Sample records for nanostructured superhydrophobic surfaces

  1. Nanostructured superhydrophobic surfaces

    Microsoft Academic Search

    H. M. Shang; Y. Wang; K. Takahashi; G. Z. Cao; D. Li; Y. N. Xia

    2005-01-01

    face is considered to be superhydrophobic. The water? solid contact angle varies with the surface energy and roughness of the solid surface. The surface energy of a solid is determined by the surface chemistry, which in turn depends on the chemical composition and atomic arrangements at or near the surface. Structure relaxation, surface restructuring, and composition segregation all can reduce

  2. Dynamic defrosting on nanostructured superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Srijanto, Bernadeta R; Nguyen, Trung Dac; Vega, Carlos; Fuentes-Cabrera, Miguel; Collier, C Patrick

    2013-07-30

    Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments. PMID:23822157

  3. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    E-print Network

    Miljkovic, Nenad

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured ...

  4. Jumping Droplet Dynamics on Scalable Nanostructured Superhydrophobic Surfaces

    E-print Network

    Miljkovic, Nenad

    Environmental scanning electron microscope (ESEM) and high speed images of coalescence-induced droplet jumping on a nanostructured superhydrophobic copper oxide (CuO) surface are presented. Nanostructured CuO films were ...

  5. Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces

    E-print Network

    Miljkovic, Nenad

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance ...

  6. Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces

    E-print Network

    Miljkovic, Nenad

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie ...

  7. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Wang, Evelyn N

    2013-01-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation. PMID:23190055

  8. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Wang, Evelyn

    2013-03-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface, as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations. This work not only shows significant condensation heat transfer enhancement, but promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  9. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2012-01-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  10. Water repellency of hierarchical superhydrophobic Ti6Al4V surfaces improved by secondary nanostructures

    NASA Astrophysics Data System (ADS)

    Shen, Yizhou; Tao, Haijun; Chen, Shanlong; Xie, Yuejun; Zhou, Tao; Wang, Tao; Tao, Jie

    2014-12-01

    Micro-nanostructures were successfully synthesized on a Ti6Al4V alloy and then coated with a monolayer of hydrophobic groups to obtain the superhydrophobic surfaces. The effect of secondary nanostructures (nanotube, nanowire and nanomesh) on superhydrophobic performance was investigated by the characterization of contact process of a falling water droplet onto the superhydrophobic surface via a high-speed camera. Meanwhile, the apparent contact angle and sliding angle of the water droplet were measured by a contact angle analyzer. The results indicated that the superhydrophobic surface with micro-nanostructures (microscale pits and nanowire) exhibited robust superhydrophobic properties (apparent contact angle 161° and sliding angle approximately 3°) due to the large amount of flowing air being trapped underneath the droplet. Moreover, it was observed that once the impacting droplet contacted with the superhydrophobic surface, it spread uniformly before retracting and finally lifted off the surface within 13 ms.

  11. Condensation on superhydrophobic copper oxide nanostructures

    E-print Network

    Dou, Nicholas (Nicholas Gang)

    2012-01-01

    Condensation is an important process in many power generation and water desalination technologies. Superhydrophobic nanostructured surfaces have unique condensation properties that may enhance heat transfer through a ...

  12. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis

    NASA Astrophysics Data System (ADS)

    Bisetto, A.; Torresin, D.; Tiwari, M. K.; Del, D., Col; Poulikakos, D.

    2014-04-01

    It is well established that the dropwise condensation (DWC) mode can lead up to significant enhancement in heat transfer coefficients as compared to the filmwise mode (FWC). Typically, hydrophobic surfaces are expected to promote DWC, while hydrophilic ones induce FWC. To this end, superhydrophobic surfaces, where a combination of low surface energy and surface texturing is used to enhance the hydrophobicity, have recently been proposed as a promising approach to promote dropwise condensation. An attractive feature of using superhydrophobic surfaces is to facilitate easy roll-off of the droplets as they form during condensation, thus leading to a significant improvement in the heat transfer associated with the condensation process. High droplet mobility can be obtained acting on the surface chemistry, decreasing the surface energy, and on the surface structure, obtaining a micro- or nano- superficial roughness. The first part of this paper will present a literature review of the most relevant works about DWC on superhydrophobic nanotextured substrates, with particular attention on the fabrication processes. In the second part, experimental data about DWC on superhydrophobic nanotextured samples will be analyzed. Particular attention will be paid to the effect of vapour velocity on the heat transfer. Results clearly highlight the excellent potential of nanostructured surfaces for application in flow condensation applications. However, they highlight the need to perform flow condensation experiments at realistic high temperature and saturation conditions in order to evaluate the efficacy of superhydrophobic surfaces for practically relevant pure vapor condensation applications.

  13. Azidomethyl-EDOT as a Platform for Tunable Surfaces with Nanostructures and Superhydrophobic Properties.

    PubMed

    Godeau, Guilhem; N'Na, Jessica; Darmanin, Thierry; Guittard, Frédéric

    2015-06-01

    We report for the first time the use of click chemistry both to modify the surface morphology and to obtain superhydrophobic properties. Using click chemistry as a postfunctionalization of poly(3,4-ethylenedioxythiophene) nanofibers bearing azido groups, we show that the nanostructures already present on the surface as well as the surface hydrophobicity are highly affected by the used alkyne. These results allow one to envisage widely varied strategies to modify nanostructured surfaces while introducing various functions, for example to produce biosensors or antibacterial surfaces. PMID:25974162

  14. Drop impact upon micro- and nanostructured superhydrophobic surfaces

    E-print Network

    Tsai, Peichun; Pirat, Christophe; Lefferts, Leon; Lohse, Detlef

    2009-01-01

    We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number \\We and the roughness of the surface. At small \\We, i.e. small impact velocity, the impact evolutions are similar for both types of substrates, exhibiting Fakir state, complete bouncing, partial rebouncing, trapping of an air bubble, jetting, and sticky vibrating water balls. At large \\We, splashing impacts emerge forming several satellite droplets, which are more pronounced for the multiscale rough carbon nanofiber jungles. The results imply that the multiscale surface roughness at nanoscale plays a minor role in the impact events for small \\We~$\\apprle 120$ but an important one for large \\We~$\\apprge 120$. Finally, we find the effect of ambient air pressure to be negligible in the explored parameter regime \\We~$\\apprle 150$

  15. Drop impact upon micro- and nanostructured superhydrophobic surfaces.

    PubMed

    Tsai, Peichun; Pacheco, Sergio; Pirat, Christophe; Lefferts, Leon; Lohse, Detlef

    2009-10-20

    We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small We, i.e., small impact velocity, the impact evolutions are similar for both types of substrates, exhibiting Fakir state, complete bouncing, partial rebouncing, trapping of an air bubble, jetting, and sticky vibrating water balls. At large We, splashing impacts emerge forming several satellite droplets, which are more pronounced for the multiscale rough carbon nanofiber jungles. The results imply that the multiscale surface roughness at nanoscale plays a minor role in the impact events for small We less than or approximately equal 120 but an important one for large We greater than or approximately equal 120. Finally, we find the effect of ambient air pressure to be negligible in the explored parameter regime We less than or approximately equal 150. PMID:19821629

  16. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.

    PubMed

    Ölçero?lu, Emre; Hsieh, Chia-Yun; Rahman, Md Mahamudur; Lau, Kenneth K S; McCarthy, Matthew

    2014-07-01

    While superhydrophobic nanostructured surfaces have been shown to promote condensation heat transfer, the successful implementation of these coatings relies on the development of scalable manufacturing strategies as well as continued research into the fundamental physical mechanisms of enhancement. This work demonstrates the fabrication and characterization of superhydrophobic coatings using a simple scalable nanofabrication technique based on self-assembly of the Tobacco mosaic virus (TMV) combined with initiated chemical vapor deposition. TMV biotemplating is compatible with a wide range of surface materials and applicable over large areas and complex geometries without the use of any power or heat. The virus-structured coatings fabricated here are macroscopically superhydrophobic (contact angle >170°) and have been characterized using environmental electron scanning microscopy showing sustained and robust coalescence-induced ejection of condensate droplets. Additionally, full-field dynamic characterization of these surfaces during condensation in the presence of noncondensable gases is reported. This technique uses optical microscopy combined with image processing algorithms to track the wetting and growth dynamics of 100s to 1000s of microscale condensate droplets simultaneously. Using this approach, over 3 million independent measurements of droplet size have been used to characterize global heat transfer performance as a function of nucleation site density, coalescence length, and the apparent wetted surface area during dynamic loading. Additionally, the history and behavior of individual nucleation sites, including coalescence events, has been characterized. This work elucidates the nature of superhydrophobic condensation and its enhancement, including the role of nucleation site density during transient operation. PMID:24882117

  17. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Long, Jiangyou; Fan, Peixun; Zhong, Minlin; Zhang, Hongjun; Xie, Yongde; Lin, Chen

    2014-08-01

    In this study, functional copper surfaces combined with vivid structural colors and superhydrophobicity were fabricated by picosecond laser. Laser-induced periodic surface structures (LIPSS), i.e. ripples, were fabricated by picosecond laser nanostructuring to induce rainbow-like structural colors which are uniquely caused by the grating - type structure. The effects of laser processing parameters on the formation of ripples were investigated. We also discussed the formation mechanism of ripples. With different combinations of the laser processing parameters, ripples with various morphologies were fabricated. After the modification with triethoxyoctylsilane, different types of ripples exhibited different levels of wettability. The fine ripples with minimal redeposited nanoparticles exhibited high adhesive force to water. The increased amount of nanoscale structures decreased the adhesive force to water and increased the contact angle simultaneously. In particular, a specific type of ripples exhibited superhydrophobicity with a large contact angle of 153.9 ± 3.2° and a low sliding angle of 11 ± 3°.

  18. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching.

    PubMed

    Lee, Jung-Pil; Choi, Sinho; Park, Soojin

    2011-01-18

    We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°. PMID:21162520

  19. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    Microsoft Academic Search

    Yonghao Xiu

    2008-01-01

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect

  20. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance. PMID:25419845

  1. Superhydrophobic (low adhesion) and parahydrophobic (high adhesion) surfaces with micro/nanostructures or nanofilaments.

    PubMed

    Diouf, Alioune; Darmanin, Thierry; Dieng, Samba Yandé; Guittard, Frédéric

    2015-09-01

    Controlling the water adhesion is extremely important for various applications such as for water harvesting. Here, superhydrophobic (low adhesion) and parahydrophobic (high adhesion) substrates are both obtained from hydrophilic polymers. We show in the work that a judicious choice in the monomer structure used for electropolymerization can lead to these two properties. Using a phenyl group, parahydrophobic properties are reached due to the formation of nanofilaments. By contrast, using a naphthalene or a biphenyl group, superhydrophobic properties are obtained due the formation of both micro- and nanostructures. PMID:25965431

  2. Fabrication of Superhydrophobic Surfaces

    Microsoft Academic Search

    Seong H. Kim

    2008-01-01

    Superhydrophobicity has recently drawn a great deal of attention from both fundamental and practical application points of view. This paper summarizes the basic principles involved in creation of superhydrophobicity and reviews the diverse methods recently developed to make superhydrophobic surfaces and coatings. The hydrophobic property of materials can be amplified through the surface roughness. This was first addressed theoretically in

  3. Condensation on Superhydrophobic Copper Oxide Nanostructures

    E-print Network

    Enright, Ryan

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the ...

  4. Optically Transparent, Mechanically Durable, Nanostructured Superhydrophobic Surfaces Enabled by Spinodally Phase-Separated Glass Thin Films

    SciTech Connect

    Aytug, Tolga [ORNL; Christen, David K [ORNL; Hillesheim, Daniel A [ORNL; Hunter, Scott Robert [ORNL; Ivanov, Ilia N [ORNL; Jellison Jr, Gerald Earle [ORNL; Lupini, Andrew R [ORNL; Pennycook, Stephen J [ORNL; Trejo, Rosa M [ORNL; Winters, Kyle O. [University of Tennessee, Knoxville (UTK); Haynes, James A [ORNL; Simpson, John T [ORNL

    2013-01-01

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  5. Biomimetic Superhydrophobic Surfaces

    Microsoft Academic Search

    Haiyan Ji; Gang Chen; Jie Hu; Mingsong Wang; Chunying Min; Yutao Zhao

    2012-01-01

    Lotus leaves are well known to be superhydrophobic and self-cleaning due to the hierarchical roughness of the leaf surfaces.The surfaces with controllable wettability may bring great advantages in a wide variety of applications and have received tremendous attention in recent years. In this review, the fundamental theories on the wettability of a hydrophobic rough solid surface and the biomimetic superhydrophobic

  6. Nanostructured metal surfaces and their passivation for superhydrophobic and anti-icing applications

    NASA Astrophysics Data System (ADS)

    Safaee, Alireza

    Many systems and infrastructures developed by human beings frequently encounter deficiencies, stop functioning or even fail during severe weather conditions due to ice accumulation. One of the common methods to prevent snow and ice accumulation on exposed surfaces is the use of chemicals such as freezing point depressants. They should be applied during storms or just before ice accumulation which is practically difficult. Also these chemicals adversely affect the environment. New environment-friendly methods are necessary to be developed. An ideal solution can be covering the structures with a coating capable of inhibiting or reducing the bonding between snow or ice and solid surfaces. A solid surface with a water contact angle greater than 150° is called superhydrophobic. Desiring superhydrophobicity, a surface should satisfy two criteria, nano/micrometer scale roughness as well as low surface energy. Many applications in industry and in everyday-life can be benefited from this extreme water-repellence if one can develop a durable, environment-friendly superhydrophobic coating. In the present study, the hydrophobicity of the surfaces with submicron roughness prepared by spin-coating of metallic nanoparticle colloids on aluminum and copper substrates was studied. Three colloids of silver nanoparticles and two colloids of copper nanoparticles with different size distributions were synthesized by chemical reduction methods. Silver particles were found to be stable enough to make the model surfaces but copper particles were unstable and not suitable for this application. Regardless of nanoparticle type, hydrophobic surfaces could not be achieved by making rough surfaces by only one layer of coating. By adding a second layer of coating, all three types of silver nanoparticles resulted in coatings with high degree of superhydrophobicity on metallic substrates. Due to the similar shapes of nanoparticles, the difference in observed contact angles could be related to the particles sizes. The particles with the average size of ˜263 nm had the highest contact angles whereas the particles with average size of ˜195 nm or ˜360 nm showed lower values. The anti-icing behaviour of these superhydrophobic films was studied under atmospheric icing conditions. On aluminum, two layer coating of 263 nm particles could reduce the ice adhesion up to 8.1 times. This value was equal to 4 on copper substrates with similar coating. The copper based samples could keep their ice adhesion reduction even after five ice removal test.

  7. Superhydrophobic surface of TiO2 hierarchical nanostructures fabricated by Ti anodization.

    PubMed

    Dong, Junye; Ouyang, Xin; Han, Jie; Qiu, Wei; Gao, Wei

    2014-04-15

    A hierarchical structure of TiO2 with disordered nanowires on top of regular nanotubes was fabricated. With organic monolayers, it showed stronger superhydrophobic properties than regular nanotubes. The surface roughness was further enhanced by removing the dense nanowires layer, resulting in 172° water contact angle. The potential application for aquatic devices was explored by the treated Ti mesh which showed striking floating stability. PMID:24559706

  8. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces.

    PubMed

    Jiang, Yugui; Wang, Zhiqiang; Yu, Xi; Shi, Feng; Xu, Huaping; Zhang, Xi; Smet, Mario; Dehaen, Wim

    2005-03-01

    This paper describes the fabrication of surfaces with different wettability, superhydrophobic/superhydrophilic, and pH-responsive properties. We used a self-assembled monolayer (SAM) of a dendron thiol as the underlying surface for electrodeposition of gold nanostructures. After this modification with a SAM of n-dodecanethiol or 11-mercaptoundecanol, the surface shows remarkable superhydrophobic properties with a contact angle of about 155 degrees and a tilt angle of less than 2 degrees or superhydrophilic properties with a contact angle of about 0 degrees , respectively. Moreover, a large-scale pH-responsive surface was obtained by modification with 2-(11-mercaptoundecanamido)benzoic acid (7) (MUABA). The pH-responsive behavior was amplified by using rough surfaces. PMID:15723499

  9. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.

    PubMed

    Xiu, Yonghao; Liu, Yan; Hess, Dennis W; Wong, C P

    2010-04-16

    Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion. PMID:20332558

  10. Modeling & simulation of nanostructures for superhydrophobic coatings

    Microsoft Academic Search

    Ronald Pirich; John Weir; Dennis Leyble; Steven Chu

    2012-01-01

    Materials with surfaces that are difficult to wet with water are called hydrophobic. Hydrophobic molecules tend to be nonpolar and thus prefer other neutral molecules and nonpolar solvents. Hydrophobic molecules in water often cluster together. Superhydrophobic surfaces are generally made by additionally controlling the surface chemistry and surface roughness of various hydrophobic materials. Superhydrophobic surfaces can be caused by protrusions

  11. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces

    Microsoft Academic Search

    Jinming Xi; Lin Feng; Lei Jiang

    2008-01-01

    A simple one-step electrodeposition process is developed for the fabrication of superhydrophobic surfaces on a series of substrates such as copper, titanium, iron, zinc, aluminum, and stannum. The hierarchical micro- and nanostructures endow these surfaces with excellent super-hydrophobicity and the resulting surfaces show superhydrophobicity even for some corrosive liquids including salt solutions and acidic and basic solutions at all pH

  12. Superhydrophobic Copper Surfaces

    NSDL National Science Digital Library

    This lesson from The Lawrence Hall of Science was taught in fall 2012 and focuses on superhydrophobic and superhydrophilic surfaces. Students will experiment with these materials by chemically modifying copper. This page includes links to the Source Article for the Hands-on Module as well as four documents for instructor use in teaching the lab.

  13. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.

    PubMed

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-05-01

    This paper mainly reports the wetting state of liquid droplets on a Ti6Al4V micro-nanoscale hierarchical structured hydrophobic surface. In this work, the detailed action mechanism of the secondary nanostructure in the hierarchical structure on the wetting-state transition (from the Wenzel state to the Cassie state) was revealed and discussed. The variation of micro-morphology of the sample surface was observed using a field emission scanning electron microscope (FE-SEM). Furthermore, the apparent contact angle and sliding angle of the droplets on the surfaces were measured via a contact angle measurement instrument. The theoretical and experimental results indicated that the one-dimensional nanowire structure, which was planted on the microstructure surface by the hydrothermal method, effectively changed the wetting state of liquid droplets on the surface from the Wenzel state to the Cassie state owing to its good size synergies with microscale structure. This process not only increased the apparent contact angle of liquid droplets on the solid surface (to 161°), but also decreased the sliding angle significantly (to 3°) and contact angle hysteresis (to ?2°), demonstrating the robust non-wetting property. PMID:25855128

  14. Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces

    PubMed Central

    Privett, Benjamin J.; Youn, Jonghae; Hong, Sung A; Lee, Jiyeon; Han, Junhee

    2011-01-01

    A superhydrophobic xerogel coating synthesized from a mixture of nanostructured fluorinated silica colloids, fluoroalkoxysilane, and a backbone silane is reported. The resulting fluorinated surface was characterized using contact angle goniometry, SEM, and AFM. Quantitative bacterial adhesion studies performed using a parallel plate flow cell demonstrated that the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa were reduced by 2.08 ± 0.25 and 1.76 ± 0.12 log over controls, respectively. This simple superhydrophobic coating synthesis may be applied to any surface regardless of geometry and does not require harsh synthesis or processing conditions, making it an ideal candidate as a biopassivation strategy. PMID:21718023

  15. Surface roughness effects on superhydrophobicity

    Microsoft Academic Search

    Chunyan Yang; Ugo Tartaglino; Bo Persson

    2008-01-01

    Superhydrophobic surfaces, with liquid contact angle greater than 150 degree, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low friction surfaces. Many biological surfaces, such as the lotus leaf, have hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with

  16. Nanowetting of rough superhydrophobic surfaces

    Microsoft Academic Search

    H. Zhang; R. N. Lamb; D. J. Cookson

    2007-01-01

    Small angle x-ray scattering has been used to investigate the in situ immersive wetting of ultrarough surfaces which exhibit superhydrophobicity with extreme water contact angle (thetaA=169°). Reduced scattering contrast observed from rough surfaces when partially or totally wetted reveals significant physical differences between superhydrophobic surfaces not otherwise apparent from conventional contact angle measurements.

  17. Nanowetting of rough superhydrophobic surfaces

    Microsoft Academic Search

    H. Zhang; R. N. Lamb; D. J. Cookson

    2007-01-01

    Small angle x-ray scattering has been used to investigate the in situ immersive wetting of ultrarough surfaces which exhibit superhydrophobicity with extreme water contact angle (?A=169°). Reduced scattering contrast observed from rough surfaces when partially or totally wetted reveals significant physical differences between superhydrophobic surfaces not otherwise apparent from conventional contact angle measurements.

  18. Nanowetting of rough superhydrophobic surfaces

    SciTech Connect

    Zhang, H.; Lamb, R.N.; Cookson, D.J. (ASRP); (New South); (Melbourne)

    2008-11-03

    Small angle x-ray scattering has been used to investigate the in situ immersive wetting of ultrarough surfaces which exhibit superhydrophobicity with extreme water contact angle ({theta}{sub A} = 169{sup o}). Reduced scattering contrast observed from rough surfaces when partially or totally wetted reveals significant physical differences between superhydrophobic surfaces not otherwise apparent from conventional contact angle measurements.

  19. Wettability of natural superhydrophobic surfaces.

    PubMed

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 ?m) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. PMID:24556235

  20. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces. PMID:24575424

  1. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio

    E-print Network

    Kim, Ho-Young

    Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high on a superhydrophobic carbon fiber (CF) network with high-aspect-ratio hair-like nanostructures. Nanostructures ranging. Superhydrophobic CF surfaces were achieved by application of a hydrophobic siloxane- based hydrocarbon coating

  2. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces

    NASA Astrophysics Data System (ADS)

    Xi, Jinming; Feng, Lin; Jiang, Lei

    2008-02-01

    A simple one-step electrodeposition process is developed for the fabrication of superhydrophobic surfaces on a series of substrates such as copper, titanium, iron, zinc, aluminum, and stannum. The hierarchical micro- and nanostructures endow these surfaces with excellent super-hydrophobicity and the resulting surfaces show superhydrophobicity even for some corrosive liquids including salt solutions and acidic and basic solutions at all pH values. Importantly, this approach can be easily applied to other systems such as the fabrication of superamphiphobic surfaces as long as the substrates are electrically conductive.

  3. Nanostructured metal surfaces and their passivation for superhydrophobic and anti-icing applications

    Microsoft Academic Search

    Alireza Safaee

    2008-01-01

    Many systems and infrastructures developed by human beings frequently encounter deficiencies, stop functioning or even fail during severe weather conditions due to ice accumulation. One of the common methods to prevent snow and ice accumulation on exposed surfaces is the use of chemicals such as freezing point depressants. They should be applied during storms or just before ice accumulation which

  4. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process.

    PubMed

    Shirgholami, Mohammad A; Khalil-Abad, Mohammad Shateri; Khajavi, Ramin; Yazdanshenas, Mohammad E

    2011-07-15

    Superhydrophobic cotton textiles are prepared by a simple, one-step and inexpensive phase separation method under ambient conditions by which a layer of polymethylsilsesquioxane (PMSQ) nanostructures is covered onto the cellulose fibers. By changing the silane precursor concentration, PMSQ nanostructures with various shapes, morphologies and sizes were fabricated. Nanostructures were characterized using SEM, EDS, and attenuated total reflectance FTIR. The wettability of the modified cellulose surfaces was characterized with contact-angle goniometry and sliding angle technique, respectively. The water contact angle of modified cotton is measured to be higher than 150°, which is high enough to exhibit the lotus effect as a result of the superhydrophobicity. Tunable water-repellent properties of the fabric are also demonstrated, with sliding contact angles varying from "sticky" to "slippery" depending upon different nanostructures on the surface of the fibers. It is expected that this simple technique will accelerate the large-scale production of superhydrophobic cellulosic materials with new industrial applications. PMID:21536303

  5. Superhydrophobicity and surface enhanced Raman scattering activity of dendritic silver layers

    Microsoft Academic Search

    Yawei Hu; Shan Liu; Siya Huang; Wei Pan

    2010-01-01

    Dendritic silver nanostructured surface has been prepared on copper substrate by a simple replacement reaction. It was observed that morphology of the silver surface became much rough with reaction time, from initial nanosized clusters to nanostructured dendrites. The silver surface modified with dodecanethiol showed great superhydrophobicity. It was also found that the dendritic silver nanostructured surface demonstrated highly sensitive surface

  6. Flow condensation on copper-based nanotextured superhydrophobic surfaces.

    PubMed

    Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos

    2013-01-15

    Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications. PMID:23249322

  7. Antibacterial fluorinated silica colloid superhydrophobic surfaces.

    PubMed

    Privett, Benjamin J; Youn, Jonghae; Hong, Sung A; Lee, Jiyeon; Han, Junhee; Shin, Jae Ho; Schoenfisch, Mark H

    2011-08-01

    A superhydrophobic xerogel coating synthesized from a mixture of nanostructured fluorinated silica colloids, fluoroalkoxysilane, and a backbone silane is reported. The resulting fluorinated surface was characterized using contact angle goniometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Quantitative bacterial adhesion studies performed using a parallel plate flow cell demonstrated that the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa was reduced by 2.08 ± 0.25 and 1.76 ± 0.12 log over controls, respectively. This simple superhydrophobic coating synthesis may be applied to any surface, regardless of geometry, and does not require harsh synthesis or processing conditions, making it an ideal candidate as a biopassivation strategy. PMID:21718023

  8. Highly stable superhydrophobic surfaces under flow conditions

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  9. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.

    PubMed

    Yamamoto, Minehide; Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2015-07-01

    Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations among surface fractal dimension, surface morphology, and dynamic wetting behaviors. The surface of a lotus leaf, which shows the superhydrophobic lotus effect, was dipped in ethanol to remove the plant waxes. As a result, the lotus effect is lost. The contact angle of a water drop decreased dramatically from 161° of the original surface to 122°. The water droplet was pinned on the surface. From the fractal analysis, the fractal region of the original surface was divided into two regions: a smaller-sized roughness region of 0.3-1.7 ?m with D of 1.48 and a region of 1.7-19 ?m with D of 1.36. By dipping the leaf in ethanol, the former fractal region, characterized by wax tubes, was lost, and only the latter large fractal region remained. The lotus effect is attributed to a surface structure that is covered with needle-shaped wax tubes, and the remaining surface allows invasion of the water droplet and enlarges the interaction with water. PMID:26075949

  10. Superhydrophobic surfaces PMMH-ESPCI, Paris

    E-print Network

    Bico,José

    water spiders silk nests... Ginkgo Biloba #12;Impacts #12;Ingredients for super-hydrophobicity 10 !m experiments and molecular dynamics simulations - on smooth hydrophobic surfaces: & ~ nm - on textured super-hydrophobic

  11. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    PubMed

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys. PMID:25545550

  12. Superhydrophobicity for antifouling microfluidic surfaces.

    PubMed

    Shirtcliffe, N J; Roach, P

    2013-01-01

    Fouling of surfaces is often problematic in microfluidic devices, particularly when using protein or -enzymatic solutions. Various coating methods have been investigated to reduce the tendency for protein molecules to adsorb, mostly relying on hydrophobic surface chemistry or the antifouling ability of -polyethylene glycol. Here we present the potential use of superhydrophobic surfaces to not only reduce the amount of surface contamination but also to induce self-cleaning under flow conditions. The methodology is presented in order to prepare superhydrophobic surface coatings having micro- and nanoscale feature dimensions, as well as a step-by-step guide to quantify adsorbed protein down to nanogram levels. The fabrication of these surfaces as coatings via silica sol-gel and copper nano-hair growth is presented, which can be applied within microfluidic devices manufactured from various materials. PMID:23329449

  13. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar+-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films.

  14. Biomimetic superhydrophobic surfaces: multiscale approach.

    PubMed

    Nosonovsky, Michael; Bhushan, Bharat

    2007-09-01

    Micro- and macrodroplet evaporation and condensation upon micropatterned superhydrophobic surfaces built of flattop pillars are investigated with the use of an environmental scanning electron microscope. It is shown that the contact angle hysteresis depends upon both kinetic effects at the triple line and adhesion hysteresis (inherently present even at a smooth surface) and that the magnitude of the two contributions is comparable. The transition between the composite (Cassie) and wetted (Wenzel) states is a linear effect with the microdroplet radius proportional to the pitch over pillar diameter. It is shown that wetting of a superhydrophobic surface is a multiscale phenomenon that involves three scale lengths. Although the contact angle is the macroscale parameter, the contact angle hysteresis and the Cassie--Wenzel transition cannot be determined from the macroscale equations and are governed by micro- and nanoscale effects. PMID:17705434

  15. A facile approach to fabricate superhydrophobic and corrosion resistant surface

    NASA Astrophysics Data System (ADS)

    Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

    2015-01-01

    In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil–water separation.

  16. Influence of Surface Roughness on Superhydrophobicity

    Microsoft Academic Search

    C. Yang; U. Tartaglino; B. N. J. Persson

    2006-01-01

    Superhydrophobic surfaces, with a liquid contact angle theta greater than 150°, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have a hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact

  17. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces

    Microsoft Academic Search

    Michael Nosonovsky; Bharat Bhushan

    2007-01-01

    Superhydrophobic surfaces should have high contact angles (CA) with water and low contact angle hysteresis (CAH). High CA may be achieved by increasing surface roughness, while in order to have low CAH, superhydrophobic surfaces should be able to form a stable composite interface with air pockets between solid and liquid. Capillary waves, nanodroplets condensation, hydrophilic spots due to chemical surface

  18. Long-lived superhydrophobic colorful surfaces.

    PubMed

    Xue, Chao-Hua; Zhang, Ping; Ma, Jian-Zhong; Ji, Peng-Ting; Li, Ya-Ru; Jia, Shun-Tian

    2013-05-01

    Rough structures created from bulk materials at the surface could have superior durability. Superhydrophobic colorful surfaces were fabricated through chemical etching of the fiber surfaces, followed by diffusion of fluoroalkylsilane into fibers. The obtained superhydrophobic textiles show strong durability against severe abrasion, long-time laundering, and boiling water. PMID:23525214

  19. Wettability Switching Techniques on Superhydrophobic Surfaces

    PubMed Central

    2007-01-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  20. Wettability Switching Techniques on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Verplanck, Nicolas; Coffinier, Yannick; Thomy, Vincent; Boukherroub, Rabah

    2007-12-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  1. Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials.

    PubMed

    Park, Sung-Gyu; Moon, Jun Hynk; Lee, Seung-Kon; Shim, Jaewon; Yang, Seung-Man

    2010-02-01

    In this Letter, we present an intriguing method for fabricating polymeric superhydrophobic surfaces by reactive-ion etching of holographically featured three-dimensional structures. Using the proposed strategy, we generated both lotus and gecko surfaces by simply controlling the incident angle of the laser beam during holographic lithography. The adhesion force of the gecko-state superhydrophobic surfaces was the highest yet reported for an artificial superhydrophobic surface. The well-controlled patterns enable an in-depth understanding of superhydrophobic and superadhesive surfaces. In particular, the present observations provide direct evidence of a high adhesive force resulting from surface-localized wetting, which is quite different from previously suggested mechanisms. PMID:19928976

  2. Superhydrophobic surfaces engineered using diatomaceous earth.

    PubMed

    Oliveira, Nuno M; Reis, Rui L; Mano, João F

    2013-05-22

    We present a simple method to prepare superhydrophobic surfaces using siliceous exoskeleton of diatoms, a widespread group of algae. This makes diatomaceous earth an accessible and cheap natural material. A micro/nanoscale hierarchical topography was achieved by coating a glass surface with diatomaceous earth, giving rise to a superhydrophilic surface. Superhydrophobic surfaces were obtained by a further surface chemical modification through fluorosilanization. The wettability of the superhydrophobic surface can be modified by Argon plasma treatment in a controlled way by exposure time variation. The chemical surface modification by fluorosilanization and posterior fluorinated SH surface modification by plasma treatment was analyzed by XPS. Using appropriated hollowed masks only specific areas on the surface were exposed to plasma permitting to pattern hydrophilic features with different geometries on the superhydrophobic surface. We showed that the present strategy can be also applied in other substrates, including thermoplastics, enlarging the potential applicability of the resulting surfaces. PMID:23647196

  3. Dynamic contact angle measurements on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, ?D3 ? Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at ?A = 160?, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  4. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces

    Microsoft Academic Search

    Y. Y. Yan; N. Gao; W. Barthlott

    A typical superhydrophobic (ultrahydrophobic) surface can repel water droplets from wetting itself, and the contact angle of a water droplet resting on a superhydrophobic surface is greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. Many superhydrophobic surfaces (both manmade and natural) normally exhibit micro- or nanosized roughness as well as hierarchical structure, which somehow can

  5. Shear flow on super-hydrophobic surfaces.

    SciTech Connect

    van Swol, Frank B.; Truesdell, Richard; Vorobieff, Peter V.; Challa, Sivakumar R.; Mammoli, Andrea A.

    2007-10-01

    Super-hydrophobic surfaces, which exhibit large contact angles, can give rise to slip flow of aqueous fluids. We present our work on shear flow of atomistic fluids over simple super-hydrophobic surfaces. Molecular dynamic simulations are employed to investigate the flow field of fluid between two parallel surfaces, one of which is moving. Exploring a range of fluid thermodynamic state points, we demonstrate the influence of fluid phase and structure near the surfaces on prevalence, and degree, of slip at the super-hydrophobic surface.

  6. The numerical simulation of superhydrophobic surface's flow field characteristic

    Microsoft Academic Search

    Qiaogao Huang; Haibao Hu; Guang Pan; Baowei Song

    2012-01-01

    Based on the flow field mathematical model of superhydrophobic surfaces, the numerical simulation of superhydrophobic surfaces with microcosmic topography in turbulence was carried out. The flow field characteristics of superhydrophobic surfaces were analyzed from the flow field structure, the shear stress distribution, the velocity distribution of gas-liquid interface and the turbulent kinetic energy distribution. The results show that the superhydrophobic

  7. Pancake bouncing on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yahua; Moevius, Lisa; Xu, Xinpeng; Qian, Tiezheng; Yeomans, Julia M.; Wang, Zuankai

    2014-07-01

    Engineering surfaces that promote rapid drop detachment is of importance to a wide range of applications including anti-icing, dropwise condensation and self-cleaning. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nanotextures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows a fourfold reduction in contact time compared with conventional complete rebound . We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures that behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

  8. Marangoni convection in droplets on superhydrophobic surfaces

    E-print Network

    Tam, Daniel

    We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate ...

  9. Ice adhesion on super-hydrophobic surfaces

    Microsoft Academic Search

    S. A. Kulinich; M. Farzaneh

    2009-01-01

    In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces

  10. Wettability Switching Techniques on Superhydrophobic Surfaces

    Microsoft Academic Search

    Nicolas Verplanck; Yannick Coffinier; Vincent Thomy; Rabah Boukherroub

    2007-01-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces\\u000a forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging\\u000a from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip\\u000a devices. However, the dynamic modification of the liquid droplets behavior and

  11. Vapor stabilizing surfaces for superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  12. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  13. Functional superhydrophobic surfaces made of Janus micropillars

    PubMed Central

    Mammen, Lena; Bley, Karina; Papadopoulos, Periklis; Schellenberger, Frank; Encinas, Noemí; Butt, Hans-Jürgen; Weiss, Clemens K.

    2015-01-01

    We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging. PMID:25415839

  14. Functional superhydrophobic surfaces made of Janus micropillars.

    PubMed

    Mammen, Lena; Bley, Karina; Papadopoulos, Periklis; Schellenberger, Frank; Encinas, Noemí; Butt, Hans-Jürgen; Weiss, Clemens K; Vollmer, Doris

    2015-01-21

    We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging. PMID:25415839

  15. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Hu, Anmin; Hang, Tao; Li, Ming

    2015-01-01

    We report a novel shell-like cobalt nanostructure prepared by galvanostatic electrochemical deposition which exhibit prominent superhydrophobic property. By adjusting the electroplating conditions, cobalt nanocrystals with different morphologies like nanocones and fluffy shells can be obtained while the hydrophobic and adhesive behavior of each after surface modification is observed. After a brief discussion on the growth mechanism of those shapes, we explained the lotus effect presented on such structures which would probably provide a strong evidence to the existing models of superhydrophobic surfaces. Based on the above, we propose a novel approach to modulate both adhesiveness and wettability of Co film by tuning of deposition parameters along with a simple heat treatment and dipping. With cobalt's anisotropic magnetic properties, such facile surface coating would be used in a wide range of applications such as commercial fabrication of tunable anti-corrosive magnetic devices.

  16. Frost formation and ice adhesion on superhydrophobic surfaces

    Microsoft Academic Search

    Kripa K. Varanasi; Tao Deng; J. David Smith; Ming Hsu; Nitin Bhate

    2010-01-01

    We study frost formation and its impact on icephobic properties of superhydrophobic surfaces. Using an environmental scanning electron microscope, we show that frost nucleation occurs indiscriminately on superhydrophobic textures without any particular spatial preference. Ice adhesion measurements on superhydrophobic surfaces susceptible to frost formation show increased adhesion over smooth surfaces with a strong linear trend with the total surface area.

  17. Synthesis of transparent superhydrophobic polyethylene surfaces

    Microsoft Academic Search

    J. Fresnais; J. P. Chapel; F. Poncin-Epaillard

    2006-01-01

    Superhydrophobic surfaces, already present in the nature as observed with leaves of plants (lotus) or feathers of some birds, correspond to hydrophobic surface whose water contact angle is higher than 150°. Before running the synthesis of such surface, one must understand the corresponding phenomenon and define the pertinent characteristics. Most of the techniques already developed lead to surfaces with weak

  18. Frost formation and ice adhesion on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Varanasi, Kripa K.; Deng, Tao; Smith, J. David; Hsu, Ming; Bhate, Nitin

    2010-12-01

    We study frost formation and its impact on icephobic properties of superhydrophobic surfaces. Using an environmental scanning electron microscope, we show that frost nucleation occurs indiscriminately on superhydrophobic textures without any particular spatial preference. Ice adhesion measurements on superhydrophobic surfaces susceptible to frost formation show increased adhesion over smooth surfaces with a strong linear trend with the total surface area. These studies indicate that frost formation significantly compromises the icephobic properties of superhydrophobic surfaces and poses serious limitations to the use of superhydrophobic surfaces as icephobic surface treatments for both on-ground and in-flight applications.

  19. Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Antonini, Carlo; Auf der Mauer, Matthias; Stamatopoulos, Christos; Tiwari, Manish K.; Poulikakos, Dimos

    2014-07-01

    Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ~ 9-10), acidic (pH ~ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s-1 as well as withstand standard mechanical durability tests.Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ~ 9-10), acidic (pH ~ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s-1 as well as withstand standard mechanical durability tests. Electronic supplementary information (ESI) available: Contact angles on intermediate surfaces; changes in PDMS film thickness with n-hexane immersion; the chemical stability of surfaces with (C3) and without PDMS film (C2) and the impalement pressure balance. See DOI: 10.1039/c4nr01368a

  20. Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes.

    PubMed

    Chen, Xinhua; Chen, Guangming; Ma, Yongmei; Li, Xinhong; Jiang, Lei; Wang, Fosong

    2006-03-01

    A conductive polymer polyaniline (PANI) was employed to achieve surfaces of both super-hydrophobic and conductive on NaOH etched porous anodic alumina (PAA) membranes. The surfaces exhibit micro- and nanostructures. In the PANI modified PAA membrane, PANI is mainly emeraldine. After the membrane was immersed in HCl, the content of the protonated nitrogen increased, which increased the conductivity. PMID:16573137

  1. Superhydrophobic nanocomposite surface topography and ice adhesion.

    PubMed

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 ?m on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 ?m is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum. PMID:24914617

  2. Producing Super-Hydrophobic Surfaces with Nano-Silica Spheres

    E-print Network

    Meinhart, Carl

    1 Producing Super-Hydrophobic Surfaces with Nano-Silica Spheres Rob J. Klein*, P. Maarten. The modification of the theory predicts that the super-hydrophobic effect disappears when the particles become too is caused by its super-hydrophobic surface, which allows water drops to form nearly spherical balls

  3. Fabrication of nonaging superhydrophobic surfaces by packing flowerlike hematite particles

    Microsoft Academic Search

    Anmin Cao; Liangliang Cao; Di Gao

    2007-01-01

    The authors demonstrate the fabrication of nonaging superhydrophobic surfaces by packing flowerlike micrometer-sized hematite (alpha-Fe2O3) particles. Although hematite is intrinsically hydrophilic, the nanometer-sized protrusions on the particles form textures with overhanging structures that prevent water from entering into the textures and induce a macroscopic superhydrophobic phenomenon. These superhydrophobic surfaces do not age even in extremely oxidative environments-they retain the superhydrophobicity

  4. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution–immersion process

    Microsoft Academic Search

    Mohammad A. Shirgholami; Mohammad Shateri Khalil-Abad; Ramin Khajavi; Mohammad E. Yazdanshenas

    2011-01-01

    Superhydrophobic cotton textiles are prepared by a simple, one-step and inexpensive phase separation method under ambient conditions by which a layer of polymethylsilsesquioxane (PMSQ) nanostructures is covered onto the cellulose fibers. By changing the silane precursor concentration, PMSQ nanostructures with various shapes, morphologies and sizes were fabricated. Nanostructures were characterized using SEM, EDS, and attenuated total reflectance FTIR. The wettability

  5. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Kuang, Ping; Hsieh, Mei-Li; Lin, Shawn-Yu

    2015-06-01

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ˜95% for ? = 400-620 nm over a wide angular acceptance of ? = 0°-60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for ? = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle ?CB ˜ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  6. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification.

    PubMed

    Yoon, Tae Oh; Shin, Hyun Joo; Jeoung, Sae Chae; Park, Youn-Il

    2008-08-18

    The formation of hemispherical nanostructures and microscaled papilla by ultrafast laser irradiation was found to be a potential method to generate superhydrophbic surface of synthetic polymers. Irradiation of femtosecond laser creates roughened poly(dimethylsiloxane) (PDMS) surface in nano- and microscales, of which topography fairly well imitate a Lotus leaf in nature. The modified surface showed superhydrophobicity with a contact angle higher than 170 degrees as well as sliding angle less than 3 degrees. We further demonstrated that negative replica of the processed PDMS surface exhibit large contact angle hysteresis with a sliding angle of 90 degrees while the positive replica maintains superhydrophobicity. PMID:18711510

  7. Wetting study of patterned surfaces for superhydrophobicity.

    PubMed

    Bhushan, Bharat; Chae Jung, Yong

    2007-10-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements. PMID:17553620

  8. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure. PMID:22201335

  9. Massive Amplification of Surface-Induced Transport at Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Huang, David M.; Cottin-Bizonne, Cécile; Ybert, Christophe; Bocquet, Lydéric

    2008-08-01

    We study electro- and diffusio-osmosis of aqueous electrolytes at superhydrophobic surfaces by means of computer simulation and hydrodynamic theory. We demonstrate that the diffusio-osmotic flow at superhydrophobic surfaces can be amplified by more than 3 orders of magnitude relative to flow in channels with a zero interfacial slip. By contrast, little enhancement is observed at these surfaces for electro-osmotic flow. This amplification for diffusio-osmosis is due to the combined effects of enhanced slip and ion surface depletion or excess at the air-water interfaces on superhydrophobic surfaces. This effect is interpreted in terms of capillary driven Marangoni motion. A practical microfluidic pumping device is sketched on the basis of the slip-enhanced diffusio-osmosis at a superhydrophobic surface.

  10. Super-hydrophobicity of PMMA and PDMS surfaces structured by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jeong, Hong-Myeong; Lee, Woon-Young; Lee, Jin-Ho; Yang, Deok-Cho; Lim, Ki-Soo

    2013-03-01

    Surface wettability depends on both physical surface structure and chemical material. In this report, we demonstrate super-hydrophobic surface of cast polymethyl methacrylate (PMMA) sheet by femtosecond laser fabrication. Twodimensional micro-array structures of square-typed pillars with various heights, widths, and intervals were fabricated on the PMMA surface by femtosecond laser irradiation and chemical etching. The Yb:KGW femtosecond laser processing system (?=1030 nm) delivering 250 fs pulses at a repetition rate 100 kHz was employed for fabrication. The contact angle of PMMA changed 64° (hydrophilic plane) to 150° (super-hydrophobic structure). We also improved superhydrophobicity up to 170° contact angle by spin-coating PMMA surface with PDMS and fabricating regular microstructures including irregular nano-structures. We also coated the structured PMMA surface with a car ash spray material to use another combination of surface morphology and chemistry. All the experimental results were compared with those expected values by Cassie-Baxter model.

  11. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.

    PubMed

    Kong, Ling-Hao; Chen, Xin-Hua; Yu, Lai-Gui; Wu, Zhi-Shen; Zhang, Ping-Yu

    2015-02-01

    A simple aqueous solution-immersion process was established to fabricate highly dense ordered Cu2O nanorods on commercial phosphor-copper mesh, with which the preparation was accomplished in distilled water. The present method, with the advantages of simple operation, low cost, short reaction time, and environmental friendliness, can be well adopted to fabricate desired Cu2O nanostructures on the phosphor-copper mesh under mild conditions. After surface modification with 1-dodecanethiol, the Cu2O nanostructure obtained on the phosphor-copper mesh exhibits excellent superhydrophobicity and superoleophilicity. Besides, a "mini boat" made from the as-prepared superhydrophobic phosphor-copper mesh can float freely on water surface and in situ collect oil from water surface. This demonstrates that the present approach, being facile, inexpensive, and environmentally friendly, could find promising application in oil-water separation and off shore oil spill cleanup. PMID:25590434

  12. Creation of a Superhydrophobic Surface from an Amphiphilic Polymer

    Microsoft Academic Search

    Lin Feng; Yanlin Song; Jin Zhai; Biqian Liu; Jian Xu; Lei Jiang; Daoben Zhu

    2003-01-01

    Superhydrophobic surfaces, with a water contact angle (CA) greater than 1508, have attracted great interest for both fundamental research and practical applications.(1) Conven- tionally, superhydrophobic surfaces are fabricated by com- bining appropriate surface roughness with low-surface-energy materials (hydrophobic materials, CA greater than 908).(2-18) It has been commonly acknowledged that it is impossible to obtain superhydrophobic surfaces from amphiphilic materi- als.

  13. Preparation of superhydrophobic surfaces on cotton textiles

    Microsoft Academic Search

    Chao-Hua Xue; Shun-Tian Jia; Jing Zhang; Li-Qiang Tian; Hong-Zheng Chen; Mang Wang

    2008-01-01

    Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier

  14. Preparation of superhydrophobic surfaces on cotton textiles

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Hua; Jia, Shun-Tian; Zhang, Jing; Tian, Li-Qiang; Chen, Hong-Zheng; Wang, Mang

    2008-07-01

    Superhydrophobic surfaces were fabricated by the complex coating of silica nanoparticles with functional groups onto cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane or their combination. The wettability and morphology of the as-fabricated surfaces were investigated by contact angle measurement and scanning electron microscopy. Characterizations by transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal gravimetric analysis were also conducted.

  15. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.

    PubMed

    Yan, Y Y; Gao, N; Barthlott, W

    2011-12-12

    A typical superhydrophobic (ultrahydrophobic) surface can repel water droplets from wetting itself, and the contact angle of a water droplet resting on a superhydrophobic surface is greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. Many superhydrophobic surfaces (both manmade and natural) normally exhibit micro- or nanosized roughness as well as hierarchical structure, which somehow can influence the surface's water repellence. As the research into superhydrophobic surfaces goes deeper and wider, it is becoming more important to both academic fields and industrial applications. In this work, the most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, and the fundamental theories of wetting phenomena related to superhydrophobic surfaces are reviewed. We also discuss the perspective of natural superhydrophobic surfaces utilized as mimicking models. The discussion focuses on how the superhydrophobic property is promoted on solid surfaces and emphasizes the effect of surface roughness and structure in particular. This review aims to enable researchers to perceive the inner principles of wetting phenomena and employ suitable methods for creation and modification of superhydrophobic surfaces. PMID:21974918

  16. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    PubMed

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

  17. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution – Immersion successive ionic layer adsorption and reaction process

    Microsoft Academic Search

    P. Suresh Kumar; J. Sundaramurthy; D. Mangalaraj; D. Nataraj; D. Rajarathnam; M. P. Srinivasan

    2011-01-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium–tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300nm. The photo-induced switching behaviors of ZnO film

  18. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    Microsoft Academic Search

    B. N. Lourenco; G. Marchioli; W Song; R. L. Reis; Blitterswijk van C. A; H. B. J. Karperien; Apeldoorn van A. A; J. F. Mano

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic superhydrophobic rough surfaces of

  19. Superhydrophobic nature of nanostructures on an indigenous Australian eucalyptus plant and its potential application

    PubMed Central

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Fawcett, Derek

    2011-01-01

    In this preliminary study, the morphology and nanostructured features formed by the epicuticular waxes of the mottlecah (Eucalyptus macrocarpa) leaf were investigated and quantified. The surface features formed by the waxes give the leaf remarkable wetting and self-cleaning properties that enhance the plant’s survival in an arid climate. This paper also provides experimental evidence of the self-assembly properties of the epicuticular waxes. Analysis of the water contact angle measurements gave a mean static contact angle of 162.00 ± 6.10 degrees, which clearly indicated that the mottlecah’s leaf surface was superhydrophobic. Detailed field emission scanning electron microscopy examination revealed that the surface was covered by bumps approximately 20 ?m in diameter and regularly spaced at a distance of around 26 ?m. The bumps are capped by nanotubules/pillars with an average diameter of 280 nm at the tips. Self-cleaning experiments indicated that the mottlecah’s leaf could be effectively cleaned by a fine spray of water droplets that rolled over the surface picking up contaminants. Field emission scanning electron microscopy investigation of extracted epicuticular waxes revealed that the waxes were capable of self-reassembly and formed features similar to those of the original leaf surface. Furthermore, also reported is a simple technique for surface treating one side of a planar surface to produce a superhydrophobic surface that can be used as a planar floatation platform for microdevices. PMID:24198490

  20. Electrochemical fabrication of superhydrophobic Zn surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Zhang, Fangdong; Song, Jinlong; Wang, Long; Qu, Qingsong; Lu, Yao; Parkin, Ivan

    2014-10-01

    A superhydrophobic surface with a water contact angle of 165.3° and a tilting angle of 2° was fabricated on a zinc substrate by electrochemical processing using a mixed electrolyte composed of NaCl and NaNO3, followed by overcoating with a fluorinated polymer. The fabrication process is based on the electrochemical processing of Zn under an applied electric field. Scanning electron microscope (SEM) and X-ray diffractometer system (XRD) were used to characterize surface morphology and crystal structures. Micrometer-scale pits, protrusions and numerous nanometer-scale dendrite structures were found on the surface. XRD results indicated that the new products formed on the treated surface. The anodic dissolution mechanism of Zn in the electrolyte was analyzed. The effects of processing time, processing current, electrolyte type and electrolyte concentration on surface micromorphology and superhydrophobicity of the samples were also investigated. The results show that the electrochemical processing does not require exacting processing parameters. This method is highly efficient and environmental friendly. The ideal processing conditions to create the optimum superhydrophobic surface are a processing time of 20 min, a current density of 0.2 A/cm2, and a mixed electrolyte of 0.1 mol/L NaNO3 and 0.05 mol/L NaCl.

  1. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces.

    PubMed

    Nosonovsky, Michael; Bhushan, Bharat

    2007-10-01

    Superhydrophobic surfaces should have high contact angles (CA) with water and low contact angle hysteresis (CAH). High CA may be achieved by increasing surface roughness, while in order to have low CAH, superhydrophobic surfaces should be able to form a stable composite interface with air pockets between solid and liquid. Capillary waves, nanodroplets condensation, hydrophilic spots due to chemical surface inhomogeneity, and liquid pressure can destroy the composite interface. These destabilizing factors have different characteristic length scales, so a hierarchical roughness is required to resist them. It is shown that convex rather than concave profile enhances stability, so nanoscale convex bumps should be superimposed over microasperities, in order to pin the liquid-air interface. In addition, the nanoroughness is required to support nanodroplets. The ability of the interface to support high pressure requires high asperity density and size, so it is in conflict with the requirement of low fractional solid-liquid contact area for low CAH and slip length. The new parameter, spacing factor for asperities, is proposed, and requirements for optimum design, which combines conflicting conditions, are formulated and discussed. Remarkably, biological superhydrophobic surfaces satisfy these requirements. PMID:17570591

  2. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    PubMed

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows. PMID:21831394

  3. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  4. Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces.

    PubMed

    Su, Yewang; Ji, Baohua; Zhang, Kai; Gao, Huajian; Huang, Yonggang; Hwang, Kehchih

    2010-04-01

    Water-repellent biological systems such as lotus leaves and water strider's legs exhibit two-level hierarchical surface structures with the smallest characteristic size on the order of a few hundreds nanometers. Here we show that such nano to micro structural hierarchy is crucial for a superhydrophobic and water-repellent surface. The first level structure at the scale of a few hundred nanometers allows the surface to sustain the highest pressure found in the natural environment of plants and insects in order to maintain a stable Cassie state. The second level structure leads to dramatic reduction in contact area, hence minimizing adhesion between water and the solid surface. The two level hierarchy further stabilizes the superhydrophobic state by enlarging the energy difference between the Cassie and the Wenzel states. The stability of Cassie state at the nanostructural scale also allows the higher level structures to restore superhydrophobicity easily after the impact of a rainfall. PMID:20092298

  5. A one-step process to engineer superhydrophobic copper surfaces

    Microsoft Academic Search

    Y. Huang; D. K. Sarkar; X.-Grant Chen

    2010-01-01

    Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering their surface energy. In the present work, a direct voltage (DC) is applied between two copper plates immersed in a dilute ethanolic stearic acid solution. The surface of the anodic copper electrode transforms to superhydrophobic due to a reaction between copper and stearic acid solution. The fabrication

  6. Electrowetting on super-hydrophobic surfaces

    Microsoft Academic Search

    G. McHale; M. I. Newton; D. Herbertson

    In this work we report progress towards a systematic study of the effects of electrowetting on model super-hydrophobic surfaces. Our approach is to lithographically pattern layers of SU-8 photoresist and subsequently apply a thin fluorine based water repellent coating. SU- 8 is an epoxy based negative photo-resist that can be used to fabricate thicker patterns with smooth walls and which

  7. Electro-osmosis on Anisotropic Superhydrophobic Surfaces

    Microsoft Academic Search

    Aleksey V. Belyaev; Olga I. Vinogradova

    2011-01-01

    We give a general theoretical description of electro-osmotic flow at striped superhydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In the case of an uncharged liquid-gas interface,

  8. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    Microsoft Academic Search

    R. Jafari; R. Menini; M. Farzaneh

    2010-01-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon®). Scanning electron microscopy images showed a “bird's nest”-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a

  9. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces.

    PubMed

    Liu, H H; Zhang, H Y; Li, W

    2011-05-17

    Superhydrophobicity of biological surfaces has recently been studied intensively with the aim to design artificial surfaces. It has been revealed that nearly all of the superhydrophobic surfaces consist of the intrinsic hierarchical structures. However, the role of such structures has not been completely understood. In this study, different scales of hierarchical structures have been thermodynamically analyzed using a 2-D model. In particular, the free energy (FE) and free energy barrier (FEB) for the composite wetting states are calculated, and the effects of relative pillar height (h(r)) and relative pillar width (a(r)) on contact angle (CA) and contact angle hysteresis (CAH) have been investigated in detail. The results show that if the geometrical parameter ratio is the same (e.g., a:b:h = 2:2:1), the equilibrium CA for the composite of the three-, dual-, and single- scale roughness structures is 159.8°, 151.1°, and 138.6°, respectively. Furthermore, the nano- to microstructures of such surfaces can split a large FEB into many small ones and hence can decrease FEB; in particular, a hierarchical geometrical structure can lead to a hierarchical "FEB structure" (e.g., for a dual-scale roughness geometrical structure, there is also a dual-scale FEB structure). This is especially important for a droplet to overcome the large FEBs to reach a stable superhydrophobic state, which can lead to an improved self-cleaning property. Moreover, for extremely small droplets, the secondary or third structure (i.e., submicrostructure or nanostructure) can play a dominant role in resisting the droplets into troughs, so that a composite state can be always thermodynamically favorable for such a hierarchical structured system. PMID:21495711

  10. Bubble formation on superhydrophobic-micropatterned copper surfaces

    Microsoft Academic Search

    Xinwei Wang; Siwei Zhao; Hao Wang; Tingrui Pan

    Surface physicochemical properties, including wettability and micro-nanoscopic roughness, play an important role in boiling heat transfer and interfacial phenomena. In the paper, we report investigation on bubble formation over superhydrophobic-micropatterned copper surfaces. The distinctive non-wetting micropatterns (of 180 × 180 ?m² squares) were fabricated by our recently reported stereomask lithography process, using a novel superhydrophobic nanocomposite formulation. The superhydrophobic nanocomposite, comprised of polytetrafluoroethylene

  11. Conversion of a Metastable Superhydrophobic Surface to an Ultraphobic Surface

    Microsoft Academic Search

    Xue-Mei Li; Tao He; Mercedes Crego-Calama; David N. Reinhoudt

    2008-01-01

    Superhydrophobic surfaces in Wenzel and metastable wetting state were prepared and the conversion of such surfaces to ultraphobic surfaces was reported by the application of a fine-scale roughness. Silicon nitride substrates with hexagonally arranged pillars were prepared by micromachining. The two-scale roughness was achieved by coating these substrates with 60 nm silica nanoparticles. The surface was made hydrophobic by silanization

  12. Energy Dissipation at Ultrasonically Oscillating Superhydrophobic Surface in Various Liquids

    Microsoft Academic Search

    Mitsuhiro Fujita; Hiroshi Muramatsu; Masamichi Fujihira

    2005-01-01

    A film with a superhydrophobic rough surface was prepared on an AT-cut quartz crystal resonator (QCR). Using the QCR with the film, we measured energy dissipation at the ultrasonically oscillating superhydrophobic surface in various liquids such as water, ethanol and water-glycerol mixtures. The QCR was successfully used to determine the mode of contact of the rough surface with each liquid,

  13. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates

    Microsoft Academic Search

    Xiaoyi Fu; Xinhua He

    2008-01-01

    A surface roughening method, a combination of mechanical roughening and chemical etching, was developed for the fabrication of stable super-hydrophobic surfaces on aluminum alloy foils. The microstructure and wettability of super-hydrophobic surfaces were characterized by means of SEM, EDX, XPS and water contact angle measurement. The chemical etchants were aqueous solutions of nitric acid and copper nitrate. The effects of

  14. Why superhydrophobic surfaces are not always icephobic.

    PubMed

    Nosonovsky, Michael; Hejazi, Vahid

    2012-10-23

    We discuss mechanical forces that act upon a water droplet and a piece of ice on a rough solid surface and the difference between dewetting and ice fracture. The force needed to detach a water droplet depends on contact angle (CA) hysteresis and can be reduced significantly in the case of a superhydrophobic surface. The force needed to detach a piece of ice depends on the receding CA and the initial size of interfacial cracks. Therefore, even surfaces with very high receding CA may have strong adhesion to ice if the size of the cracks is small. PMID:23009385

  15. Drag reduction using superhydrophobic sanded Teflon surfaces

    NASA Astrophysics Data System (ADS)

    Song, Dong; Daniello, Robert J.; Rothstein, Jonathan P.

    2014-08-01

    In this paper, a series of experiments are presented which demonstrate drag reduction for the laminar flow of water through microchannels using superhydrophobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated with a simple, inexpensive technique of sanding polytetrafluoroethylene (PTFE) with sandpaper having grit sizes between 120- and 600-grit. A microfluidic device was used to measure the pressure drop as a function of the flow rate to determine the drag reduction and slip length of each surface. A maximum pressure drop reduction of 27 % and a maximum apparent slip length of b = 20 ?m were obtained for the superhydrophobic surfaces created by sanding PTFE with a 240-grit sandpaper. The pressure drop reduction and slip length were found to increase with increasing mean particle size of the sandpaper up to 240-grit. Beyond that grit size, increasing the pitch of the surface roughness was found to cause the interface to transition from the Cassie-Baxter state to the Wenzel state. This transition was observed both as an increase in the contact angle hysteresis and simultaneously as a reduction in the pressure drop reduction. For these randomly rough surfaces, a correlation between the slip length and the contact angle hysteresis was found. The surfaces with the smallest contact angle hysteresis were found to also have the largest slip length. Finally, a number of sanding protocols were tested by sanding preferentially along the flow direction, across the flow direction and with a random circular pattern. In all cases, sanding in the flow direction was found to produce the largest pressure drop reduction.

  16. Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels

    Microsoft Academic Search

    T. Kako; A. Nakajima; H. Irie; Z. Kato; K. Uematsu; T. Watanabe; K. Hashimoto

    2004-01-01

    Adhesion and sliding of wet snow on a superhydrophobic surface with hydrophilic channel were investigated. Two different alignment (two dimensional and three dimensional) of the hydrophilic channels in a superhydrophobic surface were prepared and compared with merely a superhydrophobic surface and a hydrophilic surface. Both alignment samples exhibited intermediate level of wet snow adhesion between merely a superhydrophobic surface and

  17. Photoresponsive superhydrophobic surfaces for effective wetting control.

    PubMed

    Pan, Shuaijun; Guo, Rui; Xu, Weijian

    2014-12-01

    Dynamically tuning the surface wettability has long been a scientific challenge, but of great importance in surface science. Robust superhydrophobic surfaces, displaying switchable and tunable extreme wetting behaviors, are successfully developed by spraying photoresponsive hydrophobic nanoparticles onto various substrates. The surface wettability can be intelligently adjusted by applying irradiation with UV or visible light, which is assumed to initiate large conformation changes of azobenzene units at the coating surface, resulting in distinct surface energy change and thus controlled wetting behaviors. The underlying wetting mechanism about the resulting surfaces is systematically investigated and supported by the estimation of water contact angles using newly rewritten Cassie-Baxter and Wenzel relations and also by the evaluation of solid surface free energy adopting the Owens-Wendt approach. The methodology proposed may provide a novel way of tuning surface wettability and investigating the wetting transition mechanism and also promote applications in self-cleaning and smart fluid control. PMID:25322263

  18. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.

    PubMed

    Toma, Mana; Loget, Gabriel; Corn, Robert M

    2014-07-23

    Tunable hydrophobic/hydrophilic flexible Teflon nanocone array surfaces were fabricated over large areas (cm(2)) by a simple two-step method involving the oxygen plasma etching of a colloidal monolayer of polystyrene beads on a Teflon film. The wettability of the nanocone array surfaces was controlled by the nanocone array dimensions and various additional surface modifications. The resultant Teflon nanocone array surfaces were hydrophobic and adhesive (a "gecko" type of surface on which a water droplet has a high contact angle but stays in place) with a contact angle that correlated with the aspect ratio/sharpness of the nanocones. The surfaces switched to a superhydrophobic or "lotus" type of surface when hierarchical nanostructures were created on Teflon nanocones by modifying them with a gold nanoparticle (AuNPs) film. The nanocone array surfaces could be made superhydrophobic with a maximum contact angle of 160° by the further modification of the AuNPs with an octadecanethiol (C18SH) monolayer. Additionally, these nanocone array surfaces became hydrophilic when the nanocone surfaces were sequentially modified with AuNPs and hydrophilic polydopamine (PDA) layers. The nanocone array surfaces were tested for two potential applications: self-cleaning superhydrophobic surfaces and for the passive dispensing of aqueous droplets onto hybrid superhydrophobic/hydrophilic microarrays. PMID:24654844

  19. Rapid formation of superhydrophobic surfaces with fast response wettability transition.

    PubMed

    Zhu, Xiaotao; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui

    2010-12-01

    We have developed a facile and time-saving method to prepare superhydrophobic surfaces on copper sheets. Various surface textures composed of Cu(OH)2 nanorod arrays and CuO microflowers/Cu(OH)2 nanorod arrays hierarchical structure were prepared by a simple solution-immersion process. After chemical modification with stearic acid, the wettability of the as-prepared surfaces was changed from superhydrophilicity to superhydrophobicity. The shortest processing time for fabricating a superhydrophobic surface was 1.5 min. Interestingly, the rapid wettability transition between superhydrophobicity and superhydrophilicity can be realized on the prepared surfaces with ease by the alternation of air-plasma treatment and stearic acid coating. It took just 2 min to complete the whole wettability transition. Additionally, the regeneration of the superhydrophobic surface is also considered regarding its application. PMID:21073178

  20. Dropwise condensation on superhydrophobic surfaces with two-tier roughness

    Microsoft Academic Search

    Chuan-Hua Chen; Qingjun Cai; Chialun Tsai; Chung-Lung Chen; Guangyong Xiong; Ying Yu; Zhifeng Ren

    2007-01-01

    Dropwise condensation can enhance heat transfer by an order of magnitude compared to film condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid removal of condensate drops; however, such promotion has not been reported on engineered surfaces. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes deposited on micromachined posts, a two-tier

  1. Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

    PubMed Central

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping

    2010-01-01

    Background Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface. PMID:21209931

  2. One-Step Modification of Superhydrophobic Surfaces by a Mussel-Inspired Polymer Coating

    PubMed Central

    Kang, Sung Min; You, Inseong; Cho, Woo Kyung; Shon, Hyun Kyong; Lee, Tae Geol; Choi, Insung S.; Karp, Jeffery M.; Lee, Haeshin

    2010-01-01

    A bio-inspired approach for superhydrophobic surface modification was investigated. Hydrophilic conversion of the superhydrophobic surface was easily achieved through this method, and the superhydrophobic-hydrophilic alternating surface was generated by the method combined with soft-lithography. The resulting patterned surface showed high water adhesion property in addition to superhydrophobic property. PMID:21031386

  3. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis

    E-print Network

    Smyth, Katherine M.

    We study the wetting energetics and wetting hysteresis of sessile and impacting water droplets on superhydrophobic surfaces as a function of surface texture and surface energy. For sessile drops, we find three wetting ...

  4. Superhydrophobics

    ScienceCinema

    Schaeffer, Daniel; Winter, Kyle

    2014-05-23

    A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

  5. Drying of colloidal droplets on superhydrophobic surfaces.

    PubMed

    Chen, Lifeng; Evans, Julian R G

    2010-11-01

    Recent research on the flow patterns during the drying of droplets of solutions or suspensions has revealed a characteristic flow of dissolved or suspended material to the droplet periphery to produce the 'coffee ring' phenomenon. This effect was used to make ceramic well-plates by spontaneous manufacturing. Here we demonstrate that when a colloidal droplet dries on a superhydrophobic surface, the effect is rather different. Evaporation from the region adjacent to the three phase line becomes so restricted that the interior flows, and hence the final destination of particles, changes and the characteristic bowl-shape becomes inverted. PMID:20692671

  6. Superhydrophobic surfaces: From natural to biomimetic to functional

    Microsoft Academic Search

    Zhiguang Guo; Weimin Liu; Bao-Lian Su

    2011-01-01

    Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly’ wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar

  7. Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters.

    PubMed

    Geissler, Andreas; Chen, Longquan; Zhang, Kai; Bonaccurso, Elmar; Biesalski, Markus

    2013-05-28

    Robust, superhydrophobic and self-cleaning films were fabricated using nano- or microstructured cellulose fatty acid esters, which were prepared via nanoprecipitation. The superhydrophobic films could be coated on diverse surfaces with non-uniform shapes by distinct coating techniques. PMID:23609473

  8. Motion of liquid droplets on a superhydrophobic oleophobic surface

    Microsoft Academic Search

    Hoon Joo Lee; Jeffery R. Owens

    2011-01-01

    Developing a superhydrophobic oleophobic material is achieved by two criteria: low surface energy and properly designed surface\\u000a morphology. The relationships among surface tensions, contact angles, contact angle hystereses, roll-off angles, and surface\\u000a morphologies of such materials are studied. Numerical formulae related to the surface energy of liquids and solids are used\\u000a to predict the wetting behavior of superhydrophobic and oleophobic

  9. Stable superhydrophobic surfaces over a wide pH range

    NASA Astrophysics Data System (ADS)

    Guo, Li; Yuan, Wenfang; Li, Junping; Zhang, Zhijie; Xie, Zemin

    2008-01-01

    A stable superhydrophobic surface was fabricated by solidifying poly(epoxy-terminated polydimethylsiloxane- co-bisphenol A) [P(ETPDMS- co-BPA)] copolymer on a rough substrate. The low surface energy of the copolymer and the geometric structure at micrometer scale of the surface contribute to the superhydrophobic property. The as-prepared surface shows stable superhydrophobicity over a wide pH range (1-14) and the wettability is excellent stable to heating, water, corrosive solution and organic solvent treatments. The procedure is simple and time-saving as well as utilizing non-fluorine-containing compounds.

  10. Anisotropic electro-osmotic flow over superhydrophobic surfaces

    E-print Network

    Bazant, Martin Z.

    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either ...

  11. Three-tier rough superhydrophobic surfaces.

    PubMed

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties. PMID:26184512

  12. Combining hierarchical surface roughness with fluorinated surface chemistry to preserve superhydrophobicity after organic contamination

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Feng; Hung, Shih-Wei; Kuo, Shiao-Wei; Chang, Chi-Jung

    2014-11-01

    Surfaces exhibiting superhydrophobicity are attracting commercial and academic attention because of their potential applications in, for example, self-cleaning utensils, microfluidic systems, and microelectronic devices. In this study, we prepared a fluorinated superhydrophobic surface displaying nanoscale roughness, a superhydrophobic surface possessing a micro- and nanoscale binary structure, and a fluorinated superhydrophobic surface possessing such a binary structure. We investigated the effects of the (i) hierarchy of the surface topography and (ii) the surface chemical composition of the superhydrophobic carbon nanotube/polybenzoxazine coatings on their ability to retain superhydrophobicity upon contamination with particles and organic matter, an important characteristic for maintaining non-wetting properties under outdoor conditions. We have found that the topographical microstructure and the surface chemical composition are both important factors for preservation of the non-wetting properties of such superhydrophobic surfaces upon contamination with organic matter.

  13. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    PubMed

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface. PMID:23755692

  14. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    PubMed

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure. PMID:19916432

  15. Hydrodynamic interaction with super-hydrophobic surfaces

    E-print Network

    Belyaev, Aleksey V

    2010-01-01

    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to reduce hydrodynamic drag. Based on lubrication theory, we analyze an approach of a hydrophilic disk to such a surface. The drag force is predicted analytically and formulated in terms of a correction function to the Reynolds equation, which is shown to be the average of corrections expressed through for effective slip lengths in the two principal (fastest and slowest) orthogonal directions. The reduction of drag is especially pronounced for a thin (compared to texture period) gap. It is not really sensitive to the pattern geometry, but depends strongly on the fraction of the gas phase and local slip length at the gas area.

  16. The collapse transition on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kusumaatmaja, H.; Blow, M. L.; Dupuis, A.; Yeomans, J. M.

    2008-02-01

    We investigate the transition between the Cassie-Baxter and Wenzel states of a slowly evaporating, micron-scale drop on a superhydrophobic surface. In two dimensions analytical results show that there are two collapse mechanisms. For long posts the drop collapses when it is able to overcome the free-energy barrier presented by the hydrophobic posts. For short posts, as the drop loses volume, its curvature increases allowing it to touch the surface below the posts. We emphasise the importance of the contact line retreating across the surface as the drop becomes smaller: this often preempts the collapse. In a quasi-three-dimensional simulation we find similar behaviour, with the additional feature that the drop can depin from all but the peripheral posts, so that its base resembles an inverted bowl.

  17. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect

    Sarshar, Mohammad Amin [Stevens Institute of Technology, Hoboken, New Jersey; Swarctz, Christopher [Stevens Institute of Technology, Hoboken, New Jersey; Hunter, Scott Robert [ORNL; Simpson, John T [ORNL; Choi, Chang-Hwan [Stevens Institute of Technology, Hoboken, New Jersey

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  18. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  19. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  20. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    PubMed

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-01

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 ?m attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape. PMID:26065326

  1. Particle deposition on superhydrophobic surfaces by sessile droplet evaporation

    NASA Astrophysics Data System (ADS)

    Dicuangco, Mercy Grace

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is to explore the morphology of particles deposited on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex spheres. Droplet evaporation experiments are performed on non-wetting, textured surfaces with varying geometric parameters. The temporal evolution of the droplet contact radius and contact angle throughout the evaporation process are tracked by visualizing the transient droplet shape and wetting behavior. The droplets are observed to exhibit a combination of the following modes of evaporation: the constant contact radius mode, the constant contact angle mode, and the mixed mode in which the contact angle and the contact radius change simultaneously. After complete dry-out, the remaining particulate deposits are qualitatively and quantitatively characterized to describe their spatial distribution. In the first part of the study, the test surfaces are maintained at different temperatures. Experiments are conducted at ambient conditions and at elevated substrate temperatures of approximately 40°C, 50°C, and 60°C. The results show that droplet evaporation on superhydrophobic surfaces, driven by either mass diffusion at ambient conditions or by substrate heating, suppresses deposition of particles at the contact-line during droplet evaporation. This behavior provides an effective means of localizing the deposition of suspended particles. In the second part of the study, the droplets are allowed to evaporate at ambient conditions on test substrates with significant relative differences in surface morphology. These differing surfaces yield a wide range of surface wettability as a means to control the particulate deposition process. Analysis of the droplet wetting behavior throughout the evaporation process show that the droplet could either remain in the Cassie state (resting on top of the roughness elements) or transition into the Wenzel state (roughness elements flooded). Top- and side-view images of the droplet profile are visualized to confirm the droplet wetting state near the end of evaporation. Experimental observations are compared with a theoretical trend of the Cassie-to-Wenzel transition based on the capillary-Laplace pressure balance at transition between wetting states. The results reveal a relationship between localized deposit size and surface morphology based on this ultimate wetting state. An optimum surface morphology for minimizing the deposit coverage area is identified.

  2. Electro-osmosis on Anisotropic Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Belyaev, Aleksey V.; Vinogradova, Olga I.

    2011-08-01

    We give a general theoretical description of electro-osmotic flow at striped superhydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In the case of an uncharged liquid-gas interface, the flow is the same or inhibited relative to the flow in a homogeneous channel with a zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests the possibility of a huge electro-osmotic slip even for electroneutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic devices.

  3. Electro-osmosis on anisotropic superhydrophobic surfaces.

    PubMed

    Belyaev, Aleksey V; Vinogradova, Olga I

    2011-08-26

    We give a general theoretical description of electro-osmotic flow at striped superhydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In the case of an uncharged liquid-gas interface, the flow is the same or inhibited relative to the flow in a homogeneous channel with a zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests the possibility of a huge electro-osmotic slip even for electroneutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic devices. PMID:21929273

  4. Effective Slip over Superhydrophobic Surfaces in Thin Channels

    E-print Network

    Feuillebois, Francois

    Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a microscopic texture. Recent work has focused on specific cases, such as arrays of pillars or grooves, with limited ...

  5. A novel fabrication of superhydrophobic surfaces for universal applicability

    NASA Astrophysics Data System (ADS)

    Chen, Su-Wen; Guo, Bo-Long; Wu, Wang-Suo

    2011-12-01

    The present work reports a novel and facile approach to fabricate stable superhydrophobic surfaces for universal applicability in practice. Poly(furfuryl alcohol)/copper composite coatings were prepared on substrates via a brush-painting method; after being immersed in a stearic acid solution, the superhydrophobic surfaces were obtained due to the formation of copper stearate on the substrates. These products were characterized by field-emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray powder diffraction and the X-ray photoelectron spectrum. Results demonstrate that the superhydrophobic surfaces formed originally on copper substrates can also be generated on other substrates without the copper element. Furthermore, this work will provide a simple and universal method to create large-scale superhydrophobic surfaces on various substrates.

  6. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    NASA Astrophysics Data System (ADS)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer thickness and pore dimensions at the aluminum surface. The results show that thicker oxide layers with larger pore sizes allow the nanostructured surface to retain more gas (air) and hence provide a more effective barrier to corrosion. The anodizing techniques are further advanced to design and produce hierarchical three-dimensional nanostructures for better retention of the gaseous barrier layer at the surface.

  7. Micro-and nanostructured silicon-based superomniphobic surfaces.

    PubMed

    Nguyen, Thi Phuong Nhung; Boukherroub, Rabah; Thomy, Vincent; Coffinier, Yannick

    2014-02-15

    We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA>150° for water) and superoleophobic behavior (CA ? 140° for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids. PMID:24370432

  8. Passive water control at the surface of a superhydrophobic lichen

    Microsoft Academic Search

    Christopher A. E. Hamlett; Neil James Shirtcliffe; F. Brian Pyatt; Michael I. Newton; Glen McHale; Kerstin Koch

    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing\\u000a water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate\\u000a how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were\\u000a placed onto separate podetia

  9. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Microsoft Academic Search

    Zhi Chen; Feng Li; Li-mei Hao; An-Qi Chen; You-Chao Kong

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a

  10. Stable Biomimetic Super-Hydrophobic Copper Surface Fabricated by a Simple Wet-Chemical Method

    Microsoft Academic Search

    Xianghui Xu; ZhaoZhu Zhang; WeiMin Liu

    2010-01-01

    Superhydrophobic copper foil surface was fabricated by a simple wet-chemical etching and self-assemble method. We discussed the effect of surface structure on fabricating superhydrophobic surface. Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) have been used to investigate the as-prepared surface. The result shows that the surface roughness is crucial to creating a superhydrophobic surface.

  11. Icephobicity and the effect of water condensation on the superhydrophobic low-density polyethylene surface

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Wang, Menglei; Huang, Juan; Wang, Xian; Bin, Jiping; Peng, Chaoyi; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Xiao, Ximei; Fu, Xin; Gong, Huifang; Zhao, Dejian; Chen, Hong

    2015-06-01

    A superhydrophobic surface was obtained on a low-density polyethylene (LDPE) substrate using a facile method. The water contact angle and the sliding angle of the superhydrophobic LDPE surface were 155 ± 2° and 4°, respectively. The ice shear stress of the superhydrophobic LDPE surface was 2.08 times smaller than that of the flat LDPE surface. The superhydrophobic surface still showed excellent icephobicity and superhydrophobicity after undergoing a circulatory icing/deicing procedure five times. In addition, water condensation and its effect on the icephobicity of the as-prepared superhydrophobic surface were also studied.

  12. Condensation and freezing of droplets on superhydrophobic surfaces.

    PubMed

    Oberli, Linda; Caruso, Dean; Hall, Colin; Fabretto, Manrico; Murphy, Peter J; Evans, Drew

    2014-08-01

    Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface. PMID:24200089

  13. Topographical length scales of hierarchical superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Dhillon, P. K.; Brown, P. S.; Bain, C. D.; Badyal, J. P. S.; Sarkar, S.

    2014-10-01

    The morphology of hydrophobic CF4 plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent ? = 0.42 for length scales shorter than ?500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°)).

  14. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces

    Microsoft Academic Search

    Xue-Mei Li; David N. Reinhoudt; Mercedes Crego-Calama

    2007-01-01

    Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces. The preparation approaches are reviewed according to categorized approaches such as bottom-up, top-down, and combination approaches. The advantages

  15. Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others.

    PubMed

    Feng, Jie; Pang, Yichuan; Qin, Zhaoqian; Ma, Ruiyuan; Yao, Shuhuai

    2012-12-01

    The coalesce-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its wide potential applications. However, microscopic mechanism of spontaneous motion has not been discussed thoroughly. In this study, we fabricated two types of superhydrophobic copper surfaces with sisal-like nanoribbon structures and defoliation-like nanosheet structures by different wet chemical oxidation process and followed by same fluorization treatment. With lotus leaf and butterfly wing as control samples, the spontaneous motion phenomenon of condensate drops on these four kinds of SHSs was investigated by using optical microscope under ambient conditions. The results showed that among all four types of SHSs, only superhydrophobic copper surfaces with sisal-like nanoribbon structures showed obvious spontaneous motion of condensate drops, especially when the relative humidity was higher. The microscopic mechanism of spontaneous motion was discussed in relation to the states of condensate drops on different nanostructures. It shows that the instantaneous Cassie state of condensed droplets prior to coalescence plays a key role in determining whether the coalesced drop departs, whereas only SHS possessing nanostructures with small enough Wenzel roughness parameter r (at least <2.1) and nanogaps forming high enough Laplace pressure favors the formation of the instantaneous Cassie state by completing the Wenzel-Cassie transition. PMID:23153202

  16. Low temperature self-cleaning properties of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  17. Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces

    Microsoft Academic Search

    Muhammad Akram Raza; Stefan Kooij; Arend van Silfhout; Harold Zandvliet; Bene Poelsema

    2011-01-01

    The importance of superhydrophobic substrates (contact angle >150 with sliding angle <10 ) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1mum, 500nm and 150nm diameter). Decoration with gold nanoparticles

  18. Preparation and characterisation of super-hydrophobic surfaces.

    PubMed

    Crick, Colin R; Parkin, Ivan P

    2010-03-22

    The interest in highly water-repellent surfaces has grown in recent years due to the desire for self-cleaning surfaces. A super-hydrophobic surface is one that achieves a water contact angle of 150 degrees or greater. This article explores the different approaches used to construct super-hydrophobic surfaces and identifies the key properties of each surface that contribute to its hydrophobicity. The models used to describe surface interaction with water are considered, with attention directed to the methods of contact angle analysis. A summary describing the different routes to hydrophobicity is also given. PMID:20209527

  19. Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro\\/nanoporous fibrous mat surface by electrospinning

    Microsoft Academic Search

    Yasuhiro Miyauchi; Bin Ding; Seimei Shiratori

    2006-01-01

    Inspired by the self-cleaning silver ragwort leaf, we have recently fabricated a biomimetic super-hydrophobic fibrous mat surface comprising micro\\/nanoporous polystyrene (PS) microfibres via electrospinning. The rough surface of the silver ragwort leaf fibres, with nanometre-sized grooves along the fibre axis, was imitated by forming micro- and nanostructured pores on the electrospun fibre surface. The solvent composition ratios of tetrahydrofuran (THF)

  20. Fabrication of superhydrophobic surface by hierarchical growth of lotus-leaf-like boehmite on aluminum foil.

    PubMed

    Liu, Lijun; Zhao, Jiashou; Zhang, Yi; Zhao, Fan; Zhang, Yanbo

    2011-06-01

    Hierarchical growth of boehmite film on the aluminum foil was carried out via a facile solution-phase synthesis route. The resultant film is composed of three-dimensional microprotrusions assembled from well aligned nanoneedles. Such dual scale micro-/nanostructures are highly similar with those of lotus leaves. The resultant surface after hydrophobization exhibits a water contact angle of 169° and a sliding angle of ?4° for a 5 ?L droplet, which is ascribed to the combination of the dual scale roughness at the micro- and nanometer scale and the low surface energy of stearic acid coating. The obtained film possesses relatively good adhesion to the aluminum substrate and keeps superhydrophobicity after the ultrasonic treatment or long-term storage in spite of the partial loss of it superhydrophobic ability after abrasion test. PMID:21419417

  1. Drag Reduction on Micro-Structured Super-hydrophobic Surface

    Microsoft Academic Search

    Doyoung Byun; Saputra; Hoon Cheol Park

    2006-01-01

    This paper presents numerical and experimental investigation of drag reduction on the micro-engineered surface, which is inspired by nature. Computational simulation has been performed to examine the flow characteristics on both smooth and rough surfaces, and an experimental investigation is conducted by using artificial super-hydrophobic surface fabricated by MEMS fabrication technique. The artificial surface is made of silicon wafer, where

  2. Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.

    PubMed

    Hua, Zan; Yang, Jun; Wang, Tao; Liu, Guangming; Zhang, Guangzhao

    2013-08-20

    In the present work, we have successfully fabricated a polyelectrolyte-tethered transparent surface on which superhydrophobicity and superhydrophilicity can be reversibly switched via counterion exchange between the chloride ion (Cl(-)) and perfluorooctanoate ion (PFO(-)). The stable superhydrophobic state can be obtained only when a certain extent of fluorine is chemically incorporated into the grafted polyelectrolyte. The counterion exchange does not have any influence on the transmittance of the transparent surface. The superhydrophobicity and superhydrophilicity can be reversibly switched on the surface for many cycles without any apparent damage to the wetting properties. Additionally, the transparent surface can be applied to prepare smart glass displays to hide and convey information by patterning the counterion distribution on the surface on the basis of the different antifogging properties between superphydrophobic and superhydrophilic surfaces. PMID:23915149

  3. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.

    PubMed

    Tie, Lu; Guo, Zhiguang; Li, Wen

    2014-12-15

    Due to the crucial role of surface roughness, it has been recently proposed to design optimal and extract geometrical microstructures for practical fabrications of superhydrophobic surfaces. In this work, a paraboloid microtexture is employed as a typical example to theoretically establish a relationship between surface geometry and superhydrophobic behavior for a final optimal design. In particular, based on a thermodynamic approach, the effects of all the geometrical parameters for such a paraboloid microtexture on free energy (FE) and free energy barrier (FEB) as well as equilibrium contact angle (ECA) and contact angle hysteresis (CAH) of a superhydrophobic surface have been systematically investigated in detail. It is interestingly noted that the droplet position for metastable state is closely related to the intrinsic CA of the surface. Furthermore, the paraboloid base steepness plays a significant important role in ECA and CAH, and a critical steepness is necessary for the transition from noncomposite to composite states, which can be judged using a proposed criterion. Moreover, the superhydrophobicity depends strongly the surface geometrical dimension for noncomposite state, while it is not sensitive for composite state. Additionally, both vibrational energy and geometrical dimension affect the transition from noncomposite to composite wetting states, and a comprehensive criterion for such transition can be obtained. Finally, using such criterion, it is revealed that the paraboloidal protrusion is the most optimal geometry among the three typical microtextures for ideal superhydrophobicity. PMID:25265581

  4. The friction of a mesh-like super-hydrophobic surface Anthony M. J. Davisa

    E-print Network

    Lauga, Eric

    The friction of a mesh-like super-hydrophobic surface Anthony M. J. Davisa and Eric Laugab November 2009 When a liquid droplet is located above a super-hydrophobic surface, it only barely touches the solid portion of the surface, and therefore slides very easily on it. More generally, super-hydrophobic

  5. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties. PMID:25832484

  6. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.

    PubMed

    Stanton, Morgan M; Ducker, Robert E; MacDonald, John C; Lambert, Christopher R; McGimpsey, W Grant

    2012-02-01

    Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 ?L to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples. PMID:22129630

  7. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Zhang, Dongshi; Bian, Hao; Du, Guangqing; Si, Jinhai; Meng, Xiangwei; Hou, Xun

    2013-03-12

    This paper presents a one-step method to fabricate superhydrophobic surfaces with extremely controllable adhesion based on PDMS microwell arrays. The microwell array structures are rapidly produced on PDMS films by a point-by-point femtosecond laser scanning process. The as-prepared superhydrophobic surfaces show water controllable adhesion that ranges from ultrahigh to ultralow by adjusting the extent of overlap of the adjacent microwells, on which the sliding angle can be controlled from 180° (a water droplet can not slide down even when the as-prepared surface is turned upside down) to 3°. A "micro-airbag effect" is introduced to explain the adhesion transition phenomenon of the microwell array structures. This work provides a facile and promising strategy to fabricate superhydrophobic surfaces with controllable adhesion. PMID:23391207

  8. Reversible switching between superhydrophobic states on a hierarchically structured surface

    PubMed Central

    Verho, Tuukka; Korhonen, Juuso T.; Sainiemi, Lauri; Jokinen, Ville; Bower, Chris; Franze, Kristian; Franssila, Sami; Andrew, Piers; Ikkala, Olli; Ras, Robin H. A.

    2012-01-01

    Nature offers exciting examples for functional wetting properties based on superhydrophobicity, such as the self-cleaning surfaces on plant leaves and trapped air on immersed insect surfaces allowing underwater breathing. They inspire biomimetic approaches in science and technology. Superhydrophobicity relies on the Cassie wetting state where air is trapped within the surface topography. Pressure can trigger an irreversible transition from the Cassie state to the Wenzel state with no trapped air—this transition is usually detrimental for nonwetting functionality and is to be avoided. Here we present a new type of reversible, localized and instantaneous transition between two Cassie wetting states, enabled by two-level (dual-scale) topography of a superhydrophobic surface, that allows writing, erasing, rewriting and storing of optically displayed information in plastrons related to different length scales. PMID:22689952

  9. Modeling and Optimization of Superhydrophobic Condensation

    E-print Network

    Miljkovic, Nenad

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding water droplets via coalescence-induced ...

  10. Patterned superhydrophobic surface based on Pd-based metallic glass

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Li, Ning; Wu, Yue; Liu, Lin

    2012-08-01

    Without any modification or post-treatment, superhydrophobic surfaces with good stability were fabricated by hot-embossing honeycomb patterns on Pd40Cu30Ni10P20 bulk metallic glass (BMG). The water contact angle reaches above 150° when the pitch between adjacent cells is larger than the critical size of 115.5 ?m. The wetting behavior on the patterned BMG can be well rationalized in terms of the modified Cassie-Baxter theory [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)] by considering surface energy gradient. The achievement of the superhydrophobicity on BMG surface opens a window for the functional applications of metallic glasses.

  11. A novel preparation of polystyrene film with a superhydrophobic surface using a template method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Chen, Hong; Tang, Jianxin; Gong, Huifang; Liu, Yuejun; Wang, Zhengxiang; Shi, Pu; Zhang, Jide; Chen, Xin

    2007-06-01

    Inspired by the self-cleaning superhydrophobic taro leaf, a polystyrene (PS) film with superhydrophobic surface was obtained using a natural taro leaf as template. The water contact angle and the sliding angle of the superhydrophobic PS surface were 158° ± 1.6° and 3°, respectively. The PS surface was still superhydrophobic when contacting with black ink, fresh blood and even viscous glue water. SEM shows that the surface structure comprises many uniform papillae with the diameters ranging from 10 to 15 µm, which is similar to the surface structure of natural taro leaf. Such a special surface morphology may result in the superhydrophobic property.

  12. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Li, Feng; Hao, Limei; Chen, Anqi; Kong, Youchao

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  13. Ag dendrites with rod-like tips: synthesis, characterization and fabrication of superhydrophobic surfaces.

    PubMed

    Ren, Wen; Guo, Shaojun; Dong, Shaojun; Wang, Erkang

    2011-05-01

    A facile, low-cost and templateless wet-chemical method was reported for the mass synthesis of Ag dendrites with rod-like tips which were characterized by various methods. The columniform tips protruded in random directions, of which the diameters were similar. A series of experiments were carried out to explore the effect of sodium citrate on the morphology of the obtained Ag nanostructures, and it was demonstrated that the concentration of sodium citrate was important for the formation of the cylindrical tips on the Ag dendrites. A possible mechanism was proposed to explain the role of sodium citrate in the synthesis of Ag dendrites with rod-like tips. Based on the roughness caused by the Ag dendrites, a superhydrophobic surface was fabricated in a simple procedure on a glass substrate, and the contact angle of the surface was as high as 156.4°. According to similar procedures, superhydrophobic surfaces were easily attained on a DVD disc and commercial aluminium foil, indicating the as-prepared Ag dendrites can be used to fabricate superhydrophobic surfaces on various smooth substrates. PMID:21479306

  14. Fabrication of non-aging superhydrophobic surfaces by packing flower-like hematite particles

    Microsoft Academic Search

    Anmin Cao; Liangliang Cao; Di Gao

    2008-01-01

    We demonstrate the fabrication of non-aging superhydrophobic surfaces by packing flower-like micrometer-sized hematite particles. Although hematite is intrinsically hydrophilic, the nanometer-sized protrusions on the particles form textures with overhanging structures that prevent water from entering into the textures and induce a macroscopic superhydrophobic phenomenon. These superhydrophobic surfaces do not age even in extremely oxidative environments---they retain the superhydrophobicity after being

  15. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4

  16. Superhydrophobic engineering surfaces with tunable air-trapping ability

    Microsoft Academic Search

    Yilei Zhang; Sriram Sundararajan

    2008-01-01

    A versatile hybrid processing method that combines electrostatic deposition of microparticles and subsequent anisotropic plasma etching is described that can generate superhydrophobic engineering surfaces with tunable bimodal roughness and a thin hydrophobic fluorocarbon film. These surfaces exhibit contact angles with water of more than 160° for particle coverage beyond a threshold value. A geometric model based on air-trapping ability is

  17. Preparation of super-hydrophobic surface on stainless steel

    Microsoft Academic Search

    Li Juan Chen; Miao Chen; Hui Di Zhou; Jian Min Chen

    2008-01-01

    To mimic the lotus leaf structure, binary microstructures at both micro- and nano-scale were constructed on the stainless steel surface by the eletroless plating. Super-hydrophobicity was achieved with a water contact angle of 150° and the sliding angle of 4° by modifying the textured surface by means of HFTHTMS ((heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane).

  18. Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces

    NASA Astrophysics Data System (ADS)

    Checco, Antonio; Ocko, Benjamin M.; Rahman, Atikur; Black, Charles T.; Tasinkevych, Mykola; Giacomello, Alberto; Dietrich, Siegfried

    2014-05-01

    Superhydrophobic coatings repel liquids by trapping air inside microscopic surface textures. However, the resulting composite interface is prone to collapse under external pressure. Nanometer-size textures should facilitate more resilient coatings owing to geometry and confinement effects at the nanoscale. Here, we use in situ x-ray diffraction to study the collapse of the superhydrophobic state in arrays of ?20 nm-wide silicon textures with cylindrical, conical, and linear features defined by block-copolymer self-assembly and plasma etching. We reveal that the superhydrophobic state vanishes above critical pressures which depend on texture shape and size. This phenomenon is irreversible for all but the conical surface textures which exhibit a spontaneous, partial reappearance of the trapped gas phase upon liquid depressurization. This process is influenced by the kinetics of gas-liquid exchange.

  19. Anisotropic electro-osmotic flow over super-hydrophobic surfaces

    Microsoft Academic Search

    Supreet S. Bahga; Olga I. Vinogradova; Martin Z. Bazant

    2010-01-01

    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared to the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analyzing electro-osmotic flows over striped slip-stick

  20. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Dash, Susmita; Garimella, Suresh V.

    2014-04-01

    The evaporation characteristics of sessile water droplets on smooth hydrophobic and structured superhydrophobic heated surfaces are experimentally investigated. Droplets placed on the hierarchical superhydrophobic surface subtend a very high contact angle (˜160°) and demonstrate low roll-off angle (˜1°), while the hydrophobic substrate supports corresponding values of 120° and ˜10°. The substrates are heated to different constant temperatures in the range of 40-60 °C, which causes the droplet to evaporate much faster than in the case of natural evaporation without heating. The geometric parameters of the droplet, such as contact angle, contact radius, and volume evolution over time, are experimentally tracked. The droplets are observed to evaporate primarily in a constant-contact-angle mode where the contact line slides along the surface. The measurements are compared with predictions from a model based on diffusion of vapor into the ambient that assumes isothermal conditions. This vapor-diffusion-only model captures the qualitative evaporation characteristics on both test substrates, but reasonable quantitative agreement is achieved only for the hydrophobic surface. The superhydrophobic surface demonstrates significant deviation between the measured evaporation rate and that obtained using the vapor-diffusion-only model, with the difference being amplified as the substrate temperature is increased. A simple model considering thermal diffusion through the droplet is used to highlight the important role of evaporative cooling at the droplet interface in determining the droplet evaporation characteristics on superhydrophobic surfaces.

  1. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.

    PubMed

    Dash, Susmita; Garimella, Suresh V

    2014-04-01

    The evaporation characteristics of sessile water droplets on smooth hydrophobic and structured superhydrophobic heated surfaces are experimentally investigated. Droplets placed on the hierarchical superhydrophobic surface subtend a very high contact angle (?160°) and demonstrate low roll-off angle (?1°), while the hydrophobic substrate supports corresponding values of 120° and ?10°. The substrates are heated to different constant temperatures in the range of 40-60?°C, which causes the droplet to evaporate much faster than in the case of natural evaporation without heating. The geometric parameters of the droplet, such as contact angle, contact radius, and volume evolution over time, are experimentally tracked. The droplets are observed to evaporate primarily in a constant-contact-angle mode where the contact line slides along the surface. The measurements are compared with predictions from a model based on diffusion of vapor into the ambient that assumes isothermal conditions. This vapor-diffusion-only model captures the qualitative evaporation characteristics on both test substrates, but reasonable quantitative agreement is achieved only for the hydrophobic surface. The superhydrophobic surface demonstrates significant deviation between the measured evaporation rate and that obtained using the vapor-diffusion-only model, with the difference being amplified as the substrate temperature is increased. A simple model considering thermal diffusion through the droplet is used to highlight the important role of evaporative cooling at the droplet interface in determining the droplet evaporation characteristics on superhydrophobic surfaces. PMID:24827255

  2. Scaling laws for slippage on superhydrophobic fractal surfaces

    E-print Network

    Cottin-Bizonne, C; Bocquet, L

    2012-01-01

    We study the slippage on hierarchical fractal superhydrophobic surfaces, and find an unexpected rich behavior for hydrodynamic friction on these surfaces. We develop a scaling law approach for the effective slip length, which is validated by numerical resolution of the hydrodynamic equations. Our results demonstrate that slippage does strongly depend on the fractal dimension, and is found to be always smaller on fractal surfaces as compared to surfaces with regular patterns. This shows that in contrast to naive expectations, the value of effective contact angle is not sufficient to infer the amount of slippage on a fractal surface: depending on the underlying geometry of the roughness, strongly superhydrophobic surfaces may in some cases be fully inefficient in terms of drag reduction. Finally, our scaling analysis can be directly extended to the study of heat transfer at fractal surfaces, in order to estimate the Kapitsa surface resistance on patterned surfaces, as well as to the question of trapping of diff...

  3. Anisotropic electro-osmotic flow over super-hydrophobic surfaces

    E-print Network

    Bahga, Supreet S; Vinogradova, Olga I

    2009-01-01

    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared to the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analyzing electro-osmotic flows over striped slip-stick surfaces with arbitrary double-layer thickness, we show that surface anisotropy generally leads to a tensorial electro-osmotic mobility and subtle, nonlinear averaging of surface properties. Interestingly, the electro-osmotic mobility tensor is not simply related to the hydrodynamic slip tensor, except in special cases. Our results imply that significantly enhanced electro-osmotic flows over super-hydrophobic surfaces are possible, but only with charged liquid-gas interfaces.

  4. Water-collecting behavior of nanostructured surfaces with special wettability

    NASA Astrophysics Data System (ADS)

    Choo, Soyoung; Choi, Hak-Jong; Lee, Heon

    2015-01-01

    Dew is commonly formed even in dry regions, and we examined the suitability of surfaces with superhydrophilic patterns on a superhydrophobic background as a dew-harvesting system. Nanostructured surfaces with mixed wettability were fabricated by ZnO and TiO2 nanorods. The condensation properties were investigated by environmental scanning electron microscopy (ESEM), and the water-collecting function of the patterned surfaces in an artificial environment was confirmed. Condensation and water-collecting behavior were evaluated as a function of surface inclination angle and pattern shape. We examined the collecting efficiency among the different wettabilities at various inclination angles and observed the condensation behavior for various superhydrophilic shapes.

  5. Superhydrophobic surface as a fluid enhancement material in engineering applications

    NASA Astrophysics Data System (ADS)

    Tetuko, Anggito P.; Khaerudini, Deni S.; Sardjono, Priyo; Sebayang, Perdamean; Rosengarten, Gary

    2013-09-01

    In this study, a superhydrophobic surface and its relation to the enhancement of the droplet fluid dynamics to the surface of the object materials was investigated. As the comparison, hydrophilic and uncoated surface of an object also investigated. The investigations used height of impact at 89 mm. The high quality speed camera is employed to investigate the droplet dynamic on a copper foil and a calcium fluoride surfaces. Both of the materials are coated with superhydrophobic and hydrophilic surfaces separately. The droplet diameter was analyzed using the program PHANTOM. The droplet contact angle was analyzed by the Goniometry method. The water was dropped on the calcium fluoride and the copper foil using a syringe (sharp tip) with initial droplet diameter of 1.9 mm. To record the droplet fluid shape, the photo micro sensor was placed inside the trigger box below the syringe. The results showed that the superhydrophobic surface both on copper foil and calcium fluoride enhanced the mobility of a droplet compared to the hydrophilic and the uncoated surfaces. The results showed that the maximum droplet diameter on the copper foil coated by the superhydrophobic, the hydrophilic and the uncoated surfaces are 4.7, 5.0, 5.2 mm, respectively; and for the calcium fluoride are 4.5, 5.1 and 5.5 mm, respectively. Meanwhile, the results for the droplet contact angle on the copper foil coated by the superhydrophobic, the hydrophilic and the uncoated surfaces are 20°, 90°, 160°, respectively; and for the calcium fluoride are 25°, 95°, 165°, respectively.

  6. Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property

    NASA Astrophysics Data System (ADS)

    Liao, Ruijin; Zuo, Zhiping; Guo, Chao; Yuan, Yuan; Zhuang, Aoyun

    2014-10-01

    Aluminum is extensively used metals in transmission lines, and the accumulation of ice on aluminum may inflict serious damage such as tower collapse and power failure. In this study, micro/nanostructured aluminum surface was fabricated using a continuous chemical etching method. The static and dynamic anti-icing behaviors of the as-prepared aluminum surface in different conditions were systematically investigated with a self-made device and artificial climate laboratory. Results showed that the as-prepared surface can mitigate freezing in glaze ice. Only several isolated ice points formed on the surface in glaze ice after 50 min. Due to the superhydrophobicity of the as-prepared aluminum surface, cold water sprayed on the surface aggregated into large drops and rolled off the surface before freezing, thus protecting the surface against excessive ice accumulation. The surface morphology and crystal structure of the samples were also characterized by scanning electron microscopy/energy-dispersive spectrometry and X-ray diffraction. This study offers insight into understanding the anti-icing behavior of the superhydrophobic aluminum surface and may favor the application of structured aluminum surface in power transmission lines against ice accumulation.

  7. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores

    NASA Astrophysics Data System (ADS)

    Zhang, Yao-Yao; Ge, Quan; Yang, Long-Lai; Shi, Xiao-Jun; Li, Jiao-Jiao; Yang, De-Quan; Sacher, Edward

    2015-06-01

    A superhydrophobic surface, highly water repellant and self-cleaning, is typically made by introducing micro- and nanoscale roughness onto the surface of a low surface energy material. Herein, we offer a new process of superhydrophobic film formation, accomplishing the same thing through the production of micro- and nanoscale surface porosities. Such a material is prepared by introducing zinc acetate (ZnAc2) and sodium chloride (NaCl) into a commercially available PTFE (polytetrafluoroethylene) emulsion. On drying, baking and washing with acetic acid, the PTFE film produced from the emulsion had both micro- and nanoscale surface porosities, and demonstrated superhydrophobic properties, with a static contact angle >150° and a slide angle <10°. From SEM observation, NaCl contributes microscale porosity, while ZnAc2 decomposes to ZnO, contributing nanoscale porosity. Using either ZnAc2 or NaCl alone produces a surface with a static contact angle >150°, but with a slide angle >10°. Based on XPS and SEM data, we explore herein the affect of chemistry and porosity on the mechanism of superhydrophobic surface formation, and the durability of that surface under abrasion.

  8. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-01

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. PMID:25418808

  9. Contact-angle hysteresis on super-hydrophobic surfaces.

    PubMed

    McHale, G; Shirtcliffe, N J; Newton, M I

    2004-11-01

    The relationship between perturbations to contact angles on a rough or textured surface and the super-hydrophobic enhancement of the equilibrium contact angle is discussed theoretically. Two models are considered. In the first (Wenzel) case, the super-hydrophobic surface has a very high contact angle and the droplet completely contacts the surface upon which it rests. In the second (Cassie-Baxter) case, the super-hydrophobic surface has a very high contact angle, but the droplet bridges across surface protrusions. The theoretical treatment emphasizes the concept of contact-angle amplification or attenuation and distinguishes between the increases in contact angles due to roughening or texturing surfaces and perturbations to the resulting contact angles. The theory is applied to predicting contact-angle hysteresis on rough surfaces from the hysteresis observable on smooth surfaces and is therefore relevant to predicting roll-off angles for droplets on tilted surfaces. The theory quantitatively predicts a "sticky" surface for Wenzel-type surfaces and a "slippy" surface for Cassie-Baxter-type surfaces. PMID:15518506

  10. Wetting of rough three-dimensional superhydrophobic surfaces

    Microsoft Academic Search

    Michael Nosonovsky; Bharat Bhushan

    2006-01-01

    Wetting of rough three-dimensional periodic surfaces is studied. The contact angle of liquid with a rough surface (?) is different\\u000a from that with a smooth surface (?0) due to the difference in the contact area and effect of the air pockets. For non-wetting liquids (?0>?\\/2), the contact angle increases with roughness and may approach the value of ? (superhydrophobic surface).

  11. Drag reduction in external flows using superhydrophobic patterned surfaces

    Microsoft Academic Search

    Salil Gogte; Richard Truesdell; Andrea Mammoli

    2004-01-01

    We present an experimental investigation of a laminar boundary layer in water flow over a superhydrophobic patterned surface. The experimental set-up uses a water tunnel to measure the drag over a Joukowski airfoil using a Linear Variable Differential Transducer (LVDT). The experimental results are presented for laminar boundary layers over the airfoil, the flow fields being quantified with Particle Image

  12. Water condensation on a super-hydrophobic spike surface

    Microsoft Academic Search

    R. D. Narhe; D. A. Beysens

    2006-01-01

    Condensation-induced water drop growth was studied on a super-hydrophobic spike surface. The dynamics are described by three main stages depending on the size of the drop with respect to the different spike pattern length scales. The initial stage is characterized by nucleation of the drops at the bottom (cavities) of the spikes. During the intermediate stage, large drops are surrounded

  13. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces

    E-print Network

    Attinger, Daniel

    , metallurgy, electronics cooling, and food processing. While flow boiling describes the boiling of liquidsBoiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces Amy Rachel Enhanced heat transfer Pool boiling Nucleation a b s t r a c t With recent advances in micro

  14. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.

    PubMed

    Lee, Hiang Kwee; Lee, Yih Hong; Zhang, Qi; Phang, In Yee; Tan, Joel Ming Rui; Cui, Yan; Ling, Xing Yi

    2013-11-13

    An analytical platform suitable for trace detection using a small volume of analyte is pertinent to the field of toxin detection and criminology. Plasmonic nanostructures provide surface-enhanced Raman scattering (SERS) that can potentially achieve trace toxins and/or molecules detection. However, the detection of highly diluted, small volume samples remains a challenge. Here, we fabricate a superhydrophobic SERS platform by assembling Ag nanocubes that support strong surface plasmon and chemical functionalization for trace detection with sample volume of just 1 ?L. Our strategy integrates the intense electromagnetic field confinement generated by Ag nanocubes with a superhydrophobic surface capable of analyte concentration to lower the molecular detection limit. Single crystalline Ag nanocubes are assembled using the Langmuir-Blodgett technique to create surface roughness. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag coating is evaporated over the Ag nanocubes to "weld" the Ag nanocubes onto the substrate followed by chemical functionalization with perfluorodecanethiol. The resulting substrate has an advancing contact angle of 169° ± 5°. Our superhydrophobic platform confines analyte molecules within a small area and prevents the random spreading of molecules. An analyte concentrating factor of 14-fold is attained, as compared to a hydrophilic surface. Consequently, the detection limit of our superhydrophobic SERS substrate reaches 10(-16) M (100 aM) for rhodamine 6G using 1 ?L analyte solutions. An analytical SERS enhancement factor of 10(11) is achieved. Our protocol is a general method that provides a simple, cost-effective approach to develop a stable and uniform superhydrophobic SERS platform for trace molecular sensing. PMID:24134617

  15. Studies of drag on the nanocomposite superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean

    2015-01-01

    The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 ?m with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  16. Drag reduction in external flows using superhydrophobic patterned surfaces

    NASA Astrophysics Data System (ADS)

    Gogte, Salil; Truesdell, Richard; Mammoli, Andrea

    2004-11-01

    We present an experimental investigation of a laminar boundary layer in water flow over a superhydrophobic patterned surface. The experimental set-up uses a water tunnel to measure the drag over a Joukowski airfoil using a Linear Variable Differential Transducer (LVDT). The experimental results are presented for laminar boundary layers over the airfoil, the flow fields being quantified with Particle Image Velocitimetry (PIV) techniques for a range of Reynolds numbers. The Joukowski airfoil is developed and patterned with micron scale grooves using Rapid Prototyping techniques. The surface is then coated with a superhydrophobic aerogel substance, at thickness of less than 500 nm, which results in contact angles greater than 150 degrees. The drag force on the airfoil is also calculated numerically using semi-analytical models and is compared with experiments. Although slip on a superhydrophobic surface with nanoscale roughness is undetectable, the presence of patterns of sizes comparable to the boundary layer thickness (on the order of tens or hundreds of micrometers) in combination with the superhydrophobic coatings may result in substantial drag reduction.

  17. Design of a superhydrophobic surface using woven structures.

    PubMed

    Michielsen, Stephen; Lee, Hoon J

    2007-05-22

    The relationship between surface tension and roughness is reviewed. The Cassie-Baxter model is restated in its original form, which better describes the most general cases of surface roughness. Using mechanical and chemical surface modification of nylon 6,6 woven fabric, an artificial superhydrophobic surface was prepared. A plain woven fabric mimicking the Lotus leaf was created by further grafting 1H,1H-perfluorooctylamine or octadecylamine to poly(acrylic acid) chains which had previously been grafted onto a nylon 6,6 woven fabric surface. Water contact angles as high as 168 degrees were achieved. Good agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the surface area fractions in this form is valid only when the liquid is in contact with a flat, porous surface. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. It is shown that the roll-off angle is highly dependent on droplet size. The roll-off angles of these superhydrophobic surfaces were less than 5 degrees when a 0.5 mL water droplet was applied. PMID:17465576

  18. Fabrication of superhydrophobic surfaces with double-scale roughness

    Microsoft Academic Search

    Jun Wu; Jun Xia; Wei Lei; Bao-ping Wang

    2010-01-01

    A surface with micro- and nano-scale ZnO (zinc oxide) structure was fabricated by alkaline hydrothermal method. The CA (contact angle) on this double-roughness surface was low (down to ?0°), but after spin-coating Teflon, the CA was increased to ?168°. By observing with SEM, a “rose” like ZnO crystal surface structure was found, which was responsible for both superhydrophilicity and superhydrophobicity.

  19. Ag 2 Se complex nanostructures with photocatalytic activity and superhydrophobicity

    Microsoft Academic Search

    Huaqiang Cao; Yujiang Xiao; Yuexiang Lu; Jiefu Yin; Baojun Li; Shuisheng Wu; Xiaoming Wu

    2010-01-01

    Single-crystalline Ag2Se complex nanostructures have been synthesized via a solvothermal route in which selenophene (C4H4Se) as a selenylation source reacts with AgNO3 at a temperature of 240 °C. An orthorhombic phase ?-Ag2Se nanostructure was identified by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy\\u000a (FE-SEM), high resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The wettability\\u000a of

  20. Micro to nano: Surface size scale and superhydrophobicity.

    PubMed

    Dorrer, Christian; Rühe, Jürgen

    2011-01-01

    This work looks at the fundamental question of how the surface mobility of drops in the composite state is related to the size scale of the roughness features of the surface. To this end, relevant literature is first reviewed and the important terms are clarified. We then describe and discuss contact and roll-off angle measurements on a set of hydrophobicized silicon post surfaces for which all parameters except for the surface size scale were held constant. It was found that a critical transition from "sticky superhydrophobic" (composite state with large contact angle hysteresis) to "truly superhydrophobic" (composite state with low hysteresis) takes place as the size of the surface features reaches 1 ?m. PMID:21977446

  1. Electric-field-driven instabilities on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Oh, J. M.; Manukyan, G.; van den Ende, D.; Mugele, F.

    2011-03-01

    We study possible mechanisms of the transition from the Cassie state to the Wenzel state on superhydrophobic surfaces under the influence of electric fields as a function of the aspect ratio and the wettability of the surface. A simple analytical model for axisymmetric cavities and small deflections of the liquid menisci within the cavities reveals the existence of a novel electric-field-driven instability of the liquid surface. Fully self-consistent calculations of both electric-field distribution and surface profiles show that this instability evolves from a global one towards a local Taylor cone-like instability for increasing aspect ratio of the cavities. A two-dimensional map is derived indicating the prevalence of the interfacial instability as compared to the depinning scenario of the three-phase contact line, which is well known from ordinary superhydrophobic surfaces.

  2. Micro to nano: Surface size scale and superhydrophobicity

    PubMed Central

    Dorrer, Christian

    2011-01-01

    Summary This work looks at the fundamental question of how the surface mobility of drops in the composite state is related to the size scale of the roughness features of the surface. To this end, relevant literature is first reviewed and the important terms are clarified. We then describe and discuss contact and roll-off angle measurements on a set of hydrophobicized silicon post surfaces for which all parameters except for the surface size scale were held constant. It was found that a critical transition from “sticky superhydrophobic” (composite state with large contact angle hysteresis) to “truly superhydrophobic” (composite state with low hysteresis) takes place as the size of the surface features reaches 1 ?m. PMID:21977446

  3. Quantum vacuum photon-modes and superhydrophobicity

    E-print Network

    Louis Dellieu; Olivier Deparis; Jerome Muller; Michael Sarrazin

    2015-01-14

    Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-modes alteration on van der Waals forces and thus on hydrophobicity. Using first-principle calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-modes tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.

  4. Quantum vacuum photon modes and superhydrophobicity.

    PubMed

    Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Sarrazin, Michaël

    2015-01-16

    Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-mode alteration on van der Waals forces and thus on hydrophobicity. Using first-principles calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-mode tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as a function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings. PMID:25635548

  5. Quantum Vacuum Photon Modes and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Sarrazin, Michaël

    2015-01-01

    Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-mode alteration on van der Waals forces and thus on hydrophobicity. Using first-principles calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-mode tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as a function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.

  6. Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Hwan; Kim, Chang-Jin

    2006-02-01

    While many recent studies have confirmed the existence of liquid slip over certain solid surfaces, there has not been a deliberate effort to design and fabricate a surface that would maximize the slip under practical conditions. Here, we have engineered a nanostructured superhydrophobic surface that minimizes the liquid-solid contact area so that the liquid flows predominantly over a layer of air. Measured through a cone-and-plate rheometer system, the surface has demonstrated dramatic slip effects: a slip length of ˜20 ?m for water flow and ˜50 ?m for 30 wt % glycerin. The essential geometrical characteristics lie with the nanoposts populated on the surface: tall and slender (i.e., needlelike) profile and submicron periodicity (i.e., pitch).

  7. Effect of surfactants on wetting of super-hydrophobic surfaces.

    PubMed

    Mohammadi, R; Wassink, J; Amirfazli, A

    2004-10-26

    The effect of surfactants on wetting behavior of super-hydrophobic surfaces was investigated. Super-hydrophobic surfaces were prepared of alkylketene dimer (AKD) by casting the AKD melt in a specially designed mold. Time-dependent studies were carried out, using the axisymmetric drop shape analysis method for contact angle measurement of pure water on AKD surfaces. The results show that both advancing and receding contact angles of water on the AKD surfaces increase over time ( approximately 3 days) and reach the values of about 164 and 147 degrees , respectively. The increase of contact angles is due to the development of a prickly structure on the surface (verified by scanning electron microscopy), which is responsible for its super-hydrophobicity. Aqueous solutions of sodium acetate, sodium dodecyl sulfate, hexadecyltrimethylammonium bromide, and n-decanoyl-n-methylglucamine were used to investigate the wetting of AKD surfaces. Advancing and receding contact angles for various concentrations of different surfactant solutions were measured. The contact angle results were compared to those of a number of pure liquids with surface tensions similar to those of surfactant solutions. It was found that although the surface tensions of pure liquids and surfactant solutions at high concentrations are similar, the contact angles are very different. Furthermore, the usual behavior of super-hydrophobic surfaces that turn super-hydrophilic when the intrinsic contact angle of liquid on a smooth surface (of identical material) is below 90 degrees was not observed in the presence of surfactants. The difference in the results for pure liquids and surfactant solutions is explained using an adsorption hypothesis. PMID:15491199

  8. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  9. Hydrodynamic friction of fakir-like super-hydrophobic surfaces

    E-print Network

    Davis, Anthony M J

    2010-01-01

    A fluid droplet located on a super-hydrophobic surface makes contact with the surface only at small isolated regions, and is mostly in contact with the surrounding air. As a result, a fluid in motion near such a surface experiences very low friction, and super-hydrophobic surfaces display strong drag-reduction in the laminar regime. Here we consider theoretically a super-hydrophobic surface composed of circular posts (so called fakir geometry) located on a planar rectangular lattice. Using a superposition of point forces with suitably spatially-dependent strength, we derive the effective surface slip length for a planar shear flow on such a fakir surface as the solution to an infinite series of linear equations. In the asymptotic limit of small surface coverage by the posts, the series can be interpreted as Riemann sums, and the slip length can be obtained analytically. For posts on a square lattice, our analytical results are in excellent quantitative agreement with previous numerical computations.

  10. Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness

    Microsoft Academic Search

    Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-El-Hak

    2011-01-01

    Previous studies dedicated to modeling drag reduction and stability of the air-water interface on superhydrophobic surfaces were conducted for microfabricated coatings produced by placing hydrophobic microposts\\/microridges arranged on a flat surface in aligned or staggered configurations. In this paper, we model the performance of superhydrophobic surfaces comprised of randomly distributed roughness (e.g., particles or microposts) that resembles natural superhydrophobic surfaces,

  11. One-step process for the fabrication of superhydrophobic surfaces with easy repairability

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wan, Hongqi; Ye, Yinping; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    A simple technique for fabrication of superhydrophobic surfaces was developed by spraying copper stearate suspension on various substrates. The copper stearate suspension is prepared by the reaction of copper acetate and stearic acid in ethanol solution. The as-prepared surfaces exhibit both superhydrophobicity and self-cleaning properties. When the superhydrophobic surfaces were destroyed, the damaged surfaces could be easily repaired by spraying the copper stearate suspension on the wrecked surfaces again, and the superhydrophobicity of the surfaces was regenerated at the same time.

  12. Fabricating superhydrophobic surfaces via a two-step electrodeposition technique.

    PubMed

    Haghdoost, A; Pitchumani, R

    2014-04-15

    This work presents a template-free electrochemical route to producing superhydrophobic copper coatings with the water contact angle of 160 ± 6° and contact angle hysteresis of 5 ± 2°. In this technique, copper deposit with multiscale surface features is formed through a two-step electrodeposition process in a concentrated copper sulfate bath. In the first step, applying a high overpotential results in the formation of structures with dense-branching morphology, which are loosely attached to the surface. In the second step, an additional thin layer of the deposit is formed by applying a low overpotential for a short time, which is used to reinforce the loosely attached branches on the surface. The work also presents a theoretical analysis of the effects of the fabrication parameters on the surface textures that cause the superhydrophobic characteristic of the deposit. PMID:24083366

  13. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    PubMed

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy. PMID:22424422

  14. Fabrication of super-hydrophobic surfaces for enhanced stone protection

    Microsoft Academic Search

    P. N. Manoudis; A. Tsakalof; I. Karapanagiotis; I. Zuburtikudis; C. Panayiotou

    2009-01-01

    In the current study, we demonstrate that the modification of a commercial siloxane protective composition by the addition of silica nanoparticles substantially enhances its protective efficiency and renders the treated stone surface super-hydrophobic and self-cleaning. The extent of surface hydrophobization depends on nanoparticle concentration and reaches a maximum value of ~160° at 1% w\\/v of nanoparticles for the case of

  15. Dual-scaled stable superhydrophobic nano-flower surfaces

    Microsoft Academic Search

    Longquan Chen; Zhiyong Xiao; P. C. H. Chan; Yi-Kuen Lee

    2009-01-01

    Novel dual-scaled superhydrophobic nano-flower surfaces were fabricated by 1-mask photolithography, DRIE and carbon nanotube (CNT) microwave plasma enhanced CVD (MPCVD). Patterned structure was characterized by SEM, TEM and AFM techniques. With the additional petal-like CNT structure, the apparent contact angle (ACA) increased dramatically compared with silicon (~140%) and parylene-coated (~78%) micropillar surfaces and resulted in a small sliding angle (around

  16. Grazing impact of continuous droplet streams with a superhydrophobic surface

    Microsoft Academic Search

    Paul R. ChiarotT; T. B. Jones

    2010-01-01

    When high-velocity droplets make grazing impact with a superhydrophobic surface, the droplets undergo significant deformation\\u000a before recoiling and rebounding from the surface. Two distinct operating regimes describe the response of the reflected droplet\\u000a stream after impact. In the first regime, the droplets remain discrete and uniform after the impact, but exhibit rotation\\u000a and significant oscillations. This regime dominates if each

  17. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

    PubMed

    Goswami, Debmita; Medda, Samar Kumar; De, Goutam

    2011-09-01

    The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ?9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ?10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ?30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 ?L of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance. PMID:21823656

  18. Electro-osmosis on anisotropic super-hydrophobic surfaces

    E-print Network

    Belyaev, Aleksey V

    2011-01-01

    We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneously charged channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.

  19. Electro-osmosis on anisotropic super-hydrophobic surfaces

    E-print Network

    Aleksey V. Belyaev; Olga I. Vinogradova

    2011-07-20

    We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneous channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.

  20. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  1. Stable superhydrophobic surface: fabrication of interstitial cottonlike structure of copper nanocrystals by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Guoxing; Wang, Bo; Liu, Yi; Tan, Tian; Song, Xuemei; Li, Er; Yan, Hui

    2008-04-01

    A stable superhydrophobic copper surface was obtained by radio-frequency magnetic sputtering on Si (100) and quartz substrates. The water contact angle and sliding angle of the superhydrophobic copper surface were 160.5° and 3±1.9°, respectively. Scanning electron microscopy (SEM) photos show that the superhydrophobic surface structure comprises many uniform nanocrystals with a diameter of about 100 nm. A brief explanation of the formation of this special microstructure and the mechanism of its wettability were proposed.

  2. Stable superhydrophobic surface: fabrication of interstitial cottonlike structure of copper nanocrystals by magnetron sputtering

    Microsoft Academic Search

    Guoxing Li; Bo Wang; Yi Liu; Tian Tan; Xuemei Song; Er Li; Hui Yan

    2008-01-01

    A stable superhydrophobic copper surface was obtained by radio-frequency magnetic sputtering on Si (100) and quartz substrates. The water contact angle and sliding angle of the superhydrophobic copper surface were 160.5° and 3±1.9°, respectively. Scanning electron microscopy (SEM) photos show that the superhydrophobic surface structure comprises many uniform nanocrystals with a diameter of about 100 nm. A brief explanation of

  3. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    PubMed Central

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  4. Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics.

    PubMed

    Freschauf, Lauren R; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  5. Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces

    E-print Network

    Raj, Rishi

    Understanding the complexities associated with contact line dynamics on chemically heterogeneous and superhydrophobic surfaces is important for a wide variety of engineering problems. Despite significant efforts to capture ...

  6. Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix.

    PubMed

    Wang, Yaqun; Shi, Ye; Pan, Lijia; Yang, Meng; Peng, Lele; Zong, Shi; Shi, Yi; Yu, Guihua

    2014-08-13

    Superhydrophobic surfaces are of immense scientific and technological interests for a broad range of applications. However, a major challenge remains in developing scalable methodologies that enable superhydrophobic coatings on versatile substrates with a combination of strong mechanical stability, optical transparency, and even stretchability. Herein, we developed a scalable methodology to versatile hydrophobic surfaces that combine with strong mechanical stability, optical transparency, and stretchability by using a self-assembled hydrogel as the template to in situ generate silica microstructures and subsequent silanization. The superhydrophobic coatings can be enabled on virtually any substrates via large-area deposition techniques like dip coating. Transparent surfaces with optical transmittance as high as 98% were obtained. Moreover, the coatings exhibit superior mechanical flexibility and robustness that it can sustain contact angles ? 160° even after 5000 cycles of mechanically stretching at 100% strain. The multifunctional surfaces can be used as screen filters and sponges for the oil/water separation that can selectively absorb oils up to 40× their weight. PMID:24977920

  7. Effective slip over superhydrophobic surfaces in thin channels

    E-print Network

    Feuillebois, François; Vinogradova, Olga I

    2008-01-01

    Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. For isotropic (e.g. chessboard or random) textures, the Hashin-Strikman conditions further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.

  8. Modeling of the process of superhydrophobic surface formation

    Microsoft Academic Search

    Galina B. Lisovskaya; Sergei A. Chizhik; Alexander E. Salamianski; Vladimir E. Agabekov; Gennady K. Zhavnerko

    2008-01-01

    Thin composite films of nanoparticles formed by Layer-by-Layer method on a glass substrate from colloid solutions of titanium oxide, zinc oxide or silicon oxide are studied. Atomic Force microscopy, Scanning Electronic Microscopy and contact angle measurements were used for investigation of the surface properties of coatings. Bicomponent TiO2\\/SiO2 and ZnO\\/SiO2 films modified by octadecyltrichlorosilane are found to acquire superhydrophobic properties

  9. Frost formation on a super-hydrophobic surface under natural convection conditions

    Microsoft Academic Search

    Zhongliang Liu; Yunjun Gou; Jieteng Wang; Shuiyuan Cheng

    2008-01-01

    In this paper, the frost deposition phenomena on a cold super-hydrophobic surface whose contact angle with water is 162° were observed of the formation of water droplets, the freezing process, the formation of initial frost crystals and the frost layer structure. The frost layer structure formed on the super-hydrophobic surface shows remarkable differences to that on a plain copper surface:

  10. Fabrication of "Roll-off" and "Sticky" Superhydrophobic Cellulose Surfaces via Plasma Processing

    E-print Network

    Breedveld, Victor

    surface are robust when compared to roughened structures created by traditional polymer graftingFabrication of "Roll-off" and "Sticky" Superhydrophobic Cellulose Surfaces via Plasma Processing. In Final Form: January 10, 2008 Most of the artificial superhydrophobic surfaces that have been fabricated

  11. Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process

    NASA Astrophysics Data System (ADS)

    Henry, Frédéric; Renaux, Fabian; Coppée, Séverine; Lazzaroni, Roberto; Vandencasteele, Nicolas; Reniers, François; Snyders, Rony

    2012-12-01

    Superhydrophobic poly(tetrafluoro-ethylene) (PTFE) like thin films were grown on silicon wafers using a plasma-based hybrid process consisting on sputtering a carbon target in an Ar/CF4 atmosphere. The influence of the bias voltage applied to the substrate (VBias) as well as of the gas mixture composition (%CF4) on the chemical composition, the wettability and the morphology of the deposited thin films were evaluated. The chemical composition measured by X-ray Photoelectron Spectroscopy (XPS) has revealed that the F/C atomic ratio is always lower than for conventional PTFE (F/C = 2) and that it decreases when VBias increases (from F/C = 1 for VBias = - 100 V to F/C = 0.75 for VBias = - 200 V). This behavior is associated with the preferential sputtering of the fluorine atoms during the plasma-assisted growth of the films. Consecutively, a self-nanostructuration enhanced when increasing VBias is observed. As a consequence, the water contact angle (WCA) measurements range from 70° up to 150° depending on (i) the fluorine concentration and (ii) on the magnitude of the nanostructuration. In addition, for the films presenting the highest WCAs, a small hysteresis between the advancing and receding WCAs is observed (< 10°) allowing these films to fulfill completely the requirements of superhydrophobicity. The nanostructuration is probably due to the chemical etching by fluorine atoms of the fluorinated group. In order to get more understanding on the wettability mechanisms of these surfaces, the topography of the films has been evaluated by atomic force microscopy (AFM). The data have revealed, for all films, a dense and regular structure composed by conic objects (AvH is their average height and AvD is the average distance between them) for which the dimensions increase with VBias. A correlation between AvH/AvD, defined as the "morphological ratio", with the WCA was established. Theoretical evaluations of the WCA using the Wenzel and Cassie equations with, as inputs, the features of the deposited thin film surfaces measured by AFM suggest that the wetting regime is intermediate between these two ideal situations.

  12. Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation.

  13. Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojiang; Xu, Yang; Ben, Keyang; Chen, Zao; Wang, Yan; Guan, Zisheng

    2015-06-01

    We reported a novel, simple, modification-free process for the preparation of transparent superhydrophobic surfaces by calcining candle-soot-coated polydimethylsiloxane (PDMS) films. Though a calcination process, a candle soot template was gradually removed while robust fibrous and network structures were created on glass. Owing to these structures, the glass substrates were durable and highly transparent with an average transmittance (400-800 nm) of 89.50%, very closed to the bare glass slides (89.70%). These substrates exhibited a water contact angle (WCA) of 163° and a sliding angle (SA) of ?1°. Importantly, the superhydrophobicity of these surfaces can thermally recover after oil-contamination due to their high thermal stability below 500 °C. Based on these, superhydrophobic fiberglass cotton was also prepared for optimized oil-water separation and air filtration. This method is suitable for large-scale production because it uses inexpensive and environmentally friendly materials and gets rids of sophisticated equipment, special atmosphere and harsh operations.

  14. Scaling laws for slippage on superhydrophobic fractal surfaces

    E-print Network

    C. Cottin-Bizonne; C. Barentin; L. Bocquet

    2012-01-24

    We study the slippage on hierarchical fractal superhydrophobic surfaces, and find an unexpected rich behavior for hydrodynamic friction on these surfaces. We develop a scaling law approach for the effective slip length, which is validated by numerical resolution of the hydrodynamic equations. Our results demonstrate that slippage does strongly depend on the fractal dimension, and is found to be always smaller on fractal surfaces as compared to surfaces with regular patterns. This shows that in contrast to naive expectations, the value of effective contact angle is not sufficient to infer the amount of slippage on a fractal surface: depending on the underlying geometry of the roughness, strongly superhydrophobic surfaces may in some cases be fully inefficient in terms of drag reduction. Finally, our scaling analysis can be directly extended to the study of heat transfer at fractal surfaces, in order to estimate the Kapitsa surface resistance on patterned surfaces, as well as to the question of trapping of diffusing particles by patchy hierarchical surfaces, in the context of chemoreception.

  15. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars.

    PubMed

    Huovinen, Eero; Takkunen, Laura; Korpela, Tarmo; Suvanto, Mika; Pakkanen, Tuula T; Pakkanen, Tapani A

    2014-02-11

    Considerable attention is currently being devoted less to the question of whether it is possible to produce superhydrophobic polymer surfaces than to just how robust they can be made. The present study demonstrates a new route for improving the mechanical durability of water-repellent structured surfaces. The key idea is the protection of fragile fine-scale surface topographies against wear by larger scale sacrificial micropillars. A variety of surface patterns was manufactured on polypropylene using a microstructuring technique and injection molding. The surfaces subjected to mechanical pressure and abrasive wear were characterized by water contact and sliding angle measurements as well as by scanning electron microscopy and roughness analysis based on optical profilometry. The superhydrophobic polypropylene surfaces with protective structures were found to maintain their wetting properties in mechanical compression up to 20 MPa and in abrasive wear tests up to 120 kPa. For durable properties, the optimal surface density of the protective pillars was found to be about 15%. The present approach to the production of water-repellent polymer surfaces provides the advantages of mass production and mechanical robustness with practical applications of structurally functionalized surfaces. PMID:24483340

  16. Nano-structured self-cleaning superhydrophobic glass

    E-print Network

    Kim, Jin Yeol

    2010-01-01

    textiles, protective coating for telecommunication antennas, and other devices. Superhydrophobicsuperhydrophobic surfaces range from self-cleaning building exteriors, window glasses, automobile windshields, and water-proof textiles.

  17. Fabrication of super-hydrophobic channels

    Microsoft Academic Search

    Xinchuan Liu; Cheng Luo

    2010-01-01

    A new approach was developed in this work to create channels which had not only super-hydrophobic bottom surfaces but also super-hydrophobic sidewalls. Researchers have demonstrated that a flow experienced less drag forces and thus required smaller driving pressure in a channel of micro\\/nanostructure-formed top and bottom surfaces. The drag forces should be further reduced in a channel which has not

  18. Roughness-Based Superhydrophobic Surfaces: Fundamentals and Future Directions

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh

    2011-11-01

    Superhydrophobicity of rough surfaces has attracted global interest through the past decade. There are naturally occurring instances of such surfaces, e.g., lotus leaves, which led to the popular term ``lotus effect.'' Numerous applications in wide ranging areas such as drag reduction, self-cleaning, heat exchangers, energy conversion, condensation, anti-icing, textile, desalination, etc., are being explored by researchers worldwide. The signature configuration for superhydrophobicity has been ``bead-like'' drops on rough surfaces that roll-off easily. This becomes possible if the liquid does not impale the roughness grooves, and if the contact angle hysteresis is low. Finding appropriate surface roughness is therefore necessary. A thermodynamic framework to enable analysis of this problem will be presented. It will be noted that the success of rough superhydrophobic substrates relies on the presence of gas pockets in the roughness grooves underneath the liquid. These gas pockets could be those of air from the surrounding environment. Current design strategies rely on the availability of air. However, if the rough substrates are fully submerged in the liquid then the trapped air in the roughness grooves may not be sustained. A design approach based on sustaining a vapor phase of the liquid itself in the roughness grooves, instead of relying on the presence of air, will be presented. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling at dramatically low superheats, among others. The concept can be generalized to other transitions on the phase diagram, thus enabling the design of rough surfaces for phase manipulation in general.

  19. Multimode Multidrop Serial Coalescence Effects during Condensation on Two-Tier Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Paxton, Adam T.; Anand, Sushant; Chen, Xuemei; Wang, Zuankai; Varanasi, Kripa K.

    2013-03-01

    Mobile coalescence leading to spontaneous drop motion was initially reported to occur only during water condensation on two-tier superhydrophobic surfaces (SHS), consisting of both nanoscale and microscale topological features. However, subsequent studies have shown that mobile coalescence also occurs on solely nanostructured SHS. Thus, recent focus has been on understanding the condensation process on just nanostructured surfaces rather than on two-tier SHS. Here, we investigate the impact of microscale topography of two-tier SHS on the droplet coalescence dynamics and wetting states during the condensation process. We identify new droplet shedding modes, which consist of serial coalescence events that lead to merging of multiple droplets. The formed drops either depart or remain anchored to the surface. We explain the observed post-merging drop adhesion trends through direct correlation to formation of drops in nanoscale as well as microscale Wenzel and Cassie-Baxter wetting states. We find that optimally designed two-tier SHS, which promote the highest number of departing microdrops, consists of microscale features spaced close enough to enable transition of larger droplets into micro-Cassie state, yet at the same time provide sufficient area in-between the features for occurrence of mobile coalescence. Mobile coalescence leading to spontaneous drop motion was initially reported to occur only during water condensation on two-tier superhydrophobic surfaces (SHS), consisting of both nanoscale and microscale topological features. However, subsequent studies have shown that mobile coalescence also occurs on solely nanostructured SHS. Thus, recent focus has been on understanding the condensation process on just nanostructured surfaces rather than on two-tier SHS. Here, we investigate the impact of microscale topography of two-tier SHS on the droplet coalescence dynamics and wetting states during the condensation process. We identify new droplet shedding modes, which consist of serial coalescence events that lead to merging of multiple droplets. The formed drops either depart or remain anchored to the surface. We explain the observed post-merging drop adhesion trends through direct correlation to formation of drops in nanoscale as well as microscale Wenzel and Cassie-Baxter wetting states. We find that optimally designed two-tier SHS, which promote the highest number of departing microdrops, consists of microscale features spaced close enough to enable transition of larger droplets into micro-Cassie state, yet at the same time provide sufficient area in-between the features for occurrence of mobile coalescence. This work was funded by NSF and the Dupont-MIT Alliance and was in part performed using facilities at NIST.

  20. Surface Plasmons of Metal Nanostructure Arrays

    E-print Network

    Surface Plasmons of Metal Nanostructure Arrays: From Nanoengineering to Active Plasmonics Yue Bing substrates. Surface plasmons of these nanostructure arrays were investigated both experimentally and theoretically. We systematically studied the effects of different parameters on the localized surface plasmon

  1. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Chen, X.-Grant

    2015-02-01

    Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 ?m, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  2. Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings

    NASA Astrophysics Data System (ADS)

    Yin, Long; Wang, Yuanyi; Ding, Jianfu; Wang, Qingjun; Chen, Qingmin

    2012-02-01

    In this work, we have fabricated superhydrophobic aluminum surfaces by a facile chemical etching method. Surface morphology and composition were studied by using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). To comparatively investigate the effect of environmental factors on superhydrophobic behaviors of surfaces with different low-surface-energy coatings under controllable condensation conditions, contact and sliding angles were measured from -10 °C to 30 °C under relative humidity (RH) of 30, 60 and 90%, respectively. The calculation of the solid-liquid contact area fraction quantitatively explained the increased wettability characterized by descending contact angle and ascending sliding angle under low temperature and high humidity, and indicated a transition of the equilibrium state from Cassie-Baxter to Wenzel on rough surfaces. The wettability restoration test showed that the loss of superhydrophobicity during condensation could be recovered completely after a drying process at room temperature.

  3. A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold.

    PubMed

    Kim, Mihee; Kim, Kyunghoon; Lee, Nae Yoon; Shin, Kyusoon; Kim, Youn Sang

    2007-06-14

    A super-hydrophobic and highly transparent nanostructured film was fabricated via imprinting and conformally uniform chemical anchoring of poly(dimethylsiloxane) on a controlled nanoscopic dimension. PMID:17534502

  4. Passive water control at the surface of a superhydrophobic lichen.

    PubMed

    Hamlett, Christopher A E; Shirtcliffe, Neil James; Pyatt, F Brian; Newton, Michael I; McHale, Glen; Koch, Kerstin

    2011-12-01

    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control. PMID:21785997

  5. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.

    PubMed

    Dash, Susmita; Garimella, Suresh V

    2013-08-27

    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ? 160 deg), and negligible contact angle hysteresis (<1 deg). The droplet evaporation is observed to occur in a constant-contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ? 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation. PMID:23952149

  6. Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces.

    PubMed

    Milne, A J B; Amirfazli, A

    2009-12-15

    A balance of surface science and aerodynamic knowledge is brought to bear to elucidate the fundamental parameters determining the incipient motion (runback) for a drop exposed to shearing airflow. It was found that wetting parameters such as contact angle are very influential in determining the minimum required air velocity for drop shedding. On the basis of experimental results for drops of water and hexadecane (0.5-100 microL) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for all of the water systems can be collapsed to self-similar curves by normalization. Results from other researchers also conform to the exponential self-similar functional form proposed. It was shown that the data for hexadecane drops can be matched relatively well to those for water drops by means of a corrective factor based on fluid properties and contact angles. Also, the critical air velocity for shedding from the superhydrophobic surface is seen to be more constant over a range of volumes than for the other surfaces. Finally, contact angle measurements from airflow shedding experiments are compared to measurements made by tilted plate and quasi-static advancing and receding tests. The observed differences between contact angles from different measurement methods show that the transfer of contact angle data among various applications must be done with care. PMID:19685896

  7. Fabrication of superhydrophobic copper surface with ultra-low water roll angle

    NASA Astrophysics Data System (ADS)

    Zhang, Youfa; Yu, Xinquan; Zhou, Quanhui; Chen, Feng; Li, Kangning

    2010-01-01

    Binary geometric structures at the micro- and nano-scale are fabricated on copper surfaces via simple sandblasting and surface oxidation process. The rough surfaces show excellent superhydrophobicity and ultra-low water roll angle (RA) after fluorination. The structure effect is deduced by comparing it with those of a single micro- or nano-scale structure. Such superhydrophobic copper surfaces can be widely used in many fields such as corrosion protection, liquid transportation without loss. Such a facile technique is expected to offer a feasible avenue for the industrial fabrication of superhydrophobic surfaces.

  8. Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method

    NASA Astrophysics Data System (ADS)

    Wu, Ruomei; Liang, Shuquan; Pan, Anqiang; Yuan, Zhiqing; Tang, Yan; Tan, Xiaoping; Guan, Dikai; Yu, Ya

    2012-06-01

    Aluminum alloy surface can be etched easily in acid environment, but the microstructure of alloy surface hardly meets the customers' demand. In this work, a facile acidic-assistant surface oxidation technique has been employed to form reproducible super-hydrophobic surfaces on aluminum alloy plates. The samples immersed in three different acid solutions at ambient temperatures are studied and the results demonstrated that the aqueous mixture solution of oxalic acid and hydrochloric is easier to produce better faces and better stability. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectrometer, X-ray photoelectron spectroscopy (XPS) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on aluminum substrates. The surfaces, configured of a labyrinth structure with convexity and concavity, are in different roughness and gloss because of the different recipe acid solutions used. Better roughness of the surface can be obtained by adjusting the concentration of Cl? and oxalate ions in acid solutions. The present research work provides a new strategy for the controllable preparation super-hydrophobic films of general materials on aluminum alloy for practical industrial applications.

  9. Effect of Vapor Flow on Jumping Droplets during Condensation on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Preston, Daniel J.; Miljkovic, Nenad; Enright, Ryan; Limia, Alexander; Wang, Evelyn N.

    2013-11-01

    Upon coalescence of droplets on a superhydrophobic surface, the net reduction in droplet surface area results in a release of surface energy that can cause the coalesced droplet to ``jump'' away from the surface. Jumping condensing surfaces have been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. While the heat transfer enhancement of jumping condensation is well documented, droplet behavior after departure from the surface has not been considered. Vapor flows to the condensing surface due to mass conservation. This flow can increase drag on departing droplets, resulting in complete droplet reversal and return to the surface. Upon return, these larger droplets impede heat transfer until they jump again or finally shed due to gravity. By characterizing individual droplet trajectories during condensation on hydrophobic nanostructured copper oxide surfaces for a variety of heat fluxes (q'' = 0.1 - 2 W/cm2), we showed that vapor flow entrainment dominates droplet motion for droplets smaller than R ~ 30 um at high heat fluxes (q'' >2 W/cm2). Furthermore, we developed an analytical model of droplet motion based on first principles and the Reynolds drag equation which agreed well with the experimental data. We considered condensation on both flat and tubular geometries with our model, and we suggest avenues to further enhance heat transfer which minimize droplet return due to entrainment.

  10. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    PubMed

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-01

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153±1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. PMID:26005136

  11. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro\\/nanopatterned surfaces

    Microsoft Academic Search

    Bharat Bhushan; Yong Chae Jung

    2008-01-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. When two hydrophilic bodies are brought into contact, any liquid present at the interface forms menisci, which increases adhesion\\/friction and the magnitude is dependent upon the contact angle. Certain plant leaves are known to be superhydrophobic in nature due to their roughness and the presence

  12. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect

    Swarctz, Christopher [Stevens Institute of Technology, Hoboken, New Jersey; Alijallis, Elias [Stevens Institute of Technology, Hoboken, New Jersey; Hunter, Scott Robert [ORNL; Simpson, John T [ORNL; Choi, Chang-Hwan [Stevens Institute of Technology, Hoboken, New Jersey

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  13. Dewetting Transitions on Superhydrophobic Surfaces: When are Wenzel Drops Reversible?

    SciTech Connect

    Boreyko, Jonathan B [ORNL; Collier, Pat [ORNL

    2013-01-01

    On superhydrophobic surfaces, drops in theWenzel state can be switched to the suspended Cassie state in some cases, but in other cases are irreversibly impaled in the surface roughness. To date, the question of when dewetting transitions are possible for Wenzel drops has not been resolved. Here, we show that pinned Wenzel drops being stretched out-of-plane cannot reduce their contact angle below a critical value where unstable pinch-off occurs, preventing dewetting for Wenzel drops which exhibit receding contact angles beneath this critical pinchoff angle. Dewetting transitions are therefore only possible for Wenzel drops with moderately large receding contact angles, which requires low surface roughness for one-tier surfaces or a Partial Wenzel wetting state for two-tier surfaces.

  14. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure.

    PubMed

    Li, Wen; Fang, Guoping; Li, Yongfeng; Qiao, Guanjun

    2008-06-19

    It has been found experimentally that superhydrophobic surfaces exhibit strong anisotropic wetting behavior. This study reports a simple but robust thermodynamic methodology to investigate the anisotropic superhydrophobic behavior for parallel grooved surfaces. Free energy and its barrier and the corresponding contact angle and its hysteresis for various orientations of the groove structure are calculated based on the proposed thermodynamic model. It is revealed that the strong anisotropy of equilibrium contact angle (ECA) and contact angle hysteresis (CAH) is shown in the noncomposite state but almost isotropic wetting properties are exhibited in the composite state. Furthermore, for the noncomposite state, decreasing groove width and spacing or increasing groove depth can amplify the anisotropy for ECA. Meanwhile, decreasing groove width and increasing depth can amplify the anisotropy for CAH, while varying groove spacing can barely influence CAH. For the composite state, however, the surface geometry hardly leads to the anisotropic behavior. In addition, using a fitting approximation, a simple quantitative correlation between wettability and orientation can be established well, which is consistent with the numerical calculations. PMID:18491941

  15. Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; Niu, FengLei; Yu, Yu

    2014-07-01

    Quantitative correlation between the critical impact velocity of droplet and geometry of superhydrophobic surfaces with microstructures is systematically studied. Experimental data shows that the critical impact velocity induced wetting transition of droplet on the superhydrophobic surfaces is strongly determined by the perimeter of single micropillar, the space between the repeat pillars and the advancing contact angle of the sidewall of the micropillars. The proposed model agrees well with the experimental results, and clarifies that the underlying mechanism which is responsible for the superhydrophobic surface with hierarchical roughness could sustain a higher liquid pressure than the surfaces with microstructures.

  16. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.

    PubMed

    Qian, Baitai; Shen, Ziqiu

    2005-09-27

    A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates. PMID:16171323

  17. Fabrication of superhydrophobic surface from binary micro-/nano-structure of mullite-whisk-based films

    NASA Astrophysics Data System (ADS)

    Deng, Zhengyan; Yin, Yongjin; Yang, Shengyang; Wang, Cai-Feng; Chen, Su

    2013-11-01

    The wettability of solid surface is a very important property of materials, which depends on both surface chemical composition and the geometry of the solid surface. We herein report a simple and inexpensive method to fabricate superhydrophobic surfaces with the use of mullite whisks (MWs) for the first time. Binary micro-/nano-structural surfaces were created by the incorporation of hydrophilic needlelike MWs with poly( ?-methacryloxypropyltrimethoxysilane) to exhibit hydrophobic behavior, which further showed superhydrophobicity with water contact angle of 152.4±2? after modified with stearic acid. The wettability variation from hydrophilicity to hydrophobicity and superhydrophobicity during the assembly process are discussed based on the scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and contact-angle system. The superhydrophobicity of the surface could be attributed to the hierarchical microstructure of the rough surface induced by MWs and low surface energy of stearic acid.

  18. Roughness optimization for biomimetic superhydrophobic surfaces

    Microsoft Academic Search

    Michael Nosonovsky; Bharat Bhushan

    2005-01-01

    For non-wetting liquids the contact angle with a rough surface is greater than with a flat surface and may approach 180°, as reported for leaves of water-repellent plants, such as lotus. Roughness affects the contact angle due to the increased area of solid–liquid interface and due to the effect of sharp edges of rough surfaces. High roughness may lead to

  19. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    PubMed

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-01

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf. PMID:18959433

  20. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques.

    PubMed

    Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-07-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. PMID:24971957

  1. Verification of icephobic/anti-icing properties of a superhydrophobic surface.

    PubMed

    Wang, Yuanyi; Xue, Jian; Wang, Qingjun; Chen, Qingmin; Ding, Jianfu

    2013-04-24

    Four aluminum surfaces with wettability varied from superhydrophilic to superhydrophobic were prepared by combining an etching and a coating process. The surface wettability was checked in terms of water contact angle (CA) and sliding angle (SA) under different humidity at -10 °C. High-speed photography was applied to study water droplet impact dynamics on these surfaces. It was found that single and successive water droplets could rebound on the superhydrophobic surface and roll off at a tilt angle larger than 30° under an extremely condensing weather condition (-10 °C and relative humidity of 85-90%). In addition, the superhydrophobic surface showed a strong icephobic property, the ice adhesion on this surface was only 13% of that on the superhydrophilic surface, though they had a similar nano/microtopological structure. Moreover, this superhydrophobic surface displayed an excellent durability of the icephobic property. The ice adhesion only increased to 20% and 16% of that on the superhydrophobic surface after the surface was undergone 20 icing/ice-breaking cycles and 40 icing/ice-melting cycles, respectively. Surface profile and XPS studies on these surfaces indicated a minor damage of the surface nano/microstructure and the coating layer upon these multiple ice-breaking and ice-melting processes. Therefore, this superhydrophobic surface could be a good candidate for icephobic applications. PMID:23537106

  2. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    Microsoft Academic Search

    Tasuku Ogawa; Bin Ding; Yuji Sone; Seimei Shiratori

    2007-01-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along

  3. Fabrication of superhydrophobic copper surface with ultra-low water roll angle

    Microsoft Academic Search

    Youfa Zhang; Xinquan Yu; Quanhui Zhou; Feng Chen; Kangning Li

    2010-01-01

    Binary geometric structures at the micro- and nano-scale are fabricated on copper surfaces via simple sandblasting and surface oxidation process. The rough surfaces show excellent superhydrophobicity and ultra-low water roll angle (RA) after fluorination. The structure effect is deduced by comparing it with those of a single micro- or nano-scale structure. Such superhydrophobic copper surfaces can be widely used in

  4. Effective three-dimensional superhydrophobic aerogel-coated channel for high efficiency water-droplet transport

    NASA Astrophysics Data System (ADS)

    Kim, Aeree; Kim, Hyungmo; Lee, Chan; Kim, Joonwon

    2014-02-01

    Three-dimensional superhydrophobic surfaces have been used effectively to optimize droplet transport efficiency in diverse fluidic systems. However, the fabrication methods for superhydrophobic surfaces applicable to fluidic devices usually involve complicated process. Herein, we report a simple but effective method of fabricating a superhydrophobic surface using organically modified silica aerogel. Superhydrophobic aerogel thin film having highly porous micro/nanostructured surface with methyl groups was realized inside a 3D channel by coating it. To demonstrate that the aerogel-coated surface effectively facilitates movement of water droplets, the droplet-based flow characteristics regarding the triple line were conducted.

  5. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition

    NASA Astrophysics Data System (ADS)

    Kwon, Min Ho; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    In this research, the fabrication process of a super-hydrophobic metallic surface using laser ablation and electrodeposition was investigated. Re-entrant structure and surface roughness play an important role in forming a super-hydrophobic surface on intrinsically hydrophilic material. A micro pillar array with a re-entrant structure of copper on stainless steel was fabricated through a sequential process of laser ablation, insulating, mechanical polishing and electrodeposition. Spacing of the micro pillars in the array played a major role in the structure hydrophobicity that was confirmed by measuring the water contact angle. Surface morphology changed relative to the parameters of the laser ablation process and electrodeposition process. Under a gradual increase in current density during the electrodeposition process, surface morphology roughness was maximized for fabricating a super-hydrophobic surface. Finally, the super-hydrophobic surface was successfully fabricated on metal.

  6. Drop impact and rebound dynamics on an inclined superhydrophobic surface.

    PubMed

    Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S

    2014-10-14

    Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination. PMID:25216298

  7. Modeling of Droplet Evaporation on Superhydrophobic Surfaces.

    PubMed

    Fernandes, Heitor C M; Vainstein, Mendeli H; Brito, Carolina

    2015-07-14

    When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one called the Wenzel (W) state characterized by the homogeneous wetting of the surface. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplet's final wetting state with constant volume and show that it depends strongly on the surface texture. We then vary the volume of the droplet, keeping the geometric surface parameters fixed to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and the theoretical model can be modified to study other types of surfaces. PMID:26086999

  8. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  9. Fabrication of superhydrophobic surfaces on interconnected Cu(OH)2 nanowires via solution-immersion

    NASA Astrophysics Data System (ADS)

    Pan, Qinmin; Jin, Haizu; Wang, Hongbo

    2007-09-01

    Superhydrophobic surfaces with a contact angle of about 160° and a tilt angle lower than 4° were fabricated on copper plates via a simple solution-immersion step. Interconnected Cu(OH)2 nanowires were constructed on the copper surface by immersing copper plates in an aqueous solution of sodium hydroxide and potassium persulfate, and the resulting copper plates exhibited excellent superhydrophilic properties. The copper plates changed their wettability from superhydrophilicity to superhydrophobicity after further chemical modification with dodecanoic acid. The results of this study may pave a new pathway to the fabrication of superhydrophobic surfaces on engineering metals.

  10. Surface Wettability of Nanostructured Zinc Oxide Films

    Microsoft Academic Search

    Jie Han; Wei Gao

    2009-01-01

    Zinc oxide (ZnO) nanograin and nanorod films were prepared by magnetron sputter deposition and an aqueous solution growth\\u000a method. Their surface wettability was studied in relation to their surface morphologies. While the surfaces of both films\\u000a were hydrophobic, the nanorod films exhibited higher surface hydrophobicity. A superhydrophobic surface was obtained on a\\u000a ZnO nanorod film with a water contact angle

  11. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    PubMed

    Jönsson-Niedzió?ka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-01

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL). PMID:21103534

  12. Jet impingement and thin film breakup on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Crockett, Julie; Prince, Joseph; Maynes, Daniel

    2013-11-01

    A vertical laminar jet impinging on a horizontal surface spreads out in a thin film on the surface. If the surface is hydrophobic, and a downstream depth is not maintained the film will breakup into droplets. This occurs where the jet's outward radial momentum is balanced by the inward surface tension force of the advancing film. An analytical model has been created to estimate this location. All surfaces explored are hydrophobic or superhydrophobic (SH), where the SH surfaces exhibit an apparent slip at the surface. For SH surfaces with random micropatterning, the slip on the surface is uniform in all directions and droplet breakup occurs in a circular pattern. When alternating rib/cavity microstructures are used to create a SH surface the slip varies as a function azimuth resulting in an elliptically shaped breakup. The location of breakup for multiple surfaces over a range of jet Weber numbers and realistic slip length values is determined. Results show the breakup radius increases with increasing Weber number and slip length. The eccentricity of the breakup ellipse for the rib/cavity SH structures increases with increasing Weber number and slip length as well. The model results compare well to experimental measurements.

  13. Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent–nonsolvent coating

    Microsoft Academic Search

    Xinhong Li; Guangming Chen; Yongmei Ma; Lin Feng; Hongzhi Zhao; Lei Jiang; Fosong Wang

    2006-01-01

    A new simple approach was developed to obtain a super-hydrophobic PVC surface via solvent–nonsolvent coating without addition of low-surface-energy compounds. Also, the PVC film is nearly or still maintains its super-hydrophobicity when contacting with acid, alkali or salt solutions. SEM shows that compared with common smooth PVC surface, a lotus-like structure with micro- and nano-papillae was obviously observed on the

  14. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water

    NASA Astrophysics Data System (ADS)

    Su, Changhong; Xu, Youqian; Zhang, Wei; Liu, Yang; Li, Jun

    2012-01-01

    A porous ceramic tube with superhydrophobic and superoleophilic surface was fabricated by sol-gel and then surface modification with polyurethane-polydimethysiloxane, and an oil-water separator based on the porous ceramic tube was erected to characterize superhydrophobic and superoleophilic surface's separation efficiency and velocity when being used to reclaim oil from oily water and complex oily water containing clay particle. The separator is fit for reclaiming oil from oily water.

  15. A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method

    Microsoft Academic Search

    Zhi Chen; Li-mei Hao; Feng Li; An-Qi Chen; Qing-jun Song; Chang-le Chen

    Superhydrophobic surfaces are commonly prepared by a combination of low surface energy materials and micro\\/nano structures. In this work, a rapid one-step electrodepositing process is developed to fabricate superhydrophobic cathodic surface by copper plate in an electrolytic solution containing nickel chloride(NiCl2·6H2O), myristic acid and ethanol. Scanning electron microscopy (SEM) images, Fourier-transform infrared (FTIR) spectrometer, X-ray diffraction (XRD) and contact angle

  16. Towards optimization of patterned superhydrophobic surfaces.

    PubMed

    Bhushan, Bharat; Nosonovsky, Michael; Jung, Yong Chae

    2007-08-22

    Experimental and theoretical study of wetting properties of patterned Si surfaces with cylindrical flat-top pillars of various sizes and pitch distances is presented. The values of the contact angle (CA), contact angle hysteresis (CAH) and tilt angle (TA) are measured and compared with the theoretical values. Transition from the composite solid-liquid-air to the homogeneous solid-liquid interface is investigated. It is found that the wetting behaviour of a patterned hydrophobic surface depends upon a simple non-dimensional parameter, the spacing factor, equal to the pillar diameter divided by the pitch. The spacing factor controls the CA, CAH and TA in the composite interface regime, as well as destabilization and transition to the homogeneous interface. We show that the assumption that the CAH is a consequence of the adhesion hysteresis and surface roughness leads to the theoretical values of the CAH that are in a reasonably good agreement with the experimental values. By decreasing the spacing factor, the values of CA=170 degrees, CAH=5 degrees and TA=3 degrees are achieved. However, with further decreasing of the spacing factor, the composite interface destabilizes. PMID:17251158

  17. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    PubMed

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces. PMID:25529561

  18. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface.

    PubMed

    Marinaro, Giovanni; Burghammer, Manfred; Costa, Luca; Dane, Thomas; De Angelis, Francesco; Di Fabrizio, Enzo; Riekel, Christian

    2015-06-17

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ?100 pg/?L nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ?1 pg/?L nanoparticle concentration, nanofilaments of ?80 nm diameter and ?20 ?m length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. PMID:25602601

  19. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method.

    PubMed

    Xu, Qian Feng; Mondal, Bikash; Lyons, Alan M

    2011-09-01

    Fabricating robust superhydrophobic surfaces for commercial applications is challenging as the fine-scale surface features, necessary to achieve superhydrophobicity, are susceptible to mechanical damage. Herein, we report a simple and inexpensive lamination templating method to create superhydrophobic polymer surfaces with excellent abrasion resistance and water pressure stability. To fabricate the surfaces, polyethylene films were laminated against woven wire mesh templates. After cooling, the mesh was peeled from the polymer creating a 3D array of ordered polymer microposts on the polymer surface. The resulting texture is monolithic with the polymer film and requires no chemical modification to exhibit superhydrophobicity. By controlling lamination parameters and mesh dimensions, polyethylene surfaces were fabricated that exhibit static contact angles of 160° and slip angles of 5°. Chemical and mechanical stability was evaluated using an array of manual tests as well as a standard reciprocating abraser test. Surfaces remained superhydrophobic after more than 5500 abrasion cycles at a pressure of 32.0 kPa. In addition, the surface remains dry after immersing into water for 5 h at 55 kPa. This method is environmental friendly, as it employs no solvents or harsh chemicals and may provide an economically viable path to manufacture large areas of mechanically robust superhydrophobic surfaces from inexpensive polymers and reusable templates. PMID:21797228

  20. Flow past superhydrophobic surfaces with cosine variation in local slip length

    E-print Network

    Asmolov, Evgeny S; Harting, Jens; Vinogradova, Olga I

    2012-01-01

    Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.

  1. Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection

    Microsoft Academic Search

    Shaojun Yuan; S. O. Pehkonen; Bin Liang; Y. P. Ting; K. G. Neoh; E. T. Kang

    2011-01-01

    With the objective of developing materials with repellent surfaces by combining both low surface energy and rough structure, superhydrophobic fluoropolymer films were prepared via surface graft polymerisation from copper substrates. A vinyl-terminated trimethoxysilane was firstly immobilised on the etched-copper surface to introduce active carbon–carbon double bonds. Subsequent graft polymerisation of 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), in the presence of a polymerisation initiator

  2. Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces

    E-print Network

    Srinivasan, Siddarth

    We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction ...

  3. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.

    PubMed

    Wisdom, Katrina M; Watson, Jolanta A; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S; Chen, Chuan-Hua

    2013-05-14

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  4. Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents.

    PubMed

    Wan, Peng; Wu, Jingyao; Tan, LiLi; Zhang, Bingchun; Yang, Ke

    2013-07-01

    Micro-nanometer scale structure of nubby clusters overlay was constructed on the surface of an AZ31 magnesium alloy by a wet chemical method. The super-hydrophobicity was achieved with a water contact angle of 142° and a sliding angle of about 5°. The microstructure and composition of the super-hydrophobic surface were characterized by SEM and FTIR. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to evaluate the corrosion behavior, and the hemocompatibility of the super-hydrophobic surface was investigated by means of hemolytic and platelet adhesion tests. Results showed that the super-hydrophobic treatment could improve the corrosion resistance of magnesium alloys in PBS and inhibit blood platelet adhesion on the surface, which implied excellent hemocompatibility with controlled degradation. PMID:23623110

  5. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  6. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization.

    PubMed

    Li, Junsheng; Li, Linxian; Du, Xin; Feng, Wenqian; Welle, Alexander; Trapp, Oliver; Grunze, Michael; Hirtz, Michael; Levkin, Pavel A

    2015-01-14

    Reactive superhydrophobic surfaces are highly promising for biotechnological, analytical, sensor, or diagnostic applications but are difficult to realize due to their chemical inertness. In this communication, we report on a photoactive, inscribable, nonwettable, and transparent surface (PAINTS), prepared by polycondensation of trichlorovinylsilane to form thin transparent reactive porous nanofilament on a solid substrate. The PAINTS shows superhydrophobicity and can be conveniently functionalized with the photoclick thiol-ene reaction. In addition, we show for the first time that the PAINTS bearing vinyl groups can be easily modified with disulfides under UV irradiation. The effect of superhydrophobicity of PAINTS on the formation of high-resolution surface patterns has been investigated. The developed reactive superhydrophobic coating can find applications for surface biofunctionalization using abundant thiol or disulfide bearing biomolecules, such as peptides, proteins, or antibodies. PMID:25486338

  7. Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

    Microsoft Academic Search

    Jun Wu; Jun Xia; Wei Lei; Baoping Wang; Markus J. Buehler

    2010-01-01

    BackgroundFabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures

  8. Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces

    Microsoft Academic Search

    Michael Nosonovsky; Bharat Bhushan

    2008-01-01

    Non-adhesive and water-repellent surfaces are required for many tribological applications. Roughness-induced superhydrophobicity has been suggested as a way to reduce adhesion and stiction. In this paper, the theory of roughness-induced superhydrophobicity is presented. Wetting is studied as a multiscale process involving the macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We study fundamental physical mechanisms of

  9. Super-hydrophobic surface on pure magnesium substrate by wet chemical method

    Microsoft Academic Search

    Yanhua Wang; Wei Wang; Lian Zhong; Jia Wang; Quanliang Jiang; Xiangyang Guo

    2010-01-01

    A layer of flower-like super-hydrophobic film was fabricated on pure Mg surface by chemical etching in H2SO4, H2O2 and subsequent immersion in stearic acid (CH3(CH2)16COOH) ethanol solution. The super-hydrophobic surface showed a static water contact angle of 154° with the sliding angle of about 3°. With scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Fourier-transform infrared (FT-IR) spectrometer, the

  10. Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability

    Microsoft Academic Search

    Yong Cheol Hong; Dong Hun Shin; Soon Cheon Cho; Han Sup Uhm

    2006-01-01

    Super-hydrophobic carbon nanotube (CNT) powders were formed by NF3 glow-discharge plasma at low-pressure and their surface free energies were directly determined from the contact angles with probe liquids using the Owens–Wendt plotting. The cushion made of plasma-treated CNT powders revealed super-hydrophobicity (contact angle>153°), regardless of kinds of probe liquids and treatment-time. The surface free energy of the NF3 plasma-treated CNT

  11. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    Microsoft Academic Search

    Yuyang Liu; Xianqiong Chen; J. H. Xin

    2006-01-01

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica\\/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite

  12. Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization

    Microsoft Academic Search

    Chao-Hua Xue; Shun-Tian Jia; Jing Zhang; Li-Qiang Tian

    2009-01-01

    By the complex coating of amino- and epoxy-functionalized silica nanoparticles on epoxy-functionalized cotton textiles to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane, or their combination, superhydrophobic surfaces were prepared. The static water contact angle of the most superhydrophobic sample as prepared reaches 170° for a 5 ?L droplet. The wettability and morphology were investigated by contact

  13. Preparation of durable superhydrophobic surface by sol–gel method with water glass and citric acid

    Microsoft Academic Search

    Jinyun Liu; Wenqi Huang; Yanjun Xing; Rong Li; Jinjin Dai

    2011-01-01

    Durable superhydrophobic surface on cotton fabrics has been successfully prepared by sol–gel method. Cellulose fabric was\\u000a first coated with silica sol prepared with water glass and citric acid as the acidic catalyst. The silica coated fabric was\\u000a then padded with hydrolyzed hexadecyltrimethoxysilane afterwards obtaining low surface energy. Water contact angle and hydrostatic\\u000a pressure were used to characterize superhydrophobicity and washing

  14. Flame soot stably deposited on silicone coatings possess superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Shen, Lie; Wang, Wen; Ding, Hongliang; Guo, Qipeng

    2013-11-01

    A flame soot deposited silicone coating was successfully prepared by butane flame along with a deposition process of flame soot. Field emission scanning electron microscopy equipped with an energy-dispersive X-ray analyzer and X-ray photoelectron spectroscopy were used to analyze the chemical compositions and structure of flame soot, showing that the surface is mainly composed of carbon nanoparticles being closely packed and forming tree branch-like network with micro- and nanoscale roughness. Meanwhile, the flame soot can stably deposit on the silicone coatings during the water-flow impact test. When the deposition time is 20 s, the silicone coating possesses a water contact angle of 168 ± 2° combining with a sliding angle less than 1°, and a transmittance reduced less than 28% for wavelengths above 500 nm compared to glass substrate. The superhydrophobicity has a little increase with the extension of deposition time, but at the expense of transmittance.

  15. Evaporating behaviors of water droplet on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  16. Targets on superhydrophobic surfaces for laser ablation ion sources

    NASA Astrophysics Data System (ADS)

    Renisch, D.; Beyer, T.; Blaum, K.; Block, M.; Düllmann, Ch. E.; Eberhardt, K.; Eibach, M.; Nagy, Sz.; Neidherr, D.; Nörtershäuser, W.; Smorra, C.

    2012-06-01

    Target preparation techniques for a laser ablation ion source at the Penning-trap mass spectrometer TRIGA-TRAP have been investigated with regard to future experiments with actinides. To be able to perform mass measurements on these nuclides considering their limited availability, an efficient target preparation technique is mandatory. Here, we report on a new approach for target production using backings, which are pretreated in a way that a superhydrophobic surface is formed. This resulted in improved targets with a more homogeneous distribution of the target material compared to standard techniques with unmodified backings. It was demonstrated that the use of these new targets in a laser ablation ion source improved the ion production significantly.

  17. Superhydrophobic bull's-eye for surface-enhanced Raman scattering.

    PubMed

    Song, Wuzhou; Psaltis, Demetri; Crozier, Kenneth B

    2014-10-21

    We present a micro-patterned silicon structure that enables the preparation of a substrate for surface-enhanced Raman scattering (SERS) and pre-concentration of the analyte molecules. The structure is designed to produce a hydrophobicity gradient. As a result, a water droplet placed on it will remain centred on the structure as it dries, enabling delivery of materials to its centre. The structure is therefore referred to as a superhydrophobic bull's-eye. A water droplet containing gold colloids placed on it dries to produce a cluster at the bull's-eye centre. A second water droplet placed on it, this time containing analyte molecules, dries such that the molecules are delivered to the gold colloid cluster. We demonstrate the detection of molecules at low concentrations (Rhodamine 6G at 10(-15) M) from small droplets. PMID:25141812

  18. Highly sensitive superhydrophobic Ag nanorods array substrates for surface enhanced fluorescence studies

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Goel, Pratibha; Singh, Dhruv P.; Singh, J. P.

    2014-01-01

    We report a facile method to fabricate highly sensitive superhydrophobic Ag nanorods (AgNR) arrays based surface enhanced fluorescence spectroscopy (SEFS) substrates using glancing angle deposition technique at a substrate temperature of 133 K and then subsequent coating of heptadecafluoro-1-decanethiol (HDFT) molecules. The SEFS enhancement behaviour of these substrates was determined by using aqueous solution of Rhodamine 6G. The HDFT coated superhydrophobic AgNR arrays SEFS substrates exhibit more then 3-fold fluorescence signal enhancement than conventional AgNR films. These HDFT coated superhydrophobic AgNR SEFS substrates based sensors may find application for the purpose of trace analysis and biosensing.

  19. Inspired superhydrophobic surfaces by a double-metal-assisted chemical etching route

    SciTech Connect

    Chen, Yu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China) [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China); School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China) [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Xu, Jiansheng [School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China)] [School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Shi, Lei; Li, Jing; Zhang, Yabin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China)] [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China)

    2012-07-15

    Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170°, and the sliding angle of about 0°. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ? A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ? The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ? The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied for many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.

  20. Conversion of a solid surface from super-hydrophobic to super-hydrophilic by photocatalytic remote oxidation and photocatalytic lithography

    Microsoft Academic Search

    Wakana Kubo; Tetsu Tatsuma

    2005-01-01

    A super-hydrophobic surface, of which contact angle was 151°, was obtained by modifying a SiO2 microparticle film-coated glass plate with octadecyltriethoxysilane (ODS). The super-hydrophobic surface was converted to super-hydrophilic by remote oxidation using a TiO2 photocatalyst for 40min, due to oxidative decomposition of the ODS monolayer. The increase in the wettability of the super-hydrophobic surface with water was faster than

  1. Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects

    NASA Astrophysics Data System (ADS)

    Zhang, Youfa; Yu, Xinquan; Wu, Hao; Wu, Jie

    2012-08-01

    Superhydrophobic alumina films with a 2D close-packed array of nanospheres have been successfully fabricated on industrial aluminum foils by a simple anodization method and following modification. The water contact angle of the resultant surfaces is about 154.6° ± 1.4° and the adhesion of water droplets is very weak. Moreover, spherical droplets grow sparsely on the as-prepared superhydrophobic foils during cooling and can be liquid without ice formation for more than 30 min after being continuously cooled to 0 °C. Such foils have significant application prospects in high-efficient heat exchangers and products operating under low temperature.

  2. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  3. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    SciTech Connect

    Liu Kesong; Li Zhou [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang Weihua [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang Lei [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-12-26

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  4. Precipitation of salt in saline water drop on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Shin, Bongsu; Moon, Myoung-Woon; Kim, Ho-Young

    2012-11-01

    In the membrane distillation process, water vapor of heated, pressurized saline water is transported across the membrane to be collected as pure water. While the water-repellency of the membrane surface has been considered an important parameter affecting the distillation efficiency, the resistance of the membrane to the contamination due to salt has gathered little scientific interest thus far. Here we experimentally investigate the precipitation of salt in sessile saline water drops, to find drastic differences in salt crystallization behavior depending on the water-repellency of solid surface. On a moderately hydrophobic surface with a static contact angle with water being about 150 degrees, salt crystals are aligned and stacked along the initial contact line, forming an interesting structure resembling an igloo. On a superhydrophobic surface with about 164 degrees of static contact angle with water, salt crystallizes only at the center of the drop-solid contact area, forming a pebble-shaped structure. We explain this difference by comparing the evaporation modes (constant contact radius versus constant contact angle) of the sessile drops on those surfaces. We also visualize the liquid flow within drops undergoing evaporation and precipitation at the same time using PIV.

  5. Fabrication of patterned surfaces that exhibit variable wettability ranging from superhydrophobicity to high hydrophilicity by laser irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Cho, Handong; Kim, Dongseob; Hwang, Woonbong

    2014-01-01

    We present a simple method for fabricating patterned surfaces that exhibit different wettabilities in different areas using laser machining. This process can be extended to form complex and large patterns. The first step is the preparation of a superhydrophobic base surface on the aluminum specimen through formation of hierarchical micro- and nanostructures and coating of a self-assembled monolayer. This base surface is then patterned using a laser, which is moved along the surface using a computerized routing system. It was found that the surface hierarchical structures melted to a greater degree with an increase in the laser power used. However, with increases in the laser power, the degree of melting as well as the melted area increased, causing the wettability of the surface to change drastically and making the surface more hydrophilic. In addition, new crumb-like nanostructures were formed for high laser powers, which made the surface rougher and also increased its hydrophilicity. Further, when the rate at which the laser was moved across the machined surface was increased, the contact angle of the irradiated surface decreased for the same laser power. Finally, complex patterns, including stripes and circles, having different wettabilities in different area could be successfully fabricated.

  6. Evolution and environmental degradation of superhydrophobic aspen and black locust leaf surfaces

    NASA Astrophysics Data System (ADS)

    Tranquada, George Christopher

    The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nanoscale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.

  7. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions.

    PubMed

    Ogihara, Hitoshi; Xie, Jing; Saji, Tetsuo

    2015-01-01

    We fabricated superhydrophobic and transparent silica nanoparticle (SNP) films on glass plates via spray-coating technique. When suspensions containing 1-propanol and hydrophobic SNPs were sprayed over glass plates that were modified with dodecyl groups, superhydrophobic and transparent SNP films were formed on the substrates. Surface energy of the glass plates had a significant role to obtain superhydrophobic and transparent SNP films. SNP films did not show superhydrophobicity when bare glass plates were used as substrates, because water droplets tend to adhere the exposed part of the hydrophilic glass plate. Glass plates having extreme low surface energy were not also suitable because suspension solution was repelled from the substrates, which resulted in forming non-uniform SNP films. PMID:25310579

  8. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  9. Wetting and Dewetting on Superhydrophobic Surfaces with Two-Tier Roughness

    Microsoft Academic Search

    Jonathan Boreyko; Chuan-Hua Chen

    2010-01-01

    Many natural superhydrophobic structures, such as the lotus leaf, demonstrate hierarchal two-tier roughness. The hierarchal roughness is empirically known to promote robust superhydrophobicity, but the mechanism is still under debate. Here, we report the wetting and dewetting properties of two-tier roughness as a function of the wettability of the working fluid, where the surface tension of the water\\/ethanol mixture is

  10. Plastron-Mediated Growth of Captive Bubbles on Superhydrophobic Surfaces.

    PubMed

    Huynh, So Hung; Zahidi, Alifa Afiah Ahmad; Muradoglu, Murat; Cheong, Brandon Huey-Ping; Ng, Tuck Wah

    2015-06-23

    Captive bubbles on a superhydrophobic (SH) surface have been shown to increase in volume via injection of air through the surrounding plastron. The experimental contact diameter against volume trends were found to follow that predicted by the Surface Evolver simulation generally but corresponded with the simulated data at contact angle (CA) = 158° when the volume was 20 ?L but that at CA = 170° when the volume was increased to 180 ?L. In this regime, there was a simultaneous outward movement of the contact line as well as a small reduction in the slope that the liquid-air interface makes with the horizontal as air was injected. At volumes higher than 180 ?L, air injection caused the diameter to reduce progressively until detachment. The inward movement of the contact line in this regime allowed the bubble body to undergo shape deformations to stay attached onto the substrate with larger volumes (300 ?L) than predicted (220 ?L at CA = 170°) using simulation. In experiments to investigate the effect of translating the SH surface, movement of captive bubbles was possible with 280 ?L volume but not with 80 ?L volume. This pointed to the possibility of transporting gas-phase samples on SH surfaces using larger captive bubble volumes. PMID:25986160

  11. Characterization of Si Nanostructured Surfaces

    SciTech Connect

    Brueck, S.R.J.; Gee, James M.; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texturing of Si to enhance absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broadband reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large ({approximately}42 cm{sup 2}) area solar cells, Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350-680 mu), but significantly higher IR (700-1200 nm) efficiency.

  12. Nanoparticle-Based Surface Modifications for Microtribology Control and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Hurst, Kendall Matthew

    2010-11-01

    The emergence of miniaturization techniques for consumer electronics has brought forth the relatively new and exciting field of microelectromechanical systems (MEMS). However, due to the inherent forces that exist between surfaces at the micro- and nanoscale, scientists and semiconductor manufacturers are still struggling to improve the lifetime and reliability of complex microdevices. Due to the extremely large surface area-to-volume ratio of typical MEMS and microstructured surfaces, dominant interfacial forces exist which can be detrimental to their operational lifetime. In particular, van der Waals, capillary, and electrostatic forces contribute to the permanent adhesion, or stiction , of microfabricated surfaces. This strong adhesion force also contributes to the friction and wear of these silicon-based systems. The scope of this work was to examine the effect of utilizing nanoparticles as the basis for roughening surfaces for the purpose of creating films with anti-adhesive and/or superhydrophobic properties. All of the studies presented in this work are focused around a gas-expanded liquid (GXL) process that promotes the deposition of colloidal gold nanoparticles (AuNPs) into conformal thin films. The GXL particle deposition process is finalized by a critical point drying step which is advantageous to the microelectromechanical systems and semiconductor (IC) industries. In fact, preliminary results illustrated that the GXL particle deposition process can easily be integrated into current MEMS microfabrication processes. Thin films of AuNPs deposited onto the surfaces of silicon-based MEMS and tribology test devices were shown to have a dramatic effect on the adhesion of microstructures. In the various investigations, the apparent work of adhesion between surfaces was reduced by 2-4 orders of magnitude. This effect is greatly attributed to the roughening of the typically smooth silicon oxide surfaces which, in turn, dramatically decreases the "real are of contact" between two contacting surfaces. The studies found that AuNP thin films produced using the lowest initial concentrations of nanoparticles in solution produced estimated real contact areas of around 1%, reducing the adhesion of oxidized Si (100) surfaces from about 37 mJ/m2 down to 0.02 mJ/m 2. In addition, the reducing in real contact area effectively reduced the coefficient of static friction between silicon-based surfaces due to the extremely high dependence of stiction on friction and wear at the microscale. This work also investigated methods of permanently immobilizing AuNP-based films on the silicon surfaces of microstructures in order to create more mechanically robust coatings. The use of organic self-assembled monolayers (SAMs) functionalized with tail-groups known to bond to metallic surfaces were effective in producing much more durable coatings as opposed to non-immobilized AuNP films. Chemical vapor deposition (CVD) techniques were also used to coat rough AuNP films with very thin films of silica (SiO2) to create a robust, rough surface. This method was also very effective in creating a durable coating which is capable of reducing the adhesion energy and friction between two microscale surfaces for extended periods of time. Similar CVD techniques were also used to begin investigating the production of alumina nanoparticle-based superhydrophobic films for use in consumer electronics. Overall, the work presented in this dissertation illustrates that engineered nanoparticle-based surface modifications can be extremely effective in the reduction of the inherent interfacial phenomena that exist on microfabricated systems. This work is can potentially lead us into a new age of the miniaturization of mechanical and electronic devices.

  13. Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability

    NASA Astrophysics Data System (ADS)

    Song, Jin-long; Xu, Wen-ji; Liu, Xin; Lu, Yao; Sun, Jing

    2012-09-01

    Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6? water contact angle and 2? tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.

  14. Hydrophobic to superhydrophobic surface modification using impacting particulate sprays

    NASA Astrophysics Data System (ADS)

    Lau, Chun Yat; Vuong, Thach; Wang, Jingming; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2014-08-01

    The roughening or structuring of inherently hydrophobic surfaces to possess microscopic and nanoscopic features can transform them to exhibit superhydrophobicity. The use of impacting particulate sprays here eschews specialized reagents and equipments; is simple, inexpensive, and rapid to implement; creates highly repeatable outcomes; and permits selective region transformation via simple masking. With PTFE, the contact angle transforms from 90° to 150°, in which SEM examination reveals erosive wear mechanisms that are dependent on the impingement angle. The process tends to cause the sample to bulge upwards from the treated surface due to elongation there, and can be mitigated by using lower impingement angles in the particulate spray. A finite element model created enables this characteristic to be related to the action of locked-in surface traction forces. The use of adhesive bonding to a rigid base is shown to be an alternative method to reduce the bulging. A second finite model developed allows knowledge of the right adhesive needed for this. In developing substrates for biochemical analysis, the approach offers very small possibilities for unintended synergistic interactions.

  15. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization.

    PubMed

    Xue, Chao-Hua; Li, Ya-Ru; Zhang, Ping; Ma, Jian-Zhong; Jia, Shun-Tian

    2014-07-01

    Superhydrophobic poly(ethylene terephthalate) (PET) textile surfaces with a self-cleaning property were fabricated by treating the microscale fibers with alkali followed by coating with polydimethylsiloxane (PDMS). Scanning electron microscopy analysis showed that alkali treatment etched the PET and resulted in nanoscale pits on the fiber surfaces, making the textiles have hierarchical structures. Coating of PDMS on the etched fibers affected little the roughening structures while lowered the surface energy of the fibers, thus making the textiles show slippery superhydrophobicity with a self-cleaning effect. Wettability tests showed that the superhydrophobic textiles were robust to acid/alkaline etching, UV irradiation, and long-time laundering. Importantly, the textiles maintained superhydrophobicity even when the textiles are ruptured by severe abrasion. Also colorful images could be imparted to the superhydrophobic textiles by a conventional transfer printing without affecting the superhydrophobicity. PMID:24942304

  16. Comparison of three methods for generating superhydrophobic, superoleophobic nylon nonwoven surfaces

    Microsoft Academic Search

    Rahul Saraf; Hoon Joo Lee; Stephen Michielsen; Jeffery Owens; Colin Willis; Corinne Stone; Eugene Wilusz

    2011-01-01

    This research deals with creating a superhydrophobic\\/superoleophobic surface by preparing a metastable Cassie–Baxter (CB)\\u000a surface. To create a CB surface it is essential to have low surface energy and properly constructed surface morphology. We\\u000a have explored three different techniques to achieve superhydrophobicity and superoleophobicity using hydroentangled nylon\\u000a nonwoven fabric: pulsed plasma polymerization of 1H,1H,2H,2H-perfluorodecyl acrylate (PFAC8), microwave-assisted condensation\\u000a of 1H,1H,2H,2H-perfluorodecyltrimethoxysilane

  17. The preparation of lotus-like super-hydrophobic copper surfaces by electroplating

    Microsoft Academic Search

    Wenjun Xi; Zhenmei Qiao; Chunlei Zhu; Ao Jia; Ming Li

    2009-01-01

    The preparation of super-hydrophobic metal surfaces had to combine rough structures and the surface modifications with low surface energy materials. Although there were different views on it, no experiment was done to prove it yet. In this paper, the structure of natural lotus leaf was observed and the lotus-like surfaces on hydrophilic copper substrates were fabricated via electroplating in large

  18. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing

    NASA Astrophysics Data System (ADS)

    Steele, Adam; Nayak, Barada K.; Davis, Alexander; Gupta, Mool C.; Loth, Eric

    2013-11-01

    A novel method of fabricating titanium superhydrophobic surfaces by ultrafast laser irradiation is reported. The ultrafast laser irradiation creates self-organized microstructure superimposed with nano-scale roughness, after which a fluoropolymer coating is applied to lower the surface energy of the textured surface and achieve superhydrophobicity. The focus of this study is to investigate abrasion effects on this mechanically durable superhydrophobic surface. The mechanical durability is analyzed with linear abrasion testing and microscopy imaging. Linear abrasion tests indicate that these surfaces can resist complete microstructure failure up to 200 abrasion cycles and avoid droplet pinning up to ten abrasion cycles at 108.4 kPa applied pressure, which roughly corresponds to moderate to heavy sanding or rubbing in the presence of abrasive particles. The wear mechanisms are also investigated and the primary mechanism for this system is shown to be abrasive wear with fatigue by repeated plowing. Although these results demonstrate an advancement in mechanical durability over the majority of existing superhydrophobic surfaces, it exemplifies the challenge in creating superhydrophobic surfaces with suitable mechanical durability for harsh applications, even when using titanium.

  19. Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces.

    PubMed

    Motornov, Mikhail; Sheparovych, Roman; Lupitskyy, Robert; MacWilliams, Emily; Minko, Sergiy

    2007-06-15

    We report on a method of fabricating stimuli-responsive core-shell nanoparticles using block copolymers covalently bound to a silica nanoparticle surface. We used the "grafting to" approach to graft amphiphilic block copolymer brushes of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) and poly(styrene-b-4-vinylpyridine) onto silica nanoparticles with two different diameters: colloidal silica 200 nm in diameter and fumed silica 15 nm in diameter. We used the pH-responsive properties of the grafted brush to regulate the interactions between the particles, and between the particles and their environment. We show that this behavior can be applied for a reversible formation of particle aggregates, and can be used to tune and stabilize the secondary aggregates of particles of the appropriate size and morphology in an aqueous environment. The suspensions of the particles form a textured hydrophilic coating on various substrates upon casting and the evaporation of water. Heating above the polymer's glass transition temperature or treatment in acidic water result in back and forth switching between superhydrophobic and hydrophilic surfaces, respectively. PMID:17335841

  20. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  1. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves

    NASA Astrophysics Data System (ADS)

    Hemeda, A. A.; Gad-el-Hak, M.; Tafreshi, H. Vahedi

    2014-08-01

    While the air-water interface over superhydrophobic surfaces decorated with hierarchical micro- or nanosized geometrical features have shown improved stability under elevated pressures, their underwater longevity—-the time that it takes for the surface to transition to the Wenzel state—-has not been studied. The current work is devised to study the effects of such hierarchical features on the longevity of superhydrophobic surfaces. For the sake of simplicity, our study is limited to superhydrophobic surfaces composed of parallel grooves with side fins. The effects of fins on the critical pressure—-the pressure at which the surface starts transitioning to the Wenzel state—-and longevity are predicted using a mathematical approach based on the balance of forces across the air-water interface. Our results quantitatively demonstrate that the addition of hierarchical fins significantly improves the mechanical stability of the air-water interface, due to the high advancing contact angles that can be achieved when an interface comes in contact with the fins sharp corners. For longevity on the contrary, the hierarchical fins were only effective at hydrostatic pressures below the critical pressure of the original smooth-walled groove. Our results indicate that increasing the length of the fins decreases the critical pressure of a submerged superhydrophobic groove but increases its longevity. Increasing the thickness of the fins can improve both the critical pressure and longevity of a submerged groove. The mathematical framework presented in this paper can be used to custom-design superhydrophobic surfaces for different applications.

  2. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng; Zhou, Zhi Ping

    2014-03-01

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  3. Fabrication of a superhydrophobic surface from porous polymer using phase separation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfeng; Xiao, Xinyan; Shi, Yinlong; Wan, Caixia

    2014-04-01

    The present work reports a simple method to fabricate superhydrophobic porous polymeric surfaces by a phase separation process. The method involves the in situ polymerization of butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) in the presence of co-porogens of 1,4-butanediol (BDO) and N-methyl-2-pyrrolidone (NMP) to afford superhydrophobic surfaces with the micro/nano roughness structure. The influences of the polymerization mixture on the morphology and hydrophobicity were investigated by adjusting the composition of the co-porogens and the mass ratio of monomers to co-porogens, respectively. And a precise description of the underlying mechanism of the microstructure formation was presented. The as-prepared surface shows a superhydrophobicity with water contact angle (WCA) of 159.5° and low sliding angle (SA) of 3.1°. Moreover, the superhydrophobic surface shows good chemical stability with better resistance to acid, alkali or salt aqueous solutions and excellent thermal stability. The method is simple and low-cost and can be used for the preparation of the self-cleaning superhydrophobic surfaces.

  4. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.

    PubMed

    Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

    2015-01-14

    Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion. PMID:25522296

  5. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. PMID:22285098

  6. Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene thin films

    Microsoft Academic Search

    Harish C. Barshilia; D. Krishna Mohan; N. Selvakumar; K. S. Rajam

    2009-01-01

    Surface morphology plays an important role in determining the superhydrophobic behavior of solids. To provide insights on the influence of roughness over a wide range, we have carried out a quantitative study of effect of substrate roughness on contact angle and surface free energy (SFE) of sputter deposited superhydrophobic polytetrafluoroethylene thin films. An optimum value for substrate roughness has been

  7. Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films

    Microsoft Academic Search

    Lise-Marie Lacroix; Michaël Lejeune; Laura Ceriotti; Martin Kormunda; Tarik Meziani; Pascal Colpo; François Rossi

    2005-01-01

    The present paper describes the process enabling the production of superhydrophobic surfaces by tailoring their surface topography and chemical properties. These surfaces have been developed using a simple plasma based techniques combining plasma etching and plasma polymerization on silicon substrates. These techniques have been chosen because they provide features such as large area processing and high reproducibility. The key step

  8. Fabrication of superhydrophobic surfaces on flexible fluorinated foils by using dual-scale patterning

    NASA Astrophysics Data System (ADS)

    Ferchichi, A. K.; Panabière, M.; Desplats, O.; Gourgon, C.

    2014-04-01

    This paper investigates the interest of combining NanoImprint Lithography with plasma treatment in order to easily create dual-scale superhydrophobic surfaces on flexible fluorinated foils. The studies were led on FEP and PCTFE materials with conditions compatible with standard NIL equipments. Different pattern geometries, densities and aspect ratio have been investigated and we show that patterning at a nanometer scale improves hydrophobic behaviour compared to microstructuration. Water-contact angle (WCA) of 154° (and water contact angle hysteresis of 11 ± 2°) were measured, which corresponds to a superhydrophobic surface. However, patterning large surfaces at nanoscale with a high aspect ratio is more difficult to achieve and limits the use of such a process for industrial applications. So, we have decided to induce a nanopatterning on microstructures previously printed using plasma etching. This plasma roughening leads to a highly superhydrophobic surface and WCA values as high as 170°.

  9. From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces.

    PubMed

    Xu, Wei; Choi, Chang-Hwan

    2012-07-13

    This study explores how surface morphology affects the dynamics of contact line depinning of an evaporating sessile droplet on micropillared superhydrophobic surfaces. The result shows that neither a liquid-solid contact area nor an apparent contact line is a critical physical parameter to determine the depinning force. The configuration of a contact line on a superhydrophobic surface is multimodal, composed of both two phases (liquid and air) and three phases (liquid, solid, and air). The multimodal state is dynamically altered when a droplet recedes. The maximal three-phase contact line attainable along the actual droplet boundary is found to be a direct and linear parameter that decides the depinning force on the superhydrophobic surface. PMID:23030167

  10. Facile fabrication of superhydrophobic surfaces on zinc substrates by displacement deposition of Sn

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Liu, Jun; Huang, Wei; Li, Zelin

    2013-01-01

    Facile preparation of superhydrophobic surfaces of stable and cheap metals is practically important. We report here our findings on fabrication of a superhydrophobic metal Sn surface, which can be obtained at room temperature in 5 min through a displacement reaction between a zinc plate and an acidic SnCl2 solution without needing post-treatment and surface modification. This procedure is facile, time-saving and inexpensive, which is superior to other known displacement depositions of Pt, Ag, Au, or Cu. The effects of preparation conditions on the surface morphology and wettability have been investigated in detail, including reactant concentration and reaction time. It has been observed that superhydrophobicity was closely related with the morphological transition from tin nanoparticles/nanopores to tin dendrites, and the maximal water contact angle (CA) was about 156° with the Cassie state. We expect that this fabrication technique will find practical applications.

  11. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    PubMed Central

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  12. Cutting a drop of water pinned by wire loops using a superhydrophobic surface and knife.

    PubMed

    Yanashima, Ryan; García, Antonio A; Aldridge, James; Weiss, Noah; Hayes, Mark A; Andrews, James H

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  13. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.

    PubMed

    Balu, Balamurali; Breedveld, Victor; Hess, Dennis W

    2008-05-01

    Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydrophobic. Superhydrophobicity on cellulose paper was obtained by domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor. Variation of plasma treatment yielded two types of superhydrophobicity : "roll-off" (contact angle (CA), 166.7 degrees +/- 0.9 degrees ; CA hysteresis, 3.4 degrees +/- 0.1 degrees ) and "sticky" (CA, 144.8 degrees +/- 5.7 degrees ; CA hysteresis, 79.1 degrees +/- 15.8 degrees ) near superhydrophobicity. The nanometer scale roughness obtained by delineating the internal roughness of each fiber and the micrometer scale roughness which is inherent to a cellulose paper surface are robust when compared to roughened structures created by traditional polymer grafting, nanoparticle deposition, or other artificial means. PMID:18315020

  14. Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil

    NASA Astrophysics Data System (ADS)

    Qu, Mengnan; He, Jinmei; Cao, Biyun

    2010-10-01

    Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

  15. Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Wu, Dongxiao; Yang, Ji; Lei, Shumei; Kuang, Tongchun; Zhu, Bin

    2011-08-01

    Biomimic superhydrophobic surfaces with contact angle greater than 150° and low sliding angle on copper substrate were fabricated by means of a facile solution immersion and surface self-assembly method. The scanning electron microscopy showed a nanoneedle structure copper surface with sporadic flower-like aggregates after treatment with sodium hydroxide and potassium persulfate solution. X-ray photoelectron spectroscopy and X-ray diffraction results confirmed that the formed nanoneedles were crystallized Cu(OH) 2. And the hydrophilic Cu(OH) 2 surface can be further modified into superhydrophobic through surface self-assembly with dodecanoic acid.

  16. Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Step

    Microsoft Academic Search

    Laura Vogelaar; Rob G. H. Lammertink; Matthias Wessling

    2006-01-01

    A fast and reliable method is reported for fabricating superhydrophobic surfaces. The method combines microstructure replication with polymer phase inversion and can be applied to a wide variety of polymers. This method provides a surface that contains roughness on two independently controllable levels, i.e., the microstructure level and the level of porosity stemming from the phase inversion. Both levels were

  17. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  18. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium

    Microsoft Academic Search

    V. K. Truong; H. K. Webb; E. Fadeeva; B. N. Chichkov; A. H. F. Wu; R. Lamb; J. Y. Wang; R. J. Crawford; E. P. Ivanova

    2012-01-01

    Superhydrophobic titanium surfaces fabricated by femtosecond laser ablation to mimic the structure of lotus leaves were assessed for their ability to retain coccoid bacteria. Staphylococcus aureus CIP 65.8, S. aureus ATCC 25923, S. epidermidis ATCC 14990 and Planococcus maritimus KMM 3738 were retained by the surface, to varying degrees. However, each strain was found to preferentially attach to the crevices

  19. Effective Slip over Superhydrophobic Surfaces in Thin Channels Francois Feuillebois,1

    E-print Network

    Bazant, Martin Z.

    that liquid slippage occurs at smooth hydrophobic surfaces and can be described by the boundary condition [6, and b the slip length, which can reach tens of nm [9]. A mechanism for large slippage involves [17]. The quantitative understanding of liquid slippage past superhydrophobic surfaces is still

  20. Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina

    Microsoft Academic Search

    Jiadao Wang; Ang Li; Haosheng Chen; Darong Chen

    2011-01-01

    The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina

  1. A Facile Method for Preparation of Superhydrophobic Surfaces with Poly(furfuryl Alcohol)\\/PTFE Composites

    Microsoft Academic Search

    Xue-Hu Men; Zhao-Zhu Zhang; Jin Yang; Kun Wang; Wei Jiang

    2010-01-01

    A stable superhydrophobic surface have been fabricated with poly(furfuryl alcohol) (PFA)\\/polytetrafluoroethylene (PTFE) composite coatings on steel substrates by using a facile method. The observation of field emission scanning electron microscopy revealed that the hierarchical microstructures formed on the surfaces are controlled by varying the curing temperature. This method can be easily operated on substrates of steel, therefore is readily developed

  2. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    PubMed

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials. PMID:24016423

  3. Mimicking the stenocara beetle--dewetting of drops from a patterned superhydrophobic surface.

    PubMed

    Dorrer, Christian; Rühe, Jürgen

    2008-06-17

    This paper describes the preparation of superhydrophobic surfaces that have been selectively patterned with circular hydrophilic domains. These materials mimicked the back of the stenocara beetle and collected drops of water if exposed to mist or fog. Under the effect of gravity, the drops dewetted from the hydrophilic regions once a critical volume had been reached. The surface energy in the hydrophilic regions was carefully controlled and assumed various values, allowing us to study the behavior of drops as a function of the superhydrophobic/hydrophilic contrast. We have investigated the development of drops and quantitatively analyzed the critical volumes as a function of several parameters. PMID:18489186

  4. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation.

    PubMed

    Wang, Chuanxi; Yao, Tongjie; Wu, Jie; Ma, Cheng; Fan, Zhanxi; Wang, Zhaoyi; Cheng, Yuanrong; Lin, Quan; Yang, Bai

    2009-11-01

    Metal copper mesh with superhydrophobic and superoleophilic surface had been successfully fabricated via a facile solution-immersion process. The hierarchical structure was prepared on the commercial copper mesh surface by etching with the nitric acid. After being modified by 1-hexadecanethiol (HDT), the as-prepared mesh indicated both superhydrophobic and superoleophilic property simultaneously. This as-prepared metal mesh could then be applied for oil and water mixture separation. The unusual wettability of the as-prepared mesh was stable in corrosive conditions, such as acidic, basic, and salt solutions. The solution-immersion method was simple, time-saving, and inexpensive and therefore exhibited great potential application. PMID:20356134

  5. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Che, Yanhui; Liu, Yanhua; Qiang, Xiaohu; Wang, Yanping

    2013-10-01

    This work develops a facile and environment-friendly method for preparing the superhydrophobic aluminium alloy surface with excellent corrosion resistance. The superhydrophobic aluminium alloy surface is fabricated by the boiling water treatment and stearic acid (STA) modification. Results show that the boiling water treatment endows the aluminium alloy surface with a porous and rough structure, while STA modification chemically grafts the long hydrophobic alkyl chains onto the aluminium alloy surface. Just grounded on the micro- and nano-scale hierarchical structure along with the hydrophobic chemical composition, the superhydrophobic aluminium alloy surface is endued the excellent corrosion resistance.

  6. Fabrication of super-hydrophobic surface on copper surface by polymer plating

    Microsoft Academic Search

    Zhixin Kang; Qi Ye; Jing Sang; Yuanyuan Li

    2009-01-01

    The 6-(N-allyl-1,1,2,2-tetrahydroperfluorodecyl)amino-1,3,5-triazine-2,4-dithiol monosodium) (ATP) was used to fabricate polymeric thin film on pure copper plate to achieve super-hydrophobic surface. The copper plates were pretreated to gain rough surfaces by chemical etching before polymer plating. The polymer plating process of ATP on copper in Na2CO3 aqueous solution and the growth mechanism of poly(6-(N-allyl-1,1,2,2-tetrahydro-perfluorodecyl) amino-1,3,5-triazine-2,4-dithiol) (PAT) thin film was studied by means

  7. Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Fang, Liang; Tang, An-qiong; Huang, Qiu-liu; Hu, Jia; Mao, Jian-hui; Bai, Ge; Bai, Huan

    2011-10-01

    A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 ± 1.2°, and the sliding angle was 5°. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.

  8. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.

    PubMed

    Wu, Xufeng; Shi, Gaoquan

    2006-06-15

    The present work reports a simple and economic route for production and characterization of stable superhydrophobic surfaces from thin copper layers coated on arbitrary solid substrates. The thin copper layer was anodized in a 2 M aqueous solution of potassium hydroxide to form a thin film of copper hydroxide nanoneedles; then the film was reacted with n-dodecanethiol to form a thermally stable Cu(SC12H25)2 superhydrophobic coating. The contact angle of the modified nanoneedle surface was higher than 150 degrees , and its tilt angle was smaller than 2 degrees . Furthermore, the surface fabricated on copper foil kept its superhydrophobic property after heating at 160 degrees C in air for over 42 h. This technique has also been applied for fabrication of copper wire with superhydrophobic submicrofiber coating to mimic water strider legs. The maximal supporting force of the superhydrophobic copper column has also been investigated in comparison to real water striders. PMID:16771392

  9. A versatile cost-effective and one step process to engineer ZnO superhydrophobic surfaces on Al substrate

    NASA Astrophysics Data System (ADS)

    Siddaramanna, Ashoka; Saleema, N.; Sarkar, D. K.

    2014-08-01

    Multifunctional superhydrophobic surfaces based on photocatalytic material, ZnO have generated significant research interest from both fundamental and potential applications. Superhydrophobic ZnO surfaces are usually made in multi steps by creating rough surface and subsequent hydrophobization by low-surface-energy materials. Herein, a simple and one step chemical bath deposition has been developed to prepare superhydrophobic ZnO surfaces on aluminum substrate. The aluminum surfaces covered with randomly distributed ZnO particles can not only present multiscale surface roughness, but also readily coordinate with fatty acid, leading to special wettability. The contact angle of the resulting superhydrophobic surface reaches up to 165 ± 2° and contact angle hysteresis of 4°. The contact angle and contact angle hysteresis variation as a function of particle size has been discussed systematically based on surface morphology.

  10. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface

    NASA Astrophysics Data System (ADS)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Yuan, Yuan; Zhao, Xuetong; Zhuang, Aoyun; Zhang, YiYi

    2015-03-01

    Aluminum is one of the most widely used metals in transmission lines. Accumulation of ice on aluminum may cause serious consequences such as tower collapse and power failure. Here we develop a method to fabricate a coral-like superhydrophobic surface to improve its anti-icing performance via chemical etching and hot-water treatment. The as-prepared surface exhibited superhydrophobicity with a contact angle (CA) of 164.8 ± 1.1° and the sliding angle smaller than 1°. The static and dynamic anti-icing behaviors of the superhydrophobic surface in different conditions were systematically investigated using a self-made device and artificial climate laboratory. Results show that the coral-like superhydrophobic structure displayed excellent anti-icing property. The water droplet remained unfrozen on the as-prepared surface at -6 °C for over 110 min. 71% of the surface was free of ice when exposed in "glaze ice" for 30 min. This investigation proposed a new way to design an anti-icing surface which may have potential future applications in transmission lines against ice accumulation.

  11. A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property

    NASA Astrophysics Data System (ADS)

    Li, Jian; Liu, Xiaohong; Ye, Yinping; Zhou, Huidi; Chen, Jianmin

    2011-12-01

    The present work reports a simple and time-saving method to fabricate cupric stearate film on zinc substrate by a solution-immersion process. Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering its surface energy. The fabrication of superhydrophobic cupric stearate surface is reported using a one-step process by immersing a zinc plate coated with copper into the stearic acid solution, simplifying the complexity of two different steps involved in the conventional methods. The surface of the zinc plate coated with copper is found to be covered with low surface energy cupric stearate film providing the water contact angle of 160 ± 1° with the rolling off properties. In addition, the damaged superhydrophobic surface can restore superhydrophobicity property by immersing the surface into the stearic acid solution again.

  12. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching.

    PubMed

    Xiu, Yonghao; Zhang, Shu; Yelundur, Vijay; Rohatgi, Ajeet; Hess, Dennis W; Wong, C P

    2008-09-16

    Silicon is employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors, and detectors. In this paper, Au-assisted etching of silicon has been used to prepare superhydrophobic surfaces that may add unique properties to such devices. Surfaces were characterized by contact angle and contact angle hysteresis. Superhydrophobic surfaces with reduced hysteresis were prepared by Au-assisted etching of pyramid-structured silicon surfaces to generate hierarchical surfaces. Consideration of the Laplace pressure on hydrophobized hierarchical surfaces gives insight into the manner by which contact is established at the liquid/composite surface interface. Light reflectivity from the etched surfaces was also investigated to assess application of these structures to photovoltaic devices. PMID:18710271

  13. Thermoresponsive PNIPAAm-modified cotton fabric surfaces that switch between superhydrophilicity and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Wang, Qihua; Wang, Tingmei

    2012-03-01

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the cotton fabric by atom transfer radical polymerization (ATRP). Introducing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) onto the surface, the density of PNIPAAm chains can be adjusted because of the competitive reactions of (3-aminopropyl) triethoxysilane (APS) and PFDTS. With the appropriate ratio of APS and PFDTS, the cotton fabric can be switched from superhydrophilic to superhydrophobic by controlling temperature. The prepared cotton fabric may find application in functional textiles, soft and folding superhydrophobic materials.

  14. A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface

    NASA Astrophysics Data System (ADS)

    Li, Feng; Geng, Xingguo; Chen, Zhi; Zhao, Lei

    2012-01-01

    This article has presented a novel method to fabricate superhydrophobic metal carboxylate surface on substrates like copper, ferrum, etc. This method markedly shortened the fabrication time to less than one second. The superhydrophobic effect is even better that the contact angle (CA) is 170±1° and the sliding angle (SA) <2°. Scanning electron microscopy (SEM) images showed micro-nano flower-like structures. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed that the flower-like structures are composed of Cu[CH3(CH2)12COO]2. The ethanol solution containing fatty acid and metal salt plays a key role in this method. This method has tremendous potentials in industrial production of superhydrophobic materials.

  15. A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property

    Microsoft Academic Search

    Jian Li; Xiaohong Liu; Yinping Ye; Huidi Zhou; Jianmin Chen

    The present work reports a simple and time-saving method to fabricate cupric stearate film on zinc substrate by a solution-immersion process. Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering its surface energy. The fabrication of superhydrophobic cupric stearate surface is reported using a one-step process by immersing a zinc plate coated with copper into the

  16. Effect of contact angle hysteresis on water droplet evaporation from super-hydrophobic surfaces

    Microsoft Academic Search

    S. A. Kulinich; M. Farzaneh

    2009-01-01

    Small water drops demonstrate different evaporation modes on super-hydrophobic polymer surfaces with different hysteresis of contact angle. While on the high-hysteresis surface evaporation follows the constant-contact-diameter mode, the constant-contact-angle mode dominates on the low-hysteresis surface. These modes were previously reported for smooth hydrophilic and hydrophobic surfaces, respectively. The experimental data are compared to the previous models describing spherical cap drops

  17. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.

    PubMed

    Boinovich, Ludmila; Emelyanenko, Alexandre M

    2014-10-28

    The study of the adhesion of solid and liquid aqueous phases to superhydrophobic surfaces has become an attractive topic for researchers in various fields as a vital step in the design of icephobic coatings. The analysis of the available results shows that the experimentally measured values of adhesion strength for superhydrophobic substrates, which in some cases are quite small, are still essentially higher than might be expected from the portion of the actual wetted area. In this study we have considered the peculiarities of the three-phase contact zone between sessile supercooled water or ice droplets and a superhydrophobic coating at negative temperatures (below 0 °C) and during the water-ice phase transition. Two types of superhydrophobic coatings with very different textures were used to analyze the evolution of shape parameters of a sessile water droplet during droplet cooling and freezing. It was shown that the evolution of the contact angle and droplet contact diameter of a water droplet deposited on a superhydrophobic surface does not undergo essential changes when the droplet is cooled simultaneously with the substrate and the surrounding environment, and the humidity is maintained close to 100% during the cooling process. However, the phase transition from supercooled water to ice droplets leads to the growth of a metastable iced meniscus and a frost halo in the vicinity of the three-phase contact zone. The meniscus effectively increases the area of adhesive contact between the droplet and the substrate. This phenomenon is intrinsically related to the release of the heat of crystallization and is responsible for the enhancement of adhesion to a superhydrophobic substrate upon droplet transition from supercooled water to ice. At the same time, it was shown that the metastable state of the above meniscus leads to its spontaneous sublimation during exposure at negative temperatures. PMID:25286023

  18. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  19. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf

    Microsoft Academic Search

    Jinyou Lin; Yu Cai; Xianfeng Wang; Bin Ding; Jianyong Yu; Moran Wang

    2011-01-01

    Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica

  20. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  1. Anisotropically microstructured and micro/nanostructured polypropylene surfaces

    NASA Astrophysics Data System (ADS)

    Rasilainen, Tiina; Suvanto, Mika; Pakkanen, Tapani A.

    2009-07-01

    Anisotropically microstructured and hierarchically micro/nanostructured surfaces were fabricated on polypropylene by injection moulding. Microstructured mould inserts were obtained by structuring electropolished aluminium foils with a micro-working robot, and hierarchically structured mould inserts by anodizing the microstructured aluminium foils. On both types of inserts, the microstructures were anisotropic, consisting of alternating smooth and microstructured zones. Anisotropy, and other properties of microstructures, can be controlled by adjusting the parameters of the micro-working robot. The mould inserts were used to prepare micro- and hierarchically structured polypropylene discs by injection moulding. Replication accuracy at both structure levels can be controlled through the moulding conditions. The behaviour of water on the structures was characterized by measuring the contact and sliding angles parallel and perpendicular to the microstructured zones. Surfaces with microstructures alone were highly hydrophobic, where water droplets adopted the Wenzel state and had clearly different parallel and perpendicular contact angles. Surfaces with dual structures had contact angles near 170° and sliding angles near 0°, and again the angles in parallel and perpendicular directions differed. Superhydrophobic, anisotropic Cassie-Baxter state was achieved.

  2. Facile fabrication of superhydrophobic Cu(OH)2 nanorod and CuO nanosheet arrays on copper surface.

    PubMed

    Guo, Yonggang; Wu, Haihong; Li, Yongxiang; Jiang, Cheng; Wang, Qihua; Wang, Tingmei

    2012-03-01

    Cu(OH)2 nanorod and CuO nanosheet arrays have been successfully grown on the copper surfaces by a simple one-step solution-immersion process at ambient temperature and pressure. After the chemical modification with 1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane, the wettability of the copper substrate changed from superhydrophilic to superhydrophobic. Meanwhile, the sliding angle of the superhydrophobic surface is less than 5 degrees. It is confirmed that both the synergic effect of the surface morphology and the surface free energy contribute to this unique surface water repellence. Furthermore, the as-prepared surfaces were stable even after a long-term storage, and retained good superhydrophobicity for corrosive liquids. Such special superhydrophobic properties will greatly extend the applications of copper in many other important industrial fields. PMID:22755004

  3. Extreme water repellency of nanostructured low-surface-energy non-woven Bongsu Shin,a

    E-print Network

    Kim, Ho-Young

    (polyethyleneterephthalate), cellulose, poly- ester and nylon, renders the textiles superhydrophobic.23­28 As the roughness-sized water drop. We also show that the surface maintains its superhydrophobicity after water­8 or nanoscale5­17 to impose superhydrophobicity on flat substrates since the work of Onda et al.,18 the early

  4. Optimal geometrical design for superhydrophobic surfaces: effects of a trapezoid microtexture.

    PubMed

    Li, W; Cui, X S; Fang, G P

    2010-03-01

    It is now becoming possible to control and tailor micro/nanoscale chemical structures with different geometrical patterns on various substrates to achieve so-called superhydrophobic surfaces, which show promising industrial applications. In spite of significant advances in preparation of such surfaces, to date the effects of surface patterns or geometries on superhydrophobicity have not been understood completely, in particular, in the theoretical aspect. It has therefore been a challenge to design optimal geometry for ideal superhydrophobic behavior. In this study, a trapezoid microtextured superhydrophobic surface has been thermodynamically analyzed using a 2-D model. Furthermore, based on the calculations of free energy (FE) and free energy barrier (FEB), the effects of all the geometrical parameters for the trapezoid microtexture on contact angle (CA) and contact angle hysteresis (CAH) have been investigated systematically. It is demonstrated that besides height, base angle plays a significant important role in equilibrium contact angle (ECA) and CAH; in particular, a critical base angle for the present geometrical system is necessary for the transition from noncomposite to composite states. Moreover, the trapezoid base width affects strongly various CAs; a small base width is necessary for the large ECA and the small CAH. However, the effects of trapezoid base spacing are considerably complex. For the above transition, a small base spacing is necessary, but decreasing base spacing can decrease the ECA only for the composite state and can increase CAH only for the noncomposite state. Based on the above findings, some fundamental principles for the design of optimal geometry of ideal superhydrophobic surfaces are therefore suggested, which are also consistent with the experimental observations and previous theoretical investigations. PMID:20112932

  5. Electro-osmotic Flow over a Charged Super-hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2013-11-01

    A super-hydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many applications in microfluidics. However, recent theoretical studies suggested that electro-osmotic flows over a weakly charged, super-hydrophobic surface can only be enhanced when liquid-gas interfaces are charged. So far there is little work reported when the zeta potential of the surface is comparable or even larger than the thermal potential. Here we numerically investigate electro-osmotic flows over a periodically striped slip-stick surface by solving the standard Poisson-Nernst-Planck equations. Our results indicate that at large zeta potentials, even if liquid-gas interfaces are charged, the non-uniform surface conduction due to the mismatch between surface conductions over no-shear and no-slip regions leads to electric field lines penetrating the double layer and thus the non-uniform surface conduction weakens the tangential component of the electric field which primarily drives electro-osmotic flows. Our results imply that in the presence of strong non-uniform surface conduction, enhanced electro-osmotic flows over a super-hydrophobic surface are possible only in certain conditions. In particular, the enhancement due to the slip can potentially be lost at large zeta potentials.

  6. Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties

    Microsoft Academic Search

    J. Fresnais; J. P. Chapel; L. Benyahia; F. Poncin-Epaillard

    2009-01-01

    Superhydrophobic surfaces correspond to hydrophobic surfaces whose water contact angle is higher than 150°. Two new routes involving plasma technique are proposed to prepare such surfaces: the first one is a one-step process (CF4 plasma modification of low density polyethylene), and the second involves two steps (O2 plasma treatment followed by CF4 plasma treatment). The plasma parameters are defined to

  7. A simple method to fabricate the different extents of superhydrophobic surfaces

    Microsoft Academic Search

    Jun Wu; Jun Xia; Yu-Ning Zhang; Wei Lei; Bao-Ping Wang

    2010-01-01

    Superhydrophobic surface is obtained by combining micro- and nano-scale ZnO nanowires and hydrophobic Teflon material in our recent experiment. We adopt an alkaline hydrothermal method to fabricate a series of ZnO nanowires surfaces with different roughness, which is realized by carefully controlling Zn-AD concentration. The resulted surfaces all exhibit superhydrophilic traits, where a contact angle below 10° for a 3?L

  8. Topological and chemical investigation on super-hydrophobicity of PTFE surface caused by ion irradiation

    Microsoft Academic Search

    Yan Chen; Ziqiang Zhao; Junfeng Dai; Yingmin Liu

    2007-01-01

    Super-hydrophobic PTFE surfaces were obtained by irradiation of 200keV Xe+ ion with the fluence of 6.2×1013 ions\\/cm2. The contact angle of water on such surface is as large as 161±3°. SEM and XPS were used to investigate how the topological and chemical changes affect the wettability of the irradiated surface. Needle like structures at nanometer scale caused by irradiation are

  9. Processing and properties of transparent super-hydrophobic polymer film with low surface electric resistance

    Microsoft Academic Search

    M. Sasaki; N. Kieda; K. Katayama; K. Takeda; A. Nakajima

    2004-01-01

    Super-hydrophobic films with low electric resistance were prepared by coating the liquid containing both fluoro-acrylic resin and colloidal silica on an ITO-coated polymer film with the suitable repetition of a one-dimensional groove structure on the surface. The hydrophobicity was effectively enhanced by the roughness mixing effect. The formation of ITO layer on the surface of the base-film decreased the surface

  10. Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination

    SciTech Connect

    Kim, Eun-Kyeong; Yeong Kim, Ji [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Sub Kim, Sang, E-mail: sangsub@inha.ac.kr [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2013-01-15

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

  11. Design of an outstanding super-hydrophobic surface by electro-spinning

    NASA Astrophysics Data System (ADS)

    Sarkar, Manas K.; Bal, Kausik; He, Fuen; Fan, Jintu

    2011-05-01

    A duel-layer super-hydrophobic surface, comprising polyvinylidene fluoride (PVDF) and fluorinated silane molecules (FSM), was engineered using electro-spinning a coating onto the glass. Scanning electron microscopy was used to confirm that, by reducing the percentage of PVDF in the spraying solution, the aspect ratio of the nano-beads could be changed and a sharp bead profile obtained. Energy dispersive spectroscopy was employed to ensure the maximum amount of FSM was present on the surface, which assists in achieving a high Water Contact Angle. Using a two-step process, involving PVDF and FSM, nano-beads, with high aspect ratio, were formed on a rough surface which produced a super-hydrophobic surface with a Water Contact Angle of 170.2° and a very low Water Roll-off Angle (<1°). Such a coating facilitates the speedy run-off of water drops from a surface and has many potential applications in buildings and other areas.

  12. Experimental evidence of slippage breakdown for a superhydrophobic surface in a microfluidic device

    E-print Network

    Bolognesi, Guido; Pirat, Christophe

    2014-01-01

    A full characterization of the water flow past a silicon superhydrophobic surface with longitudinal micro-grooves enclosed in a microfluidic device is presented. Fluorescence microscopy images of the flow seeded with fluorescent passive tracers were digitally processed to measure both the velocity field and the position and shape of the liquid-air interfaces at the superhydrophobic surface. The simultaneous access to the meniscus and velocity profiles allows us to put under a strict test the no-shear boundary condition at the liquid-air interface. Surprisingly, our measurements show that air pockets in the surface cavities can sustain non-zero interfacial shear stresses, thereby hampering the friction reduction capabilities of the surface. The effects of the meniscus position and shape as well as of the liquid-air interfacial friction on the surface performances are separately assessed and quantified.

  13. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces

    PubMed Central

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

    2015-01-01

    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

  14. Synthesis of Temperature-Responsive Dextran-MA\\/PNIPAAm Particles for Controlled Drug Delivery Using Superhydrophobic Surfaces

    Microsoft Academic Search

    Ana Catarina Lima; Wenlong Song; Barbara Blanco-Fernandez; Carmen Alvarez-Lorenzo; João F. Mano

    2011-01-01

    Purpose  To implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydrogel beads in which\\u000a the bioactive substance is introduced in the particles during their formation.\\u000a \\u000a \\u000a \\u000a \\u000a Methods   Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed\\u000a by photo-crosslinked dextran-methacrylated and thermal responsive poly(N-isopropylacrylamide) mixed with a protein (insulin or albumin) were dropped on the superhydrophobic

  15. Superhydrophobic Transparent Surface of Nanostructured Poly(Methyl Methacrylate)

    E-print Network

    Kim, Ho-Young

    electronic devices, and solar cell panels, all of which require high transmittance or transparency. However-aspect-ratio nanopatterns on Si (known as black silicon).[6­8] Fluorine-containing gases such as CF4 are widely used at low gas pressures during plasma deposition and the etching of silicon and for insulating substrates

  16. A new method for preparing bionic multi scale superhydrophobic functional surface on X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Yu, Sirong; Wang, Xiaolong; Wang, Wei; Yao, Qiang; Xu, Jun; Xiong, Wei

    2013-04-01

    The hydrophobic property of a rough surface with a low free energy coating was theoretically analyzed in this paper. In order to obtain a superhydrophobic surface, a rough surface morphology must be formed in addition to the low free energy coating on the surface. Through the shot blasting, chemical etching with concentrated hydrochloric acid, and low free energy modification with myristic acid ethanol solution, the superhydrophobic surface was obtained on X70 pipeline steel. The better process parameters for preparing superhydrophobic surface on X70 pipeline steel were obtained. The diameter of the stainless steel shot used in the shot blasting was 0.8-1.0 mm. The concentration of hydrochloric acid was 6 mol/L. The chemical etching time was 320 min. The concentration of myristic acid ethanol solution was 0.1 mol/L. The soaking time in myristic acid ethanol solution was 72 h. After X70 pipeline steel surface was treated using the process parameters mentioned above, the biggest contact angle between the specimen surface and distilled water was 153.5°, and the sliding angle was less than 5°.

  17. One-Step Deposition Process to Obtain Nanostructured Superhydrophobic Thin Films by Galvanic Exchange Reactions

    Microsoft Academic Search

    D. K. Sarkar; R. W. Paynter

    2010-01-01

    Superhydrophobic thin films of silver were fabricated on copper substrates by galvanic ion exchange reactions in a one-step process by immersing copper substrates in silver nitrate solution containing fluoroalkylsilane in different quantities. The X-ray diffraction (XRD) analyses confirmed the formation of silver films on copper substrates and the fractal-like morphological features of the silver films were confirmed using scanning electron

  18. Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining

    NASA Astrophysics Data System (ADS)

    Song, Jinlong; Xu, Wenji; Lu, Yao; Fan, Xujuan

    2011-10-01

    Hierarchical micrometer-nanometer-scale binary rough structures were fabricated on copper substrates by electrochemical machining in a neutral NaCl electrolyte. The rough structures are composed of the micrometer scale potato-like structures and the nanometer scale cube-like structures. After modified by the fluoroalkylsilane, the copper surfaces reached superhydrophobicity with a water contact angle of 164.3° and a water tilting angle less than 9°. This method has a high processing efficiency which can take just 3 s to fabricate the roughness required by the superhydrophobic surface. The effect of the processing time on wettability of the copper surfaces was investigated in this paper. The possible mechanism of the formation of the hierarchical roughness was also proposed, and the wettability of the copper surfaces was discussed on the basis of the Cassie-Baxter theory.

  19. Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic

    NASA Astrophysics Data System (ADS)

    Meng, Keke; Jiang, Yue; Jiang, Zhonghao; Lian, Jianshe; Jiang, Qing

    2014-01-01

    A series of Cu films with different surface structures were fabricated by an improved electric brush-plating technique. In the absence of surface chemical modification, the Cu films exhibited hydrophobic and even superhydrophobic behaviors due to their three-level hierarchical structures. Based on the classical Wenzel and Cassie models, the effects of two dimensionless geometrical parameters (the aspect ratio and the spacing factor of micro-scale structure) on the wetting behaviors of the Cu films were investigated. It was demonstrated that to obtain the stable Cassie superhydrophobic state, the aspect ratio and the water contact angle on the basal surface should be as large as possible and the spacing factor should be limited within a specific range for given aspect ratio and water contact angle on the basal surface.

  20. Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer

    E-print Network

    Xiao, Rong, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

  1. Streaming potential generated by a pressure-driven flow over a super-hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2010-11-01

    The streaming potential generated by a pressured-driven flow over a weakly charged striped slip-stick surface (the zeta potential of the surface is smaller than the thermal potential (25 mV) with an arbitrary double layer thickness is theoretically studied by solving the Poisson-Boltzmann equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also presented, in excellent agreement with the full solution. The streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced when the liquid-gas interface is charged. In addition, as the double layer thickness increases, the advantage of the super-hydrophobic surface diminishes. The impact of a slip-stick surface on the streaming potential might provide guidance for designing novel and efficient microfludic energy conversion devices using a super-hydrophobic surface.

  2. Development of super-hydrophobic PTFE and PET surfaces by means of plasma processes

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Bami, R.; Della Pergola, R.; Riccardi, C.

    2014-11-01

    In this work, Poly(tetrafluoroethylene) and Poly(ethylene terephtalate) substrates were modified by means of plasma techniques for the creation of super-hydrophobic surfaces. Both the materials were etched with an O2 plasma, thus increasing their surface roughness which was investigated by means of Atomic Force Microscopy analysis. Plasma etching of PTFE surfaces under appropriate conditions results in the creation of super-hydrophobic surfaces, as assessed by measurements of dynamic contact angles and sliding angles. Chemical modifications of the PTFE surfaces was investigated with Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy analysis. The realization of super-hydrophobic PET surfaces needs the deposition of a hydrophobic top coating, which was realized through an hexamethyldisiloxane (HMDSO) plasma. The thickness of this top layer was varied by changing the plasma deposition time and the effects on the hydrophobic performances of the modified PET were investigated. Micro-nano structures created by plasma on PTFE and PET surfaces were characterized and correlated with the wettability.

  3. Experimental drag reduction study of super-hydrophobic surface with dual-scale structures

    NASA Astrophysics Data System (ADS)

    Lyu, Sungnam; Nguyen, Dang C.; Kim, Dongseob; Hwang, Woonbong; Yoon, Bumsang

    2013-12-01

    Hydrophobic surfaces with micro- or nanoscale pillars have been attracting considerable interest from scientists. In nature, such surfaces can be found on lotus leaves or under the feet of pond skaters. One significant property of these surfaces is friction drag reduction (FDR). Many studies have been conducted to demonstrate this reduction in terms of laminar and turbulent flows. The slip-length hypothesis is often used to explain this phenomenon. In this study, processes with the advantages of simplicity and cost effectiveness were used to fabricate dual-scale structures. Durable super-hydrophilic and super-hydrophobic surfaces were easily obtained from these structures. FDR was measured on a super-hydrophobic surface and was compared to that on smooth and super-hydrophilic surfaces. The experimental results in a circulating water channel revealed the Reynolds number range within which substantial FDR can occur on a super-hydrophobic surface. The mechanism of FDR and the role of slip are discussed by comparing experimental results.

  4. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.

    PubMed

    Lee, Choongyeop; Nam, Youngsuk; Lastakowski, Henri; Hur, Janet I; Shin, Seungwon; Biance, Anne-Laure; Pirat, Christophe; Cj Kim, Chang-Jin; Ybert, Christophe

    2015-06-01

    Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact. PMID:25959867

  5. Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface

    Microsoft Academic Search

    Bin Ding; Chunrong Li; Yoshio Hotta; Jinho Kim; Oriha Kuwaki; Seimei Shiratori

    2006-01-01

    We report a new approach to convert an electrospun nanofibrous cellulose acetate mat surface from super-hydrophilic to super-hydrophobic. Super-hydrophilic cellulose acetate nanofibrous mats can be obtained by electrospinning hydrophilic cellulose acetate. The surface properties of the fibrous mats were modified from super-hydrophilic to super-hydrophobic with a simple sol-gel coating of decyltrimethoxysilane (DTMS) and tetraethyl orthosilicate (TEOS). The resultant samples were

  6. Preparation of super-hydrophobic surface on biodegradable polymer by transcribing microscopic pattern of water-repellent leaf

    Microsoft Academic Search

    Satoshi Osawa; Masaki Yabe; Makiko Miyamura; Katsumi Mizuno

    2006-01-01

    Super-hydrophobic surface has been prepared onto biodegradable polymer by a combination of transcribing microscopic structure of a water-repellent leaf and a chemical treatment. An aroid leaf has been chosen for the preparation of the super-hydrophobic surface since the leaf has concavity microscopic structure, which is easy to handle for a material use. The microscopic pattern was transcribed onto poly(?-caprolactone) (PCL)

  7. Role of kinks in the dynamics of contact lines receding on superhydrophobic surfaces.

    PubMed

    Gauthier, Anaïs; Rivetti, Marco; Teisseire, Jérémie; Barthel, Etienne

    2013-01-25

    We have investigated the depinning of the contact line on superhydrophobic surfaces with anisotropic periodic textures. By direct observation of the contact line conformation, we show that the mobility is mediated by kink defects. Full 3D simulations of the shape of the liquid surface near the solid confirm that kinks account for the measured wetting properties. This behavior, which is similar to the Peierls-Nabarro mechanism for dislocations, may open perspectives for the optimization of wetting hysteresis by design. PMID:25166177

  8. Fabrication and tribological properties of super-hydrophobic surfaces based on porous silicon

    Microsoft Academic Search

    Y. H. Liu; X. K. Wang; J. B. Luo; X. C. Lu

    2009-01-01

    In the present work, super-hydrophobic surfaces based on porous silicon (PS) were constructed by the self-assembled molecular films and their tribological properties were investigated. A simple chemical etching approach was developed to fabricate PS with the certain rough microstructure surface, which can be observed by the environmental scanning electron microscopy (ESEM). The hydrocarbon and fluorocarbon alkylsilane molecular films were self-assembled

  9. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface.

    PubMed

    Zhang, Xi; Shi, Feng; Yu, Xi; Liu, Huan; Fu, Yu; Wang, Zhiqiang; Jiang, Lei; Li, Xiaoyuan

    2004-03-17

    This communication describes the use of polyelectrolyte multilayer as a preformed matrix in electrochemical deposition to adjust the morphology of gold clusters, and only the surface covered with dendritic gold clusters shows a super-hydrophobic property, with the contact angle above 150 degrees and the tilt angle less than 1.5 degrees , after the surface further chemisorbed with a self-assembled monolayer of n-dodecanethiol. PMID:15012132

  10. Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces

    Microsoft Academic Search

    Jian Li; Jun Fu; Yang Cong; Yang Wu; Longjian Xue; Yanchun Han

    2006-01-01

    A super-hydrophobic surface was obtained on a three-dimensional (3D) polyvinylidene fluoride (PVDF) macroporous film. The porous films were fabricated through self-assembled silica colloidal templates. The apparent water contact angle of the surface can be tuned from 106° to 153° through altering the sintering temperature and the diameter of the colloidal templates. A composite structure of micro-cavities and nanoholes on the

  11. Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material

    Microsoft Academic Search

    M. T. Khorasani; H. Mirzadeh; P. G. Sammes

    1996-01-01

    In order to render the surface of polydimethylsiloxane (PDMS) super-hydrophobic without changing its bulk properties, a PDMS film without photosensitizer was exposed to CO2 pulsed laser, at room temperature, as the excitation source. The modified surfaces have been studied by performing scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDXA) and attenuated total reflectance infrared (ATR-IR) spectroscopy. To

  12. Fabrication of superhydrophobic surfaces on interconnected Cu(OH)2 nanowires via solution-immersion

    Microsoft Academic Search

    Qinmin Pan; Haizu Jin; Hongbo Wang

    2007-01-01

    Superhydrophobic surfaces with a contact angle of about 160° and a tilt angle lower than 4° were fabricated on copper plates via a simple solution-immersion step. Interconnected Cu(OH)2 nanowires were constructed on the copper surface by immersing copper plates in an aqueous solution of sodium hydroxide and potassium persulfate, and the resulting copper plates exhibited excellent superhydrophilic properties. The copper

  13. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.

    PubMed

    Zhang, Dongshi; Chen, Feng; Yang, Qing; Yong, Jiale; Bian, Hao; Ou, Yan; Si, Jinhai; Meng, Xiangwei; Hou, Xun

    2012-09-26

    In this paper, we present a new approach to the tunable adhesive superhydrophobic surfaces consisting of periodic hydrophobic patterns and superhydrophobic structures by femtosecond (fs) laser irradiation on silicon. The surfaces are composed of periodic hydrophobic patterns (triangle, circle, and rhombus) and superhydrophobic structures (dual-scale spikes induced by a fs laser). Our results reveal that the adhesive forces of as-prepared surfaces can be tuned by varying the area ratio (AR(s-h)) of superhydrophobic domain to hydrophobic domain, thus resulting in tunable static and dynamic wettabilities. By increasing AR(s-h), (i) the static wetting property, which is characterized by the minimum water droplet volume that enables a droplet to land on the surface, can be tailored from 1 ?L to 9 ?L; (ii) the sliding angle can be flexibly adjusted, ranging from >90° (a droplet cannot slide off when the sample is positioned upside down) to 5°; and (iii) the droplet rebound behaviors can be modulated from partial rebound to triple rebound. In addition, the Cassie-Baxter model and the sliding angle model are used to speculate the contact angles and sliding angles to provide potentially theoretical models to design slippery-to-sticky superhydrophobic surfaces. The tunable adhesive superhydrophobic surfaces achieved by fs laser microfabrication may be potentially used in microfluidic systems to modulate the mobility of liquid droplets. PMID:22909564

  14. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    NASA Astrophysics Data System (ADS)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ?0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  15. The friction of a mesh-like super-hydrophobic surface

    E-print Network

    Davis, Anthony M J

    2009-01-01

    When a liquid droplet is located above a super-hydrophobic surface, it only barely touches the solid portion of the surface, and therefore slides very easily on it. More generally, super-hydrophobic surfaces have been shown to lead to significant reduction of viscous friction in the laminar regime, so it is of interest to quantify their effective slipping properties as a function of their geometric characteristics. Most previous studies have considered flows bounded by arrays of either long grooves, or isolated solid pillars on an otherwise flat solid substrate, and for which therefore the surrounding air constitutes the continuous phase. Here we consider instead the case where the super-hydrophobic surface is made of isolated holes in an otherwise continuous no-slip surface, and specifically focus on the mesh-like geometry recently achieved experimentally. We present an analytical method to calculate the friction of such a surface in the case where the mesh is thin. The results for the effective slip length ...

  16. Direct numerical simulation of turbulent flows over superhydrophobic surfaces: gas-liquid interface dynamics

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; García-Mayoral, Ricardo; Mani, Ali

    2013-11-01

    Superhydrophobic surfaces can induce large slip velocities for liquid flows, reducing the skin friction on walls, by entrapping gas pockets within the surface roughness. This work explores the onset mechanism leading to gas depletion through interface breakage under turbulent conditions. We conduct direct numerical simulations of flows over superhydrophobic walls. The superhydrophobic texture is conventionally modeled as a pattern of slip/no-slip boundary conditions for the wall-parallel velocities but, to take into account the dynamic deformation of the gas-liquid interface, we also introduce non-zero boundary conditions for the wall-normal velocity. These conditions are derived from the deformation of the interface in response to the overlying turbulent pressure fluctuations, following the Young-Laplace equation. Surface protrusions in the form of posts and streamwise-aligned ridges are studied, and results are presented as a function of the ``deformability'' of the gas-liquid interfaces, expressed as a Weber number. We will also discuss results for misaligned ridges. Superhydrophobic surfaces can induce large slip velocities for liquid flows, reducing the skin friction on walls, by entrapping gas pockets within the surface roughness. This work explores the onset mechanism leading to gas depletion through interface breakage under turbulent conditions. We conduct direct numerical simulations of flows over superhydrophobic walls. The superhydrophobic texture is conventionally modeled as a pattern of slip/no-slip boundary conditions for the wall-parallel velocities but, to take into account the dynamic deformation of the gas-liquid interface, we also introduce non-zero boundary conditions for the wall-normal velocity. These conditions are derived from the deformation of the interface in response to the overlying turbulent pressure fluctuations, following the Young-Laplace equation. Surface protrusions in the form of posts and streamwise-aligned ridges are studied, and results are presented as a function of the ``deformability'' of the gas-liquid interfaces, expressed as a Weber number. We will also discuss results for misaligned ridges. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  17. Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces.

    PubMed

    Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Sadeghi, Gity Mir Mohamad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali

    2015-03-01

    The main aim of the current study was to investigate the effects of different topographical features on the biological performance of polypropylene (PP)/silica coatings. To this end, a novel method including combined use of nanoparticles and non-solvent was used for preparation of superhydrophobic PP coatings. The proposed method led to a much more homogeneous appearance with a better adhesion to the glass substrate. Moreover, a notable reduction was observed in the required contents of nanoparticles (100-20 wt% with respect to the polymer) and non-solvent (35.5-9 vol%) for achieving superhydrophobicity. Surface composition and morphology of the coatings were also investigated via X-ray photoelectron spectroscopy and scanning electron microscopy. Based on both qualitative and quantitative evaluations, it was found that the superhydrophobic coatings with only nano-scale roughness strongly prevented adhesion and proliferation of 4T1 mouse mammary tumor cells as compared to the superhydrophobic surfaces with micro-scale structure. Such results demonstrate that the cell behavior could be controlled onto the polymer and nanocomposite-based surfaces via tuning the surface micro/nano structure. PMID:25687094

  18. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Qing, Yan; Wu, Yiqiang; Liang, Jin; Luo, Sha

    2015-03-01

    Superhydrophobic nanocomposite surfaces were successfully fabricated on wood substrates via a one-step hydrothermal process. The morphology of the nanocomposite surfaces was characterized using scanning electron microscopy (SEM), and the elemental composition was determined via energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) analysis, and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the crystallization of the anatase phase of TiO2 was prevented because of the presence of vinyltriethoxysilane [VTES, CH2CHSi(OC2H5)3] during the hydrothermal process. In addition, the nanocomposite contained Ti/Si particles with diameters ranging from 50 to 100 nm that thoroughly covered the wood substrate. Furthermore, the roughness coupled with the presence of low surface free energy groups led to superhydrophobicity; the static water contact angle (WCA) was as high as 153°, and the sliding angle was very low.

  19. Thermal transport in laminar flow over superhydrophobic surfaces, utilizing an effective medium approach

    NASA Astrophysics Data System (ADS)

    Moreira, David; Bandaru, Prabhakar R.

    2015-05-01

    An analytical methodology to characterizing the effects of heat transport in internal laminar flows over ridged patterns, mimicking superhydrophobic surfaces, is indicated. The finite slip velocity on such surfaces and the thermal conductivity characteristics of the constituent material are both shown to modify the convective heat transport in the fluid. We use an effective medium approach to model the lowered thermal conductivity caused by the presence of air in the ridge interstices. The proposed analytical solutions for fully developed flow were verified through comparison with numerical simulations for a periodically ridged geometry in laminar flow. While the convective heat transport and the Nusselt Number (Nu) increase due to the modified fluid velocity profile on superhydrophobic surfaces, the decrease in the thermal conductivity of the substrate may play a larger role in determining the overall heat transfer in the channel.

  20. Superhydrophobic Surface Enhanced Raman Scattering Sensing using Janus Particle Arrays Realized by Site-Specific Electrochemical Growth

    PubMed Central

    Hricko, Patrick John; Huang, Po-Hsun; Li, Sixing; Zhao, Yanhui; Xie, Yuliang; Guo, Feng; Wang, Lin

    2014-01-01

    Site-specific electrochemical deposition is used to prepare polystyrene (PS)-Ag Janus particle arrays with superhydrophobic properties. The analyte molecules can be significantly enriched using the superhydrophobic property of the PS-Ag Janus particle array before SERS detections, enabling an extremely sensitive detection of molecules in a highly diluted solution (e.g., femtomolar level). This superhydrophobic surface enhanced Raman scattering sensing concept described here is of critical significance in biosensing and bioanalysis. Most importantly, the site-specific electrochemical growth method we developed here is a versatile approach that can be used to prepare Janus particle arrays with different properties for various applications. PMID:24748991

  1. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle.

    PubMed

    Zhai, Lei; Berg, Michael C; Cebeci, Fevzi C; Kim, Yushan; Milwid, John M; Rubner, Michael F; Cohen, Robert E

    2006-06-01

    The present study demonstrates a surface structure that mimics the water harvesting wing surface of the Namib Desert beetle. Hydrophilic patterns on superhydrophobic surfaces were created with water/2-propanol solutions of a polyelectrolyte to produce surfaces with extreme hydrophobic contrast. Selective deposition of multilayer films onto the hydrophilic patterns introduces different properties to the area including superhydrophilicity. Potential applications of such surfaces include water harvesting surfaces, controlled drug release coatings, open-air microchannel devices, and lab-on-chip devices. PMID:16771582

  2. Role of nanoparticles in phase separation and final morphology of superhydrophobic polypropylene/zinc oxide nanocomposite surfaces

    NASA Astrophysics Data System (ADS)

    Hejazi, Iman; Hajalizadeh, Bardia; Seyfi, Javad; Sadeghi, Gity Mir Mohamad; Jafari, Seyed-Hassan; Khonakdar, Hossein Ali

    2014-02-01

    In this work, phase separation process was revisited to study the effect of nanoparticles in acceleration of phase separation and formation of hierarchical structures. Superhydrophobic surfaces were prepared using polypropylene (PP) and the corresponding nanocomposites containing zinc oxide (ZnO) nanoparticles through a typical solution casting method. The wettability and morphological behavior of the surfaces were investigated via water contact angle (WCA) measurements and scanning electron microscopy (SEM), respectively. It was found that upon introduction of ZnO nanoparticles into the pure PP, the obtained surfaces have become superhydrophobic with WCAs above 150° and sliding angles below 10°. Calcination of ZnO nanoparticles was exploited to explicate the unexpected significant loss in superhydrophobicity of the sample loaded with high ZnO content. Crystallization behavior of the samples were also investigated via differential scanning calorimetry and correlated to superhydrophobicity of the surfaces. X-ray photoelectron and Fourier transform infrared spectroscopies were also utilized to further characterize the samples. An attempt was also made to present a more clear mechanism for formation of hierarchical structures which are responsible for superhydrophobicity. Likewise, the so far proposed mechanisms for formation of micro/nano roughness on the superhydrophobic surfaces were reviewed as well.

  3. A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Cui, Zhe; Liang, Bin; Parnas, Richard S.; Lu, Houfang

    2014-06-01

    A metal assisted chemical etching process was proposed to rapidly fabricate super-hydrophobic surfaces on Zn substrates. The influence of three assisting metal ions (Ag+, Cu2+, Cr3+) on the morphology of the fabricated surfaces, and their hydrophobicity after modification by fluorosilane, were studied. This work indicates that the metal ions play an important role on the structure and the hydrophobicity of the prepared surfaces. The rough structure required for super-hydrophobic surfaces, with contact angles of 158 ± 2° and 161 ± 2°, respectively, can be easily obtained within 5 s with Cu2+ or Ag+ assisted chemical etching process. The treatment conditions of Cu2+ assisted chemical etching method were optimized. The sample with the highest contact angle can be achieved when the concentration of Cu(NO3)2 is 0.08 mol L-1, the concentration of HNO3 is 0.6 mol L-1, and the etching time is 5 s at 30 °C. And the prepared superhydrophobic surfaces exhibited enough stability in the air.

  4. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma.

    PubMed

    Irzh, Alexander; Ghindes, Lee; Gedanken, Aharon

    2011-12-01

    We report herein on a very fast and simple process for the fabrication of transparent superhydrophobic surfaces by using microwave (MW) plasma. It was found that the reaction of various organic liquids in MW argon plasma yields hydrophobic polymeric layers on a large assortment of surfaces, including glass, polymeric surfaces, ceramics, metals, and even paper. In most cases, these polymers are deposited as a rough layer composed of 10-15 nm nanoparticles (NPs). This roughness, together with the chemical hydrophobic nature of the coated materials, is responsible for the superhydrophobic nature of the surface. The typical reaction time of the coating procedure was 1-10 s. The stability of these superhydrophobic surfaces was examined outdoors, and was found to last 2-5 days under direct exposure to the environment and to last 2 months when the sample was protected by a quartz cover. A detailed characterization study of the chemical composition of the layers followed using XPS, solid-state NMR, and IR measurements. Modifications were introduced in the products leading to a substantial improvement in the stability of the products outdoors. PMID:22047036

  5. Facile fabrication of superhydrophobic surfaces with low roughness on Ti-6Al-4V substrates via anodization

    NASA Astrophysics Data System (ADS)

    Gao, Yuze; Sun, Yuwen; Guo, Dongming

    2014-09-01

    The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H2O2 mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 ?m and good superhydrophobicity with a water contact angle of 158.5° ± 1.9° as well as a water tilting angle of 5.3° ± 1.1°, but also possess good long-term stability and abrasion resistance.

  6. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Bharathidasan, T.; Kumar, S. Vijay; Bobji, M. S.; Chakradhar, R. P. S.; Basu, Bharathibai J.

    2014-09-01

    The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (?) on silicone based hydrophobic surfaces was ? 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  7. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    PubMed

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 ?L droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ? 9), acids (10 s in dilute HNO3, H2SO4 of pH ? 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria. PMID:25419984

  8. Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly

    Microsoft Academic Search

    Shiheng Yin; Dongxiao Wu; Ji Yang; Shumei Lei; Tongchun Kuang; Bin Zhu

    2011-01-01

    Biomimic superhydrophobic surfaces with contact angle greater than 150° and low sliding angle on copper substrate were fabricated by means of a facile solution immersion and surface self-assembly method. The scanning electron microscopy showed a nanoneedle structure copper surface with sporadic flower-like aggregates after treatment with sodium hydroxide and potassium persulfate solution. X-ray photoelectron spectroscopy and X-ray diffraction results confirmed

  9. Disintegration of a Round Liquid Jet due to Impact on a Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Stoeber, Boris

    2013-11-01

    Liquid jet breakup has several applications such as Inkjet printers, diesel fuel injectors, and paint sprays. Very recently liquid jets have been shown to be useful for small volume transportation (Clestini et al. Soft Matter, 2010), where a micro-scale liquid jet on superhydrophobic surface was investigated. Although the instability of the liquid jet for some circumstances was shown, the disintegration of the liquid jet was not discussed. In the present study, we aim to analyze the breakup of a micro liquid jet due to inclined impact to a superhydrophobic surface. A range of Weber and Reynolds numbers have been explored experimentally. Water-glycerin solution as the working fluid. Generally, it is shown that the liquid jet forms a disc-like film over the surface and further rebounds (``bouncing jet''). A simple energy balance method is provided to estimate the diameter of the disc-like film. It is shown, for the case of low viscosity (large Re), this parameter is logarithmically proportional to the normal Weber number. Additionally, linear stability analysis for viscous jets provides a good estimate of droplet size. From an application point of view, using superhydrophobic surfaces 1) enables rebound of the liquid jet 2) advances the breakup point (shorten the breakup length).

  10. Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces.

    PubMed

    Olin, Pontus; Lindström, Stefan B; Wågberg, Lars

    2015-06-16

    We have investigated the effect of line-shaped topographical defects on the motion of water drops across superhydrophobic wax surfaces using a high-speed video camera. The defects are introduced onto the superhydrophobic wax surfaces by a scratching procedure. It is demonstrated that the motion of a drop interacting with the defect can be approximated by a damped harmonic oscillator. Whether a drop passes or gets trapped by the defect is determined by the incident speed and the properties of the oscillator, specifically by the damping ratio and a nondimensional forcing constant representing the effects of gravity and pinning forces. We also show that it is possible to predict a critical trapping speed as well as an exit speed in systems with negligible viscous dissipation using a simple work-energy consideration. PMID:26010934

  11. Enhancement of the sensitivity of electrochemical stripping analysis by evaporative concentration using a super-hydrophobic surface

    Microsoft Academic Search

    Isao Yanagimachi; Norihiro Nashida; Koichiro Iwasa; Hiroaki Suzuki

    2005-01-01

    A super-hydrophobic surface was used to concentrate a droplet of sample solution evaporatively for the stripping analysis of heavy metal ions. The system consisted of a working electrode at the center and a Ag\\/AgCl reference electrode surrounding the working electrode. Except for the sensitive area, a super-hydrophobic layer was formed with polytetrafluoroethylene (PTFE) beads. A droplet of an aqueous sample

  12. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater

    Microsoft Academic Search

    Tao Liu; Yansheng Yin; Shougang Chen; Xueting Chang; Sha Cheng

    2007-01-01

    Pretreated by a n-tetradecanoic acid (CH3(CH2)12COOH) etch, the super-hydrophobic film was formed on the fresh copper surface. The film structure was probed with contact angle measurement and scanning electron microscopy(SEM). The results suggest that the structure of the film is similar to haulm or flower and the seawater contact angle is larger than 150°. Moreover, the corrosion resistance of bare

  13. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning

    Microsoft Academic Search

    Bin Ding; Tasuku Ogawa; Jinho Kim; Kouji Fujimoto; Seimei Shiratori

    2008-01-01

    We report a new approach for fabricating a super-hydrophobic nanofibrous zinc oxide (ZnO) film surface. The pure poly(vinyl alcohol) (PVA) and composite PVA\\/ZnO nanofibrous films can be obtained by electrospinning the PVA and PVA\\/zinc acetate solutions, respectively. After the calcination of composite fibrous films, the inorganic fibrous ZnO films with a reduced fiber diameter were fabricated. The wettability of three

  14. Detection of Heavy-metal Ions Based on Evaporative Concentration Using a Super-hydrophobic Surface

    Microsoft Academic Search

    Isao Yanagimachi; Norihiro Nashida; Koichiro Iwasa; Hiroaki Suzuki

    2006-01-01

    A concentrator chip which could detect a variety of heavy-metal ions was fabricated. To improve the detection sensitivity, a droplet of a sample solution was concentrated evaporatively using a super-hydrophobic surface formed with polytetrafluoroethylene (PTFE) beads. The system consists of a working electrode at the center, surrounded by an Ag\\/AgCl reference electrode. Square-wave anodic stripping voltammetry was conducted using concentrator

  15. Superhydrophobic nanofibre membranes: effects of particulate coating on hydrophobicity and surface properties

    Microsoft Academic Search

    Jian Fang; Hongxia Wang; Xungai Wang; Tong Lin

    2011-01-01

    Superhydrophobic electrospun polyacrylonitrile nanofibre membranes have been prepared by surface coating of silica nanoparticles and fluorinated alkyl silane. The coated membranes were characterised by scanning electron microscopy, water contact angle, thermogravimetry analysis, Brunauer–Emmett–Teller, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. It was shown that the loading of nanoparticle on the nanofibre membrane was controlled by the

  16. Fabricating superhydrophobic surfaces by molecular accumulation of polysiloxane on the wool textile finishing

    Microsoft Academic Search

    B. T. Zhang; B. L. Liu; X. B. Deng; S. S. Cao; X. H. Hou; H. L. Chen

    2008-01-01

    In the present study, a novel and simple method of obtaining superhydrophobic surface through the migration of organic siloxane\\u000a segments in the acrylate side chains to the outmost layer and forming the nano-protuberance on the micro-roughness wool fabrics\\u000a was described. The chemical compositions and morphologies of the untreated\\/treated fabrics were characterized by the scanning\\u000a electron microscopy and X-ray photoelectric energy

  17. Superhydrophobic nanofibre membranes: effects of particulate coating on hydrophobicity and surface properties

    Microsoft Academic Search

    Jian Fang; Hongxia Wang; Xungai Wang; Tong Lin

    2012-01-01

    Superhydrophobic electrospun polyacrylonitrile nanofibre membranes have been prepared by surface coating of silica nanoparticles and fluorinated alkyl silane. The coated membranes were characterised by scanning electron microscopy, water contact angle, thermogravimetry analysis, Brunauer–Emmett–Teller, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. It was shown that the loading of nanoparticle on the nanofibre membrane was controlled by the

  18. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity.

    PubMed

    Wang, Hongxia; Fang, Jian; Cheng, Tong; Ding, Jie; Qu, Liangti; Dai, Liming; Wang, Xungai; Lin, Tong

    2008-02-21

    Stable superhydrophobic surfaces with water contact angles over 170 degrees and sliding angles below 7 degrees were produced by simply coating a particulate silica sol solution of co-hydrolysed TEOS/fluorinated alkyl silane with NH(3).H(2)O on various substrates, including textile fabrics (e.g. polyester, wool and cotton), electrospun nanofibre mats, filter papers, glass slides, and silicon wafers. PMID:18253534

  19. Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining

    Microsoft Academic Search

    Jinlong Song; Wenji Xu; Yao Lu; Xujuan Fan

    2011-01-01

    Hierarchical micrometer-nanometer-scale binary rough structures were fabricated on copper substrates by electrochemical machining in a neutral NaCl electrolyte. The rough structures are composed of the micrometer scale potato-like structures and the nanometer scale cube-like structures. After modified by the fluoroalkylsilane, the copper surfaces reached superhydrophobicity with a water contact angle of 164.3° and a water tilting angle less than 9°.

  20. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    PubMed

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ?1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. PMID:23433522

  1. Pressure Drop Measurements for Turbulent Channel Flow over Superhydrophobic Surfaces with Superimposed Riblets

    NASA Astrophysics Data System (ADS)

    Perkins, Richard; Prince, Joseph; Vanderhoff, Julie; Maynes, Daniel

    2012-11-01

    We consider the combined drag reducing mechanisms of riblets and superhydrophobicity. Pressure drop measurements were acquired for turbulent channel flow over riblet surfaces, superhydrophobic surfaces, and surfaces with both drag reducing mechanisms. The riblets were nominally 80 ?m tall, 16 ?m wide, and spaced with a period of 160 ?m. The superhydrophobic structuring was composed of alternating microribs (15 ?m tall and 8 ?m wide) and cavities (32 ?m wide), aligned parallel to the flow. The channel consisted of a control section and a test section comprised of smooth and patterned wafers, respectively. In all cases, the test section walls were structured on top and bottom while the side walls were left smooth. The channel had a hydraulic diameter of 7.3 mm and an aspect ratio of 10:1. Seven pressure ports were precision machined into the walls of both the control and test sections. The pressure drop measurements were acquired simultaneously over both sections to eliminate uncertainty associated with the flow rate. The drag reduction for all test sections was then computed directly and data were obtained over a Reynolds number range of 11000 to 15000.

  2. Research on the behavior of liquid fluids atop superhydrophobic gas-bubbled surfaces

    E-print Network

    Lehmann, Gerrit C; Horsch, Martin; Huang, Yow-Lin; Miroshnichenko, Svetlana; Pflock, Rüdiger; Sonnenrein, Gerrit; Vrabec, Jadran

    2010-01-01

    Superhydrophobic surfaces play an important role in the development of new product coatings such as cars, but also in mechanical engineering, especially design of turbines and compressors. Thus a vital part of the design of these surfaces is the computational simulation of such with a special interest on variation of shape and size of minor pits grooved into plane surfaces. In the present work, the dependence of the contact angle on the fluid-wall dispersive energy is determined by molecular simulation and static as well as dynamic properties of unpolar fluids in contact with extremely rough surfaces are obtained.

  3. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method.

    PubMed

    Peng, PanPan; Ke, Qingping; Zhou, Gen; Tang, Tiandi

    2013-04-01

    We fabricated the first superhydrophobic (SH) surface with microcavities, using a simple process. The process included an improved template method (ITM) for constructing the SH surface with cavities, using taro leaves as a pattern mask, and a dip-coating method for modifying the SH surface. The results obtained using the ITM are significantly better than those achieved using traditional template methods. In addition, the water-repellence of the microcavities surface was significantly enhanced by decorating with a layer of polymerized n-octadecylsiloxane nanosheets. PMID:23332936

  4. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (?100 nm).

    PubMed

    Karunakaran, Raghuraman G; Lu, Cheng-Hsin; Zhang, Zanhe; Yang, Shu

    2011-04-19

    We report a simple and versatile approach to creating a highly transparent superhydrophobic surface with dual-scale roughness on the nanoscale. 3-Aminopropyltrimethoxysilane (APTS)-functionalized silica nanoparticles of two different sizes (100 and 20 nm) were sequentially dip coated onto different substrates, followed by thermal annealing. After hydrophobilization of the nanoparticle film with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane for 30 min or longer, the surface became superhydrophobic with an advancing water contact angle of greater than 160° and a water droplet (10 ?L) roll-off angle of less than 5°. The order of nanoparticles dip coated onto the silicon wafer (i.e., 100 nm first and 20 nm second or vice versa) did not seem to have a significant effect on the resulting apparent water contact angle. In contrast, when the substrate was dip coated with monoscale nanoparticles (20, 50, and 100 nm), a highly hydrophobic surface (with an advancing water contact angle of up to 143°) was obtained, and the degree of hydrophobicity was found to be dependent on the particle size and concentration of the dip-coating solution. UV-vis spectra showed nearly 100% transmission in the visible region from the glass coated with dual-scale nanoparticles, similar to the bare one. The coating strategy was versatile, and superhydrophobicity was obtained on various substrates, including Si, glass, epoxy resin, and fabrics. Thermal annealing enhanced the stability of the nanoparticle coating, and superhydrophobicity was maintained against prolonged exposure to UV light under ambient conditions. PMID:21355577

  5. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    NASA Astrophysics Data System (ADS)

    Kok, Mariana; Young, Trevor M.

    2014-09-01

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (Ra) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (Ra = 5.26 ?m) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  6. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates

    NASA Astrophysics Data System (ADS)

    Cho, Kuan-Hung; Chen, Li-Jen

    2011-11-01

    Silica nanoparticles were spin-coated onto a flat/patterned (regular pillar-like) substrate to enhance the surface roughness. The surface was further modified by a self-assembled fluorosilanated monolayer. The advancing/receding contact angle and sliding angle measurements were performed to determine the wetting behavior of a water droplet on the surface. It is interesting to find that a transition from a Wenzel surface to a sticky superhydrophobic surface is observed due to the spin-coating silica nanoparticles. A slippery superhydrophobic surface can be further obtained after secondary spin-coating with silica nanoparticles to generate a multi-scale roughness structure. The prepared superhydrophobic substrates should be robust for practical applications. The adhesion between the substrate and nanoparticles is also examined and discussed.

  7. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates.

    PubMed

    Cho, Kuan-Hung; Chen, Li-Jen

    2011-11-01

    Silica nanoparticles were spin-coated onto a flat/patterned (regular pillar-like) substrate to enhance the surface roughness. The surface was further modified by a self-assembled fluorosilanated monolayer. The advancing/receding contact angle and sliding angle measurements were performed to determine the wetting behavior of a water droplet on the surface. It is interesting to find that a transition from a Wenzel surface to a sticky superhydrophobic surface is observed due to the spin-coating silica nanoparticles. A slippery superhydrophobic surface can be further obtained after secondary spin-coating with silica nanoparticles to generate a multi-scale roughness structure. The prepared superhydrophobic substrates should be robust for practical applications. The adhesion between the substrate and nanoparticles is also examined and discussed. PMID:21979566

  8. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid

    NASA Astrophysics Data System (ADS)

    Wang, Yanfen; Li, Benxia; Xu, Chuyang

    2012-01-01

    Flower-like hierarchical ZnO microspheres were successfully synthesized by a simple, template-free, and low-temperature aqueous solution route. The morphology and microstructure of the ZnO microspheres were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bionic films with hydrophobicity were fabricated by the hierarchical ZnO microspheres modified by stearic acid. It was found that the hydrophobicity of the thin films was very sensitive to the added amount of stearic acid. The thin films modified with 8% stearic acid took on strong superhydrophobicity with a water contact angle (CA) almost to be 178° and weak adhersion. The remarkable superhydrophobicity could be attributed to the synergistic effect of micro/nano hierarchical structure of ZnO and low surface energy of stearic acid.

  9. Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Srinivasan, Siddarth; Kleingartner, Justin A.; Gilbert, Jonathan B.; Cohen, Robert E.; Milne, Andrew J. B.; McKinley, Gareth H.

    2015-01-01

    We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re =8.0 ×1 04 . We show that the mean skin friction coefficient Cf in the presence of the superhydrophobic coating can be fitted to a modified Prandtl-von Kármán-type relationship of the form (Cf/2 )-1 /2=M ln (Re (Cf/2 )1 /2) +N +(b /? r )Re (Cf/2 )1 /2 from which we extract an effective slip length of b ?19 ? m . The dimensionless effective slip length b+=b /??, where ?? is the viscous length scale, is the key parameter that governs the drag reduction and is shown to scale as b+˜Re1 /2 in the limit of high Re.

  10. Superhydrophobic surface-based magnetic electrochemical immunoassay for detection of Schistosoma japonicum antibodies.

    PubMed

    Nie, Jinfang; Zhang, Yun; Wang, Hua; Wang, Shiping; Shen, Guoli

    2012-03-15

    In this paper, a magnetic electrochemical immunoassay that uses a superhydrophobic surface-based analytical platform (SSAP) has been initially developed for detection of Schistosoma japonicum (Sj) antibodies (SjAb). The SSAP is fabricated by modifying the inner surfaces of plastic test tubes with superhydrophobic polycarbonate coatings that show a water contact angle up to 160° and a water rolling angle less than 5°. In a noncompetitive sandwich format, the SjAb immunoassay with magnetic particles is based on sensitive stripping voltammetry analysis coupled with the copper enhanced Au nanoparticle tag amplification. This technique is quantitatively sensitive to SjAb concentrations ranging from 2 ng ml(-1) to 15 ?g ml(-1), with a detection limit of ?1.3 ngml(-1). Moreover, the results of assaying several serum specimens prove its feasibility of practical applications. The self-cleaning SSAP can be reused, because no aqueous samples reagents or contaminate the superhydrophobic polycarbonate during the experiments. The comparison study additionally demonstrates that the SSAP-based magnetic electrochemical immunoassays can offer preferable advantages over the existing approaches for SjAb detection, in terms of volumes of samples and reagents, assay time, and detection limit. PMID:22270051

  11. Super-hydrophobicity of silica nanoparticles modified with vinyl groups

    Microsoft Academic Search

    Longjian Xue; Jian Li; Jun Fu; Yanchun Han

    2009-01-01

    Super-hydrophobic films with vinyl-modified silica nanoparticles (V-SiOx-NPs) were successfully prepared. The rough surface, which was composed of microstructures of disordered V-SiOx-NPs and nanostructures on the surface of V-SiOx-NPs, rather than the chemical composition devoted to the super-hydrophobicity of film. The relationship between contact angle and diameter of V-SiOx-NPs was then investigated. The sessile contact angles (CA) of films with 150–1600nm

  12. Super-hydrophobic yolk-shell nanostructure with enhanced catalytic performance in the reduction of hydrophobic nitroaromatic compounds.

    PubMed

    Shi, Song; Wang, Min; Chen, Chen; Gao, Jin; Ma, Hong; Ma, Jiping; Xu, Jie

    2013-10-25

    A self-templating method to fabricate a super-hydrophobic yolk-shell nano-reactor was reported. Metal nanoparticles were encapsulated in the porous super-hydrophobic shell. This super-hydrophobic catalyst showed excellent performance in the reduction of nitroaromatic compounds in aqueous phase and a positive correlation was found between the reaction rate and the hydrophobicity of the substrate. PMID:24018894

  13. Toward superhydrophobic and durable coatings: effect of needle vs crater surface architecture.

    PubMed

    Dyett, Brendan P; Wu, Alex H; Lamb, Robert N

    2014-06-25

    Practical application of sol-gel derived superhydrophobic films is limited by the fragility of "needlelike" surface roughness. An efficient one step procedure is developed to prepare robust thin films with "craterlike" surface roughness from a methyltrimethoxysilane matrix and polymer sphere templates. The films could be readily spray coated to produce roughened surface textures, which are governed by template concentration and geometry. The effect of this on the wettability and robustness of thin films was examined in detail, revealing a rapid trade-off between the two characteristics due to variations in coating porosity. PMID:24830848

  14. Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Wang, Xuemei; Ji, Hongmin

    2014-01-01

    Superhydrophobic surface has become a research hot topic in recent years due to its excellent performance and wide application prospect. This paper investigates the method to fabricate superhydrophobic surface on carbon steel substrate via two-layer nano-composite electro-brush plating and subsequent surface modification with low free energy materials. The hydrophobic properties of as-prepared coatings were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the surface structure of plating coatings. Anti-corrosion performance of the superhydrophobic coating was characterized by a potentiodynamic polarization curve measured by the Electrochemical workstation. The research result shows that: the superhydrophobic structure can be successfully prepared by plating nano-C/Ni and nano-Cu/Ni two-layer coating on carbon steel substrate under appropriate technology and has similarity with lotus-leaf-like micro/nano composite structure; the contact angle of the as-prepared superhydrophobic coating can be up to 155.5°, the sliding angle is 5°; the coating has better anti-corrosion performance compared with substrate.

  15. Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol-gel transition: superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property.

    PubMed

    Xiang, Haifan; Zhang, Liang; Wang, Zhen; Yu, Xiaolan; Long, Yuhua; Zhang, Xiaoli; Zhao, Ning; Xu, Jian

    2011-07-01

    Multifunctional superhydrophobic polymethylsilsesquioxane (PMSQ) surfaces with excellent solvent resistance, thermal stability and enhanced sound absorption property were manufactured by electrospinning. The surfaces with various hierarchical morphologies and hydrophobicity were obtained by electrospinning at the different stages of sol-gel transition of PMSQ prepolymer solution. At the stage with a proper viscosity the superhydrophobic PMSQ surface with a contact angle as high as 151° and a sliding angle as low as 8° was prepared. Due to the excellent thermal stability and solvent resistance properties of the cured PMSQ, the resultant surfaces remain superhydrophobicity after thermal treatment at 300 °C and immersion into many solvents. Additionally, an enhanced acoustical performance and ultra water repellency were obtained simultaneously when the traditional acoustical sponge was decorated with the electrospun PMSQ superhydrophobic surface. The robust superhydrophobic PMSQ surfaces may promise practical applications in many fields. PMID:21492863

  16. Designing heterogeneous chemical composition on hierarchical structured copper substrates for the fabrication of superhydrophobic surfaces with controlled adhesion.

    PubMed

    Cheng, Zhongjun; Hou, Rui; Du, Ying; Lai, Hua; Fu, Kewei; Zhang, Naiqing; Sun, Kening

    2013-09-11

    Controlling water adhesion is important for superhydrophobic surfaces in many applications. Compared with numerous researches about the effect of microstructures on the surface adhesion, research relating to the influence of surface chemical composition on the surface adhesion is extremely rare. Herein, a new strategy for preparation of tunable adhesive superhydrophobic surfaces through designing heterogeneous chemical composition (hydrophobic/hydrophilic) on the rough substrate is reported, and the influence of surface chemical composition on the surface adhesion are examined. The surfaces were prepared through self-assembling of mixed thiol (containing both HS(CH2)9CH3 and HS(CH2)11OH) on the hierarchical structured copper substrates. By simply controlling the concentration of HS(CH2)11OH in the modified solution, tunable adhesive superhydrophobic surfaces can be obtained. The adhesive force of the surfaces can be increased from extreme low (about 8 ?N) to very high (about 65 ?N). The following two reasons can be used to explain the tunable effect: one is the number of hydrogen bond for the variation of surface chemical composition; and the other is the variation of contact area between the water droplet and surface because of the capillary effect that results from the combined effect of hydrophilic hydroxyl groups and microstructures on the surface. Noticeably, water droplets with different pH (2-12) have similar contact angles and adhesive forces on the surfaces, indicating that these surfaces are chemical resistant to acid and alkali. Moreover, the as-prepared surfaces were also used as the reaction substrates and applied in the droplet-based microreactor for the detection of vitamin C. This report provides a new method for preparation of superhydrophobic surfaces with tunable adhesion, which could not only help us further understand the principle for the fabrication of tunable adhesive superhydrophobic surfaces, but also potentially be used in many important applications, such as microfluidic devices and chemical microreactors. PMID:23919678

  17. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    NASA Astrophysics Data System (ADS)

    Li, Peipei; Chen, Xinhua; Yang, Guangbin; Yu, Laigui; Zhang, Pingyu

    2014-05-01

    A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution-immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex-concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding angle lower than 5°, while it retains good friction-reducing ability during extended sliding and possesses good self-cleaning ability as well. This demonstrates that the etched-immersed Al/STA rough surface may favor the applications of Al and its alloys in various industrial fields.

  18. Fabrication of a superhydrophobic Al?O? surface using picosecond laser pulses.

    PubMed

    Jagdheesh, R

    2014-10-14

    Ultrashort pulse laser (USPL) machining/structuring is a promising technique to create a micropattern on a material surface with very low distortion to the peripheral area or high precession. Thin sheets of alumina (Al2O3) are micromachined with ultraviolet laser pulses of 6.7 ps, to create a superhydrophobic surface by single-step processing. USPL patterned micropillars and microholes have been fabricated with a range of pulses varying from 100 to 1200 pulses/unit area. The impact of the number of pulses/unit area with respect to the geometry and static contact angle measurements has been studied. The surface is free from cracks, and the melting effect is well-pronounced for the blind microhole structures. An energy dispersive X-ray spectroscopy study revealed a marginal change in the elemental composition of the laser-patterned surface. The results show that the geometry of the laser-machined pattern plays a major role in changing the wetting properties rather than the chemical changes induced on the surface. The micropillars exhibited a consistent superhydrophobic surface with a static contact angle measurement of 150° ± 3°. PMID:25251909

  19. Direct observation of self-similar contact line depinning from superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Paxson, Adam; Varanasi, Kripa

    2013-11-01

    The adhesion of a drop to a superhydrophobic surface, although very low, is never altogether eliminated. As the drop moves along the surface, the advancing portion of the contact line simply lies down onto the upcoming roughness features, contributing negligibly to adhesion. Instead, the pinning and contact angle hysteresis are governed by the depinning of capillary bridges formed at the receding portion of the contact line. We use environmental scanning electron microscopy to observe these depinning events at the microscale. After measuring the local receding contact angle of capillary bridges formed on a micropillar array, we find that these depinning events follow the Gibbs depinning criterion. We further extend this technique to two-scale hierarchical structures to reveal a self-similar depinning mechanism in which the adhesion of the entire drop depends only on the pinning at the very smallest level of roughness hierarchy. With this self-similar depinning mechanism we develop a model to predict the adhesion of drops to superhydrophobic surfaces that explains both the low adhesion on sparsely structured surfaces and the surprisingly high adhesion on surfaces whose features are densely spaced or tortuously shaped.

  20. Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al-Nb alloy columnar films

    NASA Astrophysics Data System (ADS)

    Fujii, Takashi; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-07-01

    A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.

  1. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider

    Microsoft Academic Search

    Pablo Perez Goodwyn; Emerson De Souza; Kenji Fujisaki; Stanislav Gorb

    2008-01-01

    Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200–300nm wide, 7–9?m long), was successfully replicated using a two-step moulding technique. The mould

  2. Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Lv, Damei; Ou, Junfei; Xue, Mingshan; Wang, Fajun

    2015-04-01

    Superhydrophobic surface (SHS) was fabricated on aluminum via surface roughening by NaClO and surface passivation by hexadecyltrimethoxysilane. The long-term durability for storing the sample in air and the chemical stability for contacting the sample with NaCl solution were investigated. The short-term corrosion resistance for immersing the sample in NaCl solution for 1 h was investigated by potentiodynamic polarization, and the long-term corrosion resistance for immersing the sample in NaCl solution for 7 days was investigated by variation analyses on surface wettability, surface morphology, and surface chemistry. All experimental results suggested that the so-obtained SHS possessed good stability and good corrosion resistance under the testing conditions.

  3. Effects of Various Additives during Hot Water Treatment on the Formation of Alumina Thin Films for Superhydrophobic Surfaces

    Microsoft Academic Search

    Kiyoharu Tadanaga; Naoko Yamaguchi; Atsunori Matsuda; Tsutomu Minami; Masahiro Tatsumisago

    2008-01-01

    Alumina thin films, with roughness of 20–50 nm and pseudoboehmite nanocrystals precipitated on the surface, were formed through immersion of porous alumina gel films in hot water. By coating hydrolyzed fluoroalkylsilane on such a thin film with slight roughness, a superhydrophobic surface with high transparency was obtained. Additives such as hydrochloric acid, sodium hydroxide, sodium chloride, manganese chloride, ethanol and

  4. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ?180° and sliding angle ?1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ?165.8° and sliding angle ?6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ?132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  5. Transferrable superhydrophobic surface constructed by a hexagonal CuI powder without modification by low-free-energy materials.

    PubMed

    Gao, Shuyan; Li, Zhengdao; Yang, Shuxia; Jiang, Kai; Li, Yue; Zeng, Haibo; Li, Liang; Wang, Hongqiang

    2009-09-01

    A new route combining a facile wet-chemical process and spin coating was developed to fabricate a CuI film assembled by hexagonal crystals. Remarkably, such a CuI film displays excellent superhydrophobicity without further modification by low-free-energy materials (thiol or fluoroalkylsilane). The special wettability is attributed to a hierarchical morphology of CuI crystals with two length-scale roughnesses and the nature of the material itself. Importantly, this superhydrophobicity is quite stable and the water contact angle of the as-prepared sample only decreases slightly, even when it is kept in air for about half a year. The superhydrophobicity of the as-prepared CuI powder is a bulk property of the material and not just of its surface, so such a powder coating could then prove useful in conferring superhydrophobicity to other surfaces to which it is applied. These facts might improve its practical application with environmental friendship in superhydrophobic coatings. PMID:20355836

  6. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing.

    PubMed

    Hao, Quanyong; Pang, Yichuan; Zhao, Ying; Zhang, Jing; Feng, Jie; Yao, Shuhuai

    2014-12-30

    Delayed frost growth on superhydrophobic surfaces (SHSs) with jumping condensates has been found by many researchers recently. However, the mechanism of this phenomenon has not been elucidated clearly. In this study, copper SHSs with or without jumping condensates were selected as the substrates for observing condensation icing at a relative humidity (RH) of 60%. The results showed that only SHS with jumping condensates showed delayed condensation icing. Moreover, when such SHSs were placed upward and the surface temperature was held at -10 °C, some discrete frozen drops first appeared on the SHSs. The following icing mainly occurred on these discrete global crystals and then expanded around them until covering the entire surface. Little macroscopic interdrop freezing phenomenon was found. The growth of the frost front is mainly dominated by jumping freezing (the condensed droplets jumped onto the ice crystals and were frozen) or direct vapor-ice deposition. Using microscopy, we found interdrop freezing occurred, in addition to the two mechanisms mentioned above. By placing the SHS downward at -10 °C and intentionally introducing or eliminating tiny dusts, we confirmed that there were no superhydrophobic defects on our SHSs. The discrete frozen drops first appearing on the SHSs were triggered by tiny dusts falling on the surface before or during condensation icing. The key approach in delaying or resisting frost growth on SHSs with jumping condensates is to retard initial ice crystal formation, e.g., eliminating the edge effect and keeping the SHSs clean. PMID:25466489

  7. Superhydrophobic surfaces via electroless displacement of nanometric Cu layers by Ag +

    NASA Astrophysics Data System (ADS)

    Brenier, R.; Ramos, S. M. M.; Montchanin, M.

    2009-05-01

    This paper explores the possibility of making hydrophobic and superhydrophobic surfaces from electroless displacement of Cu by Ag +, in the case where Cu oxidation is limited owing to Cu layers of nanometric thicknesses. The morphology of the Ag layers is studied by scanning electron microscopy for Cu thicknesses between 10 and 80 nm. The mapping of the elemental content of the layers by electron dispersive X-ray analysis also has been used to clarify the particle growing by diffusion limited aggregation. It is shown that the average size and the shape complexity of the Ag particles increase with the Cu thickness. The addition of dimethyl sulfoxide in the Ag + aqueous solution improves the surface homogeneity, increases the particle density and decreases their sizes. The wetting behaviour of the surfaces, after grafting with octadecanethiol, has been studied from measurements of the contact angles of a drop of water. According to the thickness of the initial Cu layer and the morphology of the Ag layer, contact angles range between 110° and 154°. Superhydrophobic surfaces are obtained from 80 nm thick Cu layers.

  8. Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic.

    PubMed

    Mertaniemi, Henrikki; Forchheimer, Robert; Ikkala, Olli; Ras, Robin H A

    2012-11-01

    When water droplets impact each other while traveling on a superhydrophobic surface, we demonstrate that they are able to rebound like billiard balls. We present elementary Boolean logic operations and a flip-flop memory based on these rebounding water droplet collisions. Furthermore, bouncing or coalescence can be easily controlled by process parameters. Thus by the controlled coalescence of reactive droplets, here using the quenching of fluorescent metal nanoclusters as a model reaction, we also demonstrate an elementary operation for programmable chemistry. PMID:22945858

  9. Preparation of porous super-hydrophobic and super-oleophilic polyvinyl chloride surface with corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Kang, Yingke; Wang, Jinyan; Yang, Guangbin; Xiong, Xiujuan; Chen, Xinhua; Yu, Laigui; Zhang, Pingyu

    2011-11-01

    Porous super-hydrophobic polyvinyl chloride (PVC) surfaces were obtained via a facile solvent/non-solvent coating process without introducing compounds with low surface energy. The microstructure, wetting behavior, and corrosion resistance of resultant super-hydrophobic PVC coatings were investigated in relation to the effects of dosage of glacial acetic acid and the temperature of drying the mixed PVC solution spread over glass slide substrate. As-prepared PVC coatings had porous microstructure, and the one obtained at a glacial acetic acid to tetrahydrofuran volume ratio of 2.5:10.0 and under a drying temperature of 17 °C had a water contact angle of 150 ± 1.5°, showing super-hydrophobicity. In the meantime, it possessed very small contact angles for liquid paraffin and diiodomethane and good corrosion resistance against acid and alkali corrosive mediums, showing promising applications in self-cleaning, waterproof for outer wall of building, seawater resistant coating, and efficient separation of oil and water.

  10. Surface Nanostructures in Manganite Films

    PubMed Central

    Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

    2014-01-01

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

  11. An introduction to superhydrophobicity

    Microsoft Academic Search

    Neil J. Shirtcliffe; Glen McHale; Shaun Atherton; Michael I. Newton

    2010-01-01

    This paper is derived from a training session prepared for COST P21. It is intended as an introduction to superhydrophobicity to scientists who may not work in this area of physics or to students. Superhydrophobicity is an effect where roughness and hydrophobicity combine to generate unusually hydrophobic surfaces, causing water to bounce and roll off as if it were mercury

  12. Facile fabrication of super-hydrophobic surfaces with 3D pillar structures

    NASA Astrophysics Data System (ADS)

    Zhai, Shengjie; Zhao, Hui; Jiang, Yingtao

    2012-11-01

    Super-hydrophobic surfaces have attracted growing interest due to their unique properties, including drag reduction, facilitation of heat transfer, self-cleaning, anti-corrosion, anti-sticking, and anti-contamination. However, the method of fabricating super-hydrophobic surfaces with regular 3D micro/nano pillars structures is still complicated. Here we present a simple, reliable, and low-cost fabrication method which can create complex 3D structures. Briefly, the commercial nanostamping products like CD, DVD,and bluray disc serve as the PDMS mold The pit size (LxWxH) of CD, DVD, and Blueray is 0.8 ?m × 0.15 ?m × 0.1 ?m, 0.4 ?m × 0.15 ?m × 0.1 ?m, and 0.15 ?m × 0.15 ?m × 0.1 ?m. The PDMS surface with the relevant structures can be directly replicated from the molds by the soft lithography technology. The precise geometric structures including height, width, and density of pillar arrays can be readily controlled by using different optical discs. The contact angle is measured about 136-140 degree. We also study the relationship between the contact angle and different feature size. Finally, we measure the slip length for different structures.

  13. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    PubMed Central

    Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-01-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. PMID:24971957

  14. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.

    PubMed

    Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

    2011-02-15

    The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported. PMID:21109250

  15. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider.

    PubMed

    Goodwyn, Pablo Perez; De Souza, Emerson; Fujisaki, Kenji; Gorb, Stanislav

    2008-05-01

    Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique. The mould surface exhibited super-hydrophobic properties similar to the original insect surface. The average water contact angle (CA) of the mould was 164.7 degrees , whereas the CA of the flat polymer was about 92 degrees . These results show that (i) in water striders, the topography of the surface plays a dominant role in super-hydrophobicity, (ii) very low surface energy bulk material (typically smaller than 0.020 N m(-1)) is not necessary to achieve super-hydrophobicity; and (3) the two-step moulding technique may be used to mimic quite complex biological functional surfaces. PMID:18296131

  16. Singlet Oxygen Generation on Porous Superhydrophobic Surfaces: Effect of Gas Flow and Sensitizer Wetting on Trapping Efficiency

    PubMed Central

    2015-01-01

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon–phthalocyanine (Pc) particles are immobilized. Singlet oxygen (1O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV–vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid–gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

  17. Microfabricated textured surfaces for super-hydrophobicity investigations

    Microsoft Academic Search

    Mathilde Callies; Yong Chen; Frédéric Marty; Anne Pépin; David Quéré

    2005-01-01

    The natural hydrophobicity of surfaces can be enhanced if they are micro-textured. This is due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is resting. Here, we give evidence for this effect using a forest of micro-pillars which allows us to control the micro structure

  18. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    NASA Astrophysics Data System (ADS)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  19. Creation of microstructured surfaces using Cu-Ni composite electrodeposition and their application to superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Bae, Kong Myeong; Jung, Kyung Kuk; Jeong, Ji Hwan; Ko, Jong Soo

    2014-01-01

    This research analyzed the influence of the electrodeposition ratio of Cu-Ni on the creation of microstructure in Cu-Ni composite electrodeposition, and identified the microstructure generation mechanism with respect to the Cu-Ni electrodeposition ratio. The concentration of CuSO4 in the electrodeposition solution was varied to 0.00, 0.02, 0.04 M to control the electrodeposition ratio of Cu, and the applied voltage was varied to voltages of -0.9, -1.2, -1.5 V, which were applied to control the electrodeposition ratio of Ni. In the composite electrodeposition, Cu ions precipitated intensively at the top of the structure with a short ion diffusion length, and the Ni ions precipitated regularly throughout the entire area charge transferred. Therefore, the structure showed vertically oriented growth when Cu electrodeposition was dominant, and the structure showed isotropic growth when Ni electrodeposition was dominant. On the other hand, Cu ions precipitation concentration at the tip of the grown structure intensified as the height of the structure increased. Therefore, when a structure grows above a certain height, the excess Cu ions precipitate at the top of the grown structure and a cluster structure composed of spherical Cu particles develops. The microstructure produced in the electrodeposition solution with the CuSO4 concentration of 0.04 M had such a high structure generation density and aspect ratio that it was modified to a superhydrophobic surface with a contact angle higher than 150°, and it manifested an excellent self-cleaning ability.

  20. Dropwise condensation on superhydrophobic surfaces with two-tier roughness

    E-print Network

    Chen, Chuan-Hua

    ° Philips XL30 . The dry substrate was held assisted by a thin film of water on a copper plate cooled removal of condensate drops; however, such promotion has not been reported on engineered surfaces condensation and rapid drop removal is enabled. © 2007 American Institute of Physics. DOI: 10

  1. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS)

    PubMed Central

    Kiraly, Brian; Yang, Shikuan

    2014-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be < 3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. PMID:23703091

  2. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-06-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring.

  3. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering.

    PubMed

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-06-21

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. PMID:23703091

  4. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces.

    PubMed

    Srinivasan, Siddarth; Kleingartner, Justin A; Gilbert, Jonathan B; Cohen, Robert E; Milne, Andrew J B; McKinley, Gareth H

    2015-01-01

    We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re=8.0×10(4). We show that the mean skin friction coefficient C(f) in the presence of the superhydrophobic coating can be fitted to a modified Prandtl-von Kármán-type relationship of the form (C(f)/2)(-1/2)=Mln?(Re(C(f)/2)(1/2))+N+(b/?r)Re(C(f)/2)(1/2) from which we extract an effective slip length of b?19???m. The dimensionless effective slip length b(+)=b/?(?), where ?(?) is the viscous length scale, is the key parameter that governs the drag reduction and is shown to scale as b(+)?Re(1/2) in the limit of high Re. PMID:25615472

  5. Fabrication of pillar-array superhydrophobic silicon surface and thermodynamic analysis on the wetting state transition

    NASA Astrophysics Data System (ADS)

    Liu, Si-Si; Zhang, Chao-Hui; Zhang, Han-Bing; Zhou, Jie; He, Jian-Guo; Yin, Heng-Yang

    2013-10-01

    Textured silicon (Si) substrates decorated with regular microscale square pillar arrays of nearly the same side length, height, but different intervals are fabricated by inductively coupled plasma, and then silanized by self-assembly octadecyl-trichlorosilane (OTS) film. The systematic water contact angle (CA) measurements and micro/nanoscale hierarchical rough structure models are used to analyze the wetting behaviors of original and silanized textured Si substrates each as a function of pillar interval-to-width ratio. On the original textured Si substrate with hydrophilic pillars, the water droplet possesses a larger apparent CAs (> 90°) and contact angle hysteresis (CAH), induced by the hierarchical roughness of microscale pillar arrays and nanoscale pit-like roughness. However, the silanized textured substrate shows superhydrophobicity induced by the low free energy OTS overcoat and the hierarchical roughness of microscale pillar arrays, and nanoscale island-like roughness. The largest apparent CA on the superhydrophobic surface is 169.8°. In addition, the wetting transition of a gently deposited water droplet is observed on the original textured substrate with pillar interval-to-width ratio increasing. Furthermore, the wetting state transition is analyzed by thermodynamic approach with the consideration of the CAH effect. The results indicate that the wetting state changed from a Cassie state to a pseudo-Wenzel during the transition.

  6. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane

    Microsoft Academic Search

    Jinxin Yang; Pihui Pi; Xiufang Wen; Dafeng Zheng; Mengyi Xu; Jiang Cheng; Zhuoru Yang

    2009-01-01

    A superhydrophobic surface was obtained by combining application of CaCO3\\/SiO2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164±2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro–submicro–nano-meter scale roughness (fabricated by composite

  7. Responsive colloidal systems: Reversible aggregation and fabrication of superhydrophobic surfaces

    Microsoft Academic Search

    Mikhail Motornov; Roman Sheparovych; Robert Lupitskyy; Emily MacWilliams; Sergiy Minko

    2007-01-01

    We report on a method of fabricating stimuli-responsive core–shell nanoparticles using block copolymers covalently bound to a silica nanoparticle surface. We used the “grafting to” approach to graft amphiphilic block copolymer brushes of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) and poly(styrene-b-4-vinylpyridine) onto silica nanoparticles with two different diameters: colloidal silica 200 nm in diameter and fumed silica 15 nm in diameter. We used the

  8. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    PubMed

    Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappadà, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure). PMID:21855889

  9. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.

    PubMed

    Chang, Jean H; Hunter, Ian W

    2011-05-18

    We present an electrochemical layered system that allows for the fast, in situ wettability switch of microstructured PPy upon the application of an electric stimulus. We have eliminated the need for PPy to be immersed in an electrolyte to switch between wetting states, laying the groundwork for PPy to be used as a viable material in many applications, including microfluidics or smart textiles. The PPy surface was switched from the superhydrophobic state (contact angle=159) to the superhydrophilic state (contact angle=0) in 3 s. A wettability gradient was also created on a PPy surface using the layered system, causing a 3 µL droplet to travel approximately 2 mm in 0.8 s. PMID:21544891

  10. Superhydrophobic aluminium-based surfaces: Wetting and wear properties of different CVD-generated coating types

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Streller, F.; Simon, F.; Frenzel, R.; White, A. J.

    2013-10-01

    In view of generating superhydrophobic aluminium-based surfaces, this work presents further results for the combination of anodic oxidation as the primary pretreatment method and chemical vapour deposition (CVD) variants for chemical modification producing coatings of 250-1000 nm thickness. In detail, CVD involved the utilisation of i - hexafluoropropylene oxide as precursor within the hot filament CVD process for the deposition of poly(tetrafluoroethylene) coatings at alternative conditions (PTFE-AC) and ii - 1,3,5-trivinyltrimethylcyclotrisiloxane for the deposition of polysiloxane coatings (PSi) by initiated CVD. The substrate material was Al Mg1 subjected to usual or intensified sulphuric acid anodisation pretreatments (SAAu, SAAi, respectively) affording various degrees of surface micro-roughness (SAAu < SAAi) to the oxidic layers. Performance characteristics were evaluated in the original as-coated states and after standardised artificial weathering and/or mild wear testing. Superhydrophobicity (SH) was observed with the system SAAi + PTFE-AC similarly to former findings with the standard hot filament CVD PTFE coating variant (SAAi + PTFE-SC). The results indicated that the specific coating morphology made an important contribution to the water-repellency, because even some of the SAAu-based samples tended to reveal SH. Subjecting samples to weathering treatment resulted in a general worsening of the wetting behaviour, primarily limited to the receding contact angles. These tendencies were correlated with the chemical composition of the sample surfaces as analysed by X-ray photoelectron spectroscopy. The wear tests showed, as evaluated by scanning electron microscopy and contact angle measurement, that the PTFE coatings were relatively sensitive to friction. This was connected with a dramatic deterioration of the water-repelling properties. PSi-coated surfaces generally showed rather poor water-repellency, but this coating type was surprisingly resistant towards the applied friction test. From these findings it may be concluded that the combination of hydrophobic fluorine containing structure elements and cross-linking of the polymeric chains would likely afford highly durable SH.

  11. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  12. Superhydrophilic - Superhydrophobic Transition in Vertically Aligned Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Varghese, Oomman; Neupane, Ram; Paulose, Maggie

    2015-03-01

    Both hydrophilic (wetting) and hydrophobic (non-wetting) surfaces find applications in a variety of technological areas. For example, hydrophilic surfaces are used in microfluidic devices to provide antifogging and antifouling functions whereas hydrophobic coatings are used in clothes to attribute stain resistance. While in superhydrophilic surfaces the contact angle that water droplets make with the surface is nearly zero, the surfaces that make contact angles greater than about 120° are considered superhydrophobic. Oxide ceramics generally exhibit hydrophilic behavior. Surface texturing or organic coatings are often used to make the surface hydrophobic or superhydrophobic. We prepared highly ordered titania nanotube arrays on titanium foils using anodic oxidation that showed superhydrophilic behavior upon fabrication. We noticed a strong correlation between fabrication conditions and the wettability. We have become successful in converting such a superhydrophilic nanostructure into superhydrophobic without modifying the surface with organic molecules or texturing. Contact angles in excess of 145° have been obtained. We will present these results and discuss the physiochemical processes that decide wetting properties of oxide nanostructures.

  13. Superhydrophobicity of PHBV fibrous surface with bead-on-string structure.

    PubMed

    Yoon, Young Il; Moon, Hyun Sik; Lyoo, Won Seok; Lee, Taek Seung; Park, Won Ho

    2008-04-01

    A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions. PMID:18255089

  14. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces.

    PubMed

    Skarmoutsou, A; Charitidis, C A; Gnanappa, A K; Tserepi, A; Gogolides, E

    2012-12-21

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting-dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C(4)F(8) plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation. PMID:23196721

  15. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    PubMed Central

    Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Summary Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  16. Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction

    Microsoft Academic Search

    A. Safaee; D. K. Sarkar; M. Farzaneh

    2008-01-01

    Hydrophobic properties of thin nanostructured silver films produced by galvanic exchange reaction on a copper surface were studied after passivation with stearic acid. The morphology of the silver films was controlled by varying the concentration of silver nitrate in the solution. Water contact angle as high as 156° and contact angle hysteresis as low as 5° were achieved for samples

  17. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir Blodgett deposition of micro-\\/nano-sized particles and surface silanization

    Microsoft Academic Search

    Ping-Szu Tsai; Yu-Min Yang; Yuh-Lang Lee

    2007-01-01

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm\\/50 nm, 1.0 µm\\/50 nm, and 0.5 µm\\/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer

  18. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-03-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

  19. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    PubMed Central

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  20. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.

    PubMed

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  1. On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature.

    PubMed

    Maitra, Tanmoy; Tiwari, Manish K; Antonini, Carlo; Schoch, Philippe; Jung, Stefan; Eberle, Patric; Poulikakos, Dimos

    2014-01-01

    The superhydrophobic behavior of nano- and microtextured surfaces leading to rebound of impacting droplets is of great relevance to nature and technology. It is not clear however, if and under what conditions this behavior is maintained when such surfaces are severely undercooled possibly leading to the formation of frost and icing. Here we elucidate key aspects of this phenomenon and show that the outcome of rebound or impalement on a textured surface is affected by air compression underneath the impacting drop and the time scale allowing this air to escape. Remarkably, drop impalement occurred at identical impact velocities, both at room and at very low temperatures (-30 °C) and featured a ringlike liquid meniscus penetration into the surface texture with an entrapped air bubble in the middle. At low temperatures, the drop contact time and receding dynamics of hierarchical surfaces were profoundly influenced by both an increase in the liquid viscosity due to cooling and a partial meniscus penetration into the texture. For hierarchical surfaces with the same solid fraction in their roughness, minimizing the gap between the asperities (both at micro- and nanoscales) yielded the largest resistance to millimetric drop impalement. The best performing surface impressively showed rebound at -30 °C for drop impact velocity of 2.6 m/s. PMID:24320719

  2. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-01

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 ?m and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water. PMID:22931378

  3. Hierarchically structured re-entrant microstructures for superhydrophobic surfaces with extremely low hysteresis

    NASA Astrophysics Data System (ADS)

    Hu, Huan; Swaminathan, Vikhram V.; Zamani Farahani, Mahmoud Reza; Mensing, Glennys; Yeom, Junghoon; Shannon, Mark A.; Zhu, Likun

    2014-09-01

    This paper reports a new type of hierarchically structured surface consisting of re-entrant silicon micropillars with silicon nanowires atop for superhydrophobic surface with extremely low hysteresis. Re-entrant microstructures were fabricated on a silicon substrate through a customized one-mask microfabrication process while silicon nanopillars were created on the entire surface of microstructures, including sidewalls, by a metal-assisted-chemical etching process. The strategy of constructing hierarchical surfaces aims to reduce the actual contact area between liquid and top part of solid surface, thereby increasing the contact angle and reducing the sliding angle. The strategy of using re-entrant profile of the microstructure aims to prevent a liquid droplet from falling into cavities of roughened structures and decrease the actual contact area between the liquid droplet and sidewalls of solid structures, therefore reducing adhesion forces acting on the liquid droplet. Our measurement shows that the surface incorporating both hierarchical and re-entrant strategies exhibits a sliding angle as low as 0.5°, much lower than sliding angles of surfaces only incorporating either one of the strategies.

  4. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates.

    PubMed

    Xu, Wenguo; Liu, Hongqin; Lu, Shixiang; Xi, Jinming; Wang, Yanbin

    2008-10-01

    Superhydrophobic surfaces were obtained on copper and galvanized iron substrates by means of a simple solution-immersion process: immersing the clean metal substrates into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltrichlorosilane (CF3(CF2)5(CH2) 2SiCl3, FOTMS) for 3-4 days at room temperature and then heated at 130 degrees C in air for 1 h. Both of the resulting surfaces have a high water contact angle (CA) of larger than 150.0 degrees as well as a small sliding angle (SA) of less than 5 degrees . The formation and structure of the superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectrometry (EDX). SEM images showed that both of the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. PMID:18774835

  5. Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Kaakkunen, J. J. J.; Michaeli, W.; Klaiber, F.; Schoengart, M.; Ihlemann, J.; Simon, P.

    2010-06-01

    A new two-step method, facilitating the rapid generation of super-hydrophobic surface structures via parallel laser processing followed by a replica generation by injection molding is reported. A self-made fused silica-based diffractive optical element (DOE) is applied to distribute the laser energy into a 25×25 dot matrix. This DOE is used as a transmission mask for surface ablation of metal molds, applying short-pulse UV laser pulses. In a subsequent process step, replicas of the processed stamp are produced by variothermal injection molding, enabling the mass production of the surface pattern on plastics parts. The resulting topography facilitates a super-hydrophobic behavior of the fabricated components.

  6. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.

    PubMed

    Li, Lester; Breedveld, Victor; Hess, Dennis W

    2012-09-26

    In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance. PMID:22913317

  7. Fabrication of an optically transparent super-hydrophobic surface via embedding nano-silica

    Microsoft Academic Search

    Changhong Su; Jun Li; Hongbin Geng; Qingjun Wang; Qingmin Chen

    2006-01-01

    Super-hydrophobic thin films were prepared on glass by combining embedded nano-silica, subsequent fluoroalkylsilane coating. The hydrophobic capability of film depended on the concentration of nano-silica suspension. And the super-hydrophobic thin film shows the high transmittance in visible light wavelength.

  8. Rapid fabrication of nanostructured surfaces using nanocoining

    NASA Astrophysics Data System (ADS)

    Zdanowicz, Erik; Dow, Thomas A.; Scattergood, Ronald O.

    2012-10-01

    A new process for creating high quality ordered arrays of nanofeatures called nanocoining is presented. A diamond die with a structured area of nanofeatures (1600 features in a 20 ?m × 20 ?m area) is used to physically transfer features to a mold surface. The die is attached to an actuator capable of producing an elliptical tool-path, the dimensions of which are process dependent and enable the die to match velocity with the moving mold during contact to avoid dragging the nanostructured area along the mold surface (smear). Nanocoining process parameters are discussed which enable indents to be indexed precisely to completely cover target areas. Techniques for die alignment and depth control are also required to create large areas (339 mm2) of nanofeatures in short times (˜20 min). Nanocoining experiments were performed at 1 kHz (1000 indents or 1.6 million features per second) on a flat electroless nickel sample. UV curable replicates were then created from the nickel mold and both the mold and replicate were examined in an SEM and AFM.

  9. Decorated Electrospun Fibers Exhibiting Superhydrophobicity

    Microsoft Academic Search

    Minglin Ma; Malancha Gupta; Zhi Li; Lei Zhai; Karen K. Gleason; Robert E. Cohen; Michael F. Rubner; Gregory C. Rutledge

    2007-01-01

    Superhydrophobicity, water repellency, and self-cleaning properties of materials have recently attracted tremendous at- tention.(1-3) Superhydrophobic surfaces exhibit extraordinarily high water contact angles, by convention greater than 150°, and extraordinarily low contact-angle hysteresis (i.e., a low difference between advancing and receding contact angles), typically less than 5°-10°. Studies of superhydrophobicity re- alized by insects(4) and many plants,(5,6) particularly the lotus leaf,(6)

  10. Geometrically induced surface polaritons in planar nanostructured metallic cavities"

    SciTech Connect

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  11. Surface elastic properties of Si decorated with Ni nanostructures

    NASA Astrophysics Data System (ADS)

    Trzaskowska, A.; Mielcarek, S.; Mroz, B.; Giersig, M.; Kandulski, W.

    2007-06-01

    Brillouin spectroscopy was used to study elastic properties of the Si (1 1 1) decorated with Ni nanostructures deposited by nanospherical lithography. The height of the nickel nanostructure deposited was about 25 nm, while the area taken by the structure differed depending on the type of matrix used. It was found that the Ni nanostructures change the velocity of both bulk and surface phonons in the systems studied. This finding is in contradiction to the results concerning the surface phonons velocities in different media covered with a homogenous thin metal film, in which the effect was observed for films thicker than 70 nm.

  12. Dip-coating crystallization on a superhydrophobic surface: a million mounted crystals in a 1 cm2 array.

    PubMed

    Krumpfer, Joseph W; McCarthy, Thomas J

    2011-04-20

    Silicon wafers (silicon dioxide surfaces) were patterned by photolithograpy to contain 3 ?m (width) × 6 ?m (length) × 40 ?m (height) staggered rhombus posts in a square array (20 ?m center-to-center spacing). These surfaces were hydrophobized using a vapor phase reaction with tridecafluorooctyldimethylchlorosilane and exhibit "superhydrophobicity" (water contact angles of ?(A)/?(R) = 169°/156°). When a section of a wafer is submerged in and withdrawn from water, the superhydrophobic surface emerges, apparently completely dry. If the same procedure is performed using aqueous sodium chloride as the liquid bath, individual crystals of the salt can be observed on the top of each of the posts. "Dip-coating crystallization" using an aqueous sodium chloride solution of 4.3 M produces crystals with ?1 ?m dimensions. A less concentrated solution, 1 M NaCl, renders crystals with ?500 nm dimensions. These experiments suggest that superhydrophobic surfaces that emerge from water and are "apparently completely dry" are, in fact, decorated with micrometer-size (several femtoliters) sessile water drops that rapidly evaporate. This simple technique is useful for preparation of very small liquid drops or puddles (of controlled composition) and for preparation of arrays of controlled size, crystalline substances (dip-coating crystallization). PMID:21446675

  13. Extreme resistance of super-hydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test

    E-print Network

    P. Brunet; F. Lapierre; V. Thomy; Y. Coffinier; R. Boukherroub

    2008-09-04

    The paper reports on the comparison of the wetting properties of super-hydrophobic silicon nanowires (NWs), using drop impact impalement and electrowetting (EW) experiments. A correlation between the resistance to impalement on both EW and drop impact is shown. From the results, it is evident that when increasing the length and density of NWs: (i) the thresholds for drop impact and EW irreversibility increase (ii) the contact-angle hysteresis after impalement decreases. This suggests that the structure of the NWs network could allow for partial impalement, hence preserving the reversibility, and that EW acts the same way as an external pressure. The most robust of our surfaces show a threshold to impalement higher than 35 kPa, while most of the super-hydrophobic surfaces tested so far have impalement threshold smaller than 10 kPa.

  14. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.

    PubMed

    Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi

    2014-12-28

    An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 ?L of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection. PMID:25380327

  15. Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Erbil, H. Yildirim

    2014-02-01

    Superhydrophobic and oleophobic rough copolymer surfaces containing micro- and nano-hierarchical ball-like islands having diameters between 100 nm and 7 ?m were formed using styrene-perfluoromethacrylate random copolymers which were dip-coated on glass slides from THF and MEK mixture containing methanol as nonsolvent. These copolymers were synthesized in a CO2-expanded monomer medium at 250 bar pressure and 80 °C. The sizes of the micro-islands can be controlled by varying the copolymer composition; and the degree of phase separation by adjusting the solvent/non-solvent ratio. Flat and lotus-like hierarchical surfaces of the copolymers were characterized using contact angle measurements and SEM. The increase in the perfluoromethacrylate content of the flat copolymers resulted in a decrease of the total surface free energy of the flat copolymer surfaces from 18.3 down to 14.2 mJ/m2. The increase in the methanol non-solvent fraction resulted in decrease of the micro-island diameter from 7 ?m down to 100 nm and the water contact angle increased from 117° up to 160° and hexadecane from 65° up to 90°.

  16. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    PubMed

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ?160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. PMID:25460699

  17. Multipurpose ultra and superhydrophobic surfaces based on oligodimethylsiloxane-modified nanosilica.

    PubMed

    de Francisco, Raquel; Tiemblo, Pilar; Hoyos, Mario; González-Arellano, Camino; García, Nuria; Berglund, Lars; Synytska, Alla

    2014-11-12

    Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications. PMID:25275966

  18. Wetting mode transition of nanoliter scale water droplets during evaporation on superhydrophobic surfaces with random roughness structure

    Microsoft Academic Search

    Tsutomu Furuta; Toshihiro Isobe; Munetoshi Sakai; Sachiko Matsushita; Akira Nakajima

    During evaporation, shape changes of nanoliter-scale (80–100nL) water droplets were evaluated on two superhydrophobic surfaces with different random roughness (nm-coating, ?m-coating). The square of the contact radius and the square of the droplet height decreased linearly with evaporation time. However, trend changes were observed at around 170s (nm-coating) and around 150s (?m-coating) suggesting a wetting mode transition. The calculated droplet

  19. Controlled growth of superhydrophobic films without any low-surface-energy modification by chemical displacement on zinc substrates

    Microsoft Academic Search

    Wenguo Xu; Xiaofeng Shi; Shixiang Lu

    2011-01-01

    Superhydrophobic surface was prepared via immersing the clean perpendicular zinc substrate into aqueous copper (II) chloride (CuCl2) solution and followed by anneal under the humid condition. The prepared samples were characterized by powder X-ray diffraction analysis, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy (XPS), and scanning electron microscopy (SEM), and energy-dispersive X-ray spectrometry analysis (EDX). SEM images of the films showed

  20. Surface modified nano-patterned SU-8 pillar array optically transparent super-hydrophobic thin film

    NASA Astrophysics Data System (ADS)

    Yoon, Youngsam; Lee, Dong-Weon; Lee, Jeong-Bong

    2012-03-01

    We report the fabrication and characterization of a porous nano-patterned SU-8 high aspect ratio pillar array as a transparent super-hydrophobic thin film. A 250 µm thick SU-8 layer was backside exposed through a glass substrate to form an array of high aspect ratio tapered pillars with angles in the range of 3°-5°. The SU-8 pillar array was plasma treated to form nano-porous surfaces, and then subsequently coated with fluorocarbon (FC) or Parylene-C film. Static contact angles and optical transmittance of various surface conditions such as with and without plasma treatment, Parylene-C versus FC, were tested and results were compared. Among various surface treated SU-8 pillar arrays, the plasma-treated nano-porous FC-coated SU-8 pillar array showed the highest static contact angle of 161°. It was found that the optical transmittance at around 530 nm for the nano-porous FC-coated SU-8 pillar array was approximately 65%, while the bare SU-8 film was approximately 95%. These nano-patterned transparent polymer films could be used in various water-repellent applications.