellent potential of nanostructured surfaces for application in flow condensation applications. However, they highlight the need to perform flow condensation experiments at realistic high temperature and saturation conditions in order to evaluate the efficacy of superhydrophobic surfaces for practically relevant pure vapor condensation applications.

  12. Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser.

    PubMed

    Long, Jiangyou; Pan, Lin; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2016-02-01

    The Cassie-state stability plays a vital role in the applications of metallic superhydrophobic surfaces. Although a large number of papers have reported the superhydrophobic performance of various surface micro/nanostructures, the knowledge of which kind of micro/nanostructure contributes significantly to the Cassie-state stability especially under low temperature and pressure is still very limited. In this article, we fabricated six kinds of typical micro/nanostructures with different topography features on metal surfaces by a femtosecond laser, and these surfaces were modified by fluoroalkylsilane to generate superhydrophobicity. We then systematically studied the Cassie-state stability of these surfaces by means of condensation and evaporation experiments. The results show that some superhydrophobic surfaces, even with high contact angles and low sliding angles under normal conditions, are unstable under low temperature or external pressure. The Cassie state readily transits to a metastable state or even a Wenzel state under these conditions, which deteriorates their superhydrophobicity. Among the six micro/nanostructures, the densely distributed nanoscale structure is important for a stable Cassie state, and the closely packed micrometer-scale structure can further improve the stability. The dependence of the Cassie-state stability on the fabricated micro/nanostructures and the laser-processing parameters is also discussed. This article clarifies optimized micro/nanostructures for stable and thus more practical metallic superhydrophobic surfaces. PMID:26745154

  13. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    PubMed

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military. PMID:23857991

  14. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.

    PubMed

    lero?lu, Emre; Hsieh, Chia-Yun; Rahman, Md Mahamudur; Lau, Kenneth K S; McCarthy, Matthew

    2014-07-01

    While superhydrophobic nanostructured surfaces have been shown to promote condensation heat transfer, the successful implementation of these coatings relies on the development of scalable manufacturing strategies as well as continued research into the fundamental physical mechanisms of enhancement. This work demonstrates the fabrication and characterization of superhydrophobic coatings using a simple scalable nanofabrication technique based on self-assembly of the Tobacco mosaic virus (TMV) combined with initiated chemical vapor deposition. TMV biotemplating is compatible with a wide range of surface materials and applicable over large areas and complex geometries without the use of any power or heat. The virus-structured coatings fabricated here are macroscopically superhydrophobic (contact angle >170) and have been characterized using environmental electron scanning microscopy showing sustained and robust coalescence-induced ejection of condensate droplets. Additionally, full-field dynamic characterization of these surfaces during condensation in the presence of noncondensable gases is reported. This technique uses optical microscopy combined with image processing algorithms to track the wetting and growth dynamics of 100s to 1000s of microscale condensate droplets simultaneously. Using this approach, over 3 million independent measurements of droplet size have been used to characterize global heat transfer performance as a function of nucleation site density, coalescence length, and the apparent wetted surface area during dynamic loading. Additionally, the history and behavior of individual nucleation sites, including coalescence events, has been characterized. This work elucidates the nature of superhydrophobic condensation and its enhancement, including the role of nucleation site density during transient operation. PMID:24882117

  15. Nanostructured Superhydrophobic Coatings

    SciTech Connect

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  16. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance. PMID:25419845

  17. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    PubMed

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. PMID:21417352

  18. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  19. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.

    PubMed

    Ölçeroğlu, Emre; McCarthy, Matthew

    2016-03-01

    Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of <25 μm) is shown to effectively delay flooding and govern the global wetting behavior of larger droplets (diameters of >1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications. PMID:26855239

  20. Optically Transparent, Mechanically Durable, Nanostructured Superhydrophobic Surfaces Enabled by Spinodally Phase-Separated Glass Thin Films

    SciTech Connect

    Aytug, Tolga; Christen, David K; Hillesheim, Daniel A; Hunter, Scott Robert; Ivanov, Ilia N; Jellison Jr, Gerald Earle; Lupini, Andrew R; Pennycook, Stephen J; Trejo, Rosa M; Winters, Kyle O.; Haynes, James A; Simpson, John T

    2013-01-01

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  1. Nanostructured metal surfaces and their passivation for superhydrophobic and anti-icing applications

    NASA Astrophysics Data System (ADS)

    Safaee, Alireza

    Many systems and infrastructures developed by human beings frequently encounter deficiencies, stop functioning or even fail during severe weather conditions due to ice accumulation. One of the common methods to prevent snow and ice accumulation on exposed surfaces is the use of chemicals such as freezing point depressants. They should be applied during storms or just before ice accumulation which is practically difficult. Also these chemicals adversely affect the environment. New environment-friendly methods are necessary to be developed. An ideal solution can be covering the structures with a coating capable of inhibiting or reducing the bonding between snow or ice and solid surfaces. A solid surface with a water contact angle greater than 150 is called superhydrophobic. Desiring superhydrophobicity, a surface should satisfy two criteria, nano/micrometer scale roughness as well as low surface energy. Many applications in industry and in everyday-life can be benefited from this extreme water-repellence if one can develop a durable, environment-friendly superhydrophobic coating. In the present study, the hydrophobicity of the surfaces with submicron roughness prepared by spin-coating of metallic nanoparticle colloids on aluminum and copper substrates was studied. Three colloids of silver nanoparticles and two colloids of copper nanoparticles with different size distributions were synthesized by chemical reduction methods. Silver particles were found to be stable enough to make the model surfaces but copper particles were unstable and not suitable for this application. Regardless of nanoparticle type, hydrophobic surfaces could not be achieved by making rough surfaces by only one layer of coating. By adding a second layer of coating, all three types of silver nanoparticles resulted in coatings with high degree of superhydrophobicity on metallic substrates. Due to the similar shapes of nanoparticles, the difference in observed contact angles could be related to the particles sizes. The particles with the average size of 263 nm had the highest contact angles whereas the particles with average size of 195 nm or 360 nm showed lower values. The anti-icing behaviour of these superhydrophobic films was studied under atmospheric icing conditions. On aluminum, two layer coating of 263 nm particles could reduce the ice adhesion up to 8.1 times. This value was equal to 4 on copper substrates with similar coating. The copper based samples could keep their ice adhesion reduction even after five ice removal test.

  2. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface

    NASA Astrophysics Data System (ADS)

    Sengupta, Arundhati; Malik, Satya Narayan; Bahadur, D.

    2016-02-01

    Stable hydro/oleo-phobic and superhydrophobic nanopowders, useful for self-cleaning applications, are synthesized at room temperature by modifying Zr(OH)4·nH2O with a very low surface-energy molecule-1H,1H,2H,2H-perfluorododecyltrichlorosilane whose long chain {sbnd (CH2)2(CF2)9CF3 moiety (PFD)} serves as surface-protrusion. The PFD-content is varied over 3.6-18.7 wt% in optimizing a hydrophilic to hydro/oleo-phobic or even to superhydrophobic transformation. Two halos in the X-ray diffraction pattern of amorphous Zr(OH)4·nH2O are accompanied by a peak at 2θ = 18.0° which grows in intensity progressively as the PFD-content increases from 5.2 to 18.7 wt%. The peak corresponds to sbnd CF2sbnd CF2sbnd crystalline order (10-20 nm) at the PFD-functionalized surface. The microstructure shows Zr(OH)4·nH2O as a cloud-like phase, bonded to plate-like sheaths (PFD moiety). The Csbnd F stretching bands at 1150 and 1210 cm-1 grow in intensity relative to that of Osbnd H stretching at 3460 cm-1 in proportion to the PFD-content. An 18.7 wt% PFD-functionalized sample exhibits a high contact angle CA = 153° for water (contact angle hysteresis = 4° and roll-off angle <4°), together with CA = 132° for glycerol, CA = 130° for diethylene glycol, and CA = 113° for n-hexadecane, supporting good superhydrophobicity and oleophobicity. Surface-energy reduction due to PFD moiety together with an optimal spacing between the surface-protrusions explains the water/organic liquid repellency.

  3. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces

    NASA Astrophysics Data System (ADS)

    Xiu, Yonghao; Liu, Yan; Hess, Dennis W.; Wong, C. P.

    2010-04-01

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.

  4. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.

    PubMed

    Xiu, Yonghao; Liu, Yan; Hess, Dennis W; Wong, C P

    2010-04-16

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion. PMID:20332558

  5. Slip on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Rothstein, Jonathan P.

    2010-01-01

    This review discusses the use of the combination of surface roughness and hydrophobicity for engineering large slip at the fluid-solid interface. These superhydrophobic surfaces were initially inspired by the unique water-repellent properties of the lotus leaf and can be employed to produce drag reduction in both laminar and turbulent flows, enhance mixing in laminar flows, and amplify diffusion-osmotic flows. We review the current state of experiments, simulations, and theory of flow past superhydrophobic surfaces. In addition, the designs and limitations of these surfaces are discussed, with an eye toward implementing these surfaces in a wide range of applications.

  6. Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Boyd, Darryl A.; Frantz, Jesse A.; Bayya, Shyam S.; Busse, Lynda E.; Kim, Woohong; Aggarwal, Ishwar; Poutous, Menelaos; Sanghera, Jasbinder S.

    2016-04-01

    In order to mimic and enhance the properties of moth eye-like materials, nanopatterned fused silica was chemically modified to produce self-cleaning substrates that have anti-reflective and infrared transmissive properties. The characteristics of these substrates were evaluated before and after chemical modification. Furthermore, their properties were compared to fused silica that was devoid of surface features. The chemical modification imparted superhydrophobic character to the substrates, as demonstrated by the average water contact angles which exceeded 170°. Finally, optical analysis of the substrates revealed that the infrared transmission capabilities of the fused silica substrates (nanopatterned to have moth eye on one side) were superior to those of the regular fused silica substrates within the visible and near-infrared region of the light spectrum, with transmission values of 95% versus 92%, respectively. The superior transmission properties of the fused silica moth eye were virtually unchanged following chemical modification.

  7. Mechanically durable superhydrophobic surfaces.

    PubMed

    Verho, Tuukka; Bower, Chris; Andrew, Piers; Franssila, Sami; Ikkala, Olli; Ras, Robin H A

    2011-02-01

    Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future. PMID:21274919

  8. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.

    PubMed

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-05-21

    This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161), but also decreased the sliding angle significantly (to 3) and contact angle hysteresis (to ?2), demonstrating the robust non-wetting property. PMID:25855128

  9. Nanowetting of rough superhydrophobic surfaces

    SciTech Connect

    Zhang, H.; Lamb, R.N.; Cookson, D.J.

    2008-11-03

    Small angle x-ray scattering has been used to investigate the in situ immersive wetting of ultrarough surfaces which exhibit superhydrophobicity with extreme water contact angle ({theta}{sub A} = 169{sup o}). Reduced scattering contrast observed from rough surfaces when partially or totally wetted reveals significant physical differences between superhydrophobic surfaces not otherwise apparent from conventional contact angle measurements.

  10. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces. PMID:24575424

  11. Superhydrophobic hierarchical honeycomb surfaces.

    PubMed

    Brown, P S; Talbot, E L; Wood, T J; Bain, C D; Badyal, J P S

    2012-09-25

    Two-dimensional hexagonally ordered honeycomb surfaces have been created by solvent casting polybutadiene films under controlled humidity. Subsequent CF(4) plasmachemical fluorination introduces cross-linking and surface texturing, leading to hierarchical surfaces with roughness on both the 10 ?m (honeycomb) and micrometer (texturing) length scales. For microliter droplets, these display high water contact angle values (>170) in combination with low contact angle hysteresis (i.e., superhydrophobicity) while displaying bouncing of picoliter water droplets. In the case of picoliter droplets, it is found that surfaces which exhibit similar static contact angles can give rise to different droplet impact dynamics, governed by the underlying surface topography. These studies are of relevance to technological processes such as rapid cooling, delayed freezing, crop spraying, and inkjet printing. PMID:22966860

  12. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  13. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces

    NASA Astrophysics Data System (ADS)

    Xi, Jinming; Feng, Lin; Jiang, Lei

    2008-02-01

    A simple one-step electrodeposition process is developed for the fabrication of superhydrophobic surfaces on a series of substrates such as copper, titanium, iron, zinc, aluminum, and stannum. The hierarchical micro- and nanostructures endow these surfaces with excellent super-hydrophobicity and the resulting surfaces show superhydrophobicity even for some corrosive liquids including salt solutions and acidic and basic solutions at all pH values. Importantly, this approach can be easily applied to other systems such as the fabrication of superamphiphobic surfaces as long as the substrates are electrically conductive.

  14. Superhydrophobic dual micro- and nanostructures fabricated by direct laser interference lithography

    NASA Astrophysics Data System (ADS)

    Li, Wenjun; Wang, Zuobin; Wang, Dapeng; Zhang, Ziang; Zhao, Le; Li, Dayou; Qiu, Renxi; Maple, Carsten

    2014-03-01

    A method for the fabrication of highly ordered superhydrophobic dual micro- and nanostructures on silicon by direct laser interference lithography (LIL) is presented. The method offers its innovation that the superhydrophobic dual micro- and nanostructures can be fabricated directly by controlling the process of four-beam laser interference and the use of hydrofluoric acid (HF) to wipe off the silica generated during the process. Different laser fluences, exposure durations, and cleanout times have been investigated to obtain the optimum value of the contact angle (CA). The superhydrophobic surface with the CA of 153.2 deg was achieved after exposure of 60 s and immersion in HF with a concentration of 5% for 3 min. Compared with other approaches, it is a facile and efficient method with its significant feature for the macroscale fabrication of highly ordered superhydrophobic dual micro- and nanostructures on silicon.

  15. Thermocapillary flow on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Steffes, Clarissa; Hardt, Steffen

    2010-09-01

    A liquid in Cassie-Baxter state above a structured superhydrophobic surface is ideally suited for surface driven transport due to its large free surface fraction in close contact to a solid. We investigate thermal Marangoni flow over a superhydrophobic array of fins oriented parallel or perpendicular to an applied temperature gradient. In the Stokes limit we derive an analytical expression for the bulk flow velocity above the surface and compare it with numerical solutions of the Navier-Stokes equation. Even for moderate temperature gradients comparatively large flow velocities are induced, suggesting to utilize this principle for microfluidic pumping.

  16. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.

    PubMed

    Yamamoto, Minehide; Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2015-07-01

    Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations among surface fractal dimension, surface morphology, and dynamic wetting behaviors. The surface of a lotus leaf, which shows the superhydrophobic lotus effect, was dipped in ethanol to remove the plant waxes. As a result, the lotus effect is lost. The contact angle of a water drop decreased dramatically from 161° of the original surface to 122°. The water droplet was pinned on the surface. From the fractal analysis, the fractal region of the original surface was divided into two regions: a smaller-sized roughness region of 0.3-1.7 μm with D of 1.48 and a region of 1.7-19 μm with D of 1.36. By dipping the leaf in ethanol, the former fractal region, characterized by wax tubes, was lost, and only the latter large fractal region remained. The lotus effect is attributed to a surface structure that is covered with needle-shaped wax tubes, and the remaining surface allows invasion of the water droplet and enlarges the interaction with water. PMID:26075949

  17. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    PubMed

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160) after storage in air for 80 days, exposure in 250 C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144 whether in acidic or alkali medium, and are more than 150 after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys. PMID:25545550

  18. Anti-icing performance of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Farhadi, S.; Farzaneh, M.; Kulinich, S. A.

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size 80 ?m) in a wind tunnel at subzero temperature (-10 C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  19. A facile approach to fabricate superhydrophobic and corrosion resistant surface

    NASA Astrophysics Data System (ADS)

    Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

    2015-01-01

    In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil-water separation.

  20. Wettability Switching Techniques on Superhydrophobic Surfaces

    PubMed Central

    2007-01-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  1. Dynamic contact angle measurements on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, ?D3 ? Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at ?A = 160?, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  2. Superhydrophobic surfaces engineered using diatomaceous earth.

    PubMed

    Oliveira, Nuno M; Reis, Rui L; Mano, Joo F

    2013-05-22

    We present a simple method to prepare superhydrophobic surfaces using siliceous exoskeleton of diatoms, a widespread group of algae. This makes diatomaceous earth an accessible and cheap natural material. A micro/nanoscale hierarchical topography was achieved by coating a glass surface with diatomaceous earth, giving rise to a superhydrophilic surface. Superhydrophobic surfaces were obtained by a further surface chemical modification through fluorosilanization. The wettability of the superhydrophobic surface can be modified by Argon plasma treatment in a controlled way by exposure time variation. The chemical surface modification by fluorosilanization and posterior fluorinated SH surface modification by plasma treatment was analyzed by XPS. Using appropriated hollowed masks only specific areas on the surface were exposed to plasma permitting to pattern hydrophilic features with different geometries on the superhydrophobic surface. We showed that the present strategy can be also applied in other substrates, including thermoplastics, enlarging the potential applicability of the resulting surfaces. PMID:23647196

  3. Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces?

    PubMed

    Groten, Jonas; Rhe, Jrgen

    2013-03-19

    Materials with superhydrophobic properties are usually generated by covering the surfaces with hydrophobic nanoscale rough features. A major problem, however, for any practical application of such strongly water-repellent surfaces is the mechanical fragility of the nanostructures. Even moderate forces caused by touching or rubbing the surfaces are frequently strong enough to destroy the nanostructures and lead to the loss of the superhydrophobic properties. In this article, we study the mechanical stability of superhydrophobic surfaces with three different topographies: nano- and microscale features and surfaces carrying a combination of both. The surfaces are generated by silicon etching and subsequent coating with a monolayer of a fluoropolymer (PFA). We perform controlled wear tests on the different surfaces and discuss the impact of wear on the wetting properties of the different surfaces. PMID:23363078

  4. Superhydrophobic porous surfaces: dissolved oxygen sensing.

    PubMed

    Gao, Yu; Chen, Tao; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2015-02-18

    Porous polymer films are necessary for dissolved gas sensor applications that combine high sensitivity with selectivity. This report describes a greatly enhanced dissolved oxygen sensor system consisting of amphiphilic acrylamide-based polymers: poly(N-(1H, 1H-pentadecafluorooctyl)-methacrylamide) (pC7F15MAA) and poly(N-dodecylacrylamide-co-5- [4-(2-methacryloyloxyethoxy-carbonyl)phenyl]-10,15,20-triphenylporphinato platinum(II)) (p(DDA/PtTPP)). The nanoparticle formation capability ensures both superhydrophobicity with a water contact angle greater than 160 and gas permeability so that molecular oxygen enters the film from water. The film was prepared by casting a mixed solution of pC7F15MAA and p(DDA/PtTPP) with AK-225 and acetic acid onto a solid substrate. The film has a porous structure comprising nanoparticle assemblies with diameters of several hundred nanometers. The film shows exceptional performance as the oxygen sensitivity reaches 126: the intensity ratio at two oxygen concentrations (I0/I40) respectively corresponding to dissolved oxygen concentration 0 and 40 (mg L(-1)). Understanding and controlling porous nanostructures are expected to provide opportunities for making selective penetration/separation of molecules occurring at the superhydrophobic surface. PMID:25659178

  5. Pancake bouncing on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yahua; Moevius, Lisa; Xu, Xinpeng; Qian, Tiezheng; Yeomans, Julia M.; Wang, Zuankai

    2014-07-01

    Engineering surfaces that promote rapid drop detachment is of importance to a wide range of applications including anti-icing, dropwise condensation and self-cleaning. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nanotextures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows a fourfold reduction in contact time compared with conventional complete rebound . We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures that behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

  6. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation

    PubMed Central

    Wang, Jianhua; Wong, Jessica X. H.; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  7. Mechanically durable superhydrophobic surfaces prepared by abrading

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Yu, Shan; Ou, Junfei; Xue, Mingshan; Li, Wen

    2013-09-01

    Superhydrophobic surfaces with both excellent mechanical durability and easy reparability based on polytetrafluoroethylene/room temperature vulcanized silicone rubber (PTFE/RTVSR) composites were prepared by a simple abrading method. The surface energy of RTVSR matrix decreased with the increasing volume fraction of PTFE particles, and the surface rough microstructures of the composites were created by abrading. A water droplet on the surface exhibited a contact angle of about 165 3.4 and a sliding angle of about 7.3 1.9. Such superhydrophobic surfaces showed strong mechanical durability against sandpaper because the surfaces were prepared in the way of mechanical abrasion, and the fresh exposed surfaces were still superhydrophobic. In addition, the micro-structures on the elastic surface of the composite will be compressed by elastic deformation to avoid being broken during the friction cycles when cotton fabric was used as an abrasion surface. The deformation will rebound to renew the original surface structures when the load is withdrawn. Therefore, the elastic PTFE/RTVSR composites are of advantage to construct superhydrophobic surfaces with better abrasion resistance. More importantly, such superhydrophobicity can be repaired by a simple abrading regeneration process within a few minutes when the surface is damaged or polluted by organic contaminant.

  8. Functional superhydrophobic surfaces made of Janus micropillars

    PubMed Central

    Mammen, Lena; Bley, Karina; Papadopoulos, Periklis; Schellenberger, Frank; Encinas, Noem; Butt, Hans-Jrgen; Weiss, Clemens K.

    2015-01-01

    We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging. PMID:25415839

  9. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1 and a low contact angle hysteresis of 2.5. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  10. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.

    PubMed

    Latthe, Sanjay S; Terashima, Chiaki; Nakata, Kazuya; Fujishima, Akira

    2014-01-01

    The lotus plant is recognized as a 'King plant' among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous 'Lotus Effect', along with extremely high water contact angle (>150°) and low sliding angle (<10°), have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications. Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature. This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure. This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces. PMID:24714190

  11. Fabrication of Superhydrophobic Surface on Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Xu, W. J.; Dou, Q. L.; Wang, X. Y.; Sun, J.; Wang, L. J.

    2011-01-01

    The authors develop a simple and economic method to fabricate the superhydrophobic surface by means of electrochemical machining. The fabrication mechanism is based on the fact that the grain boundaries/dislocations are micro/nano-scale and more likely to be anodic dissolved than that of grain self, so the multi-scale micro/nano-structures surface can be generated by an applied electric field and the chemical solution. The relationship of processing quality, efficiency and conditions is studied in experiments in this paper. The results show that electrochemical processing can be used to fabricate dual-scale micro/nano-structures on aluminum surfaces, and further applying to generate the large size of superhydrophobic surface. The method is easier to control the reaction process than chemical etching meanwhile more economical than other techniques. After modified with low surface energy materials, the surface exhibits superhydrophobic property with water contact angle of 160 and tilt angle less than 5.

  12. Superhydrophobic silica surfaces: fabrication and stability

    NASA Astrophysics Data System (ADS)

    Dubov, A. L.; Perez-Toralla, K.; Letailleur, A.; Barthel, E.; Teisseire, J.

    2013-12-01

    We report a simple method to make hybrid or pure silica micropatterns at the surface of a substrate based on the combination of sol-gel process and nano-imprint lithography. The silica patterns can be easily designed during the photolithographic step and functionalized with a vapor phase deposition of fluorosilane molecules to obtain superhydrophobic surfaces. Benefiting from the properties of silica, our superhydrophobic patterns can withstand elevated temperatures and show interesting optical properties. These surfaces can be used for thermal transfer applications or microfluidic devices for example to limit noise in fluorescence measurements for biological applications. In connection to the fabrication of superhydrophobic surfaces, the organization of patterns (period of grating) and height of patterns were tested, and the stability of the Cassie-Baxter state studied. The transition can be described on a wide range of tested parameters by the sliding threshold where the control of side wall angle of patterns and chemistry of surface is essential.

  13. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles.

    PubMed

    Ramos Chagas, Gabriela; Darmanin, Thierry; Guittard, Frdric

    2015-01-01

    Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. PMID:26665079

  14. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

    PubMed Central

    Ramos Chagas, Gabriela; Darmanin, Thierry

    2015-01-01

    Summary Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. PMID:26665079

  15. Ice adhesion on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kulinich, S. A.; Farzaneh, M.

    2009-06-01

    In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.

  16. Superhydrophobic nanocomposite surface topography and ice adhesion.

    PubMed

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum. PMID:24914617

  17. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.

    PubMed

    Rykaczewski, Konrad

    2012-05-22

    By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 ?m dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150 contact angle in the CCA mode rather than in the CB mode severely underpredicts both the drop formation time and the average heat transfer rate through the drop. PMID:22548441

  18. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Hu, Anmin; Hang, Tao; Li, Ming

    2015-01-01

    We report a novel shell-like cobalt nanostructure prepared by galvanostatic electrochemical deposition which exhibit prominent superhydrophobic property. By adjusting the electroplating conditions, cobalt nanocrystals with different morphologies like nanocones and fluffy shells can be obtained while the hydrophobic and adhesive behavior of each after surface modification is observed. After a brief discussion on the growth mechanism of those shapes, we explained the lotus effect presented on such structures which would probably provide a strong evidence to the existing models of superhydrophobic surfaces. Based on the above, we propose a novel approach to modulate both adhesiveness and wettability of Co film by tuning of deposition parameters along with a simple heat treatment and dipping. With cobalt's anisotropic magnetic properties, such facile surface coating would be used in a wide range of applications such as commercial fabrication of tunable anti-corrosive magnetic devices.

  19. Reversible ultraviolet light-manipulated superhydrophobic-to-superhydrophilic transition on a tubular SiC nanostructure film

    SciTech Connect

    Cui, H.; Yang, G. Z.; Sun, Y.; Wang, C. X.

    2010-11-01

    We demonstrate the ultraviolet (UV) light-induced, reversible wettability behavior for tubular SiC nanostructure film. The as-synthesized tubular SiC nanostructure film shows the superhydrophilic nature with the water contact angle 152.4 deg. and low sliding angle. Moreover, the surface transition between superhydrophobicity and superhydrophilicity can be easily achieved by the alternation of UV irradiation and closed thermal heating. A possible mechanism is also proposed to explain the reversible wettability behavior.

  20. Advanced understanding of stickiness on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Bao-Ping

    2013-11-01

    This study explores how contact angle hysteresis and titling angle relate with stickiness on superhydrophobic surfaces. The result indicates that contact angle hysteresis could not be mentioned as a proper factor to evaluate the surface stickiness. By analyzing the system pinning force of droplet placed on a titled surface, we concluded that both solid fraction and surface geometric factor are the critical factors determining the surface stickiness.

  1. Advanced understanding of stickiness on superhydrophobic surfaces.

    PubMed

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Bao-ping

    2013-01-01

    This study explores how contact angle hysteresis and titling angle relate with stickiness on superhydrophobic surfaces. The result indicates that contact angle hysteresis could not be mentioned as a proper factor to evaluate the surface stickiness. By analyzing the system pinning force of droplet placed on a titled surface, we concluded that both solid fraction and surface geometric factor are the critical factors determining the surface stickiness. PMID:24253402

  2. Advanced understanding of stickiness on superhydrophobic surfaces

    PubMed Central

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Bao-ping

    2013-01-01

    This study explores how contact angle hysteresis and titling angle relate with stickiness on superhydrophobic surfaces. The result indicates that contact angle hysteresis could not be mentioned as a proper factor to evaluate the surface stickiness. By analyzing the system pinning force of droplet placed on a titled surface, we concluded that both solid fraction and surface geometric factor are the critical factors determining the surface stickiness. PMID:24253402

  3. Effective slip on textured superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Gogte, Salil; Vorobieff, Peter; Truesdell, Richard; Mammoli, Andrea; van Swol, Frank; Shah, Pratik; Brinker, C. Jeffrey

    2005-05-01

    We study fluid flow in the vicinity of textured and superhydrophobically coated surfaces with characteristic texture sizes on the order of 10?m. Both for droplets moving down an inclined surface and for an external flow near the surface (hydrofoil), there is evidence of appreciable drag reduction in the presence of surface texture combined with superhydrophobic coating. On textured inclined surfaces, the drops roll faster than on a coated untextured surface at the same angle. The highest drop velocities are achieved on surfaces with irregular textures with characteristic feature size 8?m. Application of the same texture and coating to the surface of a hydrofoil in a water tunnel results in drag reduction on the order of 10% or higher. This behavior is explained by the reduction of the contact area between the surface and the fluid, which can be interpreted in terms of changing the macroscopic boundary condition to allow nonzero slip velocity.

  4. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chung, Jihoon; Lee, Sukyung; Yong, Hyungseok; Lee, Sangmin; Park, Yong Tae

    2016-02-01

    Super-hydrophobic surfaces having contact angles > 150° for water are of great interest due to their potential use in a wide variety of applications. Although many reports on the wettability of different surfaces have been published, few or no studies have been done on the formation of a super-hydrophobic surface on a ceramic substrate. In this paper, we demonstrate the creation of a super-hydrophobic surface on a ceramic substrate by using zinc oxide nanowires (ZnO NWs) prepared by using a direct hydrothermal method. A self-assembled monolayer of heptadecafluoro- 1,1,2,2-tetrahydrodecyl trichlorosilane (HDFS) lowered the surface energy between the water droplet and the nano-textured surface. The length of the ZnO NWs was found to play a key role in the formation of a nanostructure that increased the surface roughness of the substrate. Furthermore, the length of the ZnO NWs could be controlled by changing the growth time, and HDFS-coated ZnO NWs were found to be super-hydrophobic after a growth time of 3 h. We have demonstrated the potential application of this nanostructure for ceramic tableware by introducing a ZnO-NW-textured surface on a ceramic cup, which resulted in water and alcohol repellency. This method is a simple and practical way to achieve a super-hydrophobic surface; hence, our method is expected to be widely used in various ceramic applications.

  5. Fabrication and characterization of superhydrophobic surfaces on aluminum alloy substrates

    NASA Astrophysics Data System (ADS)

    Lv, F. Y.; Zhang, P.

    2014-12-01

    Superhydrophobic surfaces have potential anti-icing applications in industries and daily life. In the present study, we combine the methods of chemical etching and surface modification with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) which has very low surface energy to simplify the fabrication procedures for superhydrophobic surfaces on aluminum alloy substrates. The results show that the contact angle (CA), rolling angle (RA) and contact angle hysteresis (CAH) of superhydrophobic surfaces etched with 8.0 wt% HCl aqueous solutions are 162.5, 1.9 and 1.1, respectively; the apparent surface free energies (ASFEs) of superhydrophobic surfaces increase with the decrease in surface temperature; the freezing time of water droplets on superhydrophobic surfaces is retarded by 1568s, and the temperature drops to as low as -11.9 ?C. The results indicate that superhydrophobic surfaces exhibit excellent anti-icing properties.

  6. Composite, nanostructured, super-hydrophobic material

    SciTech Connect

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  7. Facile fabrication of nano-structured silica hybrid film with superhydrophobicity by one-step VAFS approach

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Yue, Renliang; Liu, Gang; Yang, Jie; Ni, Yong; Wu, Xiaofeng; Chen, Yunfa

    2013-01-01

    Here we report a novel one-step vapor-fed aerosol flame synthesis (VAFS) method to attain silica hybrid film with superhydrophobicity on normal glass and other engineering material substrates using hexamethyldisiloxane (HMDSO) as precursor. The deposited nano-structured silica films represent excellent superhydrophobicity with contact angle larger than 150° and sliding angle below 5°, without any surface modification or other post treatments. SEM photographs proved that flame-made SiO2 nanoparticles formed dual-scale surface roughness on the substrates. It was confirmed by FTIR and XPS that the in situ formed organic fragments on the particle surface as species like (CH3)xSiO2-x/2 (x = 1, 2, 3) which progressively lowered the surface energy of fabricated films. Thus, these combined dual-scale roughness and lowered surface energy cooperatively produced superhydrophobic films. IR camera had been used to monitor the real-time flame temperature. It is found that the inert dilution gas inflow played a critical role in attaining superhydrophobicity due to its cooling and anti-oxidation effect. This method is facile and scalable for diverse substrates, without any requirement of complex equipments and multiple processing steps. It may contribute to the industrial fabrication of superhydrophobic films.

  8. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Kuang, Ping; Hsieh, Mei-Li; Lin, Shawn-Yu

    2015-06-01

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ˜95% for λ = 400-620 nm over a wide angular acceptance of θ = 0°-60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ˜ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  9. Drag Reduction On Multiscale Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Jenner, Elliot; Barbier, Charlotte; D'Urso, Brian

    2013-11-01

    Fluid drag reduction is of great interest in a variety of fields, including hull engineering, microfluidics, and drug delivery. We fabricated samples with multi-scale superhydrophobic surfaces, which consist of hexagonally self-ordered microscopic spikes grown via anodization on macroscopic grooves cut in aluminum. The hydrodynamic drag properties were studied with a cone-and-plate rheometer, showing significant drag reduction near 15% in turbulent flow and near 30% in laminar flow. In addition to these experiments, numerical simulations were performed in order to estimate the slip length at high speeds. Furthermore, we will report on the progress of experiments with a new type of surface combining superhydrophobic surfaces like those discussed above with Slippery Liquid Infused Porous Surfaces (SLIPS), which utilize an oil layer to create a hydrophobic self-repairing surface. These ``Super-SLIPS'' may combine the best properties of both superhydrophobic surfaces and SLIPS, by combining a drag reducing air-layer and an oil layer which may improve durability and biofouling resistance. This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  10. Drop impact on inclined superhydrophobic surfaces.

    PubMed

    LeClear, Sani; LeClear, Johnathon; Abhijeet; Park, Kyoo-Chul; Choi, Wonjae

    2016-01-01

    This paper discusses the dynamic behavior of water drops impacting on inclined superhydrophobic surfaces. For a normal impact on a smooth hydrophobic surface, the spreading (or expansion) and retraction dynamics of an impacting drop varies from complete rebound to splashing depending on its Weber number, (We(d)), calculated using the impact speed and diameter d of the drop. For a slanted impact, on the other hand, the impact dynamics depends on two distinct Weber numbers, based on the velocity components normal, (We(nd)), and tangential, (We(td)), to the surface. Impact on superhydrophobic surfaces is even more complicated as the surfaces are covered with micro- to nano-scale texture. Therefore, we develop an expression for an additional set of two Weber numbers, (We(na), We(ta)), which are counterparts to the first set but use the gap distance a between asperities on the textured surface as the characteristic length. We correlate the derived Weber numbers with the impact dynamics on tilted surfaces covered with three different types of texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that the first two Weber numbers, (We(nd), We(td)), affect the impact dynamics of a drop such as the degree of drop deformation as long as the superhydrophobicity remains intact. On the other hand, the Weber number We(na) determines the transition from the superhydrophobic Cassie-Baxter regime to the fully-wetted Wenzel regime. Accuracy of our model becomes lower at a high tilting angle (75), due to the change in the transition mechanism. PMID:26397917

  11. Dynamic air layer on textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T

    2013-09-01

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. PMID:23919719

  12. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    PubMed

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 1 and a sliding angle of 3 0.5 on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

  13. Formation of superhydrophobic/superhydrophilic patterns by combination of nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide for biological droplet generation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Shimizu, Kazunori; Kaizuma, Yoshihiro; Konishi, Satoshi

    2011-03-01

    In this letter, we report a technology for fabricating superhydrophobic/superhydrophilic patterns using a combination of a nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide. In our previous study, we used a combination of hydrophobic and superhydrophilic materials. However, it was difficult to split low-surface-tension liquids such as biological liquids into droplets solely using hydrophobic/hydrophilic patterns. In this study, the contact angle of the hydrophobic region was enhanced from 109.3 to 155.6 by performing nanostructure imprinting on a damage-reduced perfluoropolymer. The developed superhydrophobic/superhydrophilic patterns allowed the splitting of even those media that contained fetal bovine serum into droplets of a desired shape.

  14. Laser-induced nanoscale superhydrophobic structures on metal surfaces.

    PubMed

    Jagdheesh, R; Pathiraj, B; Karatay, E; Rmer, G R B E; Huis in't Veld, A J

    2011-07-01

    The combination of a dual-scale (nano and micro) roughness with an inherent low-surface energy coating material is an essential factor for the development of superhydrophobic surfaces. Ultrashort pulse laser (USPL) machining/structuring is a promising technique for obtaining the dual-scale roughness. Sheets of stainless steel (AISI 304 L SS) and Ti-6Al-4V alloys were laser-machined with ultraviolet laser pulses of 6.7 ps, with different numbers of pulses per irradiated area. The surface energy of the laser-machined samples was reduced via application of a layer of perfluorinated octyltrichlorosilane (FOTS). The influence of the number of pulses per irradiated area on the geometry of the nanostructure and the wetting properties of the laser-machined structures has been studied. The results show that with an increasing number of pulses per irradiated area, the nanoscale structures tend to become predominantly microscale. The top surface of the microscale structures is seen covered with nanoscale protrusions that are most pronounced in Ti-6Al-4V. The laser-machined Ti-6Al-4V surface attained superhydrophobicity, and the improvement in the contact angle was >27% when compared to that of a nontextured surface. PMID:21627133

  15. Effect of superhydrophobic surface morphology on evaporative deposition patterns

    NASA Astrophysics Data System (ADS)

    Dicuangco, Mercy; Dash, Susmita; Weibel, Justin A.; Garimella, Suresh V.

    2014-05-01

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation are vital in printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. This Letter presents surface wettability-based localization of evaporation-driven particulate deposition and the effect of superhydrophobic surface morphology on the distribution of deposits. Sessile water droplets containing suspended latex particles are evaporated on non-wetting textured surfaces with varying microstructure geometry at ambient conditions. The droplets are visualized throughout the evaporation process to track the temporal evolution of contact radius and apparent contact angle. The resulting particle deposits on the substrates are quantitatively characterized. The experimental results show that superhydrophobic surfaces suppress contact-line deposition during droplet evaporation, thereby providing an effective means of localizing the deposition of suspended particles. A correlation between deposit size and surface morphology, explained in terms of the interface pressure balance at the transition between wetting states, reveals an optimum surface morphology for minimizing the deposit coverage area.

  16. Hybrid surface design for robust superhydrophobicity.

    PubMed

    Dash, Susmita; Alt, Marie T; Garimella, Suresh V

    2012-06-26

    Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces. PMID:22630787

  17. Superhydrophobic nature of nanostructures on an indigenous Australian eucalyptus plant and its potential application

    PubMed Central

    Poinern, Grrard Eddy Jai; Le, Xuan Thi; Fawcett, Derek

    2011-01-01

    In this preliminary study, the morphology and nanostructured features formed by the epicuticular waxes of the mottlecah (Eucalyptus macrocarpa) leaf were investigated and quantified. The surface features formed by the waxes give the leaf remarkable wetting and self-cleaning properties that enhance the plants survival in an arid climate. This paper also provides experimental evidence of the self-assembly properties of the epicuticular waxes. Analysis of the water contact angle measurements gave a mean static contact angle of 162.00 6.10 degrees, which clearly indicated that the mottlecahs leaf surface was superhydrophobic. Detailed field emission scanning electron microscopy examination revealed that the surface was covered by bumps approximately 20 ?m in diameter and regularly spaced at a distance of around 26 ?m. The bumps are capped by nanotubules/pillars with an average diameter of 280 nm at the tips. Self-cleaning experiments indicated that the mottlecahs leaf could be effectively cleaned by a fine spray of water droplets that rolled over the surface picking up contaminants. Field emission scanning electron microscopy investigation of extracted epicuticular waxes revealed that the waxes were capable of self-reassembly and formed features similar to those of the original leaf surface. Furthermore, also reported is a simple technique for surface treating one side of a planar surface to produce a superhydrophobic surface that can be used as a planar floatation platform for microdevices. PMID:24198490

  18. Effect of electro-osmotic flow on energy conversion on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seshadri, Gowrishankar; Baier, Tobias

    2013-04-01

    It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so far.

  19. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  20. Drag reduction using superhydrophobic sanded Teflon surfaces

    NASA Astrophysics Data System (ADS)

    Song, Dong; Daniello, Robert J.; Rothstein, Jonathan P.

    2014-08-01

    In this paper, a series of experiments are presented which demonstrate drag reduction for the laminar flow of water through microchannels using superhydrophobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated with a simple, inexpensive technique of sanding polytetrafluoroethylene (PTFE) with sandpaper having grit sizes between 120- and 600-grit. A microfluidic device was used to measure the pressure drop as a function of the flow rate to determine the drag reduction and slip length of each surface. A maximum pressure drop reduction of 27 % and a maximum apparent slip length of b = 20 ?m were obtained for the superhydrophobic surfaces created by sanding PTFE with a 240-grit sandpaper. The pressure drop reduction and slip length were found to increase with increasing mean particle size of the sandpaper up to 240-grit. Beyond that grit size, increasing the pitch of the surface roughness was found to cause the interface to transition from the Cassie-Baxter state to the Wenzel state. This transition was observed both as an increase in the contact angle hysteresis and simultaneously as a reduction in the pressure drop reduction. For these randomly rough surfaces, a correlation between the slip length and the contact angle hysteresis was found. The surfaces with the smallest contact angle hysteresis were found to also have the largest slip length. Finally, a number of sanding protocols were tested by sanding preferentially along the flow direction, across the flow direction and with a random circular pattern. In all cases, sanding in the flow direction was found to produce the largest pressure drop reduction.

  1. Superhydrophobics

    SciTech Connect

    Schaeffer, Daniel; Winter, Kyle

    2013-05-02

    A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

  2. Superhydrophobics

    ScienceCinema

    Schaeffer, Daniel; Winter, Kyle

    2014-05-23

    A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

  3. Are superhydrophobic surfaces best for icephobicity?

    PubMed

    Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos

    2011-03-15

    Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness. PMID:21319778

  4. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.

    PubMed

    Toma, Mana; Loget, Gabriel; Corn, Robert M

    2014-07-23

    Tunable hydrophobic/hydrophilic flexible Teflon nanocone array surfaces were fabricated over large areas (cm(2)) by a simple two-step method involving the oxygen plasma etching of a colloidal monolayer of polystyrene beads on a Teflon film. The wettability of the nanocone array surfaces was controlled by the nanocone array dimensions and various additional surface modifications. The resultant Teflon nanocone array surfaces were hydrophobic and adhesive (a "gecko" type of surface on which a water droplet has a high contact angle but stays in place) with a contact angle that correlated with the aspect ratio/sharpness of the nanocones. The surfaces switched to a superhydrophobic or "lotus" type of surface when hierarchical nanostructures were created on Teflon nanocones by modifying them with a gold nanoparticle (AuNPs) film. The nanocone array surfaces could be made superhydrophobic with a maximum contact angle of 160 by the further modification of the AuNPs with an octadecanethiol (C18SH) monolayer. Additionally, these nanocone array surfaces became hydrophilic when the nanocone surfaces were sequentially modified with AuNPs and hydrophilic polydopamine (PDA) layers. The nanocone array surfaces were tested for two potential applications: self-cleaning superhydrophobic surfaces and for the passive dispensing of aqueous droplets onto hybrid superhydrophobic/hydrophilic microarrays. PMID:24654844

  5. Superhydrophobic surfaces with excellent mechanical durability and easy repairability

    NASA Astrophysics Data System (ADS)

    Wang, F. J.; Lei, S.; Ou, J. F.; Xue, M. S.; Li, W.

    2013-07-01

    Superhydrophobic surfaces with both excellent mechanical durability and easy repairability based on polytetrafluoroethylene/polyvinylidene fluoride (PTFE/PVDF) composites were prepared by a facile method. The surface energy of PVDF matrix was lowered by the incorporation of PTFE particles, and the rough micro textures on the surfaces of the composites were created by abrading. A water droplet on the surface exhibited a contact angle of about 163.5, and a sliding angle lower than 5. Such superhydrophobic surfaces showed strong mechanical durability because the surfaces were prepared in the way of mechanical abrasion. The scratch tests indicated that the surface micro textures were retained after the abrasion cycles, and the fresh exposed surfaces were still superhydrophobic. More importantly, such superhydrophobicity can be repaired by a simple abrading regeneration process within a few minutes when the surface is polluted by dust or organic contaminant.

  6. Three-tier rough superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s-1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s-1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  7. Stable superhydrophobic surfaces over a wide pH range

    NASA Astrophysics Data System (ADS)

    Guo, Li; Yuan, Wenfang; Li, Junping; Zhang, Zhijie; Xie, Zemin

    2008-01-01

    A stable superhydrophobic surface was fabricated by solidifying poly(epoxy-terminated polydimethylsiloxane- co-bisphenol A) [P(ETPDMS- co-BPA)] copolymer on a rough substrate. The low surface energy of the copolymer and the geometric structure at micrometer scale of the surface contribute to the superhydrophobic property. The as-prepared surface shows stable superhydrophobicity over a wide pH range (1-14) and the wettability is excellent stable to heating, water, corrosive solution and organic solvent treatments. The procedure is simple and time-saving as well as utilizing non-fluorine-containing compounds.

  8. Preparation of polymeric superhydrophobic surfaces and analysis of their wettability

    NASA Astrophysics Data System (ADS)

    Zhuang, Jian; Huang, Manling; Zhang, Yajun; Wu, Daming; Kuang, Tairong; Xu, Hong; Zhang, Xiaoxu

    2015-10-01

    In this paper, we presented three simple, facile and low-cost manufacturing methodstemplate method, nanoparticle filling method and extrusion stamping forming methodto fabricate the polymeric superhydrophobic surfaces. The stainless steel wire mesh as the template and glass beads was investigated in this study for the first time and low-cost hollow glass beads were rarely used as particles for fabricating the superhydrophobic surface. The water contact angle measurement of polymeric surfaces was used to investigate the effect of mesh count, glass beads and PTFE on fabricating polymeric superhydrophobic surface. It was found that the mesh count significantly affected the hydrophobicity of polymer surface in template method. The addition of glass beads improved the hydrophobicity by nanoparticle filling method. The addition of PTFE was of importance to fabricate the superhydrophobic surface by extrusion stamping forming method. The surface microstructure was also observed by scanning electron microscope.

  9. Fabrication of superhydrophobic copper surface with excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Zhao, Libin; Qiang, Xiaohu; Liu, Yanhua; Sun, Zhiqiang; Wang, Bei

    2015-04-01

    This article presents an effective and facile method for preparing the superhydrophobic copper surface with excellent corrosion resistance. The superhydrophobic copper surfaces were fabricated by oxidizing, heat-treating, and alkyl chains' grafting. The resulting copper plates take on the binary structure which is composed of a great deal of nanosheets and needle-like/rod-like fibers. Just grounded on both the micro- and nanoscale hierarchical surface and the grafted long alkyl chains, the resulting copper plates are endued with the excellent water repellence, while the water contact angle and sliding angle can reach 157.3 and 5, respectively. As a result, the superhydrophobic copper plates get the outstanding corrosion resistance.

  10. Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Feng; Hung, Shih-Wei; Kuo, Shiao-Wei; Chang, Chi-Jung

    2014-11-01

    Surfaces exhibiting superhydrophobicity are attracting commercial and academic attention because of their potential applications in, for example, self-cleaning utensils, microfluidic systems, and microelectronic devices. In this study, we prepared a fluorinated superhydrophobic surface displaying nanoscale roughness, a superhydrophobic surface possessing a micro- and nanoscale binary structure, and a fluorinated superhydrophobic surface possessing such a binary structure. We investigated the effects of the (i) hierarchy of the surface topography and (ii) the surface chemical composition of the superhydrophobic carbon nanotube/polybenzoxazine coatings on their ability to retain superhydrophobicity upon contamination with particles and organic matter, an important characteristic for maintaining non-wetting properties under outdoor conditions. We have found that the topographical microstructure and the surface chemical composition are both important factors for preservation of the non-wetting properties of such superhydrophobic surfaces upon contamination with organic matter.

  11. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  12. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.

    PubMed

    Schutzius, Thomas M; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces. PMID:26536959

  13. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet–surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  14. A novel fabrication of superhydrophobic surfaces for universal applicability

    NASA Astrophysics Data System (ADS)

    Chen, Su-Wen; Guo, Bo-Long; Wu, Wang-Suo

    2011-12-01

    The present work reports a novel and facile approach to fabricate stable superhydrophobic surfaces for universal applicability in practice. Poly(furfuryl alcohol)/copper composite coatings were prepared on substrates via a brush-painting method; after being immersed in a stearic acid solution, the superhydrophobic surfaces were obtained due to the formation of copper stearate on the substrates. These products were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray powder diffraction and the X-ray photoelectron spectrum. Results demonstrate that the superhydrophobic surfaces formed originally on copper substrates can also be generated on other substrates without the copper element. Furthermore, this work will provide a simple and universal method to create large-scale superhydrophobic surfaces on various substrates.

  15. Manufacturing of Superhydrophobic Surfaces with Nanoscale and Microscale Features

    SciTech Connect

    2009-06-01

    This factsheet describes a research project that will develop a technology that will enable nanoscale and microscale superhydrophobic (SHP) features to be imaged onto surfaces for the high-volume manufacturing of water-repellent components and coatings.

  16. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  17. Superhydrophobic surfaces: From the lotus leaf to the submarine

    NASA Astrophysics Data System (ADS)

    Samaha, Mohamed A.; Tafreshi, Hooman Vahedi; Gad-el-Hak, Mohamed

    2012-01-01

    In this review we discuss the current state of the art in evaluating the fabrication and performance of biomimetic superhydrophobic materials and their applications in engineering sciences. Superhydrophobicity, often referred to as the lotus effect, could be utilized to design surfaces with minimal skin-friction drag for applications such as self-cleaning and energy conservation. We start by discussing the concept of the lotus effect and continue to present a review of the recent advances in manufacturing superhydrophobic surfaces with ordered and disordered microstructures. We then present a discussion on the resistance of the air-water interface to elevated pressuresthe phenomenon that enables a water strider to walk on water. We conclude the article by presenting a brief overview of the latest advancements in studying the longevity of submerged superhydrophobic surfaces for underwater applications.

  18. Condensation and freezing of droplets on superhydrophobic surfaces.

    PubMed

    Oberli, Linda; Caruso, Dean; Hall, Colin; Fabretto, Manrico; Murphy, Peter J; Evans, Drew

    2014-08-01

    Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface. PMID:24200089

  19. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  20. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  1. Topographical length scales of hierarchical superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Dhillon, P. K.; Brown, P. S.; Bain, C. D.; Badyal, J. P. S.; Sarkar, S.

    2014-10-01

    The morphology of hydrophobic CF4 plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent ? = 0.42 for length scales shorter than ?500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170) and low hysteresis (<1)).

  2. How Water Advances on Superhydrophobic Surfaces.

    PubMed

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis. PMID:26991185

  3. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    SciTech Connect

    Kuang, Ping; Lin, Shawn-Yu; Hsieh, Mei-Li

    2015-06-07

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO{sub 2} nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θ{sub CB} ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  4. Low temperature self-cleaning properties of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  5. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    NASA Astrophysics Data System (ADS)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer thickness and pore dimensions at the aluminum surface. The results show that thicker oxide layers with larger pore sizes allow the nanostructured surface to retain more gas (air) and hence provide a more effective barrier to corrosion. The anodizing techniques are further advanced to design and produce hierarchical three-dimensional nanostructures for better retention of the gaseous barrier layer at the surface.

  6. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90 whereas using a superhydrophobic surface one observes 134. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  7. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity.

    PubMed

    Moradi, Sona; Kamal, Saeid; Englezos, Peter; Hatzikiriakos, Savvas G

    2013-10-18

    This work studies in detail the effect of femtosecond laser irradiation process parameters (fluence and scanning speed) on the hydrophobicity of the resulting micro/nano-patterned morphologies on stainless steel. Depending on the laser parameters, four distinctly different nano-patterns were produced, namely nano-rippled, parabolic-pillared, elongated sinusoidal-pillared and triple roughness nano-structures. All of the produced structures were classified according to a newly defined parameter, the laser intensity factor (LIF); by increasing the LIF, the ablation rate and periodicity of the asperities increase. In order to decrease the surface energy, all of the surfaces were coated with a fluoroalkylsilane agent. Analysis of the wettability revealed enhanced superhydrophobicity for most of these structures, particularly those possessing the triple roughness pattern that also exhibited low contact angle hysteresis. The high permanent superhydrophobicity of this pattern is due to the special micro/nano-structure of the surface that facilitates the Cassie-Baxter state. PMID:24045766

  8. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Moradi, Sona; Kamal, Saeid; Englezos, Peter; Hatzikiriakos, Savvas G.

    2013-10-01

    This work studies in detail the effect of femtosecond laser irradiation process parameters (fluence and scanning speed) on the hydrophobicity of the resulting micro/nano-patterned morphologies on stainless steel. Depending on the laser parameters, four distinctly different nano-patterns were produced, namely nano-rippled, parabolic-pillared, elongated sinusoidal-pillared and triple roughness nano-structures. All of the produced structures were classified according to a newly defined parameter, the laser intensity factor (LIF); by increasing the LIF, the ablation rate and periodicity of the asperities increase. In order to decrease the surface energy, all of the surfaces were coated with a fluoroalkylsilane agent. Analysis of the wettability revealed enhanced superhydrophobicity for most of these structures, particularly those possessing the triple roughness pattern that also exhibited low contact angle hysteresis. The high permanent superhydrophobicity of this pattern is due to the special micro/nano-structure of the surface that facilitates the Cassie-Baxter state.

  9. Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Zhang, Bingwu; Qu, Mengnan; Zhang, Junyan; He, Deyan

    2008-01-01

    Via a simple wet chemical etching followed by stearic acid modification, the presence of synergistic binary structures at micro- and nanometer scales and stearic acid bestows superhydrophobic property on steel and aluminum alloy surfaces. The as-prepared surfaces show superhydrophobic not only for pure water but also for corrosive liquids such as acid, basic and salt solutions. The stable superhydrophobicity of steel and aluminum alloy surfaces will extend their applications as engineering materials.

  10. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.

    PubMed

    Tie, Lu; Guo, Zhiguang; Li, Wen

    2014-12-15

    Due to the crucial role of surface roughness, it has been recently proposed to design optimal and extract geometrical microstructures for practical fabrications of superhydrophobic surfaces. In this work, a paraboloid microtexture is employed as a typical example to theoretically establish a relationship between surface geometry and superhydrophobic behavior for a final optimal design. In particular, based on a thermodynamic approach, the effects of all the geometrical parameters for such a paraboloid microtexture on free energy (FE) and free energy barrier (FEB) as well as equilibrium contact angle (ECA) and contact angle hysteresis (CAH) of a superhydrophobic surface have been systematically investigated in detail. It is interestingly noted that the droplet position for metastable state is closely related to the intrinsic CA of the surface. Furthermore, the paraboloid base steepness plays a significant important role in ECA and CAH, and a critical steepness is necessary for the transition from noncomposite to composite states, which can be judged using a proposed criterion. Moreover, the superhydrophobicity depends strongly the surface geometrical dimension for noncomposite state, while it is not sensitive for composite state. Additionally, both vibrational energy and geometrical dimension affect the transition from noncomposite to composite wetting states, and a comprehensive criterion for such transition can be obtained. Finally, using such criterion, it is revealed that the paraboloidal protrusion is the most optimal geometry among the three typical microtextures for ideal superhydrophobicity. PMID:25265581

  11. Condensation heat transfer on two-tier superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao; Vandadi, Aref; Chen, Chung-Lung

    2012-09-01

    We investigated water vapor condensation on a two-tier superhydrophobic surface in an environmental scanning electron microscope (ESEM) and in a customer-designed vapor chamber. We have observed continuous dropwise condensation (DWC) on the textured surface in ESEM. However, a film layer of condensate was formed on the multiscale texture in the vapor chamber. Due to the filmwise condensation, the condensation heat transfer coefficient of the superhydrophobic surface is lower than that of a flat hydrophobic surface especially under high heat flux situations. Our studies indicate that adaptive and prompt condensate droplet purging is the dominant factor for sustaining long-term DWC.

  12. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Zhang, Dongshi; Bian, Hao; Du, Guangqing; Si, Jinhai; Meng, Xiangwei; Hou, Xun

    2013-03-12

    This paper presents a one-step method to fabricate superhydrophobic surfaces with extremely controllable adhesion based on PDMS microwell arrays. The microwell array structures are rapidly produced on PDMS films by a point-by-point femtosecond laser scanning process. The as-prepared superhydrophobic surfaces show water controllable adhesion that ranges from ultrahigh to ultralow by adjusting the extent of overlap of the adjacent microwells, on which the sliding angle can be controlled from 180 (a water droplet can not slide down even when the as-prepared surface is turned upside down) to 3. A "micro-airbag effect" is introduced to explain the adhesion transition phenomenon of the microwell array structures. This work provides a facile and promising strategy to fabricate superhydrophobic surfaces with controllable adhesion. PMID:23391207

  13. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. PMID:26945118

  14. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  15. Spatially controlled surface energy traps on superhydrophobic surfaces.

    PubMed

    Milionis, Athanasios; Fragouli, Despina; Martiradonna, Luigi; Anyfantis, George C; Cozzoli, P Davide; Bayer, Ilker S; Athanassiou, Athanassia

    2014-01-22

    Water wetting and adhesion control on polymeric patterns are achieved by tuning the configuration of their surface's structural characteristics from single to dual and triple length-scale. In particular, surfaces with combined micro-, submicrometer-,and nanoroughness are developed, using photolithographically structured SU-8 micro-pillars as substrates for the consecutive spray deposition of polytetrafluoroethylene (PTFE) submicrometer particles and hydrophobically capped iron oxide colloidal nanoparticles. The PTFE particles alone or in combination with the nanoparticles render the SU-8 micropillars superhydrophobic. The water adhesion behaviour of the sprayed pillars is more complex since they can be tuned gradually from totally adhesive to completely non adhesive. The influence of the hierarchical geometrical features of the functionalized surfaces on this behaviour is discussed within the frame of the theory. Specially designed surfaces using the described technique are presented for selective drop deposition and evaporation. This simple method for liquid adhesion control on superhydrophobic surfaces can find various applications in the field of microfluidics, sensors, biotechnology, antifouling materials, etc. PMID:24386959

  16. A novel preparation of polystyrene film with a superhydrophobic surface using a template method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Chen, Hong; Tang, Jianxin; Gong, Huifang; Liu, Yuejun; Wang, Zhengxiang; Shi, Pu; Zhang, Jide; Chen, Xin

    2007-06-01

    Inspired by the self-cleaning superhydrophobic taro leaf, a polystyrene (PS) film with superhydrophobic surface was obtained using a natural taro leaf as template. The water contact angle and the sliding angle of the superhydrophobic PS surface were 158° ± 1.6° and 3°, respectively. The PS surface was still superhydrophobic when contacting with black ink, fresh blood and even viscous glue water. SEM shows that the surface structure comprises many uniform papillae with the diameters ranging from 10 to 15 µm, which is similar to the surface structure of natural taro leaf. Such a special surface morphology may result in the superhydrophobic property.

  17. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect

    Branson, Eric D.; Singh, Seema; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4

  18. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levnen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  19. Micro-and nanostructured silicon-based superomniphobic surfaces.

    PubMed

    Nguyen, Thi Phuong Nhung; Boukherroub, Rabah; Thomy, Vincent; Coffinier, Yannick

    2014-02-15

    We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA>150° for water) and superoleophobic behavior (CA ≈ 140° for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids. PMID:24370432

  20. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    PubMed

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions. PMID:23981676

  1. Facile and fast fabrication of superhydrophobic surface on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin; Zhang, Xiaoxu; Zhang, Peng

    2013-04-01

    Superhydrophobic surface has many special functions and is widely investigated by researchers. Magnesium alloy is one of the lightest metal materials among the practice metals. It plays an important role in automobile, airplane and digital product for reducing devices weight. But due to the low standard potential, magnesium alloy has a high chemical activity and easily be corroded. That seriously impedes the application of magnesium alloy. In the process of fabrication a superhydrophobic surface on magnesium alloy, there are two ineluctable problems that must be solved: (1) high chemical activity and (2) the chemical activity is inhomogeneous on surface. In this study, we solved those problems by using the two characters to gain a rough surface on magnesium alloy and obtained a superhydrophobic surface after following modification process. The results show that the as-prepared superhydrophobic surface has obvious anti-corrosion effect in typically corrosive solution and naturally humid air. The delay-icing and self-cleaning effects are also investigated. The presented method is low-cost, fast and has great potential value in large-scale industry production.

  2. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ma, J.; Zhang, X. Y.; Wang, D. P.; Zhao, D. Q.; Ding, D. W.; Liu, K.; Wang, W. H.

    2014-04-01

    Superhydrophobic surface with mechanical stability and corrosion resistance is long expected due to its practical applications. We show that a micro-nano scale hierarchical structured Pd-based metallic glass surface with superhydrophobic effect can be prepared by the thermoplastic forming, which is a unique and facile synthesis strategy for metallic glasses. The superhydrophobic metallic glass surface without modification of low surface energy chemical layer also exhibits superior mechanical stability and corrosion resistance compared with conventional superhydrophobic materials. Our results indicate that the metallic glass is a promising candidate superhydrophobic material for applications.

  3. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-01

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. PMID:25418808

  4. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a

  5. Studies of drag on the nanocomposite superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean

    2015-01-01

    The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 1 ?m with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 4 having contact angle hysteresis (CAH) of 4 2. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 0.01 m/s and 0.72 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 0.01 and 1.93 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  6. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores

    NASA Astrophysics Data System (ADS)

    Zhang, Yao-Yao; Ge, Quan; Yang, Long-Lai; Shi, Xiao-Jun; Li, Jiao-Jiao; Yang, De-Quan; Sacher, Edward

    2015-06-01

    A superhydrophobic surface, highly water repellant and self-cleaning, is typically made by introducing micro- and nanoscale roughness onto the surface of a low surface energy material. Herein, we offer a new process of superhydrophobic film formation, accomplishing the same thing through the production of micro- and nanoscale surface porosities. Such a material is prepared by introducing zinc acetate (ZnAc2) and sodium chloride (NaCl) into a commercially available PTFE (polytetrafluoroethylene) emulsion. On drying, baking and washing with acetic acid, the PTFE film produced from the emulsion had both micro- and nanoscale surface porosities, and demonstrated superhydrophobic properties, with a static contact angle >150° and a slide angle <10°. From SEM observation, NaCl contributes microscale porosity, while ZnAc2 decomposes to ZnO, contributing nanoscale porosity. Using either ZnAc2 or NaCl alone produces a surface with a static contact angle >150°, but with a slide angle >10°. Based on XPS and SEM data, we explore herein the affect of chemistry and porosity on the mechanism of superhydrophobic surface formation, and the durability of that surface under abrasion.

  7. Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property

    NASA Astrophysics Data System (ADS)

    Liao, Ruijin; Zuo, Zhiping; Guo, Chao; Yuan, Yuan; Zhuang, Aoyun

    2014-10-01

    Aluminum is extensively used metals in transmission lines, and the accumulation of ice on aluminum may inflict serious damage such as tower collapse and power failure. In this study, micro/nanostructured aluminum surface was fabricated using a continuous chemical etching method. The static and dynamic anti-icing behaviors of the as-prepared aluminum surface in different conditions were systematically investigated with a self-made device and artificial climate laboratory. Results showed that the as-prepared surface can mitigate freezing in glaze ice. Only several isolated ice points formed on the surface in glaze ice after 50 min. Due to the superhydrophobicity of the as-prepared aluminum surface, cold water sprayed on the surface aggregated into large drops and rolled off the surface before freezing, thus protecting the surface against excessive ice accumulation. The surface morphology and crystal structure of the samples were also characterized by scanning electron microscopy/energy-dispersive spectrometry and X-ray diffraction. This study offers insight into understanding the anti-icing behavior of the superhydrophobic aluminum surface and may favor the application of structured aluminum surface in power transmission lines against ice accumulation.

  8. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the ngstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network NanoCluster, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfacesprototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (Micro-Nano) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real devices, respectively, while the papers by Ledieu and Guo report the structural characterization of novel surface systemsquasicrystal surfaces and supramolecular monolayers, respectively. The final two papers, by Bennett and Smith, demonstrate the positive interplay between experimental measurements and theoretical modelling in the investigation of nanostructured surfaces. The examples discussed include, respectively, the growth of metal clusters on oxide surfaces and the deposition of fullerenes and energetic clusters from the gas phase. We note finally that the last six papers in this special issue have been contributed by members of the Committee of the newly-formed Nanoscale Physics and Technology Group of the Institute of Physics. The Group shares with this special issue the aim of promoting and disseminating exciting advances in the flourishing field of nanoscale physics.

  9. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  10. Fabricating superhydrophobic surfaces via a two-step electrodeposition technique.

    PubMed

    Haghdoost, A; Pitchumani, R

    2014-04-15

    This work presents a template-free electrochemical route to producing superhydrophobic copper coatings with the water contact angle of 160 6 and contact angle hysteresis of 5 2. In this technique, copper deposit with multiscale surface features is formed through a two-step electrodeposition process in a concentrated copper sulfate bath. In the first step, applying a high overpotential results in the formation of structures with dense-branching morphology, which are loosely attached to the surface. In the second step, an additional thin layer of the deposit is formed by applying a low overpotential for a short time, which is used to reinforce the loosely attached branches on the surface. The work also presents a theoretical analysis of the effects of the fabrication parameters on the surface textures that cause the superhydrophobic characteristic of the deposit. PMID:24083366

  11. Towards Feature-Resolved Simulations of Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Alame, Karim; Mahesh, Krishnan

    2013-11-01

    Superhydrophobic surfaces have potential for viscous friction reduction, anti-corrosive protective coatings and self-cleaning techniques. Most previous studies focused on large scale grooves or pillars in the laminar regime. In this study, two fully covered microtextured superhydrophobic surfaces and two unit microtextured surfaces with different geometries (grooves and posts) are tested in both laminar and turbulent flows using DNS. Slip length and discharge are computed in the laminar regime and compared with theoretical estimate and experiment. The turbulent simulations are performed for both ``unit cells'' as well as the entire textured surfaces. Fully wetted simulations reveal the effect that geometry alone exerts. A volume of fluid methodology is being developed towards allowing for air/water interfaces inside the grooves, and will be discussed. Supported by Office of Naval Research.

  12. Fabrication and wear protection performance of superhydrophobic surface on zinc

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Wang, Zhongqian; Xu, Zhen; Liu, Changsong; Zhang, Junyan

    2011-06-01

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N, N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 and provide effective friction-reducing and wear protection for zinc substrate.

  13. Textured Al2024 alloy surface for super-hydrophobicity investigation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Chen, Miao; Zhou, Huidi; Chen, Jianmin

    2008-01-01

    To mimic the lotus leaf structure, micro- and nanometer honeycomb-like porous hierarchical microstructures were constructed on the Al2024 alloy surface in which the average diameter of micro-pores was ca. 10 ?m while those of nano-pores varied from 200 to 300 nm. Super-hydrophobicity was achieved with a water contact angle of 158 and the sliding angle of 4 by modifying the textured surface with HFTHTMS (HFTHTMS = (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane).

  14. A reliable method of manufacturing metallic hierarchical superhydrophobic surfaces

    SciTech Connect

    Pogreb, Roman; Whyman, Gene; Barayev, Reuven; Bormashenko, Edward; Aurbach, Doron

    2009-06-01

    A method of manufacturing hierarchical metallic surfaces demonstrating superhydrophobic properties is presented. The surfaces showed apparent contact angles as high as 153 deg. and sliding angles of 10 deg. for 50-100 {mu}l droplets. The Cassie-like model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)], considering the hierarchical topography of the relief, predicts apparent contact angles in a satisfactory agreement with the measured values.

  15. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  16. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    PubMed

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements. PMID:23557076

  17. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  18. Patterned superhydrophobic surface based on Pd-based metallic glass

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Li, Ning; Wu, Yue; Liu, Lin

    2012-08-01

    Without any modification or post-treatment, superhydrophobic surfaces with good stability were fabricated by hot-embossing honeycomb patterns on Pd40Cu30Ni10P20 bulk metallic glass (BMG). The water contact angle reaches above 150° when the pitch between adjacent cells is larger than the critical size of 115.5 μm. The wetting behavior on the patterned BMG can be well rationalized in terms of the modified Cassie-Baxter theory [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)] by considering surface energy gradient. The achievement of the superhydrophobicity on BMG surface opens a window for the functional applications of metallic glasses.

  19. Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Bange, Prathamesh G.; Bhardwaj, Rajneesh

    2015-12-01

    We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid-gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.

  20. Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures.

    PubMed

    Sun, Ziqi; Liao, Ting; Liu, Kesong; Jiang, Lei; Kim, Jung Ho; Dou, Shi Xue

    2014-08-13

    Fly-eye bio-inspired inorganic nanostructures are synthesized via a two-step self-assembly approach, which have low contact angle hysteresis and excellent anti-fogging properties, and are promising candidates for anti-freezing/fogging materials to be applied in extreme and hazardous environments. PMID:24753310

  1. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    PubMed

    Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  2. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    PubMed Central

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  3. Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting

    NASA Astrophysics Data System (ADS)

    Kiraz, A.; Karadaǧ, Y.; Coskun, A. F.

    2008-05-01

    Using electrowetting, we demonstrate reversible spectral tuning of the whispering gallery modes of glycerol/water microdroplets standing on a superhydrophobic surface by up to 4.7nm at 400V. Our results can inspire electrically tunable optical switches and filters based on microdroplets on a superhydrophobic surface. The sensitivity of the observed spectral drift to the contact angle can also be used to measure the contact angles of microdroplets on a superhydrophobic surface.

  4. Programming nanostructured soft biological surfaces by atomic layer deposition.

    PubMed

    Szilgyi, Imre Mikls; Teucher, Georg; Hrknen, Emma; Frm, Elina; Hatanp, Timo; Nikitin, Timur; Khriachtchev, Leonid; Rsnen, Markku; Ritala, Mikko; Leskel, Markku

    2013-06-21

    Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature. PMID:23680967

  5. Programming nanostructured soft biological surfaces by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mikls Szilgyi, Imre; Teucher, Georg; Hrknen, Emma; Frm, Elina; Hatanp, Timo; Nikitin, Timur; Khriachtchev, Leonid; Rsnen, Markku; Ritala, Mikko; Leskel, Markku

    2013-06-01

    Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature.

  6. Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix.

    PubMed

    Wang, Yaqun; Shi, Ye; Pan, Lijia; Yang, Meng; Peng, Lele; Zong, Shi; Shi, Yi; Yu, Guihua

    2014-08-13

    Superhydrophobic surfaces are of immense scientific and technological interests for a broad range of applications. However, a major challenge remains in developing scalable methodologies that enable superhydrophobic coatings on versatile substrates with a combination of strong mechanical stability, optical transparency, and even stretchability. Herein, we developed a scalable methodology to versatile hydrophobic surfaces that combine with strong mechanical stability, optical transparency, and stretchability by using a self-assembled hydrogel as the template to in situ generate silica microstructures and subsequent silanization. The superhydrophobic coatings can be enabled on virtually any substrates via large-area deposition techniques like dip coating. Transparent surfaces with optical transmittance as high as 98% were obtained. Moreover, the coatings exhibit superior mechanical flexibility and robustness that it can sustain contact angles ? 160 even after 5000 cycles of mechanically stretching at 100% strain. The multifunctional surfaces can be used as screen filters and sponges for the oil/water separation that can selectively absorb oils up to 40 their weight. PMID:24977920

  7. Microscopic shape and contact angle measurement at a superhydrophobic surface.

    PubMed

    Rathgen, Helmut; Mugele, Frieder

    2010-01-01

    We have studied the microscopic shape, contact angle and Laplace law behavior of the liquid-gas interfaces at a superhydrophobic surface. A superhydrophobic surface is immersed in water, and the radius of liquid gas menicsi that span between adjacent ridges of the surface texture is measured. The surface pattern consists of rectangular grooves, such that the sample is simultaneously an optical grating. The diffraction properties encode the shape of the menisci. The shape of the menisci is determined by measuring the intensity of several diffraction orders as a function of the incident angle, and fitting the data to numerical calculations of the diffraction. The uncertainty of the determined menisci deflections is a few nanometres. Observing the deflection as a function of externally controlled hydrostatic pressure, Laplace's law is probed for the menisci on the micrometre scale. The microscopic contact angle is determined by measuring the radius of the menisci prior to collapse. Close agreement with the macroscopic Young angle is found. A stability limit for the superhydrophobic-to-impregnated transition is given. The measurement is a microscopic analogue of 'bubble' and 'sessile drop' type methods. PMID:21043413

  8. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    PubMed

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy. PMID:22424422

  9. Deposition and tuning of nanostructured hydrocarbon deposits: From superhydrophobic to superhydrophilic and back

    SciTech Connect

    Berndt, J.; Acid, H.; Kovacevic, E.; Cachoncinlle, C.; Boufendi, L.; Strunskus, Th.

    2013-02-14

    Carbonaceous fluorine free nanoparticles synthesized in a low temperature acetylene discharge are used in a first step for the production of (super)hydrophobic coatings. In a second step, the influence of different plasma and UV induced functionalizations on the wetting characteristics of these materials is investigated. The experiments show that the superhydrophobic surfaces can be turned continuously and reversibly into hydrophilic (superhydrophilic) surfaces by means of the different treatment methods. The reversibility of these processes is studied in a third step. It is shown that the changes of the surface which are induced by the plasma treatment can be undone by means of EUV irradiation. The switchability of the surface due to external stimuli can be easily used for the controlled production of patterned surfaces. This is demonstrated by means of one simple example.

  10. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

    PubMed

    Goswami, Debmita; Medda, Samar Kumar; De, Goutam

    2011-09-01

    The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ∼9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ∼10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ≈30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 μL of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance. PMID:21823656

  11. Water-collecting behavior of nanostructured surfaces with special wettability

    NASA Astrophysics Data System (ADS)

    Choo, Soyoung; Choi, Hak-Jong; Lee, Heon

    2015-01-01

    Dew is commonly formed even in dry regions, and we examined the suitability of surfaces with superhydrophilic patterns on a superhydrophobic background as a dew-harvesting system. Nanostructured surfaces with mixed wettability were fabricated by ZnO and TiO2 nanorods. The condensation properties were investigated by environmental scanning electron microscopy (ESEM), and the water-collecting function of the patterned surfaces in an artificial environment was confirmed. Condensation and water-collecting behavior were evaluated as a function of surface inclination angle and pattern shape. We examined the collecting efficiency among the different wettabilities at various inclination angles and observed the condensation behavior for various superhydrophilic shapes.

  12. Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojiang; Xu, Yang; Ben, Keyang; Chen, Zao; Wang, Yan; Guan, Zisheng

    2015-06-01

    We reported a novel, simple, modification-free process for the preparation of transparent superhydrophobic surfaces by calcining candle-soot-coated polydimethylsiloxane (PDMS) films. Though a calcination process, a candle soot template was gradually removed while robust fibrous and network structures were created on glass. Owing to these structures, the glass substrates were durable and highly transparent with an average transmittance (400-800 nm) of 89.50%, very closed to the bare glass slides (89.70%). These substrates exhibited a water contact angle (WCA) of 163° and a sliding angle (SA) of ∼1°. Importantly, the superhydrophobicity of these surfaces can thermally recover after oil-contamination due to their high thermal stability below 500 °C. Based on these, superhydrophobic fiberglass cotton was also prepared for optimized oil-water separation and air filtration. This method is suitable for large-scale production because it uses inexpensive and environmentally friendly materials and gets rids of sophisticated equipment, special atmosphere and harsh operations.

  13. Hot embossing of PTFE: Towards superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Jucius, D.; Grigaliūnas, V.; Mikolajūnas, M.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.; Narmontas, P.

    2011-01-01

    Three types of reusable stamps with features in the form of 2D arrays of pits having lateral dimensions in the range of 2-80 μm and heights of 1.5-15 μm were successfully employed for the hot embossing of PTFE at temperatures up to 50 °C above the glass transition temperature of PTFE amorphous phase. Due to the softening of PTFE at the temperatures used in this study, we were able to decrease imprint pressure significantly when comparing with the imprint conditions reported by other authors. Impact of the imprint temperature, pressure and time on the fidelity of pattern transfer as well as on water repellency was tested. The best results of embossing were achieved by applying pressure of 10 kg/cm 2 for 2 min at 170 °C. In this case, flattening of a natural PTFE roughness and pretty accurate deep replicas of the stamp patterns were observable on the whole imprinted area. Improvement in water repellency was largest for the samples imprinted by Ni stamp patterned with a 2D array of 2 μm square pits spaced by the same dimension and having a depth of 1.5 μm. Cassie-Baxter wetting regime was observed for the deepest imprints with water contact angles up to the superhydrophobic limit.

  14. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

    PubMed

    Vakarelski, Ivan U; Patankar, Neelesh A; Marston, Jeremy O; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-09-13

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. PMID:22972299

  15. How to control bubble nucleation from superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Giacomello, Alberto; Amabili, Matteo; Massimo Casciola, Carlo

    2015-12-01

    Superhydrophobicity is realized by entrapping gas bubbles inside surface roughness. While this strategy affords remarkable surface properties, it enhances the risk of cavitation from these gas nuclei at negative pressures. Here we use free energy molecular dynamics simulations and an extension of the classical nucleation theory to show that the relevant nucleation rates and barriers can be controlled by engineering the surface structure. Mimicking the re-entrant and chemically heterogeneous structure found in the leaves of the Salvinia molesta allows one both to stabilize the gas pockets against liquid intrusion and to reduce the risk of cavitation.

  16. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.

    PubMed

    Lv, Li-Bing; Cui, Tian-Lu; Zhang, Bing; Wang, Hong-Hui; Li, Xin-Hao; Chen, Jie-Sheng

    2015-12-01

    Superhydrophobic and superhydrophilic surfaces are of great interest because of a large range of applications, for example, as antifogging and self-cleaning coatings, as antibiofouling paints for boats, in metal refining, and for water-oil separation. An aqueous ink based on three-dimensional graphene monoliths (Gr) can be used for constructing both superhydrophobic and superhydrophilic surfaces on arbitrary substrates with different surficial structures from the meso- to the macroscale. The surface wettability of a Gr-coated surface mainly depends on which additional layers (air for a superhydrophobic surface and water for a superhydrophilic surface) are adsorbed on the surface of the graphene sheets. Switching a Gr-coated surface between being superhydrophobic and superhydrophilic can thus be easily achieved by drying and prewetting with ethanol. The Gr-based superhydrophobic membranes or films should have great potential as efficient separators for fast and gravity-driven oil-water separation. PMID:26440454

  17. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    NASA Astrophysics Data System (ADS)

    Sun, Qinghe; Liu, Hongtao; Chen, Tianchi; Wei, Yan; Wei, Zhu

    2016-04-01

    Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on carbon steel substrate under appropriate process; the contact angle of the as-prepared superhydrophobic surface can be up to 152 ± 0.5°, and the sliding angle is 1-2°; its anti-corrosion property, anti-icing performance and the friction property all show an excellent level. This method provides the possibility of industrialization of superhydrophobic surface based on iron substrate as it can prepare massive superhydrophobic surface quickly.

  18. Roughness-Based Superhydrophobic Surfaces: Fundamentals and Future Directions

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh

    2011-11-01

    Superhydrophobicity of rough surfaces has attracted global interest through the past decade. There are naturally occurring instances of such surfaces, e.g., lotus leaves, which led to the popular term ``lotus effect.'' Numerous applications in wide ranging areas such as drag reduction, self-cleaning, heat exchangers, energy conversion, condensation, anti-icing, textile, desalination, etc., are being explored by researchers worldwide. The signature configuration for superhydrophobicity has been ``bead-like'' drops on rough surfaces that roll-off easily. This becomes possible if the liquid does not impale the roughness grooves, and if the contact angle hysteresis is low. Finding appropriate surface roughness is therefore necessary. A thermodynamic framework to enable analysis of this problem will be presented. It will be noted that the success of rough superhydrophobic substrates relies on the presence of gas pockets in the roughness grooves underneath the liquid. These gas pockets could be those of air from the surrounding environment. Current design strategies rely on the availability of air. However, if the rough substrates are fully submerged in the liquid then the trapped air in the roughness grooves may not be sustained. A design approach based on sustaining a vapor phase of the liquid itself in the roughness grooves, instead of relying on the presence of air, will be presented. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling at dramatically low superheats, among others. The concept can be generalized to other transitions on the phase diagram, thus enabling the design of rough surfaces for phase manipulation in general.

  19. Numerical simulations of drop impact on superhydrophobic structured surfaces

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola

    2011-11-01

    During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.

  20. Generation of stainless steel superhydrophobic surfaces using WEDM technique

    NASA Astrophysics Data System (ADS)

    Tian, Yanling; Liu, Xianping; Qi, Houjun

    2015-02-01

    This paper presents a novel fabrication methodology for generating superhydrophobic surfaces on stainless steel. The Wire Electric Discharge Machining (WEDM) technique was utilized to change the wettability of stainless steel which is generally hydrophilic. Superhydrophobic surfaces were obtained on the stainless steel by strictly control the machining progress. The mechanism of wettability modulation was explored using the well-established surface metrology and characterisation instruments. It was noted that WEDM can be used to generate a recast layer on stainless steel surface. There was a number of hierarchic micro-structures in the irregular recast layer and the number of micro-holes increases the contact area between the water drop and the top surface of stainless steel. Thus, the contact angle was significantly increased and the wettability of stainless steel changed from hydrophilic into hydrophobic. Compared with other established fabrication approaches, the stainless steel based hydrophobic surface can provide long durability, high efficiency and low cost metallic surfaces, which paves the way for the practical applications of stainless steel hydrophobic surfaces in the academic and engineering fields.

  1. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Yan, Zhongna; Qiang, Xiaohu; Liu, Yanhua; Wang, Yanping

    2016-03-01

    Superhydrophobic surface with excellent corrosion resistance was prepared on aluminum alloy via boiling water treatment and surface modification with stearic acid. Results suggested that the micro- and nanoscale hierarchical structure along with the hydrophobic chemical composition surface confers the aluminum alloy surface with good superhydrophobicity, and the water contact angle and the water sliding angle can reach 156.6° and 3°, respectively. The corrosion resistance of the superhydrophobic aluminum alloy was first characterized by potentiodynamic polarization, and then the long-term corrosion resistance was investigated by immersing the sample in NaCl solution for 90 days. The surface wettability, morphology, and composition before and after immersion were examined, and results showed that the superhydrophobic aluminum alloy surface possessed good corrosion resistance under the experimental conditions, which is favorable for its practical application as an engineering material in seawater corrosion conditions. Finally, the mechanism of the superhydrophobicity and excellent corrosion resistance is deduced.

  2. A Superhydrophobic Surface Templated by Protein Self-Assembly and Emerging Application toward Protein Crystallization.

    PubMed

    Gao, Aiting; Wu, Qian; Wang, Dehui; Ha, Yuan; Chen, Zhijun; Yang, Peng

    2016-01-01

    A proteinaceous superhydrophobic material for facile protein crystallization is reported. The lysozyme phase transition is rationally manipulated to form a reliable superhydrophobic coating on virtually arbitrary material surfaces with good thermostability and mechanical robustness. Such a surface exhibits a fascinating capability to drive protein crystallization, and the protein crystal array can be facilitated in a large area at an ultralow protein concentration. PMID:26607764

  3. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.

    PubMed

    Shirtcliffe, N J; McHale, G; Newton, M I

    2009-12-15

    In many countries, the mornings in spring are graced with spectacular displays of dew drops hanging on spiders' webs and on leaves. Some leaves, in particular, sport particularly large droplets that last well into the morning. In this paper, we study a group of plants that show this effect on their superhydrophobic leaves to try to discover how and why they do it. We describe the structures they use to gather droplets and suggest that these droplets are used as a damper to absorb kinetic energy allowing water to be redirected from sideways motion into vertical motion. Model surfaces in the shape of leaves and as more general flat sheets show that this principle can be used to manipulate water passively, such as on the covers of solar panels, and could also be used in parts of microfluidic devices. The mode of transport can be switched between rolling droplets and rivulets to maximize control. PMID:20560556

  4. Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4, 147.2, 156.3, and 157.8, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation.

  5. Communication: anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators.

    PubMed

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-28

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation. PMID:25637961

  6. Super-hydrophobic bandages and method of making the same

    DOEpatents

    Simpson, John T. (Clinton, TN); D'Urso, Brian R. (Pittsburgh, PA)

    2012-06-05

    A bandage that includes a material, which can be breathable, having a first surface, and a plurality of superhydrophobic particles attached to the first surface. The plurality of superhydrophobic particles ranging in size from about 100 nanometers to about 10 micrometers. The superhydrophobic particles including a protrusive material defining a plurality of nanopores and a plurality of spaced apart nanostructures that define an external boundary of the hydrophobic particles. The nanopores providing a flow through porosity. The first surface can be rendered superhydrophobic by the attached superhydrophobic particles. The material can have a second surface opposite the first surface that is hydrophilic. The superhydrophobic particles can be adhered to the first surface by a binder. Also included is a method of making the bandages described herein.

  7. Fabrication and characterization of a cotton candy like surface with superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Hu, You; Huang, Chengya; Su, Dong; Jiang, Qiangwei; Zhu, Yunfeng

    2011-05-01

    Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D 5/SiO 2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157 for a 5 ?l droplet and a sliding angle of 1 for 10 ?l droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 C. Air trapping and capillary force on superhydrophobic behavior were evaluated.

  8. Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process

    NASA Astrophysics Data System (ADS)

    Henry, Frédéric; Renaux, Fabian; Coppée, Séverine; Lazzaroni, Roberto; Vandencasteele, Nicolas; Reniers, François; Snyders, Rony

    2012-12-01

    Superhydrophobic poly(tetrafluoro-ethylene) (PTFE) like thin films were grown on silicon wafers using a plasma-based hybrid process consisting on sputtering a carbon target in an Ar/CF4 atmosphere. The influence of the bias voltage applied to the substrate (VBias) as well as of the gas mixture composition (%CF4) on the chemical composition, the wettability and the morphology of the deposited thin films were evaluated. The chemical composition measured by X-ray Photoelectron Spectroscopy (XPS) has revealed that the F/C atomic ratio is always lower than for conventional PTFE (F/C = 2) and that it decreases when VBias increases (from F/C = 1 for VBias = - 100 V to F/C = 0.75 for VBias = - 200 V). This behavior is associated with the preferential sputtering of the fluorine atoms during the plasma-assisted growth of the films. Consecutively, a self-nanostructuration enhanced when increasing VBias is observed. As a consequence, the water contact angle (WCA) measurements range from 70° up to 150° depending on (i) the fluorine concentration and (ii) on the magnitude of the nanostructuration. In addition, for the films presenting the highest WCAs, a small hysteresis between the advancing and receding WCAs is observed (< 10°) allowing these films to fulfill completely the requirements of superhydrophobicity. The nanostructuration is probably due to the chemical etching by fluorine atoms of the fluorinated group. In order to get more understanding on the wettability mechanisms of these surfaces, the topography of the films has been evaluated by atomic force microscopy (AFM). The data have revealed, for all films, a dense and regular structure composed by conic objects (AvH is their average height and AvD is the average distance between them) for which the dimensions increase with VBias. A correlation between AvH/AvD, defined as the "morphological ratio", with the WCA was established. Theoretical evaluations of the WCA using the Wenzel and Cassie equations with, as inputs, the features of the deposited thin film surfaces measured by AFM suggest that the wetting regime is intermediate between these two ideal situations.

  9. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Bian, Hao; Ou, Yan; Si, Jinhai; Du, Guangqing; Hou, Xun

    2013-04-01

    Inspired by the lotus leaf, a new superhydrophobic surface with hierarchical mesh-porous structure is fabricated by femtosecond laser irradiation on silicon. The fabricated surface shows a superhydrophobic character with water contact angle being found to reach up to 158?1? and sliding angle of 4?0.5?. The superhydrophobicity is stable even if the PH of solution changes from 1 to 14. And the surface also exhibits excellent self-cleaning effect and bouncing behavior, implying that the adhesion of the surface is extremely low. This work will enhance further understanding of the wettability of a solid surface with special surface morphology.

  10. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.

    PubMed

    Dash, Susmita; Garimella, Suresh V

    2013-08-27

    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ? 160 deg), and negligible contact angle hysteresis (<1 deg). The droplet evaporation is observed to occur in a constant-contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ? 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation. PMID:23952149

  11. Branched Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived Surfaces.

    PubMed

    Alexander, Shirin; Eastoe, Julian; Lord, Alex M; Guittard, Frdric; Barron, Andrew R

    2016-01-13

    We present a new class of superhydrophobic surfaces created from low-cost and easily synthesized aluminum oxide nanoparticles functionalized carboxylic acids having highly branched hydrocarbon (HC) chains. These branched chains are new low surface energy materials (LSEMs) which can replace environmentally hazardous and expensive fluorocarbons (FCs). Regardless of coating method and curing temperature, the resulting textured surfaces develop water contact angles (?) of ?155 and root-mean-square roughnesses (Rq) ? 85 nm, being comparable with equivalent FC functionalized surfaces (? = 157 and Rq = 100 nm). The functionalized nanoparticles may be coated onto a variety of substrates to generate different superhydrophobic materials. PMID:26641156

  12. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    PubMed

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-01

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 1. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. PMID:26005136

  13. Dewetting Transitions on Superhydrophobic Surfaces: When are Wenzel Drops Reversible?

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    On superhydrophobic surfaces, drops in theWenzel state can be switched to the suspended Cassie state in some cases, but in other cases are irreversibly impaled in the surface roughness. To date, the question of when dewetting transitions are possible for Wenzel drops has not been resolved. Here, we show that pinned Wenzel drops being stretched out-of-plane cannot reduce their contact angle below a critical value where unstable pinch-off occurs, preventing dewetting for Wenzel drops which exhibit receding contact angles beneath this critical pinchoff angle. Dewetting transitions are therefore only possible for Wenzel drops with moderately large receding contact angles, which requires low surface roughness for one-tier surfaces or a Partial Wenzel wetting state for two-tier surfaces.

  14. Predicting Stability of Air--Water Interface on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Emami, B.; Vahedi Tafreshi, H.; Gad-El-Hak, M.; Tepper, G. C.

    2011-11-01

    In this work, two different methodologies for predicting the stability of the air-water interface on submerged superhydrophobic surfaces are presented. The first method is an analytical approach developed by balancing the hydrostatic pressure with the capillary forces over the interface, and results in a second-order partial differential equation. The solution to this equation provides the 3-D interface shape and the critical pressure beyond which the superhydrophobic surface departs from the Cassie state. The second method presented here is an approximate numerical technique based on the so called Full Morphology method in which the Young-Laplace equation is used to relate a capillary pressure to the most constricted opening of the pore space between the peaks of the surface roughness. Predictions of the methods presented in this study are compared with the available studies in the literature (Applied Physics Letters 98:20, 203106, 2011). Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  15. Hydraulic Jumps on Superhydrophobic Surfaces Exhibiting Ribs and Cavities

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Russell, Benton; Maynes, Daniel; Webb, Brent

    2009-11-01

    We report experimental results characterizing the dynamics of a liquid jet impinging normally on superhydrophobic surfaces spanning the Weber number (based on the jet velocity and diameter) range from 100 to 1400. The superhydrophobic surfaces are fabricated with both silicon and PDMS surfaces and exhibit micro-ribs and cavities coated with a hydrophobic coating. In general, the hydraulic jump exhibits an elliptical shape with the major axis being aligned parallel to the ribs, concomitant with the frictional resistance being smaller in the parallel direction than in the transverse direction. When the water depth downstream of the jump was imposed at a predetermined value, the major and minor axis of the jump increased with decreasing water depth, following classical hydraulic jump behavior. When no water depth was imposed, however, the total projected area of the ellipse exhibited a nearly linear dependence on the jet Weber number, and was nominally invariant with varying hydrophobicity and relative size of the ribs and cavities. For this scenario the Weber number (based on the local radial velocity and water depth prior to the jump) was of order unity at the jump location. The results also reveal that for increasing relative size of the cavities, the ratio of the ellipse axis (major-to-minor) increases.

  16. Fabrication of superhydrophobic copper surface with ultra-low water roll angle

    NASA Astrophysics Data System (ADS)

    Zhang, Youfa; Yu, Xinquan; Zhou, Quanhui; Chen, Feng; Li, Kangning

    2010-01-01

    Binary geometric structures at the micro- and nano-scale are fabricated on copper surfaces via simple sandblasting and surface oxidation process. The rough surfaces show excellent superhydrophobicity and ultra-low water roll angle (RA) after fluorination. The structure effect is deduced by comparing it with those of a single micro- or nano-scale structure. Such superhydrophobic copper surfaces can be widely used in many fields such as corrosion protection, liquid transportation without loss. Such a facile technique is expected to offer a feasible avenue for the industrial fabrication of superhydrophobic surfaces.

  17. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity.

    PubMed

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  18. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    NASA Astrophysics Data System (ADS)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  19. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    PubMed Central

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  20. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  1. Shear driven droplet shedding and coalescence on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Moghtadernejad, S.; Tembely, M.; Jadidi, M.; Esmail, N.; Dolatabadi, A.

    2015-03-01

    The interest on shedding and coalescence of sessile droplets arises from the importance of these phenomena in various scientific problems and industrial applications such as ice formation on wind turbine blades, power lines, nacelles, and aircraft wings. It is shown recently that one of the ways to reduce the probability of ice accretion on industrial components is using superhydrophobic coatings due to their low adhesion to water droplets. In this study, a combined experimental and numerical approach is used to investigate droplet shedding and coalescence phenomena under the influence of air shear flow on a superhydrophobic surface. Droplets with a size of 2 mm are subjected to various air speeds ranging from 5 to 90 m/s. A numerical simulation based on the Volume of Fluid method coupled with the Large Eddy Simulation turbulent model is carried out in conjunction with the validating experiments to shed more light on the coalescence of droplets and detachment phenomena through a detailed analysis of the aerodynamics forces and velocity vectors on the droplet and the streamlines around it. The results indicate a contrast in the mechanism of two-droplet coalescence and subsequent detachment with those related to the case of a single droplet shedding. At lower speeds, the two droplets coalesce by attracting each other with successive rebounds of the merged droplet on the substrate, while at higher speeds, the detachment occurs almost instantly after coalescence, with a detachment time decreasing exponentially with the air speed. It is shown that coalescence phenomenon assists droplet detachment from the superhydrophobic substrate at lower air speeds.

  2. A study on the dynamic behaviors of water droplets impacting nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Kwak, Geunjae; Lee, Dong Woog; Kang, In Seok; Yong, Kijung

    2011-12-01

    We have investigated the influence of impact velocity and intrinsic surface wettability of nanostructures on the impact dynamic behaviors of water droplets on nanostructure surfaces. Nanowires array surfaces with tunable wettabilities ranging from superhydrophilic to superhydrophobic were fabricated by the deposition of surface modifiers differing in alkyl chain length. The transition criteria of rebound/wetting state and rebound/splashing state based on the relationship between the Webber (We) number and the surface free energy were determined. We have confirmed that the critical We number that determines the transition of the rebound/wetting increased as surface energy decreased. Additionally, the We number at which fragmentation occurred on our superhydrophobic surface was relatively low compared to previously reported values.

  3. Stable superhydrophobic surface of hierarchical carbon nanotubes on Si micropillar arrays

    PubMed Central

    2013-01-01

    It is of great importance to construct a stable superhydrophobic surface with low sliding angle (SA) for various applications. We used hydrophobic carbon nanotubes (CNTs) to construct the superhydrophobic hierarchical architecture of CNTs on silicon micropillar array (CNTs/Si-?p), which have a large contact angle of 153 to 155 and an ultralow SA of 3 to 5. Small water droplets with a volume larger than 0.3 ?L can slide on the CNTs/Si-?p with a tilted angle of approximately 5. The CNTs growing on planar Si wafer lose their superhydrophobic properties after exposing to tiny water droplets. However, the CNTs/Si-?p still show superhydrophobic properties even after wetting using tiny water droplets. The CNTs/Si-?p still have a hierarchical structure after wetting, resulting in a stable superhydrophobic surface. PMID:24098965

  4. Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Gallant, Danick; Chen, X.-Grant

    2013-10-01

    Superhydrophobic copper surfaces have been prepared by a one-step electrochemical modification process in an ethanolic stearic acid solution. In this work, the corrosion properties of hydrophobic copper surface and superhydrophobic copper surfaces were analyzed by means of electrochemical analyses and compared with that of as-received bare copper substrate. The decrease of corrosion current density (icorr) as well as the increase of polarization resistance (Rp) obtained from potentiodynamic polarization curves revealed that the superhydrophobic film on the copper surfaces improved the corrosion resistance performance of the copper substrate.

  5. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    PubMed

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2 and a water tilting angle of approximately 2. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined. PMID:22008385

  6. Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation.

    PubMed

    Wang, Fajun; Lei, Sheng; Xu, Yao; Ou, Junfei

    2015-07-20

    We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200?C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low-surface-energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92?% are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water. PMID:26017675

  7. Fabrication of superhydrophobic surface from binary micro-/nano-structure of mullite-whisk-based films

    NASA Astrophysics Data System (ADS)

    Deng, Zhengyan; Yin, Yongjin; Yang, Shengyang; Wang, Cai-Feng; Chen, Su

    2013-11-01

    The wettability of solid surface is a very important property of materials, which depends on both surface chemical composition and the geometry of the solid surface. We herein report a simple and inexpensive method to fabricate superhydrophobic surfaces with the use of mullite whisks (MWs) for the first time. Binary micro-/nano-structural surfaces were created by the incorporation of hydrophilic needlelike MWs with poly( ?-methacryloxypropyltrimethoxysilane) to exhibit hydrophobic behavior, which further showed superhydrophobicity with water contact angle of 152.42? after modified with stearic acid. The wettability variation from hydrophilicity to hydrophobicity and superhydrophobicity during the assembly process are discussed based on the scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and contact-angle system. The superhydrophobicity of the surface could be attributed to the hierarchical microstructure of the rough surface induced by MWs and low surface energy of stearic acid.

  8. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Lyu, Sungnam; Hwang, Woonbong

    2015-11-01

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  9. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.

    PubMed

    Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid

    2009-07-21

    Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one. PMID:19402684

  10. Self-cleaning of superhydrophobic surfaces by spontaneously jumping condensate drops

    NASA Astrophysics Data System (ADS)

    Wisdom, Katrina; Watson, Jolanta; Watson, Gregory; Chen, Chuan-Hua

    2012-11-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a new self-cleaning mechanism, whereby condensate drops spontaneously jump upon coalescence on a superhydrophobic surface, and the merged drop self-propels away from the surface along with the contaminants. The jumping-condensate mechanism is shown to autonomously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by external wind flow. Our findings offer new insights for the development of self-cleaning materials.

  11. TOPICAL REVIEW: Magnetic surface nanostructures

    NASA Astrophysics Data System (ADS)

    Enders, A.; Skomski, R.; Honolka, J.

    2010-11-01

    Recent trends in the emerging field of surface-supported magnetic nanostructures are reviewed. Current strategies for nanostructure synthesis are summarized, followed by a predominantly theoretical description of magnetic phenomena in surface magnetic structures and a review of experimental research in this field. Emphasis is on Fe- or Co-based nanostructures in various low-dimensional geometries, which are studied as model systems to explore the effects of dimensionality, atomic coordination, chemical bonds, alloying and, most importantly, interactions with the supporting substrate on the magnetism. This review also includes a discussion of closely related systems, such as 3d element impurities integrated into organic networks, surface-supported Fe-based molecular magnets, Kondo systems or 4d element nanostructures that exhibit emergent magnetism, thereby bridging the traditional areas of surface science, molecular physics and nanomagnetism.

  12. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention.

    PubMed

    Ditsche-Kuru, Petra; Schneider, Erik S; Melskotte, Jan-Erik; Brede, Martin; Leder, Alfred; Barthlott, Wilhelm

    2011-01-01

    Superhydrophobic surfaces of plants and animals are of great interest for biomimetic applications. Whereas the self-cleaning properties of superhydrophobic surfaces have been extensively investigated, their ability to retain an air film while submerged under water has not, in the past, received much attention. Nevertheless, air retaining surfaces are of great economic and ecological interest because an air film can reduce friction of solid bodies sliding through the water. This opens perspectives for biomimetic applications such as low friction fluid transport or friction reduction on ship hulls. For such applications the durability of the air film is most important. While the air film on most superhydrophobic surfaces usually lasts no longer than a few days, a few semi-aquatic plants and insects are able to hold an air film over a longer time period. Currently, we found high air film persistence under hydrostatic conditions for the elytra of the backswimmer Notonecta glauca which we therefore have chosen for further investigations. In this study, we compare the micro- and nanostructure of selected body parts (sternites, upper side of elytra, underside of elytra) in reference to their air retaining properties. Our investigations demonstrate outstanding air film persistence of the upper side of the elytra of Notonecta glauca under hydrostatic and hydrodynamic conditions. This hierarchically structured surface was able to hold a complete air film under hydrostatic conditions for longer than 130 days while on other body parts with simple structures the air film showed gaps (underside of elytra) or even vanished completely after a few days (sternites). Moreover, the upper side of the elytra was able to keep an air film up to flow velocities of 5 m/s. Obviously the complex surface structure with tiny dense microtrichia and two types of larger specially shaped setae is relevant for this outstanding ability. Besides high air film persistence, the observation of a considerable fluid velocity directly at the air-water interface indicates the ability to reduce friction significantly. The combination of these two abilities makes these hierarchically structured surfaces extremely interesting as a biomimetic model for low friction fluid transport or drag reduction on ship hulls. PMID:21977425

  13. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  14. Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates

    NASA Astrophysics Data System (ADS)

    Qu, Mengnan; Zhao, Guangyu; Wang, Qi; Cao, Xiaoping; Zhang, Junyan

    2008-02-01

    Superhydrophobic surfaces were prepared on Ti/Si substrates via the fabrication of a platinum (Pt) nanowire array. The Pt nanowire array was obtained by dc electrodeposition of Pt into the pores of an anodic aluminium oxide (AAO) template on the substrate followed by the removal of the template. Transmission electron microscopy (TEM) examination demonstrated that all the nanowires have uniform diameter of about 30 nm. Field emission scanning electron microscopy (FE-SEM) showed that the structures at both the micrometre scale and nanometre scale bestowed the prerequisite roughness on the surfaces. The chemical surface modification made the Pt nanowire array superhydrophobic. The surface modified Pt nanowire array exhibited superhydrophobicity even in corrosive solutions over a wide pH range, such as acidic or basic solutions. The results demonstrated that the Pt nanowire array will have good potential applications in the preparation of superhydrophobic surfaces.

  15. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    NASA Astrophysics Data System (ADS)

    Liu, Yuyang; Chen, Xianqiong; Xin, J. H.

    2006-07-01

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite particles were applied to various substrates to mimic the surface microstructures of lotus leaves. Super-hydrophobic surfaces with a water contact angle larger than 150 are obtained, and these super-hydrophobic surfaces are expected to have potential applications for rusting-resistant, anti-fog and self-cleaning treatments.

  16. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.

    PubMed

    Kim, Aeree; Lee, Chan; Kim, Hyungmo; Kim, Joonwon

    2015-04-01

    Frost formation can cause operational difficulty and efficiency loss for many facilities such as aircraft, wind turbines, and outdoor heat exchangers. Self-propelled jumping by condensate droplets on superhydrophobic surfaces delays frost formation, so many attempts have been made to exploit this phenomenon. However, practical application of this phenomenon is currently unfeasible because many processes to fabricate the superhydrophobic surfaces are inefficient and because self-propelled jumping is difficult to be achieved in a humid and low-temperature environment because superhydrophobicity is degraded in these conditions. Here, we achieved significantly effective anti-icing superhydrophobic aluminum. Its extremely low adhesive properties allow self-propelled jumping under highly supersaturated conditions of high humidity or low surface temperature. As a result, this surface helps retard frost formation at that condition. The aluminum was made superhydrophobic by a simple and cost-effective process that is adaptable to any shape. Therefore, it has promise for use in practical and industrial applications. PMID:25782028

  17. Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents.

    PubMed

    Wan, Peng; Wu, Jingyao; Tan, LiLi; Zhang, Bingchun; Yang, Ke

    2013-07-01

    Micro-nanometer scale structure of nubby clusters overlay was constructed on the surface of an AZ31 magnesium alloy by a wet chemical method. The super-hydrophobicity was achieved with a water contact angle of 142 and a sliding angle of about 5. The microstructure and composition of the super-hydrophobic surface were characterized by SEM and FTIR. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to evaluate the corrosion behavior, and the hemocompatibility of the super-hydrophobic surface was investigated by means of hemolytic and platelet adhesion tests. Results showed that the super-hydrophobic treatment could improve the corrosion resistance of magnesium alloys in PBS and inhibit blood platelet adhesion on the surface, which implied excellent hemocompatibility with controlled degradation. PMID:23623110

  18. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.

    PubMed

    Wisdom, Katrina M; Watson, Jolanta A; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S; Chen, Chuan-Hua

    2013-05-14

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  19. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  20. Evaporating behaviors of water droplet on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  1. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    PubMed

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8 and a sliding angle of less than 2. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys. PMID:25559356

  2. Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Tian, Haiping; Yao, Zhaohui; Hao, Pengfei; Jiang, Nan

    2015-09-01

    The drag-reducing property of a superhydrophobic surface is investigated along with its mechanism. A superhydrophobic surface with micro-nanotextures is fabricated and tested using SEM and contact angle measurement. Velocity distributions in the turbulent boundary layer with a superhydrophobic surface and a smooth surface are measured by particle image velocimetry at Re θ = 810, 990, and 1220. An upward lift effect on the velocity profile caused by the rugged air layer on the superhydrophobic surface is observed, which indicates drag reduction. Estimated by the wall shear stress, a drag reduction of 10.1, 20.7, and 24.1 % is observed for Re θ equal to 810, 990, and 1220, respectively. The drag reduction is caused mainly by slip on the interface and modifications in the turbulent structures, and the latter plays a more important role as Re θ increases. Suppressions are observed in turbulence intensities, and reductions in the total Reynolds shear stress T {turb/+} are 2.5, 18.5, and 23.1 % for Re θ = 810, 990, and 1220, respectively. Vortex fields above the superhydrophobic and smooth surfaces at Re θ = 990 are investigated. Vortexes are weakened and lifted upward by the superhydrophobic surface, and the position of the maximum swirling strength is lifted 0.17 δ ( δ is the boundary layer thickness) upward in the wall-normal direction. This modification in turbulence structures contributes significantly to the drag reduction in the turbulent boundary layer flow.

  3. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    PubMed

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat transfer and water collection applications. PMID:26372672

  4. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    PubMed

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5 for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces. PMID:25529561

  5. Laser nanostructuring of materials surfaces

    SciTech Connect

    Zavestovskaya, I N

    2010-12-29

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces. (photonics and nanotechnology)

  6. Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF.

    PubMed

    Scarratt, Liam R J; Hoatson, Ben S; Wood, Elliot S; Hawkett, Brian S; Neto, Chiara

    2016-03-16

    We report the fabrication of both single-scale and hierarchical superhydrophobic surfaces, created by exploiting the spontaneous wrinkling of a rigid Teflon AF film on two types of shrinkable plastic substrates. Sub-100 nm to micrometric wrinkles were reproducibly generated by this simple process, with remarkable control over the size and hierarchy. Hierarchical Teflon AF wrinkled surfaces showed extremely high water repellence (contact angle 172°) and very low contact angle hysteresis (2°), resulting in droplets rolling off the surface at tilt angles lower than 5°. The wrinkling process intimately binds the Teflon AF layer with its substrate, making these surfaces mechanically robust, as revealed by macroscale and nanoscale wear tests: hardness values were close to that of commercial optical lenses and aluminum films, resistance to scratch was comparable to commercial hydrophobic coatings, and damage by extensive sonication did not significantly affect water repellence. By this fabrication method the size of the wrinkles can be reproducibly tuned from the nanoscale to the microscale, across the whole surface in one step; the fabrication procedure is extremely rapid, requiring only 2 min of thermal annealing to produce the desired topography, and uses inexpensive materials. The very low roll-off angles achieved in the hierarchical surfaces offer a potentially up-scalable alternative as self-cleaning and drag-reducing coatings. PMID:26910574

  7. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Chen, X.-Grant

    2015-02-01

    Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  8. Inspired superhydrophobic surfaces by a double-metal-assisted chemical etching route

    SciTech Connect

    Chen, Yu; School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 ; Guo, Zhiguang; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 ; Xu, Jiansheng; Shi, Lei; Li, Jing; Zhang, Yabin

    2012-07-15

    Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170, and the sliding angle of about 0. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ? A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ? The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ? The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied for many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.

  9. Ultrasonic approach for surface nanostructuring.

    PubMed

    Skorb, Ekaterina V; Möhwald, Helmuth

    2016-03-01

    The review is about solid surface modifications by cavitation induced in strong ultrasonic fields. The topic is worth to be discussed in a special issue of surface cleaning by cavitation induced processes since it is important question if we always find surface cleaning when surface modifications occur, or vice versa. While these aspects are extremely interesting it is important for applications to follow possible pathways during ultrasonic treatment of the surface: (i) solely cleaning; (ii) cleaning with following surface nanostructuring; and (iii) topic of this particular review, surface modification with controllably changing its characteristics for advanced applications. It is important to know what can happen and which parameters should be taking into account in the case of surface modification when actually the aim is solely cleaning or aim is surface nanostructuring. Nanostructuring should be taking into account since is often accidentally applied in cleaning. Surface hydrophilicity, stability to Red/Ox reactions, adhesion of surface layers to substrate, stiffness and melting temperature are important to predict the ultrasonic influence on a surface and discussed from these points for various materials and intermetallics, silicon, hybrid materials. Important solid surface characteristics which determine resistivity and kinetics of surface response to ultrasonic treatment are discussed. It is also discussed treatment in different solvents and presents in solution of metal ions. PMID:26382299

  10. A novel fabrication of a superhydrophobic surface with highly similar hierarchical structure of the lotus leaf on a copper sheet

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Wang, Xian; Bin, Jiping; Peng, Chaoyi; Xing, Suli; Wang, Menglei; Xiao, Jiayu; Zeng, Jingcheng; Xie, Yong; Xiao, Ximei; Fu, Xin; Gong, Huifang; Zhao, Dejian

    2013-11-01

    A novel and facile avenue was developed to successfully fabricate a regular hierarchical surface structure on a copper sheet via the combination of polydimethylsiloxane (PDMS) template and chemical etching method in this paper. The as-prepared hierarchical surface structure was comprised of uniform-sized microprotrusions and nanostructures which was similar to the natural lotus leaf. After modified by stearic acid, the surface was covered with a layer of hydrophobic chemical groups and became superhydrophobic. The values of its water contact angle and sliding angle were about 153 and 7, respectively. Its wettability kept rather stable when it was exposed to humid conditions for 3 months. This study provides a new way to fabricate uniform surface microstructures that are highly similar to natural biological surfaces on metal materials.

  11. Evolution and environmental degradation of superhydrophobic aspen and black locust leaf surfaces

    NASA Astrophysics Data System (ADS)

    Tranquada, George Christopher

    The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nanoscale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.

  12. Liquid-body resonance while contacting a rotating superhydrophobic surface.

    PubMed

    Chong, Matthew Lai Ho; Cheng, Michael; Katariya, Mayur; Muradoglu, Murat; Cheong, Brandon Huey-Ping; Zahidi, Alifa Afiah Ahmad; Yu, Yang; Liew, Oi Wah; Ng, Tuck Wah

    2015-11-01

    We advance a scheme in which a liquid body on a stationary tip in contact with a rotating superhydrophobic surface is able to maintain resonance primarily from stick-slip events. With tip-to-surface spacing in the range [Formula: see text] mm for a volume of 10 ?L, the liquid body was found to exhibit resonance independent of the speed of the drum. The mechanics were found to be due to a surface-tension-controlled vibration mode based on the natural frequency values determined. With spacing in the range [Formula: see text] mm imposed for a volume of 10 ?L, the contact length of the liquid body was found to vary with rotation of the SH drum. This was due to the stick-slip events being able to generate higher energy fluctuations causing the liquid-solid contact areas to vary since the almost oblate spheroid shape of the liquid body had intrinsically higher surface energies. This resulted in the natural frequency perturbations being frequency- and amplitude-modulated over a lower frequency carrier. These findings have positive implications for microfluidic sensing. PMID:26577818

  13. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    PubMed

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas. PMID:25906058

  14. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing

    2012-12-01

    The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.

  15. Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces

    NASA Astrophysics Data System (ADS)

    Shafiei, Mehdi; Alpas, Ahmet T.

    2009-11-01

    Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 10 3 mm -2) of conical protuberances with an average height of 10.0 2.0 ?m and a tip radius of 2.5 0.5 ?m. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited "Ni crowns" with a larger radius of 6.0 0.5 ?m on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.

  16. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    SciTech Connect

    Liu Kesong; Li Zhou; Wang Weihua; Jiang Lei

    2011-12-26

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  17. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    PubMed

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms for condensate collection which would ensure continuous operation of the EFE system and which can scalably be applied to industrial condensers. This work provides a comprehensive physical model of the EFE condensation process and offers guidelines for the design of EFE systems to maximize heat transfer. PMID:26110977

  18. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Hurst, Kendall Matthew

    2010-11-01

    The emergence of miniaturization techniques for consumer electronics has brought forth the relatively new and exciting field of microelectromechanical systems (MEMS). However, due to the inherent forces that exist between surfaces at the micro- and nanoscale, scientists and semiconductor manufacturers are still struggling to improve the lifetime and reliability of complex microdevices. Due to the extremely large surface area-to-volume ratio of typical MEMS and microstructured surfaces, dominant interfacial forces exist which can be detrimental to their operational lifetime. In particular, van der Waals, capillary, and electrostatic forces contribute to the permanent adhesion, or stiction , of microfabricated surfaces. This strong adhesion force also contributes to the friction and wear of these silicon-based systems. The scope of this work was to examine the effect of utilizing nanoparticles as the basis for roughening surfaces for the purpose of creating films with anti-adhesive and/or superhydrophobic properties. All of the studies presented in this work are focused around a gas-expanded liquid (GXL) process that promotes the deposition of colloidal gold nanoparticles (AuNPs) into conformal thin films. The GXL particle deposition process is finalized by a critical point drying step which is advantageous to the microelectromechanical systems and semiconductor (IC) industries. In fact, preliminary results illustrated that the GXL particle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of AuNPs deposited onto the surfaces of silicon-based MEMS and tribology test devices were shown to have a dramatic effect on the adhesion of microstructures. In the various investigations, the apparent work of adhesion between surfaces was reduced by 2-4 orders of magnitude. This effect is greatly attributed to the roughening of the typically smooth silicon oxide surfaces which, in turn, dramatically decreases the "real are of contact" between two contacting surfaces. The studies found that AuNP thin films produced using the lowest initial concentrations of nanoparticles in solution produced estimated real contact areas of around 1%, reducing the adhesion of oxidized Si (100) surfaces from about 37 mJ/m2 down to 0.02 mJ/m 2. In addition, the reducing in real contact area effectively reduced the coefficient of static friction between silicon-based surfaces due to the extremely high dependence of stiction on friction and wear at the microscale. This work also investigated methods of permanently immobilizing AuNP-based films on the silicon surfaces of microstructures in order to create more mechanically robust coatings. The use of organic self-assembled monolayers (SAMs) functionalized with tail-groups known to bond to metallic surfaces were effective in producing much more durable coatings as opposed to non-immobilized AuNP films. Chemical vapor deposition (CVD) techniques were also used to coat rough AuNP films with very thin films of silica (SiO2) to create a robust, rough surface. This method was also very effective in creating a durable coating which is capable of reducing the adhesion energy and friction between two microscale surfaces for extended periods of time. Similar CVD techniques were also used to begin investigating the production of alumina nanoparticle-based superhydrophobic films for use in consumer electronics. Overall, the work presented in this dissertation illustrates that engineered nanoparticle-based surface modifications can be extremely effective in the reduction of the inherent interfacial phenomena that exist on microfabricated systems. This work is can potentially lead us into a new age of the miniaturization of mechanical and electronic devices.

  19. Hydrophobic to superhydrophobic surface modification using impacting particulate sprays

    NASA Astrophysics Data System (ADS)

    Lau, Chun Yat; Vuong, Thach; Wang, Jingming; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2014-08-01

    The roughening or structuring of inherently hydrophobic surfaces to possess microscopic and nanoscopic features can transform them to exhibit superhydrophobicity. The use of impacting particulate sprays here eschews specialized reagents and equipments; is simple, inexpensive, and rapid to implement; creates highly repeatable outcomes; and permits selective region transformation via simple masking. With PTFE, the contact angle transforms from 90 to 150, in which SEM examination reveals erosive wear mechanisms that are dependent on the impingement angle. The process tends to cause the sample to bulge upwards from the treated surface due to elongation there, and can be mitigated by using lower impingement angles in the particulate spray. A finite element model created enables this characteristic to be related to the action of locked-in surface traction forces. The use of adhesive bonding to a rigid base is shown to be an alternative method to reduce the bulging. A second finite model developed allows knowledge of the right adhesive needed for this. In developing substrates for biochemical analysis, the approach offers very small possibilities for unintended synergistic interactions.

  20. Fabrication of superhydrophobic textured steel surface for anti-corrosion and tribological properties

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Yang, Jin; Chen, Beibei; Liu, Can; Zhang, Mingsuo; Li, Changsheng

    2015-12-01

    We describe a simple and rapid method to fabricate superhydrophobic textured steel surface with excellent anti-corrosion and tribological properties on S45C steel substrate. The steel substrate was firstly ground using SiC sandpapers, and then polished using diamond paste to remove scratches. The polished steel was subsequently etched in a mixture of HF and H2O2 solution for 30 s at room temperature to obtain the textured steel surface with island-like protrusions, micro-pits, and nano-flakes. Meanwhile, to investigate the formation mechanism of the multiscale structures, the polished steel was immersed in a 3 wt% Nital solution for 5 s to observe the metallographic structures. The multiscale structures, along with low-surface-energy molecules, led to the steel surface that displayed superhydrophobicity with the contact angle of 158 ± 2° and the sliding angle of 3 ± 1°. The chemical stability and potentiodynamic polarization test indicated that the as-prepared superhydrophobic surface had excellent corrosion resistance that can provide effective protection for the steel substrate. The tribological test showed that the friction coefficient of the superhydrophobic surface maintained 0.11 within 6000 s and its superhydrophobicity had no obvious decrease after the abrasion test. The theoretical mechanism for the excellent anti-corrosion and tribological properties on the superhydrophobic surface were also analyzed respectively. The advantages of facile production, anti-corrosion, and tribological properties for the superhydrophobic steel surface make it to be a good candidate in practical applications.

  1. Study on Super-Hydrophobic and Oleophobic Surfaces Prepared by Chemical Adsorption Technique

    NASA Astrophysics Data System (ADS)

    Tsuji, Issei; Ohkubo, Yuji; Ogawa, Kazufumi

    2009-04-01

    Preparation techniques for super-hydrophobic and oleophobic surfaces were studied by forming a fractally roughened surface and preparing a hydrophobic monolayer. In this study, the fractal structure on the surface of an aluminum substrate was formed by combining sand-blasting with electrolytical etching. Then, a hydrophobic monolayer was prepared on the roughened surface, without decreasing roughness. The surface of the treated substrate can be evaluated by contact angle measurement and field emission scanning electron microscopy (FE-SEM). The surface treated by a technique combining chemical adsorption, sandblasting, and electrolytical etching was super-hydrophobic and highly oleophobic.

  2. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    NASA Astrophysics Data System (ADS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-12-01

    Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150 and hysteresis less than 10, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  3. Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability

    NASA Astrophysics Data System (ADS)

    Song, Jin-long; Xu, Wen-ji; Liu, Xin; Lu, Yao; Sun, Jing

    2012-09-01

    Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6? water contact angle and 2? tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.

  4. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing

    NASA Astrophysics Data System (ADS)

    Steele, Adam; Nayak, Barada K.; Davis, Alexander; Gupta, Mool C.; Loth, Eric

    2013-11-01

    A novel method of fabricating titanium superhydrophobic surfaces by ultrafast laser irradiation is reported. The ultrafast laser irradiation creates self-organized microstructure superimposed with nano-scale roughness, after which a fluoropolymer coating is applied to lower the surface energy of the textured surface and achieve superhydrophobicity. The focus of this study is to investigate abrasion effects on this mechanically durable superhydrophobic surface. The mechanical durability is analyzed with linear abrasion testing and microscopy imaging. Linear abrasion tests indicate that these surfaces can resist complete microstructure failure up to 200 abrasion cycles and avoid droplet pinning up to ten abrasion cycles at 108.4 kPa applied pressure, which roughly corresponds to moderate to heavy sanding or rubbing in the presence of abrasive particles. The wear mechanisms are also investigated and the primary mechanism for this system is shown to be abrasive wear with fatigue by repeated plowing. Although these results demonstrate an advancement in mechanical durability over the majority of existing superhydrophobic surfaces, it exemplifies the challenge in creating superhydrophobic surfaces with suitable mechanical durability for harsh applications, even when using titanium.

  5. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    PubMed

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of <3.5°) in the Cassie-Baxter wetting regime, considerable dynamic water repellency (with perfect bouncing of a water droplet dropped from an impact height of 30 mm), and good optical transparency (>82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water. PMID:25688451

  6. Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Bai, Yuan; Jin, Jingfu; Tian, Limei; Han, Zhiwu; Ren, Luquan

    2015-11-01

    Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, a superhydrophobic surface was achieved successfully by a chemical immersion process. Here, 304 SS (stainless steel) was used as substrates and a micro-nano hierarchical structure was obtained by chemical etching with a mixed solution containing ferric chloride. The results showed that the water contact angle (WAC) decreased obviously due to surface morphology changing after chemical etching process. However, we obtained a superhydrophobic surface with a WAC of 158.3 ± 2.8° after modification by DTS (CH3(CH2)11Si(OCH3)3). Furthermore, the superhydrophobic surface showed an excellent anti-frosting character compared to pure staining steel. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS and water contact angle measurements. This method could provide a facile, low-cost and stable route to fabricate a large-area superhydrophobic surface with anti-frosting for application in various environments including in humid condition.

  7. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.

    PubMed

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-10-01

    On the basis of the icing-delay performance and ice adhesion strength, the anti-icing potential of the superhydrophobic surface has been well-investigated in the past few years. The present work mainly emphasized the investigations of ice nucleation and growth to fully explore the anti-icing potential of the superhydrophobic surface. We took the various surfaces ranging from hydrophilic to superhydrophobic as the research objects and, combining the classical nucleation theory, discussed the ice nucleation behaviors of the water droplets on these sample surfaces under the condition of supercooling. Meanwhile, the macroscopical growth processes of ice on these surfaces were analyzed on the basis of the growth mechanism of the ice nucleus. It was found that the superhydrophobic surface could greatly reduce the solid-liquid interface nucleation rate, owing to the extremely low actual solid-liquid contact area caused by the composite micro-nanoscale hierarchical structures trapping air pockets, leading to the bulk nucleation dominating the entire ice nucleation at the lower temperatures. Furthermore, ice on the superhydrophobic surface possessed a lower macroscopical growth velocity as a result of the less ice nucleation rate and the insulating action of the trapped air pockets. PMID:26367109

  8. Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization.

    PubMed

    Nystrm, Daniel; Lindqvist, Josefina; Ostmark, Emma; Antoni, Per; Carlmark, Anna; Hult, Anders; Malmstrm, Eva

    2009-04-01

    Superhydrophobic and self-cleaning cellulose surfaces have been obtained via surface-confined grafting of glycidyl methacrylate using atom transfer radical polymerization combined with postmodification reactions. Both linear and branched graft-on-graft architectures were used for the postmodification reactions to obtain highly hydrophobic bio-fiber surfaces by functionalization of the grafts with either poly(dimethylsiloxane), perfluorinated chains, or alkyl chains, respectively. Postfunctionalization using alkyl chains yielded results similar to those of surfaces modified by perfluorination, in terms of superhydrophobicity, self-cleaning properties, and the stability of these properties over time. In addition, highly oleophobic surfaces have been obtained when modification with perfluorinated chains was performed. PMID:20356007

  9. Irradiation of poly(tetrafluoroethylene) surfaces by CF4 plasma to achieve robust superhydrophobic and enhanced oleophilic properties for biological applications.

    PubMed

    Salapare, Hernando S; Suarez, Beverly Anne T; Cosiero, Hannah Shamina O; Bacaoco, Miguel Y; Ramos, Henry J

    2015-01-01

    Poly(tetrafluoroethylene) (PTFE) was irradiated by CF4 plasma produced in the gas discharge ion source facility to produce stable and robust superhydrophobic surfaces and to enhance the materials' oleophilic property for biological applications. The characterizations employed on the samples are contact angle measurements, analysis of the surface morphology (scanning electron microscopy), surface roughness measurements (atomic force microscopy) and analysis of the surface chemistry (Fourier transform infrared spectroscopy). Superhydrophobic behavior with water contact angles as high as 156 was observed. The wettability of all the treated samples was found to be stable in time as evidenced by the statistically insignificant differences in the hysteresis contact angles. The level of enhanced hydrophobicity depended on the plasma energies (i.e. irradiation times, discharge current, and discharge voltage); higher plasma energies produced surfaces with high hydrophobicity. The plasma treatment also enhanced the oleophilic property of the materials' surface as evidenced by the decrease in the PDMS-oil contact angle from 33 to as low as 10. The superhydrophobicity of the modified PTFE and the enhancement of its oleophilic property were due to (1) the changes in the roughness of the surface, (2) the formation of nanoparticles or nanostructures on the surface, and (3) the changes in the surface chemistry. PMID:25491987

  10. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  11. Insulating oxide surfaces and nanostructures

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Noguera, Claudine

    2016-03-01

    This contribution describes some peculiarities of the science of oxide surfaces and nanostructures and proposes a simple conceptual scheme to understand their electronic structure, in the spirit of Jacques Friedel's work. Major results on the effects of non-stoichiometry and polarity are presented, for both semi-infinite surfaces and ultra-thin films, and promising lines of research for the near future are sketched. xml:lang="fr"

  12. Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces.

    PubMed

    Chang, Yafang; Liu, Xuying; Yang, Huige; Zhang, Li; Cui, Zhe; Niu, Mingjun; Liu, Hongzhi; Chen, Jinzhou

    2016-03-14

    The solution-processing fabrication of superhydrophobic surfaces is currently intriguing, owing to high-efficiency, low cost, and energy-consuming. Here, a facile nonsolvent-assisted process was proposed for the fabrication of the multi-scaled surface roughness in polylactide (PLA) films, thereby resulting in a significant transformation in the surface wettability from intrinsic hydrophilicity to superhydrophobicity. Moreover, it was found that the surface topographical structure of PLA films can be manipulated by varying the compositions of the PLA solutions. And the samples showed superhydrophobic surfaces as well as high melting enthalpy and crystallinity. In particular, a high contact angle of 155.8° together with a high adhesive force of 184 μN was yielded with the assistance of a multi-nonsolvent system, which contributed to the co-existence of micro-/nano-scale hierarchical structures. PMID:26860288

  13. Fabricating an enhanced stable superhydrophobic surface on copper plates by introducing a sintering process

    NASA Astrophysics Data System (ADS)

    Hu, Jinyi; Yuan, Wei; Yan, Zhiguo; Zhou, Bo; Tang, Yong; Li, Zongtao

    2015-11-01

    The superhydrophobic surface has the potential for use in functional applications. This study reports a novel method for coupling a sintering process with a traditional technique based on the solution-immersion method to prepare a stable superhydrophobic surface. The use of a sintering process aids in the enhancement of the adhesive strength and acid resistance of the surface structure. The advantage of using this method lies in its flexibility in regulating the processing parameters and functional behaviours. The influences of different processing parameters were experimentally investigated. The surface treated with a sintering process remains superhydrophobic with a contact angle of >150° after immersion in an acid solution for 120 h. The sintered surface maintains good integrity after experiencing ultrasonic vibration for 5 min. The results indicate that the sintering temperature must be optimized to increase the adhesive strength and maintain sufficient hydrophobicity. The modification time is an important factor related to the level of hydrophobicity.

  14. Facile fabrication of superhydrophobic surface with micro/nanoscale binary structures on aluminum substrate

    NASA Astrophysics Data System (ADS)

    Guo, Yonggang; Wang, Qihua; Wang, Tingmei

    2011-04-01

    The present work reports a simple method to produce the aluminum superhydrophobic surface based on an interface reaction between an aluminum foil and zinc aqueous solution. The products were characterized by field-emission scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectrum. The field-emission scanning electron microscopy images show that the coating surface is composed of micro/nanoscale binary structure, which is similar to the structure of lotus leaf. The wettability of the coating surface was also investigated. It was found that after treatment with stearic acid, the wettability of the aluminum foil changed from superhydrophilic to water-repellent superhydrophobic. The complex micro/nanoscale binary structures along with the low surface energy lead to the high surface superhydrophobicity.

  15. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng; Zhou, Zhi Ping

    2014-03-01

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 1652 with a lowest contact angle hysteresis as low as 52. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  16. Designing superhydrophobic surfaces using fluorosilsesquioxane-urethane hybrid and porous silicon gradients

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; McInnes, Steven J. P.; Choudhury, Namita R.; Dutta, Naba K.; Voelcker, Nicolas H.

    2008-12-01

    Here we describe a new class of near superhydrophobic surfaces formed using fluorinated polyhedral oligosilsesquioxane (FluoroPOSS) urethane hybrids and porous silicon gradients (pSi). We demonstrate that the surface segregation behavior of the hydrophobic fluoro component can be controlled by the type and nature of chain extender of the urethane and resultant hydrophobic association via intra or intermolecular aggregation. The surface film formed exhibits near superhydrophobicity. This work has significant potential for applications in antifouling and self-cleaning coatings, biomedical devices, microfluidic systems and tribological surfaces.

  17. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  18. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.

    PubMed

    Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

    2015-01-14

    Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion. PMID:25522296

  19. Fabrication of a superhydrophobic surface from porous polymer using phase separation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfeng; Xiao, Xinyan; Shi, Yinlong; Wan, Caixia

    2014-04-01

    The present work reports a simple method to fabricate superhydrophobic porous polymeric surfaces by a phase separation process. The method involves the in situ polymerization of butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) in the presence of co-porogens of 1,4-butanediol (BDO) and N-methyl-2-pyrrolidone (NMP) to afford superhydrophobic surfaces with the micro/nano roughness structure. The influences of the polymerization mixture on the morphology and hydrophobicity were investigated by adjusting the composition of the co-porogens and the mass ratio of monomers to co-porogens, respectively. And a precise description of the underlying mechanism of the microstructure formation was presented. The as-prepared surface shows a superhydrophobicity with water contact angle (WCA) of 159.5° and low sliding angle (SA) of 3.1°. Moreover, the superhydrophobic surface shows good chemical stability with better resistance to acid, alkali or salt aqueous solutions and excellent thermal stability. The method is simple and low-cost and can be used for the preparation of the self-cleaning superhydrophobic surfaces.

  20. Preparation of superhydrophobic nanodiamond and cubic boron nitride films

    SciTech Connect

    Zhou, Y. B.; Liu, W. M.; Wang, P. F.; Yang, Y.; Ye, Q.; He, B.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T.; Zou, Y. S.

    2010-09-27

    Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150 deg. and a sliding angle smaller than 10 deg. were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.

  1. Hemocompatibility of Polymeric Nanostructured Surfaces

    PubMed Central

    Leszczak, Victoria; Smith, Barbara S.; Popat, Ketul C.

    2013-01-01

    Tissue integration is an important property when inducing transplant tolerance, however, the hemocompatibility of the biomaterial surface also plays an important role in the ultimate success of the implant. Therefore, in order to induce transplant tolerance, it is critical to understand the interaction of blood components with the material surfaces. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets and clotting kinetics of whole blood on flat polycaprolactone (PCL) surfaces, nanowire (NW) surfaces and nanofiber (NF) surfaces. Previous studies have shown that polymeric nanostructured surfaces improve cell adhesion, proliferation and viability; however it is unclear how these polymeric nanostructured surfaces interact with the blood and its components. Protein adsorption results indicate that while there were no significant differences in total albumin adsorption on PCL, NW and NF surfaces, NW surfaces had higher total fibrinogen and immunoglobulin-G adsorption compared to NF and PCL surfaces. In contrast, NF surfaces had higher surface FIB and IgG adsorption compared to PCL and NW surfaces. Platelet adhesion and viability studies show more adhesion and clustering of platelets on the NF surfaces as compared to PCL and NW surfaces. Platelet activation studies reveal that NW surfaces have the highest percentage of unactivated platelets, whereas NF surfaces have the highest percentage of fully activated platelets. Whole blood clotting results indicate that NW surfaces maintain an increased amount of free hemoglobin during the clotting process compared to PCL and NF surface, indicating less clotting and slower rate of clotting on their surfaces. PMID:23848447

  2. Fabrication of superhydrophobic surfaces on flexible fluorinated foils by using dual-scale patterning

    NASA Astrophysics Data System (ADS)

    Ferchichi, A. K.; Panabire, M.; Desplats, O.; Gourgon, C.

    2014-04-01

    This paper investigates the interest of combining NanoImprint Lithography with plasma treatment in order to easily create dual-scale superhydrophobic surfaces on flexible fluorinated foils. The studies were led on FEP and PCTFE materials with conditions compatible with standard NIL equipments. Different pattern geometries, densities and aspect ratio have been investigated and we show that patterning at a nanometer scale improves hydrophobic behaviour compared to microstructuration. Water-contact angle (WCA) of 154 (and water contact angle hysteresis of 11 2) were measured, which corresponds to a superhydrophobic surface. However, patterning large surfaces at nanoscale with a high aspect ratio is more difficult to achieve and limits the use of such a process for industrial applications. So, we have decided to induce a nanopatterning on microstructures previously printed using plasma etching. This plasma roughening leads to a highly superhydrophobic surface and WCA values as high as 170.

  3. Technique for needle-free drop deposition: Pathway for precise characterization of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Waghmare, Prashant R.; Das, Siddhartha; Mitra, Sushanta K.

    2013-11-01

    The most important step for characterizing the wettability of a surface is to deposit a water drop on the surface and measure the contact angle made by the drop on the surface. This innocuously simple process relies on bringing a needle holding the water drop in close proximity to the surface, with a ``desire'' that the drop would spontaneously detach from the needle and get deposited on the surface. Problem occurs when the surface is superhydrophobic, expressing an ``unwillingness'' to ``see'' the water drop in preference to a much more ``water-loving'' needle surface. There exists no solution to this problem, and surfaces are invariably characterized where the drop-needle assembly contacts the superhydrophobic surface. Such a configuration will always lead to an incorrect estimation of the contact angle, as there is no certainty of the existence of the drop-surface contact. Here we shall discuss our recently invented technique, where we solve this long-standing problem-we indeed ensure a needle-free drop in contact with the superhydrophobic surface, thereby ascertaining precise determination of the contact angle. The successful application of the technique will address a major headache of the big research community interested in science and technology of superhydrophobic surfaces.

  4. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf

    NASA Astrophysics Data System (ADS)

    Lin, Jinyou; Cai, Yu; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Wang, Moran

    2011-03-01

    Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and hydrophobicity. The PS fibrous mats containing 14.3 wt% silica nanoparticles showed a stable superhydrophobicity with a water contact angle as high as 157.2, exceeding that (147) of the silver ragwort leaf and approaching that (160) of the lotus leaf. The superhydrophobicity was explained by the hierarchical surfaces increasing the surface roughness which trapped more air under the water droplets that fell on the fibers.Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and hydrophobicity. The PS fibrous mats containing 14.3 wt% silica nanoparticles showed a stable superhydrophobicity with a water contact angle as high as 157.2, exceeding that (147) of the silver ragwort leaf and approaching that (160) of the lotus leaf. The superhydrophobicity was explained by the hierarchical surfaces increasing the surface roughness which trapped more air under the water droplets that fell on the fibers. Electronic supplementary information (ESI) available: Preparation procedure and characterization of microfibrous polystyrene mats. See DOI: 10.1039/c0nr00812e

  5. Fabrication of superhydrophobic surfaces with poly(furfuryl alcohol)/multi-walled carbon nanotubes composites

    NASA Astrophysics Data System (ADS)

    Men, Xue-Hu; Zhang, Zhao-Zhu; Song, Hao-Jie; Wang, Kun; Jiang, Wei

    2008-02-01

    Superhydrophobic films of poly(furfuryl alcohol)/multi-walled carbon nanotubes (PFA/MWNTs) composites have been obtained by using fluorocarbon-modified MWNTs (MWNT-OOCC 7F 15), PFA, and PTFE with a simple preparation method. The prepared films showed both high contact angle and small sliding angle for water droplets. The chemical compositions and microstructures of the resultant film surfaces were also investigated by means of infrared spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope, respectively. Both the formed multiscale roughness structures and the lower surface energy play an important role in creating the superhydrophobic surfaces of PFA/MWNTs composites.

  6. Nonfunctionalized Polydimethyl Siloxane Superhydrophobic Surfaces Based on Hydrophobic-Hydrophilic Interactions

    SciTech Connect

    Polizos, Georgios; Tuncer, Enis; Qiu, Xiaofeng; Aytug, Tolga; Kidder, Michelle; Messman, Jamie M; Sauers, Isidor

    2011-01-01

    Superhydrophobic surfaces based on polydimethyl siloxane (PDMS) were fabricated using a 50:50 PDM-poly(ethylene glycol) (PEG) blend. PDMS was mixed with PEG, and incomplete phase separation yielded a hierarchic structure. The phase-separated mixture was annealed at a temperature close to the crystallization temperature of the PEG. The PEG crystals were formed isothermally at the PDMS/PEG interface, leading to an engineered surface with PDMS spherulites. The resulting roughness of the surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDMS spherulites, a few micrometers in diameter observed from SEM images, were found to have an undulated (rippled) surface with nanometer-sized features. The combination of micrometer- and nanometer-sized surface features created a fractal surface and increased the water contact angle (WCA) of PDMS more than 60, resulting in a superhydrophobic PDMS surface with WCA of >160 degrees. The active surface layer for the superhydrophobicity was approximately 100 mu m thick, illustrating that the material had bulk superhydrophobicity compared to conventional fluorocarbon or fluorinated coated rough surfaces. Theoretical analysis of the fractal surface indicates that the constructed surface has a fractal dimension of 2.5, which corresponds to the Apollonian sphere packing.

  7. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.

    PubMed

    Xu, Lebo; Karunakaran, Raghuraman G; Guo, Jia; Yang, Shu

    2012-02-01

    We study the nonwettability and transparency from the assembly of fluorosilane modified silica nanoparticles (F-SiO(2) NPs) via one-step spin-coating and dip-coating without any surface postpassivation steps. When spin-coating the hydrophobic NPs (100 nm in diameter) at a concentration ≥ 0.8 wt % in a fluorinated solvent, the surface exhibited superhydrophobicity with an advancing water contact angle greater than 150° and a water droplet (5 μL) roll-off angle less than 5°. In comparison, superhydrophobicity was not achieved by dip-coating the same hydrophobic NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that NPs formed a nearly close-packed assembly in the superhydrophobic films, which effectively minimized the exposure of the underlying substrate while offering sufficiently trapped air pockets. In the dip-coated films, however, the surface coverage was rather random and incomplete. Therefore, the underlying substrate was exposed and water was able to impregnate between the NPs, leading to smaller water contact angle and larger water contact angle hysteresis. The spin-coated superhydrophobic film was also highly transparent with greater than 95% transmittance in the visible region. Further, we demonstrated that the one-step coating strategy could be extended to different polymeric substrates, including poly(methyl methacrylate) and polyester fabrics, to achieve superhydrophobicity. PMID:22292419

  8. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.

    PubMed

    Xue, Chao-Hua; Ji, Xue-Qing; Zhang, Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-08-21

    Superhydrophobic surfaces on PET textiles were fabricated by combined bioinspiration from the strong adhesion of marine mussels and the two-scale structure of lotus leaves under mild conditions. Dopamine can spontaneously polymerize in alkaline aqueous solution to form a thin adhesive layer of polydopamine (PDA) wrapping on the micro-scale fibers. The as-formed thin PDA layer worked as a reactive template to generate PDA nanoparticles decorated on the fiber surfaces, imparting the textiles with excellent UV-shielding properties as well as a hierarchical structure similar to the morphology of the lotus leaf. After further modification with perfluorodecyl trichlorosilane, the textiles turned superhydrophobic with a water contact angle higher than 150. Due to the strong adhesion of PDA to a wide range of materials, the present strategy may be extendable to fabrication of superhydrophobic surfaces on a variety of other substrates. PMID:26222622

  9. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Hua; Ji, Xue-Qing; Zhang, Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-08-01

    Superhydrophobic surfaces on PET textiles were fabricated by combined bioinspiration from the strong adhesion of marine mussels and the two-scale structure of lotus leaves under mild conditions. Dopamine can spontaneously polymerize in alkaline aqueous solution to form a thin adhesive layer of polydopamine (PDA) wrapping on the micro-scale fibers. The as-formed thin PDA layer worked as a reactive template to generate PDA nanoparticles decorated on the fiber surfaces, imparting the textiles with excellent UV-shielding properties as well as a hierarchical structure similar to the morphology of the lotus leaf. After further modification with perfluorodecyl trichlorosilane, the textiles turned superhydrophobic with a water contact angle higher than 150°. Due to the strong adhesion of PDA to a wide range of materials, the present strategy may be extendable to fabrication of superhydrophobic surfaces on a variety of other substrates.

  10. Super-hydrophobic surfaces of SiO?-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    PubMed

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0 to 153 and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. PMID:25585284

  11. Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil

    NASA Astrophysics Data System (ADS)

    Qu, Mengnan; He, Jinmei; Cao, Biyun

    2010-10-01

    Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

  12. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Zhang, Milin; Zhai, Jin; Wang, Jun; Jiang, Lei

    2008-05-01

    A facile method was utilized for the construction of the bioinspired superhydrophobic Mg-Li alloy surfaces with peonylike micronanoscale hierarchical structures. The resultant materials were characterized by scanning electron microscope, x-ray photoelectron spectroscopy, and water contact angle measurements. The obtained Mg-Li alloy surfaces presented the dramatically improved corrosion resistance and long-term stable superhydrophobic properties with a static water contact angle of about 160 and a small sliding angle of less than 5, which may extend the practical application of Mg-Li alloys in industrial and high-technology fields.

  13. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    PubMed

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-01

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150 and lower than 25, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure. PMID:25625787

  14. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to

  15. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  16. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Fang, Yao; Huo, Jinglan; Hou, Xun

    2015-06-18

    A simple and one-step method to form a rough ZnO layer consisting of micro/nanoscale hierarchical structures via direct femtosecond laser ablation of the Zn surface is reported for the first time. The resultant surfaces show switchable wettability between superhydrophobicity and quasi-superhydrophilicity via alternate UV irradiation and dark storage. PMID:25987485

  17. Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition.

    PubMed

    Rezayi, Toktam; Entezari, Mohammad H

    2016-02-01

    Fabrication of suitable roughness is a fundamental step for acquiring superhydrophobic surfaces. For this purpose, a deposition of ZnO nanoparticles on Al surface was carried out by simple immersion and ultrasound approaches. Then, surface energy reduction was performed using stearic acid (STA) ethanol solution for both methods. The results demonstrated that ultrasound would lead to more stable superhydrophobic Al surfaces (STA-ZnO-Al-U) in comparison with simple immersion method (STA-ZnO-Al-I). Besides, etching in HCl solution in another sample was carried out before ZnO deposition for acquiring more mechanically stable superhydrophobic surface. The potentiodynamic measurements demonstrate that etching in HCl solution under ultrasound leads to superhydrophobic surface (STA-ZnO-Al(E)-U). This sample shows remarkable decrease in corrosion current density (icorr) and long-term stability improvement versus immersion in NaCl solution (3.5%) in comparison with the sample prepared without etching (STA-ZnO-Al-U). Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed a more condense and further particle deposition on Al substrate when ultrasound was applied in the system. The crystallite evaluation of deposited ZnO nanoparticles was carried out using X-ray diffractometer (XRD). Finally, for STA grafting verification on Al surface, Fourier transform infrared in conjunction with attenuated total reflection (FTIR-ATR) was used as a proper technique. PMID:26513735

  18. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties.

    PubMed

    Wang, Nan; Xiong, Dangsheng; Deng, Yaling; Shi, Yan; Wang, Kun

    2015-03-25

    A superhydrophobic steel surface was prepared through a facile method: combining hydrogen peroxide and an acid (hydrochloric acid or nitric acid) to obtain hierarchical structures on steel, followed by a surface modification treatment. Empirical grid maps based on different volumes of H2O2/acid were presented, revealing a wettability gradient from "hydrophobic" to "rose effect" and finally to "lotus effect". Surface grafting has been demonstrated to be realized only on the oxidized area. As-prepared superhydrophobic surfaces exhibited excellent anti-icing properties according to the water-dripping test under overcooled conditions and the artificial "steam-freezing" (from 50 °C with 90% humidity to the -20 °C condition) test. In addition, the surfaces could withstand peeling with 3M adhesive tape at least 70 times with an applied pressure of 31.2 kPa, abrasion by 400 grid SiC sandpaper for 110 cm under 16 kPa, or water impacting for 3 h without losing superhydrophobicity, suggesting superior mechanical durability. Moreover, outstanding corrosion resistance and UV-durability were obtained on the prepared surface. This successful fabrication of a robust, anti-icing, UV-durable, and anticorrosion superhydrophobic surface could yield a prospective candidate for various practical applications. PMID:25749123

  19. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.

    PubMed

    Wu, Xufeng; Shi, Gaoquan

    2006-06-15

    The present work reports a simple and economic route for production and characterization of stable superhydrophobic surfaces from thin copper layers coated on arbitrary solid substrates. The thin copper layer was anodized in a 2 M aqueous solution of potassium hydroxide to form a thin film of copper hydroxide nanoneedles; then the film was reacted with n-dodecanethiol to form a thermally stable Cu(SC12H25)2 superhydrophobic coating. The contact angle of the modified nanoneedle surface was higher than 150 degrees , and its tilt angle was smaller than 2 degrees . Furthermore, the surface fabricated on copper foil kept its superhydrophobic property after heating at 160 degrees C in air for over 42 h. This technique has also been applied for fabrication of copper wire with superhydrophobic submicrofiber coating to mimic water strider legs. The maximal supporting force of the superhydrophobic copper column has also been investigated in comparison to real water striders. PMID:16771392

  20. Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Fang, Liang; Tang, An-qiong; Huang, Qiu-liu; Hu, Jia; Mao, Jian-hui; Bai, Ge; Bai, Huan

    2011-10-01

    A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 1.2, and the sliding angle was 5. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.

  1. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Che, Yanhui; Liu, Yanhua; Qiang, Xiaohu; Wang, Yanping

    2013-10-01

    This work develops a facile and environment-friendly method for preparing the superhydrophobic aluminium alloy surface with excellent corrosion resistance. The superhydrophobic aluminium alloy surface is fabricated by the boiling water treatment and stearic acid (STA) modification. Results show that the boiling water treatment endows the aluminium alloy surface with a porous and rough structure, while STA modification chemically grafts the long hydrophobic alkyl chains onto the aluminium alloy surface. Just grounded on the micro- and nano-scale hierarchical structure along with the hydrophobic chemical composition, the superhydrophobic aluminium alloy surface is endued the excellent corrosion resistance.

  2. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    NASA Astrophysics Data System (ADS)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  3. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ?152 with contact angle hysteresis of around 3-4 have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12), when percent composition of methanol reaches to 28%.

  4. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface

    NASA Astrophysics Data System (ADS)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Yuan, Yuan; Zhao, Xuetong; Zhuang, Aoyun; Zhang, YiYi

    2015-03-01

    Aluminum is one of the most widely used metals in transmission lines. Accumulation of ice on aluminum may cause serious consequences such as tower collapse and power failure. Here we develop a method to fabricate a coral-like superhydrophobic surface to improve its anti-icing performance via chemical etching and hot-water treatment. The as-prepared surface exhibited superhydrophobicity with a contact angle (CA) of 164.8 ± 1.1° and the sliding angle smaller than 1°. The static and dynamic anti-icing behaviors of the superhydrophobic surface in different conditions were systematically investigated using a self-made device and artificial climate laboratory. Results show that the coral-like superhydrophobic structure displayed excellent anti-icing property. The water droplet remained unfrozen on the as-prepared surface at -6 °C for over 110 min. 71% of the surface was free of ice when exposed in "glaze ice" for 30 min. This investigation proposed a new way to design an anti-icing surface which may have potential future applications in transmission lines against ice accumulation.

  5. A versatile cost-effective and one step process to engineer ZnO superhydrophobic surfaces on Al substrate

    NASA Astrophysics Data System (ADS)

    Siddaramanna, Ashoka; Saleema, N.; Sarkar, D. K.

    2014-08-01

    Multifunctional superhydrophobic surfaces based on photocatalytic material, ZnO have generated significant research interest from both fundamental and potential applications. Superhydrophobic ZnO surfaces are usually made in multi steps by creating rough surface and subsequent hydrophobization by low-surface-energy materials. Herein, a simple and one step chemical bath deposition has been developed to prepare superhydrophobic ZnO surfaces on aluminum substrate. The aluminum surfaces covered with randomly distributed ZnO particles can not only present multiscale surface roughness, but also readily coordinate with fatty acid, leading to special wettability. The contact angle of the resulting superhydrophobic surface reaches up to 165 2 and contact angle hysteresis of 4. The contact angle and contact angle hysteresis variation as a function of particle size has been discussed systematically based on surface morphology.

  6. Characterization of Si Nanostructured Surfaces

    SciTech Connect

    Brueck, S.R.J.; Gee, James M.; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texturing of Si to enhance absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broadband reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large ({approximately}42 cm{sup 2}) area solar cells, Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350-680 mu), but significantly higher IR (700-1200 nm) efficiency.

  7. Self-comparison measurement for slippage on superhydrophobic surfaces based on the wetting transition

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhou, Ming; Ye, Xia; Cai, Lan

    2010-11-01

    This paper describes a self-comparison measuring method for the slip length of fluid flow over superhydrophobic surfaces consisting of a pillar array based on the wetting transition. The wetting transition of the liquid resting on a superhydrophobic surface in the measuring course may lead to the disappearance of the slippage effect, which can be used to measure the slip length before the wetting transition. Based on this feature, the slip length formula for this measuring method is deduced. Then, to verify this method, a rheological experiment for 70 wt% glycerin solution flow over a superhydrophobic surface with carbon nanotube (CNT) forest was carried out on a commercial rheological system with plate-and-plate configuration. Results show that even on the CNT-coated surface that can induce little slip length, the experimental slip length is still on the same scale as the theoretical one. This measuring method can be used to measure the slip length of liquid flow over the superhydrophobic surface consisting of a pillar array with good flexibility.

  8. More evidence of the crucial roles of surface superhydrophobicity in free and safe maneuver of water strider

    NASA Astrophysics Data System (ADS)

    Su, Yewang; He, Shijie; Ji, Baohua; Huang, Yonggang; Hwang, Keh-Chih

    2011-12-01

    This letter presents a study of the effect of surface superhydrophobicity on piercing force and detaching force of water strider's leg when it vertically contact with water surface. We showed that in contrast to the parallel contact of the leg with water at which the piercing force is insensitive to the contact angle which raised much debate on the functions of superhydrophobicity of water strider's leg, the piercing force of the vertical contact is, however, very sensitive to the contact angle, which then suggests the surface superhydrophobicity is indeed crucial for water strider's free and safe activities on water surface.

  9. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.

    PubMed

    Boinovich, Ludmila; Emelyanenko, Alexandre M

    2014-10-28

    The study of the adhesion of solid and liquid aqueous phases to superhydrophobic surfaces has become an attractive topic for researchers in various fields as a vital step in the design of icephobic coatings. The analysis of the available results shows that the experimentally measured values of adhesion strength for superhydrophobic substrates, which in some cases are quite small, are still essentially higher than might be expected from the portion of the actual wetted area. In this study we have considered the peculiarities of the three-phase contact zone between sessile supercooled water or ice droplets and a superhydrophobic coating at negative temperatures (below 0 C) and during the water-ice phase transition. Two types of superhydrophobic coatings with very different textures were used to analyze the evolution of shape parameters of a sessile water droplet during droplet cooling and freezing. It was shown that the evolution of the contact angle and droplet contact diameter of a water droplet deposited on a superhydrophobic surface does not undergo essential changes when the droplet is cooled simultaneously with the substrate and the surrounding environment, and the humidity is maintained close to 100% during the cooling process. However, the phase transition from supercooled water to ice droplets leads to the growth of a metastable iced meniscus and a frost halo in the vicinity of the three-phase contact zone. The meniscus effectively increases the area of adhesive contact between the droplet and the substrate. This phenomenon is intrinsically related to the release of the heat of crystallization and is responsible for the enhancement of adhesion to a superhydrophobic substrate upon droplet transition from supercooled water to ice. At the same time, it was shown that the metastable state of the above meniscus leads to its spontaneous sublimation during exposure at negative temperatures. PMID:25286023

  10. Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers.

    PubMed

    Costa, Ana M S; Alatorre-Meda, Manuel; Alvarez-Lorenzo, Carmen; Mano, Joo F

    2015-08-12

    Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes. PMID:25764987

  11. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  12. SERS optrode as a "fishing rod" to direct pre-concentrate analytes from superhydrophobic surfaces.

    PubMed

    Fan, Meikun; Cheng, Fansheng; Wang, Cong; Gong, Zhengjun; Tang, Changyu; Man, Changzhen; Brolo, Alexandre G

    2015-02-01

    SERS optrodes were used to "fish" aqueous drops from superhydrophobic surfaces. The technique led to an improvement of 2-3 orders of magnitude in the lowest detectable amount of the Raman probe nile blue A, reaching 25 fg (34 attomoles). Further tests run on samples containing pesticide revealed that 20 pg of triazophos could be clearly detected from a single drop. PMID:25531897

  13. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.

    PubMed

    Xu, Qian Feng; Liu, Yang; Lin, Fang-Ju; Mondal, Bikash; Lyons, Alan M

    2013-09-25

    Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated. PMID:23889192

  14. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating

    NASA Astrophysics Data System (ADS)

    Zeng, Ou; Wang, Xian; Yuan, Zhiqing; Wang, Menglei; Huang, Juan

    2015-09-01

    A simple and low cost approach was developed to fabricate a superhydrophobic surface on copper foil. The oxidation and etching of the copper foil surface were promoted in NH4HCO3 solution using a water and ethanol admixture as a component solvent. After 28 h in this solution, a hydrophilic rough surface structure was obtained on the copper foil surface. With modification using a paraffin wax coating, the hydrophilic rough copper surface changed to become hydrophobic or superhydrophobic. The surface morphology and wettability were characterized by scanning electron microscopy (SEM) and contact angle measurements, respectively. When the optimum concentration of paraffin wax was about 2 g L-1, its water contact angle could reach about 152 1.5 and its sliding angle was around 7. The formation mechanism of the rough copper surface was also explored in detail. Both the experimental process and the material are environmentally friendly.

  15. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.

    PubMed

    Wang, Gang; Zeng, Zhixiang; Wang, He; Zhang, Lin; Sun, Xiaodong; He, Yi; Li, Longyang; Wu, Xuedong; Ren, Tianhui; Xue, Qunji

    2015-12-01

    To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 μm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets. PMID:26562211

  16. Wetting and Dewetting on Superhydrophobic Surfaces with Two-Tier Roughness

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Chen, Chuan-Hua

    2010-11-01

    Many natural superhydrophobic structures, such as the lotus leaf, demonstrate hierarchal two-tier roughness. The hierarchal roughness is empirically known to promote robust superhydrophobicity, but the mechanism is still under debate. Here, we report the wetting and dewetting properties of two-tier roughness as a function of the wettability of the working fluid, where the surface tension of the water/ethanol mixture is tuned by the mixing ratio. On both natural and synthetic two-tier surfaces, externally deposited drops of increasing ethanol concentration exhibit two distinct wetting transitions, first for the impalement of the microscale texture and then for the nanoscale. The impaled drops are subsequently subjected to vibration-induced dewetting [1]. Drops impaling only the micro-scale roughness exhibited a metastable superhydrophobicity, as sufficient vibrational energy can enable a complete dewetting with no residual drops. In contrasct, drops impaling both the micro and nano-scale roughness can not be completely dewetted. Our work suggests that the nanoscale roughness is essential for preventing catastrophic, irreversible wetting of superhydrophobic surfaces. [4pt] [1] J.B. Boreyko and C.H. Chen, Phys. Rev. Lett. 103, 174502 (2009).

  17. Droplet Jumping Induced by Focused Surface Acoustic Wave on Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Darmawan, Marten; Jeon, Kwangsun; Byun, Doyoung

    2012-11-01

    We investigate the droplet jumping phenomena that are induced by focused surface acoustic wave on superhydrophobic surface. The utilization of an identical pair of single phase unidirectional transducers (SPUDTs) leads to the focusing of acoustic wave energy on a small region between them. This focused energy gives a very high acceleration as well as rapid interface destabilization to the liquid droplet and thus derives the jumping phenomenon once surpasses some Weber number's threshold value. We intriguingly investigate the effect of the small contact area of droplet on superhydrophobic surface, which is generated by using plasma treatment, to the droplet jetting phenomena and how it deforms under this circumstance. Furthermore, a parametric study, i.e. varying acoustic energy power, volume of droplet and degree of arc SPUDT, is also performed to investigate their effect on the elongated jumping droplet. Partially funded by Basic Science Research Program through the National Research Foundation of Korea (NRF, 2011-0016461) and the Industrial Core Technology Development Project through the Ministry of Knowledge and Commerce.

  18. Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination

    SciTech Connect

    Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang

    2013-01-15

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

  19. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces

    PubMed Central

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

    2015-01-01

    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent slide-snap motion of the microscopic receding line as compared to the stick-slip dynamics reported in previous studies. Interface angles between 4060 were measured for the pre-snap receding lines on all pillar surfaces. Similar slide-snap dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90). PMID:25670630

  20. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    NASA Astrophysics Data System (ADS)

    Karmouch, Rachid; Ross, Guy G.

    2010-11-01

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152, a hysteresis less than 2 and a water drop sliding angle around 0.5. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  1. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

    2015-02-01

    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent ``slide-snap'' motion of the microscopic receding line as compared to the ``stick-slip'' dynamics reported in previous studies. Interface angles between 40-60 were measured for the pre-snap receding lines on all pillar surfaces. Similar ``slide-snap'' dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90).

  2. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160 and stable oleophobic property with oil CA of 79. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  3. Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate

    PubMed Central

    2011-01-01

    Hydrophobicity is a very important surface property and there is a growing interest in the production and characterization of superhydrophobic surfaces. Accordingly, it was recently shown how to obtain a superhydrophobic surface using a simple and cost-effective method on a polymer named poly(L-lactic acid) (PLLA). To evaluate the ability of such material as a substrate for bacterial colonization, this work assessed the capability of different bacteria to colonize a biomimetic rough superhydrophobic (SH) PLLA surface and also a smooth hydrophobic (H) one. The interaction between these surfaces and bacteria with different morphologies and cell walls was studied using one strain of Staphylococcus aureus and one of Pseudomonas aeruginosa. Results showed that both bacterial strains colonized the surfaces tested, although significantly higher numbers of S. aureus cells were found on SH surfaces comparing to H ones. Moreover, scanning electron microscopy images showed an extracellular matrix produced by P. aeruginosa on SH PLLA surfaces, indicating that this bacterium is able to form a biofilm on such substratum. Bacterial removal through lotus leaf effect was also tested, being more efficient on H coupons than on SH PLLA ones. Overall, the results showed that SH PLLA surfaces can be used as a substrate for bacterial colonization and, thus, have an exceptional potential for biotechnology applications. PMID:22018163

  4. A new method for preparing bionic multi scale superhydrophobic functional surface on X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Yu, Sirong; Wang, Xiaolong; Wang, Wei; Yao, Qiang; Xu, Jun; Xiong, Wei

    2013-04-01

    The hydrophobic property of a rough surface with a low free energy coating was theoretically analyzed in this paper. In order to obtain a superhydrophobic surface, a rough surface morphology must be formed in addition to the low free energy coating on the surface. Through the shot blasting, chemical etching with concentrated hydrochloric acid, and low free energy modification with myristic acid ethanol solution, the superhydrophobic surface was obtained on X70 pipeline steel. The better process parameters for preparing superhydrophobic surface on X70 pipeline steel were obtained. The diameter of the stainless steel shot used in the shot blasting was 0.8-1.0 mm. The concentration of hydrochloric acid was 6 mol/L. The chemical etching time was 320 min. The concentration of myristic acid ethanol solution was 0.1 mol/L. The soaking time in myristic acid ethanol solution was 72 h. After X70 pipeline steel surface was treated using the process parameters mentioned above, the biggest contact angle between the specimen surface and distilled water was 153.5, and the sliding angle was less than 5.

  5. Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers.

    PubMed

    de Givenchy, Elisabethpatricia Taffin; Amigoni, Sonia; Martin, Cdric; Andrada, Guillaume; Caillier, Laurent; Gribaldi, Serge; Guittard, Frdric

    2009-06-01

    In this paper, polydimethylsiloxane (PDMS) with a superhydrophobic surface was generated by the combination of an acid corrosion followed by the covalent grafting of a highly fluorinated monolayer. The acid corrosion was performed with H2SO4 or HF, and the more effective was concentrated H2SO4. The resulting surface had a contact angle with water of 135 degrees. All the acid-treated samples were then functionalized by the covalent grafting of triethoxyaminopropylsilane followed by the reaction with semifluorinated acid chlorides, via the formation of an amide bond, or directly by a commercially available highly fluorinated silane, 1H,1H,2H,2H-perfluorodecyltriethoxysilane, to afford superhydrophobic surfaces (contact angle with water exceeding 160 degrees). The introduction of an amide function in the fluorinated monolayer afforded the best water repellency properties probably due to the organization induced by H-bonding between the surface grafted molecules. PMID:19466791

  6. Increased stability and size of a bubble on a superhydrophobic surface.

    PubMed

    Ling, William Yeong Liang; Lu, Gabriel; Ng, Tuck Wah

    2011-04-01

    Computational and theoretical models of millimeter-sized bubbles placed on upright hydrophobic and superhydrophobic surfaces are compared with experimental data here. Although the experimental data for a hydrophobic surface corroborated the computational and theoretical data, the case of a superhydrophobic surface showed the bubbles to be able to contain significantly larger volumes than predicted. This is attributed to the greater ability of the bubble contact line to advance compared with its tendency to detach from the surface because of buoyancy. We surmise that a static model therefore describes only an unstable equilibrium for these bubbles, which unless heavily isolated from external influences are more likely to assume a larger stable size. PMID:21361315

  7. Chemical control of superhydrophobicity of carbon nanotube surfaces: droplet pinning and electrowetting behavior.

    PubMed

    Kakade, Bhalchandra A

    2013-08-01

    We report the remarkable transformation of a superhydrophobic surface of multiwalled carbon nanotubes after chemical manipulation (functionalization, especially by ozonolysis), which leads to a pinning action and eventually hydrophilic behavior, upon the application of an electric field. The effect of droplet pinning on a hydrophobic surface is an indication of the Wenzel formalism, where it is assumed that the liquid fills up the space between the protrusions on the surface. Also, the ozonized bucky surfaces show fascinating electrowetting behavior in the presence of an electrolyte, which follows a transition from a superhydrophobic, Cassie-Baxter state to a hydrophilic, Wenzel state as a function of the electric field, this has been modelled using a simple approach and the corresponding interfacial capacitance has been determined. PMID:23800839

  8. Development of super-hydrophobic PTFE and PET surfaces by means of plasma processes

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Bami, R.; Della Pergola, R.; Riccardi, C.

    2014-11-01

    In this work, Poly(tetrafluoroethylene) and Poly(ethylene terephtalate) substrates were modified by means of plasma techniques for the creation of super-hydrophobic surfaces. Both the materials were etched with an O2 plasma, thus increasing their surface roughness which was investigated by means of Atomic Force Microscopy analysis. Plasma etching of PTFE surfaces under appropriate conditions results in the creation of super-hydrophobic surfaces, as assessed by measurements of dynamic contact angles and sliding angles. Chemical modifications of the PTFE surfaces was investigated with Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy analysis. The realization of super-hydrophobic PET surfaces needs the deposition of a hydrophobic top coating, which was realized through an hexamethyldisiloxane (HMDSO) plasma. The thickness of this top layer was varied by changing the plasma deposition time and the effects on the hydrophobic performances of the modified PET were investigated. Micro-nano structures created by plasma on PTFE and PET surfaces were characterized and correlated with the wettability.

  9. Experimental drag reduction study of super-hydrophobic surface with dual-scale structures

    NASA Astrophysics Data System (ADS)

    Lyu, Sungnam; Nguyen, Dang C.; Kim, Dongseob; Hwang, Woonbong; Yoon, Bumsang

    2013-12-01

    Hydrophobic surfaces with micro- or nanoscale pillars have been attracting considerable interest from scientists. In nature, such surfaces can be found on lotus leaves or under the feet of pond skaters. One significant property of these surfaces is friction drag reduction (FDR). Many studies have been conducted to demonstrate this reduction in terms of laminar and turbulent flows. The slip-length hypothesis is often used to explain this phenomenon. In this study, processes with the advantages of simplicity and cost effectiveness were used to fabricate dual-scale structures. Durable super-hydrophilic and super-hydrophobic surfaces were easily obtained from these structures. FDR was measured on a super-hydrophobic surface and was compared to that on smooth and super-hydrophilic surfaces. The experimental results in a circulating water channel revealed the Reynolds number range within which substantial FDR can occur on a super-hydrophobic surface. The mechanism of FDR and the role of slip are discussed by comparing experimental results.

  10. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-03-01

    This work reports the laser surface modification of 304S15 stainless steel to develop superhydrophobic properties and the subsequent application for homogeneous spot deposition. Superhydrophobic surfaces, with steady contact angle of ∼154° and contact angle hysteresis of ∼4°, are fabricated by direct laser texturing. In comparison with common pico-/femto-second lasers employed for this patterning, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. The effect of laser power and scan line separation on surface wettability of textured surfaces are investigated and optimized fabrication parameters are given. Fluid flows and transportations of polystyrene (PS) nanoparticles suspension droplets on the processed surfaces and unprocessed wetting substrates are investigated. After evaporation is complete, the coffee-stain effect is observed on the untextured substrates but not on the superhydrophobic surfaces. Uniform deposition of PS particles on the laser textured surfaces is achieved and the deposited material is confined to smaller area.

  11. Role of kinks in the dynamics of contact lines receding on superhydrophobic surfaces.

    PubMed

    Gauthier, Anas; Rivetti, Marco; Teisseire, Jrmie; Barthel, Etienne

    2013-01-25

    We have investigated the depinning of the contact line on superhydrophobic surfaces with anisotropic periodic textures. By direct observation of the contact line conformation, we show that the mobility is mediated by kink defects. Full 3D simulations of the shape of the liquid surface near the solid confirm that kinks account for the measured wetting properties. This behavior, which is similar to the Peierls-Nabarro mechanism for dislocations, may open perspectives for the optimization of wetting hysteresis by design. PMID:25166177

  12. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  13. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157?. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159? by coating PP-g-MAH, while the CA was only 141? by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  14. Fabrication and characterization of superhydrophobic surface by using water vapor impingement method

    NASA Astrophysics Data System (ADS)

    Han, Kok Deng; Leo, C. P.; Chai, Siang Piao

    2012-07-01

    In this research, superhydrophobic coating with average static contact angle of 166 has been successfully prepared by using a new surface roughening method. Discussion on the applicability of Cassie and Wenzel equations used to determine surface parameters from experimental data is being included as well. This new surface roughening method uses accelerated water vapor to impinge wet film forming crater-like structure surface; analogous to meteor striking earth forming crater. Wet film is comprised of aluminium tri-sec butoxide, propan-2-ol, and ethyl acetoacetate according to molar ratio of 1:10:1. Craters with diameter distribution of 1-20 ?m were formed on the roughened surface. It was then subjected to 10 min of immersion in boiling water, 20 min of immersion in fluoroalkylsilane solution, and 10 min of 100 C hot air treatment producing superhydrophobic coating. This superhydrophobic crater-like structure surface has approximately 8% solid-to-liquid area fraction and high roughness value of 6.4. These values were obtained from both Cassie and Wenzel equations but with some minor modification in order to fit them into experimental data. Average sliding angle of 2.6 and hysteresis value of 10 were recorded.

  15. On the collision and mixing of water droplets on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.; Rothstein, Jonathan P.

    2009-11-01

    The dynamics of water drop collisions on superhydrophobic surfaces is investigated using high-speed photography. Teflon is sanded to create the superhydrophobic surfaces. The results of the surface fabrication technique are presented, showing the effect of grit size on hysteresis. This method of creating superhydrophobic surfaces allows for the specification of varied advancing contact angles with similar hysteresis, or varying hysteresis with near similar advancing contact angles. Deionized water droplets are made to collide on these surfaces by propelling one droplet into another using a burst of pressurized air. The subsequent collision is captured, and several impact characteristics are calculated as a function of contact angle hysteresis. The Weber number and impact number are calculated, as well as the maximum deformation of the combined drop. In some experiments, the drops left the surface after collision even with low hysteresis at the low Weber numbers tested. Characteristic images of different regimes of the collision dynamics will be presented, as will how each of these regimes affect the mixing of the drops.

  16. Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Wang, Xian; Bin, Jiping; Wang, Menglei; Peng, Chaoyi; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Chen, Hong

    2014-09-01

    A novel approach was developed to fabricate a lotus-leaf-like superhydrophobic surface on a copper foil by simple self-assembly method with the assistance of the porous PDMS template which was used to adjust the oxidized parts of the copper foil surface before self-assembly. The results showed a series of beautiful flower-like microstructures resulting from the self-assembly of cupric stearate that were distributed at regular intervals on the as-prepared copper foil surface similar to the papillae of lotus leaf surface. The water contact angle of the as-prepared copper surface was up to 161 and its sliding angle was only 3. Its great superhydrophobicity could be kept unchanged after 6 months in air. The formation mechanism of the lotus-leaf-like structure was discussed. This simple and low-cost method is expected to be applied to design and prepare complicated superhydrophobic surfaces with beautiful regular microstructures on different substrates such as stainless steel, zinc, and so on.

  17. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng; Zhou, Zhi Ping

    2015-04-01

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161 and a sliding angle of 3.

  18. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.

    PubMed

    Manca, Michele; Cannavale, Alessandro; De Marco, Luisa; Aricò, Antonino S; Cingolani, Roberto; Gigli, Giuseppe

    2009-06-01

    We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance. PMID:19466786

  19. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han; Kim, Yong Ho; Kim, Young Dok

    2014-11-01

    Thin film of polydimethylsiloxane (PDMS) was deposited on SiO2 nanoparticles by chemical vapor deposition, and SiO2 became completely hydrophobic after PDMS coating. Mixtures of TiO2 and PDMS-coated SiO2 nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO2 and PDMS-coated SiO2 with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165 and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  20. Raman lasing near 650 nm from pure water microdroplets on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Kiraz, A.; Yorulmaz, S. .; Yorulmaz, M.; Sennaroglu, A.

    2009-12-01

    We demonstrate Raman lasing near 650 nm in pure water microdroplets located on a superhydrophobic surface. In the experiments, stationary, pure water microdroplets were prepared on a superhydrophobic surface and excited by a pulsed, frequency-doubled Nd:YAG laser at 532 nm. Intense laser emission was observed at frequencies corresponding to the whispering gallery mode resonances of the water microdroplets near 650 nm where Raman resonances due to OH-stretching bonds of water are located. On-off behavior was observed during lasing and the average temporal inter-burst separation was determined from the time-dependent intensity traces. Our results can find applications in the development of novel organic light emitters for short-haul communication systems, and in the spectroscopic characterization of water microdroplets on a surface.

  1. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Qing, Yan; Wu, Yiqiang; Liang, Jin; Luo, Sha

    2015-03-01

    Superhydrophobic nanocomposite surfaces were successfully fabricated on wood substrates via a one-step hydrothermal process. The morphology of the nanocomposite surfaces was characterized using scanning electron microscopy (SEM), and the elemental composition was determined via energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) analysis, and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the crystallization of the anatase phase of TiO2 was prevented because of the presence of vinyltriethoxysilane [VTES, CH2CHSi(OC2H5)3] during the hydrothermal process. In addition, the nanocomposite contained Ti/Si particles with diameters ranging from 50 to 100 nm that thoroughly covered the wood substrate. Furthermore, the roughness coupled with the presence of low surface free energy groups led to superhydrophobicity; the static water contact angle (WCA) was as high as 153, and the sliding angle was very low.

  2. Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces.

    PubMed

    Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Sadeghi, Gity Mir Mohamad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali

    2015-03-01

    The main aim of the current study was to investigate the effects of different topographical features on the biological performance of polypropylene (PP)/silica coatings. To this end, a novel method including combined use of nanoparticles and non-solvent was used for preparation of superhydrophobic PP coatings. The proposed method led to a much more homogeneous appearance with a better adhesion to the glass substrate. Moreover, a notable reduction was observed in the required contents of nanoparticles (100-20 wt% with respect to the polymer) and non-solvent (35.5-9 vol%) for achieving superhydrophobicity. Surface composition and morphology of the coatings were also investigated via X-ray photoelectron spectroscopy and scanning electron microscopy. Based on both qualitative and quantitative evaluations, it was found that the superhydrophobic coatings with only nano-scale roughness strongly prevented adhesion and proliferation of 4T1 mouse mammary tumor cells as compared to the superhydrophobic surfaces with micro-scale structure. Such results demonstrate that the cell behavior could be controlled onto the polymer and nanocomposite-based surfaces via tuning the surface micro/nano structure. PMID:25687094

  3. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    PubMed

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength. PMID:22732181

  4. Fabrication of superhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers

    NASA Astrophysics Data System (ADS)

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-12-01

    Stable superhydrophobic surfaces have been effectively fabricated on the zinc substrates through one-step platinum replacement deposition process without the further modification or any other post processing procedures. The effect of reaction temperatures on the surface morphology and wettability was studied by using SEM and water contact angle (CA) analysis. Under room temperature, the composite structure formed on the zinc substrate was consisted of microscale hexagonal cavities, densely packed nanoparticles layer and micro/nanoscale structures like the flowers. The structure has exhibited great surface roughness and porosity contributing to the superhydrophobicity where the contact angle could reach an ultra high value of around 170. Under reaction temperature of 80 C, the composite structure, on the other hand, was hierarchical structure containing lots of nanoscale flowers and some large bushes and showed certain surface roughness (maximum CA value of about 150). In addition, an optimal superhydrophobic platinum surface was able to provide an effective anticorrosive coating to the zinc substrate when it was immersed into an aqueous solution of sodium chloride (3% NaCl) for up to 20 days. The corrosion process was monitored through electrochemical means and the results are compared with those of unprotected zinc plates.

  5. Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel

    2015-12-01

    The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.

  6. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.

    PubMed

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-09-01

    Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171 was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way. PMID:21679962

  7. Disintegration of a Round Liquid Jet due to Impact on a Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Stoeber, Boris

    2013-11-01

    Liquid jet breakup has several applications such as Inkjet printers, diesel fuel injectors, and paint sprays. Very recently liquid jets have been shown to be useful for small volume transportation (Clestini et al. Soft Matter, 2010), where a micro-scale liquid jet on superhydrophobic surface was investigated. Although the instability of the liquid jet for some circumstances was shown, the disintegration of the liquid jet was not discussed. In the present study, we aim to analyze the breakup of a micro liquid jet due to inclined impact to a superhydrophobic surface. A range of Weber and Reynolds numbers have been explored experimentally. Water-glycerin solution as the working fluid. Generally, it is shown that the liquid jet forms a disc-like film over the surface and further rebounds (``bouncing jet''). A simple energy balance method is provided to estimate the diameter of the disc-like film. It is shown, for the case of low viscosity (large Re), this parameter is logarithmically proportional to the normal Weber number. Additionally, linear stability analysis for viscous jets provides a good estimate of droplet size. From an application point of view, using superhydrophobic surfaces 1) enables rebound of the liquid jet 2) advances the breakup point (shorten the breakup length).

  8. Superhydrophobic and superhydrophilic surfaces with MoO x sub micron structures

    NASA Astrophysics Data System (ADS)

    Campbell, Jos; Breedon, Michael; Wlodarski, W.; Kalantar-zadeh, Kourosh

    2007-12-01

    Presented is an investigation of surface morphology of arrayed MoO x structures with increasing aspect ratios, and their resultant superhydrophillic, and their modified superhydrophobic properties. Molybdenum oxide (MoO x) submicron structures were grown on lithium niobate (LiNbO 3) substrates via the thermal evaporation of MoO 3 nanopowder at 750C in a horizontal tube furnace. A mixture of 90% argon and 10% oxygen was introduced into the thermal evaporation tube at flow rate of 1L/min. This resulted in the formation of a white film which consisted of submicron tabular structures. Scanning electron micrographs revealed that the tabular molybdenum oxide grew in arrays 80-100 with respect to the plane of the substrate, with tabular structures with a thickness of approx 0.5 - 1.5?m. Initial testing of MoO x structures revealed that they were extremely super hydrophilic. Such MoO x arrays were coated with fluoropolymer Teflon, deposited using the RF sputtering technique. The addition of a semi-conformal Teflon layer effectively converts the superhydrophilic MoO x layer into a superhydrophobic surface. These superhydrophobic surfaces exhibit contact angles with aqueous media in excess of 150. Such surfaces can be utilized for the selective adsorption and desorption of protein or pharmacokinetic molecules, with applications in drug delivery and biomedical systems.

  9. Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    PubMed

    Ciasca, G; Papi, M; Businaro, L; Campi, G; Ortolani, M; Palmieri, V; Cedola, A; De Ninno, A; Gerardino, A; Maulucci, G; De Spirito, M

    2016-01-01

    By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a fewmicroliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening. PMID:26844980

  10. Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces.

    PubMed

    Olin, Pontus; Lindstrm, Stefan B; Wgberg, Lars

    2015-06-16

    We have investigated the effect of line-shaped topographical defects on the motion of water drops across superhydrophobic wax surfaces using a high-speed video camera. The defects are introduced onto the superhydrophobic wax surfaces by a scratching procedure. It is demonstrated that the motion of a drop interacting with the defect can be approximated by a damped harmonic oscillator. Whether a drop passes or gets trapped by the defect is determined by the incident speed and the properties of the oscillator, specifically by the damping ratio and a nondimensional forcing constant representing the effects of gravity and pinning forces. We also show that it is possible to predict a critical trapping speed as well as an exit speed in systems with negligible viscous dissipation using a simple work-energy consideration. PMID:26010934

  11. Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces.

    PubMed

    Moulinet, S; Bartolo, D

    2007-11-01

    We show that the equilibrium state of a water drop deposited on a superhydrophobic surface cannot be solely determined by its macroscopic contact angle but also depends on the drop size. Following the evolution of the interface of evaporating droplets, we demonstrate that the liquid can explore a succession of equilibrium conformations which are neither of the usual fakir nor Wenzel types. A comprehensive description of the transition between these wetting states is provided. To do so, we have taken advantage of microfabrication techniques and interference microscopy which allows for the "3D" imaging of the liquid interface. In addition, we propose a simple theoretical description of the interface geometry which goes beyond the standard two-state picture for superhydrophobicity. This model accounts correctly for all our experimental observations. Finally, guided by potential microfluidic applications we propose an efficient design strategy to build robust liquid repellant surfaces. PMID:18060595

  12. Facile fabrication of superhydrophobic surfaces with low roughness on Ti-6Al-4V substrates via anodization

    NASA Astrophysics Data System (ADS)

    Gao, Yuze; Sun, Yuwen; Guo, Dongming

    2014-09-01

    The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H2O2 mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 ?m and good superhydrophobicity with a water contact angle of 158.5 1.9 as well as a water tilting angle of 5.3 1.1, but also possess good long-term stability and abrasion resistance.

  13. Facile fabrication of superhydrophilic/superhydrophobic surface on titanium substrate by single-step anodization and fluorination

    NASA Astrophysics Data System (ADS)

    Liang, Junsheng; Liu, Kuanyao; Wang, Dazhi; Li, Hao; Li, Pengfei; Li, Shouzuo; Su, Shijie; Xu, Shuangchao; Luo, Ying

    2015-05-01

    A facile and scalable technique for preparation of superhydrophilic/superhydrophobic titanium (Ti) surface by single-step anodization and fluorination is presented in this paper. The Ti substrates were anodized to produce micro-nano hierarchical structure which is essential for superhydrophilic surface. The water contact angles (WCAs) of 5 ?l water droplets on the anodized Ti surfaces were measured as low as 0. Capillary rise measurement was used to evaluate the superhydrophilicity on Ti surfaces anodized at different conditions. Results show that higher anodization voltage can yield stronger superhydrophilicity on Ti surface, but the influence of electrolyte temperature on the superhydrophilicity has a close correlation with the anodization voltages. At 20 V and 40 V anodization voltages, the increase of electrolyte temperature can improve the surface superhydrophilicity, but this trend will be reversed when the voltages rise to 60 V and 80 V. Superhydrophobic surfaces were further obtained from fluoroalkylsilane (FAS) modification on the anodized Ti substrates. It was observed that appropriate anodization voltages and electrolyte temperatures can balance the growth and dissolution of the micro-nano hierarchical surface structure, thereby obtaining the desired superhydrophobic Ti surface. The WCA, rolling angle and contact angle hysteresis of water droplets on the best superhydrophobic Ti surface were respectively recorded as 160, 2 and 1.7 in this work. Furthermore, the superhydrophilic and superhydrophobic Ti surfaces fabricated in this research also show satisfactory stability in acidic, neutral and alkaline aqueous solutions as well as ambient conditions.

  14. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay.

    PubMed

    Guo, Jie; Yang, Fuchao; Guo, Zhiguang

    2016-03-15

    We report a simple and rapid method to fabricate superhydrophobic films on copper substrates via Fe(3+) etching and octadecanethiol (ODT) modification. The etching process can be as short as 5min and the ODT treatment only takes several seconds. In addition, the whole process is quite flexible in reaction time. The superhydrophobicity of as-prepared surfaces is mechanically durable and chemically stable, which have great performance in oil-water separation and ice-over resistance. PMID:26704474

  15. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    PubMed

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 2, 5 ?L droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ? 9), acids (10 s in dilute HNO3, H2SO4 of pH ? 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria. PMID:25419984

  16. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    PubMed

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150C for 5h, the water contact angle was as high as 160 and the sliding angle was lower than 1, reaching excellent superhydrophobicity. They remained 159 and ?1, respectively, even after 3months storage under indoor conditions (20C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. PMID:23433522

  17. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity.

    PubMed

    Wang, Hongxia; Fang, Jian; Cheng, Tong; Ding, Jie; Qu, Liangti; Dai, Liming; Wang, Xungai; Lin, Tong

    2008-02-21

    Stable superhydrophobic surfaces with water contact angles over 170 degrees and sliding angles below 7 degrees were produced by simply coating a particulate silica sol solution of co-hydrolysed TEOS/fluorinated alkyl silane with NH(3).H(2)O on various substrates, including textile fabrics (e.g. polyester, wool and cotton), electrospun nanofibre mats, filter papers, glass slides, and silicon wafers. PMID:18253534

  18. Superhydrophobic diatomaceous earth

    DOEpatents

    Simpson, John T.; D'Urso, Brian R.

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  19. Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Chen, An-Fu; Huang, Han-Xiong

    2016-02-01

    Biomimetic superhydrophobic surfaces are generally limited to extremely high or quite low water droplet adhesion. The present work proposes flexible template replication methods for bio-inspired polypropylene (PP) surfaces with microtopographies and gradually tunable water droplet adhesion in one step using microinjection compression molding (μ-ICM). A dual-level microstructure appears on PP surfaces prepared using a flexible template. The microstructures obtained under low and high mold temperatures exhibit low-aspect-ratio (AR) micropillars with semi-spherical top and high-AR ones with conical top, resulting in the surfaces with high-adhesive hydrophobicity and low-adhesive superhydrophobicity, respectively. Further, silica nanoparticles (SNPs) coated on templates are transferred to viscous state-dominated melt during its filling in μ-ICM, and firmly adhered to the skin of the replicas, forming hierarchical microstructures on PP surfaces. The hydrophilic and hydrophobic SNPs on high-AR micropillared surfaces help achieve extremely high (petal effect) and extremely low (lotus effect) adhesion on superhydrophobic surfaces, respectively. The hybrid SNPs on low-AR micropillars change the Wenzel state-dominated surface to Cassie‑Baxter state-dominated surface and preserves medium adhesion with superhydrophobicity. The proposed methods for fast and mass replication of superhydrophobic surfaces with the dual-level or hierarchical microtopography can be excellent candidates for the development of microfluidics, sensors, and labs on chip.

  20. Petal effect: a superhydrophobic state with high adhesive force.

    PubMed

    Feng, Lin; Zhang, Yanan; Xi, Jinming; Zhu, Ying; Wang, N; Xia, Fan; Jiang, Lei

    2008-04-15

    Hierarchical micropapillae and nanofolds are known to exist on the petals' surfaces of red roses. These micro- and nanostructures provide a sufficient roughness for superhydrophobicity and yet at the same time a high adhesive force with water. A water droplet on the surface of the petal appears spherical in shape, which cannot roll off even when the petal is turned upside down. We define this phenomenon as the "petal effect" as compared with the popular "lotus effect". Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state. PMID:18312016

  1. Pressure Drop Measurements for Turbulent Channel Flow over Superhydrophobic Surfaces with Superimposed Riblets

    NASA Astrophysics Data System (ADS)

    Perkins, Richard; Prince, Joseph; Vanderhoff, Julie; Maynes, Daniel

    2012-11-01

    We consider the combined drag reducing mechanisms of riblets and superhydrophobicity. Pressure drop measurements were acquired for turbulent channel flow over riblet surfaces, superhydrophobic surfaces, and surfaces with both drag reducing mechanisms. The riblets were nominally 80 μm tall, 16 μm wide, and spaced with a period of 160 μm. The superhydrophobic structuring was composed of alternating microribs (15 μm tall and 8 μm wide) and cavities (32 μm wide), aligned parallel to the flow. The channel consisted of a control section and a test section comprised of smooth and patterned wafers, respectively. In all cases, the test section walls were structured on top and bottom while the side walls were left smooth. The channel had a hydraulic diameter of 7.3 mm and an aspect ratio of 10:1. Seven pressure ports were precision machined into the walls of both the control and test sections. The pressure drop measurements were acquired simultaneously over both sections to eliminate uncertainty associated with the flow rate. The drag reduction for all test sections was then computed directly and data were obtained over a Reynolds number range of 11000 to 15000.

  2. On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Mani, Ali

    2016-02-01

    Superhydrophobic surfaces can significantly reduce hydrodynamic skin drag by accommodating large slip velocity near the surface due to entrapment of air bubbles within their micro-scale roughness elements. While there are many Stokes flow solutions for flows near superhydrophobic surfaces that describe the relation between effective slip length and surface geometry, such relations are not fully known in the turbulent flow limit. In this work, we present a phenomenological model for the kinematics of flow near a superhydrophobic surface with periodic post-patterns at high Reynolds numbers. The model predicts an inverse square root scaling with solid fraction, and a cube root scaling of the slip length with pattern size, which is different from the reported scaling in the Stokes flow limit. A mixed model is then proposed that recovers both Stokes flow solution and the presented scaling, respectively, in the small and large texture size limits. This model is validated using direct numerical simulations of turbulent flows over superhydrophobic posts over a wide range of texture sizes from L+ ≈ 6 to 310 and solid fractions from ϕs = 1/9 to 1/64. Our report also embarks on the extension of friction laws of turbulent wall-bounded flows to superhydrophobic surfaces. To this end, we present a review of a simplified model for the mean velocity profile, which we call the shifted-turbulent boundary layer model, and address two previous shortcomings regarding the closure and accuracy of this model. Furthermore, we address the process of homogenization of the texture effect to an effective slip length by investigating correlations between slip velocity and shear over pattern-averaged data for streamwise and spanwise directions. For L+ of up to O(10), shear stress and slip velocity are perfectly correlated and well described by a homogenized slip length consistent with Stokes flow solutions. In contrast, in the limit of large L+, the pattern-averaged shear stress and slip velocity become uncorrelated and thus the homogenized boundary condition is unable to capture the bulk behavior of the patterned surface.

  3. Superhydrophobic surface on steel substrate and its anti-icing property in condensing conditions

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Xiong, Dangsheng; Li, Mengtong; Deng, Yaling; Shi, Yan; Wang, Kun

    2015-11-01

    A superhydrophobic surface (SHS) was prepared on steel via the synergetic corrosion of H2O2 and H2SO4, followed by the modification of silanes. Flower-like hierarchical structures were obtained by the following two etching aspects: the non-uniform ions concentration around O2, and the selective corrosion for steel substrate. Surface grafting was manifested to preferentially be realized on the oxidized area, and the H2O2 is crucial for the grafting efficiency. Moreover, the resultant surface exhibited superior anti-icing property in extremely condensing condition. In addition, surface with C-F bond exhibited outstanding UV-durability.

  4. Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Srinivasan, Siddarth; Kleingartner, Justin A.; Gilbert, Jonathan B.; Cohen, Robert E.; Milne, Andrew J. B.; McKinley, Gareth H.

    2015-01-01

    We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re =8.0 1 04 . We show that the mean skin friction coefficient Cf in the presence of the superhydrophobic coating can be fitted to a modified Prandtl-von Krmn-type relationship of the form (Cf/2 )-1 /2=M ln (Re (Cf/2 )1 /2) +N +(b /? r )Re (Cf/2 )1 /2 from which we extract an effective slip length of b ?19 ? m . The dimensionless effective slip length b+=b /??, where ?? is the viscous length scale, is the key parameter that governs the drag reduction and is shown to scale as b+Re1 /2 in the limit of high Re.

  5. Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kibar, Ali; Karabay, Hasan; Yiğit, K. Süleyman; Ucar, Ikrime O.; Erbil, H. Yıldırım

    2010-11-01

    In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°-45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5-5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased.

  6. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces.

    PubMed

    Sojoudi, H; Wang, M; Boscher, N D; McKinley, G H; Gleason, K K

    2016-02-21

    Formation, adhesion, and accumulation of ice, snow, frost, glaze, rime, or their mixtures can cause severe problems for solar panels, wind turbines, aircrafts, heat pumps, power lines, telecommunication equipment, and submarines. These problems can decrease efficiency in power generation, increase energy consumption, result in mechanical and/or electrical failure, and generate safety hazards. To address these issues, the fundamentals of interfaces between liquids and surfaces at low temperatures have been extensively studied. This has lead to development of so called "icephobic" surfaces, which possess a number of overlapping, yet distinctive, characteristics from superhydrophobic surfaces. Less attention has been given to distinguishing differences between formation and adhesion of ice, snow, glaze, rime, and frost or to developing a clear definition for icephobic, or more correctly pagophobic, surfaces. In this review, we strive to clarify these differences and distinctions, while providing a comprehensive definition of icephobicity. We classify different canonical families of icephobic (pagophobic) surfaces providing a review of those with potential for scalable and robust development. PMID:26757856

  7. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    PubMed

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-01

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed. PMID:26271017

  8. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, Intaek; Yun, Dong-Jin

    2015-10-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  9. Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface.

    PubMed

    Liu, Jie; Guo, Haoyuan; Zhang, Bo; Qiao, Shasha; Shao, Mingzhe; Zhang, Xianren; Feng, Xi-Qiao; Li, Qunyang; Song, Yanlin; Jiang, Lei; Wang, Jianjun

    2016-03-18

    By introducing anisotropic micropatterns on a superhydrophobic surface, we demonstrate that water microdroplets can coalesce and leap over the surface spontaneously along a prescribed direction. This controlled behavior is attributed to anisotropic liquid-solid adhesion. An analysis relating the preferential leaping probability to the geometrical parameters of the system is presented with consistent experimental results. Surfaces with this rare quality demonstrate many unique characteristics, such as self-powered, and relatively long-distance transport of microdroplets by "relay" coalescence-induced leaping. PMID:26929097

  10. Photoemission spectroscopy of planar and nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Gervasoni, J. L.

    2016-02-01

    In this paper, I present some results for the process of excitation of bulk and surface plasmons during the emission of electrons in the proximity of surfaces of different shapes and dimensions. I describe in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a metallic surface, paying special attention to the results obtained by my research group. We used the dielectric response of the metal and the specular reflection model for the case of planar surfaces, and the second quantization theory for nanostructured surfaces. In particular, we studied how the electron-hole pair interaction can influence the energy loss of the emerging electron. We investigated the importance of surface effects in the analysis of photoelectron spectroscopy. The method described here is useful for studying multiple plasmon excitations in nanostructures and for understanding the excited electron spectra of these nanostructures (different from those of the same bulk material).

  11. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    PubMed

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings. PMID:26344151

  12. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Jung, Yong Chae

    2008-06-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. When two hydrophilic bodies are brought into contact, any liquid present at the interface forms menisci, which increases adhesion/friction and the magnitude is dependent upon the contact angle. Certain plant leaves are known to be superhydrophobic in nature due to their roughness and the presence of a thin wax film on the leaf surface. Various leaf surfaces on the microscale and nanoscale have been characterized in order to separate out the effects of the microbumps and nanobumps and the wax on the hydrophobicity. The next logical step in realizing superhydrophobic surfaces that can be produced is to design surfaces based on understanding of the leaves. The effect of micropatterning and nanopatterning on the hydrophobicity was investigated for two different polymers with micropatterns and nanopatterns. Scale dependence on adhesion was also studied using atomic force microscope tips of various radii. Studies on silicon surfaces patterned with pillars of varying diameter, height and pitch values and deposited with a hydrophobic coating were performed to demonstrate how the contact angles vary with the pitch. The effect of droplet size on contact angle was studied by droplet evaporation and a transition criterion was developed to predict when air pockets cease to exist. Finally, an environmental scanning electron microscope study on the effect of droplet size of about 20 µm radius on the contact angle of patterned surfaces is presented. The importance of hierarchical roughness structure on destabilization of air pockets is discussed.

  13. Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Wang, Xuemei; Ji, Hongmin

    2014-01-01

    Superhydrophobic surface has become a research hot topic in recent years due to its excellent performance and wide application prospect. This paper investigates the method to fabricate superhydrophobic surface on carbon steel substrate via two-layer nano-composite electro-brush plating and subsequent surface modification with low free energy materials. The hydrophobic properties of as-prepared coatings were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the surface structure of plating coatings. Anti-corrosion performance of the superhydrophobic coating was characterized by a potentiodynamic polarization curve measured by the Electrochemical workstation. The research result shows that: the superhydrophobic structure can be successfully prepared by plating nano-C/Ni and nano-Cu/Ni two-layer coating on carbon steel substrate under appropriate technology and has similarity with lotus-leaf-like micro/nano composite structure; the contact angle of the as-prepared superhydrophobic coating can be up to 155.5, the sliding angle is 5; the coating has better anti-corrosion performance compared with substrate.

  14. Adhesion of water droplets by low voltage electrowetting on a superhydrophobic surface of a 3C-SiC nanorod network

    NASA Astrophysics Data System (ADS)

    Khan, Afzal; Sohail, Shiraz; Jacob, Chacko

    2015-12-01

    Adhesion state of a liquid droplet on the superhydrophobic surfaces can be tuned by electrowetting and can be exploited for various applications in microfluidics, lab on chip and biotechnology, etc. Silicon carbide (SiC) can be used for these kinds of studies due to its high chemical and mechanical stability in harsh environment conditions. In this work, a low dc voltage irreversible electrowetting using a deionized water droplet on superhydrophobic hierarchical Au/Pd nanostructures coated 3C-SiC nanorod surface is demonstrated. Strong adhesion of the water droplet to the surface was achieved by changing its adhesion state from low to high and then very high by electrowetting, thereby changing the contact angle from 160° to 75°. The first irreversible transition of water droplet from Cassie regime to Wenzel regime occurred at 16 V due to the drastic increase of the work of adhesion which was found to be 10 times that of the initial value. Finally, the work of adhesion was increased about 20 times its initial value by increasing the applied voltage up to 24 V.

  15. General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts.

    PubMed

    Hemeda, A A; Tafreshi, H Vahedi

    2014-09-01

    Superhydrophobicity can arise from the ability of a submerged rough hydrophobic surface to trap air in its surface pores, and thereby reduce the contact area between the water and the frictional solid walls. A submerged surface can only remain superhydrophobic (SHP) as long as it retains the air in its pores. SHP surfaces have a short underwater life, and their longevity depends strongly on the hydrostatic pressure at which they operate. In this work, a comprehensive mathematical framework is developed to predict the mechanical stability and the longevity of submerged SHP surfaces with arbitrary pore or post geometries. We start by deriving an integro-partial differential equation for the 3-D shape of the air-water interface, and use this information to predict the rate of dissolution of the entrapped air into the ambient water under different hydrostatic pressures. For the special case of circular pores, the above integro-partial differential equation is reduced to easy-to-solve ordinary differential equations. In addition, approximate nonlinear algebraic solutions are also obtained for surfaces with circular pores or posts. The effects of geometrical parameters and hydrostatic conditions on surface stability and longevity are discussed in detail. Moreover, a simple equivalent pore diameter method is developed for SHP surfaces composed of posts with ordered or random configuration--an otherwise complicated task requiring the solution of an integro-partial differential equation. PMID:25109908

  16. Preparation of biomimetic high adhesive superhydrophobic polymer pillar surfaces with crown-like metal microstructures.

    PubMed

    Ishii, Daisuke; Shimomura, Masatsugu

    2014-10-01

    High adhesive superhydrophobic polymer pillar surfaces with dispersed metallic crown-like micro structures were prepared by electroless plating on self-organized honeycomb patterned polymer films and peeling off the top layer of the metal covered honeycomb films. Thus obtained polymer pillar surfaces with metallic crown-like microstructures possessed conflicting properties of water repellency and adhesion. The adhesion property was tuned by number density of metallic crown-like microstructures which were adjusted by polymer concentration in a catalytic solution for electroless plating. PMID:25942835

  17. Preparation and characterization of superhydrophobic glass surface using pyrophyllite nanosilica coating

    NASA Astrophysics Data System (ADS)

    Elsandika, Gabriela; Fuad, Abdulloh; Diantoro, Markus; Zulaika, Siti; Subakti

    2016-02-01

    Costly effective superhydrophobic glass surface by deposition of modified homemade pyrophyllite nanosilica has been done. The thin layer coating was deposited on glass substrate by means of spin coating technique with further thermal annealing process. SEM images show the different topography of the surface layers as well as nanosilica layer thickness in the range of 7 to 19 µm. The optimum water contact angle of 142.54° is obtained for the nanosilica coating annealed at 65°C. The presence of the CH, OH, Si-O-Si, and Si-C secondary phases is discussed based on FTIR data analysis.

  18. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    SciTech Connect

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-28

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below {approx}10 {mu}m account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  19. Protein Self-Assembly: A Superhydrophobic Surface Templated by Protein Self-Assembly and Emerging Application toward Protein Crystallization (Adv. Mater. 3/2016).

    PubMed

    Gao, Aiting; Wu, Qian; Wang, Dehui; Ha, Yuan; Chen, Zhijun; Yang, Peng

    2016-01-01

    On page 579, by rationally manipulating the lysozyme phase transition, P. Yang and co-workers report the first proteinaceous superhydrophobic material for facile protein crystallization. A reliable protein-based superhydrophobic coating on virtually arbitrary material surfaces is achieved with good thermostability and mechanical robustness. Such a surface exhibits a fascinating capability to drive protein crystallization. PMID:26765678

  20. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.

    PubMed

    Im, Maesoon; Im, Hwon; Lee, Joo-Hyung; Yoon, Jun-Bo; Choi, Yang-Kyu

    2010-11-16

    A polydimethylsiloxane (PDMS) elastomer surface with perfectly ordered microstructures having an inverse-trapezoidal cross-sectional profile (simply PDMS trapezoids) showed superhydrophobic and transparent characteristics under visible light as reported in our previous work. The addition of a fluoropolymer (Teflon) coating enhances both features and provides oleophobicity. This paper focuses on the analytical modeling of the fabricated PDMS trapezoids structure and thermodynamic analysis based on the Gibbs free energy analysis. Additionally, the wetting characteristics of the fabricated PDMS trapezoids surface before and after the application of the Teflon coating are analytically explained. The Gibbs free energy analysis reveals that, due to the Teflon coating, the Cassie-Baxter state becomes energetically more favorable than the Wenzel state and the contact angle difference between the Cassie-Baxter state and the Wenzel state decreases. These two findings support the robustness of the superhydrophobicity of the fabricated Teflon-coated PDMS trapezoids. This is then verified via the impinging test of a water droplet at a high speed. The dependencies of the design parameters in the PDMS trapezoids on the hydrophobicity are also comprehensively studied through a thermodynamic analysis. Geometrical dependency on the hydrophobicity shows that overhang microstructures do not have a significant influence on the hydrophobicity. In contrast, the intrinsic contact angle of the structural material is most important in determining the apparent contact angle. On the other hand, the experimental results showed that the side angles of the overhangs are critical not for the hydrophobic but for the oleophobic property with liquids of a low surface tension. Understanding of design parameters in the PDMS trapezoids surface gives more information for implementation of superhydrophobic surfaces. PMID:20879754

  1. Predicting shape and stability of air-water interface on superhydrophobic surfaces comprised of pores with arbitrary shapes and depths

    NASA Astrophysics Data System (ADS)

    Emami, B.; Vahedi Tafreshi, H.; Gad-el-Hak, M.; Tepper, G. C.

    2012-01-01

    An integro-differential equation for the three dimensional shape of air-water interface on superhydrophobic surfaces comprised of pores with arbitrary shapes and depths is developed and used to predict the static critical pressure under which such surfaces depart from the non-wetting state. Our equation balances the capillary forces with the pressure of the air entrapped in the pores and that of the water over the interface. Stability of shallow and deep circular, elliptical, and polygonal pores is compared with one another and a general conclusion is drawn for designing pore shapes for superhydrophobic surfaces with maximum stability.

  2. Fabrication of a superhydrophobic Al?O? surface using picosecond laser pulses.

    PubMed

    Jagdheesh, R

    2014-10-14

    Ultrashort pulse laser (USPL) machining/structuring is a promising technique to create a micropattern on a material surface with very low distortion to the peripheral area or high precession. Thin sheets of alumina (Al2O3) are micromachined with ultraviolet laser pulses of 6.7 ps, to create a superhydrophobic surface by single-step processing. USPL patterned micropillars and microholes have been fabricated with a range of pulses varying from 100 to 1200 pulses/unit area. The impact of the number of pulses/unit area with respect to the geometry and static contact angle measurements has been studied. The surface is free from cracks, and the melting effect is well-pronounced for the blind microhole structures. An energy dispersive X-ray spectroscopy study revealed a marginal change in the elemental composition of the laser-patterned surface. The results show that the geometry of the laser-machined pattern plays a major role in changing the wetting properties rather than the chemical changes induced on the surface. The micropillars exhibited a consistent superhydrophobic surface with a static contact angle measurement of 150 3. PMID:25251909

  3. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    NASA Astrophysics Data System (ADS)

    Li, Peipei; Chen, Xinhua; Yang, Guangbin; Yu, Laigui; Zhang, Pingyu

    2014-05-01

    A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution-immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex-concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2 and a water sliding angle lower than 5, while it retains good friction-reducing ability during extended sliding and possesses good self-cleaning ability as well. This demonstrates that the etched-immersed Al/STA rough surface may favor the applications of Al and its alloys in various industrial fields.

  4. Direct observation of self-similar contact line depinning from superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Paxson, Adam; Varanasi, Kripa

    2013-11-01

    The adhesion of a drop to a superhydrophobic surface, although very low, is never altogether eliminated. As the drop moves along the surface, the advancing portion of the contact line simply lies down onto the upcoming roughness features, contributing negligibly to adhesion. Instead, the pinning and contact angle hysteresis are governed by the depinning of capillary bridges formed at the receding portion of the contact line. We use environmental scanning electron microscopy to observe these depinning events at the microscale. After measuring the local receding contact angle of capillary bridges formed on a micropillar array, we find that these depinning events follow the Gibbs depinning criterion. We further extend this technique to two-scale hierarchical structures to reveal a self-similar depinning mechanism in which the adhesion of the entire drop depends only on the pinning at the very smallest level of roughness hierarchy. With this self-similar depinning mechanism we develop a model to predict the adhesion of drops to superhydrophobic surfaces that explains both the low adhesion on sparsely structured surfaces and the surprisingly high adhesion on surfaces whose features are densely spaced or tortuously shaped.

  5. Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel

    2015-10-01

    The coalescence-induced jumping of tens of microns size droplets on super-hydrophobic surfaces has been observed in both experiments and simulations. However, whether the coalescence-induced jumping would occur for smaller, particularly nanoscale droplets, is an open question. Using molecular dynamics simulations, we demonstrate that in spite of the large internal viscous dissipation, coalescence of two nanoscale droplets on a super-hydrophobic surface can result in a jumping of the coalesced droplet from the surface with a speed of a few m/s. Similar to the coalescence-induced jumping of microscale droplets, we observe that the bridge between the coalescing nano-droplets expands and impacts the solid surface, which leads to an acceleration of the coalesced droplet by the pressure force from the solid surface. We observe that the jumping velocity decreases with the droplet size and its ratio to the inertial-capillary velocity is a constant of about 0.126, which is close to the minimum value of 0.111 predicted by continuum-level modeling of Enright et al. [ACS Nano 8, 10352 (2014)].

  6. Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al-Nb alloy columnar films

    NASA Astrophysics Data System (ADS)

    Fujii, Takashi; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-07-01

    A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.

  7. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    NASA Astrophysics Data System (ADS)

    Kibar, Ali

    2016-02-01

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°‑40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy.

  8. Large spectral tuning of liquid microdroplets standing on a superhydrophobic surface using optical scattering force

    NASA Astrophysics Data System (ADS)

    Kiraz, A.; Yavuz, S. ć.; Karadaǧ, Y.; Kurt, A.; Sennaroglu, A.; ćankaya, H.

    2007-12-01

    We demonstrate large spectral tuning of glycerol/water microdroplets standing on a superhydrophobic surface using the optical scattering force exerted by a 1064nm Nd3+:YVO4 solid-state laser. Spectral tuning up to 30nm is presented in the whispering gallery modes as a result of the deformation of the microdroplets toward a truncated prolate spheroid geometry. Observed large spectral tuning is also reported to be highly reversible. This demonstration can inspire novel, largely tunable optical switches or filters based on liquid microdroplets kept in a sealed chamber.

  9. Approaching the theoretical contact time of a bouncing droplet on the rational macrostructured superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Tao, J.; Tao, H.; Chen, S.; Pan, L.; Wang, T.

    2015-09-01

    The aim of this study is to reveal theoretically and experimentally a limited contact time of a bouncing droplet on superhydrophobic surfaces with the rationally designed macrostructures. During impacting, the water droplet hydrodynamics is properly altered under the assistance of the macrotextures. As a consequence, the retracting process of the impact water droplet can be completely integrated into the process of spreading out to the maximal deformation, resulting in a limited overall contact time of approximately 5.5 ms, i.e., the time required for spreading out to the maximal deformation.

  10. Predicting shape and stability of air-water interface on superhydrophobic surfaces with randomly distributed, dissimilar posts

    NASA Astrophysics Data System (ADS)

    Emami, B.; Tafreshi, H. Vahedi; Gad-el-Hak, M.; Tepper, G. C.

    2011-05-01

    A mathematical framework developed to calculate the shape of the air-water interface and predict the stability of a microfabricated superhydrophobic surface with randomly distributed posts of dissimilar diameters and heights is presented. Using the Young-Laplace equation, a second-order partial differential equation is derived and solved numerically to obtain the shape of the interface, and to predict the critical hydrostatic pressure at which the superhydrophobicity vanishes in a submersed surface. Two examples are given for demonstration of the method's capabilities and accuracy.

  11. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grnbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 0.06 and 0.41 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule. PMID:24018989

  12. Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Lv, Damei; Ou, Junfei; Xue, Mingshan; Wang, Fajun

    2015-04-01

    Superhydrophobic surface (SHS) was fabricated on aluminum via surface roughening by NaClO and surface passivation by hexadecyltrimethoxysilane. The long-term durability for storing the sample in air and the chemical stability for contacting the sample with NaCl solution were investigated. The short-term corrosion resistance for immersing the sample in NaCl solution for 1 h was investigated by potentiodynamic polarization, and the long-term corrosion resistance for immersing the sample in NaCl solution for 7 days was investigated by variation analyses on surface wettability, surface morphology, and surface chemistry. All experimental results suggested that the so-obtained SHS possessed good stability and good corrosion resistance under the testing conditions.

  13. Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method

    NASA Astrophysics Data System (ADS)

    Valipour Motlagh, N.; Birjandi, F. Ch.; Sargolzaei, J.; Shahtahmassebi, N.

    2013-10-01

    In this study, superamphiphobic coating was produced using low surface energy materials and fabrication of hierarchical structures on stainless steel surface. Hierarchical structure was fabricated by silica multilayer coatings and adequate control of particles size in each layer. The surface energy was decreased by fluoropolymer compounds. The maximum static contact angle of DI water, ethylene glycol and fuel oil droplets on the prepared surface increased from 64 to 166, from 33 to 157 and from 0 to 116, respectively. Also, the minimum sliding angles of DI water, ethylene glycol and fuel oil droplets on the prepared surface were less than 2, 5 and 12, respectively. These results confirmed the superhydrophobicity and superoleophobicity of coated surfaces. These films maintained their superamphiphobicity after 16 days of immersion in water. In electrochemical corrosion evaluation, the highest protection efficiency of fabricated films reached as high as 97.33%. These satisfied results confirmed that this simple method can be used to fabricate large scale samples.

  14. Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity.

    PubMed

    Zhang, Mei; Wang, Ping; Sun, Hongyan; Wang, Zuankai

    2014-12-24

    Developing robust antibacterial materials is of importance for a wide range of applications such as in biomedical engineering, environment, and water treatment. Herein we report the development of a novel superhydrophobic surface featured with hierarchical architecture and bimetallic composition that exhibits enhanced antibacterial activity. The surface is created using a facile galvanic replacement reaction followed by a simple thermal oxidation process. Interestingly, we show that the surface's superhydrophobic property naturally allows for a minimal bacterial adhesion in the dry environment, and also can be deactivated in the wet solution to enable the release of biocidal agents. In particular, we demonstrate that the higher solubility nature of the thermal oxides created in the thermal oxidation process, together with the synergistic cooperation of bimetallic composition and hierarchical architecture, allows for the release of metal ions in a sustained and accelerated manner, leading to enhanced antibacterial performance in the wet condition as well. We envision that the ease of fabrication, the versatile functionalities, and the robustness of our surface will make it appealing for broad applications. PMID:25418198

  15. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing.

    PubMed

    Hao, Quanyong; Pang, Yichuan; Zhao, Ying; Zhang, Jing; Feng, Jie; Yao, Shuhuai

    2014-12-30

    Delayed frost growth on superhydrophobic surfaces (SHSs) with jumping condensates has been found by many researchers recently. However, the mechanism of this phenomenon has not been elucidated clearly. In this study, copper SHSs with or without jumping condensates were selected as the substrates for observing condensation icing at a relative humidity (RH) of 60%. The results showed that only SHS with jumping condensates showed delayed condensation icing. Moreover, when such SHSs were placed upward and the surface temperature was held at -10 °C, some discrete frozen drops first appeared on the SHSs. The following icing mainly occurred on these discrete global crystals and then expanded around them until covering the entire surface. Little macroscopic interdrop freezing phenomenon was found. The growth of the frost front is mainly dominated by jumping freezing (the condensed droplets jumped onto the ice crystals and were frozen) or direct vapor-ice deposition. Using microscopy, we found interdrop freezing occurred, in addition to the two mechanisms mentioned above. By placing the SHS downward at -10 °C and intentionally introducing or eliminating tiny dusts, we confirmed that there were no superhydrophobic defects on our SHSs. The discrete frozen drops first appearing on the SHSs were triggered by tiny dusts falling on the surface before or during condensation icing. The key approach in delaying or resisting frost growth on SHSs with jumping condensates is to retard initial ice crystal formation, e.g., eliminating the edge effect and keeping the SHSs clean. PMID:25466489

  16. Preparation of porous super-hydrophobic and super-oleophilic polyvinyl chloride surface with corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Kang, Yingke; Wang, Jinyan; Yang, Guangbin; Xiong, Xiujuan; Chen, Xinhua; Yu, Laigui; Zhang, Pingyu

    2011-11-01

    Porous super-hydrophobic polyvinyl chloride (PVC) surfaces were obtained via a facile solvent/non-solvent coating process without introducing compounds with low surface energy. The microstructure, wetting behavior, and corrosion resistance of resultant super-hydrophobic PVC coatings were investigated in relation to the effects of dosage of glacial acetic acid and the temperature of drying the mixed PVC solution spread over glass slide substrate. As-prepared PVC coatings had porous microstructure, and the one obtained at a glacial acetic acid to tetrahydrofuran volume ratio of 2.5:10.0 and under a drying temperature of 17 C had a water contact angle of 150 1.5, showing super-hydrophobicity. In the meantime, it possessed very small contact angles for liquid paraffin and diiodomethane and good corrosion resistance against acid and alkali corrosive mediums, showing promising applications in self-cleaning, waterproof for outer wall of building, seawater resistant coating, and efficient separation of oil and water.

  17. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ?180 and sliding angle ?1), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ?165.8 and sliding angle ?6.29) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ?132.1 and sliding angle >90) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  18. Influence of Liquid Type on Drop Impingement on Rib and Cavity Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, John; Maynes, Daniel; Webb, Brent

    2009-11-01

    We report results of an experimental investigation of liquid drops impinging on superhydrophobic surfaces. The surfaces are fabricated in Silicon wafers with micro-ribs and cavities (grooves) that are coated with a fluoropolymer or teflon hydrophobic coating. Liquid droplets of known size were dropped from heights ranging from 0.5 to 50 cm onto the surfaces and the pre-impingement freefall, surface impact, and droplet deformation were imaged at a rate of 6000 frames/second with a digital camera. The droplets were either water, ethanol, or a glycerine/water mixture. The droplet impact speed, maximum droplet spread, horizontal spread speed, vertical speed of the issuing jet, and the time between impact and formation of the issuing jet were all characterized. The results show that the overall impact dynamics are strongly influenced by the different impinging surface conditions and the fluid type. Results were compared with previously proposed analytical models and suggestions for improving those models are made.

  19. Statistical theory of wetting of liquid drops on superhydrophobic randomly rough surfaces

    NASA Astrophysics Data System (ADS)

    Afferrante, L.; Carbone, G.

    2015-10-01

    It is well known that hydrophobic surfaces may become superhydrophobic when their surface is properly roughened. However, the role of roughness is not yet very clear, notwithstanding several theoretical and experimental investigations. In the present paper, we propose a relatively simple theory aiming at calculating the apparent contact angle (ACA) and the contact area occurring in the case of drops gently deposited on two-dimensional randomly rough surfaces. Our theory applies both to isotropic and anisotropic rough surfaces, although in the latter case the predicted ACA has to be interpreted as the average contact angle at the triple line. We assume large separation of scales, i.e., that the spectral content of the surface lies in a range of wavelengths much smaller than the size of the apparent liquid-solid contact area. Results show that anisotropy negligibly affects the ACA, and a very reasonable agreement is obtained between theoretical ACA values and experimental data.

  20. Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers.

    PubMed

    Zenerino, Arnaud; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frdric

    2010-08-17

    In the aim of creating superoleophobic surfaces using monomers with short perfluorinated chains, to avoid drawbacks associated with PFOA, original semifluorinated (C(4)F(9), C(6)F(13)) 3,4-ethylenedioxypyrrole derivatives were synthesized. These monomers were obtained using the faster synthetic method than previously described with some analogues, characterized and electrochemically polymerized on gold plates. The obtained surfaces exhibited superhydrophobic (contact angle with water of 157 degrees and 158 degrees, respectively) and oleophobic properties (contact angle with hexadecane: 88 degrees and 108 degrees, respectively). The comparison between these new monomers and already published analogue EDOP6 confirms the importance of the bipolaronic form of conductive polymer for obtaining surface nanoporosity and as a consequence improving surface oleophobicity. Thus, little change in the molecule design of the connector and the spacer of the monomer can have a significant influence on the surface oleophobicity. PMID:20695602

  1. Facile fabrication of super-hydrophobic surfaces with 3D pillar structures

    NASA Astrophysics Data System (ADS)

    Zhai, Shengjie; Zhao, Hui; Jiang, Yingtao

    2012-11-01

    Super-hydrophobic surfaces have attracted growing interest due to their unique properties, including drag reduction, facilitation of heat transfer, self-cleaning, anti-corrosion, anti-sticking, and anti-contamination. However, the method of fabricating super-hydrophobic surfaces with regular 3D micro/nano pillars structures is still complicated. Here we present a simple, reliable, and low-cost fabrication method which can create complex 3D structures. Briefly, the commercial nanostamping products like CD, DVD,and bluray disc serve as the PDMS mold The pit size (LxWxH) of CD, DVD, and Blueray is 0.8 ?m 0.15 ?m 0.1 ?m, 0.4 ?m 0.15 ?m 0.1 ?m, and 0.15 ?m 0.15 ?m 0.1 ?m. The PDMS surface with the relevant structures can be directly replicated from the molds by the soft lithography technology. The precise geometric structures including height, width, and density of pillar arrays can be readily controlled by using different optical discs. The contact angle is measured about 136-140 degree. We also study the relationship between the contact angle and different feature size. Finally, we measure the slip length for different structures.

  2. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.

    PubMed

    Chen, Xuemei; Patel, Ravi S; Weibel, Justin A; Garimella, Suresh V

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  3. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments.

  4. Probing droplets on superhydrophobic surfaces bysynchrotron radiation scattering techniques

    PubMed Central

    Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-01-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. PMID:24971957

  5. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    NASA Astrophysics Data System (ADS)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 1571 and a very low contact angle hysteresis (CAH) (roll-off angle=1) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (1562) and CAH (180) in a "Cassie impregnating wetting state".

  6. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    PubMed Central

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  7. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

    SciTech Connect

    Mishchenko, L; Khan, M; Aizenberg, J; Hatton, BD

    2013-07-03

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

  8. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Shuliang; Zhang, Ming; Ma, Miaolian; Wang, Chengyu; Li, Jian

    2013-09-01

    Improvement of the robustness of superhydrophobic surfaces is crucial for the purpose of achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. We have investigated a fabrication of polyvinyl alcohol (PVA)/silica (SiO2) composite polymer coating on wooden substrates with super repellency toward water, low sliding angles, low contact angle hysteresis, and relatively better mechanical robustness. The composite polymer slurry, consisting of well-mixing SiO2 particles and PVA, is prepared simply and subsequently coated over wooden substrates with good adhesion. In this study, the mechanical robustness of superhydrophobic wood surfaces was evaluated. The effect of petaloid structures of the composite polymer on robustness was investigated using an abrasion test and the results were compared with those of superhydrophobic wood surfaces fabricated by other processes. The produced wood surfaces exhibited promising superhydrophobic properties with a contact angle of 159? and a sliding angle of 4?, and the relatively better mechanical robustness.

  9. Singlet Oxygen Generation on Porous Superhydrophobic Surfaces: Effect of Gas Flow and Sensitizer Wetting on Trapping Efficiency

    PubMed Central

    2015-01-01

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which siliconphthalocyanine (Pc) particles are immobilized. Singlet oxygen (1O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UVvis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquidgas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

  10. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.

    PubMed

    Zhao, Yuanyuan; Liu, Yang; Xu, Qianfeng; Barahman, Mark; Bartusik, Dorota; Greer, Alexander; Lyons, Alan M

    2014-11-13

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

  11. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Yang, Jinxin; Pi, Pihui; Wen, Xiufang; Zheng, Dafeng; Xu, Mengyi; Cheng, Jiang; Yang, Zhuoru

    2009-01-01

    A superhydrophobic surface was obtained by combining application of CaCO 3/SiO 2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  12. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider.

    PubMed

    Goodwyn, Pablo Perez; De Souza, Emerson; Fujisaki, Kenji; Gorb, Stanislav

    2008-05-01

    Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique. The mould surface exhibited super-hydrophobic properties similar to the original insect surface. The average water contact angle (CA) of the mould was 164.7 degrees , whereas the CA of the flat polymer was about 92 degrees . These results show that (i) in water striders, the topography of the surface plays a dominant role in super-hydrophobicity, (ii) very low surface energy bulk material (typically smaller than 0.020 N m(-1)) is not necessary to achieve super-hydrophobicity; and (3) the two-step moulding technique may be used to mimic quite complex biological functional surfaces. PMID:18296131

  13. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.

    PubMed

    Huang, Shouying

    2014-10-01

    In the present study, a superhydrophobic polyurethane (PU) sponge with hierarchically structured surface, which exhibits excellent performance in absorbing oils/organic solvents, was fabricated for the first time through mussel-inspired one-step copolymerization approach. Specifically, dopamine (a small molecular bioadhesive) and n-dodecylthiol were copolymerized in an alkaline aqueous solution to generate polydopamine (PDA) nanoaggregates with n-dodecylthiol motifs on the surface of the PU sponge skeletons. Then, the superhydrophobic sponge that comprised a hierarchical structured surface similar to the chemical/topological structures of lotus leaf was fabricated. The topological structures, surface wettability, and mechanical property of the sponge were characterized by scanning electron microscopy, contact angle experiments, and compression test. Just as a result of the highly porous structure, superhydrophobic property and strong mechanical stability, this sponge exhibited desirable absorption capability of oils/organic solvents (weight gains ranging from 2494% to 8670%), suggesting a promising sorbents for the removal of oily pollutants from water. Furthermore, thanks to the nonutilization of the complicated processes or sophisticated equipment, the fabrication of the superhydrophobic sponge seemed to be quite easy to scale up. All these merits make the sponge a competitive candidate when compared to the conventional absorbents, for example, nonwoven polypropylene fabric. PMID:25198145

  14. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    NASA Astrophysics Data System (ADS)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  15. Superhydrophobic, antiadhesive, and antireflective surfaces mediated by hybrid biomimetic salvinia leaf with moth-eye structures

    NASA Astrophysics Data System (ADS)

    Yang, Cho-Yun; Tsai, Yu-Lin; Yang, Cho-Yu; Sung, Cheng-Kuo; Yu, Peichen; Kuo, Hao-Chung

    2014-08-01

    In this paper, we successfully demonstrate multifunctional surfaces based on scaffolding biomimetic structures, namely, hybrid salvinia leaves with moth-eye structures (HSMSs). The novel fabrication process employs scalable polystyrene nanosphere lithography and a lift-off process. Systematic characterizations show the biomimetic HSMS exhibiting superhydrophobic, self-cleaning, antiadhesive, and antireflective properties. Furthermore, the resulting surface tension gradient (known as the Marangoni effect) leads to a superior air retention characteristic in the HSMS under water droplet impact, compared with the traditional hybrid lotus leaf with a moth-eye structure (HLMS). Such results and learnings pave the way towards the attainment and mass deployment of dielectric surfaces with multiple functionalities for versatile biological and optoelectronic applications.

  16. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    PubMed Central

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, InTaek; Yun, Dong-Jin

    2015-01-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements. PMID:26490133

  17. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing.

    PubMed

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin

    2015-01-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements. PMID:26490133

  18. Fabrication of pillar-array superhydrophobic silicon surface and thermodynamic analysis on the wetting state transition

    NASA Astrophysics Data System (ADS)

    Liu, Si-Si; Zhang, Chao-Hui; Zhang, Han-Bing; Zhou, Jie; He, Jian-Guo; Yin, Heng-Yang

    2013-10-01

    Textured silicon (Si) substrates decorated with regular microscale square pillar arrays of nearly the same side length, height, but different intervals are fabricated by inductively coupled plasma, and then silanized by self-assembly octadecyl-trichlorosilane (OTS) film. The systematic water contact angle (CA) measurements and micro/nanoscale hierarchical rough structure models are used to analyze the wetting behaviors of original and silanized textured Si substrates each as a function of pillar interval-to-width ratio. On the original textured Si substrate with hydrophilic pillars, the water droplet possesses a larger apparent CAs (> 90) and contact angle hysteresis (CAH), induced by the hierarchical roughness of microscale pillar arrays and nanoscale pit-like roughness. However, the silanized textured substrate shows superhydrophobicity induced by the low free energy OTS overcoat and the hierarchical roughness of microscale pillar arrays, and nanoscale island-like roughness. The largest apparent CA on the superhydrophobic surface is 169.8. In addition, the wetting transition of a gently deposited water droplet is observed on the original textured substrate with pillar interval-to-width ratio increasing. Furthermore, the wetting state transition is analyzed by thermodynamic approach with the consideration of the CAH effect. The results indicate that the wetting state changed from a Cassie state to a pseudo-Wenzel during the transition.

  19. The effectiveness of silane and siloxane treatments on the superhydrophobicity and icephobicity of concrete surfaces

    NASA Astrophysics Data System (ADS)

    Rao, Sunil M.

    Icy roads lead to treacherous driving conditions in regions of the U.S., leading to over 450 fatalities per year. De-icing chemicals, such as road salt, leave much to be desired. In this report, commercially available silane, siloxane, and related materials were evaluated as solutions, simple emulsions, and complex emulsions with incorporated particulates, for their effectiveness as superhydrophobic treatments. Through the development and use of a basic impact test, the ease of ice removal (icephobicity) was examined as an application of the targeted superhydrophobicity. A general correlation was found between icephobicity and hydrophobicity, with the amount of ice removed on impact increasing with increasing contact angle. However, the correlation was poor in the high performance region (high contact angle and high ice removal.) Polymethylhydrogensiloxane was a top performer and was more effective when used as a "shell" type emulsion with silica fume particulates. An aqueous sodium methyl siliconate solution showed good performance for ice loss and contact angle, as did a commercial proprietary emulsion using a diethoxyoctylsilyl trimethylsilyl ester of silicic acid. These materials have sterically available functional groups that can react or associate with the concrete surface and are potentially film-forming. Materials with less reactive functional groups and a lower propensity to film-form did not perform as well.

  20. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.

    PubMed

    Ishizaki, Takahiro; Saito, Naobumi

    2010-06-15

    We have developed a facile, simple, time-saving method of creating a superhydrophobic surface on a magnesium alloy by a simple immersion process at room temperature. First, a crystalline CeO(2) film was vertically formed on the magnesium alloy by immersion in a cerium nitrate aqueous solution for 20 min. The density of the crystals vertically with respect to the magnesium alloy increased with increasing immersion time. Next, the film were covered with fluoroalkylsilane (FAS: CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3)) molecules within 30 min by immersion in a toluene solution containing FAS and tetrakis(trimethylsiloxy)titanium (TTST: (CH(3))(3)SiO)(4)Ti). TTST was used as a catalyst to promote the hydrolysis and/or polymerization of FAS molecules. The FAS-coated CeO(2) film had a static contact angle of more than 150 degrees, that is, a superhydrophobic property. The shortest processing time for the fabrication of the superhydrophobic surface was 40 min. The contact angle hysteresis decreased with an increase in the immersion time in the cerium nitrate aqueous solution. The chemical stability of the superhydrophobic surface on magnesium alloy AZ31 was investigated. The average static water contact angles of the superhydrophobic surfaces after immersion in the solutions at pH 4, 7, and 10 for 24 h were found to be 139.7 +/- 2, 140.0 +/- 2, and 145.7 +/- 2 degrees, respectively. In addition, the chemical stability of the superhydrophobic surface in the solutions at pH ranging from 1 to 14 was also examined. The superhydrophobic surfaces had static contact angles of more than 142 degrees in the solutions at pH ranging from 1 to 14, showing that our superhydrophobic surface had a high chemical stability. Moreover, the corrosion resistance of the superhydrophobic surface on the magnesium alloy was investigated using electrochemical measurements. PMID:20377219

  1. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    PubMed

    Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappad, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure). PMID:21855889

  2. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    TOXLINE Toxicology Bibliographic Information

    Pareo P; De Gregorio GL; Manca M; Pianesi MS; De Marco L; Cavallaro F; Mari M; Pappadà S; Ciccarella G; Gigli G

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).

  3. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.

    PubMed

    Chang, Jean H; Hunter, Ian W

    2011-05-18

    We present an electrochemical layered system that allows for the fast, in situ wettability switch of microstructured PPy upon the application of an electric stimulus. We have eliminated the need for PPy to be immersed in an electrolyte to switch between wetting states, laying the groundwork for PPy to be used as a viable material in many applications, including microfluidics or smart textiles. The PPy surface was switched from the superhydrophobic state (contact angle=159) to the superhydrophilic state (contact angle=0) in 3 s. A wettability gradient was also created on a PPy surface using the layered system, causing a 3 µL droplet to travel approximately 2 mm in 0.8 s. PMID:21544891

  4. Surface plasmon resonance of dumbbell nanostructure

    NASA Astrophysics Data System (ADS)

    Ajith, R.; Mathew, Vincent; Arun, P.

    2014-08-01

    We present an intuitive theoretical description of the optical properties of a complex metal nanostructure, consisting of two nanoshells connected by a nanorod giving a dumbbell-like appearance. The simulations were done using the finite element method. The effects of the length and radius of the nanorods and of the dimensions of the nanoshells on the plasmon properties of the system were analyzed. The peak position and intensities in the absorption spectra were found to have a strong dependence on the geometrical parameters of the dumbbell. This study provides evidence that the localized surface plasmon modes play a key role in the broadband light harvesting capabilities of these nanostructures, and this is promising for a wide range of practical applications, for example in surface-enhanced spectroscopies.

  5. Photoactivatable Nanostructured Surfaces for Biomedical Applications.

    PubMed

    Mosinger, Ji?; Lang, Kamil; Kubt, Pavel

    2016-01-01

    This review aims to summarize the current status of photoactivatable nanostructured film and polymeric nanofiber surfaces used in biomedical applications with emphasis on their photoantimicrobial activity, oxygen-sensing in biological media, light-triggered release of drugs, and physical or structural transformations. Many light-responsive functions have been considered as novel ways to alter surfaces, i.e., in terms of their reactivities and structures. We describe the design of surfaces, nano/micro-fabrication, the properties affected by light, and the application principles. Additionally, we compare the various approaches reported in the literature. PMID:26589508

  6. Article coated with flash bonded superhydrophobic particles

    DOEpatents

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  7. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127 to 152. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  8. Hierarchically porous micro/nanostructured copper surfaces with enhanced antireflection and hydrophobicity

    NASA Astrophysics Data System (ADS)

    Li, Ming; Su, Yanjie; Hu, Jing; Yao, Lu; Wei, Hao; Yang, Zhi; Zhang, Yafei

    2016-01-01

    A facile hydrothermal method has been proposed to fabricate hierarchically porous Cu micro/nanostructures on Cu foil, whose growth can be controlled by the reaction time and the amount of ethylene glycol added into the precursor. Compared to commercially available Cu foil, the micro/nanostructured Cu surfaces exhibit not only greatly enhanced ability to absorb light over a wide range of wavelengths from 250 to 1000 nm, but also improved hydrophobicity from 90.4 to 151.2 without any low-surface-energy chemical modification. The reflectance can reach a lowest value of 10% at 300 nm and show a biggest decrement of 53% at 582 nm. Due to their superhydrophobicity, the micro/nanostructured Cu foils demonstrate an improved anticorrosion ability against 3.5 wt% NaCl solution compared with a bare one. The proposed mechanism indicates that the combination of the dual-scale roughness and the adsorbed air in pores account for the enhanced antireflection and hydrophobicity.

  9. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    PubMed Central

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  10. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-03-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

  11. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.

    PubMed

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  12. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces.

    PubMed

    Timonen, Jaakko V I; Latikka, Mika; Leibler, Ludwik; Ras, Robin H A; Ikkala, Olli

    2013-07-19

    Self-assembly is a process in which interacting bodies are autonomously driven into ordered structures. Static structures such as crystals often form through simple energy minimization, whereas dynamic ones require continuous energy input to grow and sustain. Dynamic systems are ubiquitous in nature and biology but have proven challenging to understand and engineer. Here, we bridge the gap from static to dynamic self-assembly by introducing a model system based on ferrofluid droplets on superhydrophobic surfaces. The droplets self-assemble under a static external magnetic field into simple patterns that can be switched to complicated dynamic dissipative structures by applying a time-varying magnetic field. The transition between the static and dynamic patterns involves kinetic trapping and shows complexity that can be directly visualized. PMID:23869012

  13. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    PubMed Central

    Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Summary Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  14. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.

    PubMed

    Mayser, Matthias J; Bohn, Holger F; Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m(2) depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  15. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina

    PubMed Central

    2011-01-01

    Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting. PMID:21827683

  16. Surface Nanostructures in Manganite Films

    PubMed Central

    Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

    2014-01-01

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

  17. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    SciTech Connect

    Bao, Yubin; Li, Qiuying; Shanghai Key Laboratory Polymeric Materials; Key Laboratory of Ultrafine Materials of Ministry of Education ; Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei

    2011-05-15

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

  18. Hierarchically structured re-entrant microstructures for superhydrophobic surfaces with extremely low hysteresis

    NASA Astrophysics Data System (ADS)

    Hu, Huan; Swaminathan, Vikhram V.; Zamani Farahani, Mahmoud Reza; Mensing, Glennys; Yeom, Junghoon; Shannon, Mark A.; Zhu, Likun

    2014-09-01

    This paper reports a new type of hierarchically structured surface consisting of re-entrant silicon micropillars with silicon nanowires atop for superhydrophobic surface with extremely low hysteresis. Re-entrant microstructures were fabricated on a silicon substrate through a customized one-mask microfabrication process while silicon nanopillars were created on the entire surface of microstructures, including sidewalls, by a metal-assisted-chemical etching process. The strategy of constructing hierarchical surfaces aims to reduce the actual contact area between liquid and top part of solid surface, thereby increasing the contact angle and reducing the sliding angle. The strategy of using re-entrant profile of the microstructure aims to prevent a liquid droplet from falling into cavities of roughened structures and decrease the actual contact area between the liquid droplet and sidewalls of solid structures, therefore reducing adhesion forces acting on the liquid droplet. Our measurement shows that the surface incorporating both hierarchical and re-entrant strategies exhibits a sliding angle as low as 0.5, much lower than sliding angles of surfaces only incorporating either one of the strategies.

  19. The effect of contact angle hysteresis on droplet motion and collisions on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael; Rothstein, Jonathan

    2010-11-01

    The effect of varying the contact angle hysteresis of a superhydrophobic surface on the characteristics and dynamics of water droplet motion and their subsequent collision are investigated using a high-speed camera. The surfaces are created by imparting random roughness to Teflon through sanding. With this technique, it is possible to create surfaces with similar advancing contact angles near 150 degrees, but with varying contact angle hysteresis. This talk will focus on a number of interesting experimental observations pertaining to drop dynamics along a surface with uniform hysteresis, drop motion along surfaces with transition zones from one hysteresis to another, and the collision of droplets on surfaces of uniform hysteresis. For single drop studies, gravity is used as the driving force, while the collision studies use pressurized air to propel one drop into the other. For the case of droplet collision, the effect of hysteresis, Weber number, and impact number on the maximum deformation of the drops, and the post-collision dynamics will be discussed. For the single droplet measurements, the resistance to motion will be characterized as well as the transition from rolling to sliding as a function of drop size, inclination angle, and hysteresis. Additionally, we will quantify the effect of surface transitions on the resulting motion, mixing, and deflection of the drops.

  20. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-01

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 ?m and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water. PMID:22931378

  1. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature.

    PubMed

    Maitra, Tanmoy; Tiwari, Manish K; Antonini, Carlo; Schoch, Philippe; Jung, Stefan; Eberle, Patric; Poulikakos, Dimos

    2014-01-01

    The superhydrophobic behavior of nano- and microtextured surfaces leading to rebound of impacting droplets is of great relevance to nature and technology. It is not clear however, if and under what conditions this behavior is maintained when such surfaces are severely undercooled possibly leading to the formation of frost and icing. Here we elucidate key aspects of this phenomenon and show that the outcome of rebound or impalement on a textured surface is affected by air compression underneath the impacting drop and the time scale allowing this air to escape. Remarkably, drop impalement occurred at identical impact velocities, both at room and at very low temperatures (-30 °C) and featured a ringlike liquid meniscus penetration into the surface texture with an entrapped air bubble in the middle. At low temperatures, the drop contact time and receding dynamics of hierarchical surfaces were profoundly influenced by both an increase in the liquid viscosity due to cooling and a partial meniscus penetration into the texture. For hierarchical surfaces with the same solid fraction in their roughness, minimizing the gap between the asperities (both at micro- and nanoscales) yielded the largest resistance to millimetric drop impalement. The best performing surface impressively showed rebound at -30 °C for drop impact velocity of 2.6 m/s. PMID:24320719

  2. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Park, Hyungmin; Kim, John

    2013-11-01

    Superhydrophobic surfaces have attracted much attention lately as they present the possibility of achieving a substantial skin-friction drag reduction in turbulent flows. In this paper, the effects of a superhydrophobic surface, consisting of microgrates aligned in the flow direction, on skin-friction drag in turbulent flows were investigated through direct numerical simulation of turbulent channel flows. The superhydrophobic surface was modeled through a shear-free boundary condition on the air-water interface. Dependence of the effective slip length and resulting skin-friction drag on Reynolds number and surface geometry was examined. In laminar flows, the effective slip length depended on surface geometry only, independent of Reynolds number, consistent with an existing analysis. In turbulent flows, the effective slip length was a function of Reynolds number, indicating its dependence on flow conditions near the surface. The resulting drag reduction was much larger in turbulent flows than in laminar flows, and near-wall turbulence structures were significantly modified, suggesting that indirect effects resulting from modified turbulence structures played a more significant role in reducing drag in turbulent flows than the direct effect of the slip, which led to a modest drag reduction in laminar flows. It was found that the drag reduction in turbulent flows was well correlated with the effective slip length normalized by viscous wall units.

  3. Surface plasmon polaritons in artificial metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  4. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.

    PubMed

    Li, Lester; Breedveld, Victor; Hess, Dennis W

    2012-09-26

    In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance. PMID:22913317

  5. On jet impingement and thin film breakup on a horizontal superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Prince, Joseph F.; Maynes, Daniel; Crockett, Julie

    2015-11-01

    When a vertical laminar jet impinges on a horizontal surface, it will spread out in a thin film. If the surface is hydrophobic and a downstream depth is not maintained, the film will radially expand until it breaks up into filaments or droplets. We present the first analysis and model that describes the location of this transition for both isotropic and anisotropic structured superhydrophobic (SH) surfaces. All surfaces explored are hydrophobic or SH, where the SH surfaces exhibit an apparent slip at the plane of the surface due to a shear free condition above the air filled cavities between the structures. The influence of apparent slip on the entire flow field is significant and yields behavior that deviates notably from classical behavior for a smooth hydrophilic surface where a hydraulic jump would form. Instead, break up into droplets occurs where the jet's outward radial momentum is balanced by the inward surface tension force of the advancing film. For hydrophobic surfaces, or SH surfaces with random micropatterning, the apparent slip on the surface is uniform in all directions and droplet breakup occurs in a circular pattern. When alternating rib/cavity microstructures are used to create the SH surface, the apparent slip varies as a function of the azimuthal coordinate, and thus, the breakup location is elliptically shaped. The thin film dynamics are modeled by a radial momentum analysis for a given jet Weber number and specified slip length and the location of breakup for multiple surfaces over a range of jet Weber numbers and realistic slip length values is quantified. The results of the analysis show that the breakup radius increases with increasing Weber number and slip length. The eccentricity of the breakup ellipse for the rib/cavity SH structures increases with increasing Weber number and slip length as well. A generalized model that allows prediction of the transition (break-up) location as a function of all influencing parameters is presented. Model results are compared to experimental measurements with very good agreement.

  6. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    PubMed

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-01

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large-scale industrial fabrication of chemically stable and mechanically robust superhydrophobic surfaces. PMID:24593862

  7. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    NASA Astrophysics Data System (ADS)

    Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of 108, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155 and less than 5 respectively. The surface properties such as surface free energy ( ?p), interfacial free energy ( ?pw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  8. A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface

    NASA Astrophysics Data System (ADS)

    Jin, Chunde; Li, Jingpeng; Han, Shenjie; Wang, Jin; Sun, Qingfeng

    2014-11-01

    Bamboo remains a vital component of modern-day society; however, its use is severely limited in certain applications because of its hydrophilic and oleophilic properties. In this work, we present a method to render bamboo surfaces superamphiphobic by combining control of ZnO nanostructures and fluoropolymer deposition while maintaining their corrosion resistance. Large-scale rose-like ZnO nanoflowers (RZN) were planted on the bamboo surface by a hydrothermal method. After fluoroalkylsilane (FAS) film deposition to lower the surface energy, the resulting surface showed superamphiphobicity toward water, oil, and even certain corrosive liquids, including salt solutions and acidic and basic solutions at all pH values. The as-prepared superamphiphobic bamboo surface was durable and maintained its superhydrophobic property with water contact angles >150° when stored under ambient condition for two months or immersed in a hydrochloric acid solution of pH 1 and a sodium hydroxide solution of pH 14 for 3 h at 50 °C.

  9. Nanostructured surfaces investigated by quantitative morphological studies.

    PubMed

    Perani, Martina; Carapezzi, Stefania; Mutta, Geeta Rani; Cavalcoli, Daniela

    2016-05-01

    The morphology of different surfaces has been investigated by atomic force microscopy and quantitatively analyzed in this paper. Two different tools have been employed to this scope: the analysis of the height-height correlation function and the determination of the mean grain size, which have been combined to obtain a complete characterization of the surfaces. Different materials have been analyzed: SiO x N y , InGaN/GaN quantum wells and Si nanowires, grown with different techniques. Notwithstanding the presence of grain-like structures on all the samples analyzed, they present very diverse surface design, underlying that this procedure can be of general use. Our results show that the quantitative analysis of nanostructured surfaces allows us to obtain interesting information, such as grain clustering, from the comparison of the lateral correlation length and the grain size. PMID:27004458

  10. Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong; Wang, Zibao; Wang, Kedian; Cui, Jianlei

    2016-02-01

    We report a simple and inexpensive method for producing super-hydrophobic surfaces through direct replication of micro/nano-structures on polydimethylsiloxane (PDMS) from a replication master prepared by ultrafast-laser texturing process. Gratings were obtained on 304L stainless steel plate using picosecond laser ablation. It has been used as a master with grating areas of different structural features. PDMS negative replica was prepared from the masters, and PDMS positive replica was prepared from the negative replica thereafter. Wettability of samples of the steel master, negative and positive replicas was distinguished using the apparent contact angle (CA) of water drop. Relationships between the CAs on three kinds of samples and structural features were presented. Super-hydrophobic behavior with self-cleaning, exhibited by a water contact angle of 164.5° and sliding angle of 8.44°, was observed on the PDMS negative replica surface. The negative and positive replicas were sputtered on gold films, which were used to metalized PDMS and eliminate the submicron/nano-structures in hierarchical structures. Results prove that submicro/nano-structures of hierarchical structures enhance the hydrophobicity of material surface remarkably. This replication method can be applied for large scale production of micro/nano textured super-hydrophobic surfaces for commercial applications.

  11. Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO(4):Dy(3+) microbouquets.

    PubMed

    Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng

    2014-04-21

    Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165 and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions. PMID:24572627

  12. Superhydrophilic - Superhydrophobic Transition in Vertically Aligned Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Varghese, Oomman; Neupane, Ram; Paulose, Maggie

    2015-03-01

    Both hydrophilic (wetting) and hydrophobic (non-wetting) surfaces find applications in a variety of technological areas. For example, hydrophilic surfaces are used in microfluidic devices to provide antifogging and antifouling functions whereas hydrophobic coatings are used in clothes to attribute stain resistance. While in superhydrophilic surfaces the contact angle that water droplets make with the surface is nearly zero, the surfaces that make contact angles greater than about 120 are considered superhydrophobic. Oxide ceramics generally exhibit hydrophilic behavior. Surface texturing or organic coatings are often used to make the surface hydrophobic or superhydrophobic. We prepared highly ordered titania nanotube arrays on titanium foils using anodic oxidation that showed superhydrophilic behavior upon fabrication. We noticed a strong correlation between fabrication conditions and the wettability. We have become successful in converting such a superhydrophilic nanostructure into superhydrophobic without modifying the surface with organic molecules or texturing. Contact angles in excess of 145 have been obtained. We will present these results and discuss the physiochemical processes that decide wetting properties of oxide nanostructures.

  13. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    PubMed

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ?160), heated to temperatures ranging between 40 and 70 C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. PMID:25460699

  14. Multipurpose ultra and superhydrophobic surfaces based on oligodimethylsiloxane-modified nanosilica.

    PubMed

    de Francisco, Raquel; Tiemblo, Pilar; Hoyos, Mario; Gonzlez-Arellano, Camino; Garca, Nuria; Berglund, Lars; Synytska, Alla

    2014-11-12

    Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications. PMID:25275966

  15. Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites.

    PubMed

    Wang, Li; Liang, Junyan; He, Ling

    2014-12-01

    The fluoropolymer-SiO2 hybrid nanocomposite consisting of core-corona fluoropolymer-grafted SiO2 nanoparticle (NP) and poly(dodecafluoroheptyl methacrylate) (PDFHM) was obtained by radical solution polymerization of the vinyl trimethoxy silane (VTMS)-treated SiO2 NP with DFHM in this work. In H2O/tetrahydrofuran (THF) solution, PDFHM self-assembles into dendritic micelle and the increase in H2O volume is favorable for fluoropolymer-grafted SiO2 NPs to create dense fluoropolymer corona layer. It also shows that the addition of H2O to the THF suspension of fluoropolymer-SiO2 nanocomposite could cause a transfer for surface morphology of cast film from smooth film-covered aggregation to bare-exposed flaky aggregation and microsphere aggregation, which results in an increase in surface RMS roughness of cast film and induces a superhydrophobicity. Oleophobicity of cast film can be improved by thermal annealing, because strong surface self-segregation of PDFHM chains during thermal annealing process arouses a marked increase in surface fluorine content. PMID:25218050

  16. Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing

    NASA Astrophysics Data System (ADS)

    Vourdas, Nikolaos; Tserepi, Angeliki; Gogolides, Evangelos

    2007-03-01

    We present an environmentally friendly, rapid, no-rinse and mass-production amenable plasma process for the fabrication of super-hydrophobic (SH) poly(methyl methacrylate) (PMMA) surfaces using only a one load/unload step in a low-pressure, high-density plasma reactor. First, oxygen plasma is applied to nanotexture the PMMA surface via etching processes leading to high aspect ratio (HAR) topography, with dual-roughness characteristics for short process durations, as evidenced by AFM analysis. The duration of the process may range from 1 min to several min depending on the roughness amplitude and on the degree of transparency desired. The significance of the ion-bombardment is revealed and discussed. After this first step, the gas chemistry is changed to a fluorocarbon one which leads to a few nanometres-thick Teflon-like film deposition, thus altering the PMMA surface chemistry within a few seconds. Following this process, a very large area (depending on the reactor scale) of the PMMA may become SH in less than 1.5 min (total process duration) with a transparency as desired (from fully transparent to milky and antireflective). The contact angles (CA) measured are approximately 152 with 5 hysteresis. For short process durations, the dual-roughness character of PMMA surfaces favours the SH formation, despite the low roughness factor. Furthermore, the dry and low-temperature character of the process ensures the intactness of PMMA's shape and bulk mechanical properties.

  17. Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Erbil, H. Yildirim

    2014-02-01

    Superhydrophobic and oleophobic rough copolymer surfaces containing micro- and nano-hierarchical ball-like islands having diameters between 100 nm and 7 ?m were formed using styrene-perfluoromethacrylate random copolymers which were dip-coated on glass slides from THF and MEK mixture containing methanol as nonsolvent. These copolymers were synthesized in a CO2-expanded monomer medium at 250 bar pressure and 80 C. The sizes of the micro-islands can be controlled by varying the copolymer composition; and the degree of phase separation by adjusting the solvent/non-solvent ratio. Flat and lotus-like hierarchical surfaces of the copolymers were characterized using contact angle measurements and SEM. The increase in the perfluoromethacrylate content of the flat copolymers resulted in a decrease of the total surface free energy of the flat copolymer surfaces from 18.3 down to 14.2 mJ/m2. The increase in the methanol non-solvent fraction resulted in decrease of the micro-island diameter from 7 ?m down to 100 nm and the water contact angle increased from 117 up to 160 and hexadecane from 65 up to 90.

  18. Superhydrophobic colloidally textured polythiophene film as superior anticorrosion coating.

    PubMed

    de Leon, Al Christopher C; Pernites, Roderick B; Advincula, Rigoberto C

    2012-06-27

    In this paper, we demonstrated for the first time the use of electrodeposited superhydrophobic conducting polythiophene coating to effectively protect the underlying steel substrate from corrosion attack: by first preventing water from being absorbed onto the coating, thus preventing the corrosive chemicals and corrosion products from diffusing through the coating, and second by causing an anodic shift in the corrosion potential as it galvanically couples to the metal substrate. Standard electrochemical measurements revealed the steel coated with antiwetting nanostructured polythiophene film, which was immersed in chloride solution of different pH and temperature for up to 7 days, is very well protected from corrosion evidenced by protection efficiency of greater than 95%. Fabrication of the dual properties superhydrophobic anticorrosion nanostructured conducting polymer coating follows a two-step coating procedure that is very simple and can be used to coat any metallic surface. PMID:22663552

  19. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection.

    PubMed

    Ou, Junfei; Hu, Weihua; Xue, Mingshan; Wang, Fajun; Li, Wen

    2013-04-24

    After hydrothermally treated in H2O (for Mg alloy and Al alloy) or H2O2 (for Ti alloy), microstructured oxide or hydroxide layers were formed on light alloy substrates, which further served as the active layers to boost the self-assembling of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) and finally endowed the substrates with unique wettability, that is, superhydrophobicity. For convenience, the so-fabricated superhyrdophobic surfaces (SHS) were abridged as HT-SHS. For comparison, SHS coded as CE-SHS were also prepared based on chemical etching in acid and succedent surface passivation with PFOTES. To reveal the corrosion protection of these SHS, potentiodynamic polarization measurements in NaCl solution (3.5 wt %) were performed. Moreover, to reflect the long-term stability of these SHS, SHS samples were immersed into NaCl solution and the surface wettability was monitored. Experimental results indicated that HT-SHS was much more stable and effective in corrosion protection as compared with CE-SHS. The enhancement was most likely due to the hydrothermally generated oxide layer by the following tow aspects: on one hand, oxide layer itself can lower the corrosion due to its barrier effect; on the other hand, stronger interfacial bonding is expected between oxide layer and PFOTES molecules. PMID:23496751

  20. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.

    PubMed

    Lv, Cunjing; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2015-12-22

    Although realizing dewetting transitions of droplets spontaneously on solid textured surfaces is quite challenging, it has become a key research topic in many practical applications that require highly efficient removal of liquid. Despite intensive efforts over the past few decades, due to impalement of vapor pockets inducing strong pinning of the contact lines, how to realize the self-removal of small droplets trapped in the textures remains an urgent problem. We report an in situ spontaneous dewetting transition of condensed droplets occurring on pillared surfaces with two-tier roughness, from the valleys to the tops of the pillars, owing to the nanotexture-enhanced superhydrophobicity, as well as the topology of the micropillars. Three wetting transition modes are observed. It is found that a further decreased Laplace pressure on the top side of the individual droplets accounts for such a surprising transition and self-removal of condensed water. An explicit model is constructed, which quite effectively predicts the Laplace pressure of droplets trapped by the textures. Our model also reveals that the critical size of the droplet for transition scales as the spacing of the micropillars. These findings are expected to be crucial to a fundamental understanding, as well as a remarkable strategy to guide the fabrication, of optimum super-water-repellant surfaces. PMID:26565420

  1. Superhydrophobic metallic surfaces functionalized via femtosecond laser surface processing for long term air film retention when submerged in liquid

    NASA Astrophysics Data System (ADS)

    Zuhlke, Craig A.; Anderson, Troy P.; Li, Pengbo; Lucis, Michael J.; Roth, Nick; Shield, Jeffrey E.; Terry, Benjamin; Alexander, Dennis R.

    2015-03-01

    Femtosecond laser surface processing (FLSP) is a powerful technique used to create self-organized microstructures with nanoscale features on metallic surfaces. By combining FLSP surface texturing with surface chemistry changes, either induced by the femtosecond laser during processing or introduced through post processing techniques, the wetting properties of metals can be altered. In this work, FLSP is demonstrated as a technique to create superhydrophobic surfaces on grade 2 titanium and 304 stainless steel that can retain an air film (plastron) between the surface and a surrounding liquid when completely submerged. It is shown that the plastron lifetime when submerged in distilled water or synthetic stomach acid is critically dependent on the specific degree of surface micro- and nano-roughness, which can be tuned by controlling various FLSP parameters. The longest plastron lifetime was on a 304 stainless steel sample that was submerged in distilled water and maintained a plastron for 41 days, the length of time of the study, with no signs of degradation. Also demonstrated for the first time is the precise control of pulse fluence and pulse count to produce three unique classes of surface micron/nano-structuring on titanium.

  2. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  3. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control.

    PubMed

    Morikawa, Kyojiro; Tsukahara, Takehiko

    2016-01-01

    In the field of micro- and nanofluidics, various kinds of novel devices have been developed. For such devices, not only fluidic control but also surface control of micro/nano channels is essential. Recently, fluidic control by hydrophobic nanostructured surfaces have attracted much attention. However, conventional fabrication methods of nanostructures require complicated steps, and integration of the nanostructures into micro/nano channels makes fabrication procedures even more difficult and complicated. In the present study, a simple and easy fabrication method of nanostructures integrated into microchannels was developed. Various sizes of nanostructures were successfully fabricated by changing the plasma etching time and etching with a basic solution. Furthermore, it proved possible to construct highly hydrophobic nanostructured surfaces that could effectively control the fluid in microchannels at designed pressures. We believe that the fabrication method developed here and the results obtained are valuable contributions towards further applications in the field of micro- and nanofluidics. PMID:26753710

  4. Fabrication of Highly-Oleophobic and Superhydrophobic Surfaces on Microtextured al Substrates

    NASA Astrophysics Data System (ADS)

    Liu, Changsong; Zhou, Jigen; Zheng, Dongmei; Wan, Yong; Li, Zhiwen

    2011-06-01

    Theoretical calculations suggest that creating highly-oleophobic surfaces would require a surface energy lower than that of any known materials. In the present work, we demonstrate microtextured Al substrate surfaces with veins-like micro/nanostructures displaying apparent contact angles (CA) greater than 120, even with nitromethane (surface tension ?1 = 37 mN/m). The Al substrate was microtextured by a chemical solution mixed by zinc nitrate hexahydrate, hexamethyltetramine and a little of hydrofluoric acid. A fluoroalkylsilane (FAS) agent was used to tune the surface wettability. The Al substrates were microtextured by veins-like micro/nanostructures and generating a solid-liquid-vapor composite interface. Combination with FAS modification, the Al surfaces resulted in an oleophobicity with CA for nitromethane was 126.3 (152.7 for diethylene glycol, ?1 = 45.2 mN/m). In addition, the Al surfaces demonstrated a low rolling-off angle with < 6 even for diethylene glycol. However, nitromethane droplet favored to pin on the sample surface even the sample stage is tilted to 90. It is noted that this highly-oleophobic behavior is induced mainly by topography, which form a composite surface of air and solid with oil drop sitting partially on air. The results are expected to promote the study on self-cleaning applications, especially in the condition with oil contaminations.

  5. Synthesis and Characterization of a Novel Polyacetal & Design and Preparation of Superhydrophobic Photocatalytic Surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan

    Acetal copolymers represent a family of well-established engineering thermoplastics serving a broad range of important industrial applications including replacement for metals. The first part of this thesis describes the first synthesis of an eight-member ring acetal, 6-methyl-1, 3-dioxocane (MDOC), and its cationic copolymerization with trioxane initiated by boron trifluoride dibutyl etherate. The copolymerization process was monitored in situ using proton NMR. Incorporation of MDOC led to the insertion of the "stopper" unit, "--[CH2CH2CH(CH3)CH 2CH2)O]--", thus synthesizing the new acetal copolymer. A superior copolymer thermal stability with a ~ 20oC increase in degradation onset temperature compared with end-capped polyoxmethylene was observed. Both TGA and DSC data indicated the random placement of the "stopper" in the copolymer likely due to efficient transacetalization because of the higher basicity and flexibility of the stopper unit compared with co-units comprising 2 to 4 carbons in length. DSC thermo-grams showed a melting curve of a polymer with melting point lower, as expected, than that of oxymethylene homopolymer. No homopolymer in the copolymer samples was in indicated by TGA. The new acetal copolymer, poly(6-methyl-1,3-dioxocane-co-trioxane), which has a "stopper" co-unit with five carbon atoms along the backbone, contains the longest reported stopper co-unit, potentially leading to improved elongation, and toughness and better compatibility with a range of additives compared to acetal homopolymers.. Chapter 3 presents a novel lamination fabrication method that enables pre-formed TiO2 nanoparticles to become partially embedded in the surface of a thermoplastic polymer film. In this way, the particles are strongly adhered to the surface while remaining accessible to the aqueous solution. By modifying the fabrication conditions (e.g. temperature, pressure, polymer melt viscosity, etc.), the morphology of the hierarchical TiO2-polymer surface can be controlled and thus the rate of photocatalytic reactions can be increased. In addition, the fraction of TiO2 particles that become fully embedded in the polymer surface, and so inaccessible to photocatalysis reactions, can be reduced through lamination process control, thereby reducing costs. In Chapter 4 and Chapter 5, a general approach is presented to incorporating particles into a superhydrophobic surface that catalyze the formation of reactive oxygen species. Superhydrophobic photocatalytic surfaces are prepared using hydrophilic TiO2 nanoparticles and hydrophobic Silicon-Phthalocyanine photosensitizer particles. A stable Cassie state was maintained, even on surfaces fabricated with hydrophilic TiO2 particles, due to significant hierarchical roughness. A triple phase photogenerator is designed and fabricated. By printing the surface on a porous support, oxygen could be flowed through the plastron resulting in significantly higher photooxidation rates relative to a static ambient. Photooxidation of Rhodamine B and BSA were studied on TiO2-containing surfaces and singlet oxygen was trapped on surfaces incorporating Silicon-Phthalocyanine photosensitizer particles. Catalyst particles could be isolated in the plastron to avoid contamination by the solution. This approach may prove useful for water purification and medical devices where isolation of the catalyst particle from the solution is necessary and so Cassie stability is required. (Abstract shortened by UMI.).

  6. Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic.

    PubMed

    Wu, Xufeng; Shi, Gaoquan

    2005-10-01

    We report a simple method for fabricating a lotus-like micro-nanoscale binary structured surface of copper phosphate dihydrate. The copper phosphate dihydrate nanosheets were generated by galvanic cell corrosion of a copper foil with aqueous phosphorus acid solution drops and dried in an oxygen gas atmosphere, and they self-organized into a film with a lotus-like micro-nanoscale binary structured surface. The wettability of this surface can be changed from superhydrophilic to highly hydrophobic or superhydrophobic by heating or modifying it with an n-dodecanethiol monolayer. PMID:20817971

  7. Fabrication of a lotus-like micro nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic

    NASA Astrophysics Data System (ADS)

    Wu, Xufeng; Shi, Gaoquan

    2005-10-01

    We report a simple method for fabricating a lotus-like micro-nanoscale binary structured surface of copper phosphate dihydrate. The copper phosphate dihydrate nanosheets were generated by galvanic cell corrosion of a copper foil with aqueous phosphorus acid solution drops and dried in an oxygen gas atmosphere, and they self-organized into a film with a lotus-like micro-nanoscale binary structured surface. The wettability of this surface can be changed from superhydrophilic to highly hydrophobic or superhydrophobic by heating or modifying it with an n-dodecanethiol monolayer.

  8. Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions

    NASA Astrophysics Data System (ADS)

    Ou, Junfei; Liu, Mingzhi; Li, Wen; Wang, Fajun; Xue, Mingshan; Li, Changquan

    2012-03-01

    Superhydrophobic surfaces (SHS) are successfully prepared by 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (coded as PFOTS) chemically and physically adsorbed onto the etched Ti alloy substrate. The film formation and its structures are characterized by the measurements of water contact angle (WCA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the SHS in the NaCl solutions is investigated using the potentiodynamic polarization. The results show that the corrosion resistance of the substrate is improved greatly due to the composite wetting states or interfaces with numerous air pockets between SHS and NaCl solutions. Moreover, it is found that the stability and corrosion resistance of SHS is influenced greatly by the interfacial bonding between PFOTS and the substrate. The strong chemical interfacial bonding (i.e., Tisbnd Osbnd Si) between PFOTS and the oxidized titanium substrate accounts for a higher stability and much lower corrosion current density as compared by SHS with physically adsorbed PFOTS outerlayer.

  9. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols

    PubMed Central

    Han, T.; Nazarenko, Y.; Lioy, P. J.; Mainelis, G.

    2014-01-01

    We recently developed an electrostatic precipitator with superhydrophobic surface (EPSS), which collects particles into a 10- to 40-?l water droplet allowing achievement of very high concentration rates (defined as the ratio of particle concentration in the collection liquid vs. the airborne particle concentration per time unit) when sampling airborne bacteria. Here, we analyzed the performance of this sampler when collecting three commonly found fungal spores Cladosporium cladosporioides, Penicillium melinii, and Aspergillus versicolor under different operating conditions. We also adapted adenosine triphosphate (ATP)-based bioluminescence for the analysis of collection efficiency and the concentration rates. The collection efficiency ranged from 10 to 36% at a sampling flow rate of 10 l/min when the airborne fungal spore concentration was approximately 105106 spores/m3 resulting in concentration rates in the range of 1 1053 105/min for a 10-?l droplet. The collection efficiency was inversely proportional to the airborne spore concentration and it increased to above 60% for common ambient spore concentrations, e.g., 104105 spores/m3. The spore concentrations determined by the ATP-based method were not statistically different from those determined by microscopy and allowed us to analyze spore concentrations that were too low to be reliably detected by microscopy. PMID:21204982

  10. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    PubMed Central

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  11. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-07-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10-15?M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%.

  12. Rational nanostructuring of surfaces for extraordinary icephobicity.

    PubMed

    Eberle, Patric; Tiwari, Manish K; Maitra, Tanmoy; Poulikakos, Dimos

    2014-05-01

    Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ∼-24 °C for over three orders of magnitude change in RMS size (∼0.1 to ∼100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours. PMID:24667802

  13. Shear shedding of drops and the use of superhydrophobic surfaces in microgravity: PFC and ground based results

    NASA Astrophysics Data System (ADS)

    Milne, Andrew; Amirfazli, Alidad

    In free fall, the absence of gravity poses many challenges for fluid handling systems. One such example of this is condensers. On earth, the condensed liquid is removed from the tilted condenser plate by gravity forced shedding. In microgravity, proposed solutions include the use of surfaces with gradients in wettability [1], the use of electrowetting [2], and shearing airflow [3]. In this talk, shear shedding results for a variety of surface (hydrophilic to superhydrophobic (extremely water repelling)) will be presented. Surface science and aerodynamics are used to reveal fundamental parameters controlling incipient motion for drops exposed to shearing airflow. It is found that wetting parameters such as contact angle and surface tension are very influential in determining the minimum required air velocity for drop shedding. Based on experimental results for drops of water and hexadecane (0.5-100 l) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for the water systems can be collapsed to a self similar curve by normalization, which also explains results from other researchers. Since shedding from superhydrophobic surfaces (SHS) is seen to be easier compared to other surfaces, the behaviour of SHS is also probed in this talk. SHS have space-based applications to shedding, self cleaning, anti-icing (spacecraft launch/re-entry), anti-fouling, fluid actuation, and decreased fluid friction. The mechanism for SHS is understood to be the existence of an air layer between large portions of the drop and solid. The first concrete visual evidence of this was gained performing a parabolic flight experiment with the ESA. Results of this experi-ment will be discussed, showing the extreme water repelling potential of SHS in microgravity, and demonstrating how the wetting behaviours seen (partial penetration, transition of wetting states, unpredicted contact angle behaviour) affect models of superhydrophobicity and the use of SHS to both space and Earth based applications. 1) Darhuber, A. A.; Troian, S. M. Annual Review of Fluid Mechanics 2005, 425-455. 2) Berthier, J.; Dubois, P.; Clementz, P.; Claustre, P.; Peponnet, C.; Fouillet, Y. Sensors and Actuators A: Physical 2007, 134, 471-479. 3) Milne, A. J. B.; Amirfazli, A. Langmuir 2009, 25, 14155-14164.

  14. Self-assembled nanostructures on vicinal surfaces

    NASA Astrophysics Data System (ADS)

    Petrovykh, Dmitri Yourievich

    2000-10-01

    One of the first methods for visualizing crystal planes and atomic steps has been step decoration with gold on alkali-halide surfaces. An impressive body of work has been conducted since then on the role of steps in controlling surface diffusion and adsorption rates, catalytic and chemical activity, and other physical and chemical surface properties. Due to these special characteristics, vicinal surfaces offer an approach for creating self-assembled structures with one or more dimensions on nanometer scale. The storage and communications industries have been revolutionized by applications of two-dimensional electron gas confined in thin films, so an interest in one and zero-dimensional systems is not surprising. This work demonstrates how macroscopic amounts of low-dimensional structures can be produced by self-assembly using stepped surfaces as nanometer-scale templates. High-quality templates of step arrays can be prepared on vicinal Si(111) surfaces. Sub-monolayer CaF2/Si(111) heteroepitaxial growth is examined in a series of experiments. A new growth mode is observed in addition to the ones typical in three dimensions. With increasing coverage, the growth front changes from rough to smooth geometry, driven by the elastic interactions between the multiple growth fronts and the surface steps. The mechanism is thus unique to the two-dimensional growth on stepped surfaces. The possible arrangements of the CaF2 self-assembled nanostructures are arrays of stripes or islands, both interesting as potential masks for silicon nanolithography. Anisotropic surface reconstructions, such as Ca and Au induced 3 x 1 and 5 x 2 on Si(111), are effectively self-assembled one-dimensional atomic chains. Reconstructions are single-domain on vicinal surfaces and with odd electron count a metallic one-dimensional state is expected in both the above examples. However in angular-resolved photoemission both appear as semiconductors, and Au-Si(111)5 x 2 exhibits a continuous one-to-two dimensions transition as a function of binding energy, opening intriguing possibilities of correlated electron effects. Considering increasing recording densities, the nearly-perfect linear arrangement of the heteroepitaxial island arrays and reconstruction features on vicinal surfaces is a notable benefit for possible read-write designs, offering attractive solutions on respectively 1 and 100 Terabit/square inch scales.

  15. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    PubMed

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (< 7) after 120 min and 60 min polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates. PMID:26682448

  16. Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates.

    PubMed

    Grignard, Bruno; Vaillant, Alexandre; de Coninck, Joel; Piens, Marcel; Jonas, Alain M; Detrembleur, Christophe; Jerome, Christine

    2011-01-01

    Superhydrophobic aluminum surfaces with excellent corrosion resistance were successfully prepared by electrospinning of a novel fluorinated diblock copolymer solution. Micro- and nanostructuration of the diblock copolymer coating was obtained by electrospinning which proved to be an easy and cheap electrospinning technology to fabricate superhydrophobic coating. The diblock copolymer is made of poly(heptadecafluorodecylacrylate-co-acrylic acid) (PFDA-co-AA) random copolymer as the first block and polyacrylonitrile (PAN) as the second one. The fluorinated block promotes hydrophobicity to the surface by reducing the surface tension, while its carboxylic acid functions anchor the polymer film onto the aluminum surface after annealing at 130 C. The PAN block of this copolymer insures the stability of the structuration of the surface during annealing, thanks to the infusible character of PAN. It is also demonstrated that the so-formed superhydrophobic coating shows good adhesion to aluminum surfaces, resulting in excellent corrosion resistance. PMID:21141949

  17. A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2014-05-01

    A low-cost filler (salt) water-dissolved method is developed to produce large-area and flexible super-hydrophobic surfaces by using poly(dimethylsiloxane) (PDMS) material. Five levels of salt grain sizes are used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The results show that the surfaces fabricated using grain sizes of 53-74 and 74-104 m exhibit the lotus effect (cell adhesion (CA) > 150 and self-adhesion (SA) < 10) whereas those using grain sizes of 0-25 m and above 104 m reveal the petal effect (CA > 150 and high adhesion even upside-down). The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers.

  18. A facile cost-effective method for preparing poinsettia-inspired superhydrophobic ZnO nanoplate surface on Al substrate with corrosion resistance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Han, Huilong; Li, Junfeng; Fan, Xiaoliang; Ding, Haimin; Wang, Jinfeng

    2016-02-01

    This paper reports an easy method to imitate the "poinsettia leaves" by constructing ZnO nanoplates on Al substrate. Using ammonium hydroxide as the reactant, together with zinc nitrate hexahydrate, randomly distributed ZnO nanoplates can be fabricated on the Al substrate directly. The morphology of the ZnO nanoplates can be controlled by the growth time, and the nanoplate growth mechanism is discussed in detail. After modification with stearic acid, the nanoplate surface shows a stable superhydrophobicity. Moreover, the superhydrophobic ZnO nanoplate surface showed much smaller corrosion current density, reduced 23,088-fold from the bare Al 6061 substrate. This facile and low-cost method may open a new avenue in the design and fabrication of superhydrophobic surfaces on Al materials with anticorrosive property.

  19. Rapid fabrication of nanostructured surfaces using nanocoining.

    PubMed

    Zdanowicz, Erik; Dow, Thomas A; Scattergood, Ronald O

    2012-10-19

    A new process for creating high quality ordered arrays of nanofeatures called nanocoining is presented. A diamond die with a structured area of nanofeatures (1600 features in a 20 ?m 20 ?m area) is used to physically transfer features to a mold surface. The die is attached to an actuator capable of producing an elliptical tool-path, the dimensions of which are process dependent and enable the die to match velocity with the moving mold during contact to avoid dragging the nanostructured area along the mold surface (smear). Nanocoining process parameters are discussed which enable indents to be indexed precisely to completely cover target areas. Techniques for die alignment and depth control are also required to create large areas (339 mm(2)) of nanofeatures in short times (?20 min). Nanocoining experiments were performed at 1 kHz (1000 indents or 1.6 million features per second) on a flat electroless nickel sample. UV curable replicates were then created from the nickel mold and both the mold and replicate were examined in an SEM and AFM. PMID:23018619

  20. Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments.

    PubMed

    Goto, Yuki; Takashima, Hiroki; Takishita, Katsuhisa; Sawada, Hideo

    2011-10-15

    Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene units [R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2)] were prepared by the sol-gel reaction of the corresponding oligomer [R(F)-(VM)(n)-R(F)] with 4,4'-bis(triethoxysilyl)-1,1'-biphenyl [Ar-Si(OEt)(3)] under alkaline conditions. R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2) nanocomposites were applied to the surface modification of PMMA to exhibit not only a good oleophobicity imparted by fluorine but also a fluorescent emission ability on the surface. Methanol sol solutions of R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2) nanocomposites were effective for the surface modification of glass through the dipping technique to exhibit good oleophobicity with superhydrophobicity on the modified glass surface. On the other hand, 1,2-dichloroethane sol solutions enabled R(F)-(VM-SiO(2))(n)-R(F)/Ar-SiO(2) nanocomposites to exhibit both superhydrophobic and superoleophobic characteristics on the modified surface through dipping the glass in these sol solutions. PMID:21782196

  1. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.

    PubMed

    Cao, Moyuan; Guo, Dawei; Yu, Cunming; Li, Kan; Liu, Mingjie; Jiang, Lei

    2016-02-17

    Bioinspired water-repellent materials offer a wealth of opportunities to solve scientific and technological issues. Lotus-leaf and pitcher plants represent two types of antiwetting surfaces, i.e., superhydrophobic and lubricant-infused "slippery" surfaces. Here we investigate the functions and applications of those two types of interfacial materials. The superhydrophobic surface was fabricated on the basis of a hydrophobic fumed silica nanoparticle/poly(dimethylsiloxane) composite layer, and the lubricant-infused "slippery" surface was prepared on the basis of silicone oil infusion. The fabrication, characteristics, and functions of both substrates were studied, including the wettability, transparency, adhesive force, dynamic droplet impact, antifogging, self-cleaning ability, etc. The advantages and disadvantages of the surfaces were briefly discussed, indicating the most suitable applications of the antiwetting materials. This contribution is aimed at providing meaningful information on how to select water-repellent substrates to solve the scientific and practical issues, which can also stimulate new thinking for the development of antiwetting interfacial materials. PMID:26447551

  2. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array

    NASA Astrophysics Data System (ADS)

    Geng, Wenyan; Hu, Anmin; Li, Ming

    2012-12-01

    A surface with Ni micro-nano cones array (MCA) was fabricated with electro-deposition method and exhibited super-hydrophilic nature when freshly prepared. Spontaneous transition from super-hydrophilicity to super-hydrophobicity was observed when the surface was exposed in air at room temperature. The special surface structure of MCA played an important role in amplifying the surface wettability. Since the surface structure remained the same as the freshly prepared Ni MCA films during the storage, the transition was proved to be attributed to the change of surface chemical composition. Such wettability transition property of Ni MCA films might shed light on the high-tech areas of self-cleaners, anti-corrosion materials, anti-contamination materials, etc.

  3. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.

    PubMed

    Dong, Fangyuan; Zhang, Mi; Tang, Wai-Wa; Wang, Yi

    2015-04-23

    Superhydrophobic/hydrophobic surfaces have attracted wide attention because of their broad applications in various regions, including coating, textile, packaging, electronic devices, and bioengineering. Many studies have been focused on the fabrication of superhydrophobic/hydrophobic surfaces using natural materials. In this paper, superhydrophobic/hydrophobic surfaces were formed by an amphiphilic natural protein, zein, using electrospinning. Water contact angle (WCA) and scanning electron microscopy (SEM) were used to characterize the hydrophobicity and surface morphology of the electrospun structures. The highest WCA of the zein electrospun surfaces could reach 155.5 1.4. To further understand the mechanism of superhydrophobic surface formation from amphiphiles using electrospinning, a synthetic amphiphilic polymer was selected, and also, a method similar to electrospinning, spray drying, was tried. The electrospun amphiphilic polymer surface showed a high hydrophobicity with a WCA of 141.4 0.7. WCA of the spray-dried zein surface could reach 125.3 2.1. The secondary structures of the zein in the electrospun film and cast-dried film were studied using ATR-FTIR, showing that ?-helix to ?-sheet transformation happened during the solvent evaporation in the cast drying process but not in the electrospinning process. A formation mechanism was proposed on the basis of the orientation of the amphiphiles during the solvent evaporation of different fabrication methods. The droplet-based or jet-based evaporation during electrospinning and spray drying led to the formation of the superhydrophobic/hydrophobic surface by the accumulation of the hydrophobic groups of the amphiphiles on the surface, while the surface-based evaporation during cast drying led to the formation of the hydrophilic surface by the accumulation of the hydrophilic groups of the amphiphiles on the surface. PMID:25835644

  4. Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface

    NASA Astrophysics Data System (ADS)

    Momen, Gelareh; Farzaneh, Masoud; Jafari, Reza

    2011-05-01

    A nanostructutered superhydrophobic surface was elaborated by applying an RTV silicone rubber coating on electrochemically processed aluminium substrates. Study of anodisation voltage on surface morphology showed that higher anodising voltage led to larger pore sizes. Scanning electron microscopy image analysis showed bird's nest and beehive structures formed on anodised surfaces at 50 V and 80 V. Water static contact angle on the treated surfaces reached up to 160° at room temperature. Study of superhydrophobic surfaces at super cooled temperature showed important delayed freezing time for RTV hydrophobic surfaces when compared to non-treated aluminium. However, lower wettability was observed when surface temperature went down from 20 °C to -10 °C. Also, it was found that the capacitance of superhydrophobic surfaces decreased with increasing anodising voltage.

  5. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  6. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation

    NASA Astrophysics Data System (ADS)

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-11-01

    Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation. Electronic supplementary information (ESI) available: Elemental distribution and the specific surface area of PBZT10. SEM images of PBZT3, PBZT10 and PBZT20. Water and oil contact angles on prepared samples. FTIR spectra of OA/PBZT10 before and after heating. Images of water droplets on PBZT10 before and during rolling when the base was tilted. Video recordings of the cyclohexane droplet on PBZT10, an oil/water separation process and a self-cleaning process. See DOI: 10.1039/c5nr06425b

  7. Plasmonic nanostructures for surface enhanced spectroscopic methods.

    PubMed

    Jahn, Martin; Patze, Sophie; Hidi, Izabella J; Knipper, Richard; Radu, Andreea I; Mhlig, Anna; Yksel, Sezin; Peksa, Vlastimil; Weber, Karina; Mayerhfer, Thomas; Cialla-May, Dana; Popp, Jrgen

    2016-02-01

    A comprehensive review of theoretical approaches to simulate plasmonic-active metallic nano-arrangements is given. Further, various fabrication methods based on bottom-up, self-organization and top-down techniques are introduced. Here, analytical approaches are discussed to investigate the optical properties of isotropic and non-magnetic spherical or spheroidal particles. Furthermore, numerical methods are introduced to research complex shaped structures. A huge variety of fabrication methods are reviewed, e.g. bottom-up preparation strategies for plasmonic nanostructures to generate metal colloids and core-shell particles as well as complex-shaped structures, self-organization as well as template-based methods and finally, top-down processes, e.g. electron beam lithography and its variants as well as nanoimprinting. The review article is aimed at beginners in the field of surface enhanced spectroscopy (SES) techniques and readers who have a general interest in theoretical modelling of plasmonic substrates for SES applications as well as in the fabrication of the desired structures based on methods of the current state of the art. PMID:26759831

  8. Fabrication and icing property of superhydrophilic and superhydrophobic aluminum surfaces derived from anodizing aluminum foil in a sodium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Meirong; Liu, Yuru; Cui, Shumin; Liu, Long; Yang, Min

    2013-10-01

    An aluminum foil with a rough surface was first prepared by anodic treatment in a neutral aqueous solution with the help of pitting corrosion of chlorides. First, the hydrophobic Al surface (contact angle around 79°) became superhydrophilic (contact angle smaller than 5°) after the anodizing process. Secondly, the superhydrophilic Al surface became superhydrophobic (contact angle larger than 150°) after being modified by oleic acid. Finally, the icing property of superhydrophilic, untreated, and superhydrophobic Al foils were investigated in a refrigerated cabinet at -12 °C. The mean total times to freeze a water droplet (6 μL) on the three foils were 17 s, 158 s and 1604 s, respectively. Thus, the superhydrophilic surface accelerates the icing process, while the superhydrophobic surface delays the process. The main reason for this transition might mainly result from the difference of the contact area of the water droplet with Al substrate: the increase in contact area with Al substrate will accelerate the heat conduct process, as well as the icing process; the decrease in contact area with Al substrate will delay the heat conduct process, as well as the icing process. Compared to the untreated Al foil, the contact area of the water droplet with the Al substrate was higher on superhydrophilic surface and smaller on the superhydrophobic surface, which led to the difference of the heat transfer time as well as the icing time.

  9. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    SciTech Connect

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  10. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.

  11. Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion

    PubMed Central

    2012-01-01

    This work reports an oriented growth process of two-dimensional (2D) ZnO nanoflakes on aluminum substrate through a low temperature hydrothermal technique and proposes the preliminary growth mechanism. A bionic superhydrophobic surface with excellent corrosion protection over a wide pH range in both acidic and alkaline solutions was constructed by a chemical coating treatment with stearic acid (SA) molecules on ZnO nanoflakes. It is found that the superhydrophobic surface of ZnO nanoflake arrays shows a maximum water contact angle (CA) of 157 and a low sliding angle of 8, and it can be reversibly switched to its initial superhydrophilic state under ultraviolet (UV) irradiation, which is due to the UV-induced decomposition of the coated SA molecules. This study is significant for simple and inexpensive building of large-scale 2D ZnO nanoflake arrays with special wettability which can extend the applications of ZnO films to many other important fields. PMID:22500967

  12. Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion

    NASA Astrophysics Data System (ADS)

    Yao, Lujun; Zheng, Maojun; Li, Changli; Ma, Li; Shen, Wenzhong

    2012-04-01

    This work reports an oriented growth process of two-dimensional (2D) ZnO nanoflakes on aluminum substrate through a low temperature hydrothermal technique and proposes the preliminary growth mechanism. A bionic superhydrophobic surface with excellent corrosion protection over a wide pH range in both acidic and alkaline solutions was constructed by a chemical coating treatment with stearic acid (SA) molecules on ZnO nanoflakes. It is found that the superhydrophobic surface of ZnO nanoflake arrays shows a maximum water contact angle (CA) of 157 and a low sliding angle of 8, and it can be reversibly switched to its initial superhydrophilic state under ultraviolet (UV) irradiation, which is due to the UV-induced decomposition of the coated SA molecules. This study is significant for simple and inexpensive building of large-scale 2D ZnO nanoflake arrays with special wettability which can extend the applications of ZnO films to many other important fields.

  13. Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion.

    PubMed

    Yao, Lujun; Zheng, Maojun; Li, Changli; Ma, Li; Shen, Wenzhong

    2012-01-01

    This work reports an oriented growth process of two-dimensional (2D) ZnO nanoflakes on aluminum substrate through a low temperature hydrothermal technique and proposes the preliminary growth mechanism. A bionic superhydrophobic surface with excellent corrosion protection over a wide pH range in both acidic and alkaline solutions was constructed by a chemical coating treatment with stearic acid (SA) molecules on ZnO nanoflakes. It is found that the superhydrophobic surface of ZnO nanoflake arrays shows a maximum water contact angle (CA) of 157 and a low sliding angle of 8, and it can be reversibly switched to its initial superhydrophilic state under ultraviolet (UV) irradiation, which is due to the UV-induced decomposition of the coated SA molecules. This study is significant for simple and inexpensive building of large-scale 2D ZnO nanoflake arrays with special wettability which can extend the applications of ZnO films to many other important fields. PMID:22500967

  14. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  15. Roll-to-roll, shrink-induced superhydrophobic surfaces for antibacterial applications, enhanced point-of-care detection, and blood anticoagulation

    NASA Astrophysics Data System (ADS)

    Nokes, Jolie McLane

    Superhydrophobic (SH) surfaces are desirable because of their unique anti-wetting behavior. Fluid prefers to bead up (contact angle >150°) and roll off (contact angle hysteresis <10°) a SH surface because micro- and nanostructure features trap air pockets. Fluid only adheres to the peaks of the structures, causing minimal adhesion to the surface. Here, shrink-induced SH plastics are fabricated for a plethora of applications, including antibacterial applications, enhanced point-of-care (POC) detection, and reduced blood coagulation. Additionally, these purely structural SH surfaces are achieved in a roll-to-roll (R2R) platform for scalable manufacturing. Because their self-cleaning and water resistant properties, structurally modified SH surfaces prohibit bacterial growth and obviate bacterial chemical resistance. Antibacterial properties are demonstrated in a variety of SH plastics by preventing gram-negative Escherichia coli (E. coli) bacterial growth >150x compared to flat when fluid is rinsed and >20x without rinsing. Therefore, a robust and stable means to prevent bacteria growth is possible. Next, protein in urine is detected using a simple colorimetric output by evaporating droplets on a SH surface. Contrary to evaporation on a flat surface, evaporation on a SH surface allows fluid to dramatically concentrate because the weak adhesion constantly decreases the footprint area. On a SH surface, molecules in solution are confined to a footprint area 8.5x smaller than the original. By concentrating molecules, greater than 160x improvements in detection sensitivity are achieved compared to controls. Utility is demonstrated by detecting protein in urine in the pre-eclampsia range (150-300microgmL -1) for pregnant women. Further, SH surfaces repel bodily fluids including blood, urine, and saliva. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200x and >28x reduction of blood residue area and volume compared to the non-structured controls of the same material. In addition, blood clotting area is reduced >5x using whole blood directly from the patient. In this study, biocompatible SH surfaces are achieved using commodity shrink-wrap film and are scaled up for R2R manufacturing. The purely structural modification negates complex and expensive post processing, and SH features are achieved in commercially-available and FDA-approved plastics.

  16. Development of nanostructured surfaces for ice protection applications

    NASA Astrophysics Data System (ADS)

    Alizadeh, Azar

    2012-02-01

    Ice accretion on surfaces of aircrafts, wind turbine blades, oil and gas rigs and heat exchangers, to name a few examples, presents long recognized problems with respect to efficiency and cost of operation. For instance, significant ice accretion on critical surfaces of an aircraft will cause problems during lift off (and will change the aerodynamics of the wings during flight. On the other hand, ice built up on wind turbine blades in cold climates (T < -20 C) drastically reduces the efficiency of power generation. Despite considerable number of studies and significant progress toward development of icephobic coatings, development of robust ice-resistance or anti-icing coatings is still elusive. Several approaches towards development of anti-icing surfaces have recently postulated that the superhydrophobic properties of hierarchically textured coatings, with contact angles > 150 , may lead to a significant reduction and perhaps elimination of snow and ice accretion. However, the exact mechanism of delayed icing on these surfaces is still under debate. Here we present a systematic study of early stages of ice formation upon water droplet impact on a range of hydrophobic, hydrophilic, textured and chemically patterned surfaces. We show that, in addition to a significant reduction in ice-adhesion strength on superhydrophobic surfaces, decreasing the water-substrate contact area plays a dual role in delaying ice nucleation: first by reducing heat-transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. The study presented here also offers a comprehensive perspective on the efficacy of textured surfaces for practical non-icing applications.

  17. Facile preparation of super durable superhydrophobic materials.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. PMID:25069050

  18. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.

    PubMed

    Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna

    2012-08-28

    Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines. PMID:22680067

  19. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    NASA Astrophysics Data System (ADS)

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo

    2013-02-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e

  20. Towards design rules for covalent nanostructures on metal surfaces.

    PubMed

    Bjrk, Jonas; Hanke, Felix

    2014-01-20

    The covalent molecular assembly on metal surfaces is explored, outlining the different types of applicable reactions. Density functional calculations for on-surface reactions are shown to yield valuable insights into specific reaction mechanisms and trends across the periodic table. Finally, it is shown how design rules could be derived for nanostructures on metal surfaces. PMID:24338925

  1. Integrating anti-reflection and superhydrophobicity of moth-eye-like surface morphology on a large-area flexible substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Hsing; Niu, Pei-Lun; Sung, Cheng-Kuo

    2014-01-01

    This paper proposes an ultraviolet nanoimprint lithography (UV-NIL) roll-to-roll (R2R) process with argon and oxygen (Ar-O2) plasma ashing and coating of a dilute perfluorodecyltrichlorosilane (FDTS) layer to fabricate the large-area moth-eye-like surface morphology on a polyethylene terephthalate substrate. By using Maxwell-Garnett's effective medium theory, the optimal dimensions of the moth-eye-like surface morphology was designed and fabricated with UV-NIL R2R process to obtain maximum transmittance ratio. In addition, the base angle (? = 30.1) of the moth-eye-like surface morphology was modified with Ar-O2 plasma ashing and coated with a dilute FDTS layer to possess both superhydrophobic and air-retention properties. This increases both the transmittance ratio of 4% and contact angle to 153.

  2. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  3. Nanofibers-based nanoweb promise superhydrophobic polyaniline: from star-shaped to leaf-shaped structures.

    PubMed

    Fan, Haosen; Wang, Hao; Guo, Jing; Zhao, Ning; Xu, Jian

    2013-11-01

    Star-shaped and leaf-shaped polyaniline (PANI) hierarchical structures with interlaced nanofibers on the surface were successfully prepared by chemical polymerization of aniline in the presence of lithium triflate (LT). Chemical structure and composition of the star-like PANI obtained were characterized by FTIR and UV-vis spectra. PANI 2D architectures can be tailored from star-shaped to leaf-shaped structures by change the concentration of LT. The synthesized star-like and leaf-like polyaniline show good superhydrophobicity with water contact angles of both above 150 due to the combination of the rough nanoweb structure and the low surface tension of fluorinated chain of dopant. This method is a facile and applicable strategy for a large-scale fabrication of 2D PANI micro/nanostructures. Many potential applications such as self-cleaning and antifouling coating can be expected based on the superhydrophobic PANI micro/nanostructures. PMID:23978289

  4. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation.

    PubMed

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-12-14

    Two important properties-the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles-are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation. PMID:26530425

  5. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    NASA Astrophysics Data System (ADS)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.

  6. Nanostructuring of metal surfaces by corrosion for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Lee, Jooyoung; Lim, Guh-Hwan; Lim, Byungkwon

    2016-01-01

    We show that simply by corroding Ni foam in an aqueous solution, it is possible to produce nanostructured surfaces. When Ni foam was corroded in water or an aqueous solution containing NaCl, a dense array of Ni(OH)2 nanosheets was produced on the surface of the foam. When corroded in the presence of RuCl3, the nanostructured surface composed of Ni(OH)2 nanosheets decorated with ultrasmall RuO2 nanoparticles was obtained. At an applied voltage of 1.7 V, the combination of these two nanostructured surfaces yielded a water-splitting current density more than three times that obtained on the commercial Pt wire electrodes.

  7. Surface effects on shape and topology optimization of nanostructures

    NASA Astrophysics Data System (ADS)

    Nanthakumar, S. S.; Valizadeh, Navid; Park, Harold S.; Rabczuk, Timon

    2015-07-01

    We present a computational method for the optimization of nanostructures, where our specific interest is in capturing and elucidating surface stress and surface elastic effects on the optimal nanodesign. XFEM is used to solve the nanomechanical boundary value problem, which involves a discontinuity in the strain field and the presence of surface effects along the interface. The boundary of the nano-structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. We present results of optimal topologies of a nanobeam subject to cantilever and fixed boundary conditions. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.

  8. PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces

    NASA Astrophysics Data System (ADS)

    Zavestovskaya, I. N.

    2010-12-01

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.

  9. Superhydrophobic surfaces: A model approach to predict contact angle and surface energy of soil particles

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; Hamlett, Christopher; McHale, Glen; Newton, Michael; Bachmann, Joerg; Woche, S.

    2010-05-01

    C. Hamlett(a), G. McHALE(a), N. Shirtcliffe(a), M. Newton(a), S.K. Woche(b), and J. BACHMANN(b) aSchool of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK and bInstitute of Soil Science, Leibniz University Hannover, Herrenhaeuser Str.2, 30419, Hannover, Germany. Summary Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. The problem of determining contact angles and surface energy of powders, such as soil particles, remains unsolved. So far, several theories and approaches have been proposed, but formulation of surface and interfacial free energy, as regards its components, is still a very debatable issue. In the present study, the general problem of the interpretation of contact angles and surface free energy on chemically heterogeneous and rough soil particle surfaces are evaluated by a reformulation of the Cassie-Baxter equation assuming that the particles are attached on to a plane and rigid surface. Compared with common approaches, our model considers a roughness factor which depends on the Young's Law contact angle determined by the surface chemistry. Results of the model are discussed and compared with independent contact angle measurements using the Sessile Drop and the Wilhelmy Plate methods. Based on contact angle data, the critical surface tension of the grains were determined by the method proposed by Zisman. Experiments were made with glass beads and three soil materials ranging from sand to clay. Soil particles were coated with different loadings of dichlorodimethylsilane (DCDMS) to vary the wettability. Varying the solid surface tension using DCDMS treatments provided pure water wetting behaviours ranging from wettable to extremely hydrophobic with contact angles >150. Results showed that the critical surface energy measured on grains with the highest DCDMS loadings was similar to the surface energy measured independently on ideal DCDMS -coated smooth glass plates, except for the clay soil. Contact angles measured on plane surfaces were related to contact angles measured on rough grain surfaces using the new model based on the combined Cassie-Baxter Wenzel equation which takes into account the particle packing density on the sample surface.

  10. Carbon monoxide-induced dynamic metal-surface nanostructuring.

    PubMed

    Carenco, Sophie

    2014-08-18

    Carbon monoxide is a ubiquitous molecule in surface science, materials chemistry, catalysis and nanotechnology. Its interaction with a number of metal surfaces is at the heart of major processes, such as Fischer-Tropsch synthesis or fuel-cell optimization. Recent works, coupling structural and nanoscale in situ analytic tools have highlighted the ability of metal surfaces and nanoparticles to undergo restructuring after exposure to CO under fairly mild conditions, generating nanostructures. This Minireview proposes a brief overview of recent examples of such nanostructuring, which leads to a discussion about the driving force in reversible and non-reversible situations. PMID:25044189

  11. Crystalline nanostructures on Ge surfaces induced by ion irradiation

    NASA Astrophysics Data System (ADS)

    Ou, Xin; Facsko, Stefan

    2014-12-01

    Besides conventional low efficiency lithographic techniques broad ion beam irradiation is a simple and potentially mass productive technique to fabricate nanoscale patterns on various semiconductor surfaces. The main drawback of this method is that the irradiated semiconductor surfaces are amorphized, which strongly limits the potential application of these nanostructures in electronic and optoelectronic devices. In this work we report that high-quality crystalline nanostructure patterns are formed on Ge surfaces via Ar+ irradiation at elevated temperatures. This pattern formation process resembles the pattern formation in homoepitaxy. Therefore, the process is discussed based on a 'reverse epitaxy' mechanism.

  12. Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles.

    PubMed

    Dong, Zhichao; Ma, Jie; Jiang, Lei

    2013-11-26

    There is rapidly increasing research interest focused on manipulating and dispensing tiny droplets in nanotechnology and biotechnology. A micro/nanostructured superhydrophobic nozzle surface is one promising candidate for the realization of tiny droplet manipulating applications. Here, we explore the feasibility of using superhydrophobicity for guided dispensing of tiny water droplets. A facile dip-coating method is developed to prepare superhydrophobic needle nozzles (SNNs) based on commercial needle nozzles with reduced inner diameter. The SNNs can manipulate tiny droplets of different volumes by only changing the inner diameter of the nozzle, rather than reducing the nozzle size as a whole. Different from the previous electric-field-directed process or pyroelectrodynamic-driven technique, quasi-stable water drops down to the picoliter scale can be produced by SNNs without employing any extra driving mechanisms. Due to their intrinsic superhydrophobic nature, the SNNs also possess the properties of reducing sample liquid retention, improving sample volume transfer accuracy, and saving expensive reagents. In addition, this kind of dip-coating method can also be applied to micropipet tips, inkjet or bio-printer heads, etc. As the issues of reducing drop size and increasing drop volume accuracy are quite important in the laboratory and industry, this facile but effective superhydrophobic nozzle-coating method for manipulating tiny droplets could be of great help to make breakthroughs in next-generation liquid transport and biometric and inkjet printing devices. PMID:24116931

  13. Formation of hierarchical ZnO nanostructure on tinfoil substrate and the application on wetting repellency

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Xia, Jun; Jing, Chen; Lei, Wei; Wang, Bao-ping

    2011-10-01

    Hierarchical ZnO (zinc oxide) nanostructures composed with nano-sheet and micro-flower structures (made from the nano-sheet) have been generated on tinfoil substrate via a chemical bath deposition process. Benefiting from an inherent distinct lattice constant compared with commonly used glass or other kinds of substrate, the tinfoil substrate played an important role on the formation of the hierarchical ZnO nanostructures. The resulting hierarchical ZnO surface shows excellent superhydrophobicity and extremely low water rolling angle after being modified with spin coating Teflon. The flexible and superhydrophobic characteristics of such fabricated substrate will be beneficial for applications requiring bendable and lightweight superhydrophobic substrates. In addition, the multifunctional properties of ZnO nanostructures are expected to broaden the applications to electronic and optical applications.

  14. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150 for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  15. Superhydrophobic conductive carbon nanotube coatings for steel.

    PubMed

    Sethi, Sunny; Dhinojwala, Ali

    2009-04-21

    We report the synthesis of superhydrophobic coatings for steel using carbon nanotube (CNT)-mesh structures. The CNT coating maintains its structural integrity and superhydrophobicity even after exposure to extreme thermal stresses and has excellent thermal and electrical properties. The coating can also be reinforced by optimally impregnating the CNT-mesh structure with cross-linked polymers without significantly compromising on superhydrophobicity and electrical conductivity. These superhydrophobic conductive coatings on steel, which is an important structural material, open up possibilities for many new applications in the areas of heat transfer, solar panels, transport of fluids, nonwetting and nonfouling surfaces, temperature resilient coatings, composites, water-walking robots, and naval applications. PMID:19281157

  16. Uni-directional liquid spreading on asymmetric nanostructured surfaces.

    PubMed

    Chu, Kuang-Han; Xiao, Rong; Wang, Evelyn N

    2010-05-01

    Controlling surface wettability and liquid spreading on patterned surfaces is of significant interest for a broad range of applications, including DNA microarrays, digital lab-on-a-chip, anti-fogging and fog-harvesting, inkjet printing and thin-film lubrication. Advancements in surface engineering, with the fabrication of various micro/nanoscale topographic features, and selective chemical patterning on surfaces, have enhanced surface wettability and enabled control of the liquid film thickness and final wetted shape. In addition, groove geometries and patterned surface chemistries have produced anisotropic wetting, where contact-angle variations in different directions resulted in elongated droplet shapes. In all of these studies, however, the wetting behaviour preserves left-right symmetry. Here, we demonstrate that we can harness the design of asymmetric nanostructured surfaces to achieve uni-directional liquid spreading, where the liquid propagates in a single preferred direction and pins in all others. Through experiments and modelling, we determined that the spreading characteristic is dependent on the degree of nanostructure asymmetry, the height-to-spacing ratio of the nanostructures and the intrinsic contact angle. The theory, based on an energy argument, provides excellent agreement with experimental data. The insights gained from this work offer new opportunities to tailor advanced nanostructures to achieve active control of complex flow patterns and wetting on demand. PMID:20348909

  17. A facial approach combining photosensitive sol-gel with self-assembly method to fabricate superhydrophobic TiO2 films with patterned surface structure

    NASA Astrophysics Data System (ADS)

    Duan, Zongfan; Zhao, Zhen; Luo, Dan; Zhao, Maiqun; Zhao, Gaoyang

    2016-01-01

    Superhydrophobic TiO2 films with micro-patterned surface structure was prepared through a facial approach combining photosensitive sol-gel method with following surface modification by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS). The patterned surface possessed quasi micro-lens array structure resembling processus mastoideus of lotus, leading to excellent hydrophobicity. The relationship between hydrophobic performance and the period of the micro-patterned TiO2 surface was investigated. The water contact angles (CAs) of micro-patterned TiO2 surface increased with the decrease of the periods, and the patterned surface with the lowest period of 0.83 μm showed the highest CA of 163°. It suggests that this approach would offer an advantage to control the wettability properties of superhydrophobic surfaces by adjusting the fine pattern structure. Furthermore, the superhydrophobic state could be converted to the state of superhydrophilicity under ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the PFOTCS monolayer on the micro-patterned TiO2 Surface.

  18. Scalable superhydrophobic coatings based on fluorinated diatomaceous earth: Abrasion resistance versus particle geometry

    NASA Astrophysics Data System (ADS)

    Polizos, Georgios; Winter, Kyle; Lance, Michael J.; Meyer, Harry M.; Armstrong, Beth L.; Schaeffer, Daniel A.; Simpson, John T.; Hunter, Scott R.; Datskos, Panos G.

    2014-02-01

    Bio-inspired superhydrophobic surfaces were fabricated based on fossilized silica fresh water diatomaceous earth (DE) particles. These nanostructured silicified diatom frustules of cylindrical and circular structures were fluorinated to impart them with superhydrophobic properties. Substrates coated with superhydrophobic DE structures of varying size and shape were found to have water contact angles of approximately 170 and sliding angles of approximately 3. The substrates were subjected to significant abrasion forces using a standard surface abrader. The ability to retain their superhydrophobic properties was observed to depend on the geometry and average size of the DE particles. The wettability of the abraded coatings was determined by their surface topology, and a transition from a non-wetted state to a partially wetted state was observed to occur and was dependent on the surface roughness. The proposed coatings are scalable, cost-effective, and can be applied on a variety of surfaces on critical infrastructures requiring protection from water saturation, ice formation and water based corrosion.

  19. Generation of surface nanostructures on nickel by liquid-phase laser ablation and their surface-enhanced Raman scattering activity

    SciTech Connect

    Barmina, E V; Levi, Zh; Lau Truong, C; Bozon-Verdyura, F; Simakin, Aleksandr V; Shafeev, Georgii A

    2010-06-23

    Surface nanostructuring of nickel by ablation with 350-ps Nd:YAG laser pulses in ethanol has been studied experimentally. The morphology of the nanostructured surface has been examined using a field emission scanning electron microscope. The average lateral size of the surface nanostructures is 30 - 50 nm. The nanostructured surface has been coated with gold using a chemical deposition procedure. The gold-coated substrate has shown surface-enhanced Raman scattering with an enhancement factor of 10{sup 8}. Potential applications of such nanostructured targets are discussed. (nanostructures)

  20. Superhydrophobic and anti-icing properties at overcooled temperature of a fluorinated hybrid surface prepared via a sol-gel process.

    PubMed

    Tang, Yongqiang; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2015-06-14

    A superhydrophobic surface with anti-icing performance has been the focus of research, but few studies have reported the effective and low cost strategy that met the requirements under overcooled conditions. In this article, the fluorinated sol-gel colloid coatings were simply prepared via hydrolytic condensation of nanosilica sol, methyltriethoxysilane (MTES) and 3-[(perfluorohexylsulfonyl)amino]propyltriethoxysilane (HFTES). The multi scale morphology and chemical composition of the artificial surfaces were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The influence of the surface roughness structure and fluorinated groups on the wettability and freezing delay time of the colloid surface under overcooled conditions were explored. As the HFTES content was higher than 6 wt%, the prepared colloid surface showed excellent superhydropobicity with a contact angle (CA) of about 166° at room temperature. The CA gradually reduced with the decrease of the temperature. Only the samples with high HFTES contents (above 30 wt%) exhibited special superhydrophobic and anti-icing properties under freeze temperature. Besides the surface roughness structure, the high fluoride enrichment on the surface plays a major role in the superhydrophobic and anti-icing properties under overcooled conditions. PMID:25966370

  1. How superhydrophobicity breaks down

    PubMed Central

    Papadopoulos, Periklis; Mammen, Lena; Deng, Xu; Vollmer, Doris; Butt, Hans-Jrgen

    2013-01-01

    A droplet deposited or impacting on a superhydrophobic surface rolls off easily, leaving the surface dry and clean. This remarkable property is due to a surface structure that favors the entrainment of air cushions beneath the drop, leading to the so-called Cassie state. The Cassie state competes with the Wenzel (impaled) state, in which the liquid fully wets the substrate. To use superhydrophobicity, impalement of the drop into the surface structure needs to be prevented. To understand the underlying processes, we image the impalement dynamics in three dimensions by confocal microscopy. While the drop evaporates from a pillar array, its rim recedes via stepwise depinning from the edge of the pillars. Before depinning, finger-like necks form due to adhesion of the drop at the pillars circumference. Once the pressure becomes too high, or the drop too small, the drop slowly impales the texture. The thickness of the air cushion decreases gradually. As soon as the waterair interface touches the substrate, complete wetting proceeds within milliseconds. This visualization of the impalement dynamics will facilitate the development and characterization of superhydrophobic surfaces. PMID:23382197

  2. Understanding the biological responses of nanostructured metals and surfaces

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  3. In situ separation and collection of oil from water surface via a novel superoleophilic and superhydrophobic oil containment boom.

    PubMed

    Wang, Fajun; Lei, Sheng; Xue, Mingshan; Ou, Junfei; Li, Wen

    2014-02-11

    We have prepared a porous, superoleophilic and superhydrophobic miniature oil containment boom (MOCB) for the in situ separation and collection of oils from the surface of water. The MOCB was fabricated by a one-step electrodepositing of Cu2O film on Cu mesh surface without using low surface energy materials. Oils on water surface could be fast contained in the MOCB while water was completely repelled out of the MOCB, thus achieving the separation of oil from water surface. In addition, the contained oil in the MOCB could be in situ collected easily by a dropper, thus achieving the collection of oil. Moreover, the MOCB could be reused for many times in the oil-water separating process with large separation abilities more than 90%. The MOCB also possessed excellent water pressure resistance for about 164 mm water column and good corrosion resistance in simulating seawater. Therefore, the findings in the present study might offer a simple, fast, and low-cost method for the in situ separation and collection of oil spills on seawater surface. PMID:24460039

  4. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf

    NASA Astrophysics Data System (ADS)

    Chen, Longquan; Xiao, Zhiyong; Chan, Philip C. H.; Lee, Yi-Kuen; Li, Zhigang

    2011-08-01

    The impact dynamics of water droplets on an artificial dual-scaled superhydrophobic surface was studied and compared with that of a lotus leaf with impact velocity V up to 3 m/s. The lower critical impact velocity for the bouncing of droplets was about 0.08 m/s on both surfaces. At relatively low impact velocities, regular rebound of droplets and air bubble trapping and flow jetting on both surfaces were observed as V was increased. For intermediate V, partial pinning and rebound of droplets were found on the artificial dual-scaled surface due to the penetration of the droplets into the micro- and nano-scale roughness. On the lotus leaf, however, the droplets bounced off with intensive vibrations instead of being partially pinned on the surface because of the irregular distribution of microbumps on the leaf. As the impact velocity was sufficiently high, droplet splashing occurred on both surfaces. The contact time and restitution coefficient of the impinging droplets were also measured and discussed.

  5. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Petefish, Joseph W.

    Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd's mirror interferometer to perform multiple exposures at multiple angles before developing. Precise control of the resonance position is shown by locating three SPR dips at predetermined wavenumbers of 5000, 4000, and 3000 cm-1, respectively. A set of three gratings, each having four closely spaced resonances is employed to show how the sensor response could be broadened. The work in Chapter 3 shows potential for simultaneous enhancement of multiple vibrational modes; the multiband approach might find application for modes at disparate locations within the IR spectrum, while the broadband approach may allow concurrent probing of broad single modes or clusters of narrow modes within a particular neighborhood of the spectrum. Chapter 4 uses the rigorous coupled-wave analysis (RCWA) method to numerically explore another facet of the nanostructure-based tunability of grating-baed SPR sensing. The work in this chapter illustrates how infrared signal enhancement could be tailored by through adjustment of the grating amplitude. Modeled infrared reflection absorption (IRRAS) spectra and electric field distributions were generated for several nanostructured grating configurations. It was found that there exists a critical amplitude value for a given grating pitch where the plasmon response achieves a maximum. Amplitudes greater than this critical value produce a broader and attenuated plasmon peak, while smaller amplitudes produce a plasmon resonance that is not as intense. Field simulations show how amplitudes nearer the critical amplitude resulted in large increases in the electric field within an analyte film atop the sensor surface, and the relative strength of the increased field is predictable based on the appearance of the IRRAS spectra. It is believed that these larger fields are the cause of observed enhanced absorption. Published reports pertaining to interactions of SPs with molecular resonance and to diffraction-based tracking of plasmons without a spectrometer are included in the Appendix to this thesis. In the first of the two reports, it is shown that plasmons coupling to dye molecular resonance can be quenched due to the effects of the high extinction coefficient of the dye. In the second report, the thickness of nanometer-scale SiO films on a gold-coated grating is evaluated by tracking the plasmon using a Bertrand lens and camera. Model results show close agreement with observations in both works. This work aims to show the versatility of SPR sensing in multiple applications. The inherent angle- and wavelength-tunability of plasmon responses is a distinct advantage for sensing phenomena over a wide range of conditions. SPR sensing is also highly dependent on the nanostructure at and near the metal-dielectric interface. The thickness of thin metal coatings, as well as the pitch, amplitude, and shape of metallic gratings all affect the behavior of SPPs in profound ways. Gratings provide an especially information-rich avenue for SPR sensing, as data is contained in multiple diffracted orders over a wide range of angles and wavelengths.

  6. Imprinted and injection-molded nano-structured optical surfaces

    NASA Astrophysics Data System (ADS)

    Christiansen, Alexander B.; Hjlund-Nielsen, Emil; Clausen, Jeppe; Caringal, Gideon P.; Mortensen, N. Asger; Kristensen, Anders

    2013-09-01

    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are well- known examples used for inspiration for such biomimetic research. In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of Black Silicon (BSi) random nanostructure surfaces. The optical transmission at normal incidence is measured for wavelengths from 400 nm to 900 nm. For samples with optimized nanostructures, the reflectance is reduced by 50 % compared to samples with planar surfaces. The specular and diffusive reflection of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed.

  7. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol-gel superhydrophobic and oleophobic nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Lakshmi, R. V.; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-01

    Superhydrophobic sol-gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160 and water sliding angle (WSA) of <2. FAS addition also improved the oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126 and ethylene glycol contact angle of 153.3. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  8. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    NASA Astrophysics Data System (ADS)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

  9. Biomimetic hierarchical ZnO structures with superhydrophobic property

    NASA Astrophysics Data System (ADS)

    Saidin, N. U.; Kok, K. Y.; Ng, I. K.; Bustamam, F. K. Ahmad

    2012-11-01

    A simple electrochemical deposition method was developed for the fabrication of ZnO-based hierarchical dual structures on micro and nano scales. A layer of c-axis wellaligned and translucent ZnO micro/nanostructures was deposited on ITO glass substrate from different aqueous electrolytes with systematically varied conditions. Surface morphologies and orientations of the ZnO coatings were characterized using Scanning Electron Microscopy (SEM). The resulting ZnO-modified surface was found to exhibit water contact angle as high as 170, a superhydrophobic property found on lotus leaf. Results show that the electrochemical deposition potential, electrolyte concentration, deposition temperature and time are the critical factors controlling the growth and formation of ZnO micro/nanostructures. Such biomimetic ZnO structures have potential for self-cleaning applications.

  10. Superhydrophobic materials for drug delivery

    NASA Astrophysics Data System (ADS)

    Yohe, Stefan Thomas

    Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension. Superhydrophobicity is shown to be enhanced with further increases in PGC-C18 content and surface roughness (a decrease in fiber size). We demonstrate the utility of superhydrophobicity as a method for drug delivery. When the camptothecin derivatives SN-38 and CPT-11 are encapsulated within electrospun meshes, changes in air layer stability (due to changes in PGC-C18 content) dictate the rate of drug release by controlling the rate in which water can permeate into the porous 3D electrospun structure. Drug release can be tuned from 2 weeks to >10 weeks from 300 mum meshes, and meshes effectively kill a variety of cancer cell lines (lung, colon, breast) when utilized in a cytotoxicity assay. After determining that air could be used to control the rate of drug release, superhydrophobic 3D materials are explored for three applications. First, meshes are considered as a potential combination reinforcement-drug delivery device for use in resectable colorectal cancer. Second, removal of the air layer in superhydrophobic meshes is used as a method to trigger drug release. The pressure generated from high-intensity focused ultrasound (0.75-4.25 MPa) can remove the air layer spatially and temporally, allowing drug release to be controlled with application of a sufficient treatment. Third, "connective" electrosprayed coatings are deposited on chemically distinct material surfaces, which are both three-dimensional and mechanically robust. In summary, superhydrophobic 3D materials are fabricated and characterized, and are utilized as drug delivery devices. Controlled air removal from these materials offers an entirely new strategy for drug delivery, and is promising for the applications considered in this work as well as many others.

  11. Superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2015-05-26

    Provided are superhydrophobic coatings, devices and articles including superhydrophobic coatings, and methods for preparing the superhydrophobic coatings. The exemplary superhydrophobic device can include a substrate component and one or more superhydrophobic coatings disposed over the substrate component, wherein at least one of the one or more superhydrophobic coatings has a water contact angle of at least about 150.degree. and a contact angle hysteresis of less than about 1.degree.. The one or more superhydrophobic coatings can include an ultra high water content acid catalyzed polysilicate gel, the polysilicate gel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  12. Surface nanostructure formation by the interaction of slow xenon ions on HOPG surfaces

    NASA Astrophysics Data System (ADS)

    Y Wang, Y.; Xiao, G. Q.; Zhao, Y. T.; Li, D. H.; Zhao, D.; Xu, Z. F.; Li, F. L.

    2009-04-01

    Experiments on nanostructure formation on highly oriented pyrolytic graphite (HOPG) surfaces irradiated by slow highly charged Xeq+ (q = 23-29) ions have been carried out at a new experimental terminal for surface physics on the 320 kV ECR platform at the Institute of Modern Physics (IMP). In the tapping mode atomic force microscope (AFM) image, the nano-sized hillocks protruding from the surfaces are probed. The height and diameter of the nanostructures increase with the projectile charge state. The present results reveal a similarity between the nanostructure formation produced by slow highly charged ions and the track formation induced by swift heavy ions.

  13. Mechanical durability of superhydrophobic and oleophobic copper meshes

    NASA Astrophysics Data System (ADS)

    Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

    2014-10-01

    We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

  14. Surface-enhanced Raman spectroscopy of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Sveshnikova, L. L.; Duda, T. A.; Yeryukov, N. A.; Rodyakina, E. E.; Gutakovskii, A. K.; Batsanov, S. A.; Latyshev, A. V.; Zahn, D. R. T.

    2016-01-01

    We review our recent results concerning surface-enhanced Raman scattering (SERS) by confined optical and surface optical phonons in semiconductor nanostructures including CdS, CuS, GaN, and ZnO nanocrystals, GaN and ZnO nanorods, and AlN nanowires. Enhancement of Raman scattering by confined optical phonons as well as appearance of new Raman modes with the frequencies different from those in ZnO bulk attributed to surface optical modes is observed in a series of