Science.gov

Sample records for nanostructuring optical waveguides

  1. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties.

    PubMed

    Li, Qi; Jia, Yi; Dai, Luru; Yang, Yang; Li, Junbai

    2015-03-24

    Diphenylalanine (FF) microrods were obtained by manipulating the fabrication conditions. Fourier transform infrared (FTIR), circular dichroism (CD), fluorescence (FL) spectroscopy, and X-ray diffraction (XRD) measurements revealed the molecular arrangement within the FF microrods, demonstrating similar secondary structure and molecular arrangement within FF microtubes and nanofibers. Accordingly, a possible mechanism was proposed, which may provide important guidance on the design and assembly manipulation of peptides and other biomolecules. Furthermore, characterization of a single FF microrod indicates that the FF microrod can act as an active optical waveguide material, allowing locally excited photoluminescence to propagate along the length of the microrod with coupling out at the microrod tips. PMID:25759013

  2. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  3. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  4. Optical waveguide dosimeter

    SciTech Connect

    Kronenberg, S.; Levine, H.; Mclaughlin, W.L.; Siebentritt, C.R.

    1983-03-22

    An optical waveguide dosimeter for personnel dosimetry is provided including a liquid solution of leuko dye hermetically sealed in plastic tubing. Optical transport is improved by dipping the ends of the plastic tubing into clear epoxy, thus forming beads that serve as optical lenses. A layer of clear ultraviolet absorbing varnish coated on these beads and an opaque outer layer over the plastic tubing provides protection against ambient uv.

  5. Effects of sol concentration on structural, morphological and optical waveguiding properties of sol-gel ZnO nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Tazerout, Mohand; Chelouche, Azeddine; Touam, Tahar; Djouadi, Djamel; Boudjouan, Fares; Khodja, Sebti; Ouhenia, Salim; Fischer, Alexis; Boudrioua, Azzedine

    2014-07-01

    Nanostructured ZnO thin films with different precursor concentrations (0.5-0.8 M) have been deposited on glass substrates by sol-gel dip coating technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-visible spectrophotometer, and m-lines spectroscopy have been employed to investigate the effect of solution concentration on structural, morphological, optical and waveguiding properties of the ZnO thin films. XRD spectra have shown that all the films are polycrystalline and exhibit the wurtzite hexagonal structure. SEM micrographs and AFM images have revealed that morphology and surface roughness of the thin films depend on sol concentration. The UV-visible transmittance results show a high transparency in the visible range and a shift of the maximum transmittance to the higher wavelength with increasing sol concentration. Waveguiding properties such as refractive index, number of propagating modes and attenuation coefficient measured at 632.8 nm wavelength by m-lines spectroscopy indicate that our ZnO slab waveguides are single mode and demonstrate optical losses estimated around 1.5 decibel per cm (dB/cm) for the thin film prepared with a sol concentration of 0.7 M.

  6. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps.

    PubMed

    Espinosa-Soria, Alba; Griol, Amadeu; Martínez, Alejandro

    2016-05-01

    In this work, we report numerical simulations and experiments of the optical response of a gold nanostrip embedded in a silicon strip waveguide gap at telecom wavelengths. We show that the spectral features observed in transmission and reflection when the metallic nanostructure is inserted in the gap are extremely different than those observed in free-space excitation. First, we find that interference between the guided field and the electric dipolar resonance of the metallic nanostructure results in high-contrast (> 10) spectral features showing an asymmetric Fano spectral profile. Secondly, we reveal a crossing in the transmission and reflection responses close to the nanostructure resonance wavelength as a key feature of our system. This approach, which can be realized using standard semiconductor nanofabrication tools, could lead to a full exploitation of the extreme properties of subwavelength metallic nanostructures in an on-chip configuration, with special relevance in fields such as biosensing or optical switching. PMID:27137572

  7. Integrated optic waveguide devices

    NASA Technical Reports Server (NTRS)

    Ramer, O. G.

    1980-01-01

    Integrated optic waveguide circuits with a phase bias and modulator on the same chip were designed, fabricated, and tested for use in a fiber-optic rotation sensor (gyro) under development. Single mode fiber-optic pigtails were permanently coupled to the four ports of the chip. The switch format was based on coherent coupling between waveguides formed in Z-cut LiNbO3. The control of the coupling was achieved by electro-optically varying the phase propagation constants of each guide. Fiber-to-chip interfacing required the development of appropriate fixturing and manipulation techniques to achieve the close tolerance needed for high coupling efficiency between a fiber with an approximately 5 micron m core and a channel guide with a roughly 2 micron m by 5 micron m cross section. Switch and chip performance at 0.85 micron m is discussed as well as potential improvements related to insertion loss reduction, switching voltages, and suppression of Li2O out-diffusion.

  8. Optics of anisotropic nanostructures

    NASA Astrophysics Data System (ADS)

    Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo

    2006-07-01

    The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

  9. Temporal waveguides for optical pulses

    DOE PAGESBeta

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less

  10. Omnidirectional optical waveguide

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-08-02

    In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.

  11. Optical waveguide tamper sensor technology

    SciTech Connect

    Carson, R.F.; Butler, M.A.; Sinclair, M.B.

    1997-03-01

    Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

  12. Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconfigurable optical multiplexers

    SciTech Connect

    Tsarev, A V

    2008-05-31

    A new type of optical waveguides in silicon-on-insulator (SOI) nanostructures is proposed and studied. Their optical properties and the possibility of their application in tunable optical filters and reconfigurable multiplexers are discussed based on the results of numerical simulation by the BPM and FDTD methods. A new design of heterogeneous waveguide structures containing additional regions with a high concentration of free charge carriers in the form of a p-n junction, which are located at the edges of a multimode strip waveguide (the cross section of the silicon core being {approx}0.22x35 {mu}m), is proposed. This doping provides single-mode behaviour of the heterogeneous waveguide due to low optical losses in the fundamental mode and to enhanced losses in highest modes. Heterogeneous waveguides can be used for the fabrication of different photonic elements including new types of tunable optical filters and reconfigurable multiplexers based on the multireflection technology. (integral-optical elements)

  13. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  14. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  15. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  16. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  17. A Simple Optical Waveguide Experiment.

    ERIC Educational Resources Information Center

    Phelps, J.; Sambles, J. R.

    1989-01-01

    Describes a thin film rectangular dielectric waveguide and its laboratory use. Discusses the theory of uniaxial thin film waveguides with mathematical expressions and the laboratory procedures for a classroom experiment with diagrams. (Author/YP)

  18. All-optical switching in optically induced nonlinear waveguide couplers

    SciTech Connect

    Diebel, Falko Boguslawski, Martin; Rose, Patrick; Denz, Cornelia; Leykam, Daniel; Desyatnikov, Anton S.

    2014-06-30

    We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

  19. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  20. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  1. Characterization of passive polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Joehnck, Matthias; Kalveram, Stefan; Lehmacher, Stefan; Pompe, Guido; Rudolph, Stefan; Neyer, Andreas; Hofstraat, Johannes W.

    1999-05-01

    The characterization of monomode passive polymer optical devices fabricated according to the POPCORN technology by methods originated from electron, ion and optical spectroscopy is summarized. Impacts of observed waveguide perturbations on the optical characteristics of the waveguide are evaluated. In the POPCORN approach optical components for telecommunication applications are fabricated by photo-curing of liquid halogenated (meth)acrylates which have been applied on moulded thermoplastic substrates. For tuning of waveguide material refractive indices with respect to the substrate refractive index frequently comonomer mixtures are used. The polymerization characteristics, especially the polymerization kinetics of individual monomers, determine the formation of copolymers. Therefore the unsaturation as function of UV-illumination time in the formation of halogenated homo- and copolymers has been examined. From different suitable copolymer system, after characterization of their glass transition temperatures, their curing behavior and their refractive indices as function of the monomer ratios, monomode waveguides applying PMMA substrates have been fabricated. To examine the materials composition also in the 6 X 6 micrometers 2 waveguides they have been visualized by transmission electron microscopy. With this method e.g. segregation phenomena could be observed in the waveguide cross section characterization as well. The optical losses in monomode waveguides caused by segregation and other materials induce defects like micro bubbles formed as a result of shrinkage have been quantized by return loss measurements. Defects causing scattering could be observed by convocal laser scanning microscopy and by conventional light microscopy.

  2. On-chip plasmonic waveguide optical waveplate

    PubMed Central

    Gao, Linfei; Huo, Yijie; Zang, Kai; Paik, Seonghyun; Chen, Yusi; Harris, James S.; Zhou, Zhiping

    2015-01-01

    Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems. PMID:26507563

  3. Optical pumping in a whispering-mode optical waveguide

    DOEpatents

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  4. Optical pumping in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  5. Recent progress on polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Kobayashi, Junya

    2008-02-01

    Intensive research on optical interconnection over flexible optical circuit boards has been undertaken for such applications as high-end routers, servers and cellular phones. And these flexible optical circuit boards are expected to be used for polymer optical waveguides. This paper reports recent progress on polymer optical waveguides. It also describes a flexible stamping method, which employs a flexible film stamp made of polymeric materials. Unlike conventional hard stamps, the flexible film stamp does not require either the stamp or its substrate to be perfectly flat, which means large area stamping is easy to achieve at reduced cost. We confirmed this by replicating 50 μm multi-mode optical polymer waveguides. The propagation loss of the waveguide is fairly low at 0.06 dB/cm at a wavelength of 850 nm. This loss is sufficiently small to meet the basic requirement for optical circuit boards, and the waveguide was used to fabricate a flexible optical circuit board with MT connectors.

  6. Forecast analysis of optical waveguide bus performance

    NASA Technical Reports Server (NTRS)

    Ledesma, R.; Rourke, M. D.

    1979-01-01

    Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.

  7. Evanescent field sensors and the implementation of waveguiding nanostructures

    SciTech Connect

    Boerner, Sandra; Orghici, Rozalia; Waldvogel, Siegfried R.; Willer, Ulrike; Schade, Wolfgang

    2009-02-01

    Conventional fiber optic evanescent-field gas sensors are based on a high number of total reflections while the gas is passing the active bare core fiber and of course a suitable laser light source. The use of miniaturized laser sources for sensitive detection of CO2 in gaseous and water-dissolved phase for environmental monitoring are studied for signal enhancing purposes. Additionally, the fiber optic sensor, consisting of a coiled bare multimode fiber core, was sensitized by an active polymer coating for the detection of explosive TNT. The implementation of ZnO waveguiding nanowires is discussed for surface and sensitivity enhancing coating of waveguiding elements, considering computational and experimental results.

  8. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts; Michael R. , Nielson; Gregory N.

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  9. Flexible parylene-film optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yamagiwa, S.; Ishida, M.; Kawano, T.

    2015-08-01

    Modulation of neuronal activities by light [e.g., laser or light-emitting diode] using optogenetics is a powerful tool for studies on neuronal functions in a brain. Herein, flexible thin-film optical waveguide arrays based on a highly biocompatible material of parylene are reported. Parylene-C and -N thin layers with the different refractive indices form the clad and the core of the waveguide, respectively, and neural recording microelectrodes are integrated to record optical stimuli and electrical recordings simultaneously using the same alignment. Both theoretical and experimental investigations confirm that light intensities of more than 90% can propagate in a bent waveguide with a curvature radius of >5 mm. The proposed flexible thin-film waveguide arrays with microelectrodes can be used for numerous spherical bio-tissues, including brain and spinal cord samples.

  10. Waveguide-based optical chemical sensor

    DOEpatents

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  11. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  12. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  13. Dispersion and luminescence measurements of optical waveguides

    NASA Astrophysics Data System (ADS)

    Faik, A.; Allen, L.; Eicher, C.; Gagola, A.; Townsend, P. D.; Pitt, C. W.

    1983-05-01

    The results of measurements are presented for the dispersion curves in the visible wavelength range of a variety of optical waveguides which were formed in LiNbO3 and LiTaO3 by the implantation of helium ions. It is found that the radiation damage reduces the refractive index in both materials by about 12 percent throughout the visible region, probably resulting from amorphization of the lattice. Waveguides formed by impurity enhancement of the refractive index were measured in soda lime glass which had been doped by ion exchange of Li, K, Rb, Cs, or Ag; and it was found that in each case the percentage increase in index was wavelength dependent. The Ag ion exchange waveguides were found to have features which could be attributed to colloidal silver metal. The metal colloids give dispersion anomalies as well as a red luminescence which was used to measure the losses in the waveguide.

  14. Optical Waveguide Output Couplers Fabricated in Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Abushagur, Mustafa A. G.; Ashley, Paul R.; Johnson-Cole, Helen

    1998-01-01

    Waveguide output couplers fabricated in Norland Optical Adhesive (NOA) #81 and AMOCO Ultradel 9020D polyimide are investigated. The output couplers are implemented using periodic relief gratings on a planar waveguide. Design theory of the couplers is based on the perturbation approach. Coupling of light from waveguide propagation modes to output radiation modes is described by coupled mode theory and the transmission line approximation of the perturbed area (grating structure). Using these concepts, gratings can be accurately designed to output a minimum number of modes at desired output angles. Waveguide couplers were designed using these concepts. These couplers were fabricated and analyzed for structural accuracy, output beam accuracy, and output efficiency. The results for the two different materials are compared.

  15. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    PubMed Central

    Anne, Marie-Laure; Keirsse, Julie; Nazabal, Virginie; Hyodo, Koji; Inoue, Satoru; Boussard-Pledel, Catherine; Lhermite, Hervé; Charrier, Joël; Yanakata, Kiyoyuki; Loreal, Olivier; Le Person, Jenny; Colas, Florent; Compère, Chantal; Bureau, Bruno

    2009-01-01

    Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors. PMID:22423209

  16. Nonreciprocal acousto-optical effect in planar waveguides

    SciTech Connect

    Nanii, Oleg E

    2000-03-31

    The amplitude nonreciprocal effect in planar waveguides during the interaction of waveguide optical modes with a travelling surface acoustic wave was calculated. The possibility of constructing an optical isolator (circulator) by using collinear acousto-optical diffraction with conversion of the type of waveguide mode is demonstrated. (laser applications and other topics in quantum electronics)

  17. Rethinking the surface of optical waveguides

    NASA Astrophysics Data System (ADS)

    Melati, D.; Morichetti, F.; Grillanda, S.; Annoni, A.; Melloni, A.

    2015-05-01

    The interface between the core and the cladding of optical waveguides exhibits a number of physical phenomena that do not occur in the bulk of the material. For this reason, the behavior of nanoscale devices is expected to be conditioned, or even dominated, by the nature of their surfaces. Roughness-induced losses, backscattering and crosstalk between adjacent waveguides, together with surface states absorption impact on the optical and electrical properties of the waveguides must be considered in the design of any integrated optoelectronic device. The detrimental effects and the possibility of their exploitation are carefully reviewed, presenting in particular the ContacLess Integrated Photonic Probe to be used as transparent power monitor.

  18. Solitonic optical waveguides in PR crystals

    NASA Astrophysics Data System (ADS)

    Klotz, Matthew Jason

    This dissertation describes a new technique for creating permanent, two-dimensional optical circuitry in bulk ferroelectric photorefractive crystals. This method utilizes steady state photorefractive screening spatial solitons to produce a localized space charge field capable of modulating the spontaneous polarization of the ferroelectric crystal. This localized change in the spontaneous polarization results in a permanent index change within the material that is capable of guiding optical waves. Individual waveguides were formed in the crystal by fixing single screening solitons. The waveguides were found to be identical in size to the soliton responsible for their formation and were observed to efficiently guide light for periods of continuous illumination in excess of 12 hours without degradation. In addition, arrays of waveguides were formed using binary optics to form several solitons in the material at the same time. It was determined that waveguides formed by extraordinarily polarized solitons were single mode and that those formed by ordinarily polarized solitons were multimode, due to the difference in the magnitude of the nonlinear optical properties of the crystal for the different polarization states. Thus the size and mode guiding properties of the fixed waveguides can be controlled by changing the input solitons properties. In addition to single waveguides formed by a single screening soliton, coherent collisions of two screening solitons were used to form a permanent y-junction in the crystal. The screening soliton collision results in two initially independent solitons fusing into a single soliton. After fixing, the resulting waveguide structure allows signals from two distinct inputs to be combined into a single output. It was demonstrated that this fixed structure was bidirectional, i.e. that light sent into the output would exit the original input branches with an even division of power. Again, the size and mode guiding properties were found to

  19. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  20. Suspended GaN-based nanostructure for integrated optics

    NASA Astrophysics Data System (ADS)

    Bai, Dan; Wu, Tong; Li, Xin; Gao, Xumin; Xu, Yin; Cao, Ziping; Zhu, Hongbo; Wang, Yongjin

    2016-01-01

    We show the fabrication and characterization of a suspended GaN-based nanostructure in the visible wavelength region that combines InGaN/GaN multiple quantum wells (MQWs) active layer with rib waveguides and then creates multiple separate beamlets. It is implemented on a GaN-on-silicon platform, where silicon substrate is removed and suspended epitaxial films are thinned by back wafer etching technique. When the InGaN/GaN MQWs active layer is optically excited, part of the emitted light is confined inside epitaxial films and acts the light source. The lateral propagation direction is controlled by the rib waveguide, and the light intensity and the propagation mode can be tuned by changing the rib waveguide structure. Experimental and simulated results indicate the proposed suspended GaN-based structure is promising for the integration of emitting device with planar optical circuit in the visible wavelength region.

  1. Carbon-implanted monomode waveguides in magneto-optical glasses for waveguide isolators

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-02-01

    Tb3+-doped aluminum borosilicate glasses are important magneto-optical materials for optical isolators. Optical waveguides are basic components in integrated photonics. By using the ion implantation technique, optical guiding structures can be produced in Tb3+-doped aluminum borosilicate glasses, and miniaturized waveguide isolators can be realized. In this paper, planar waveguides have been fabricated in Tb3+-doped aluminum borosilicate glasses by (6.0 + 5.5) MeV carbon ion implantation at doses of (8.0 + 4.0) × 1013 ions/cm2. The optical properties of optical waveguides are measured by equipments of prism coupling and end-face coupling systems. They are also analyzed by simulation programs of intensity calculation method and beam propagation method. The waveguides with good optical performances suggest potential applications on fabrication of waveguide isolators in Tb3+-doped aluminum borosilicate glasses.

  2. Design of electro-optic modulators based on graphene-on-silicon slot waveguides.

    PubMed

    Phatak, Abhijeet; Cheng, Zhenzhou; Qin, Changyuan; Goda, Keisuke

    2016-06-01

    We present a graphene-on-silicon (GoS) suspended vertical slot waveguide. By changing the Fermi level of graphene, the variation in the effective refractive index (RI) of the waveguide is a factor of two larger than that in the traditional GoS rib waveguide. The improvement is due to the light-intensity enhancement and the poor confinement of the optical mode in the slot nanostructure. We design Mach-Zehnder interferometer (MZI) and microring modulators based on the GoS suspended vertical slot waveguide. Our calculations show that the modulators can be energy-efficient and footprint-compact due to the large phase shift of the propagating mode in the waveguide after applying a gate voltage on the graphene. Fabrication of our design is easy and CMOS-compatible. It paves the way for chip-integrated electronic-RI modulators. PMID:27244399

  3. Slot optical waveguide usage in forming passive optical devices.

    PubMed

    Iqbal, M; Zheng, Z; Liu, J S

    2012-01-01

    We have reviewed the work on SOI slot optical waveguides followed by our work. In a slot waveguide structure, light can be confined in a low index slot guarded by high index slabs. Slot structures are being used in forming complex structures; such as ring resonator circuits. The increased round trip in ring resonator circuits signifies the importance of dispersion calculations. We did analytical and numerical investigations of slot structures' dispersion characteristics. Our dispersion tuned slot structures can help in reducing the dispersion effects on optical signal, which will in turn improve the efficiency of light-on-chip circuits. Since the advent of slot optical waveguides, SOI based slot optical waveguides have been under consideration. It has been found that glass based slot optical waveguide structures with relatively low refractive index contrast ratio can also play an important role in forming complex nano-size optical devices. We made use of power confined inside low index slot regions for a double slot structure. Opto-mechanical sensors have been proposed based upon: (a) variation in power confined inside low index slot region due to the movement of central high index slab under the action of external force (temperature, pressure, humidity, etc). vide Chinese Patent No. ZL 200710176770.1, 2007 (b) variation in power confined inside low refractive index slot regions due to movement of both slots under the action of external force (temperature, pressure, humidity, etc). PMID:21875406

  4. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.

    PubMed

    Li, Dongfang; Lawandy, Nabil M; Zia, Rashid

    2013-09-01

    The enhanced optical forces induced by surface phonon-polariton (SPhP) modes are investigated in different silicon carbide (SiC) nanostructures. Specifically, we calculate optical forces using the Maxwell stress tensor for three different geometries: spherical particles, slab waveguides, and rectangular waveguides. We show that SPhP modes in SiC can produce very large forces, more than one order of magnitude larger than the surface plasmon-polariton (SPP) forces in analogous metal nanostructures. The material and geometric basis for these large optical forces are examined in terms of dispersive permittivity, separation distance, and operating wavelength. PMID:24103963

  5. Fabrication of hollow optical waveguides on planar substrates

    NASA Astrophysics Data System (ADS)

    Barber, John P.

    This dissertation presents the fabrication of hollow optical waveguides integrated on planar substrates. Similar in principle to Bragg waveguides and other photonic crystal waveguides, the antiresonant reflecting optical waveguide (ARROW) is used to guide light in hollow cores filled with liquids or gases. Waveguides with liquid or gas cores are an important new building block for integrated optical sensors. The fabrication method developed for hollow ARROW waveguides makes use of standard microfabrication processes and materials. Dielectric layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) to form the bottom layers of the ARROW waveguide. A sacrificial core material is then deposited and patterned. Core materials used include aluminum, SU-8 and reflowed photoresist, each resulting in a different core geometry. Additional dielectric layers are then deposited, forming the top and sides of the waveguide. The sacrificial core is then removed in an acid solution, resulting in a hollow ARROW waveguide. Experiments investigating the mechanical strength of the hollow waveguides and the etching characteristics of the sacrificial core suggest design rules for the different core types. Integration of solid-core waveguides is accomplished by etching a ridge into the top dielectric layer of the ARROW structure. Improved optical performance can be obtained by forming the waveguides on top of a raised pedestal on the silicon substrate. Loss measurements on hollow ARROW waveguides fabricated in this manner gave loss coefficients of 0.26 cm-1 for liquid-core waveguides and 2.6 cm-1 for air-core waveguides. Fluorescence measurements in liquid-core ARROW waveguides have achieved single-molecule detection sensitivity. Integrated optical filters based on ARROW waveguides were fabricated, and preliminary results of a capillary electrophoresis separation device using a hollow ARROW indicate the feasibility of such devices for future

  6. Electro-optics laboratory evaluation: Deutsch optical waveguide connectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A description of a test program evaluating the performance of an optical waveguide connector system is presented. Both quality and effectiveness of connections made in an optical fiber, performance of the equipment used and applicability of equipment and components to field conditions are reviewed.

  7. Reconfigurable optical assembly of nanostructures.

    PubMed

    Montelongo, Yunuen; Yetisen, Ali K; Butt, Haider; Yun, Seok-Hyun

    2016-01-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216

  8. Reconfigurable optical assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-06-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

  9. Reconfigurable optical assembly of nanostructures

    PubMed Central

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-01-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216

  10. Nonlinear waveguide optics and photonic crystal fibers.

    PubMed

    Knight, J C; Skryabin, D V

    2007-11-12

    Focus Serial: Frontiers of Nonlinear Optics

    Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas. PMID:19550822

  11. White beam x-ray waveguide optics

    SciTech Connect

    Jarre, A.; Salditt, T.; Panzner, T.; Pietsch, U.; Pfeiffer, F.

    2004-07-12

    We report a white beam x-ray waveguide (WG) experiment. A resonant beam coupler x-ray waveguide (RBC) is used simultaneously as a broad bandpass (or multibandpass) monochromator and as a beam compressor. We show that, depending on the geometrical properties of the WG, the exiting beam consists of a defined number of wavelengths which can be shifted by changing the angle of incidence of the white x-ray synchrotron beam. The characteristic far-field pattern is recorded as a function of exit angle and energy. This x-ray optical setup may be used to enhance the intensity of coherent x-ray WG beams since the full energetic acceptance of the WG mode is transmitted.

  12. Hollow-core waveguide characterization by optically induced particle transport.

    PubMed

    Measor, Philip; Kühn, Sergei; Lunt, Evan J; Phillips, Brian S; Hawkins, Aaron R; Schmidt, Holger

    2008-04-01

    We introduce a method for optical characterization of hollow-core optical waveguides. Radiation pressure exerted by the waveguide modes on dielectric microspheres is used to analyze salient properties such as propagation loss and waveguide mode profiles. These quantities were measured for quasi-single-mode and multimode propagation in on-chip liquid-filled hollow-core antiresonant reflecting optical waveguides. Excellent agreement with analytical and numerical models is found, demonstrating that optically induced particle transport provides a simple, inexpensive, and nondestructive alternative to other characterization methods. PMID:18382513

  13. EDITORIAL: Nanostructures + Light = 'New Optics'

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay; Shalaev, Vladimir

    2005-02-01

    Suddenly, at the end of the last century, classical optics and classical electrodynamics became fashionable again. Fields that several generations of researchers thought were comprehensively covered by the famous Born and Wolf textbook and were essentially dead as research subjects were generating new excitement. In accordance with Richard Feynman’s famous quotation on nano-science, the optical community suddenly discovered that 'there is plenty of room at the bottom'—mixing light with small, meso- and nano-structures could generate new physics and new mind-blowing applications. This renaissance began when the concept of band structure was imported from electronics into the domain of optics and led to the development of what is now a massive research field dedicated to two- and three-dimensional photonic bandgap structures. The field was soon awash with bright new ideas and discoveries that consolidated the birth of the 'new optics'. A revision of some of the basic equations of electrodynamics led to the suspicion that we had overlooked the possibility that the triad of wave vector, electric field and magnetic field, characterizing propagating waves, do not necessarily form a right-handed set. This brought up the astonishing possibilities of sub-wavelength microscopy and telescopy where resolution is not limited by diffraction. The notion of meta-materials, i.e. artificial materials with properties not available in nature, originated in the microwave community but has been widely adopted in the domain of optical research, thanks to rapidly improving nanofabrication capabilities and the development of sub-wavelength scanning imaging techniques. Photonic meta-materials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. The structural units of meta-materials can be tailored in shape and size; their composition and morphology can be artificially tuned, and inclusions can be

  14. Rotated waveplates in integrated waveguide optics

    PubMed Central

    Corrielli, Giacomo; Crespi, Andrea; Geremia, Riccardo; Ramponi, Roberta; Sansoni, Linda; Santinelli, Andrea; Mataloni, Paolo; Sciarrino, Fabio; Osellame, Roberto

    2014-01-01

    Controlling and manipulating the polarization state of a light beam is crucial in applications ranging from optical sensing to optical communications, both in the classical and quantum regime, and ultimately whenever interference phenomena are to be exploited. In addition, many of these applications present severe requirements of phase stability and greatly benefit from a monolithic integrated-optics approach. However, integrated devices that allow arbitrary transformations of the polarization state are very difficult to produce with conventional lithographic technologies. Here we demonstrate waveguide-based optical waveplates, with arbitrarily rotated birefringence axis, fabricated by femtosecond laser pulses. To validate our approach, we exploit this component to realize a compact device for the quantum state tomography of two polarization-entangled photons. This work opens perspectives for integrated manipulation of polarization-encoded information with relevant applications ranging from integrated polarimetric sensing to quantum key distribution. PMID:24963757

  15. Grating assisted optical waveguide coupler to excite individual modes of a multi-mode waveguide

    NASA Astrophysics Data System (ADS)

    Bremer, K.; Lochmann, S.; Roth, B.

    2015-12-01

    Spatial division multiplexing (SDM) in the form of mode division multiplexing (MDM) in multi-mode (MM) waveguides is currently explored to overcome the capacity limitation of single-mode (SM) waveguides in data transmission technology. In this work a new approach towards mode selective optical waveguide couplers to multiplex and demultiplex individual modes of MM waveguides is presented. We discuss a grating assisted mode selective optical waveguide coupler and evaluate numerically its coupling efficiency. The approach relies on a grating structure in a SM waveguide which is used to excite individual modes of an adjacent unmodified MM waveguide via evanescent field coupling. The simulations verify that by using the grating structure and tailoring the grating period, light from the SM waveguide can be coupled selectively into the fundamental mode or any higher-order mode of a MM waveguide with high efficiency and low crosstalk to adjacent mode-channels. The results indicate the potential of the grating assisted waveguide coupler approach for future applications in on-chip photonic networks and the (de)multiplexing of individual modes of MM waveguides.

  16. Optical bistability with the waveguide mode

    NASA Astrophysics Data System (ADS)

    Montemayor, V. J.; Deck, R. T.

    1985-06-01

    An exact plane-wave treatment of the triple-boundary waveguide geometry for the study of optical bistability is presented. It is found that the switching intensity required to observe the desired switching behavior is lower by at least a factor of 25 from that previously reported, thus making this geometry a prime candidate for experimental investigation. A comparison with the results of an approximate theory is also presented, showing that the approximate theory closely describes the behavior of the system as predicted by the exact theory.

  17. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  18. Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 microm by use of heterodyne scanning near-field optical microscopy.

    PubMed

    Tortora, P; Abashin, M; Märki, I; Nakagawa, W; Vaccaro, L; Salt, M; Herzig, H P; Levy, U; Fainman, Y

    2005-11-01

    We apply heterodyne scanning near-field optical microscopy (SNOM) to observe with subwavelength resolution the amplitude and phase of optical fields propagating in several microfabricated waveguide devices operating around the 1.55 microm wavelength. Good agreement between the SNOM measurements and predicted optical mode propagation characteristics in standard ridge waveguides demonstrates the validity of the method. In situ observation of the subwavelength-scale distribution and propagation of optical fields in straight and 90 degrees bend photonic crystal waveguides facilitates a more detailed understanding of the optical performance characteristics of these devices and illustrates the usefulness of the technique for investigating nanostructured photonic devices. PMID:16279458

  19. Controllable optical Bloch oscillation in planar graded optical waveguide arrays

    SciTech Connect

    Zheng, M. J.; Xiao, J. J.; Yu, K. W.

    2010-03-15

    Optical Bloch oscillation is studied theoretically in planar graded optical waveguide arrays with nearest-neighbor couplings. The gradient in the propagation constants can be achieved with the eletro-optical effect. We identify a variety of normal modes (called gradons) in the waveguide arrays with the aid of a phase diagram. Moreover, the localization properties of the normal modes are characterized and the transitions among these modes are obtained from a picture of overlapping bands. The existence of Bloch oscillation and other oscillations are confirmed by using the field-evolution analysis with various input Gaussian beams. From the results, we obtain a correspondence between gradon localization and Bloch oscillation. This study can be extended to more general waveguide arrays in higher dimensions and with further neighbor couplings. The results offer great potential applications in controlling wave propagation by means of graded materials and graded systems, which can be used to explore the tunability of light manipulation and applied to design suitable optical devices.

  20. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    SciTech Connect

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-05-15

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm{sup 2}, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.

  1. Guided Photoluminescence from Integrated Carbon-Nanotube-Based Optical Waveguides.

    PubMed

    Bodiou, Loïc; Gu, Qingyuan; Guézo, Maud; Delcourt, Enguerran; Batté, Thomas; Lemaitre, Jonathan; Lorrain, Nathalie; Guendouz, Mohammed; Folliot, Hervé; Charrier, Joël; Mistry, Kevin S; Blackburn, Jeffrey L; Doualan, Jean-Louis; Braud, Alain; Camy, Patrice

    2015-10-28

    Thin films and ridge waveguides based on large-diameter semiconducting single-wall carbon nanotubes (s-SWCNTs) dispersed in a polyfluorene derivative are fabricated and optically characterized. Ridge waveguides are designed with appropriate dimensions for single-mode propagation at 1550 nm. Using multimode ridge waveguides, guided s-SWCNT photoluminescence is demonstrated for the first time in the near-infrared telecommunications window. PMID:26350035

  2. Waveguide ring resonator as integrated optics for rotation sensor

    NASA Astrophysics Data System (ADS)

    Tang, Quan'an; Zheng, Ludi; Ma, Xinyu; Zhang, Yanshen

    1996-09-01

    To obtain a micro optic rotation sensor (MORS), a passive ring resonator (PRR) based on channel waveguide was designed and investigated. The waveguide structure of the resonator includes a ring waveguide as well as two directional couplers. The theoretical resolution and transfer functions of the MORS are discussed, and the PRR parameters are determined. According to the sensitivity requirement, the PRR frequency detecting system is discussed, and different detecting schemes are compared.

  3. Micro biochemical sensor based on SOI planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Du, Yang; Dong, Ying

    2014-02-01

    A novel biochemical sensor based on planar optical waveguide is presented in this paper. The features of the sensor are as follows, the planar optical waveguide is made of SOI (Silicon-On-Insulator) material, a Mach Zehnder (M-Z) Interferometer structure is adopted as the sensing part, the sensor chip is fabricated using CMOS compatible technology and the size of the sensor chip is on the micron scale. Compared with the traditional biochemical sensors, this new type of sensor has such notable advantages as miniaturization, integration, high sensitivity and strong anti-interference capability, which provide the sensor with potential applications where traditional biochemical sensors cannot be used. At first, the benefits of SOI material comparing to other optical waveguide materials were analyzed in this paper. Then, according to the optical waveguide mode theory, M-Z interferometer waveguide was designed for the single mode behavior. By theoretical analysis of the radiation loss in the Y-junction of the planar waveguide interferometer, the relationship between the branch angle and the radiation loss was obtained. The power transfer function and the parametric equation of sensitivity of the M-Z interferometer were obtained through analysis of the waveguide structure. At last, the resolution of the effective refractive index and the characteristics of sensitivity of the sensor based on SOI M-Z Interferometer waveguide were simulated and analyzed by utilizing MATLAB software. As a result, the sensitivity of SOI M-Z Interferometer sensor can reach the order of 10-7 magnitude.

  4. Optical loss coefficient in plastic waveguides

    NASA Astrophysics Data System (ADS)

    Geetha, K.; Gopinath, Pramod; Unnikrishnan, K. P.; Lee, S. T.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, Periasamy

    2002-09-01

    We report the position dependent tuning of fluorescence emission from Rhodamine 6G doped plastic waveguide using side illumination technique . The transmitted fluorescence as a function of the distance from the point of illumination is measured by translating the waveguide horizontally across a monochromatic light source. This technique has proved to be a useful method for characterizing the light propagation properties of dye-doped waveguides. An important finding of the present studies is the nonlinear behavior of the loss coefficient as a function of propagation distance through the waveguide. It is also found that this type of nonlinear nature depends on the dye concentration and thickness of the waveguide.

  5. Nonlinear band gap transmission in optical waveguide arrays.

    PubMed

    Khomeriki, Ramaz

    2004-02-13

    The effect of nonlinear transmission in coupled optical waveguide arrays is theoretically investigated and a realistic experimental setup is suggested. The beam is injected in a single boundary waveguide, linear refractive index of which (n(0)) is larger than refractive indexes (n) of other identical waveguides in the array. Particularly, the effect holds if omega(n(0)-n)/c>2Q, where Q is a linear coupling constant between array waveguides, omega is a carrier wave frequency, and c is a light velocity. Numerical experiments show that the energy transfers from the boundary waveguide to the waveguide array above a certain threshold intensity of the injected beam. This effect is due to the creation and the propagation of gap solitons in full analogy with a similar phenomenon in sine-Gordon lattice [Phys. Rev. Lett. 89, 134102 (2002)

  6. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOEpatents

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  7. Polymeric optical waveguide devices exploiting special properties of polymer materials

    NASA Astrophysics Data System (ADS)

    Oh, Min-Cheol; Chu, Woo-Sung; Shin, Jin-Soo; Kim, Jun-Whee; Kim, Kyung-Jo; Seo, Jun-Kyu; Lee, Hak-Kyu; Noh, Young-Ouk; Lee, Hyung-Jong

    2016-03-01

    Optical polymer materials have many unique features that are unavailable in other inorganic optical materials. These include large thermo-optic effect with low thermal conductivity, index tunability by solution blending, structural diversity, freestanding flexibility, and controllable birefringence. Various functional integrated optic devices have been investigated by our group based on the specialties of fluorinated polymer material, which include extremely low crosstalk integrated optics, strain-controlled flexible waveguide tunable lasers, and birefringence-tuned polarization controllers. They have been demonstrated to have good performance, large fabrication tolerance, and high reliability, and they will be important building blocks for extending the application territory of polymeric optical waveguide devices.

  8. Synthesis and characterization of hydrothermally grown zinc oxide (ZnO) nanorods for optical waveguide application

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan A.; Rahim, Rafis; Manjunath, S.; Hornyak, Gabor L.; Mohammed, Waleed S.

    2015-07-01

    We report a simple method to synthesize Zinc oxide nanorods, grown without using catalysis with less complicity. This was done by hydrothermal treatment of zinc nitrate and hexamine at 90°C and various times (5- 20h) and also we find that the nanorod size and shape depends on heating rate, temperature and heating time. ZnO nanorods have been investigated for their light guiding ability and their effective index of refraction for use in near air index optical systems by developing a ridge waveguide structure. ZnO nanorod waveguides (100 μm w x 2.5 μm h x 1mm l) were grown on a seeded glass substrate template using hydrothermal process at 90°C. Modification of the substrate surface in order to obtain dense perpendicularly-oriented ordered nanorods induced selective growth. These structures were characterized by SEM, EDX, and XRD. The guiding property, i.e. locally excited photoluminescence propagation along the length of the waveguide, was analyzed with imageprocessing program in MATLAB. Following application of a fiber optic white light source on the ZnO nanostructure, we found that light propagation occurred within the glass substrate. No such propagation occurred if light was applied on uncoated areas of the glass. Modeling of waveguide behavior to determine the number propagating modes was exercised using waveguide mode solver in COMSOL.

  9. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  10. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J.; Dawson, Jay W.; Beach, Raymond J.; Barty, Christopher P. J.

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  11. Raman scattering in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  12. Experimental studies of electro-optic polymer modulators and waveguides

    NASA Astrophysics Data System (ADS)

    Hedin, Eric R.; Goetz, Frederick J.

    1995-03-01

    The results of an experimental study of electro-optic modulators and waveguides based on polymeric materials are presented. Included are the design, fabrication, and testing of integrated Mach-Zehnder modulators, which are based on polymer films that contain a novel, nonlinear electro-optic chromophore. Studies also show the efficacy of photolithography or photobleaching by the use of this chromophore to form passive, branching waveguides, which are operated at the 1300-nm wavelength.

  13. Optical modes in slab waveguides with magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Talebi, Nahid

    2016-05-01

    Optical modes in anisotropic slab waveguides with topological and chiral magnetoelectric effects are investigated analytically, by deriving the closed-form characteristic equations of the modes and hence computing the dispersion-diagrams. In order to compute the characteristic equations, a vector-potential approach is introduced by incorporating a generalized Lorentz gauge, and the Helmholtz equations are derived correspondingly. It will be shown that the formation of the complex modes and hybridization of the optical modes in such slab waveguides is inevitable. Moreover, when the tensorial form of the permittivity in the waveguide allows for a hyperbolic dispersion, complex transition from the photonic kinds of modes to the plasmonic modes is expected.

  14. High efficiency source coupler for optical waveguide illumination system

    DOEpatents

    Siminovitch, Michael J.

    2000-01-01

    A fiber optic or optical waveguide illumination system includes a source coupling system. The source coupling system includes an optical channel with an internal cavity. A light source is disposed inside the driving circuit. Coupling losses are minimized by placing the light source within the optical channel. The source cavity and the source optical channel can be shaped to enhance the amount of light captured in the channel by total internal reflection. Multiple light distribution waveguides can be connected to the source coupling channel to produce an illumination system.

  15. Tunable optical bandpass filter with multiple flat-top bands in nanostructured resonators

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Chen, Yuping; Lu, Wenjie; Chen, Xianfeng

    2011-03-01

    Based on second-order nonlinearity, we present a tunable optical bandpass filter at c-band by introducing a back quasiphase-matching technique with a nanostructured named multiple resonator waveguide. Two injecting forward lights and one backward propagating light interact with difference frequency generation. At that juncture, the transmission of the forward signal can be modulated via changing the forward control power. As a result, a tunable optical bandpass filter with multiple flat-top transmit bands of the forward signal can be formed in the waveguide.

  16. Photopolymer-based three-dimensional optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Kagami, M.; Yamashita, T.; Yonemura, M.; Kawasaki, A.; Watanabe, O.; Tomiki, M.

    2012-02-01

    Photopolymer based three-dimensional (3D) waveguide devices are very attractive in low-cost optical system integration. Especially, Light-Induced Self-Written (LISW) technology is suitable for this application, and the technology enables low-loss 3D optical circuitry formation from an optical fiber tip which soaked in photopolymer solution by employing its photo-polymerization due to own irradiation from the fiber tip. This technology is expected drastic mounting cost reduction in fields of micro-optic and hybrid integration devices assembly. The principle of the LISW optical waveguides is self-trapping effect of the irradiation flux into the self-organized waveguide, where, used wavelength can be chosen to fit photopolymer's reactivity from visible to infrared. Furthermore, this effect also makes possible grating formation and "optical solder" interconnection. Actually fabricated self-written grating shows well defined deep periodic index contrast and excellent optical property for the wavelength selectivity. And the "optical solder" interconnection realizes a passive optical interconnection between two faceted fibers or devices by the LISW waveguide even if there is a certain amount of gap and a small degree of misalignment exist. The LISW waveguides grow towards each other from both sides to a central point where the opposing beams overlap and are then combined into one waveguide. This distinctive effect is confirmed in all kind optical fibers, such as from a singlemode to 1-mm-corediameter multimode optical fiber. For example of complicated WDM optical transceiver module, mounted a branchedwaveguide and filter elements, effectiveness of LISW technology is outstanding. In assembling and packaging process, neither dicing nor polishing is needed. In this paper, we introduce LISW technology principles and potential application to integrated WDM optical transceiver devices for both of singlemode and multimode system developed in our research group.

  17. Multi-element optical waveguide sensor: General concept and design.

    PubMed

    Smardzewski, R R

    1988-02-01

    A prototype of a self-contained multi-element optical waveguide sensor for detection and identification of the constituents of gaseous or liquid mixtures has been fabricated. The device consists of eight optical waveguides, each coated with a thin film known to react specifically with one or more components in a multicomponent system. An array of eight sequentially-activated light-emitting diodes is attached to the waveguide assembly in such a fashion as to activate each detection channel separately. Each waveguide is a fiber-optic coupled to a single high-gain, low-noise photomultiplier tube or photodiode/operational amplifier detector. The amplified signals can be displayed visually or input to a microprocessor pattern-recognition algorithm. CMOS analog switches/multiplexers are used in feedback loops to control automatic gain-ranging, light-level adjustment and channel-sequencing. Preliminary experiments involving the monitoring of redox/pH changes are discussed. PMID:18964475

  18. Comprehensive study on the concept of temporal optical waveguides

    NASA Astrophysics Data System (ADS)

    Zhou, Junhe; Zheng, Guozeng; Wu, Jianjie

    2016-06-01

    Time and space are dual variables which bring a lot of analogies during theoretical study. In this paper, we extend the concept of a spatial optical waveguide to the temporal domain. Here we show that it is possible to confine the optical pulse within a time interval by introducing the temporal index boundaries. The confined pulse will propagate at a speed of the index change in the waveguide, and it will be behind the original optical pulse which propagates without the temporal index variations. In this way, we may offer an approach to broaden the bandwidth of the slow light and to tune the light speed based on the existing slow light devices. The temporal waveguide has modes, which are the temporal waveforms maintaining their shapes during the propagation. In a single-mode temporal waveguide, the pulse retains its shape as the only mode of the waveguide just like an optical soliton. In a multimode temporal waveguide, multimode interference effect exists, which can duplicate a single pulse into multiple copies and be potentially implemented for all-optical signal processing.

  19. Optical waveguides and structures for short haul optical communication channels within printed circuit boards

    NASA Astrophysics Data System (ADS)

    Riegel, Nicholas J.

    Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 mum multimode and 4 - 9 mum single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 microm or 150 microm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is

  20. NANOSTRUCTURED PLANAR WAVEGUIDE DEVICE FOR MOLECULAR IDENTIFICATION OF HAZARDOUS COMPOUNDS IN WATER BY EVANESCENT SURFACE ENHANCED RAMAN SPECTROSCOPY - PHASE I

    EPA Science Inventory

    Senspex, Inc. proposes to investigate a novel diagnostic tool based upon evanescent field planar waveguide sensing and complementary nanostructured mediated molecular vibration spectroscopy methods for rapid detection and analysis of hazardous biological and chemical targets i...

  1. Polymer multimode waveguide optical and electronic PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Selviah, David R.

    2009-02-01

    The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.

  2. Nanoassembled dynamic optical waveguides and sensors based on zeolite L nanocontainers

    NASA Astrophysics Data System (ADS)

    Barroso, Álvaro; Dieckmann, Katrin; Alpmann, Christina; Buscher, Tim; Studer, Armido; Denz, Cornelia

    2015-03-01

    Although optical functional devices as waveguides and sensors are of utmost importance for metrology on the nano scale, the micro-and nano-assembly by optical means of functional materials to create such optical elements has yet not been considered. In the last years, an elegant strategy based on holographic optical tweezers (HOT) has been developed to design and fabricate permanent and dynamic three-dimensional micro- and nanostructures based on functional nanocontainers as building blocks. Nanocontainers that exhibit stable and ordered voids to hierarchically organize guest materials are especially attractive. Zeolite L are a type of porous micro-sized crystals which features a high number of strictly one-dimensional, parallel aligned nanochannels. They are highly interesting as building blocks of functional nano-and microsystems due to their potential as nanocontainers to accommodate various different guest molecules and to assemble them in specific configurations. For instance, based on zeolite L crystals, microscopic polarization sensors and chains of several microcrystals for hierarchical supramolecular organization have been realized. Here, we demonstrate the ability of nanocontainers in general, and zeolite L crystals in particular to represent the basic constituent of optical functional microsystems. We show that the capability of HOT to manipulate multitude of non-spherical microparticles in three dimensions can be exploited for the investigation of zeolite L nanocontainers as dynamic optical waveguides. Moreover, we implement as additional elements dye-loaded zeolite L to sense the guiding features of these novel waveguides with high spatial precision and microspheres to enhance the light coupling into the zeolite L waveguides. With this elaborated approach of using nanocontainers as tailored building blocks for functional optical systems a new era of bricking optical components in a lego-like style becomes feasible.

  3. Optical planar waveguide for cell counting

    PubMed Central

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids. PMID:22331960

  4. Electro-optic polymer waveguide grating with fast tuning capability.

    PubMed

    Wang, Yi-Ping; Chen, Jian-Ping; Li, Xin-Wan; Zhou, Jun-He; Shen, Hao; Zhang, Xiao-Hong; Ye, Ai-Lun

    2005-06-10

    A novel fast tunable electro-optic (EO) polymer waveguide grating is proposed and designed. Its resonant wavelength can be linearly tuned via the first-order EO effect with a high sensitivity of 6.1 pm/V. We find that the spectrum characteristics of EO polymer waveguide gratings depend strongly on many grating parameters, such as refractive-index modulation, modulation function, grating period, and period number. Material selection, fabrication technology, EO tuning ability, and polarization dependence of EO polymer waveguide gratings are also discussed. Such a waveguide grating not only overcomes the disadvantages of fiber-optic gratings, such as slow wavelength tuning ability and large-scale integration inconvenience, but also has many advantages, such as high resonant-wavelength tuning sensitivity, the same fabrication technology used for semiconductors, and polarization independence. PMID:16007840

  5. Giant optical nonlinearity of plasmonic nanostructures

    SciTech Connect

    Melentiev, P N; Afanasev, A E; Balykin, V I

    2014-06-30

    The experimental studies of giant optical nonlinearity of single metal nanostructures are briefly reviewed. A new hybrid nanostructure – split-hole resonator (SHR) – is investigated. This structure is characterised by a record-high efficiency of third-harmonic generation and multiphoton luminescence (its nonlinearity exceeds that of a single nanohole by five orders of magnitude) and an unprecedently high sensitivity to light polarisation (extinction coefficient 4 × 10{sup 4}). (extreme light fields and their applications)

  6. Influence of gold nanoparticles on the 1.53 µm optical gain in Er3+/Yb3+: PbO-GeO2 RIB waveguides.

    PubMed

    da Silva, Davinson Mariano; Kassab, Luciana Reyes Pires; Siarkowski, Acácio L; de Araújo, Cid B

    2014-06-30

    We report the fabrication of waveguide amplifiers produced by RF-sputtering, using a PbO-GeO(2) glass (PGO glass) film codoped with Er(3+)/Yb(3+). RIB waveguides were obtained from PGO thin films using optical lithography followed by reactive ion etching process. The optical losses in the waveguide were ≈1.0 dB/cm and the maximum internal gain at 1.53 µm, with excitation at 980 nm, was 3 dB/cm. Nanostructured gold films deposited on the waveguides enhanced the Er(3+) ions photoluminescence (PL) by ≈400% in the red region and ≈30% in the infrared, under 980 nm pumping. The optical gain was enhanced and reached 6.5 dB/cm. The results demonstrate that the PGO waveguides, with or without gold nanoparticles, are promising for integrated photonics. PMID:24977891

  7. Dynamic optical methods for direct laser written waveguides

    NASA Astrophysics Data System (ADS)

    Salter, P. S.; Booth, M. J.

    2013-03-01

    Direct laser writing is widely used to fabricate 3D waveguide devices by modi cation of a materials refractive index. The fabrication delity depends strongly on focal spot quality, which in many cases is impaired by aberrations, particularly spherical aberration caused by refractive index mismatch. We use adaptive optics to correct aberration and maintain fabrication performance at a range of depths. Adaptive multifocus methods are also shown for increasing the fabrication speed for single waveguides.

  8. Copper ion-exchanged channel waveguides optimization for optical trapping.

    PubMed

    Reshak, A H; Khor, K N; Shahimin, M M; Murad, S A Z

    2013-08-01

    Optical trapping of particles has become a powerful non-mechanical and non-destructive technique for precise particle positioning. The manipulation of particles in the evanescent field of a channel waveguide potentially allows for sorting and trapping of several particles and cells simultaneously. Channel waveguide designs can be further optimized to increase evanescent field prior to the fabrication process. This is crucial in order to make sure that the surface intensity is sufficient for optical trapping. Simulation configurations are explained in detail with specific simulation flow. Discussion on parameters optimization; physical geometry, optical polarization and wavelength is included in this paper. The effect of physical, optical parameters and beam spot size on evanescent field has been thoroughly discussed. These studies will continue toward the development of a novel copper ion-exchanged waveguide as a method of particle sorting, with biological cell propulsion studies presently underway. PMID:23726859

  9. Electro-optic switching based on a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Qi, Zhe; Zhu, Zhi Hong; Xu, Wei; Zhang, Jian Fa; Cai Guo, Chu; Liu, Ken; Yuan, Xiao Dong; Qiao Qin, Shi

    2016-09-01

    We numerically demonstrate that electro-optic switching in the mid-infrared range can be realized using a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides (DLGPWs). The numerical results are in good agreement with the results of physical analysis. The switching mechanism is based on dynamic modification of the resonant wavelengths of the ring resonator, achieved by varying the Fermi energy of a graphene sheet. The results reveal that a switching ratio of ∼24 dB can be achieved with only a 0.01 eV change in the Fermi energy. Such electrically controlled switching operation may find use in actively tunable integrated photonic circuits.

  10. Method of adiabatic modes in research of smoothly irregular integrated optical waveguides: zero approximation

    SciTech Connect

    Egorov, A A; Sevast'yanov, L A; Sevast'yanov, A L

    2014-02-28

    We consider the application of the method of adiabatic waveguide modes for calculating the propagation of electromagnetic radiation in three-dimensional (3D) irregular integrated optical waveguides. The method of adiabatic modes takes into account a three-dimensional distribution of quasi-waveguide modes and explicit ('inclined') tangential boundary conditions. The possibilities of the method are demonstrated on the example of numerical research of two major elements of integrated optics: a waveguide of 'horn' type and a thin-film generalised waveguide Luneburg lens by the methods of adiabatic modes and comparative waveguides. (integral optical waveguides)

  11. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-Pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration. PMID:26907415

  12. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  13. Omnidirectional optical attractor in structured gap-surface plasmon waveguide.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2016-01-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges. PMID:27001451

  14. Omnidirectional optical attractor in structured gap-surface plasmon waveguide

    PubMed Central

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2016-01-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges. PMID:27001451

  15. Omnidirectional optical attractor in structured gap-surface plasmon waveguide

    NASA Astrophysics Data System (ADS)

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2016-03-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges.

  16. Optical waveguides in lithium niobate: Recent developments and applications

    NASA Astrophysics Data System (ADS)

    Bazzan, Marco; Sada, Cinzia

    2015-12-01

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  17. Optical waveguides in lithium niobate: Recent developments and applications

    SciTech Connect

    Bazzan, Marco Sada, Cinzia

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  18. Digital optical phase control in ridge-waveguide phase modulators

    SciTech Connect

    Vawter, G.A.; Hietala, V.M.; Kravitz, S.H. )

    1993-03-01

    The authors report a new digital optical phase modulation concept based on depletion-edge-translation p-n junction GaAs/AlGaAs ridge-waveguide modulators. Digital modulation is achieved by integrating in series several discrete waveguide modulators with lengths related by successive factors of two. To illustrate the concept, the authors fabricated and demonstrated a three-bit digital phase modulator with 45[degree] resolution. This structure represents the first photonic integrated circuit that performs direct digital-electronic to analog-optical conversion.

  19. Transparent and flexible force sensor array based on optical waveguide.

    PubMed

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB. PMID:22714510

  20. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  1. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  2. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Mcwright, G. M.

    1982-01-01

    Glass waveguides are studied because of the ease and economy of fabricating devices in glass. All calculations are based on the assumption of a glass guide and substrate, but the effects being studied will occur on other materials if the proper refractive indices are used in the calculations.

  3. Embedded planar glass waveguide optical interconnect for data centre applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Schröder, Henning; Brusberg, Lars; Graham-Jones, Jasper; Wang, Kai

    2013-02-01

    Electro-optical printed circuit boards (EOCB) based on planar multimode polymer channels are limited by dispersion in the step-index waveguide structures and increased optical absorption at the longer telecom wavelengths [1]. We present a promising technology for large panel EOCB based on holohedrally integrated glass foils. The planar multimode glass waveguides patterned into these glass foils have a graded-index structure, thereby giving rise to a larger bandwidthlength product compared to their polymer waveguide counterparts and lower absorbtion at the longer telecom wavelengths. This will allow glass waveguide based EOCBs to support the future bandwidth requirements inherent to large scale data centre and high performance computer subsystems while not incurring the same dispersion driven penalties on interconnect length or loss dependence on wavelength. To this end glass foil structuring technologies have been developed that are compatible with industrial PCB manufacturing processes. Established processes as well as new approaches were analysed for their eligibility and have been applied to the EOCB process. In addition a connector system has been designed, which would allow optical pluggability to glass waveguide EOCBs.

  4. Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides

    NASA Astrophysics Data System (ADS)

    Fiedler, Kevin; Troian, Sandra

    The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  5. Integrated Optical Memory Based on Laser-Written Waveguides

    NASA Astrophysics Data System (ADS)

    Corrielli, Giacomo; Seri, Alessandro; Mazzera, Margherita; Osellame, Roberto; de Riedmatten, Hugues

    2016-05-01

    We propose and demonstrate a physical platform for the realization of integrated photonic memories based on laser-written waveguides in rare-earth-doped crystals. Using femtosecond-laser micromachining, we fabricate waveguides in Pr3 +∶Y2SiO5 crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor of 6. We also demonstrate that analogous to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic-frequency combs that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent a realization of laser-written waveguides in a Pr3 +∶Y2SiO5 crystal and an implementation of an integrated on-demand spin-wave optical memory. They open perspectives for integrated quantum memories.

  6. Magnetically Responsive Nanostructures with Tunable Optical Properties.

    PubMed

    Wang, Mingsheng; Yin, Yadong

    2016-05-25

    Stimuli-responsive materials can sense specific environmental changes and adjust their physical properties in a predictable manner, making them highly desired components for designing novel sensors, intelligent systems, and adaptive structures. Magnetically responsive structures have unique advantages in applications, as external magnetic stimuli can be applied in a contactless manner and cause rapid and reversible responses. In this Perspective, we discuss our recent progress in the design and fabrication of nanostructured materials with various optical responses to externally applied magnetic fields. We demonstrate tuning of the optical properties by taking advantage of the magnetic fields' abilities to induce magnetic dipole-dipole interactions or control the orientation of the colloidal magnetic nanostructures. The design strategies are expected to be extendable to the fabrication of novel responsive materials with new optical effects and many other physical properties. PMID:27115174

  7. Measurement of the thermo-optical effect of integrated waveguides

    NASA Astrophysics Data System (ADS)

    Kremmel, Johannes; Lamprecht, Tobias; Michler, Markus

    2016-05-01

    Thermo-optical switches are widely used in integrated optics and various types of integrated optical structures have been reported in literature. These structures include, but are not limited to Mach-Zehnder-Interferometer (MZI) switches and digital optical switches. The thermo-optical effect depends on the refractive index, the polarizability and the density of a material. The polarizability effect can often be neglected and the change of refractive index is dominated by a density change due to the thermal expansion of the material. We report herein a new method to measure the thermo-optical effect of waveguides directly, using integrated MZIs fabricated in polymer waveguide technology. Common methods rely on macroscopic samples, but the properties can differ significantly for micro-structured waveguides. Using a floodlight halogen rod lamp and metal-shields, we realized a radiation heater with a trapezoidal-shaped heating pattern. While the heating occurred from the bottom side, a thermocouple was placed on top of the sample. By dynamically measuring the temperature and the corresponding output-power of the MZI, the temperature difference between constructive and destructive interference can be determined. Multiple measurements of different sample MZIs exhibit an average thermo-optical coefficient (TOC) of 1.6 ∗ 10-4 1/K .

  8. Planar Waveguiding Systems for Optical Sensing

    NASA Astrophysics Data System (ADS)

    Lambeck, Paul V.; Hoekstra, Hugo J. W. M.

    Driving force of the research in Integrated Optics is the optical (tele-) communication, but in its slipstream a lot of research on Integrated Optical (IO-) sensors has been performed during last decade.

  9. Self-Action of Light Fields in Waveguide Photon Structures Based on Electro-Optic Crystals

    NASA Astrophysics Data System (ADS)

    Shandarov, V. M.

    2016-02-01

    Special features of spatial self-action of light fields in nonlinear optical photonic waveguide structures formed in strontium barium niobate and lithium niobate electro-optic crystals are discussed. The main methods of forming such structures including photorefractive waveguide elements and systems are briefly considered. The formation of spatial optical solitons in planar waveguides based on lithium niobate and strontium barium niobate crystals as well as in one-dimensional photonic lattices in lithium niobate is demonstrated experimentally for light beams of microwatt power. In regimes of spatial optical solitons, channel optical waveguides are formed not only in the planar waveguides, but also in the volume of photorefractive lithium niobate.

  10. Harmonic oscillations and their switching in elliptical optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jie Zheng, Ming; San Chan, Yun; Yu, Kin Wah

    2011-03-01

    We have studied harmonic oscillations in an elliptical optical waveguide array in which the coupling between neighboring waveguides is varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, long-living Bloch oscillations (BO) and dipole oscillations (DO) are obtained when a linear gradient in the propagation constant is applied. Moreover, we achieve a switching from DO to BO or vice versa by ramping up the gradient profile. The various optical oscillations as well as their switching are investigated by field-evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals.

  11. Design of SiOx slab optical waveguides

    NASA Astrophysics Data System (ADS)

    Lizarraga-Medina, E. G.; Oliver, A.; Vázquez, G. V.; Salas-Montiel, R.; Márquez, H.

    2015-08-01

    An analysis of the dispersion relation of SiOx submicron optical waveguides in the visible and IR spectral range is presented. Here is considered that the refractive index (n) of SiOx can be tuned in the range from n=1.457-2 for 2>x>1, and a film thickness from 50nm to 1000nm. Starting from the dispersion relation and the distribution of the electric field in the waveguide; cutoff wavelength, cutoff thickness, effective refractive index, effective guide thickness and confinement factor of a selected mode are calculated.

  12. Gaussian-Beam/Physical-Optics Design Of Beam Waveguide

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Chen, Jacqueline C.; Bathker, Dan A.

    1993-01-01

    In iterative method of designing wideband beam-waveguide feed for paraboloidal-reflector antenna, Gaussian-beam approximation alternated with more nearly exact physical-optics analysis of diffraction. Includes curved and straight reflectors guiding radiation from feed horn to subreflector. For iterative design calculations, curved mirrors mathematically modeled as thin lenses. Each distance Li is combined length of two straight-line segments intersecting at one of flat mirrors. Method useful for designing beam-waveguide reflectors or mirrors required to have diameters approximately less than 30 wavelengths at one or more intended operating frequencies.

  13. Instability of traveling waves in an optical waveguide

    NASA Astrophysics Data System (ADS)

    Mizushima, Yoshihiko

    2012-09-01

    Instability of traveling IR waves within a waveguide structure is discussed. A practical model of a traveling wave amplifier of a solid state is proposed, utilizing an optical waveguide. The mechanism of instability is interpreted in terms of an interaction between a plasmon wave and a circuit one under a constraining boundary condition. Properties of the traveling amplification and related problems are discussed, with appropriately suggested semiconductor materials and device designs. The features of the amplifier are a simple structure, a low DC biasing power dissipation for room-temperature operation, unidirectionality, and a wide wavelength range from IR or submillimeter order, suited to various applications.

  14. Optical contacts to waveguides in printed circuit boards

    NASA Astrophysics Data System (ADS)

    Rupp, Torsten; Shkarban, Oleksandr; Menschig, Arnd

    2004-09-01

    The development of printed circuit boards (PCB) with integrated layers for optical data transfer was pushed during the last few years. Solutions with optical fibers or planar waveguides fabricated from plastics or glass will soon be available on the market. Nevertheless the low loss coupling of functional optical components as connectors, transmitters and receivers to these new generations of PCBs still is open. The packaging of otical transceivers or connectors actually is based mainly on single device solutions or active coupling concepts. On the other side the connectors of external optical data lines or of daughter cards to the main boards and the coupling of transmitter and receiver modules to optical PCBs do need linear array concepts. And the coupling efficiency should not decrease during reflow process. Actual concepts using mulit-mode connectors or a direct waveguide coupling of receivers suffer under high optical losses. However the use of micro-optical functional elements allows the realization of coupling concepts with teh lowest losses possible. The total losses for optical lines from the transmitter to the waveguide and back to the receiver can be reduced below 4 dB. For cost reduction even symmetric optical set-up can be used. The transmission rate can be as high as 40 Gb/s. With this concept error tolerant systems for the optical interconnection are possible. We report about the modeling, the design and the characterization of micro-optical interconnect modules for high efficient contacts to the optical layer in PCBs. For the assembly of the modules we use the new concept of a desk-top factory with miniaturized tools for handling, assembly, and inspection. This concept increases the flexibility and reduces the manufacturing costs.

  15. Optical waveguides using PDMS-metal oxide hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.; Mullins, Michael E.

    2015-03-01

    Development of passive and active polymer based optical materials for high data rate waveguide routing and interconnects has gained increased attention because of their excellent properties such as low absorption, cost savings, and ease in fabrication. However, optical polymers are typically limited in the range of their refraction indices. Combining polymeric and inorganic optical materials provides advantages for as development of nano-composites with higher refractive indices with the possibility of being used as an active optical component. In this paper a new composite material is proposed based on polymer-metal oxide nano-composites for use as optical wave guiding structures and components. PDMS (Polydimethylsiloxane) is utilized for the polymer portion while the inorganic material is titanium dioxide. Refraction indices as high as 1.74 have been reported using these composites. For PDMS-TiO2 hybrids, the higher the ratio of titanium dioxide to PDMS, the higher the resulting refractive index. The index of refraction as a function of the PDMS:TiO2 ratio is reported with an emphasis on use as optical waveguide devices. Absorption spectrum of the nano-composites is measured showing low absorption at 850 nm and high absorption in the UV regime for direct UV laser/light curing. Prototype multimode waveguides are fabricated using soft imprint embossing that is compatible with the low viscosity nano-composite material. Cross dimensional shape and profile show the potential for full scale development utilizing the material set.

  16. Integration of waveguides for optical detection in microfabricated analytical devices

    NASA Astrophysics Data System (ADS)

    Kutter, Joerg P.; Mogensen, Klaus B.; Friis, Peter; Jorgensen, Anders M.; Petersen, Nickolaj J.; Telleman, Pieter; Huebner, Joerg

    2000-08-01

    Buried optical channel waveguides integrated with a fluidic channel network on a planar microdevice are presented. The waveguides were fabricated using silica-on-silicon technology with the goal to replace bulk optical elements and facilitate various optical detection techniques for miniaturized total analysis systems or lab-on-a-chip systems. Waveguide structures with core layers doped with germanium were employed for fluorescence measurements, while waveguides with nitrogen- only doped core layers were used for absorbance measurements. By the elimination of germanium oxygen deficiency centers transmission of light down to 210nm was possible, allowing absorance measurements in the mid and far UV region (210 to 280nm), which is the region where a large number of different molecules absorb light. Robust, alignment-free microdevices, which can easily be hooked up to a number of light sources and detectors were used for fluorescence measurements of two dyes, fluorescein and Bodipy, and absorbance measurements of a stres-reducing drug, propranolol. The lowest detected concentrations were 250pM for fluorescein, 100nM for Bodipy and 12(mu) M for propranolol.

  17. Optical clock distribution in supercomputers using polyimide-based waveguides

    NASA Astrophysics Data System (ADS)

    Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.

    1999-04-01

    Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  18. Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Liu, Jiansheng; Zheng, Zheng; Bian, Yusheng; Wang, Guanjun

    2011-10-01

    A novel nanostructure grating with broadband reflection is proposed and analyzed in this paper. The grating is based on a hybrid plasmonic slot waveguide that consists of a vertical dielectric-slot incorporated at the gap between the upper silicon rib and the metal substrate. The structure could provide an ultra-tight mode confinement in the cross-section while maintaining a relatively low propagation loss. By exploiting the superior modal properties, an ultra-compact and broadband Bragg grating is presented, which shows the capability of efficient wavelength selection near the telecom bandwidths. The waveguide-based Bragg grating could be used as a filter in telecommunication systems and could be a promising candidate for future integrated photonic circuits.

  19. Polycyanurate nanorod arrays for optical-waveguide-based biosensing.

    PubMed

    Gitsas, Antonis; Yameen, Basit; Lazzara, Thomas Dominic; Steinhart, Martin; Duran, Hatice; Knoll, Wolfgang

    2010-06-01

    We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors. PMID:20527931

  20. Metal-clad optical waveguides: analytical and experimental study.

    PubMed

    Kaminow, I P; Mammel, W L; Weber, H P

    1974-02-01

    Planar optical waveguides consisting of thin dielectric films with metal cladding have been investigated theoretically and experimentally. A computer program was devised to provide the phase and attenuation constants and wavefunctions for TE and TM modes in symmetric and asymmetric guides. Approximate expressions suitable for slide-rule calculation were also derived. Numerical results and illustrations are given for films of photoresist with Al, Ag, and Au cladding. Direct measurements of the attenuation and phase constants at 0.633 microm of numerous experimental waveguides are in reasonable agreement with theory. Attenuations <1 dB/cm, which is sufficiently small for application in devices, were measured. Calculated wavefunctions illustrate the mismatch of modes at transitions between unclad and metal-clad waveguides. Experimentally, we find substantial losses at such abrupt junctions. They can be overcome by simple tapered transitions. PMID:20125992

  1. Optical Sensors based on single arm thin film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1998-01-01

    The second achievement meets the second objective for the second year. We choose adjustable prism couplers for connecting the sensor to optical fiber lines in our design of a breadboard prototype of the sensor. These couplers have good coupling efficiency at relatively low cost comparing to any other alternatives such as grating couplers. The third accomplishment meets the third objective for the second year. We performed testing the breadboard prototype of the sensor using heating as a technique of changing its refractive index. The only difference is that we ruled out the channel waveguides as irrelevant to the final goals of the project. The feasibility of the sensor can be shown for the slab waveguide configuration without usage of relatively expensive technologies of channel waveguide delineation.

  2. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  3. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  4. Optical manipulation of microparticles and cells on silicon nitride waveguides

    NASA Astrophysics Data System (ADS)

    Gaugiran, S.; Gétin, S.; Fedeli, J. M.; Colas, G.; Fuchs, A.; Chatelain, F.; Dérouard, J.

    2005-09-01

    We demonstrate the optical manipulation of cells and dielectric particles on the surface of silicon nitride waveguides. Glass particles with 2μm diameter are propelled at velocities of 15μm/s with a guided power of 20mW. This is approximately 20 times more efficient than previously reported, and permits to use this device on low refractive index objects such as cells. Red blood cells and yeast cells can be trapped on the waveguide and pushed along it by the action of optical forces. This kind of system can easily be combined with various integrated optical structures and opens the way to the development of new microsystems for cell sorting applications.

  5. Integrated optical refractometer based on bend waveguide with air trench structure

    NASA Astrophysics Data System (ADS)

    Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha

    2015-07-01

    This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.

  6. Optical waveguide circuit board with a surface-mounted optical receiver array

    NASA Astrophysics Data System (ADS)

    Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.

    1994-03-01

    A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.

  7. Deep-Probe Optical Waveguides for Chemical and Biosensors

    NASA Astrophysics Data System (ADS)

    Zourob, Mohammed; Skivesen, Nina; Horvath, Robert; Mohr, Stephan; Goddard, Nicholas J.

    Typical evanescent wave biosensors generate an electromagnetic wave at the sensor surface that penetrates 100-200 nm into the analysed medium. This has proven to be a highly sensitive tool to monitor refractive index changes in the close vicinity of the sensor surface. The sensitivity of such sensors can be enhanced significantly to monitor interactions caused by large micron scale objects such as bacterial and mammalian cells by increasing the penetration depth of the evanescent field. Recently, different formats of deep-probe optical waveguides including reverse waveguides (RW) based on low refractive index substrates (below 1.33) and metal-clad leaky waveguides (MCLW) have been developed for various sensing applications. These sensors are designed to maximize the overlap between the optical mode and the adlayer (superstrate layer) to be sensed. Increasing the penetration depth of the evanescent field opens up new perspectives for the detection of larger biological objects as it accommodates the majority of their body within the evanescent field. RWs use substrate materials with lower refractive index than that of the monitored superstrate layer (aqueous solution). In MCLWs, a thin metal layer is inserted between the substrate and the thicker waveguide layer. These sensor designs facilitate both increasing and tuning the penetration depth of the modes into the monitored aqueous solution and thereby significantly extend the range of possible application areas of optical waveguide sensors. The developed devices have been used for a range of biosensing applications, including the detection of bacteria, mammalian cells, organophosphorous pesticides and glucose using refractive index changes, absorbance and fluorescence monitoring. Integrating deep-probe sensors with an external electrical field or ultrasonic standing waves shortens analysis time significantly and reduces non-specific binding due to enhanced diffusion of analytes to the immobilized recognition

  8. Graded-index core polymer optical waveguide for high-bandwidth-density optical printed circuit boards: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Ishigure, Takaaki

    2014-03-01

    We demonstrate that graded-index (GI) core polymer optical waveguides are a promising component realizing highbandwidth- density on-board interconnects. As a method for fabricating GI-circular-core polymer optical waveguides, we introduce the Mosquito method utilizing a microdispenser. The Mosquito method is capable of accurately controlling the core diameter and the inter-core pitch. We also demonstrate that the GI-core polymer waveguides enable remarkably low loss waveguide circuits involving waveguide crossings in a mono layer. We show an alternative technique to realize the low-loss GI-core crossed waveguide: the photo-addressing method which was developed by Sumitomo Bakelite Co., Ltd.

  9. Optical waveguide system for solar power applications in space

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2009-08-01

    In this paper we will discuss an innovative optical system for solar power applications in space. In this system solar radiation is collected by the concentrator array which transfers the concentrated solar radiation to the optical waveguide (OW) transmission line made of low loss optical fibers. The OW transmission line directs the solar radiation to the place of solar power utilization such as: the thermochemical receiver for processing of lunar regolith for oxygen production; or the plant growth facility where the solar light is used for biomass production.

  10. Design and fabrication of optical polymer waveguide devices for optical interconnects and integrated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin

    Optical interconnects is a promising technique to boost the speed of electronic systems through replacing high speed electrical data buses using optical ones. Optical coherence tomography is an attractive imaging technique that has been widely used in medical imaging applications with capability of high resolution subsurface cross sectional imaging in living tissues. Both the optical interconnects and the optical coherence tomography imaging may benefit from the use of integrated optics technology in particular polymer waveguides that can be designed and fabricated to improve the device capability, system compactness, and performance reliability. In this dissertation, we first present our innovative design and realization on the polymer waveguides with 45° integrated mirrors for optical interconnects using the vacuum assisted microfluidic (VAM) soft lithography. VAM is a new microfluidic based replication technique which can be utilized to improve the performance of imprinted devices by eliminating the residue planar layer and accomplish complex devices incorporating different materials in the same layer. A prism-assisted inclined UV lithography technique is introduced to increase the slanted angles of the side walls of the microstructures and to fabricate multidirectional slanted microstructures. It is also used to fabricate 45° integrated mirrors in polymer waveguides to support surface normal optical coupling for optical interconnects. A dynamic card-to-backplane optical interconnects system has also been demonstrated based on polymer waveguides with tunable optofluidic couplers. The operation of the tunable optofluidic coupler is accomplished by controlling the position of air bubbles and index matching liquid in the perpendicular microfluidic channel for refractive index modulation. The dynamic activation and deactivation of the backplane optofluidic couplers can save the optical signal power. 10 Gbps eye diagrams of the dynamic optical interconnect link

  11. Using atom optics to build nanostructures

    NASA Astrophysics Data System (ADS)

    McClelland, J. J.

    1998-05-01

    Atom optics involves focusing, diffracting, or reflecting atoms, in analogy with what is done to light in conventional optics. Recently, atom optical techniques have been used to control atoms as they land on a substrate. This has led to a new approach to making nanostructures with feature resolution that is in principle only limited by the De Broglie wavelength of the atoms, or the atomic size itself. Recent demonstrations of nanofabrication with atom optics have used the light forces in the nodes of a near-resonant optical standing wave to make large arrays of nanoscale features with high spatial coherence. Directly deposited nanostructures of sodium,(G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 69), 1636 (1992). chromium,(J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262), 877 (1993). and aluminum(R. W. McGowan, D. M. Giltner, and S. A. Lee, Opt. Lett. 20), 877 (1995). have been made with this geometry. Also, patterns have been formed by exposing resists to metastable rare gas atoms(K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips. M. Prentiss, and G. M. Whitesides, Science 269), 1255 (1995). or alkali atoms.(M. Kreis, F. Lison, D. Haubrich, D. Meschede, S. Nowak, T. Pfau, and J. Mlynek, Appl. Phys. B 63), 649 (1996). Present research is concentrated on examining new ways to utilize atom optics for nanostructure fabrication, and also exploring the practical limits of the process. Two important practical considerations are growth dynamics on the surface, and atomic source quality, that is, brightness, spatial coherence and velocity distribution. Future work will involve cross-disciplinary research with surface physics, and also implementation of a wider range of atom-optical tools, including atom traps, atom holograms, or possibly even Bose-Einstein condensates. This research holds promise for development of

  12. Optical properties of plasmonic nanostructures: Theory & experiments

    NASA Astrophysics Data System (ADS)

    Bala Krishna, Juluri

    Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are

  13. Electro-optical circuit board with single-mode glass waveguide optical interconnects

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Pernthaler, Dominik; Weber, Daniel; Sirbu, Bogdan; Herbst, Christian; Frey, Christopher; Queisser, Marco; Wöhrmann, Markus; Manessis, Dionysios; Schild, Beatrice; Oppermann, Hermann; Eichhammer, Yann; Schröder, Henning; Hâkansson, Andreas; Tekin, Tolga

    2016-03-01

    A glass optical waveguide process has been developed for fabrication of electro-optical circuit boards (EOCB). Very thin glass panels with planar integrated single-mode waveguides can be embedded as a core layer in printed circuit boards for high-speed board-level chip-to-chip and board-to-board optical interconnects over an optical backplane. Such singlemode EOCBs will be needed in upcoming high performance computers and data storage network environments in case single-mode operating silicon photonic ICs generate high-bandwidth signals [1]. The paper will describe some project results of the ongoing PhoxTroT project, in which a development of glass based single-mode on-board and board-to-board interconnection platform is successfully in progress. The optical design comprises a 500 μm thin glass panel (Schott D263Teco) with purely optical layers for single-mode glass waveguides. The board size is accommodated to the mask size limitations of the fabrication (200 mm wafer level process, being later transferred also to larger panel size). Our concept consists of directly assembling of silicon photonic ICs on cut-out areas in glass-based optical waveguide panels. A part of the electrical wiring is patterned by thin film technology directly on the glass wafer surface. A coupling element will be assembled on bottom side of the glass-based waveguide panel for 3D coupling between board-level glass waveguides and chip-level silicon waveguides. The laminate has a defined window for direct glass access for assembling of the photonic integrated circuit chip and optical coupling element. The paper describes the design, fabrication and characterization of glass-based electro-optical circuit board with format of (228 x 305) mm2.

  14. Nanostructured tapered optical fibers for paticle trapping

    NASA Astrophysics Data System (ADS)

    Daly, Mark; Truong, Viet Giang; Nic Chormaic, Síle

    2015-05-01

    Optical micro- and nanofibers have recently gained popularity as tools in quantum engineering using laser-cooled, neutral atoms. In particular, atoms can be trapped around such optical fibers, and photons coupled into the fibers from the surrounding atoms could be used to transfer quantum state information within the system. It has also been demonstrated that such fibers can be used to manipulate and trap silica and polystyrene particles in the 1-3 μm range. We recently proposed using a focused ion beam nanostructured tapered optical fiber for improved atom trapping geometries1. Here, we present details on the design and fabrication of these nanostructured optical fibers and their integration into particle trapping platforms for the demonstration of submicron particle trapping. The optical fibers are tapered to approximately 1-2 μm waist diameters, using a custom-built, heat-and-pull fiber rig, prior to processing using a focused ion beam. Slots of about 300 nm in width and 10-20 μm in length are milled right though the waist regions of the tapered optical fibers. Details on the fabrication steeps necessary to ensure high optical transmission though the fiber post processing are included. Fiber transmissions of over 80% over a broad range of wavelengths, in the 700-11100 nm range, are attainable. We also present simulation results on the impact of varying the slot parameters on the trap depths achievable and milling multiple traps within a single tapered fiber. This work demonstrates even further the functionality of optical micro- and nanofibers as trapping devices across a range of regimes.

  15. Integrating optical glucose sensing into a planar waveguide sensor structure

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha P.

    2013-06-01

    A device for glucose monitoring in people with diabetes is a clinical and research priority in the recent years for its accurate self management. An extensive theoretical design and development of an optical sensor is carried out incorporating planar waveguide structure in an endeavor to measure slight changes of glucose concentration. The sensor is simple and highly sensitive and has the potential to be used for online monitoring of blood glucose levels for the diabetic patients in the near future.

  16. Optical waveguide formed by cubic silicon carbide on sapphire substrates

    NASA Technical Reports Server (NTRS)

    Tang, Xiao; Wongchotigul, Kobchat; Spencer, Michael G.

    1991-01-01

    Optical confinement in beta silicon carbide (beta-SiC) thin films on sapphire substrate is demonstrated. Measurements are performed on waveguides formed by the mechanical transfer of thin beta-SiC films to sapphire. Recent results of epitaxial films of SiC on sapphire substrates attest to the technological viability of optoelectronic devices made from silicon carbide. Far-field mode patterns are shown. It is believed that this is the first step in validating a silicon carbide optoelectronic technology.

  17. Spatiotemporal nonlinear optics in arrays of subwavelength waveguides

    SciTech Connect

    Gorbach, A. V.; Ding, W.; Staines, O. K.; Nobriga, C. E. de; Hobbs, G. D.; Wadsworth, W. J.; Knight, J. C.; Skryabin, D. V.; Samarelli, A.; Sorel, M.; De La Rue, R. M.

    2010-10-15

    We report numerical and experimental investigations of spatiotemporal nonlinear optical effects leading to spectral broadening in an array of subwavelength silicon waveguides pumped with infrared femtosecond pulses. Adjusting an input pulse position across the array, we observe different patterns in the output spectra. We explain these observations using a theory of the resonant (Cherenkov) radiation emitted by temporal solitons belonging to different spatial supermodes of the array. We also demonstrate strong nonperturbative coupling of temporal dispersion and discrete diffraction in the subwavelength arrays.

  18. Plant tissue optics: micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, David W.

    2009-08-01

    Plants have evolved unusual tissue optical properties, not surprising as creatures of light. These are astonishingly sophisticated, involving both micro- and nanostructures. Microstructures refract, scatter, and channel light in plant tissues, to produce concentrations and gradients of light within, and to remove undesired portions of the electromagnetic spectrum. Nanostructures use the different refractive indices of both cellulosic walls and bi-lipid membranes to interfere with light, multiple layers producing intense constructive coloration and reduced fluxes within tissues. In a tropical sedge now under analysis, structures may include silica. Recently discovered surface diffraction gratings produce strong directionally sensitive coloration that assist in pollinator visitation. Although some of these properties have obvious applications, most await appreciation by creative scientists to produce new useful devices.

  19. Nanostructured detector technologies for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Welser, Roger E.; Puri, Yash R.; Dhar, Nibir K.; Polla, Dennis L.; Wijewarnasuriya, Priyalal; Dubey, Madan

    2014-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  20. Development of polymer optical waveguide-type alcohol sensor

    NASA Astrophysics Data System (ADS)

    Nagata, Junichi; Honma, Satoshi; Morisawa, Masayuki; Muto, Shinzo

    2008-03-01

    Recently, alcohols such as methanol and ethanol have a wide attention as important fuel in next generation. However, As is known, many alcohols have a toxic and explosive nature. To prevent accidents caused by alcohol, development of a safety and highly sensitive sensor is required strongly. In addition, it is desired to be simple and low-cost. So, in this paper, polymer waveguide-type optical alcohol sensors such as fiber-type and channel waveguide-type have been studied. In these sensor head, refractive index n II of cladding layer was set at slightly larger value than that of core (n I). Therefore, in the state without alcohol, the sensor head operate as a leaky waveguide. On the other hand in the state with alcohol, cladding polymer causes swelling and its refractive index becomes lower than n I in core. Based on this principle, large change in output light intensity occurs and detection of alcohol concentration becomes possible even for vapor phase alcohol. In the experiment using a fiber-type sensor with a core size of 0.25 mm, detection of 1% methanol vapor could easily be obtained. Furthermore, using a channel waveguide-type sensor head with a core size of about 50μm×40μm, large increase in sensitivity was observed.

  1. Amplitude and phase modulation with waveguide optics

    SciTech Connect

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-12-17

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high- speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz.

  2. Extreme optical confinement in a slotted photonic crystal waveguide

    SciTech Connect

    Caër, Charles; Le Roux, Xavier; Cassan, Eric; Combrié, Sylvain De Rossi, Alfredo

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  3. Microfluidic sensor based on integrated optical hollow waveguides.

    PubMed

    Campopiano, Stefania; Bernini, Romeo; Zeni, Luigi; Sarro, Pasqualina M

    2004-08-15

    A simple integrated optical refractometric sensor based on hollow-core antiresonant reflecting optical waveguides is proposed. The sensor uses the antiresonant reflecting guidance mechanism and permits one to measure the refractive index of a liquid filling the core by simply monitoring the transmitted spectrum. The device has been made with standard silicon technology, and the experimental results confirm numerical simulations performed in one- and two-dimensional geometry. The sensor exhibits a linear response over a wide measurement range (1.3330-1.4450) and a resolution of 9 x 10(-4) and requires a small analyte volume. PMID:15357351

  4. Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide

    NASA Technical Reports Server (NTRS)

    Burcham, Kevin E.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    A micromachined cantilever beam accelerometer is described in which beam deflection is determined optically. A diving board structure is anisotropically etched into a silicon wafer. This diving board structure is patterned from the wafer backside so as to leave a small gap between the tip of the diving board and the opposite fixed edge on the front side of the wafer. In order to sense a realistic range of accelerations, a foot mass incorporated onto the end of the beam is found to provide design flexibility. A silicon nitride optical waveguide is then deposited by low pressure chemical vapor deposition (LPCVD) onto the sample. Beam deflection is measured by the decrease of light coupled across the gap between the waveguide sections. In order to investigate sensor response and simulate deflection of the beam, we utilized a separate beam and waveguide section which could be displaced from one another in a precisely controlled manner. Measurements were performed on samples with gaps of 4.0, 6.0, and 8.0 micron and the variation of the fraction of light coupled across the gap as a function of displacement and gap spacing was found to agree with overlap integral calculations.

  5. Nonlocal optical response in metallic nanostructures.

    PubMed

    Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N

    2015-05-13

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response. PMID:25893883

  6. WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics

    NASA Technical Reports Server (NTRS)

    Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir

    2007-01-01

    Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).

  7. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    NASA Astrophysics Data System (ADS)

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ~10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues.

  8. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine

    PubMed Central

    Nizamoglu, Sedat; Gather, Malte C.; Humar, Matjaž; Choi, Myunghwan; Kim, Seonghoon; Kim, Ki Su; Hahn, Sei Kwang; Scarcelli, Giuliano; Randolph, Mark; Redmond, Robert W.; Yun, Seok Hyun

    2016-01-01

    Advances in photonics have stimulated significant progress in medicine, with many techniques now in routine clinical use. However, the finite depth of light penetration in tissue is a serious constraint to clinical utility. Here we show implantable light-delivery devices made of bio-derived or biocompatible, and biodegradable polymers. In contrast to conventional optical fibres, which must be removed from the body soon after use, the biodegradable and biocompatible waveguides may be used for long-term light delivery and need not be removed as they are gradually resorbed by the tissue. As proof of concept, we demonstrate this paradigm-shifting approach for photochemical tissue bonding (PTB). Using comb-shaped planar waveguides, we achieve a full thickness (>10 mm) wound closure of porcine skin, which represents ∼10-fold extension of the tissue area achieved with conventional PTB. The results point to a new direction in photomedicine for using light in deep tissues. PMID:26783091

  9. Wavelet-Galerkin solver for the analysis of optical waveguides.

    PubMed

    Barai, Samit; Sharma, Anurag

    2009-04-01

    A new set of basis functions based on truncated Gaussian wavelets is proposed for optical waveguide analysis using the well-known Galerkin method. A spatially limited Gaussian wavelet train is formed by judiciously truncating the tails of Gaussian functions. The proposed set of basis functions produces a sparse eigenvalue equation when the wave equation is solved by the Galerkin method. The limited span of the basis functions makes the computation of integrals associated with matrix elements very fast with lower memory requirements. The effectiveness of the proposed basis functions is tested by comparing the results with those obtained by other methods and other basis functions for diffused and step index planar and channel waveguides. The results show a significant reduction in computation time while maintaining good accuracy. PMID:19340268

  10. Metasurface-loaded waveguide for transformation optics applications

    NASA Astrophysics Data System (ADS)

    Wei, Pengjiang; Xiao, Shiyi; Xu, Yadong; Chen, Huanyang; Tak Chu, Sai; Li, Jensen

    2016-04-01

    We theoretically investigate a two-dimensional metasurface-loaded waveguide as a generic platform for transformation optics (TO) applications. The mode indices can achieve values much less or greater than one by tuning the reflection phase from the metasurface. Due to the subwavelength feature size of the metasurface, we develop an effective description of the wave propagation using an artificial electromagnetic boundary approach, which replaces the effective medium description of TO for bulk media. We numerically demonstrate a constant zero-index medium for wave collimation, gradient index profiles as Luneburg and Maxwell fisheye lenses and a wave bender based on the finite embedded coordinate transformation. These investigations provide a feasible route to perform TO with metasurfaces as waveguide boundaries, yet the designs can still be obtained using an effective boundary approach with only a few constitutive parameters.

  11. Optical waveguides having flattened high order modes

    DOEpatents

    Messerly, Michael Joseph; Beach, Raymond John; Heebner, John Edward; Dawson, Jay Walter; Pax, Paul Henry

    2014-08-05

    A deterministic methodology is provided for designing optical fibers that support field-flattened, ring-like higher order modes. The effective and group indices of its modes can be tuned by adjusting the widths of the guide's field-flattened layers or the average index of certain groups of layers. The approach outlined here provides a path to designing fibers that simultaneously have large mode areas and large separations between the propagation constants of its modes.

  12. A unified approach for radiative losses and backscattering in optical waveguides

    NASA Astrophysics Data System (ADS)

    Melati, D.; Morichetti, F.; Melloni, A.

    2014-05-01

    Sidewall roughness in optical waveguides represents a severe impairment for the proper functionality of photonic integrated circuits. The interaction between the propagating mode and the roughness is responsible for both radiative losses and distributed backscattering. In this paper, a unified vision on these extrinsic loss phenomena is discussed, highlighting the fundamental role played by the sensitivity of the effective index neff of the optical mode to waveguide width variations. The nw model presented applies to both 2D slab waveguides and 3D laterally confined waveguides and is in very good agreement with existing models that individually describe radiative loss or backscattering only. Experimental results are presented, demonstrating the validity of the nw model for arbitrary waveguide geometries and technologies. This approach enables an accurate description of realistic optical waveguides and provides simple design rules for optimization of the waveguide geometry in order to reduce the propagation losses generated by sidewall roughness.

  13. Optical waveguiding and temperature dependent photoluminescence of nanotubulars grown from molecular building blocks

    NASA Astrophysics Data System (ADS)

    Maibohm, C.; Rastedt, M.; Kutscher, F.; Frey, O. N.; Beckhaus, R.; Rubahn, H.-G.; Al-Shamery, K.

    2013-12-01

    Optical waveguiding of blue light after UV-excitation is demonstrated in bundles of organic nanotubulars obtained via template assisted aggregation of the small π-conjugated non planar molecules 17H-Tetrabenzo[a,c,g,i]fluorene (17H-Tbf) and 17-Trimethylsilyltetrabenzo[a,c,g,i]fluorene (TMS-Tbf). The propagating blue light is strongly attenuated due to self-absorption. Vibronic spectra for both nanotubulars and macroscopic crystallites for temperatures between 5 and 300 K show a behavior of TMS-Tbf that resembles that of long chained molecules while 17H-TbF resembles that of small organic molecules. For both molecular species crystallites and nanostructures have large average Huang-Rhys factors indicating strong phononic coupling promoted by the polycrystallinity of the samples.

  14. Optical simulation of neutrino oscillations in binary waveguide arrays.

    PubMed

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities. PMID:25375692

  15. Compact holographic printer using RGB waveguide holographic optical elements

    NASA Astrophysics Data System (ADS)

    Pyun, Kyungsuk P.; Choi, Chilsung; Morozov, Alexander V.; Kim, Sunil; An, Jungkwuen

    2013-03-01

    We propose compact holographic printer using RGB waveguide hologram while reducing overall device size and quantity of elements with integrated functionality of each optical element. For glasses-free 3D experience anywhere anytime, it is critical to make holography device that can be as compact and integrated as possible. Compared to the conventional optics-based structure, our RGB WGH-based one reduces the overall size by 20 times, the number of components by 10 times, and improves the optical efficiency by 3 times, with comparable holographic quality to the conventional optics-based approaches. Proposed research can be useful for both general consumers and professionals like 3D photography and medical 3D image printing applications.

  16. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Grisins, Pjotrs; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon

    2016-05-01

    Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.

  17. Potassium Titanyl Phosphate Thin Films for Optical Waveguide Applications.

    NASA Astrophysics Data System (ADS)

    Hagerman, Michael Eugene

    1995-11-01

    Optical waveguides based on thin films have a high potential for photonic device applications in laser technology, signal processing, optical computing and image manipulation. Moreover, thin films offer a practical alternative to single crystals for integrated optical applications because of their enhanced design flexibility. Owing to the volatility of potassium and phosphorus oxides at high temperature, attempts to synthesize thin films of potassium titanyl phosphate (KTiOPO_4, or KTP) by magnetron sputtering prior to this thesis work were unsuccessful. A principal goal of our work has been the application of an enhanced understanding of the KTP structure field with specific focus on the relevant defect chemistry, structure and defect-processing property relationships, and waveguide technology, as they relate to thin film fabrication and the development of novel nonlinear optical (NLO) photonic devices. The high temperature decomposition of KTP has been examined in detail along with strategies to promote densification of KTP ceramic which serves as the source material for the pulsed laser ablation thin film fabrication technique. KTP thin films have been successfully fabricated for the first time by pulsed excimer laser deposition on a variety of substrates including sapphire, silicon, and fused quartz. It is suggested that the success of this fabrication process relies on the application of an understanding of the complex chemistry of this remarkable material and the transient congruent process generated by the pulsed UV laser beam. The properties of the deposited films, such as the chemical stoichiometry, surface morphology, crystallinity, and NLO response, have been extensively characterized. The second order electric susceptibility, chi^{(2)}, of a textured film on fused silica was determined to be approximately 16 times the magnitude of quartz, or {1over3 } of the largest component in single crystal KTP. Endfire coupling was demonstrated with planar KTP

  18. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation.

    PubMed

    Chong, W Y; Lim, W H; Yap, Y K; Lai, C K; De La Rue, R M; Ahmad, H

    2016-01-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015

  19. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation

    NASA Astrophysics Data System (ADS)

    Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; de La Rue, R. M.; Ahmad, H.

    2016-04-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light).

  20. Photo-induced reduction of graphene oxide coating on optical waveguide and consequent optical intermodulation

    PubMed Central

    Chong, W. Y.; Lim, W. H.; Yap, Y. K.; Lai, C. K.; De La Rue, R. M.; Ahmad, H.

    2016-01-01

    Increased absorption of transverse-magnetic (TM) - polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE) - polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light - and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light). PMID:27034015

  1. Transport and optical studies on individual nanostructures

    NASA Astrophysics Data System (ADS)

    Gu, Qian

    Nanotechnology is considered a very important scientific discipline. It probably will offer tremendous growth opportunities to many industries. Numerous nanostructures showing interesting and practical properties have been synthesized. In order to fully understand and assemble these nanostructures into useful "nano-machines", investigations on individual nanostructures are needed. This thesis will present electron transport studies on individual organic molecules, a new method of fabricating asymmetric junctions to contact individual nanostructures, and synthesis, electrical and optical characterizations on single vanadium dioxide nanobeams. Chapter 1 serves as a brief introduction to the progress and challenges in nanotechnology. Chapter 2 first introduces single charge tunneling theory, and then discusses in detail the fabrication of single molecule transistors. Finally, this chapter presents a novel electrodeposition-based method to fabricate electrode pairs of dissimilar metals with a nanometer-sized gap between them. This electrodeposition-based method prevents cross-contamination of the different metals and enables simultaneous fabrication of multiple electrode pairs in a self-limiting manner. Chapter 3 presents electron transport studies on single molecule transistors based on individual ferrocene and nickelocene molecules. These devices show clean Coulomb blockade and energy quantization at liquid helium temperature. Low energy excited states are attributed to ring-torsion and center-of-mass vibrational modes of these molecules. Chapter 4 discusses electron transport properties of single molecule transistors based on individual [W6CCl18]n- molecules. Besides Coulomb blockade and energy quantization, these transistors demonstrate that tunneling electrons change the vibrational spectrum of [W 6CCl18]n- molecules and the vibrational modes in turn affect electron tunneling. Chapter 5 presents a vapor transport synthetic method of single crystalline vanadium

  2. Optical properties of new wide heterogeneous waveguides with thermo optical shifters.

    PubMed

    De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M

    2008-12-22

    We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K). PMID:19104563

  3. Modeling of Electro Optic Polymer Electrical Characteristics in a 3 layer Optical Waveguide Modulator

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Guenthner, Andrew J.; Abushagur, Mustafa

    2004-01-01

    The electrical characteristics of electro optic polymer waveguide modulators are often described by the bulk reactance of the individual layers. However, the resistance and capacitance between the layers can significantly alter the electrical performance of a waveguide modulator. These interface characteristics are related to the boundary charge density and are strongly affected by the adhesion of the layers in the waveguide stack. An electrical reactance model has been derived to investigate this phenomenon at low frequencies. The model shows the waveguide stack frequency response has no limiting effects below the microwave range and that a true DC response requires a stable voltage for over 1000 hours. Thus, reactance of the layers is the key characteristic of optimizing the voltage across the core layer, even at very low frequencies (> 10(exp -6) Hz). The results of the model are compared with experimental data for two polymer systems and show quite good correlation.

  4. Waveguide-fed optical hybrid plasmonic patch nano-antenna.

    PubMed

    Yousefi, Leila; Foster, Amy C

    2012-07-30

    We propose a novel optical hybrid plasmonic patch nano-antenna for operation at the standard telecommunication wavelength of 1550 nm. The nano-antenna is designed to be compatible with a hybrid plasmonic waveguide through matching of both the operational mode and the wave impedance. The antenna is designed to receive the optical signal from a planar waveguide and redirect the signal out of plane, and is therefore useful for inter- or intra-chip optical communications and sensing. The transmission line model in conjunction with surface plasmon theory is used to develop analytical formulas for design and analysis, and a 3-dimensional full-wave numerical method is used to validate the design. The proposed device provides a bandwidth of more than 15 THz, a gain of 5.6 dB, and an efficiency of 87%. Furthermore, by designing an 8 × 8 array of the proposed antenna, a directivity of 20 dBi and steering of the beam angle are achieved by controlling the relative phase shift between elements of the array. PMID:23038383

  5. On-chip transformation optics for multimode waveguide bends.

    PubMed

    Gabrielli, Lucas H; Liu, David; Johnson, Steven G; Lipson, Michal

    2012-01-01

    Current optical communication systems rely almost exclusively on multimode fibres for short- and medium-haul transmissions, and are now expanding into the long-haul arena. Ultra-high bandwidth applications are the main drive for this expansion, based on the ability to spatially multiplex data channels in multimode systems. Integrated photonics, on the other hand, although largely responsible for today's telecommunications, continues to operate almost strictly in the single-mode regime. This is because multimode waveguides cannot be compactly routed on-chip without significant inter-mode coupling, which impairs their data rate and prevents the use of modal multiplexing. Here we propose a platform for on-chip multimode devices with minimal inter-mode coupling, opening up the possibilities for integrated multimode optics. Our work combines a novel theoretical approach--large-scale inverse design of transformation optics to maximize performance within fabrication constraints-with unique grayscale-lithography fabrication of an exemplary device: a low-crosstalk multimode waveguide bend. PMID:23169058

  6. Optical biosensor based on silicon nanowire ridge waveguide

    NASA Astrophysics Data System (ADS)

    Gamal, Rania; Ismail, Yehia; Swillam, Mohamed A.

    2015-02-01

    Optical biosensors present themselves as an attractive solution for integration with the ever-trending lab-on-a-chip devices. This is due to their small size, CMOS compatibility, and invariance to electromagnetic interference. Despite their many benefits, typical optical biosensors rely on evanescent field detection, where only a small portion of the light interacts with the analyte. We propose to use a silicon nanowire ridge waveguide (SNRW) for optical biosensing. This structure is comprised of an array of silicon nanowires, with the envelope of a ridge, on an insulator substrate. The SNRW maximizes the overlap between the analyte and the incident light wave by introducing voids to the otherwise bulk structure, and strengthens the contribution of the material under test to the overall modal effective index will greatly augment the sensitivity. Additionally, the SNRW provides a fabrication convenience as it covers the entire substrate, ensuring that the etching process would not damage the substrate. FDTD simulations were conducted and showed that the percentage change in the effective index due to a 1% change in the surrounding environment was more than 170 times the amount of change perceived in an evanescent detection based bulk silicon ridge waveguide.

  7. Radiation-induced transmission loss of integrated optic waveguide devices

    NASA Astrophysics Data System (ADS)

    Henschel, Henning; Koehn, Otmar; Schmidt, Hans U.

    1993-04-01

    The radiation sensitivity of different integrated optic (IO) devices was compared under standardized test conditions. We investigated four relatively simple device types made by four different manufacturers. The waveguide materials were proton exchanged LiTaO3, LiNbO3:Ti, Tl-diffused glass, and Ag-diffused glass, respectively. In order to standardize the irradiation parameters we followed the 'Procedure for Measuring Radiation-Induced Attenuation in Optical Fibers and Optical Cables' proposed by the NATO NETG as close as possible. In detail we made pulsed irradiations with dose values of about 500 rad*, 104 rad, and 105 rad, as well as continuous irradiations at a 60Co source with a dose rate of 1300 rad*/min up to a total dose of 104 rad. Device temperatures were about 22 degree(s)C, -50 degree(s)C, and +80 degree(s)C.

  8. Bend insensitive graded index multimode polymer optical waveguides fabricated using the Mosquito method

    NASA Astrophysics Data System (ADS)

    Takahashi, Asami; Ishigure, Takaaki

    2015-02-01

    We fabricate low-loss graded index (GI) circular core multimode polymer optical waveguides with 90o bending and demonstrate low bending loss even if the bend radius is as small as 1 mm. In the several fabrication methods for GI-core polymer waveguides already proposed, we adopt the "Mosquito method" that utilize a microdispenser because the Mosquito method makes it possible to fabricate waveguides directly on board at desired places on a printed circuit board, and to draw various patterns of cores including curves. However, in the waveguides including such curved cores, the additional transmission loss due to the bending (bending loss) is a concern. Thus, we characterize the fabricated GI-core polymer waveguides with bending: using two kinds of cladding monomer with different refractive indexes for fabricating waveguides with bending. We found when the NA of waveguides was as high as 0.35, no additional loss due to bending was observed even if the bending radius is as small as 1 mm. The core diameter of the fabricated waveguides is 50 μm, and it is possible to further decrease the bending loss in the waveguides with smaller core diameter. Furthermore, utilizing the Mosquito method, we fabricate waveguides with not only horizontally curved cores but also vertically curved ones. Waveguides with vertically curved cores could make it possible to realize three-dimensionally optical wiring applicable to on-board optical interconnects.

  9. Radiochromic leuko dye real time dosimeter, one way optical waveguide

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1984-12-18

    A radiochromic leuko dye dosimeter includes a plastic tube containing a solution of a radiochromic dye which is sensitive to ionizing radiation, one end of the tube being closed by a reflective surface, the opposite end of the tube being closed by a transparent plug to form a one-way optical waveguide. Light enters the tube through the transparent end thereof and is reflected back and exits through the transparent end. The intensity of the exiting light is measured to determine radiation induced absorption of the leuko dye.

  10. Technology Development of Stratified Volume Diffractive Optics for Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.

    2000-01-01

    Stratified Volume Diffractive Optical Elements (SVDOE) appear to be viable as high-efficiency waveguide couplers. Preliminary design studies were conducted under this task to provide initial device parameters for evaluation. However, these designs should be revisited prior to fabrication of a device for testing. The emphasis of this task has been development and implementation of fabrication procedures necessary for SVDOE'S, namely alignment of grating layers, Including offsets, to within required tolerances. Progress in this area Indicates that the alignment technique chosen is viable and tolerances have been reached that allow reasonable performance ranges. Approaches have been identified to improve alignment tolerances even further.

  11. Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators.

    PubMed

    Kim, Jun-Whee; Park, Su-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2012-05-21

    Polarization controllers based on polymer waveguide technology are demonstrated by incorporating thermo-optic birefringence modulators (BMs) and thin-film wave plates. Highly birefringent polymer materials are used to increase the efficiency of birefringence modulation in proportion to the heating power. Thin-film quarter-wave plates are fabricated by using a crosslinkable liquid crystal, reactive mesogen, and inserted between the BMs to produce static phase retardation and polarization coupling. By applying a triangular AC signal to one BM and a DC signal to another, the polarization states of the output light are modulated to cover the entire surface of the Poincaré sphere. PMID:22714231

  12. Enhanced electro-optic response in domain-engineered LiNbO3 channel waveguides

    NASA Astrophysics Data System (ADS)

    Zisis, G.; Ying, C. Y. J.; Ganguly, P.; Sones, C. L.; Soergel, E.; Eason, R. W.; Mailis, S.

    2016-07-01

    Substantial enhancement (36.7%) of the intrinsic electro-optic coefficient ( r33) has been observed in lithium niobate channel waveguides, which are made to overlap with a pole-inhibited ferroelectric domain. The waveguide and the overlapping ferroelectric domain are both produced by a single UV irradiation process and are thus self-aligning. The enhancement of the electro-optic coefficient effect is attributed to strain, which is associated with the ferroelectric domain boundaries that contain the channel waveguide.

  13. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force. PMID:23988930

  14. Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2008-01-01

    Ray-optic analysis of transmission spectra and the leakage loss of ring-cladding hollow waveguides suggests that such waveguides offer an attractive platform for the creation of compact and efficient biochemical sensors and sensor arrays. The ring cladding in such waveguides serves as a built-in Fabry-Perot interferometer, allowing the detection of few-nanometer-thick molecular layers and ensuring a high sensitivity of transmission spectra of waveguide modes to small changes in the refractive index of an analyte filling the hollow core and air holes in the waveguide cladding.

  15. All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide

    NASA Astrophysics Data System (ADS)

    d'Alessandro, Antonio; Asquini, Rita; Trotta, Marco; Gilardi, Giovanni; Beccherelli, Romeo; Khoo, Iam Choon

    2010-08-01

    We demonstrate a nonlinear optical channel waveguide made of E7 nematic liquid crystal infiltrated in a silica on silicon groove. Near infrared light at the wavelength of 1560 nm fiber coupled to the core of the liquid crystal waveguide was optically modulated by an optical beam with power below 25 mW by exploiting the optical Freedericks transition. By modeling the optical molecular reorientation in the nematic liquid crystal confined in a waveguiding geometry we are able to reproduce the experimental results.

  16. Optical Nonlinearities in Semiconductor Doped Glass Channel Waveguides.

    NASA Astrophysics Data System (ADS)

    Banyai, William Charles

    The nonlinear optical properties of a semiconductor -doped glass (SDG) channel waveguide were measured on a picosecond time-scale; namely, fluence-dependent changes in the absorption and the refractive index as well as the relaxation time of the nonlinearity. Slower, thermally -induced changes in the refractive index were also observed. The saturation of the changes in the absorption and the refractive index with increasing optical fluence is explained using a plasma model with bandfilling as the dominant mechanism. The fast relaxation time of the excited electron-hole plasma (20 ps) is explained using a surface-state recombination model. A figure of merit for a nonlinear directional coupler fabricated in a material with a saturable nonlinear refractive index is presented. The measured nonlinear change in the refractive index of the SDG saturates below the value required to effect fluence-dependent switching in a nonlinear directional coupler. Experiments with a channel-waveguide directional coupler support this prediction. However, absorption switching due to differential saturation of the absorption in the two arms of the directional coupler was observed.

  17. Plasma synthesis of rare earth doped integrated optical waveguides

    SciTech Connect

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G.; Ivanov, I.C.

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  18. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  19. Polymer waveguide end facet roughness and optical input/output coupling loss for OPCB applications

    NASA Astrophysics Data System (ADS)

    Baghsiahi, Hadi; Wang, Kai; Pitwon, Richard; Selviah, David R.

    2014-03-01

    Electro-optical printed circuit board technology (EOCB) based on integrated planar polymer optical waveguides has been the subject of research and development for many years to provide a cost viable, fully integrated system embedded optical interconnect solution, however a number of constraints of this technology have yet to be overcome. Optical coupling loss at the input and output of the waveguides is one of the major issues and waveguide end facet roughness is one of the main sources of the coupling loss which is investigated in this paper. The results of a comprehensive investigation of the end facet roughness of multimode polymer waveguides, fabricated on FR4 printed circuit boards, PCBs, and its effect of optical loss are presented theoretically and experimentally. The waveguide end facet roughness was measured using an atomic force microscope, AFM, when the waveguides were cut using a milling router with various numbers of cutting edges called flutes. The optimized cutting parameters are derived and the optical coupling loss, between the laser source and the waveguide, due to the different roughness magnitudes is measured by experiment for the first time. To improve the surface quality and decrease the waveguide optical loss, a new fabrication technique for reducing the end facet roughness after cutting is proposed and demonstrated. The insertion loss was reduced by 2.60 dB +/- 1.3 dB which is more than that achieved by other conventional methods such as index matching fluid.

  20. Comprehensive analytical model to characterize randomness in optical waveguides.

    PubMed

    Zhou, Junhe; Gallion, Philippe

    2016-04-01

    In this paper, the coupled mode theory (CMT) is used to derive the corresponding stochastic differential equations (SDEs) for the modal amplitude evolution inside optical waveguides with random refractive index variations. Based on the SDEs, the ordinary differential equations (ODEs) are derived to analyze the statistics of the modal amplitudes, such as the optical power and power variations as well as the power correlation coefficients between the different modal powers. These ODEs can be solved analytically and therefore, it greatly simplifies the analysis. It is demonstrated that the ODEs for the power evolution of the modes are in excellent agreement with the Marcuse' coupled power model. The higher order statistics, such as the power variations and power correlation coefficients, which are not exactly analyzed in the Marcuse' model, are discussed afterwards. Monte-Carlo simulations are performed to demonstrate the validity of the analytical model. PMID:27136981

  1. Optical Waveguide Solar Energy System for Lunar Materials Processing

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Case, J. A.; Senior, C. L.

    1997-01-01

    This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.

  2. Bio-functional subwavelength optical waveguides for biodetection

    SciTech Connect

    Sirbuly, D J; Fischer, N; Huang, S; Artyukhin, A

    2007-07-10

    We report a versatile biofunctional subwavelength photonic device platform for real-time detection of biological molecules. Our devices contain lipid bilayer membranes fused onto metal oxide nanowire waveguides stretched across polymeric flow channels. The lipid bilayers incorporating target receptors are submersed in the propagating evanescent field of the optical cavity. We show that the lipid bilayers in our devices are continuous, have very high mobile fraction, and are resistant to fouling. We also demonstrate that our platform allows rapid membrane exchange. Finally we use this device for detection of specific DNA sequences in solution by anchoring complementary DNA target strands in the lipid bilayer. This evanescent wave sensing architecture holds great potential for portable, all-optical detection systems.

  3. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  4. Use of thin sectioning (nanoskiving) to fabricate nanostructures for electronic and optical applications.

    PubMed

    Lipomi, Darren J; Martinez, Ramses V; Whitesides, George M

    2011-09-01

    This Review discusses nanoskiving--a simple and inexpensive method of nanofabrication, which minimizes requirements for access to cleanrooms and associated facilities, and which makes it possible to fabricate nanostructures from materials, and of geometries, to which more familiar methods of nanofabrication are not applicable. Nanoskiving requires three steps: 1) deposition of a metallic, semiconducting, ceramic, or polymeric thin film onto an epoxy substrate; 2) embedding this film in epoxy, to form an epoxy block, with the film as an inclusion; and 3) sectioning the epoxy block into slabs with an ultramicrotome. These slabs, which can be 30 nm-10 μm thick, contain nanostructures whose lateral dimensions are equal to the thicknesses of the embedded thin films. Electronic applications of structures produced by this method include nanoelectrodes for electrochemistry, chemoresistive nanowires, and heterostructures of organic semiconductors. Optical applications include surface plasmon resonators, plasmonic waveguides, and frequency-selective surfaces. PMID:21755580

  5. Thermo-optic Goos-Hänchen effect in silicon-on-insulator waveguide

    NASA Astrophysics Data System (ADS)

    Tang, Tingting; Luo, Li; Liu, Wenli; He, Xiujun; Zhang, Yanfen

    2015-09-01

    We study the thermo-optic Goos-Hänchen (TOGH) effect in a prism-waveguide coupling structure with silicon-on-insulator waveguide. Stationary-phase method is utilized to calculate the TOGH shift. When the waveguide is regarded as a two-dimensional planar waveguide, a nonlinear relation between GH shift and temperature is obtained. Based on the noticeable TOGH effect, a sensitive temperature modulator or sensor can be realized. As the waveguide width is limited, the proposed structure can be regarded as a three-dimensional rectangular waveguide. We explore the GH shift and TOGH effect for different modes propagating in rectangular waveguide which show different linear relations between GH shift and temperature, which can be used to design mode-selective device based on TO effect.

  6. Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects

    NASA Astrophysics Data System (ADS)

    Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja

    2014-10-01

    In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.

  7. Long single-mode waveguides made by imprint patterning for optical interconnects and sensors

    NASA Astrophysics Data System (ADS)

    Karppinen, Mikko; Hiltunen, Jussi; Kokkonen, Anna; Petäjä, Jarno; Masuda, Noriyuki; Hiltunen, Marianne; Tuominen, Jarkko; Karioja, Pentti

    2012-06-01

    Low-loss polymeric optical waveguides were fabricated by UV-nanoimprinting. With this technique the waveguides are directly patterned by imprinting of the UV-curable optical polymer materials, i.e. no etching processes are needed. By properly manufactured imprinting molds, very smooth waveguide surfaces are achieved and the optical loss is dominated by the material attenuation. The advantages of the manufacturing technology include the potential scalability onto large substrate areas and applicability for fabrication on various substrate materials. For instance, printed circuit boards are interesting substrates for high-bit-rate optical interconnection applications requiring long waveguides, and glass and plastic sheets are interesting for sensor applications. The technology also promises for low overall costs, as it is a relatively simple high-throughput replication process. Both ridge-type and inverted-rib-type single-mode waveguides were fabricated using Ormocer hybrid polymer materials having low optical attenuation. Very low loss waveguides were demonstrated by fabrication long waveguides in a spiral shape. The optical attenuation was characterized of 27 cm-long inverted-rib waveguide spirals having 2 μm-wide cores. The measured average attenuation was 0.25 and 0.56 dB/cm at the wavelengths of 638 and 1310 nm, respectively.

  8. Effect of dielectric claddings on the electro-optic behavior of silicon waveguides.

    PubMed

    Sharma, Rajat; Puckett, Matthew W; Lin, Hung-Hsi; Isichenko, Andrei; Vallini, Felipe; Fainman, Yeshaiahu

    2016-03-15

    We fabricate silicon waveguides in silicon-on-insulator (SOI) wafers clad with either silicon dioxide, silicon nitride, or aluminum oxide and, by measuring their electro-optic behavior, we characterize the capacitively induced free-carrier effect. By comparing our results with simulations, we confirm that the observed voltage dependences of the transmission spectra are due to changes in the concentrations of holes and electrons within the semiconductor waveguides and show how strongly these effects depend on the cladding material that comes into contact with the waveguide. Waveguide loss is additionally found to have a high sensitivity to the applied voltage, suggesting that these effects may find use in applications that require low- or high-loss propagation. These phenomena, which are present in all semiconductor waveguides, may be incorporated into more complex waveguide designs in the future to create high-efficiency electro-optic modulators and wavemixers. PMID:26977665

  9. Fiber optic reference frequency distribution to remote beam waveguide antennas

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Kuhnle, Paul; Law, Julius

    1995-01-01

    In the NASA/JPL Deep Space Network (DSN), radio science experiments (probing outer planet atmospheres, rings, gravitational waves, etc.) and very long-base interferometry (VLBI) require ultra-stable, low phase noise reference frequency signals at the user locations. Typical locations for radio science/VLBI exciters and down-converters are the cone areas of the 34 m high efficiency antennas or the 70 m antennas, located several hundred meters from the reference frequency standards. Over the past three years, fiber optic distribution links have replaced coaxial cable distribution for reference frequencies to these antenna sites. Optical fibers are the preferred medium for distribution because of their low attenuation, immunity to EMI/IWI, and temperature stability. A new network of Beam Waveguide (BWG) antennas presently under construction in the DSN requires hydrogen maser stability at tens of kilometers distance from the frequency standards central location. The topic of this paper is the design and implementation of an optical fiber distribution link which provides ultra-stable reference frequencies to users at a remote BWG antenna. The temperature profile from the earth's surface to a depth of six feet over a time period of six months was used to optimize the placement of the fiber optic cables. In-situ evaluation of the fiber optic link performance indicates Allan deviation on the order of parts in 10(exp -15) at 1000 and 10,000 seconds averaging time; thus, the link stability degradation due to environmental conditions still preserves hydrogen maser stability at the user locations. This paper reports on the implementation of optical fibers and electro-optic devices for distributing very stable, low phase noise reference signals to remote BWG antenna locations. Allan deviation and phase noise test results for a 16 km fiber optic distribution link are presented in the paper.

  10. Quasi-optical equivalent of waveguide slide screw tuner

    NASA Technical Reports Server (NTRS)

    Kurpis, G. P.

    1970-01-01

    Tuner utilizes a metal plated dielectric grid inserted into the cross sectional plane of an oversized waveguide. It provides both variable susceptance and variable longitudinal position along the waveguide to provide a wide matching range.

  11. Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors

    PubMed Central

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafar-Zadeh, Ebrahim; Djeghelian, Hagop; Chodavarapu, Vamsy; Andrews, Mark; Therriault, Daniel

    2008-01-01

    We describe an automated robotic technique called direct-dispense to fabricate a polymeric platform that supports optical sensor arrays. Direct-dispense, which is a type of the emerging direct-write microfabrication techniques, uses fugitive organic inks in combination with cross-linkable polymers to create microfluidic channels and other microstructures. Specifically, we describe an application of direct-dispensing to develop optical biochemical sensors by fabricating planar ridge waveguides that support sol-gel-derived xerogel-based thin films. The xerogel-based sensor materials act as host media to house luminophore biochemical recognition elements. As a prototype implementation, we demonstrate gaseous oxygen (O2) responsive optical sensors that operate on the basis of monitoring luminescence intensity signals. The optical sensor employs a Light Emitting Diode (LED) excitation source and a standard silicon photodiode as the detector. The sensor operates over the full scale (0%-100%) of O2 concentrations with a response time of less than 1 second. This work has implications for the development of miniaturized multi-sensor platforms that can be cost-effectively and reliably mass-produced.

  12. Optical-assembly periodic structure of ferrofluids in a liquid core/metal cladding optical waveguide.

    PubMed

    Wang, Xianping; Yin, Cheng; Sun, Jingjing; Han, Qingbang; Li, Honggen; Sang, Minghuang; Yuan, Wen; Cao, Zhuangqi

    2013-11-01

    We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos-Hänchen shift, which potentially may be for practical use in novel optical devices. PMID:24216657

  13. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.

    1998-01-01

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.

  14. Microminiature optical waveguide structure and method for fabrication

    DOEpatents

    Strand, O.T.; Deri, R.J.; Pocha, M.D.

    1998-12-08

    A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.

  15. Radiochromic leuko dye real time dosimeter, one way optical waveguide

    SciTech Connect

    Kronenberg, S.

    1982-11-15

    This invention relates generally to nuclear radiation dosimetry, and more particularly to a radiochromic leuko dye dosimeter constructed and arranged to measure absorbed radiation doses, such as gamma rays, X-rays and fast neutrons, in real time; viz., as the dose is being delivered. A radiochromic leuko dye dosimeter includes a plastic tube containing a solution of a radiochromic dye which is sensitive to ionizing radiation, one end of the tube being closed by a reflective surface, the opposite end of the tube being closed by a transparent plug to form a one-way optical waveguide. Light enters the tube through the transparent end thereof and is reflected back and exists through the transparent end. The intensity of the existing light is measured to determine radiation induced absorption of the leuko dye.

  16. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  17. Polymer-on-glass waveguide structure for efficient fluorescence-based optical biosensors

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Cennamo, Nunzio; Minardo, Aldo; Zeni, Luigi

    2005-03-01

    A novel waveguide geometry for an integrated optics bio-sensor suitable for fluorescence detection is presented. In particular, we propose a polymeric waveguide realized on a glass substrate. This new geometry is aimed to an efficient evanescent-wave excitation of the fluorophores and subsequent collection of the fluorescence emission with no need of optical filters. The absence of any optical filters simplifies the device operation and permits to avoid the losses resulting from the use of the filter itself.

  18. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  19. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An

  20. Optical Properties of Acrylate-Based Negative-Type Photoresist and Its Application to Optical Waveguide Fabrication

    NASA Astrophysics Data System (ADS)

    Gustafik, Pavol; Sugihara, Okihiro; Okamoto, Naomichi

    2004-04-01

    In this article, we present some of the optical properties of a polymeric acrylate-based photoresist material called PNME, by its principal components, which are pentaerythritol triacrylate, n-methyldiethanolamine, and eosin. The refractive index and absorption spectra were measured. Because of the low absorption of PNME in the datacom and telecom regions, PNME was studied with respect to its suitability for the fabrication of a channel waveguide and/or an optical fiber. A multimode optical waveguide was fabricated using a cold UV stamping fabrication method, and propagation losses at 1.3 μm were measured. An optical fiber core was fabricated using a light-induced self-writing fabrication method. In our study, it was found that optical waveguides made from PNME have low propagation losses due to smooth sidewalls and the low absorption of PNME. An optical waveguide with a corrugated core was also fabricated.

  1. Coupling behaviour of tapered highly multimodal dielectric waveguides as part of PCB-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Soenmez, Yasin; Mrozynski, Gerd; Schrage, Juergen

    2010-05-01

    Optical interconnects replace electrical links increasingly at shorter distances. At printed circuit board (PCB) level highly multimodal polymer channel waveguides are the chosen approach to meet bandwidth-length and bandwidth-density requirements. One important challenge of board integrated waveguides is the coupling problem. The manufacturing process of PCBs leads to relatively high placement tolerances which cause poor optical coupling efficiency due to mechanical misalignment between separate components, e.g.: 1) Coupling between a VCSEL and the board integrated waveguides; 2) Coupling between waveguides in two separate boards. This paper deals with the deployment of tapered dielectric multimode waveguides for increasing the optical coupling robustness towards mechanical misalignments in these two coupling applications. A coupled mode approach for calculation of the mode coupling and power loss in a taper with decreasing width has been presented before [5]. In [6], the two above mentioned coupling applications for tapered dielectric waveguides have been dealt with, but only the coupling efficiency in case of longitudinal misalignment has been calculated. In this paper, results of advanced analysis of the two applications are presented. The coupling efficiency in case of transverse misalignment is simulated by a ray-optical approach. Furthermore the results of measurements of the coupling behaviour of board integrated tapered waveguides are presented. The results show that tapered multimodal dielectric waveguides have the capability to increase the coupling efficiency significantly if some conditions are fulfilled.

  2. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation

    PubMed Central

    Yang, Y.; Liu, A.Q.; Chin, L.K.; Zhang, X.M.; Tsai, D.P.; Lin, C.L.; Lu, C.; Wang, G.P.; Zheludev, N.I.

    2012-01-01

    Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications. PMID:22337129

  3. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  4. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide.

    PubMed

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  5. Analysis of resonant optical gyroscopes with two input/output waveguides.

    PubMed

    Hah, Dooyoung; Zhang, Dan

    2010-08-16

    Rotation sensitivity of optical gyroscopes with ring resonators and two input/output waveguides in a coplanar add-drop filter configuration is studied. First, the gyroscope with a single resonator is analyzed, which is shown to have slightly higher sensitivity than the one with one waveguide. Next, the sensor with two identical resonators coupled through waveguides is investigated, which turns out to have half the sensitivity of the one with a single resonator when compared for the same footprints. The last point is valid when the resonators have the same coupling coefficients to the waveguides in the sensor with two resonators. PMID:20721209

  6. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  7. Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton.

    PubMed

    Yan, Min; Thylén, Lars; Qiu, Min; Parekh, Devang

    2008-05-12

    Currently subwavelength surface plasmon polariton (SPP) waveguides under intensive theoretical and experimental studies are mostly based on the geometrical singularity property of such waveguides. Typical examples include the metal-insulator-metal based waveguide and the metallic fiber. Both types of waveguides support a mode with divergent propagation constant as the waveguides' geometry (metal gap distance or fiber radius) shrinks to zero. Here we study an alternative way of achieving subwavelength confinement through deploying two materials with close but opposite epsilon values. The interface between such two materials supports a near-resonant SPP. By examining the relationship between mode propagation loss and the mode field size for both planar and fiber waveguides, we show that waveguides based on near-resonant SPP can be as attractive as those solely based on geometrical tailoring. We then explicitly study a silver and silicon based waveguide with a 25nm core size at 600nm wavelength, in its properties like single-mode condition, mode loss and group velocity. It is shown that loss values of both materials have to be decreased by approximately 1000 times in order to have 1dB/microm propagation loss. Hence we point out the necessity of novel engineering of low-loss metamaterials, or introducing gain, for practical applications of such waveguides. Due to the relatively simple geometry, the proposed near-resonant SPP waveguides can be a potential candidate for building optical circuits with a density close to the electronic counterpart. PMID:18545455

  8. Implementation of the Simplex algorithm for reconstruction of optical parameters of double-layer planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Kubica, Jacek M.

    2000-10-01

    The use of the downhill Simplex algorithm in reconstruction of optical parameters of planar silica waveguides is described. The original Nelder-Mead approach has been modified to include physical constraints of the waveguide system. Numerical results are provided to illustrate the behavior of the modified algorithm.

  9. Ultralow-loss waveguide crossings for the integration of microfluidics and optical waveguide sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yan, Hai; Wang, Zongxing; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Subbaraman, Harish; Tang, Naimei; Xu, Xiaochuan; Fan, D. L.; Wang, Alan X.; Chen, Ray T.

    2015-03-01

    Integrating photonic waveguide sensors with microfluidics is promising in achieving high-sensitivity and cost-effective biological and chemical sensing applications. One challenge in the integration is that an air gap would exist between the microfluidic channel and the photonic waveguide when the micro-channel and the waveguide intersect. The air gap creates a path for the fluid to leak out of the micro-channel. Potential solutions, such as oxide deposition followed by surface planarization, would introduce additional fabrication steps and thus are ineffective in cost. Here we propose a reliable and efficient approach for achieving closed microfluidic channels on a waveguide sensing chip. The core of the employed technique is to add waveguide crossings, i.e., perpendicularly intersecting waveguides, to block the etched trenches and prevent the fluid from leaking through the air gap. The waveguide crossings offer a smooth interface for microfluidic channel bonding while bring negligible additional propagation loss (0.024 dB/crossing based on simulation). They are also efficient in fabrication, which are patterned and fabricated in the same step with waveguides. We experimentally integrated microfluidic channels with photonic crystal (PC) microcavity sensor chips on silicon-on-insulator substrate and demonstrated leak-free sensing measurement with waveguide crossings. The microfluidic channel was made from polydimethylsiloxane (PDMS) and pressure bonded to the silicon chip. The tested flow rates can be varied from 0.2 μL/min to 200 μL/min. Strong resonances from the PC cavity were observed from the transmission spectra. The spectra also show that the waveguide crossings did not induce any significant additional loss or alter the resonances.

  10. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells. PMID:22814473

  11. Laser chemical etching of waveguides and quasi-optical devices

    NASA Astrophysics Data System (ADS)

    Drouet D'Aubigny, Christian Yann Pierre

    2003-11-01

    The terahertz (THz) frequency domain, located at the frontier of radio and light, is the last unexplored region of the electromagnetic spectrum. As technology becomes available, THz systems are finding applications to fields ranging all the way from astronomical and atmospheric remote sensing to space telecommunications, medical imaging, and security. In Astronomy the THz and far infrared (IR) portion of the electromagnetic spectrum (λ = 300 to 10 μm) may hold the answers to countless questions regarding the origin and evolution of the Universe, galaxy, star and planet formation. Over the past decade, advances in telescope and detector technology have for the first time made this regime available to astronomers. Near THz frequencies, metallic hollow waveguide structures become so small, (typically much less than a millimeter), that conventional machining becomes extremely difficult, and in many cases, nearly impossible. Laser induced, micro-chemical etching is a promising new technology that can be used to fabricate three dimensional structures many millimeters across with micrometer accuracy. Laser micromachining of silicon possesses a significant edge over more conventional techniques. It does not require the use of masks and is not confined to crystal planes. A non-contact process, it eliminates tool wear and vibration problems associated with classical milling machines. At the University of Arizona we have constructed the first such laser micromachining system optimized for the fabrication of THz and far IR waveguide and quasi-optical components. The system can machine structures up to 50 mm in diameter, down to a few microns accuracy in a few minutes and with a remarkable surface finish. A variety of THz devices have been fabricated using this technique, their design, fabrication, assembly and theoretical performance is described in the chapters that follow.

  12. Optical investigation of nanophotonic lithium niobate-based optical waveguide

    NASA Astrophysics Data System (ADS)

    Fakhri, Makram A.; Al-Douri, Y.; Hashim, U.; Salim, Evan T.; Prakash, Deo; Verma, K. D.

    2015-10-01

    Lithium niobate (LiNbO3) nanophotonics are prepared on quartz substrate by sol-gel method. They have been deposited with different molarity concentrations and annealed at 500 °C. These samples are characterized and analyzed by scanning electron microscope, atomic force microscopy, X-ray diffraction and ultraviolet-visible. The measured results show an importance of increasing molarity that indicates the structure starts to crystallize to become more regular. The estimated lattice constants, energy gaps and refractive index give good accordance with experimental results. Also, the calculated refractive index and optical dielectric constant are in agreement with experimental data.

  13. Optical characterization of Al- and N-polar AlN waveguides for integrated optics

    NASA Astrophysics Data System (ADS)

    Rigler, Martin; Buh, Jože; Hoffmann, Marc P.; Kirste, Ronny; Bobea, Milena; Mita, Seiji; Gerhold, Michael D.; Collazo, Ramon; Sitar, Zlatko; Zgonik, Marko

    2015-04-01

    Dispersion of the extraordinary and ordinary refractive indices of Al- and N-polar AlN waveguides is measured by multiple angle-of-incidence and spectroscopic ellipsometry techniques. The polarity-controlled AlN layers are grown by metal-organic chemical vapor deposition on (0001)-sapphire substrates. Taking into consideration the different surface morphologies of the Al- and N-polar AlN waveguides, we propose two optical models to describe the measured ellipsometry data. The results indicate that there is no difference between the refractive indices of the AlN grown in opposite directions, which confirms the potential of the AlN lateral polar structures for use in nonlinear optical applications based on quasi phase matching.

  14. Quasi-optical overmoded waveguide frequency multiplier grid arrays

    NASA Astrophysics Data System (ADS)

    Rosenau, Steven Andrew

    There is a growing need for compact, lightweight, inexpensive high power millimeter wave sources. Frequency multipliers can provide these sources by efficiently converting high power microwave signals to millimeter frequencies. Quasi-optical frequency multiplier grid arrays, comprised of hundreds to thousands of varactor devices and antennas on a single wafer, utilize spatial power combining to significantly increase power handling capability beyond that of a single device. In this dissertation work, theoretical and experimental investigations of frequency multiplier grid arrays have been conducted with a specific focus on overmoded waveguide systems. The principles of frequency multipliers and quasi-optical grid array power combining are presented. Simulation, design and experimental measurement techniques are described for both frequency tripler and doubler grid arrays. During this dissertation work, several quantum barrier varactor frequency tripler grid array systems and Schottky varactor frequency doubler grid array systems were designed, fabricated and tested. A frequency tripler grid array system, containing an innovative integrated output structure, achieved a multiplication efficiency of 3.4% and an output power of 148 mW. The two most efficient frequency doubler grid array systems achieved 11.7% multiplication efficiency and 0.41 W output power.

  15. Zero-birefringent polyimide for polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Baek, Sung-Ho; Kang, Jae-Wook; Li, Xiangdan; Lee, Myong-Hoon; Kim, Jang-Joo

    2003-07-01

    A novel zero birefringent and photosensitive polyimide was synthesized. The polymer is soluble in solvents and contains a chalcone group for photo-crosslinking by UV exposure. The glass transition and decomposition temperature of the polymer were 254°C and 430°C before cross-linking. Evolution of the absorption spectra upon UV exposure indicated that the cross-linking reaction is related to the cycloaddition of the double bonds in the chalcone group to form cyclobutane. The photo-crosslinking reaction not only increased the thermal stability, but also induced a refractive index change of the films. The refractive index of the film was reduced upon UV exposure from 1.5862 to 1.5697 for TE mode and from 1.5807 to 1.5697 for TM mode, respectively, resulting in zero birefringence after curing. Loss of p-conjugation in the chalcone group by the crosslinking reaction is supposed to induce the reduction of the refractive indices and orbital change from sp2 to sp3 makes the polymer chain be kinked, resulting in decrease of birefringence. The polymer film showed optical loss of 0.41 dB/cm at 1.3 mm and 0.54 dB/cm at 1.55 mm. Zero birefringence and low optical loss combined with photo-processibility of the material are making it an excellent candidate for the high performance waveguide materials.

  16. Ultracompact variable optical attenuator based on photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Cui, Kaiyu; Huang, Yidong

    2011-12-01

    We demonstrated and fabricated a 20μm-long ultra-compact variable optical attenuator based on thermo-optical effect with slow light photonic crystal waveguide (PCWG). In simulation, we optimize the line-defect width and radius/period ratio (r/a) of the PCWG for deep photonic band gap and large slope photonic band edge. An r/a=140nm/410nm W1 PCWG is selected for its -60dB depth and 36dB variable attenuation range when the tunable refractive index change is 0.01. We also study different shapes of micro-heaters for low power consumption and high heat transfer efficiency. A 24.6mW and 75.9% heat transfer efficiency are achieved in a 2μm-wide right-angle-shaped micro-heater. In experiment, A 4.6nm red shift at the cutoff wavelength of the fundamental mode and a 10dB tunable attenuation range are achieved through tuning the temperature of the W1 PCWG by an 4.7μm-wide aluminum micro-heater with a maximum power consumption as low as 30.7mW.

  17. Fabrication of an integrated optical filter using a large-core multimode waveguide vertically coupled to a single-mode waveguide.

    PubMed

    Kwon, Min-Suk; Kim, Ki-Hong; Oh, Young-Hoon; Shin, Sang-Yung

    2003-09-01

    We demonstrate the feasibility of the process for fabricating a single-mode waveguide and a large-core multimode waveguide aligned vertically on the same substrate. Using this process, we propose and demonstrate a filter that drops optical signal propagating in a single-mode waveguide to a multimode waveguide in the specific wavelength interval by a long-period grating. We use perfluorocyclobutane and benzocyclobutane for the cladding and core of the single-mode waveguide, respectively. The large core of the multimode waveguide is made of Norland Optical Adhesive 61. For the grating period of 315.9 um, the fabricated filter has the center wavelength of 1537.7 nm, at which the maximum attenuation is 17.8 dB. PMID:19466110

  18. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    NASA Astrophysics Data System (ADS)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  19. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    NASA Astrophysics Data System (ADS)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach–Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  20. Shortcut to adiabaticity in full-wave optics for ultra-compact waveguide junctions

    NASA Astrophysics Data System (ADS)

    Della Valle, Giuseppe; Perozziello, Gerardo; Longhi, Stefano

    2016-09-01

    We extend the concept of shortcuts to adiabaticity to full-wave optics and provide an application to the design of an ultra-compact waveguide junction. In particular, we introduce a procedure allowing one to synthesize a purely dielectric optical potential that precisely compensates for non-adiabatic losses of the transverse electric fundamental mode in any (sufficiently regular) two-dimensional waveguide junction. Our results are corroborated by finite-element method numerical simulations in a Pöschl–Teller waveguide mode expander.

  1. Polymer waveguide with tunable optofluidic couplers for card-to-backplane optical interconnects

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin; Baig, Sarfaraz; Wang, Michael R.

    2014-03-01

    Polymeric waveguides with tunable optofluidic couplers are fabricated by the vacuum assisted microfluidic technique for card-to-backplane optical interconnect applications. The optofluidic coupler on a backplane consists of polymer waveguides and a perpendicular microfluidic channel with inclined sidewalls. An index matching liquid and air bubbles are located in the microfluidic hollow channel. The activation or deactivation of the surface normal coupling of the optofluidic coupler is accomplished by setting air bubbles or index matching liquid to be in contact with the waveguide mirrors. 10 Gbps eye diagrams of the card-to-backplane optical interconnect link have been demonstrated showing the high performance of the interconnect system.

  2. Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide

    SciTech Connect

    Jian Qishen; He Sailing

    2006-12-15

    A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

  3. Assembly of optical fibers for the connection of polymer-based waveguide

    NASA Astrophysics Data System (ADS)

    Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix

    2003-03-01

    This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.

  4. Polymer waveguide cointegration with microelectromechanical systems (MEMS) for integrated optical metrology

    NASA Astrophysics Data System (ADS)

    Brown, Kolin S.; Taylor, B. J.; Dawson, Jeremy M.; Hornak, Lawrence A.

    1998-03-01

    The merging of Microelectromechanical (MEM) devices and optics to create Microoptoelectromechanical (MOEM) systems provides opportunity to create new devices and to expand the functionality and applications of MEMS technology. Planar optical waveguide co-integration with surface micromachined (SMM) structures and inclusion of diffractive optical systems within 3D MEMS chip stack architectures have the potential to enable integrated optical test, metrology, and state feedback functions for complex MEM systems. This paper presents the results of research developing a fabrication process for co-integrating polymer optical waveguides with prefabricated MEMS devices. Multimode air superstrate rectangular optical waveguides have been fabricated using Ultradel optical polyimides over unreleased MEMS dice fabricated using the MultiUser MEMS Process Service (MUMPS) SMM process. These structures serve as the basic building block for exploration of guided wave integrated optical metrology functions for MEMS. Specially designed `split- comb' linear resonator devices enabling coupling of waveguide output to the resonator stage for position measurement are one class of a set of prototype MEMS function MUMPS testbeds under development for both guidance and evaluation of waveguide and free-space IOM efforts. Recently initiated work analytically and experimentally evaluating through-wafer free-space micro-optical systems for IOM will also be outlined.

  5. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  6. Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects

    NASA Astrophysics Data System (ADS)

    Korhonen, Tia; Salminen, Noora; Kokkonen, Annukka; Masuda, Noriyuki; Karppinen, Mikko

    2014-03-01

    Low-loss single-mode waveguides are fabricated for optical interconnection applications. Such waveguides operating at telecom wavelength window are attractive for communicating between micro-photonic integrated circuit chips, such as silicon photonics, on the carrier/package, and also for enhanced coupling of photonic devices to fibers for longer reach interconnects. Manufacturing of the waveguides is based on direct pattering of optical polymeric materials by UV nanoimprinting. The advantages of the technology include the applicability to stack multiple layers of waveguides, fabrication on various substrate materials, and simultaneous fabrication of optical coupling structures. The developed process enables high wafer-level yield with precision overlay alignment. The multilayer waveguides were implemented using the so-called inverted rib waveguide process, that is, the shape of the waveguide cores are imprinted on the undercladding layer as grooves and then the core material is deposited on the cladding layer filling the grooves and also forming a thin slab layer. The subsequent deposition of the upper cladding layer finalizes the first waveguide layer and also starts the manufacturing of the next waveguide layer. The achieved wafer-scale layer-to-layer alignment tolerances were 1...2 μm and <0.3 μm in horizontal and vertical directions, respectively. Losses measured from the long waveguide spirals made of commercial ORMOCER materials on silicon wafers were 0.35 dB/cm at 1305 nm and 0.86 dB/cm at 1530 nm, which are only around 0.15 dB/cm higher than the material losses.

  7. Optical waveguides in Er:LiNbO3 fabricated by different techniques - A comparison

    NASA Astrophysics Data System (ADS)

    Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Oswald, Jiří; Staněk, Stanislav; Vytykáčová, Soňa; Špirková, Jarmila

    2016-03-01

    We report on the comparison of three techniques used for the fabrication of optical waveguides in erbium doped lithium niobate crystal substrates (Er:LiNbO3). The techniques include ion in-diffusion from a titanium metal layer, annealed proton exchange (APE), and He+ ion implantation. The main focus of the work was placed on the investigation of the influence of the used optical waveguides fabrication techniques on the structural and luminescence properties of Er:LiNbO3 substrates. The results have shown that none of the used optical-waveguide-fabrication techniques significantly affect the position of erbium in the host crystal structure. It turned out, however, that the fabrication process affected luminescence intensities of the characteristic luminescence bands of erbium ions - the most significant decrease in the luminescence intensity was observed in the Ti-indiffused waveguides.

  8. Optical bus waveguide metallic hard mold fabrication with opposite 45° micro-mirrors

    NASA Astrophysics Data System (ADS)

    Dou, Xinyuan; Wang, Alan Xiaolong; Lin, Xiaohui; Huang, Haiyu; Chen, Ray T.

    2010-02-01

    In this paper, 3-to-3 metallic hard mold for optical bus waveguide with opposite 45° micro-mirrors was successfully fabricated using electroplating method. The optical bus waveguide pre-mold with 45° surfaces before electroplating was prepared using photopolymer SU-8 through tilted exposure process under de-ionized water. Metal nickel was electroplated into SU-8 defined bus waveguide trenches. The 45° slant angles can be well controlled through titled exposure, which have deviations of 0.15° and 0.27° for SU-8 pre-mold and Ni hard mold, respectively. This metallic hard mold provides a convenient way to fabricate the polymeric optical bus waveguide devices through imprint technique.

  9. Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices.

    PubMed

    Chen, Pengxin; Zhu, Yunpeng; Shi, Yaocheng; Dai, Daoxin; He, Sailing

    2012-09-24

    Novel suspended SiO(2) ridge optical waveguides on silicon are fabricated and characterized. The present suspended SiO(2) ridge optical waveguide has a SiO(2) ridge core surrounded by air. The propagation loss and the bend loss measured are about 0.385dB/cm and 0.037dB/90° respectively for the fabricated 1 μm-wide waveguides with a bending radius of 100 μm when operating at the wavelength of 1550 nm. With the present suspended SiO(2) optical waveguides, a small racetrack resonator with a radius of 100 μm is also demonstrated and the measured Q-factor is about 3160. PMID:23037402

  10. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated. PMID:25321274

  11. Wave propagation through photonic waveguide lattices in the presence of optical gain and loss.

    PubMed

    Ardakani, Abbas Ghasempour

    2016-05-01

    We investigate the effects of gain and loss on the light propagation through a lattice of coupled optical waveguides. We demonstrate that superdiffusive transport becomes diffusive in the presence of optical loss after a critical propagation distance as in [Phys. Rev. Lett.113, 123903 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.123903]. However, when optical gain is introduced in the lattice of coupled waveguides, the beam broadening slows down from a superdiffusive to a highly subdiffusive regime after another critical distance. The critical distance decreases with increase of loss or gain in the waveguide lattice. For equal gain and loss, the value of critical distance in the array of active waveguides is much smaller than that in the case of lattice of lossy waveguides. Furthermore, we find that the effective width in the case of lossy waveguides decreases with increase of loss at the same propagation distance. Our results confirm that the regime of beam broadening does not depend on whether the gain is introduced in the waveguides or in their surroundings. PMID:27140375

  12. Hybrid inorganic-organic aqueous base compatible waveguide materials for optical interconnect applications

    NASA Astrophysics Data System (ADS)

    Moynihan, Matthew L.; Allen, Craig; Ho, Tuan; Little, Luke; Pawlowski, Nathan; Pugliano, Nick; Shelnut, James G.; Sicard, Bruno; Zheng, Hai Bin; Khanarian, Garo

    2003-11-01

    There are a number of organic, inorganic, and hybrid inorganic waveguide materials that are currently being used for a wide variety of optical interconnect applications. Depending upon the approach, waveguide formation is performed using a combination of lithographic and/or reactive ion etch (RIE) techniques. Often the processes involved with waveguide formation require unique processing conditions, hazardous process chemicals, and specialized pieces of capital equipment. In addition, many of the materials have been optimized for silicon substrates but are not compatible with printed wire board (PWB) substrates and processes. We have developed compositions and processes suitable for the creation of optical, planar waveguides on both silicon and PWB substrates. Based on silicate technology, these compositions use lithographic techniques to define waveguides, including aqueous, alkaline development. The resulting planar waveguides take advantage of the glass-like nature of silicate chemistry wedded with the simplicity of standard lithographic processes. Attenuation at typical wavelengths has been found to compete well with the non-silicate-based technologies available today. Single-mode (SM) and multi-mode (MM) waveguides with losses ranging from 0.6 dB/cm @ 1550nm, 0.2 dB/cm @1320nm, and <0.1 @ 850nm are feasible. Composition, process, and physical properties such as optical, thermal and mechanical properties will be discussed.

  13. Optical guiding of terawatt laser pulses in the plasma waveguide

    NASA Astrophysics Data System (ADS)

    Alexeev, I.; Fan, J.; Kim, K. Y.; Nikitin, S.; Milchberg, H. M.

    1999-11-01

    We report coupling and guiding of pulses of peak power 0.5 TW in 1.5 cm long preformed plasma waveguides generated in a high repetition rate argon gas jet. Greater than 50 percent coupling was measured in the injection of 50 mJ, 100 fs pulses, giving guided intensities up to 10^17 W/cm^2. For short delays between waveguide generation and pulse injection, refraction-induced pulse shortening occurred, with this effect reduced either by increasing the delay between waveguide generation and injection or by injecting a prepulse into the waveguide. We will also describe recent experiments which attempt to reduce the avalanche ionization threshold for the gases in which the waveguide is generated. This work is supported by the US Department of Energy (DEF G0297 ER 41039) and the National Science Foundation (PHY-9515509).

  14. Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide

    SciTech Connect

    Ma, Xun; John, Sajeev

    2011-11-15

    We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.

  15. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  16. Nonlinear Optical Properties of Triphenylalanine-based Peptide Nanostructures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. V.; Mishina, E. D.; Sigov, A. S.

    2016-05-01

    Nonlinear optical properties of peptide nanobelts and peptide nanospheres, the two types of self-assembled triphenylalanine-based peptide nanostructures, are studied. Nanobelts nonlinear susceptibility tensor components are evaluated, and nanobelts crystal structure and crystallographic orientation are defined on the basis of nonlinear optical mapping and polarization dependences of the second harmonic signal. The results obtained suggest that it is possible to use these materials as biologically compatible nonlinear optical converters.

  17. Multiple-analyte fluoroimmunoassay using an integrated optical waveguide sensor.

    PubMed

    Plowman, T E; Durstchi, J D; Wang, H K; Christensen, D A; Herron, J N; Reichert, W M

    1999-10-01

    A silicon oxynitride integrated optical waveguide was used to evanescently excite fluorescence from a multianalyte sensor surface in a rapid, sandwich immunoassay format. Multiple analyte immunoassay (MAIA) results for two sets of three different analytes, one employing polyclonal and the other monoclonal capture antibodies, were compared with results for identical analytes performed in a single-analyte immunoassay (SAIA) format. The MAIA protocol was applied in both phosphate-buffered saline and simulated serum solutions. Point-to-point correlation values between the MAIA and SAIA results varied widely for the polyclonal antibodies (R2 = 0.42-0.98) and were acceptable for the monoclonal antibodies (R2 = 0.93-0.99). Differences in calculated receptor affinities were also evident with polyclonal antibodies, but not so with monoclonal antibodies. Polyclonal antibody capture layers tended to demonstrate departure from ideal receptor-ligand binding while monoclonal antibodies generally displayed monovalent binding. A third set of three antibodies, specific for three cardiac proteins routinely used to categorize myocardial infarction, were also evaluated with the two assay protocols. MAIA responses, over clinically significant ranges for creatin kinase MB, cardiac troponin I, and myoglobin agreed well with responses generated with SAIA protocols (R2 = 0.97-0.99). PMID:10517150

  18. Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities

    SciTech Connect

    Zhang, Yongyou Dong, Guangda; Zou, Bingsuo

    2014-05-07

    Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.

  19. Controlling optical response of metallic nanostructure

    SciTech Connect

    Grigorenko, Ilya

    2008-01-01

    In this talk I am going to discuss the direct and inverse problems in nanoplasmonics in classical, and in particular quantum regimes of excitations. The inverse problem in nanoplasmonics is aimed to control the eigenspectrum, excitations,and other physical properties of nanosized quantum systems via controlling their size, shape, and structural composition. Using a combination of modern modeling techniques and optimization procedures, one can succeed to solve the inverse problem, namely, to find a nanostructure which has the desired functionality, or to find optimal control field in the presence of known nanostructured metallic surface.

  20. Planar Waveguides Formed by Ag Na Ion Exchange in Nonlinear Optical Glasses: Diffusion and Optical Properties

    NASA Astrophysics Data System (ADS)

    Martin, Marc; Videau, Jean J.; Canioni, Lionel; Adamietz, Frédéric; Sarger, Laurent; Le Flem, Gilles

    2000-01-01

    All-optical communication systems are the subject of intense research related to the integration of nonlinear optical materials. In sodiocalcic borophosphate glasses that contain niobium oxide and exhibit high nonlinear optical indices, planar waveguides have been formed by a Ag Na ion-exchange technique. WKB analysis has been used to characterize the diffusion profiles of silver ions exchanged in glass substrate samples chemically by an electron microprobe technique and optically by an M -line technique. These methods permit the Ag penetration depth and diffusion profile shape and index profiles to be determined. The results are analyzed and discussed in relation to Ca 2 concentration and exchange conditions in glasses. The Ag diffusion in these glasses can be almost entirely controlled for index-profile engineering.

  1. Finite element analysis of a variable optical attenuator based on s-shape polymer waveguide

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Wu, Lingxun; Xue, Fenglan; Hu, Jian; Fu, Yanjun; Zhang, Wei; Hu, Fangren

    2016-01-01

    A variable optical attenuator (VOA) based on S-shape polymer waveguide is demonstrated at the wavelength λ = 1.55 micron. The VOA consists of straight input and output waveguides, an S-shape waveguide and a pair of deposited electrodes. The cladding material of S waveguide is Poly (methyl methacrylate/disperse red 1) (PMMA/DR1) and the core material of S waveguide is SiON. The refractive index of the polymer cladding at S waveguide is modified by the applied electric voltage. Light scatters at the S waveguide and the VOA has large energy loss in the original state at voltage-off. In the voltage-on state, the refractive index of the polymer of the S waveguide reduces, and energy loss changes as the voltage increases. The attenuation of the VOA can be controled and adjusted by the applied voltage. The beam propagation method(BPM) and finite element analysis are employed to simulate and analyse the VOA. The results show that the VOA has large variable attenuation range of 45.2dB and low insertion loss of 0.8dB.

  2. Ultracompact quantum well waveguide electro-optic modulators

    NASA Astrophysics Data System (ADS)

    Zucker, Jane E.

    1994-06-01

    Quantum well heterostructures provide enhanced electrooptic effects that allow waveguide modulators with both low drive voltage requirements and small physical footprint. Compactness is important for incorporation in systems where space is at a premium or weight is an issue. Minimizing waveguide device length is also a critical factor in reducing production cost, especially when the modulator is monolithically integrated with other components for higher functionality. Finally, for electrorefractive waveguide modulators that are RC-limited, compactness is the key to obtaining high speed operation.

  3. Optical Gratings Coated with Thin Si3N4 Layer for Efficient Immunosensing by Optical Waveguide Lightmode Spectroscopy

    PubMed Central

    Diéguez, Lorena; Caballero, David; Calderer, Josep; Moreno, Mauricio; Martínez, Elena; Samitier, Josep

    2012-01-01

    New silicon nitride coated optical gratings were tested by means of Optical Waveguide Lightmode Spectroscopy (OWLS). A thin layer of 10 nm of transparent silicon nitride was deposited on commercial optical gratings by means of sputtering. The quality of the layer was tested by x-ray photoelectron spectroscopy and atomic force microscopy. As a proof of concept, the sensors were successfully tested with OWLS by monitoring the concentration dependence on the detection of an antibody-protein pair. The potential of the Si3N4 as functional layer in a real-time biosensor opens new ways for the integration of optical waveguides with microelectronics. PMID:25585707

  4. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  5. Optical properties of wide single-mode strip and grating loaded channel waveguides

    SciTech Connect

    Tsarev, Andrei V

    2009-12-31

    New wide single-mode strip and grating loaded (SGL) channel waveguides made of silicon nitride on the oxide buffer layer of a planar silicon-on-insulator waveguide are studied. The central 10-lm-wide strip produces a multi-mode channel waveguide and diffraction gratings with a period 0.6 lm built on the structure edges produce mode-dependent additional losses due to radiation to the surrounding medium. The optical properties of these waveguides are discussed using the results of a three-dimensional numerical simulation by the FDTD and BPM methods. It is shown that a wide SGL waveguide is quasi-single-mode one because it has a small propagation loss ({approx} 0.3 dB cm{sup -1}) for the fundamental mode and a high (up to -20 dB cm{sup -1}) loss for the higher order modes. The new SGL waveguides are CMOS compatible and can become basic for fabricating new photonic elements, including tunable optical filters and multi-plexers based on the multireflector technology. (waveguides)

  6. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, M.; Hill, C.; Decker, T.; Black, J. A.; Schmidt, H.; Hawkins, A.

    2016-03-01

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F' = 2, 3, 4 transitions of the D2 line in 85Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  7. Field-hardened optical waveguide hybrid integrated-circuit multisensor chemical probe and its chemistry

    NASA Astrophysics Data System (ADS)

    Pollina, Richard J.; Himka, Roger L.; Saini, Devinder P.; McGibbon, Alan; Klainer, Stanley M.

    1997-05-01

    A single probe containing three hybrid integrated-circuit, optical waveguide, chemical-biochemical sensors (chip sensors) has been developed. Each chip sensor contains two hybrid waveguides -- one for sensing and one for reference. The sense waveguide is coated with a species-specific or group-specific chemistry or biochemistry. The reference waveguide is coated with a version of the sense chemistry or biochemistry, which is not sensitive to the analyte. The integrated structure is encapsulated and contains a single fixed light source, two detectors (reference and sense), and an optical train. The design is amenable to fluorescence, absorption, and refraction measurements. The three chip sensors are individually mounted in a probe that contains all of the electronics and computing capability necessary to collect and process the output information from each chip sensor. Only the surface of the individual chips are exposed to the target analytes. The probe is rugged, intrinsically safe, and can operate under 75 m (250 ft) of water.

  8. Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements.

    PubMed

    Flammer, P D; Banks, J M; Furtak, T E; Durfee, C G; Hollingsworth, R E; Collins, R T

    2010-09-27

    VLSI compatible optical waveguides on silicon are currently of particular interest in order to integrate optical elements onto silicon chips, and for possible replacements of electrical cross-chip/inter-core interconnects. Here we present simulation and experimental verification of a hybrid plasmon/dielectric, single-mode, single-polarization waveguide for silicon-on-insulator wafers. Its fabrication is compatible with VLSI processing techniques, and it possesses desirable properties such as the absence of birefringence and low sensitivity to surface roughness and metallic losses. The waveguide structure naturally forms an MOS capacitor, possibly useful for active device integration. Simulations predict very long propagation lengths of millimeter scale with micron scale confinement, or sub-micron scale confinement with propagation lengths still in excess of 100 microns. The waveguide may be tuned continuously between these states using standard VLSI processing. Extremely long propagation lengths have been simulated: one configuration presented here has a simulated propagation length of 34 cm. PMID:20940996

  9. Integrated diffractive optical mode converter for fiber-to-waveguide coupling

    NASA Astrophysics Data System (ADS)

    Lu, Si; Yan, Ying-Bai; Yi, De-Er; Jin, Guo-Fan; Wu, Min-Xian

    2003-07-01

    An integrated diffractive optical mode converter, which can be integrated into planar lightwave circuits (PLCs), consisting of a diffractive optical element (DOE) and a slab waveguide is presented for fiber-to-waveguide coupling. The DOE is designed using iterative phase retrieval algorithm. In the iterative algorithm, we introduce a new modification of far-field amplitude constraint to provide very high mode conversion quality. Compared with previously published mode converters, the scheme is more universal because it is applicable for any waveguide structure. In simulation, coupling losses lower than 0.12 dB have been reached for all the discussed waveguides. The converter is shown to be polarization-insensitive and applicable in multi-wavelength PLCs. And the tolerance on axis misalignment has been investigated.

  10. Design of optical channel waveguides in SiO2 by ion implantation

    NASA Astrophysics Data System (ADS)

    De los Reyes, H.; Lizarraga-Medina, E. G.; Salazar, D.; Rangel-Rojo, R.; Vázquez, G. V.; Oliver, A.; Achenbach, S.; Börner, M.; Márquez, H.

    2015-08-01

    Design of straight and S-bend optical channel waveguides based on silver ion implantation in SiO2 substrates is presented. 3D Beam Propagation Method (BPM) calculations are used for the design of the waveguides based on step index profiles produced from a sequential multiple ion implantation process. An analysis of modal optical confinement was done by means of the Effective Index Method (EIM) for selecting the right dimensions of the channel waveguides. Core index values between 1.4623-1.4662 are obtained, depending on the fluence, are considered. Depth and width for the waveguides were chosen to provide single mode operation. Bending losses are determined as function of bending radius, refractive index change (Δn), and wavelength.