Sample records for nanotechnology imaging agents

  1. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    PubMed

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  2. Targeted Nanotechnology for Cancer Imaging

    PubMed Central

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  3. Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy

    PubMed Central

    Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  4. Molecular Imaging in Nanotechnology and Theranostics.

    PubMed

    Andreou, Chrysafis; Pal, Suchetan; Rotter, Lara; Yang, Jiang; Kircher, Moritz F

    2017-06-01

    The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.

  5. Nanotechnology-supported THz medical imaging

    PubMed Central

    Stylianou, Andreas; Talias, Michael A

    2013-01-01

    Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052

  6. Using Nanotechnology to Detect Nerve Agents

    DTIC Science & Technology

    2011-01-01

    56 | Air & Space Power Journal Air Force Institute of Technology Using Nanotechnology to Detect Nerve Agents Lt Col Mark N. Goltz , PhD, USAF...Retired Dr. Dong Shik Kim Maj LeeAnn Racz, PhD, USAF* *Lieutenant Colonel Goltz and Major Racz are faculty members in the Department of Systems and

  7. Cancer nanotechnology: a new commercialization pipeline for diagnostics, imaging agents, and therapies

    NASA Astrophysics Data System (ADS)

    Ptak, Krzysztof; Farrell, Dorothy; Hinkal, George; Panaro, Nicholas J.; Hook, Sara; Grodzinski, Piotr

    2011-06-01

    Nanotechnology - the science and engineering of manipulating matter at the molecular scale to create devices with novel chemical, physical and biological properties - has the potential to radically change oncology. Research sponsored by the NCI Alliance for Nanotechnology in Cancer has led to the development of nanomaterials as platforms of increasing complexity and devices of superior sensitivity, speed and multiplexing capability. Input from clinicians has guided researchers in the design of technologies to address specific needs in the areas of cancer therapy and therapeutic monitoring, in vivo imaging, and in vitro diagnostics. The promising output from the Alliance has led to many new companies being founded to commercialize their nanomedical product line. Furthermore, several of these technologies, which are discussed in this paper, have advanced to clinically testing.

  8. “Molecular Imaging in Nanotechnology and Theranostics” (MINT) Interest Group

    PubMed Central

    Andreou, Chrysafis; Pal, Suchetan; Rotter, Lara; Yang, Jiang; Kircher, Moritz F.

    2017-01-01

    The “Molecular Imaging in Nanotechnology and Theranostics” (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was founded in 2015 and was officially inaugurated during the 2016 World Molecular Imaging Conference (WMIC). The MINT interest group was created in response to the exponential growth of the fields of Nanotechnology and Theranostics in recent years, and the resulting need to provide a more organized and focused forum on these topics at the WMIS and the WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology, and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nano-constructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is “in the pipeline” and has potential for clinical translation in the near future. PMID:28349293

  9. Molecular imaging in drug development: Update and challenges for radiolabeled antibodies and nanotechnology.

    PubMed

    Colombo, Ilaria; Overchuk, Marta; Chen, Juan; Reilly, Raymond M; Zheng, Gang; Lheureux, Stephanie

    2017-11-01

    Despite the significant advancement achieved in understanding the molecular mechanisms responsible for cancer transformation and aberrant proliferation, leading to novel targeted cancer therapies, significant effort is still needed to "personalize" cancer treatment. Molecular imaging is an emerging field that has shown the ability to characterize in vivo the molecular pathways present at the cancer cell level, enabling diagnosis and personalized treatment of malignancies. These technologies, particularly SPECT and PET also permit the development of novel radiotheranostic probes, which provide capabilities for diagnosis and treatment with the same agent. The small therapeutic index of most anticancer agents is a limitation in the drug development process. Incorporation of molecular imaging in clinical research may help in overcoming this limitation and favouring selection of patient populations most likely to achieve benefit from targeted therapy. This review will focus on two of the most advanced theranostic approaches with promising potential for application in the clinic: 1) therapeutic monoclonal antibodies which may be linked to a radionuclide for SPECT or PET imaging to guide cancer diagnosis, staging, molecular characterization, and assessment of the response to treatment and 2) multifunctional nanotechnology that allows image guided drug delivery through encapsulation of multiple therapeutic, targeting and imaging agents into a single nanoparticle. Porphysome, a liposome-like nanoparticle, is an example of a novel and promising application of nanotechnology for cancer diagnosis and treatment. These technologies have proven to be effective in preclinical models, warranting further clinical investigation to advance their application for the benefit of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Nanotechnology and its Relationship to Interventional Radiology. Part I: Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, Sarah; Slattery, Michael M.; Lee, Michael J., E-mail: mlee@rcsi.ie

    2011-04-15

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I ofmore » the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.« less

  11. Image of Synthetic Biology and Nanotechnology: A Survey among University Students

    PubMed Central

    Ineichen, Christian; Biller-Andorno, Nikola; Deplazes-Zemp, Anna

    2017-01-01

    This study explores the image of synthetic biology and nanotechnology in comparison to agricultural biotechnology and communication technology by examining spontaneous associations with, and deliberate evaluations of, these technologies by university students. Data were collected through a self-completion online questionnaire by students from two universities in Switzerland. The survey aimed to capture implicit associations, explicit harm-benefit evaluations and views on regulation. The data suggest overall positive associations with emerging technologies. While positive associations were most pronounced for nanotechnology, agricultural biotechnology was attributed with the least favorable associations. In contrast to its positive result in the association task, respondents attributed a high harm potential for nanotechnology. Associations attributed to synthetic biology were demonstrated to be more positive than for agricultural biotechnology, however, not as favorable as for nanotechnology. Contrary to the evaluations of nanotechnology, the benefit-examples of synthetic biology were evaluated particularly positively. Accordingly, the investigated technologies enjoy different esteem, with synthetic biology and nanotechnology both showing a more “exciting” image. Even though, the image of nanotechnology was demonstrated to be more pronounced it was also more heterogeneous across tasks while agricultural biotechnology remains contested. For all technologies, the predominant spontaneous concerns pertain to risks rather than an immoral nature inherent to these technologies. Our data suggest that harm-benefit analyses reveal only one aspect of the attitude toward emerging technologies. Survey questions addressing spontaneous associations with these technologies are a valuable addition for our picture of the image of emerging technologies. PMID:28979291

  12. Cancer Nanotechnology: Recent Trends and Developments in Strategies for Targeting Cancer Cells to Improve Cancer Imaging and Treatment.

    PubMed

    Xu, Jingyao; Zhou, Xiaoling; Li, Yifei; Tian, Yudan

    2017-01-01

    Nanotechnology is a multidisciplinary field, which have the potential to cover applications in many subjects such as biology, chemistry and physics. The combined efforts of these subjects can lead to the successful engineering of nanodevices and nanovectors for targeted delivery and sensing/detection of cancer cells/tissues. The modulation of nanomaterials at surface and bulk level further adds value to this technology and develop strategies for early detection of precancerous and malignant cells from biological fluids. Furthermore, the novel nanotechnology-based imaging modalities have the prospects to offer non-invasive cancer imaging and treatment response study in real-time. This review covers the advantages of nanotechnology, which have been exploited for effective and targeted delivery of anti-cancer agents. Moreover, the initiatives taken by National Cancer Laboratory, USA to improve the clinical success of nanomedicines and nanovectors have also been comprehensively summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Nanotechnology in bladder cancer: current state of development and clinical practice

    PubMed Central

    Tomlinson, Ben; Lin, Tzu-yin; Dall'Era, Marc; Pan, Chong-Xian

    2015-01-01

    Nanotechnology is being developed for the diagnosis and treatment of both nonmyoinvasive bladder cancer (NMIBC) and invasive bladder cancer. The diagnostic applications of nanotechnology in NMIBC mainly focus on tumor identification during endoscopy to increase complete resection of bladder cancer while nanotechnology to capture malignant cells or their components continues to be developed. The therapeutic applications of nanotechnology in NMIBC are to reformulate biological and cytotoxic agents for intravesical instillation, combine both diagnostic and therapeutic application in one nanoformulation. In invasive and advanced bladder cancer, magnetic resonance imaging with supraparamagnetic iron oxide nanoparticles can improve the sensitivity and specificity in detecting small metastasis to lymph nodes. Nanoformulation of cytotoxic agents can potentially decrease the toxicity while increasing efficacy. PMID:25929573

  14. Novel Nanotechnologies for Brain Cancer Therapeutics and Imaging.

    PubMed

    Ferroni, Letizia; Gardin, Chiara; Della Puppa, Alessandro; Sivolella, Stefano; Brunello, Giulia; Scienza, Renato; Bressan, Eriberto; D'Avella, Domenico; Zavan, Barbara

    2015-11-01

    Despite progress in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of brain cancer, specifically malignant gliomas, does not yet exist. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood-brain barrier. Nanotechnology today offers a unique opportunity to develop more effective brain cancer imaging and therapeutics. In particular, the development of nanocarriers that can be conjugated with several functional molecules including tumor-specific ligands, anticancer drugs, and imaging probes, can provide new devices which are able to overcome the difficulties of the classical strategies. Nanotechnology-based approaches hold great promise for revolutionizing brain cancer medical treatments, imaging, and diagnosis.

  15. The NCI Alliance for Nanotechnology in Cancer: achievement and path forward.

    PubMed

    Ptak, Krzysztof; Farrell, Dorothy; Panaro, Nicholas J; Grodzinski, Piotr; Barker, Anna D

    2010-01-01

    Nanotechnology is a 'disruptive technology', which can lead to a generation of new diagnostic and therapeutic products, resulting in dramatically improved cancer outcomes. The National Cancer Institute (NCI) of National Institutes of Health explores innovative approaches to multidisciplinary research allowing for a convergence of molecular biology, oncology, physics, chemistry, and engineering and leading to the development of clinically worthy technological approaches. These initiatives include programmatic efforts to enable nanotechnology as a driver of advances in clinical oncology and cancer research, known collectively as the NCI Alliance for Nanotechnology in Cancer (ANC). Over the last 5 years, ANC has demonstrated that multidisciplinary approach catalyzes scientific developments and advances clinical translation in cancer nanotechnology. The research conducted by ANC members has improved diagnostic assays and imaging agents, leading to the development of point-of-care diagnostics, identification and validation of numerous biomarkers for novel diagnostic assays, and the development of multifunctional agents for imaging and therapy. Numerous nanotechnology-based technologies developed by ANC researchers are entering clinical trials. NCI has re-issued ANC program for next 5 years signaling that it continues to have high expectations for cancer nanotechnology's impact on clinical practice. The goals of the next phase will be to broaden access to cancer nanotechnology research through greater clinical translation and outreach to the patient and clinical communities and to support development of entirely new models of cancer care.

  16. Nanotechnology in respiratory medicine.

    PubMed

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  17. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents

    PubMed Central

    Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin

    2018-01-01

    Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097

  18. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine

    PubMed Central

    Gaheen, Sharon; Hinkal, George W.; Morris, Stephanie A.; Lijowski, Michal; Heiskanen, Mervi

    2014-01-01

    The use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab. caNanoLab provides access to experimental and literature curated data from the NCI Nanotechnology Characterization Laboratory, the Alliance and the greater cancer nanotechnology community. PMID:25364375

  19. Nanotechnology in diagnosis and treatment of coronary artery disease.

    PubMed

    Karimi, Mahdi; Zare, Hossein; Bakhshian Nik, Amirala; Yazdani, Narges; Hamrang, Mohammad; Mohamed, Elmira; Sahandi Zangabad, Parham; Moosavi Basri, Seyed Masoud; Bakhtiari, Leila; Hamblin, Michael R

    2016-01-01

    Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis. Nanotechnology can increase the efficiency of drugs, improve local and systematic delivery to atherosclerotic plaques and reduce the inflammatory or angiogenic response after intravascular intervention. Nanocarriers have potential for delivery of imaging and diagnostic agents to precisely targeted destinations. This review paper will cover the current applications and future outlook of nanotechnology, as well as the main diagnostic methods, in the treatment of CAD.

  20. Nanotechnology in diagnosis and treatment of coronary artery disease

    PubMed Central

    Karimi, Mahdi; Zare, Hossein; Bakhshian Nik, Amirala; Yazdani, Narges; Hamrang, Mohammad; Mohamed, Elmira; Sahandi Zangabad, Parham; Moosavi Basri, Seyed Masoud; Bakhtiari, Leila; Hamblin, Michael R

    2016-01-01

    Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis. Nanotechnology can increase the efficiency of drugs, improve local and systematic delivery to atherosclerotic plaques and reduce the inflammatory or angiogenic response after intravascular intervention. Nanocarriers have potential for delivery of imaging and diagnostic agents to precisely targeted destinations. This review paper will cover the current applications and future outlook of nanotechnology, as well as the main diagnostic methods, in the treatment of CAD. PMID:26906471

  1. Impact of nanotechnology in cancer: emphasis on nanochemoprevention

    PubMed Central

    Siddiqui, Imtiaz A; Adhami, Vaqar M; Christopher, Jean; Chamcheu; Mukhtar, Hasan

    2012-01-01

    Since its advent in the field of cancer, nanotechnology has provided researchers with expertise to explore new avenues for diagnosis, prevention, and treatment of the disease. Utilization of nanotechnology has enabled the development of devices in nanometer (nm) sizes which could be designed to encapsulate useful agents that have shown excellent results but otherwise are generally toxic due to the doses intended for extended use. In addition, examples are also available where these devices are easily conjugated with several purposeful moieties for better localization and targeted delivery. We introduced a novel concept in which nanotechnology was utilized for enhancing the outcome of chemoprevention. This idea, which we termed as “nanochemoprevention,” was subsequently exploited by several laboratories worldwide and has now become an advancing field in chemoprevention research. This review examines some of the up and coming applications of nanotechnology for cancer detection, imaging, treatment, and prevention. Further, we detail the current and future utilization of nanochemoprevention for prevention and treatment of cancer. PMID:22346353

  2. Nanotechnology: an evidence-based analysis.

    PubMed

    2006-01-01

    thought to be the main factors that will contribute to the projected increase in the number of new cases. THE TECHNOLOGY BEING REVIEWED - MEDICAL ADVISORY SECRETARIAT DEFINITION OF NANOTECHNOLOGY: FIRST-GENERATION NANOTECHNOLOGIES: Early application of nanotechnology-enabled products involved drug reformulation to deliver some otherwise toxic drugs (e.g., antifungal and anticancer agents) in a safer and more effective manner. Examples of first-generation nanodevices include the following: liposomes;albumin bound nanoparticles;gadolinium chelate for magnetic resonance imaging (MRI);iron oxide particles for MRI;silver nanoparticles (antibacterial wound dressing); andnanoparticulate dental restoratives.First-generation nanodevices have been in use for several years; therefore, they are not the focus of this report. SECOND-GENERATION NANOTECHNOLOGIES: Second-generation nanotechnologies are more sophisticated than first- generation nanotechnologies, due to novel molecular engineering that enables the devices to target, image, deliver a therapeutic agent, and monitor therapeutic efficacy in real time. Details and examples of second-generation nanodevices are discussed in the following sections of this report. The questions asked were as follows: What is the status of these multifunctional nanotechnologies? That is, what is the projected timeline to clinical utilization?What are the systemic effects of multifunctional nanodevices with integrated applications that target, image, and deliver drugs? That is, what are the implications of the emergence of nanotechnology on health human resources training, new specialties, etc.?The Medical Advisory Secretariat used its usual search techniques to conduct the literature review by searching relevant databases. Outcomes of interest were improved imaging, improved sensitivity or specificity, improved response rates to therapeutic agents, and decreased toxicity. The search yielded 1 health technology assessment on nanotechnology by The

  3. Insights into Atherosclerosis Using Nanotechnology

    PubMed Central

    Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2010-01-01

    A developing forefront in vascular disease research is the application of nanotechnology, the engineering of devices at the molecular scale, for diagnostic and therapeutic applications in atherosclerosis. Promising research in this field over the past decade has resulted in the preclinical validation of nanoscale devices that target cellular and molecular components of the atherosclerotic plaque, including one of its prominent cell types, the macrophage. Nanoscale contrast agents targeting constituents of plaque biology have been adapted for application in multiple imaging modalities, leading toward more detailed diagnostic readouts, whereas nanoscale drug delivery devices can be tailored for site-specific therapeutic activity. This review highlights recent progress in utilizing nanotechnology for the clinical management of atherosclerosis, drawing upon recent preclinical studies relevant to diagnosis and treatment of the plaque and promising future applications. PMID:20425261

  4. The Carolina Center of Cancer Nanotechnology Excellence: Past Accomplishments and Future Perspectives

    PubMed Central

    JULIANO, R.L.; SUNNARBORG, S.; DESIMONE, J.; HAROON, Z.

    2013-01-01

    SUMMARY The Carolina Center of Cancer Nanotechnology Excellence (C-CCNE) is funded by the National Cancer Institute and is based at the University of North Carolina. The C-CCNE features interactions among physical and biological scientists in a series of projects and cores that work together to quickly harness innovations in nanotechnology for the early diagnosis and treatment of cancer. Two key focus areas of the C-CCNE are, first the selective delivery of drugs and imaging agents utilizing advanced nanoparticle technology, and second novel approaches to imaging and radiotherapy utilizing carbon nanotube based X-ray sources. PMID:21182415

  5. Nanotechnology Applications for Glioblastoma

    PubMed Central

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  6. Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery

    NASA Astrophysics Data System (ADS)

    Mir, Maria; Ishtiaq, Saba; Rabia, Samreen; Khatoon, Maryam; Zeb, Ahmad; Khan, Gul Majid; ur Rehman, Asim; ud Din, Fakhar

    2017-08-01

    Science and technology have always been the vitals of human's struggle, utilized exclusively for the development of novel tools and products, ranging from micro- to nanosize. Nanotechnology has gained significant attention due to its extensive applications in biomedicine, particularly related to bio imaging and drug delivery. Various nanodevices and nanomaterials have been developed for the diagnosis and treatment of different diseases. Herein, we have described two primary aspects of the nanomedicine, i.e., in vivo imaging and drug delivery, highlighting the recent advancements and future explorations. Tremendous advancements in the nanotechnology tools for the imaging, particularly of the cancer cells, have recently been observed. Nanoparticles offer a suitable medium to carryout molecular level modifications including the site-specific imaging and targeting. Invention of radionuclides, quantum dots, magnetic nanoparticles, and carbon nanotubes and use of gold nanoparticles in biosensors have revolutionized the field of imaging, resulting in easy understanding of the pathophysiology of disease, improved ability to diagnose and enhanced therapeutic delivery. This high specificity and selectivity of the nanomedicine is important, and thus, the recent advancements in this field need to be understood for a better today and a more prosperous future.

  7. Nanotechnology in cancer treatment

    NASA Astrophysics Data System (ADS)

    Mironidou-Tzouveleki, Maria; Imprialos, Konstantinos; Kintsakis, Athanasios

    2011-10-01

    The purpose of this paper is to analyze the current evolutions on nanotechnology and its applications on cancer theragnostics.Rapid advances and emerging technologies in nanotechnology are having a profound impact on cancer treatment. Applications of nanotechnology, which include liposomes, nanoparticles, polymeric micelles, dendrimers, nanocantilever, carbon nanotubes and quantum dots have significantly revolutionized cancer theragnostics. From a pharmaceutical viewpoint, it is critical that the biodistribution of active agents has to be controlled as much as possible. This aspect is vital in order to assure the proper efficiency and safety of the anticancer agents. These biocompatible nanocomposites provide specific biochemical interactions with receptors expressed on the surface of cancer cells. With passive or active targeting strategies, an increased intracellular concentration of drugs can be achieved in cancer cells , while normal cells are being protected from the drug simultaneously. Thus, nanotechnology restricts the extent of the adverse effects of the anticancer therapy. Treatment for metastatic breast cancer, sarcoma in AIDS patients, ovarian and lung cancer is already on market or under final phases of many clinical trials, showing remarkable results. As nanotechnology is perfected, side effects due to normal cell damage will decrease, leading to better results and lengthening patient's survival.

  8. Nanotechnology for the detection and therapy of stroke.

    PubMed

    Kyle, Stuart; Saha, Sikha

    2014-11-01

    Over the years, nanotechnology has greatly developed, moving from careful design strategies and synthesis of novel nanostructures to producing them for specific medical and biological applications. The use of nanotechnology in diagnostics, drug delivery, and tissue engineering holds great promise for the treatment of stroke in the future. Nanoparticles are employed to monitor grafted cells upon implantation, or to enhance the imagery of the tissue, which is coupled with a noninvasive imaging modality such as magnetic resonance imaging, computed axial tomography or positron emission tomography scan. Contrast imaging agents used can range from iron oxide, perfluorocarbon, cerium oxide or platinum nanoparticles to quantum dots. The use of nanomaterial scaffolds for neuroregeneration is another area of nanomedicine, which involves the creation of an extracellular matrix mimic that not only serves as a structural support but promotes neuronal growth, inhibits glial differentiation, and controls hemostasis. Promisingly, carbon nanotubes can act as scaffolds for stem cell therapy and functionalizing these scaffolds may enhance their therapeutic potential for treatment of stroke. This Progress Report highlights the recent developments in nanotechnology for the detection and therapy of stroke. Recent advances in the use of nanomaterials as tissue engineering scaffolds for neuroregeneration will also be discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. EDITORIAL: Nanotechnology in vivo Nanotechnology in vivo

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-04-01

    labels [4]. A surface hydroxyl group renders silicon quantum dots soluble in water and the photoluminescence can be made stable with oxygen-passivation. In addition, researchers in Japan have demonstrated how the initially modest yield in the preparation of silicon quantum dots can be improved to tens of milligrams per batch, thus further promoting their application in bio-imaging [5]. In the search for non-toxic quantum dots, researchers at the Amrita Centre for Nanoscience in India have prepared heavy metal-free quantum dot bio-probes based on single phase ZnS [6]. The quantum dots are selectively doped with metals, transition metals and halides to provide tuneable luminescence properties, and they are surface conjugated with folic acid for cancer targeting. The quantum dots were demonstrated to be water-soluble, non-toxic in normal and cancer cell lines, and have bright, tuneable luminescence. So far most of the quantum dots developed for bio-imaging have had excitation and emission wavelengths in the visible spectrum, which is highly absorbed by tissue. This limits imaging with these quantum dots to superficial tissues. This week, researchers in China and the US reported work developing functionalized dots for in vivo tumour vasculature in the infrared part of the spectrum [7]. In addition the quantum dots were functionalised with glycine-aspartic acid (RGD) peptides, which target the vasculature of almost all types of growing tumours, unlike antibody- or aptamer-mediated targeting strategies that are specific to a particular cancer type. In this issue, researchers in China and the US demonstrate a novel type of contrast agent for ultrasonic tumour imaging [8]. Contrast-enhanced ultrasonic tumour imaging extends the diagnostic and imaging capabilities of traditional techniques. The use of nanoparticles as ultrasound contrast agents exploits the presence of open pores in the range of 380 to 780 nm in tumour blood vessels, which enhance the permeability and retention

  10. New applications of nanotechnology for neuroimaging.

    PubMed

    Suffredini, G; East, J E; Levy, L M

    2014-07-01

    Advances in nanotechnology have the potential to dramatically enhance the detection of neurologic diseases with targeted contrast agents and to facilitate the delivery of focused therapies to the central nervous system. We present the physicochemical rationale for their use, applications in animal models, and ongoing clinical trials using these approaches. We highlight advances in the use of nanoparticles applied to brain tumor imaging, tumor angiogenesis, neurodegeneration, grafted stem cells, and neuroprogenitor cells. © 2014 by American Journal of Neuroradiology.

  11. Convergence of nanotechnology and cancer prevention: are we there yet?

    PubMed

    Menter, David G; Patterson, Sherri L; Logsdon, Craig D; Kopetz, Scott; Sood, Anil K; Hawk, Ernest T

    2014-10-01

    Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey. ©2014 American Association for Cancer Research.

  12. Convergence of Nanotechnology and Cancer Prevention: Are We There Yet?

    PubMed Central

    Menter, David G.; Patterson, Sherri L.; Logsdon, Craig D.; Kopetz, Scott; Sood, Anil K.; Hawk, Ernest T.

    2014-01-01

    Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey. PMID:25060262

  13. Past, Recent Progresses and Future Perspectives of Nanotechnology Applied to Antifungal Agents.

    PubMed

    Roque, Luis; Molpeceres, Jesus; Reis, Claudia; Rijo, Patrícia; Reis, Catarina Pinto

    2017-01-01

    Candida species remain a significant cause of nosocomial bloodstream infections, associated with prolonged hospital stay in the ICU and high healthcare cost. The incidence of Candida is very high in certain risk groups of patients (AIDS, diabetes, cancer, etc.). Recent developments of nanotechnology have strongly contributed to the design of new multifunctional drug carriers that improve drug bioavailability through a controlled and prolonged release profile or even through a more specific targeted delivery of the antifungal agent. Those types of systems have strongly increased with a progressive generation of new structures, permitting the conjunction of new materials, biomolecules, physical and chemical techniques, for better outcomes. Nanotechnology shows expanded possibilities within the medical field and in the case of the yeast infections it may overcome several issues related with the fungal proliferation or higher inhibition of the pathogen causing the infection. This review covers a period of the most representative research of Candidiasis since 1993 to the present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  15. Nanotechnology applications in thoracic surgery

    PubMed Central

    Hofferberth, Sophie C.; Grinstaff, Mark W.; Colson, Yolonda L.

    2016-01-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of ‘theranostic’ multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future. PMID:26843431

  16. Commercialization of nanotechnology.

    PubMed

    Hobson, David W

    2009-01-01

    The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization. (c) 2009 John Wiley & Sons, Inc.

  17. Will nanotechnology influence targeted cancer therapy?

    PubMed Central

    Grimm, Jan; Scheinberg, David A.

    2011-01-01

    The rapid development of techniques that enable synthesis (and manipulation) of matter on the nanometer scale, as well as the development of new nano-materials, will play a large role in disease diagnosis and treatment, specifically in targeted cancer therapy. Targeted nanocarriers are an intriguing means to selectively deliver high concentrations of cytotoxic agents or imaging labels directly to the cancer site. Often solubility issues and an unfavorable biodistribution can result in a suboptimal response of novel agents even though they are very potent. New nanoparticulate formulations allow simultaneous imaging and therapy (“theranostics”), which can provide a realistic means for the clinical implementation of such otherwise suboptimal formulations. In this review we will not attempt to provide a complete overview of the rapidly enlarging field of nanotechnology in cancer; rather, we will present properties specific to nanoparticles, and examples of their uses, which demonstrate their importance for targeted cancer therapy. PMID:21356476

  18. Nanotechnology applications in thoracic surgery.

    PubMed

    Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-07-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of 'theranostic' multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    PubMed Central

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason; Miyazono, Kohei; Gelovani, Juri G.; Kataoka, Kazunori; Brinker, C. Jeffrey; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2016-01-01

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  20. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    PubMed

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  1. Nanotechnology in Urology

    PubMed Central

    Jayasimha, Sudhindra

    2017-01-01

    Introduction: Nanotechnology has revolutionized our approach to medical diagnostics as well as therapeutics and has spanned an entirely new branch of research. This review addresses the potential applications of Nanotechnology in Urology. This article is based on the Dr. Sitharaman Best Essay award of the Urological Society of India for 2016. Methods: A PubMed search was performed for all relevant articles using the terms, “nanotechnology, nanoparticles, nanoshells, nanoscaffolds, and nanofibers.” Results: The developments in diagnostics include novel techniques of imaging of genitourinary malignancies, prostate-specific antigen measurement, early detection of mutations that are diagnostic for polycystic kidney disease. The potential applications of nanotechnology are in the targeted therapy of genitourinary malignancies, erectile dysfunction, overactive bladder, bladder reconstruction, construction of artificial kidneys and biodegradable stents as well as in robotic surgery. Conclusions: Nanotechnology is a rapidly emerging branch of research in urology with diverse and clinically significant applications in diagnostics as well as therapeutics. PMID:28197024

  2. Targeted therapy using nanotechnology: focus on cancer

    PubMed Central

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication. PMID:24531078

  3. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    PubMed Central

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  4. The National Nanotechnology Initiative: Research and Development Leading to a Revolution in Technology and Industry. Supplement to the President’s FY 2008 Budget

    DTIC Science & Technology

    2007-07-31

    nanoscale materials for cancer diagnostics, imaging agents, and therapeutics. Recently NCL has extended its work to in vivo models and testing by...THE NATIONAL NANOTECHNOLOGY INITIATIVE Research and Development Leading to a Revolution in Technology and Industry Supplement to the President’s FY...clear national goals for Federal science and technology investments in areas ranging from nanotechnology and health research to improving

  5. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE PAGES

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; ...

    2016-02-02

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  6. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  7. Application of nanotechnology in cancers prevention, early detection and treatment.

    PubMed

    Patel, Shraddha P; Patel, Parshottambhai B; Parekh, Bhavesh B

    2014-01-01

    Use of nanotechnology in medical science is a rapidly developing area. New opportunities of diagnosis, imaging and therapy have developed due to recent rapid advancement by nanotechnology. The most common areas to be affected are diagnostic, imaging and targeted drug delivery in gastroenterology, oncology, cardiovascular medicine, obstetrics and gynecology. Mass screening with inexpensive imaging might be possible in the near future with the help of nanotechnology. This review paper provides an overview of causes of cancer and the application of nanotechnology in cancer prevention, detection and treatment.

  8. Strategic Workshops on Cancer Nanotechnology

    PubMed Central

    Nagahara, Larry A.; Lee, Jerry S H.; Molnar, Linda K.; Panaro, Nicholas J.; Farrell, Dorothy; Ptak, Krzysztof; Alper, Joseph; Grodzinski, Piotr

    2010-01-01

    Nanotechnology offers the potential for new approaches to detecting, treating and preventing cancer. To determine the current status of the cancer nanotechnology field and the optimal path forward, the National Cancer Institute’s Alliance for Nanotechnology in Cancer held three strategic workshops, covering the areas of in-vitro diagnostics and prevention, therapy and post-treatment, and in-vivo diagnosis and imaging. At each of these meetings, a wide range of experts from academia, industry, the non-profit sector, and the Federal government discussed opportunities in the field of cancer nanotechnology and barriers to its implementation. PMID:20460532

  9. Pancreatic Cancer Therapy Review: From Classic Therapeutic Agents to Modern Nanotechnologies.

    PubMed

    Rebelo, Ana; Molpeceres, Jesus; Rijo, Patrícia; Reis, Catarina Pinto

    2017-01-01

    Pancreatic cancer remains one of the most lethal cancers worldwide, with an extremely poor prognosis. This cancer is considered the 5th leading cause of cancer related death. The median survival after diagnosis is generally 2-8 months and five-year survival rate is less than 5%. In recent years, nanotechnology is emerging as a rising approach for drug delivery since it has opened up new landscapes in medicine through introduction of smart nanocarrier systems that can selectively deliver the therapeutic agent in a specific region and in appropriate levels, reducing the adverse side effects. This review covers the main delivery systems developed so far for anticancer drug delivery to the pancreas over a period of 20 years, from polymeric to lipidic-based nanosystems, with a particular emphasis on albumin as core material. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Current status of nanotechnology approaches for cardiovascular disease: a personal perspective.

    PubMed

    Buxton, Denis B

    2009-01-01

    Nanotechnology is poised to have an increasing impact on cardiovascular health in coming years. Diagnostically, multiplexed point-of-care devices will enable rapid genotyping and biomarker measurement to optimize and tailor therapies for the individual patient. Nanoparticle-based molecular imaging agents will take advantage of targeted agents to provide increased insight into disease pathways rather then simply providing structural and functional information. Drug delivery will be impacted by targeting of nanoparticle-encapsulated drugs to the site of action, increasing the effective concentration and decreasing systemic dosage and side effects. Controlled and tailored release of drugs from polymers will improve control of pharmacokinetics and bioavailability. The application of nanotechnology to tissue engineering will facilitate the fabrication of better tissue implants in vitro, and provide scaffolds to promote regeneration in vivo taking advantage of the body's own repair mechanisms. Medical devices will benefit from the development of nanostructured surfaces and coatings to provide better control of thrombogenicity and infection. Taken together, these new technologies have enormous potential for improving the diagnosis and treatment of cardiovascular diseases. (c) 2009 John Wiley & Sons, Inc.

  11. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  12. Nasal-nanotechnology: revolution for efficient therapeutics delivery.

    PubMed

    Kumar, Amrish; Pandey, Aditya Nath; Jain, Sunil Kumar

    2016-01-01

    In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.

  13. Clinically Approved Nanoparticle Imaging Agents

    PubMed Central

    Thakor, Avnesh S.; Jokerst, Jesse V.; Ghanouni, Pejman; Campbell, Jos L.; Mittra, Erik

    2016-01-01

    Nanoparticles are a new class of imaging agent used for both anatomic and molecular imaging. Nanoparticle-based imaging exploits the signal intensity, stability, and biodistribution behavior of submicron-diameter molecular imaging agents. This review focuses on nanoparticles used in human medical imaging, with an emphasis on radionuclide imaging and MRI. Newer nanoparticle platforms are also discussed in relation to theranostic and multimodal uses. PMID:27738007

  14. Nanotechnology applications in urology: a review.

    PubMed

    Maddox, Michael; Liu, James; Mandava, Sree Harsha; Callaghan, Cameron; John, Vijay; Lee, Benjamin R

    2014-11-01

    The objectives of this review are to discuss the current literature and summarise some of the promising areas with which nanotechnology may improve urological care. A Medline literature search was performed to elucidate all relevant studies of nanotechnology with specific attention to its application in urology. Urological applications of nanotechnology include its use in medical imaging, gene therapy, drug delivery, and photothermal ablation of tumours. In vitro and animal studies have shown initial encouraging results. Further study of nanotechnology for urological applications is warranted to bridge the gap between preclinical studies and translation into clinical practice, but nanomedicine has shown significant potential to improve urological patient care. © 2014 The Authors. BJU International © 2014 BJU International.

  15. Nanotechnological foundations of a «new» Nephrology.

    PubMed

    Sorian, M Laura; Rodríguez-Benot, Alberto; Valcárcel, Miguel

    2018-05-16

    After contextualising the generic frameworks of nanotechnology and nanomedicine, the 2disciplines are discussed in the field of Nephrology. The potential downside to nanonephrology is the renal clearance of nanoparticles, the use of which is ever-increasing both for nanomedicinal purposes and in nanofoods. The positive impact of nanotechnology in Nephrology is centred on the development of renal nanodiagnostics for basic renal function studies, the early diagnosis of acute kidney injury, reliable and simple follow-up of chronic kidney disease and the improvement of magnetic resonance imaging. Renal drug nanotherapies comprise an important and dual-faceted area: The protection of drugs and nephrotoxic agents (e.g. antibiotics, antiretrovirals, contrast media, etc.) on the one hand, and the development of new kidney disease medications on the other. Renal 'nanotheranostics' is a promising but little-studied area. The impact of nanostructured supports on renal tissue regeneration is also discussed. The article concludes with a brief analysis of the various nanonephrology perspectives. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  16. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  17. Applications of nanotechnology in cancer.

    PubMed

    Johnson, Laura; Gunasekera, Ayanthi; Douek, Michael

    2010-04-01

    Modern cancer therapy is more individualized to specific cancer subtypes, in an attempt to treat those patients who are likely to obtain greater benefit and avoid treatment induced side effects in those who will not. Nanotechnology heralds an era whereby cancer could be diagnosed by a single agent, treated simultaneously while the diagnosis is being made, and its response to treatment monitored. Whilst nanotechnology is still mostly in the research stage, several applications are ready for translation from the bench to the bedside, in particular in the field of breast cancer. This is exciting new area of research where science fiction may become a reality.

  18. Nanotechnology in Radiation Oncology

    PubMed Central

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  19. National nanotechnology partnership to protect workers

    NASA Astrophysics Data System (ADS)

    Howard, John; Murashov, Vladimir

    2009-10-01

    Nanotechnology is predicted to improve many aspects of human life. By 2015, it is estimated to represent 3.1 trillion in manufactured goods. Data is emerging that exposure to nanomaterials may pose a health risk to workers. If the economic promise of nanotechnology is to be achieved, ways need to be found to protect nanotechnology workers now. The Occupational Safety and Health Act of 1970 (OSHAct) gave the responsibility to protect workers to the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) through research, standards adoption, and standards enforcement. Since 1980, adopting new occupational health standards has grown more complex. The increased complexity has greatly slowed efforts to adopt protective standards for toxic agents that are well-known to pose significant risks. The likelihood of rapidly adopting standards to protect workers from nanomaterials, whose risks are just emerging, seems even more unlikely. Use of the OSHAct's general duty clause to protect workers also seems uncertain at this time. In the interim, a national partnership led by NIOSH involving nanotech manufacturers and downstream users, workers, academic researchers, safety, and health practitioners is proposed. A National Nanotechnology Partnership would generate knowledge about the nature and the extent of worker risk, utilize that knowledge to develop risk control strategies to protect nanotechnology workers now, and provide an evidence base for NIOSH recommendations to OSHA for a nanotechnology program standard at a future date.

  20. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    PubMed

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  1. Nanotechnology in agri-food production: an overview

    PubMed Central

    Sekhon, Bhupinder Singh

    2014-01-01

    Nanotechnology is one of the most important tools in modern agriculture, and agri-food nanotechnology is anticipated to become a driving economic force in the near future. Agri-food themes focus on sustainability and protection of agriculturally produced foods, including crops for human consumption and animal feeding. Nanotechnology provides new agrochemical agents and new delivery mechanisms to improve crop productivity, and it promises to reduce pesticide use. Nanotechnology can boost agricultural production, and its applications include: 1) nanoformulations of agrochemicals for applying pesticides and fertilizers for crop improvement; 2) the application of nanosensors/nanobiosensors in crop protection for the identification of diseases and residues of agrochemicals; 3) nanodevices for the genetic manipulation of plants; 4) plant disease diagnostics; 5) animal health, animal breeding, poultry production; and 6) postharvest management. Precision farming techniques could be used to further improve crop yields but not damage soil and water, reduce nitrogen loss due to leaching and emissions, as well as enhance nutrients long-term incorporation by soil microorganisms. Nanotechnology uses include nanoparticle-mediated gene or DNA transfer in plants for the development of insect-resistant varieties, food processing and storage, nanofeed additives, and increased product shelf life. Nanotechnology promises to accelerate the development of biomass-to-fuels production technologies. Experts feel that the potential benefits of nanotechnology for agriculture, food, fisheries, and aquaculture need to be balanced against concerns for the soil, water, and environment and the occupational health of workers. Raising awareness of nanotechnology in the agri-food sector, including feed and food ingredients, intelligent packaging and quick-detection systems, is one of the keys to influencing consumer acceptance. On the basis of only a handful of toxicological studies, concerns have

  2. Recent progress in the therapeutic applications of nanotechnology.

    PubMed

    Solomon, Melani; D'Souza, Gerard G M

    2011-04-01

    The field of pharmaceutical and medical nanotechnology has grown rapidly in recent decades and offers much promise for therapeutic advances. This review is intended to serve as a quick summary of the major areas in the therapeutic application of nanotechnology. Nanotechnology for therapeutic application falls into two broad categories of particulate systems and nanoengineered devices. Recent studies appear to focus on the development of multifunctional particles for drug delivery and imaging and the development of nanotechnology-based biosensors for diagnostic applications. Cancer treatment and diagnosis appears to be the principal focus of many of these applications, but nanotechnology is also finding application in tissue engineering and surface engineering of medical implants. Particulate drug delivery systems in general appear to be poised for increased use in the clinic, whereas nanoengineered implants and diagnostic sensors might well be the next major wave in the medical use of nanotechnology.

  3. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents.

    PubMed

    Nazem, Amir; Mansoori, G Ali

    2008-03-01

    A century of research has passed since the discovery and definition of Alzheimer's disease (AD), the primary common dementing disorder worldwide. However, AD lacks definite diagnostic approaches and effective cure at the present. Moreover, the currently available diagnostic tools are not sufficient for an early screening of AD in order to start preventive approaches. Recently the emerging field of nanotechnology has promised new techniques to solve some of the AD challenges. Nanotechnology refers to the techniques of designing and manufacturing nanosize (1-100 nm) structures through controlled positional and/or self-assembly of atoms and molecules. In this report, we present the promises that nanotechnology brings in research on the AD diagnosis and therapy. They include its potential for the better understanding of the AD root cause molecular mechanisms, AD's early diagnoses, and effective treatment. The advances in AD research offered by the atomic force microscopy, single molecule fluorescence microscopy and NanoSIMS microscopy are examined here. In addition, the recently proposed applications of nanotechnology for the early diagnosis of AD including bio-barcode assay, localized surface plasmon resonance nanosensor, quantum dot and nanomechanical cantilever arrays are analyzed. Applications of nanotechnology in AD therapy including neuroprotections against oxidative stress and anti-amyloid therapeutics, neuroregeneration and drug delivery beyond the blood brain barrier (BBB) are discussed and analyzed. All of these applications could improve the treatment approach of AD and other neurodegenerative diseases. The complete cure of AD may become feasible by a combination of nanotechnology and some other novel approaches, like stem cell technology.

  4. Nanotechnology in radiation oncology.

    PubMed

    Wang, Andrew Z; Tepper, Joel E

    2014-09-10

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. © 2014 by American Society of Clinical Oncology.

  5. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging

    PubMed Central

    Daryaei, Iman; Pagel, Mark D

    2016-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191

  6. Application of nanotechnology in the treatment and diagnosis of gastrointestinal cancers: review of recent patents.

    PubMed

    Prados, Jose; Melguizo, Consolacion; Perazzoli, Gloria; Cabeza, Laura; Carrasco, Esther; Oliver, Jaime; Jiménez-Luna, Cristina; Leiva, Maria C; Ortiz, Raúl; Álvarez, Pablo J; Aranega, Antonia

    2014-01-01

    Gastrointestinal cancers remain one of the main causes of death in developed countries. The main obstacles to combating these diseases are the limitations of current diagnostic techniques and the low stability, availability, and/or specificity of pharmacological treatment. In recent years, nanotechnology has revolutionized many fields of medicine, including oncology. The association of chemotherapeutic agents with nanoparticles offers improvement in the solubility and stability of antitumor agents, avoidance of drug degradation, and reductions in therapeutic dose and toxicity, increasing drug levels in tumor tissue and decreasing them in healthy tissue. The use of specific molecules that drive nanoparticles to the tumor tissue represents a major advance in therapeutic specificity. In addition, the use of nanotechnology in contrast agents has yielded improvements in the diagnosis and the follow-up of tumors. These nanotechnologies have all been applied in gastrointestinal cancer treatment, first in vitro, and subsequently in vivo, with promising results reported in some clinical trials. A large number of patents have been generated by nanotechnology research over recent years. The objective of this paper is to review patents on the clinical use of nanoparticles for gastrointestinal cancer diagnosis and therapy and to offer an overview of the impact of nanotechnology on the management of this disease.

  7. Nanotechnology: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2003-01-01

    Nanotechnology seeks to exploit novel physical, chemical, biological, mechanical, electrical, and other properties, which arise primarily due to the nanoscale nature of certain materials. A key example is carbon nanotubes (CNTs) which exhibit unique electrical and extraordinary mechanical properties and offer remarkable potential for revolutionary applications in electronics devices, computing, and data storage technology, sensors, composites, nanoelectromechanical systems (NEMS), and as tip in scanning probe microscopy (SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization, and applications touch upon all disciplines of science and engineering. This presentation will provide an overview and progress report on this and other major research candidates in Nanotechnology and address opportunities and challenges ahead.

  8. Nanotechnology applications for glioblastoma.

    PubMed

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Best Practices in Cancer Nanotechnology – Perspective from NCI Nanotechnology Alliance

    PubMed Central

    Zamboni, William C.; Torchilin, Vladimir; Patri, Anil; Hrkach, Jeff; Stern, Stephen; Lee, Robert; Nel, Andre; Panaro, Nicholas J.; Grodzinski, Piotr

    2014-01-01

    Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities which are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems which could not be effectively solved in the past and include overcoming formulation issues, multi-drug-resistance phenomenon and penetrating cellular barriers that may limit device accessibility to intended targets such as the blood-brain-barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise towards new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics. PMID:22669131

  10. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  11. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  12. Nanotechnology for Alzheimer Disease.

    PubMed

    Leszek, Jerzy; Md Ashraf, Ghulam; Tse, Wai Hei; Zhang, Jin; Gasiorowski, Kazimierz; Avila-Rodriguez, Marco Fidel; Tarasov, Vadim V; Barreto, George E; Klochkov, Sergey G; Bachurin, Sergey O; Aliev, Gjumrakch

    2017-01-01

    Alzheimer disease (AD) typically affects behavior, memory and thinking. The change in brain have been reported to begin approx. 10-20 years before the appearance of actual symptoms and diagnosis of AD. An early stage diagnosis and treatment of this lethal disease is the prime challenge, which is mainly halted by the lack of validated biomarkers. Recent nanotechnological advancements have the potential to offer large scale effective diagnostic and therapeutic options. Targeted drug (e.g. Rivastigmine) delivery with the help of nanoparticles (NPs) in the range of 1-100 nm diameters can effectively cross the blood brain barrier with minimized side effects. Moreover, biocompatible nanomaterials with increased magnetic and optical properties can act as excellent alternative agents for an early diagnosis. With the high volume of research coming in support of the effective usage of NP based drug delivery in critical environment of CNS, it is quite likely that this approach can end up providing remarkable breakthroughs in early stage diagnosis and therapy of AD. In the current review, we have presented a comprehensive outlook on the current challenges in diagnosis and therapy of AD, with an emphasis on the effective options provided by biocompatible NPs as imaging contrast agents and drug carriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  14. Nanotechnology Innovations

    NASA Technical Reports Server (NTRS)

    Malroy, Eric

    2010-01-01

    Nanotechnology is rapidly affecting all engineering disciplines as new products and applications are being found and brought to market. This session will present an overview of nanotechnology and let you learn about the advances in the field and how it could impact you. Some of the areas touched upon will be nanomaterials with their multifunctional capabilities, nanotechnology impact on energy systems, nanobiotechnology including nanomedicine, and nanotechnology relevant to space systems with a focus on ECLSS. Also, some important advances related to thermal systems will be presented as well as future predictions on nanotechnology.

  15. EDITORIAL: Multitasking in nanotechnology Multitasking in nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-06-01

    of myocardial infarct: MR antibody imaging Radiology 182 381-5 [4] Kirui D K, Rey D A and Batt C A 2010 Gold hybrid nanoparticles for targeted phototherapy and cancer imaging Nanotechnology 21 105105 [5] Villanueva A, Cãete M, Roca A G, Calero M, Veintemillas-Verdaguer S, Serna C J, Del Puerto Morales M and Miranda R 2009 The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells Nanotechnology 20 115103 [6]Theil Hansen L, Kühle A, Sørensen A H, Bohr J and Lindelof P E 1998 A technique for positioning nanoparticles using an atomic force microscope Nanotechnology 9 337-42 [7] Lu X, Yu M, Huang H and Ruoff R S 1999 Tailoring graphite with the goal of achieving single sheets Nanotechnology 10 269-72 [8] Baur C et al 1998 Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring Nanotechnology 9 360-4 [9] Ando T 2012 High-speed atomic force microscopy coming of age Nanotechnology 23 062001 [10] Romano G, Mantini G, Carlo A D, D'Amico A, Falconi C and Wang Z L 2011 Piezoelectric potential in vertically aligned nanowires for high output nanogenerators Nanotechnology 22 465401 [11] Yu A, Zhao Y, Jiang P and Wang Z L 2013 A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane Nanotechnology 24 055501 [12] When Art Meets Science: Exhibition of Artwork by Frédérique Swist http://www.at-bristol.org.uk/159.html

  16. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    NASA Astrophysics Data System (ADS)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  17. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications

    PubMed Central

    2017-01-01

    The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. A number of engineered nanotechnologies have been proposed demonstrating unique properties and multiple functions that address specific problems associated with wound repair mechanisms. In this outlook, we highlight the most recently developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment, with emphasis on chronic cutaneous wounds. Herein we explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field. PMID:28386594

  18. The state of research after 25 years of Nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-01-01

    arylation techniques further empowers this approach. While the electronics industry may have been the major driving force in nanotechnology research at the start, today the impact on research in medicine and biology is at least as significant. Nanofibrous networks provide invaluable tools in the development of tissue engineering techniques, and as demonstrated by Christman and colleagues at the University of California, San Diego, work in this field continues to progress [10]. Nanoparticles also have extraordinary potential as therapeutic agents not only as drug carriers but with a vast range of inherent properties that can mediate molecular processes and fight infection as reviewed by Kim and Hyeon in Korea [11]. Imaging and sensing are also important applications of nanoparticles in biology and medicine as well as other sectors. Observed surface enhanced Raman signal (SERS) enhancements of eight orders of magnitude have spurred numerous studies to effectively harness the effect. In this issue Xia and colleagues in the US present their study using 100-nm Ag nanocubes as the substrate [12]. 'This work quantitatively evaluated, for the first time, some of the fundamental parameters of SERS imaging such as blur, spatial resolution, and penetration depth', they explain. As well as this special issue we are publishing a brochure of some of the top 25 papers over the past 25 years, accompanied by interviews with the authors describing how their research came about and what it has led to since. There is also an opportunity to listen in on James K Gimzewski, Christoph Gerber and Franz Gießibl as they discuss nanotechnology as it emerged, where it is today and where it may be heading [1]. However tempted we may be to speculate on the next 25 years for the field in general, there seems little room for doubt that the next 12 months in Nanotechnology promises to be a feast. References [1] Nanotechnology Discussions podcasts http://iopscience.iop.org/0957-4484/page/Nanotechnology%20

  19. Nanotechnology: toxicologic pathology.

    PubMed

    Hubbs, Ann F; Sargent, Linda M; Porter, Dale W; Sager, Tina M; Chen, Bean T; Frazer, David G; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R; Reynolds, Steven H; Battelli, Lori A; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L; Mercer, Robert R

    2013-02-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.

  20. Nanotechnology: Toxicologic Pathology

    PubMed Central

    Hubbs, Ann F.; Sargent, Linda M.; Porter, Dale W.; Sager, Tina M.; Chen, Bean T.; Frazer, David G.; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R.; Reynolds, Steven H.; Battelli, Lori A.; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L.; Mercer, Robert R.

    2015-01-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. PMID:23389777

  1. Cancer nanotechnology: emerging role of gold nanoconjugates.

    PubMed

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  2. Cancer Nanotechnology: Emerging Role of Gold Nanoconjugates

    PubMed Central

    Kudgus, Rachel A.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2014-01-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles. PMID:21864234

  3. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier

    PubMed Central

    Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.

    2015-01-01

    Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  4. Nanotechnology based approaches for anti-diabetic drugs delivery.

    PubMed

    Kesharwani, Prashant; Gorain, Bapi; Low, Siew Yeng; Tan, Siew Ann; Ling, Emily Chai Siaw; Lim, Yin Khai; Chin, Chuan Ming; Lee, Pei Yee; Lee, Chun Mey; Ooi, Chun Haw; Choudhury, Hira; Pandey, Manisha

    2018-02-01

    Nanotechnology science has been diverged its application in several fields with the advantages to operate with nanometric range of objects. Emerging field of nanotechnology has been also being approached and applied in medical biology for improved efficacy and safety. Increased success in therapeutic field has focused several approaches in the treatment of the common metabolic disorder, diabetes. The development of nanocarriers for improved delivery of different oral hypoglycemic agents compared to conventional therapies includes nanoparticles (NPs), liposomes, dendrimer, niosomes and micelles, which produces great control over the increased blood glucose level and thus becoming an eye catching and most promising technology now-a-days. Besides, embellishment of nanocarriers with several ligands makes it more targeted delivery with the protection of entrapped hypoglycaemic agents against degradation, thereby optimizing prolonged blood glucose lowering effect. Thus, nanocarriers of hypoglycemic agents provide the aim towards improved diabetes management with minimized risk of acute and chronic complications. In this review, we provide an overview on distinctive features of each nano-based drug delivery system for diabetic treatment and current NPs applications in diabetes management. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  6. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.

    PubMed

    Johnson, Sam A

    2015-01-01

    Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.

  7. Multimodal nanoparticle imaging agents: design and applications

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  8. Current applications of nanotechnology in dentistry: a review.

    PubMed

    Bhavikatti, Shaeesta Khaleelahmed; Bhardwaj, Smiti; Prabhuji, M L V

    2014-01-01

    With the increasing demand for advances in diagnosis and treatment modalities, nanotechnology is being considered as a groundbreaking and viable research subject. This technology, which deals with matter in nanodimensions, has widened our views of poorly understood health issues and provided novel means of diagnosis and treatment. Researchers in the field of dentistry have explored the potential of nanoparticles in existing therapeutic modalities with moderate success. The key implementations in the field of dentistry include local drug delivery agents, restorative materials, bone graft materials, and implant surface modifications. This review provides detailed insights about current developments in the field of dentistry, and discusses potential future uses of nanotechnology.

  9. Nanotechnology: the scope and potential applications in orthopedic surgery.

    PubMed

    Gavaskar, Ashok; Rojas, D; Videla, F

    2018-03-30

    Nanotechnology involves manipulation of matter measuring 1-100 nm in at least one of its dimensions at the molecular level. Engineering and manipulation of matter at the molecular level has several advantages in the field of medicine (nanomedicine) since most of the biological molecules exist and function at a nanoscale. Though promising, questions still remain on how much of this will ultimately translate into achieving better patient care. Concerns of cost-effectiveness and nanotechnology safety still remain unclear. Orthopedics is an attractive area for the application of nanotechnology since the bone, and its constituents such as hydroxyapatite, Haversian systems, and the collagen fibrils are nanocompounds. The major orthopedic applications of nanotechnology involve around (i) effective drug delivery systems for antibiotics and chemotherapeutic agents, (ii) surface preparation of implants and prosthesis to improve osteointegration and reduce biofilm formation, (iii) controlled drug eluting systems to combat implant-related infections, (iv) tissue engineering for scaffolds preparation to deal with bone and cartilage defects, and (v) diagnostic applications in the field of oncology and musculoskeletal infections.

  10. Medical applications of nanotechnology.

    PubMed

    Zdrojewicz, Zygmunt; Waracki, Mateusz; Bugaj, Bartosz; Pypno, Damian; Cabała, Krzysztof

    2015-10-29

    Nanotechnologies are new areas of research focusing on affecting matter at the atomic and molecular levels. It is beyond doubt that modern medicine can benefit greatly from it; thus nanomedicine has become one of the main branches of nanotechnological research. Currently it focuses on developing new methods of preventing, diagnosing and treating various diseases. Nanomaterials show very high efficiency in destroying cancer cells and are already undergoing clinical trials. The results are so promising that nanomaterials might become an alternative to traditional cancer therapy, mostly due to the fact that they allow cancer cells to be targeted specifically and enable detailed imaging of tissues, making planning further therapy much easier. Nanoscience might also be a source of the needed breakthrough in the fight against atherosclerosis, since nanostructures may be used in both preventing and increasing the stability of atherosclerotic lesions. One area of interest is creating nanomaterials that are not only efficient, but also well tolerated by the human body. Other potential applications of nanotechnology in medicine include: nanoadjuvants with immunomodulatory properties used to deliver vaccine antigens; the nano-knife, an almost non-invasive method of destroying cancer cells with high voltage electricity; and carbon nanotubes, which are already a popular way of repairing damaged tissues and might be used to regenerate nerves in the future. The aim of this article is to outline the potential uses of nanotechnology in medicine. Original articles and reviews have been used to present the new developments and directions of studies.

  11. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics

    PubMed Central

    Fu, Lei; Ke, Heng-Te

    2016-01-01

    Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics. PMID:27807499

  12. Smart Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  13. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    PubMed

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.

  14. Nanotechnology: a promising method for oral cancer detection and diagnosis.

    PubMed

    Chen, Xiao-Jie; Zhang, Xue-Qiong; Liu, Qi; Zhang, Jing; Zhou, Gang

    2018-06-11

    Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.

  15. Commercialization of Nanotechnology

    DTIC Science & Technology

    2007-03-01

    NATO LECTURES M. Meyyappan Commercialization of Nanotechnology Abstract Nanotechnology is an enabling technology and as such, will have an...years), medium term (10 years) and long term (> 15 years) prospects. In addition, the challenges currently being faced to commercialize nanotechnology ...multinational corporations, government funding etc. will be presented. It is important to recognize that nanotechnology is not any one

  16. Curcumin Nanotechnologies and Its Anticancer Activity.

    PubMed

    Subramani, Parasuraman Aiya; Panati, Kalpana; Narala, Venkata Ramireddy

    2017-04-01

    Cancer is one of the leading causes of death worldwide. Curcumin is a well-established anticancer agent in vitro but its efficacy is yet to be proven in clinical trials. Poor bioavailability of curcumin is the principal reason behind the lack of efficiency of curcumin in clinical trials. Many studies prove that the bioavailability of curcumin can be improved by administering it through nanoparticle drug carriers. This review focuses on the efforts made in the field of nanotechnology to improve the bioavailability of curcumin. Nanotechnologies of curcumin come in various shapes and sizes. The simplest curcumin nanoparticle that increased the bioavailability of curcumin is the curcumin-metal complex. On the other hand, we have intricate thermoresponsive nanoparticles that can release curcumin upon stimulation (analogous to a remote control). Future research required for developing potent curcumin nanoparticles is also discussed.

  17. Outlining ethical issues in nanotechnologies.

    PubMed

    Spagnolo, Antonio G; Daloiso, Viviana

    2009-09-01

    Nanotechnologies are an expression of the human ability to control and manipulate matter on a very small scale. Their use will enable an even and constant monitoring of human organisms, in a new and perhaps less invasive way. Debates at all levels--national, European and international--have pointed out the common difficulty of giving a complete, clear definition of nanotechnologies. This is primarily due to the variety of their components, to the fact that there is not just one technology but several. The most significant medical applications of nanotechnologies are in the diagnostic and the therapeutic fields, eg biosensors and molecular imaging, providing diagnosis and drug delivery with no invasive methods involved. Like any other emerging field, such technologies imply new possibilities for improving health but, on the other hand, they are still at an experimental stage and therefore should be implemented under rigorous safety testing before going on general release. For this purpose, the ethical, legal and social implications (ELSI) of nanotechnologies have been elaborated by study groups, in order to develop solutions before the results of the tests are diffused into medical practice. The aim of this paper is to define some of the ethical issues concerning biomedical applications and to evaluate whether there is a need for new or additional guidelines and regulations.

  18. Cancer Nanotechnology Plan

    Cancer.gov

    The Cancer Nanotechnology Plan serves as a strategic document to the NCI Alliance for Nanotechnology in Cancer as well as a guiding document to the cancer nanotechnology and oncology fields, as a whole.

  19. Precursors to radiopharmaceutical agents for tissue imaging

    DOEpatents

    Srivastava, Prem C.; Knapp, Jr., Furn F.

    1988-01-01

    A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.

  20. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  1. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-02-01

    development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue

  2. [The role of nanotechnology in creating novel antitumor agents].

    PubMed

    Semiglazov, V F; Paltuev, R M; Remizov, A S; Semiglazov, V V; Dashian, G A; Bessonov, A A; Pen'kov, K D; Vasil'ev, A G; Semiglazova, T Iu; Kolar'kova, V V

    2011-01-01

    Nanobiotechnology, defined as an arm of a nano-system is a rapidly developing area of medicine. Nanomaterials ranging from 1 to 1000 nm in size offer unique advantages of interaction with biological systems on the molecular level. Nanobiotechnologies can be used in definition, diagnosis and treatment of cancer thus leading to the new development of a new discipline--nanooncology. The potential of nanoparticles to be used in in-vivo tumor visualization, biomolecular profiling of tumor growth factors and targeted drug delivery is being studied. These methods stemming from nanotechnology may soon find a broad application in oncology.

  3. Polymeric contrast agents for medical imaging.

    PubMed

    Torchilin, V P

    2000-09-01

    Synthetic polymers and co-polymers are described, to be used as carriers of reporter groups for gamma-, magnetic resonance (MR), and computed tomography (CT) imaging. Those compounds include polychelating and amphiphilic polymers and serve as key components of various contrast agents. Single terminus-activated polychelating polymers were synthesized using poly-L-lysine (PLL) as a main chain and chelating moieties (such as diethylene triamine pentaacetic acid or DTPA) as side groups. These polymers were used for the modification of diagnostic monoclonal antibodies to increase their load with reporter metal atoms. As a result, better images within shorter time intervals were obtained in animal experiments. The application of liposomes and micelles as carriers for diagnostic imaging agents in experimental and clinical medicine is considered. The load of liposomes and micelles with contrast agents for gamma- and MR imaging (MRI) was sharply increased by using polychelating polymers additionally modified on one end with a hydrophobic phospholipid residue to give amphiphilic polymers. Such polymers easily incorporate the liposome membrane or micelle core and provide better loading of liposomes and micelles with reporter metals and, consequently, better and faster imaging of various physiological compartments, such as lymphatic and vascular systems. A block-copolymer of methoxy-poly(ethylene glycol) (MPEG) and iodine-substituted PLL was synthesized to prepare long-circulating contrast agent for CT imaging of the blood pool. In the aqueous solution, this copolymer forms stable and heavily loaded with iodine (up to 30% of iodine by weight) micelles. These micelle were successfully used for CT visualization of the vascular network in experimental animals. General trends in developing contrast polymers are discussed.

  4. Blood-pool contrast agent for pre-clinical computed tomography

    NASA Astrophysics Data System (ADS)

    Cruje, Charmainne; Tse, Justin J.; Holdsworth, David W.; Gillies, Elizabeth R.; Drangova, Maria

    2017-03-01

    Advances in nanotechnology have led to the development of blood-pool contrast agents for micro-computed tomography (micro-CT). Although long-circulating nanoparticle-based agents exist for micro-CT, they are predominantly based on iodine, which has a low atomic number. Micro-CT contrast increases when using elements with higher atomic numbers (i.e. lanthanides), particularly at higher energies. The purpose of our work was to develop and evaluate a lanthanide-based blood-pool contrast agent that is suitable for in vivo micro-CT. We synthesized a contrast agent in the form of polymer-encapsulated Gd nanoparticles and evaluated its stability in vitro. The synthesized nanoparticles were shown to have an average diameter of 127 +/- 6 nm, with good size dispersity. Particle size distribution - evaluated by dynamic light scattering over the period of two days - demonstrated no change in size of the contrast agent in water and saline. Additionally, our contrast agent was stable in a mouse serum mimic for up to 30 minutes. CT images of the synthesized contrast agent (containing 27 mg/mL of Gd) demonstrated an attenuation of over 1000 Hounsfield Units. This approach to synthesizing a Gd-based blood-pool contrast agent promises to enhance the capabilities of micro-CT imaging.

  5. DNA nanotechnology from the test tube to the cell.

    PubMed

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  6. The slings and arrows of communication on nanotechnology

    PubMed Central

    Zimmer, René; Vierboom, Carl; Härlen, Ingo; Hertel, Rolf; Böl, Gaby-Fleur

    2009-01-01

    According to numerous surveys the perceived risk of nanotechnology is low and most people feel that the benefits outweigh the risks. This article provides greater insight into risk perception and concludes that the positive attitude to nanotechnology is based not on knowledge but on hope and fascination. The perceived risk is low because of a lack of vivid and frightening images of possible hazards. If news flashes were to link nanotechnology to concrete hazards or actual harm to people, attitudes might suddenly change. Risk communication faces the problem of dealing with a public at large that has little or no knowledge about the technology. As it takes time and extensive additional research to develop appropriate communication strategies and disseminate them to the relevant institutions, this exercise should be started immediately. PMID:21170119

  7. Functional mesoporous silica nanoparticles for bio-imaging applications.

    PubMed

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  8. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Broekgaarden, Mans; Bulin, Anne-Laure; Huang, Huang-Chiao; Kuriakose, Jerrin; Liu, Joyce; Hasan, Tayyaba

    2016-06-01

    As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.

  9. WE-G-303-00: Nanotechnology for Imaging and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notablemore » approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia

  10. The emerging role of nanotechnology in cell and organ transplantation

    PubMed Central

    Tasciotti, Ennio; Cabrera, Fernando J.; Evangelopoulos, Michael; Martinez, Jonathan O.; Thekkedath, Usha R.; Kloc, Malgorzata; Ghobrial, Rafik M.; Li, Xian C.; Grattoni, Alessandro; Ferrari, Mauro

    2016-01-01

    Transplantation is often the only choice many patients have when suffering from end stage organ failure. Although the quality of life improves after transplantation, challenges such as organ shortages, necessary immunosuppression with associated complications and chronic graft rejection limits its wide clinical application. Nanotechnology has emerged in the past two decades as a field with the potential to satisfy clinical needs in the area of targeted and sustained drug delivery, non-invasive imaging, and tissue engineering. In this paper, we provide an overview of popular nanotechnologies and a summary of the current and potential uses of nanotechnology in cell and organ transplantation. PMID:27257995

  11. How can nanotechnology help the fight against breast cancer?

    PubMed

    Avitabile, Elisabetta; Bedognetti, Davide; Ciofani, Gianni; Bianco, Alberto; Delogu, Lucia Gemma

    2018-06-19

    In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.

  12. NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS.

    PubMed

    Gökçay, Banu; Arda, Berna

    2015-01-01

    Nanotechnology is a field that we often hear of its name nowadays. Altough what we know about it is soo poor, we admire this field of technlogy, moreover some societies even argues that nanotechnology will cause second endustrial revolution. In addition, nanotechnology makes our basic scientific knowledge upside down and is soo powerfull that it is potent in nearly every scientific field. Thereby, it is imposible to say that nanotechnology; which is soo effective on human and human life; will not cause social and ethical outcomes. In general, the definition of nanotechnology is the reconfiguration of nanomaterials by human; there also are different definitions according to the history of nanotechnology and different point of views. First of all, in comparison to the other tehnology fields, what is the cause of excellence of nanotechnology, what human can do is to foresee the advantages and disadvantages of it, what are the roles of developed and developping countries for the progression of nanotechnology, what is the attitude of nanoethics and what is view of global politics to nanotechological research according to international regulations are all the focus of interests of this study. Last but not least, our apprehension capacity of nanotechnology, our style of adoption and evaluation of it and the way that how we locate nanotechnology in our lifes and ethical values are the other focus of interests.

  13. NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS

    PubMed Central

    GÖKÇAY, Banu; ARDA, Berna

    2017-01-01

    Nanotechnology is a field that we often hear of its name nowadays. Altough what we know about it is soo poor, we admire this field of technlogy, moreover some societies even argues that nanotechnology will cause second endustrial revolution. In addition, nanotechnology makes our basic scientific knowledge upside down and is soo powerfull that it is potent in nearly every scientific field. Thereby, it is imposible to say that nanotechnology; which is soo effective on human and human life; will not cause social and ethical outcomes. In general, the definition of nanotechnology is the reconfiguration of nanomaterials by human; there also are different definitions according to the history of nanotechnology and different point of views. First of all, in comparison to the other tehnology fields, what is the cause of excellence of nanotechnology, what human can do is to foresee the advantages and disadvantages of it, what are the roles of developed and developping countries for the progression of nanotechnology, what is the attitude of nanoethics and what is view of global politics to nanotechological research according to international regulations are all the focus of interests of this study. Last but not least, our apprehension capacity of nanotechnology, our style of adoption and evaluation of it and the way that how we locate nanotechnology in our lifes and ethical values are the other focus of interests. PMID:28424570

  14. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  15. Concise review: carbon nanotechnology: perspectives in stem cell research.

    PubMed

    Pryzhkova, Marina V

    2013-05-01

    Carbon nanotechnology has developed rapidly during the last decade, and carbon allotropes, especially graphene and carbon nanotubes, have already found a wide variety of applications in industry, high-tech fields, biomedicine, and basic science. Electroconductive nanomaterials have attracted great attention from tissue engineers in the design of remotely controlled cell-substrate interfaces. Carbon nanoconstructs are also under extensive investigation by clinical scientists as potential agents in anticancer therapies. Despite the recent progress in human pluripotent stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. However, acquired experience with and knowledge of carbon nanomaterials may be efficiently used in the development of future personalized medicine and in tissue engineering.

  16. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  17. Nanotechnology for the Prevention and Treatment of Cataract.

    PubMed

    Cetinel, Sibel; Montemagno, Carlo

    2015-01-01

    The purpose of this article was to review recent advances in the applications of nanotechnology in cataract treatment and prevention strategies. A literature review on the use of nanotechnology for the prevention and treatment of cataract was done. Research articles about nanotechnology-based treatments and prevention technologies for cataract were searched on Web of Science, and the most recent advances were reported. Nonsteroid anti-inflammatory drugs, natural antioxidants, biologic and chemical chaperones, and chaperones such as molecules have found great application in preventing and treating cataracts. Current scientific research on new treatment strategies, which focuses on the biochemical basis of the disease, will likely result in new anticataract agents. However, none of the drug formulations will be approved for use unless efficient delivery is promised. Nanoparticle engineering together with biomimetic strategies enable the development of next-generation, more efficient, less complex, and personalized treatments. The only currently available treatment for cataracts, surgical replacement of the opacified lens, is not an easily accessible option in developing countries. New treatment strategies based on topical drugs would enable treatment to reach massive populations facing the threat of blindness and more effectively deal with the postsurgical complications. Nanotechnology plays a key role in improving drug delivery systems with enhanced controlled release, targeted delivery, and bioavailability to overcome diffusion limitations in the eye.

  18. "Extremely minimally invasive": recent advances in nanotechnology research and future applications in neurosurgery.

    PubMed

    Mattei, Tobias A; Rehman, Azeem A

    2015-01-01

    The term "nanotechnology" refers to the development of materials and devices that have been designed with specific properties at the nanometer scale (10(-9) m), usually being less than 100 nm in size. Recent advances in nanotechnology have promised to enable visualization and intervention at the subcellular level, and its incorporation to future medical therapeutics is expected to bring new avenues for molecular imaging, targeted drug delivery, and personalized interventions. Although the central nervous system presents unique challenges to the implementation of new therapeutic strategies involving nanotechnology (such as the heterogeneous molecular environment of different CNS regions, the existence of multiple processing centers with different cytoarchitecture, and the presence of the blood-brain barrier), numerous studies have demonstrated that the incorporation of nanotechnology resources into the armamentarium of neurosurgery may lead to breakthrough advances in the near future. In this article, the authors present a critical review on the current 'state-of-the-art' of basic research in nanotechnology with special attention to those issues which present the greatest potential to generate major therapeutic progresses in the neurosurgical field, including nanoelectromechanical systems, nano-scaffolds for neural regeneration, sutureless anastomosis, molecular imaging, targeted drug delivery, and theranostic strategies.

  19. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine.

    PubMed

    Kim, Nathaniel J; Harris, Alon; Gerber, Austin; Tobe, Leslie Abrams; Amireskandari, Annahita; Huck, Andrew; Siesky, Brent

    2014-04-01

    The purpose of this review is to discuss the evolution of nanotechnology and its potential diagnostic and therapeutic applications in the field of ophthalmology, particularly as it pertains to glaucoma. We reviewed literature using MEDLINE and PubMed databases with the following search terms: glaucoma, nanotechnology, nanomedicine, nanoparticles, ophthalmology and liposomes. We also reviewed pertinent references from articles found in this search. A brief history of nanotechnology and nanomedicine will be covered, followed by a discussion of the advantages and concerns of using this technology in the field of glaucoma. We will look at various studies concerning the development of nanomedicine, its potential applications in ocular drug delivery, diagnostic and imaging modalities and, surgical techniques. In particular, the challenges of assuring safety and efficacy of nanomedicine will be examined. We conclude that nanotechnology offers a novel approach to expanding diagnostic, imaging and surgical modalities in glaucoma and may contribute to the knowledge of disease pathogenesis at a molecular level. However, more research is needed to better elucidate the mechanism of cellular entry, the potential for nanoparticle cytotoxicity and the assurance of clinical efficacy.

  20. Monitoring nanotechnology using patent classifications: an overview and comparison of nanotechnology classification schemes

    NASA Astrophysics Data System (ADS)

    Jürgens, Björn; Herrero-Solana, Victor

    2017-04-01

    Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.

  1. Targeting tumor glycolysis by a mitotropic agent.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-01

    Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.

  2. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent

    NASA Astrophysics Data System (ADS)

    Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.

    2017-09-01

    Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.

  3. EDITORIAL: Nanotechnology under the skin Nanotechnology under the skin

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2011-07-01

    Concerns over health and ecological implications as living organisms are increasingly exposed to nanoparticles are constantly raised. Yet the use of nanoscale structures in technology and medicine has already infiltrated daily life in countless ways. from cosmetics and sun cream to mobile phones. The potential of nanotechnology in medicine is particularly difficult to ignore and ranges from cancer treatment to immune system activation [1]. The reduced dimensions of nanostructures lend them to targeted diagnostic and therapeutic practices that enable treatment with greater accuracy and less discomfort. Striking a balance between over caution and recklessness can be tricky, and provides an additional drive to investigate and learn more about the science of the nanoscale. Alongside investigations to exploit nanoparticles in medicine and technology, there have been a substantial number of studies to investigate the possible effects on our health, as well as some studies on the environmental ramifications. Researchers in the US have investigated the effects on aquatic life of ZnO nanoparticles, which may pollute lakes and rivers through accidental release during fabrication or as wash out from consumer materials [2]. The study is focused on zebrafish during early development. Zhu et al observe that while there may be evidence that Zn2+ ions and ZnO nanoparticles have toxic effects on zebrafish embryos, these effects are apparently mitigated by a type of sediment formulated from the nanoparticles. The positive contribution of nanotechnology in cancer treatment is an area of particularly high research activity at present. Although traditional chemotherapeutic agents can be effective against the growth of cancerous cells, they can have a detrimental effect on the immune system, which is critical in combating cancer. Researchers in China studied the behaviour of C60(OH)20 nanoparticles in vivo and found that they play important roles in the anti-tumour process by activating

  4. Nanotechnology for missiles

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2004-07-01

    Nanotechnology development is progressing very rapidly. Several billions of dollars have been invested in nanoscience research since 2000. Pioneering nanotechnology research efforts have been primarily conducted at research institutions and centers. This paper identifies developments in nanoscience and technology that could provide significant advances in missile systems applications. Nanotechnology offers opportunities in the areas of advanced materials for coatings, including thin-film optical coatings, light-weight, strong armor and missile structural components, embedded computing, and "smart" structures; nano-particles for explosives, warheads, turbine engine systems, and propellants to enhance missile propulsion; nano-sensors for autonomous chemical detection; and nano-tube arrays for fuel storage and power generation. The Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is actively collaborating with academia, industry, and other Government agencies to accelerate the development and transition of nanotechnology to favorably impact Army Transformation. Currently, we are identifying near-term applications and quantifying requirements for nanotechnology use in Army missile systems, as well as monitoring and screening research and developmental efforts in the industrial community for military applications. Combining MicroElectroMechanical Systems (MEMS) and nanotechnology is the next step toward providing technical solutions for the Army"s transformation. Several research and development projects that are currently underway at AMRDEC in this technology area are discussed. A top-level roadmap of MEMS/nanotechnology development projects for aviation and missile applications is presented at the end.

  5. Innovative Treatments for Cancer:. The Impact of Delivering siRNAs, Chemotherapies, and Preventative Agents Using Nanoformulations

    NASA Astrophysics Data System (ADS)

    Hook, Sara S.; Farrell, Dorothy; Hinkal, George W.; Ptak, Krzystzof; Grodzinski, Piotr; Panaro, Nicholas J.

    2013-09-01

    A multi-disciplinary approach to research epitomized by the emerging field of cancer nanotechnology can catalyze scientific developments and enable clinical translation beyond what we currently utilize. Engineers, chemists, and physical scientists are teaming up with cancer biologists and clinical oncologists to attack the vast array of cancer malignancies using materials at the nanoscale. We discuss how nanoformulations are enabling the targeted, efficient, delivery of not only genetic therapies such silencing RNAs, but also conventional cytotoxic agents and small molecules which results in decreased systemic toxicity and improved therapeutic index. As preventative approaches, there are various imaging agents and devices are being developed for screening purposes as well as new formulations of sunscreens, neutraceuticals, and cancer vaccines. The goal then of incorporating nanotechnology into clinical applications is to achieve new and more effective ways of diagnosing, treating, and preventing cancer to ultimately change the lives of patients worldwide.

  6. Echographic imaging of tumoral cells through novel nanosystems for image diagnosis

    PubMed Central

    Di Paola, Marco; Chiriacò, Fernanda; Soloperto, Giulia; Conversano, Francesco; Casciaro, Sergio

    2014-01-01

    Since the recognition of disease molecular basis, it has become clear that the keystone moments of medical practice, namely early diagnosis, appropriate therapeutic treatment and patient follow-up, must be approached at a molecular level. These objectives will be in the near future more effectively achievable thanks to the impressive developments in nanotechnologies and their applications to the biomedical field, starting-up the nanomedicine era. The continuous advances in the development of biocompatible smart nanomaterials, in particular, will be crucial in several aspects of medicine. In fact, the possibility of manufacturing nanoparticle contrast agents that can be selectively targeted to specific pathological cells has extended molecular imaging applications to non-ionizing techniques and, at the same time, has made reachable the perspective of combining highly accurate diagnoses and personalized therapies in a single theranostic intervention. Main developing applications of nanosized theranostic agents include targeted molecular imaging, controlled drug release, therapeutic monitoring, guidance of radiation-based treatments and surgical interventions. Here we will review the most recent findings in nanoparticles contrast agents and their applications in the field of cancer molecular imaging employing non-ionizing techniques and disease-specific contrast agents, with special focus on recent findings on those nanomaterials particularly promising for ultrasound molecular imaging and simultaneous treatment of cancer. PMID:25071886

  7. Systematic review: the applications of nanotechnology in gastroenterology.

    PubMed

    Brakmane, G; Winslet, M; Seifalian, A M

    2012-08-01

    Over the past 30 years, nanotechnology has evolved dramatically. It has captured the interest of variety of fields from computing and electronics to biology and medicine. Recent discoveries have made invaluable changes to future prospects in nanomedicine; and introduced the concept of theranostics. This term offers a patient specific 'two in one' modality that comprises of diagnostic and therapeutic tools. Not only nanotechnology has shown great impact on improvements in drug delivery and imaging techniques, but also there have been several ground-breaking discoveries in regenerative medicine. Gastroenterology invites multidisciplinary approach owing to high complexity of gastrointestinal (GI) system; it includes physicians, surgeons, radiologists, pharmacologists and many more. In this article, we concentrate on current developments in nano-gastroenterology. Literature search was performed using Web of Science and Pubmed search engines with terms--nanotechnology, nanomedicine and gastroenterology. Article search was concentrated on developments since 2005. We have described original and innovative approaches in gastrointestinal drug delivery, inflammatory disease and cancer-target treatments. Here, we have reviewed advances in GI imaging using nanoparticles as fluorescent contrast, and their potential for site-specific targeting. This review has also depicted various approaches and novel discoveries in GI regenerative medicine using nanomaterials for scaffold designs and induced pluripotent stem cells as cell source. Developments in nanotechnology have opened new range of possibilities to help our patients. This includes novel drug delivery vehicles, diagnostic tools for early and targeted disease detection and nanocomposite materials for tissue constructs to overcome cosmetic or physical disabilities. © 2012 Blackwell Publishing Ltd.

  8. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.

    PubMed

    Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John

    2015-01-01

    The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.

  9. Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress.

    PubMed

    Chopra, Arvind; Shan, Liang; Eckelman, W C; Leung, Kam; Latterner, Martin; Bryant, Stephen H; Menkens, Anne

    2012-02-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov ) to students, researchers, and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, X-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1,000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4,250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration as well as a comma separated values file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, pre-clinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities, and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments, or suggestions for further improvement of the database by writing to the editors at micad@nlm.nih.gov.

  10. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  11. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    DTIC Science & Technology

    2013-07-01

    biology, nanotechnology, and imaging technology, molecular imaging utilizes specific probes as contrast agents to visualize cellular processes at the...This reagent was covalently coupled to the oligosaccharides attached to polypeptide side-chains of extracellular membrane proteins on living cells...website. The normal tissue gene expression profile dataset was modified and processed as described by Fang (8) and mean intensities and standard

  12. Multifunctional Nanotechnology Research

    DTIC Science & Technology

    2016-03-01

    MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol

  13. Concise Review: Carbon Nanotechnology: Perspectives in Stem Cell Research

    PubMed Central

    2013-01-01

    Carbon nanotechnology has developed rapidly during the last decade, and carbon allotropes, especially graphene and carbon nanotubes, have already found a wide variety of applications in industry, high-tech fields, biomedicine, and basic science. Electroconductive nanomaterials have attracted great attention from tissue engineers in the design of remotely controlled cell-substrate interfaces. Carbon nanoconstructs are also under extensive investigation by clinical scientists as potential agents in anticancer therapies. Despite the recent progress in human pluripotent stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. However, acquired experience with and knowledge of carbon nanomaterials may be efficiently used in the development of future personalized medicine and in tissue engineering. PMID:23572053

  14. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging.

    PubMed

    Siegrist, Michael; Stampfli, Nathalie; Kastenholz, Hans; Keller, Carmen

    2008-09-01

    Nanotechnology has the potential to generate new food products and new food packaging. In a mail survey in the German speaking part of Switzerland, lay people's (N=337) perceptions of 19 nanotechnology applications were examined. The goal was to identify food applications that are more likely and food applications that are less likely to be accepted by the public. The psychometric paradigm was employed, and applications were described in short scenarios. Results suggest that affect and perceived control are important factors influencing risk and benefit perception. Nanotechnology food packaging was assessed as less problematic than nanotechnology foods. Analyses of individual data showed that the importance of naturalness in food products and trust were significant factors influencing the perceived risk and the perceived benefit of nanotechnology foods and nanotechnology food packaging.

  15. Nanotechnology in stem cells research: advances and applications.

    PubMed

    Deb, Kaushik Dilip; Griffith, May; Muinck, Ebo De; Rafat, Mehrdad

    2012-01-01

    Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.

  16. Fabrication for Nanotechnology

    DTIC Science & Technology

    2007-03-01

    could be divided into four groups as pictured in the following figure. Figure 1 : Nanotechnology fabrication methods Top-down nanofabrication...cooled) substrate on which a layer is formed. RTO-EN-AVT-129bis 2 - 1 van Heeren, H. (2007) Fabrication for Nanotechnology. In Nanotechnology...Aerospace Applications – 2006 (pp. 2- 1 – 2-4). Educational Notes RTO-EN-AVT-129bis, Paper 2. Neuilly-sur-Seine, France: RTO. Available from: http

  17. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia

    PubMed Central

    Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John

    2015-01-01

    The Dartmouth Center for Cancer Nanotechnology Excellence – one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer – focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response. PMID:26080693

  18. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications

    PubMed Central

    Kratz, Jeremy D.; Chaddha, Ashish; Bhattacharjee, Somnath

    2016-01-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD. PMID:26809711

  19. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    PubMed

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  20. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    PubMed

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  1. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    NASA Astrophysics Data System (ADS)

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-09-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  2. Public Attitudes Toward Nanotechnology

    NASA Astrophysics Data System (ADS)

    Sims Bainbridge, William

    2002-12-01

    Data from 3909 respondents to an Internet survey questionnaire provide the first insights into public perceptions of nanotechnology. Quantitative analysis of statistics about agreement and disagreement with two statements, one positive and the other negative, reveals high levels of enthusiasm for the potential benefits of nanotechnology and little concern about possible dangers. The respondents mentally connect nanotechnology with the space program, nuclear power, and cloning research, but rate it more favorably. In contrast, they do not associate nanotechnology with pseudoscience, despite its imaginative exploitation by science fiction writers. Qualitative analysis of written comments from 598 respondents indicates that many ideas about the value of nanotechnology have entered popular culture, and it provides material for an additional 108 questionnaire items that can be used in future surveys on the topic. The findings of this exploratory study can serve as benchmarks against which to compare results of future research on the evolving status of nanotechnology in society.

  3. Nanotechnology: A Valuable Strategy to Improve Bacteriocin Formulations

    PubMed Central

    Fahim, Hazem A.; Khairalla, Ahmed S.; El-Gendy, Ahmed O.

    2016-01-01

    Bacteriocins are proteinaceous antibacterial compounds, produced by diverse bacteria, which have been successfully used as: (i) food biopreservative; (ii) anti-biofilm agents; and (iii) additives or alternatives to the currently existing antibiotics, to minimize the risk of emergence of resistant strains. However, there are several limitations that challenge the use of bacteriocins as biopreservatives/antibacterial agents. One of the most promising avenues to overcome these limitations is the use of nanoformulations. This review highlights the practical difficulties with using bacteriocins to control pathogenic microorganisms, and provides an overview on the role of nanotechnology in improving the antimicrobial activity and the physicochemical properties of these peptides. PMID:27695440

  4. [Molecular imaging; current status and future prospects in USA].

    PubMed

    Kobayashi, Hisataka

    2007-02-01

    The goal of this review is to introduce the definition, current status, and future prospects of the molecular imaging, which has recently been a hot topic in medicine and the biological science in USA. In vivo imaging methods to visualize the molecular events and functions in organs or animals/humans are overviewed and discussed especially in combinations of imaging modalities (machines) and contrast agents(chemicals) used in the molecular imaging. Next, the close relationship between the molecular imaging and the nanotechnology, an important part of nanomedicine, is stressed from the aspect of united multidisciplinary sciences such as physics, chemistry, biology, and medicine.

  5. Nanotechnology in the regulation of stem cell behavior

    NASA Astrophysics Data System (ADS)

    Wu, King-Chuen; Tseng, Ching-Li; Wu, Chi-Chang; Kao, Feng-Chen; Tu, Yuan-Kun; So, Edmund C.; Wang, Yang-Kao

    2013-10-01

    Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.

  6. Cancer nanotechnology research in the United States and China: cooperation to promote innovation.

    PubMed

    Schneider, Julie A; Grodzinski, Piotr; Liang, Xing-Jie

    2011-01-01

    The application of nanotechnology to cancer research is a promising area for US-China cooperation. Cancer is a major public health burden in both countries, and progress in cancer nanotechnology research is increasing in several fields, including imaging, biomarker detection, and targeted drug delivery. The United States and China are international leaders in nanotechnology research, and have both launched national programs to support nanotechnology efforts in the recent past. The accelerating trend of co-authorship among US and Chinese nanotechnology researchers demonstrates that individual scientists already recognize the potential for cooperation, providing a strong platform for creating additional partnerships in pre-competitive research areas. Mechanisms that could help to enhance US-China cancer nanotechnology partnerships include: developing new programs for bi-directional training and exchange; convening workshops focused on specific scientific topics of high priority to both countries; and joint support of collaborative research projects by US and Chinese funders. In addition to the accelerating scientific progress, expanded cooperation will stimulate important dialog on regulatory, policy, and technical issues needed to lay the groundwork for US and Chinese scientists to move greater numbers of cancer nanotechnology applications into the clinic. Copyright © 2011 John Wiley & Sons, Inc.

  7. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    DOEpatents

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  8. Nanotechnology: Future of Oncotherapy.

    PubMed

    Gharpure, Kshipra M; Wu, Sherry Y; Li, Chun; Lopez-Berestein, Gabriel; Sood, Anil K

    2015-07-15

    Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise. ©2015 American Association for Cancer Research.

  9. Just a Cog in the Machine? The Individual Responsibility of Researchers in Nanotechnology is a Duty to Collectivize.

    PubMed

    Spruit, Shannon L; Hoople, Gordon D; Rolfe, David A

    2016-06-01

    Responsible Research and Innovation (RRI) provides a framework for judging the ethical qualities of innovation processes, however guidance for researchers on how to implement such practices is limited. Exploring RRI in the context of nanotechnology, this paper examines how the dispersed and interdisciplinary nature of the nanotechnology field somewhat hampers the abilities of individual researchers to control the innovation process. The ad-hoc nature of the field of nanotechnology, with its fluid boundaries and elusive membership, has thus far failed to establish a strong collective agent, such as a professional organization, through which researchers could collectively steer technological development in light of social and environmental needs. In this case, individual researchers cannot innovate responsibly purely by themselves, but there is also no structural framework to ensure that responsible development of nanotechnologies takes place. We argue that, in such a case, individual researchers have a duty to collectivize. In short, researchers in situations where it is challenging for individual agents to achieve the goals of RRI are compelled to develop organizations to facilitate RRI. In this paper we establish and discuss the criteria under which individual researchers have this duty to collectivize.

  10. Nanotechnology: emerging tool for diagnostics and therapeutics.

    PubMed

    Chakraborty, Mainak; Jain, Surangna; Rani, Vibha

    2011-11-01

    Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.

  11. Functional Imaging of the Lungs with Gas Agents

    PubMed Central

    Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.

    2015-01-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920

  12. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  13. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    NASA Astrophysics Data System (ADS)

    Lee, Cheol-Ju; Lee, SuKap; Jhon, Myung S.; Shin, Juneseuk

    2013-02-01

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R&D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  14. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  15. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.

    PubMed

    Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M

    2009-12-22

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

  16. Emerging applications of nanotechnology for the diagnosis and management of vulnerable atherosclerotic plaques

    PubMed Central

    Yu, Shann S.; Ortega, Ryan A.; Reagan, Brendan W.; McPherson, John A.; Sung, Hak-Joon; Giorgio, Todd D.

    2017-01-01

    An estimated 16 million people in the United States have coronary artery disease (CAD), and approximately 325,000 people die annually from cardiac arrest. About two-thirds of unexpected cardiac deaths occur without prior recognition of cardiac disease. A vast majority of these deaths are attributable to the rupture of ‘Vulnerable atherosclerotic plaques’. Clinically, plaque vulnerability is typically assessed through imaging techniques, and ruptured plaques leading to acute myocardial infarction are treated through angioplasty or stenting. Despite significant advances, it is clear that current imaging methods are insufficiently capable for elucidating plaque composition—which is a key determinant of vulnerability. Further, the exciting improvement in the treatment of CAD afforded by stenting procedures has been buffered by significant undesirable host-implant effects, including restenosis and late thrombosis. Nanotechnology has led to some potential solutions to these problems by yielding constructs that interface with plaque cellular components at an unprecedented size scale. By leveraging the innate ability of macrophages to phagocytose nanoparticles, contrast agents can now be targeted to plaque inflammatory activity. Improvements in nano-patterning procedures have now led to increased ability to regenerate tissue isotropy directly on stents, enabling gradual regeneration of normal, physiologic vascular structures. Advancements in immunoassay technologies promise lower costs for biomarker measurements, and in the near future, may enable the addition of routine blood testing to the clinician’s toolbox—decreasing the costs of atherosclerosis-related medical care. These are merely three examples among many stories of how nanotechnology continues to promise advances in the diagnosis and treatment of vulnerable atherosclerotic plaques. PMID:21834059

  17. Nanotechnology and dentistry

    PubMed Central

    Ozak, Sule Tugba; Ozkan, Pelin

    2013-01-01

    Nanotechnology deals with the physical, chemical, and biological properties of structures and their components at nanoscale dimensions. Nanotechnology is based on the concept of creating functional structures by controlling atoms and molecules on a one-by-one basis. The use of this technology will allow many developments in the health sciences as well as in materials science, bio-technology, electronic and computer technology, aviation, and space exploration. With developments in materials science and biotechnology, nanotechnology is especially anticipated to provide advances in dentistry and innovations in oral health-related diagnostic and therapeutic methods. PMID:23408486

  18. Nanotechnology: A Policy Primer

    DTIC Science & Technology

    2010-03-12

    clean water. Nanotechnology water desalination and filtration systems may offer affordable, scalable, and portable water filtration...CRS Report for Congress Prepared for Members and Committees of Congress Nanotechnology : A Policy Primer John F. Sargent Jr. Specialist...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Nanotechnology : A Policy Primer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  19. Nanotechnology: A Policy Primer

    DTIC Science & Technology

    2010-01-04

    clean water. Nanotechnology water desalination and filtration systems may offer affordable, scalable, and portable water filtration...CRS Report for Congress Prepared for Members and Committees of Congress Nanotechnology : A Policy Primer John F. Sargent Jr. Specialist...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Nanotechnology : A Policy Primer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  20. Seminal nanotechnology literature: a review.

    PubMed

    Kostoff, Ronald N; Koytcheff, Raymond G; Lau, Clifford G Y

    2009-11-01

    This paper uses complementary text mining techniques to identify and retrieve the high impact (seminal) nanotechnology literature over a span of time. Following a brief scientometric analysis of the seminal articles retrieved, these seminal articles are then used as a basis for a comprehensive literature survey of nanoscience and nanotechnology. The paper ends with a global analysis of the relation of seminal nanotechnology document production to total nanotechnology document production.

  1. Nanoparticles for cancer imaging: The good, the bad, and the promise

    PubMed Central

    Chapman, Sandra; Dobrovolskaia, Marina; Farahani, Keyvan; Goodwin, Andrew; Joshi, Amit; Lee, Hakho; Meade, Thomas; Pomper, Martin; Ptak, Krzysztof; Rao, Jianghong; Singh, Ravi; Sridhar, Srinivas; Stern, Stephan; Wang, Andrew; Weaver, John B.; Woloschak, Gayle; Yang, Lily

    2014-01-01

    Summary Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd. PMID:25419228

  2. Nanoengineered multimodal contrast agent for medical image guidance

    NASA Astrophysics Data System (ADS)

    Perkins, Gregory J.; Zheng, Jinzi; Brock, Kristy; Allen, Christine; Jaffray, David A.

    2005-04-01

    Multimodality imaging has gained momentum in radiation therapy planning and image-guided treatment delivery. Specifically, computed tomography (CT) and magnetic resonance (MR) imaging are two complementary imaging modalities often utilized in radiation therapy for visualization of anatomical structures for tumour delineation and accurate registration of image data sets for volumetric dose calculation. The development of a multimodal contrast agent for CT and MR with prolonged in vivo residence time would provide long-lasting spatial and temporal correspondence of the anatomical features of interest, and therefore facilitate multimodal image registration, treatment planning and delivery. The multimodal contrast agent investigated consists of nano-sized stealth liposomes encapsulating conventional iodine and gadolinium-based contrast agents. The average loading achieved was 33.5 +/- 7.1 mg/mL of iodine for iohexol and 9.8 +/- 2.0 mg/mL of gadolinium for gadoteridol. The average liposome diameter was 46.2 +/- 13.5 nm. The system was found to be stable in physiological buffer over a 15-day period, releasing 11.9 +/- 1.1% and 11.2 +/- 0.9% of the total amounts of iohexol and gadoteridol loaded, respectively. 200 minutes following in vivo administration, the contrast agent maintained a relative contrast enhancement of 81.4 +/- 13.05 differential Hounsfield units (ΔHU) in CT (40% decrease from the peak signal value achieved 3 minutes post-injection) and 731.9 +/- 144.2 differential signal intensity (ΔSI) in MR (46% decrease from the peak signal value achieved 3 minutes post-injection) in the blood (aorta), a relative contrast enhancement of 38.0 +/- 5.1 ΔHU (42% decrease from the peak signal value achieved 3 minutes post-injection) and 178.6 +/- 41.4 ΔSI (62% decrease from the peak signal value achieved 3 minutes post-injection) in the liver (parenchyma), a relative contrast enhancement of 9.1 +/- 1.7 ΔHU (94% decrease from the peak signal value achieved 3 minutes

  3. Is nanotechnology the key to unravel and engineer biological processes?

    PubMed

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  4. Impact of nanotechnology on drug delivery.

    PubMed

    Farokhzad, Omid C; Langer, Robert

    2009-01-27

    Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.

  5. Novel agents for sperm purification, sorting, and imaging.

    PubMed

    Feugang, Jean M

    2017-09-01

    The stringent selection of viable spermatozoa ensures the transmission of high-quality genetic material to the egg during fertilization. Sperm heterogeneity within or between ejaculates and between males obliges varied post-collection handling of semen to assure satisfactory fertility rates. The current techniques used to assess sperm generally detect non-viable and non-fertilizing gametes in the ejaculate, but do not permit the investigation of semen for improved fertility outcomes. Advances in technology, however, have spurred the search for new approaches to enrich semen with high-quality spermatozoa and to track intra-uterine sperm migration. This review highlights the current and future methodologies used for sperm labeling, selection, tracking, and imaging, with specific emphasis on the recent influence of nanotechnology. © 2017 Wiley Periodicals, Inc.

  6. Status and future directions in the management of pancreatic cancer: potential impact of nanotechnology.

    PubMed

    Sielaff, Catherine M; Mousa, Shaker A

    2018-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at a late stage, has limited treatments, and patients have poor survival rates. It currently ranks as the seventh leading cause of cancer deaths globally and has increasing rates of diagnosis. Improved PDAC treatment requires the development of innovative, effective, and economical therapeutic drugs. The late stage diagnosis limits options for surgical resection, and traditional PDAC chemotherapeutics correlate with increased organ and hematologic toxicity. In addition, PDAC tumor tissue is dense and highly resistant to many traditional chemotherapeutic applications, making the disease difficult to treat and impeding options for palliative care. New developments in nanotechnology may offer innovative options for targeted PDAC therapeutic drug delivery. Nanotechnology can be implemented using multimodality methods that offer increased opportunities for earlier diagnosis, precision enhanced imaging, targeted long-term tumor surveillance, and controlled drug delivery, as well as improved palliative care and patient comfort. Nanoscale delivery methods have demonstrated the capacity to infiltrate the dense, fibrous tumor tissue associated with PDAC, increasing delivery and effectiveness of chemotherapeutic agents and reducing toxicity through the loading of multiple drug therapies on a single nano delivery vehicle. This review presents an overview of nanoscale drug delivery systems and multimodality carriers at the forefront of new PDAC treatments.

  7. [Nanotechnology future of medicine].

    PubMed

    Terlega, Katarzyna; Latocha, Małgorzata

    2012-10-01

    Nanotechnology enables to produce products with new, exactly specified, unique properties. Those products are finding application in various branches of electronic, chemical, food and textile industry as well as in medicine, pharmacy, agriculture, architectural engineering, aviation and in defense. In this paper structures used in nanomedicine were characterized. Possibilities and first effort of application of nanotechnology in diagnostics and therapy were also described. Nanotechnology provides tools which allow to identifying changes and taking repair operations on cellular and molecular level and applying therapy oriented for specific structures in cell. Great hope are being associated with entering nanotechnology into the regenerative medicine. It requires astute recognition bases of tissue regeneration biology--initiating signals as well as the intricate control system of the progress of this process. However application of nanotechnology in tissue engineering allows to avoiding problems associated with loss properties of implants what is frequent cause of performing another surgical procedure at present.

  8. DNA nanomaterials for preclinical imaging and drug delivery.

    PubMed

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nanotechnology: A Policy Primer

    DTIC Science & Technology

    2010-06-02

    States of 24 million barrels of oil.3 • Universal access to clean water. Nanotechnology water desalination and filtration systems may offer...CRS Report for Congress Prepared for Members and Committees of Congress Nanotechnology : A Policy Primer John F. Sargent Jr. Specialist...00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Nanotechnology : A Policy Primer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Nanotechnology: A Policy Primer

    DTIC Science & Technology

    2008-05-20

    of oil.3 ! Universal access to clean water. Nanotechnology water desalination and filtration systems may offer affordable, scalable, and portable...Order Code RL34511 Nanotechnology : A Policy Primer May 20, 2008 John F. Sargent Specialist in Science and Technology Policy Resources, Science, and...REPORT DATE 20 MAY 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Nanotechnology : A Policy Primer 5a

  11. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.

    PubMed

    Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander

    2017-08-07

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.

  12. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications

    PubMed Central

    Longo, Dario Livio; Aime, Silvio

    2017-01-01

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106

  13. Nanotechnologies in Latvia: Commercialisation Aspect

    NASA Astrophysics Data System (ADS)

    Geipele, I.; Staube, T.; Ciemleja, G.; Ekmanis, J.; Zeltins, N.

    2014-12-01

    The authors consider the possibilities to apply the nanotechnology products of manufacturing industries in Latvia for further commercialisation. The purpose of the research is to find out the preliminary criteria for the system of engineering economic indicators for multifunctional nanocoating technologies. The article provides new findings and calculations for the local nanotechnology market research characterising the development of nanotechnology industry. The authors outline a scope of issues as to low activities rankings in Latvia on application of locally produced nanotechnologies towards efficiency of the resource use for nanocoating technologies. For the first time in Latvia, the authors make the case study research and summarise the latest performance indicators of the Latvian companies operating in the nanotechnology industry.

  14. Nanotechnology-Based Cosmeceuticals

    PubMed Central

    Lohani, Alka; Verma, Anurag; Joshi, Himanshi; Yadav, Niti; Karki, Neha

    2014-01-01

    Cosmeceuticals are the fastest growing segment of the personal care industry, and a number of topical cosmeceutical treatments for conditions such as photoaging, hyperpigmentation, wrinkles, and hair damage have come into widespread use. In the cosmeceutical arena nanotechnology has played an important role. Using new techniques to manipulate matter at an atomic or molecular level, they have been at the root of numerous innovations, opening up new perspectives for the future of cosmeceutical industry. Nanotechnology-based cosmeceuticals offer the advantage of diversity in products, and increased bioavailability of active ingredients and increase the aesthetic appeal of cosmeceutical products with prolonged effects. However increased use of nanotechnology in cosmeceuticals has raised concern about the possible penetration of nanoparticles through the skin and potential hazards to the human health. This review outlines the different nanoparticles used in various classes of cosmeceuticals, nanotechnology-based cosmeceutical products present in the market, and the potential risk caused by nanoparticles on exposure and recent regulatory steps taken to overcome them. PMID:24963412

  15. Resource Letter N-1: Nanotechnology

    NASA Astrophysics Data System (ADS)

    Cela, Devin; Dresselhaus, Mildred; Helen Zeng, Tingying; Terrones, Mauricio; Souza Filho, Antonio G.; Ferreira, Odair P.

    2014-01-01

    This Resource Letter provides a guide to the literature on Nanotechnology. Journal articles, books, websites, and other documents are cited on the following topics: attributes of various types of nanomaterials, nanotechnology in the context of different academic fields, and the effects of nanotechnology on society.

  16. Nanoparticles for imaging and treatment of metastatic breast cancer

    PubMed Central

    Mu, Qingxin; Wang, Hui; Zhang, Miqin

    2017-01-01

    Introduction Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment. PMID:27401941

  17. A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques

    NASA Astrophysics Data System (ADS)

    Kulkarni, Padmakar V.; Vasdev, Neil; Hao, Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu, Bao Xi; Sun, Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.

    2011-06-01

    Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.

  18. Food nanotechnology – an overview

    PubMed Central

    Sekhon, Bhupinder S

    2010-01-01

    Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packaging materials may extend food life, improve food safety, alert consumers that food is contaminated or spoiled, repair tears in packaging, and even release preservatives to extend the life of the food in the package. Nanotechnology applications in the food industry can be utilized to detect bacteria in packaging, or produce stronger flavors and color quality, and safety by increasing the barrier properties. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed, but uncertainty and health concerns are also emerging. EU/WE/global legislation for the regulation of nanotechnology in food are meager. Moreover, current legislation appears unsuitable to nanotechnology specificity. PMID:24198465

  19. Current situation and industrialization of Taiwan nanotechnology

    NASA Astrophysics Data System (ADS)

    Su, Hsin-Ning; Lee, Pei-Chun; Tsai, Min-Hua; Chien, Kuo-Ming

    2007-12-01

    Nanotechnology is projected to be a very promising field, and the impact of nanotechnology on society is increasingly significant as the research funding and manufactured goods increase exponentially. A clearer picture of Taiwan's current and future nanotechnology industry is an essential component for future planning. Therefore, this investigation studies the progress of industrializing nanotechnology in Taiwan by surveying 150 companies. Along with understanding Taiwan's current nanotechnology industrialization, this paper also suggests ways to promote Taiwan's nanotechnology. The survey results are summarized and serve as the basis for planning a nanotechnology industrialization strategy.

  20. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  1. The effect of nanotechnology on education

    NASA Astrophysics Data System (ADS)

    Viriyavejakul, Chantana

    2008-04-01

    The research objective was to study 1) the situation and readiness of the Thai education for the integration of nanotechnology and 2) to propose the plans, the strategies and guidelines for educational reform to adapt nanotechnology to the system. The data collection was done by 4 methods: 1) documentary study, 2) observation, 3) informal interviews, and 4) group discussion. The findings revealed that: 1. William Wresch's Theory (1997) was used in this research to study of the situation and readiness of the Thai education for the integration of nanotechnology. 1) Getting connected to nanotechnology by search engine websites, libraries, magazines, books, and discussions with experts. 2) Curriculum integration: nanotechnology should be integrated in many branches of engineering, such as industrial, computer, civil, chemical, electrical, mechanical, etc. 3) Resources for educators: nanotechnology knowledge should be spread in academic circles by publications and the Internet websites. 4) Training and professional resources for teachers: Teachers should be trained by experts in nanotechnology and researchers from the National Nanotechnology Center. This will help trainees get correct knowledge, comprehension, and awareness in order to apply to their professions and businesses in the future. 2. As for the plans, the strategies, and guidelines for educational reform to adapt nanotechnology to the present system, I analyzed the world nanotechnology situation that might have an effect on Thai society. The study is based on the National Plan to Develop Nanotechnology. The goal of this plan is to develop nanotechnology to be the national strategy within 10 years (2004-2013) and have it integrated into the Thai system. There are 4 parts in this plan: 1) nanomaterials, 2) nanoelectronics, 3) nanobiotechnology, and 4) human resources development. Data for human resource development should be worked with the present technology and use the country's resources to produce many

  2. Progress in nanotechnology for healthcare.

    PubMed

    Raffa, V; Vittorio, O; Riggio, C; Cuschieri, A

    2010-06-01

    This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle

  3. EDITORIAL: Ensuring sustainability with green nanotechnology Ensuring sustainability with green nanotechnology

    NASA Astrophysics Data System (ADS)

    Wong, Stanislaus; Karn, Barbara

    2012-07-01

    Nanotechnology offers immense promise for developing new technologies that are more sustainable than current technologies. All major industrial sectors have felt nanotechnology's impact, mainly from the incorporation of nanomaterials into their products. For example, nanotechnology has improved the design and performance of products in areas as diverse as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy, as well as many others. Moreover, the revenues from nanotechnology-enabled products are not trivial. For instance, Lux Research maintains that commercial sales in both Europe and the USA will attain revenues of over 1 trillion from nano-enabled products by 2015. The manufacturing of the nanomaterials for these products uses many processes equivalent to chemical manufacturing processes. As a result, manufacturing nanomaterials can produce either harmful pollutants or adverse environmental impacts similar to those from chemical manufacturing. Unlike the chemical industry, however, those same processes are not ingrained in the manufacturing of nanomaterials, and the opportunity exists at the initial design stage to purposely account for and mitigate out potentially harmful environmental impacts. While prevention has not been a priority in current industries, it can become a main concern for the new and future industries that manufacture nanomaterials on a bulk commercial scale. This is where green nanotechnology comes in. Green nanotechnology involves deliberate efforts aimed at developing meaningful and reasonable protocols for generating products and their associated production processes in a benign fashion. The goal is a conscious minimization of risks associated with the products of nanoscience. The green products of nanotechnology are those that are used in either direct or indirect environmental applications. Direct environmental applications provide benefits such as monitoring using nano

  4. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  5. Contextualising Nanotechnology in Chemistry Education

    ERIC Educational Resources Information Center

    O'Connor, Christine; Hayden, Hugh

    2008-01-01

    In recent years nanotechnology has become part of the content of many undergraduate chemistry and physics degree courses. This paper deals with the role of contextualisation of nanotechnology in the delivery of the content, as nanotechnology is only now being slowly integrated into many chemistry degree courses in Ireland and elsewhere. An…

  6. Nanotechnology: From Feynman to Funding

    ERIC Educational Resources Information Center

    Drexler, K. Eric

    2004-01-01

    The revolutionary Feynman vision of a powerful and general nanotechnology, based on nanomachines that build with atom-by-atom control, promises great opportunities and, if abused, great dangers. This vision made nanotechnology a buzzword and launched the global nanotechnology race. Along the way, however, the meaning of the word has shifted. A…

  7. Developing nanotechnology in Latin America

    PubMed Central

    Shapira, Philip

    2008-01-01

    This article investigates the development of nanotechnology in Latin America with a particular focus on Argentina, Brazil, Chile, and Uruguay. Based on data for nanotechnology research publications and patents and suggesting a framework for analyzing the development of R&D networks, we identify three potential strategies of nanotechnology research collaboration. Then, we seek to identify the balance of emphasis upon each of the three strategies by mapping the current research profile of those four countries. In general, we find that they are implementing policies and programs to develop nanotechnologies but differ in their collaboration strategies, institutional involvement, and level of development. On the other hand, we find that they coincide in having a modest industry participation in research and a low level of commercialization of nanotechnologies. PMID:21170134

  8. EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors

    NASA Astrophysics Data System (ADS)

    Brugger, Jürgen

    2009-10-01

    radically different from each other, these techniques represent a formidable toolset for structuring materials at the nanoscale in a multitude of fashions. The availability of these new nanopatterning techniques are increasingly implemented in the manufacturing of advanced sensor systems, and we can expect in the next decade an increased emergence of micro- and nanosensor systems that implement novel nano-functionalities thanks to cost-effective fabrication. Moreover, some of these techniques are desktop tools that can be used on your kitchen table at home. Thus, over the past 20 years we have witnessed a democratization of nanotechnology. More and more researchers, engineers, and even schoolchildren, can benefit from and use these new methods and devise novel applications for nanosystems. This is certainly beneficial to expediting a further dramatic increase in knowledge and the development of actual devices and applications that put gains in our understanding of nanosystems into practice. Nanotechnology is a relatively young discipline compared to classical engineering, and it is inherently interdisciplinary. It seems that in many fields we are actually just beginning to venture into these new dimensions. Challenges remain, however, in all aspects of nanotechnology. We need to improve imaging performance by enabling faster (video rate) coverage of larger surfaces, eventually down to the molecular scale. We also need to perfect nanopatterning methods to improve resolution, overlay and throughput capabilities. Future nanomanufacturing will most likely rely on combinations of top-down engineering and bottom-up self-assembly. Last but not least, we need to find ways for the mutual integration of multiple length-scale devices (nano/micro/macro) so that we can program a 'nano-functionality' into a microsystem exactly where it is needed. Such improvements will ultimately lead to improved sensors and contribute not only to improvements in our quality of life but also to building

  9. Nanotechnology: Fundamental Principles and Applications

    NASA Astrophysics Data System (ADS)

    Ranjit, Koodali T.; Klabunde, Kenneth J.

    Nanotechnology research is based primarily on molecular manufacturing. Although several definitions have been widely used in the past to describe the field of nanotechnology, it is worthwhile to point out that the National Nanotechnology Initiative (NNI), a federal research and development scheme approved by the congress in 2001 defines nanotechnology only if the following three aspects are involved: (1) research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, (2) creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size, and (3) ability to control or manipulate on the atomic scale. Nanotechnology in essence is the technology based on the manipulation of individual atoms and molecules to build complex structures that have atomic specifications.

  10. Refining search terms for nanotechnology

    NASA Astrophysics Data System (ADS)

    Porter, Alan L.; Youtie, Jan; Shapira, Philip; Schoeneck, David J.

    2008-05-01

    The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology's research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as "nano") given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed.

  11. Imaging agent and method of use

    DOEpatents

    Wieland, Donald M.; Brown, Lawrence E.; Beierwaltes, William H.; Wu, Jiann-long

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla.

  12. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    PubMed

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  13. [Nanotechnology, nanomedicine and nanopharmacology].

    PubMed

    Fernández, Pedro Lorenzo

    2007-01-01

    Based on Nanotechnology methods, Nanomedicine and Nanotecnology will obtain significant advances in areas such as Diagnostic, Regenerative Medicine and pharmacological Therapeutics. With nanotechnology-based drug delivery systems,important improvement on pharmacokinetics of drugs will take place, due to increased solubility, protection against decrease in drug effects due to excessive metabolism and subsequent increase of bioavailability. Improvement on pharmacodynamic parameters will occur also due to increased drug concentration in target tissues. Also the use of Nanotechnology in the modern pharmacology will serve for a more accurate control of doses, which will decrease significantly drug toxicity.

  14. Handbook of Electrochemical Nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Nalwa, H. S.

    2009-02-12

    This 2-volume handbook provides an overview of recent advances in the field of electrochemical nanotechnology. It will be of great interst to graduate students, scientists, and engineering professionals whose research is at the interface of electrochemistry and nanotechnology.

  15. Nanotechnology for the delivery of phytochemicals in cancer therapy.

    PubMed

    Xie, Jing; Yang, Zhaogang; Zhou, Chenguang; Zhu, Jing; Lee, Robert J; Teng, Lesheng

    2016-01-01

    The aim of this review is to summarize advances that have been made in the delivery of phytochemicals for cancer therapy by the use of nanotechnology. Over recent decades, much research effort has been invested in developing phytochemicals as cancer therapeutic agents. However, several impediments to their wide spread use as drugs still have to be overcome. Among these are low solubility, poor penetration into cells, high hepatic disposition, and narrow therapeutic index. Rapid clearance or uptake by normal tissues and wide tissue distribution result in low drug accumulation in the target tumor sites can result in undesired drug exposure in normal tissues. Association with or encapsulation in nanoscale drug carriers is a potential strategy to address these problems. This review discussed lessons learned on the use of nanotechnology for delivery of phytochemicals that been tested in clinical trials or are moving towards the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Examining multi-component DNA-templated nanostructures as imaging agents

    NASA Astrophysics Data System (ADS)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation

  17. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging

    PubMed Central

    Yan, Yuling; Sun, Xilin; Shen, Baozhong

    2017-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647

  18. Imaging agent and method of use

    DOEpatents

    Wieland, D.M.; Brown, L.E.; Beierwaltes, W.H.; Wu, J.L.

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla. No Drawings

  19. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.

    PubMed

    Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo

    2009-07-21

    Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a

  20. EDITORIAL: Bioengineering nanotechnology: towards the clinic Bioengineering nanotechnology: towards the clinic

    NASA Astrophysics Data System (ADS)

    Zhao, Weian; Karp, Jeffrey M.; Ferrari, Mauro; Serda, Rita

    2011-12-01

    The application of nanotechnology in the field of life sciences offers the potential to study biological systems with unprecedented resolution at the nanoscale, and to solve medical problems that affect millions of patients across the globe. Significant progress has been achieved over the past 2-3 decades leading to, for example, the approval of nanoformulations for delivering drugs to tumors and other diseased sites [1]. To date, nearly 30 nanotechnology-based products have been approved for clinical use, focused mainly on liposomal formulations and stealth polymer-drug conjugates. In addition to therapeutic nanoparticles for drug delivery, important topics include: (i) biomimetic nano- or micro-structured materials for tissue engineering and regenerative medical applications, (ii) nanobiosensors, particularly those lab-on-chip-based systems for disease diagnosis at the point of care, (iii) nano-probes for in vivo sensing/imaging, cell tracking and monitoring disease pathogenesis or therapy and (iv) nanotechnology-based tools that accelerate scientific discovery and elucidation of basic biology [2, 3]. Some of the exciting emerging topics involve the development of multifunctional nanoparticles that can fulfil two or more of the above-mentioned functions (e.g. theranostics that include diagnostics and therapy) [4] and the use of nano-sized materials to monitor and manipulate the fate of transplanted (stem) cells and the microenvironments where they reside in vivo [5, 6]. For example, we recently reported that nano-sized aptamer sensors that are engineered on the surface of stem cells could be delivered by cells to target niches in the body where they can potentially report the cellular functions and cell-cell communication in real-time [7]. Moreover, drug-carrying nano- or micro-particles can be conjugated with therapeutic cells prior to transplantation to enable the control of the fate and therapeutic function of cells in a sustained manner in vivo [8, 9]. This

  1. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    PubMed

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics.

    PubMed

    Dobrovolskaia, Marina A; McNeil, Scott E

    2015-07-01

    Clinical translation of nucleic acid-based therapeutics (NATs) is hampered by assorted challenges in immunotoxicity, hematotoxicity, pharmacokinetics, toxicology and formulation. Nanotechnology-based platforms are being considered to help address some of these challenges due to the nanoparticles' ability to change drug biodistribution, stability, circulation half-life, route of administration and dosage. Addressing toxicology and pharmacology concerns by various means including NATs reformulation using nanotechnology-based carriers has been reviewed before. However, little attention was given to the immunological and hematological issues associated with nanotechnology reformulation. This review focuses on application of nanotechnology carriers for delivery of various types of NATs, and how reformulation using nanoparticles affects immunological and hematological toxicities of this promising class of therapeutic agents. NATs share several immunological and hematological toxicities with common nanotechnology carriers. In order to avoid synergy or exaggeration of undesirable immunological and hematological effects of NATs by a nanocarrier, it is critical to consider the immunological compatibility of the nanotechnology platform and its components. Since receptors sensing nucleic acids are located essentially in all cellular compartments, a strategy for developing a nanoformulation with reduced immunotoxicity should first focus on precise delivery to the target site/cells and then on optimizing intracellular distribution.

  3. Nanotechnology Cancer Therapy and Treatment

    Cancer.gov

    Nanotechnology offers the means to target therapies directly and selectively to cancerous cells and neoplasms. With these tools, clinicians can safely and effectively deliver chemotherapy, radiotherapy, and the next generation of immuno- and gene therapies to the tumor. Futhermore, surgical resection of tumors can be guided and enhanced by way of nanotechnology tools. Find out how nanotechnology will offer the next generation of our therapeutic arsenal to the patient.

  4. The sounds of nanotechnology

    NASA Astrophysics Data System (ADS)

    Campbell, Norah; Deane, Cormac; Murphy, Padraig

    2017-07-01

    Public perceptions of nanotechnology are shaped by sound in surprising ways. Our analysis of the audiovisual techniques employed by nanotechnology stakeholders shows that well-chosen sounds can help to win public trust, create value and convey the weird reality of objects on the nanoscale.

  5. Nanotechnology in Dermatology*

    PubMed Central

    Antonio, João Roberto; Antônio, Carlos Roberto; Cardeal, Izabela Lídia Soares; Ballavenuto, Julia Maria Avelino; Oliveira, João Rodrigo

    2014-01-01

    The scientific community and general public have been exposed to a series of achievements attributed to a new area of knowledge: Nanotechnology. Both abroad and in Brazil, funding agencies have launched programs aimed at encouraging this type of research. Indeed, for many who come into contact with this subject it will be clear the key role that chemical knowledge will play in the evolution of this subject. And even more, will see that it is a science in which the basic structure is formed by distilling different areas of inter-and multidisciplinary knowledge along the lines of new paradigms. In this article, we attempt to clarify the foundations of nanotechnology, and demonstrate their contribution to new advances in dermatology as well as medicine in general. Nanotechnology is clearly the future. PMID:24626657

  6. Nanotechnology: Development and challenges in Indonesia

    NASA Astrophysics Data System (ADS)

    Joni, I. Made; Muthukannan, Vanitha; Hermawan, Wawan; Panatarani, Camellia

    2018-02-01

    Nanotechnology today is regarded as a revolutionary technology that can help to address the key needs related to energy, environment, health and agriculture in developing countries. This paper is a short review on the development and challenges of nanotechnology in Indonesia. Nanotechnology offers great potential benefits, there is emerging concerns arising from its novel physicochemical properties. The main applications of nanotechnology in the different sectors which is vital and its economic impact in Indonesia is also discussed. The achievment and development of nanotechnology including synthesis and dispersion of nanoparticles (NPs) and its applications in various fields is briefly addressed in Nanotehcnology and Graphene Research Center, Universitas Padjadjaran (Unpad). Despite significant progress in developmental goals, many challenges in the development of nanotechnology proccesing need to be resolved such as support infrastructure and evolution of new form of collaborative arrangements between various sectors and policies which is emerged as an important factor enabling development.

  7. Advanced Environment Friendly Nanotechnologies

    NASA Astrophysics Data System (ADS)

    Figovsky, O.; Beilin, D.; Blank, N.

    The economic, security, military and environmental implications of molecular manufacturing are extreme. Unfortunately, conflicting definitions of nanotechnology and blurry distinctions between significantly different fields have complicated the effort to understand those differences and to develop sensible, effective policy for each. The risks of today's nanoscale technologies cannot be treated the same as the risks of longer-term molecular manufacturing. It is a mistake to put them together in one basket for policy consideration — each is important to address, but they offer different problems and will require far different solutions. As used today, the term nanotechnology usually refers to a broad collection of mostly disconnected fields. Essentially, anything sufficiently small and interesting can be called nanotechnology. Much of it is harmless. For the rest, much of the harm is of familiar and limited quality. Molecular manufacturing, by contrast, will bring unfamiliar risks and new classes of problems. The advanced environment friendly nanotechnologies elaborated by Israel Company Polymate Ltd. — International Research Center are illustrated.

  8. EDITORIAL: Nanotechnological selection Nanotechnological selection

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-01-01

    At the nanoscale measures can move from a mass-scale analogue calibration to counters of discrete units. The shift redefines the possible levels of control that can be achieved in a system if adequate selectivity can be imposed. As an example as ionic substances pass through nanoscale pores, the quantity of ions is low enough that the pore can contain either negative or positive ions. Yet precise control over this selectivity still raises difficulties. In this issue researchers address the challenge of how to regulate the ionic selectivity of negative and positive charges with the use of an external charge. The approach may be useful for controlling the behaviour, properties and chemical composition of liquids and has possible technical applications for nanofluidic field effect transistors [1]. Selectivity is a critical advantage in the administration of drugs. Nanoparticles functionalized with targeting moieties can allow delivery of anti-cancer drugs to tumour cells, whilst avoiding healthy cells and hence reducing some of the debilitating side effects of cancer treatments [2]. Researchers in Belarus and the US developed a new theranostic approach—combining therapy and diagnosis—to support the evident benefits of cellular selectivity that can be achieved when nanoparticles are applied in medicine [3]. Their process uses nanobubbles of photothermal vapour, referred to as plasmonic nanobubbles, generated by plasmonic excitations in gold nanoparticles conjugated to diagnosis-specific antibodies. The intracellular plasmonic nanobubbles are controlled by laser fluence so that the response can be tuned in individual living cells. Lower fluence allows non-invasive high-sensitive imaging for diagnosis and higher fluence can disrupt the cellular membrane for treatments. The selective response of carbon nanotubes to different gases has leant them to be used within various different types of sensors, as summarized in a review by researchers at the University of

  9. An intelligent approach to nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-11-01

    intelligence and machine learning approaches already offer a potent suite of tools to nanotechnology researchers with very practical benefits. Even as far back as 1995 David Whitehouse—Editor-in-Chief of Nanotechnology when the journal was launched almost 25 years ago—and W L Wang reported on the relevance of neural networks in scanning probe imaging [10]. Couple the progress in applying artificial intelligence with the advances in mimicking biological neurons with nanostructures that has been highlighted in our recent synaptic electronics special issue [11] and it seems we may be on the cusp of a new phase in the relationship between man and machine. References [1] Sacha G M and Varona P 2013 Artificial intelligence in nanotechnology Nanotechnology 24 452002 [2] Park K H, Im S H and Park O O 2011 The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials Nanotechnology 22 045602 [3] Pradhan N, Pal A and Pal T 2002 Silver nanoparticle catalyzed reduction of aromatic nitro compounds Colloids Surf. A 196 247-57 [4] Ma K, Cui Q, Liu G, Wu F, Xu S and Shao Y 2011 DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition Nanotechnology 22 305502 [5] Doering W E and Nie S 2002 Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement J. Phys. Chem. B 106 311-7 [6] Wang J X, Sun X W, Yang Y, Huang H, Lee Y C, Tan O K and Vayssieres L 2006 Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications Nanotechnology 17 4995-8 [7] Kong X Y, Ding Y and Wang Z L 2004 Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes J. Phys. Chem. B 108 570-4 [8] Zhang H, Yang D, Ma X, Ji Y, Xu J and Que D 2004 Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process Nanotechnology 15 622-6 [9] Romano G, Mantini G, Carlo A D, D'Amico A, Falconi C and Wang Z L 2011 Piezoelectric

  10. Ethics in Nanotechnology: Starting from Scratch?

    ERIC Educational Resources Information Center

    Ebbesen, Mette; Andersen, Svend; Besenbacher, Flemming

    2006-01-01

    Research in nanotechnology has advanced rapidly in recent years. Several researchers, however, warn that there is a paucity of research on the ethical, legal, and social implications of nanotechnology, and they caution that ethical reflections on nanotechnology lag behind this fast developing science. In this article, the authors question this…

  11. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  12. Magnetic resonance imaging with hyperpolarized agents: methods and applications

    NASA Astrophysics Data System (ADS)

    Adamson, Erin B.; Ludwig, Kai D.; Mummy, David G.; Fain, Sean B.

    2017-07-01

    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac

  13. Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications.

    PubMed

    Zhang, Yajie; Zhang, Tingting; Liu, Min; Kuang, Ye; Zu, Guangyue; Zhang, Kunchi; Cao, Yi; Pei, Renjun

    2018-06-01

    Magnetic resonance imaging is a powerful diagnostic technology with high spatial resolution and non-invasion. The contrast agents have significant effect on the resolution of the MR imaging. However, the commercial contrast agents (CAs) usually consist of individual Gd3+ chelated with a low molecular weight acyclic or cyclic ligand, and these small-molecule CAs are usually subjected to nonspecificity, thus leading to rapid renal clearance and modest contrast enhancement for tumor imaging. In recent years, the nanostructured materials conjugated with aptamers were widely used and opened a new door in biomedical imaging due to excellent specificity, non-immunogenicity, easily synthesis and chemical modification of aptamers. This review summarizes all kinds of aptamertargeted MRI CAs and their applications.

  14. Nanotechnology Risk Communication Past and Prologue

    PubMed Central

    Bostrom, Ann; Löfstedt, Ragnar E.

    2013-01-01

    Nanotechnologies operate at atomic, molecular, and macromolecular scales, at scales where matter behaves differently than at larger scales and quantum effects can dominate. Nanotechnologies have captured the imagination of science fiction writers as science, engineering, and industry have leapt to the challenge of harnessing them. Applications are proliferating. In contrast, despite recent progress the regulatory landscape is not yet coherent, and public awareness of nanotechnology remains low. This has led risk researchers and critics of current nanotechnology risk communication efforts to call for proactive strategies that do more than address facts, that include and go beyond the public participation stipulated by some government acts. A redoubling of nanotechnology risk communication efforts could enable consumer choice and informed public discourse about regulation and public investments in science and safety. PMID:21039707

  15. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    PubMed

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Gold nanoparticles as novel agents for cancer therapy

    PubMed Central

    Jain, S; Hirst, D G; O'Sullivan, J M

    2012-01-01

    Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed. PMID:22010024

  17. Heterobivalent Imaging Agents Targeting Prostate Cancer Training

    DTIC Science & Technology

    2011-06-01

    has been implicated as a salient player in the pathobiology of cancers of epithelial origin, e.g. prostate, cervix , ovarian, colon and...ANSI Std. Z39.18 W81XWH-10-1-0481 Heterobivalent Imaging Agents Targeting Prostate Cancer Training Aaron LeBeau University of California, San...Francisco San Francisco, CA 94103 Annual Summary 31 MAY 2010 - 1JUN 201101-06-2011 To determine the utility of imaging MT-SP1 in cancer , xenografts of

  18. Development of Taiwan's strategies for regulating nanotechnology-based pharmaceuticals harmonized with international considerations.

    PubMed

    Guo, Jiun-Wen; Lee, Yu-Hsuan; Huang, Hsiau-Wen; Tzou, Mei-Chyun; Wang, Ying-Jan; Tsai, Jui-Chen

    2014-01-01

    Nanotechnology offers potential in pharmaceuticals and biomedical developments for improving drug delivery systems, medical imaging, diagnosis, cancer therapy, and regenerative medicine. Although there is no international regulation or legislation specifically for nanomedicine, it is agreed worldwide that considerably more attention should be paid to the quality, safety, and efficacy of nanotechnology-based drugs. The US Food and Drug Administration and the European Medicines Agency have provided several draft regulatory guidance and reflection papers to assist the development of nanomedicines. To cope with the impact of nanotechnology and to foster its pharmaceutical applications and development in Taiwan, this article reviews the trends of regulating nanotechnology-based pharmaceuticals in the international community and proposes strategies for Taiwan's regulation harmonized with international considerations. The draft regulatory measures include a chemistry, manufacturing, and controls (CMC) review checklist and guidance for CMC review of liposomal products. These have been submitted for discussion among an expert committee, with membership comprised of multidisciplinary academia, research institutions, the pharmaceutical industry, and regulators, and are currently approaching final consensus. Once a consensus is reached, these mechanisms will be recommended to the Taiwan Food and Drug Administration for jurisdiction and may be initiated as the starting point for regulating nanotechnology-based pharmaceuticals in Taiwan.

  19. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.

  20. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  1. Russia's Policy and Standing in Nanotechnology

    ERIC Educational Resources Information Center

    Terekhov, Alexander I.

    2013-01-01

    In this article, I consider the historical stages of development of nanotechnology in Russia as well as the political framework for this. It is shown that early federal nanotechnology programs in Russia date back to the 1990s and that since the mid-2000s, nanotechnology has attracted the increasing attention of government. I characterize the…

  2. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis.

    PubMed

    Kaittanis, Charalambos; Santra, Santimukul; Perez, J Manuel

    2010-03-18

    Infectious diseases are still a major healthcare problem. From food intoxication and contaminated water, to hospital-acquired diseases and pandemics, infectious agents cause disease throughout the world. Despite advancements in pathogens' identification, some of the gold-standard diagnostic methods have limitations, including laborious sample preparation, bulky instrumentation and slow data readout. In addition, new field-deployable diagnostic modalities are urgently needed in first responder and point-of-care applications. Apart from compact, these sensors must be sensitive, specific, robust and fast, in order to facilitate detection of the pathogen even in remote rural areas. Considering these characteristics, researchers have utilized innovative approaches by employing the unique properties of nanomaterials in order to achieve detection of infectious agents, even in complex media like blood. From gold nanoparticles and their plasmonic shifts to iron oxide nanoparticles and changes in magnetic properties, detection of pathogens, toxins, antigens and nucleic acids has been achieved with impressive detection thresholds. Additionally, as bacteria become resistant to antibiotics, nanotechnology has achieved the rapid determination of bacterial drug susceptibility and resistance using novel methods, such as amperometry and magnetic relaxation. Overall, these promising results hint to the adoption of nanotechnology-based diagnostics for the diagnosis of infectious diseases in diverse settings throughout the globe, preventing epidemics and safeguarding human and economic wellness. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Animal and non-animal experiments in nanotechnology - the results of a critical literature survey.

    PubMed

    Sauer, Ursula G

    2009-01-01

    A literature survey funded by the Foundation Animalfree Research was performed to obtain an overview on animal experiments in nanotechnology. Scientific articles from Germany, France, the United Kingdom, Italy, the Netherlands and Switzerland published between 2004 and 2007 were collected. A total of 164 articles was retrieved covering in vivo nanotechnological research. The majority of animal experiments were conducted in "nanomedicine", i.e. nanotechnology in the health care area, to study targeted drug, vaccine or gene delivery. Further areas of research relate to nanotechnology-based imaging technologies, the toxicity of nanomaterials, tissue engineering for regenerative treatments, and magnetic tumour thermotherapy. Many experiments were classified as moderately and even severely distressful to the animals. Due to the significance of the scientific topics pursued, the possible scientific benefit of the research depicted in the articles is also assigned to be moderate to high. Nevertheless, it has to be asked whether such animal experiments are truly the only means to answer the scientific questions addressed in nanotechnology. An overview on non-animal test methods used in nanotechnological research revealed a broad spectrum of methodologies applied in a broad spectrum of scientific areas, including those for which animal experiments are being performed. Explicit incentives to avoid animal experiments in nanotechnology currently can only be found in the area of nanotoxicology, but not in the area of nanomedicine. From the point of view of animal welfare, not least because of the new technologies that arise due to nanotechnology, it is time for a paradigm change both in fundamental and applied biomedical research to found research strategies on non-animal test methods.

  4. Nanotechnology and Social Context

    ERIC Educational Resources Information Center

    Sandler, Ronald

    2007-01-01

    The central claims defended in this article are the following: (a) The social and ethical challenges of nanotechnology can be fully identified only if both the characteristic features of nanotechnologies and the social contexts into which they are emerging are considered. (b) When this is done, a host of significant social context issues, or…

  5. Food neophobia, nanotechnology and satisfaction with life.

    PubMed

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José; Mora, Marcos; Lobos, Germán; Miranda, Horacio; Grunert, Klaus G

    2013-10-01

    This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Food-related Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life and with food-related life and also had the highest acceptance of packaging and foods produced with nanotechnology. The results suggest that the degree of food neophobia is associated with satisfaction with life and with food-related life, as well as with the acceptance of products with nanotechnological applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment

    DTIC Science & Technology

    2007-12-01

    used in detection, diagnosis, and treatment of cancer . When loaded with chemotherapeutic agents, nanoparticle delivery to cancerous tissues...Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment PRINCIPAL INVESTIGATOR: Colleen Feltmate, M.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment 5b. GRANT NUMBER

  7. Nanotechnology applications in medicine and dentistry.

    PubMed

    Gupta, Jyoti

    2011-05-01

    Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications. © 2011 Blackwell Publishing Asia Pty Ltd.

  8. Nanopsychiatry--the potential role of nanotechnologies in the future of psychiatry: a systematic review.

    PubMed

    Fond, G; Macgregor, A; Miot, S

    2013-09-01

    Nanomedicine is defined as the area using nanotechnology's concepts for the benefit of human beings' health and well being. In this article, we aimed to provide an overview of areas where nanotechnology is applied and how they could be extended to care for psychiatric illnesses. The main applications of nanotechnology in psychiatry are (i) pharmacology. There are two main difficulties in neuropharmacology: drugs have to pass the blood-brain barrier and then to be internalized by targeted cells. Nanoparticles could increase drugs bioavailability and pharmacokinetics, especially improving safety and efficacy of psychotropic drugs. Liposomes, nanosomes, nanoparticle polymers, nanobubbles are some examples of this targeted drug delivery. Nanotechnologies could also add new pharmacological properties, like nanoshells and dendrimers (ii) living analysis. Nanotechnology provides technical assistance to in vivo imaging or metabolome analysis (iii) central nervous system modeling. Research teams have succeeded to modelize inorganic synapses and mimick synaptic behavior, a step essential for further creation of artificial neural systems. Some nanoparticle assemblies present the same small worlds and free-scale networks architecture as cortical neural networks. Nanotechnologies and quantum physics could be used to create models of artificial intelligence and mental illnesses. We are not about to see a concrete application of nanomedicine in daily psychiatric practice. Even if nanotechnologies are promising, their safety is still inconsistent and this must be kept in mind. However, it seems essential that psychiatrists do not forsake this area of research the perspectives of which could be decisive in the field of mental illness. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  9. Nanotechnology in Textiles.

    PubMed

    Yetisen, Ali K; Qu, Hang; Manbachi, Amir; Butt, Haider; Dokmeci, Mehmet R; Hinestroza, Juan P; Skorobogatiy, Maksim; Khademhosseini, Ali; Yun, Seok Hyun

    2016-03-22

    Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.

  10. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    PubMed Central

    Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia

    2015-01-01

    Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents. PMID:25834422

  11. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  12. Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology.

    PubMed

    Horton, Michael A; Khan, Abid

    2006-03-01

    Nanotechnology research is booming worldwide, and the general belief is that medical and biological applications will form the greatest sector of expansion over the next decade, driven by an attempt to bring radical solutions to areas of unmet medical need. What is true in the United States is also being fulfilled in Europe. This, though, is generally at a significantly lower investment level, even if for "large" capital infrastructure and interdisciplinary centers. Against this, the United Kingdom and its European partners are following the maxim "small is beautiful" and are attempting to identify and develop academic research and commercial businesses in areas that traditional nanotechnology developments involving engineering or physics find challenging. Thus in London-University College London (UCL) in a major joint project with Imperial College and linked to other UK and European centers of excellence-we are building upon our internationally competitive medical research (the two universities together form one of the largest centers of biomedical research outside the United States) to focus on and develop medical nanotechnology as a major sector of our research activity. A novel approach to commercialization has been the establishment with government and private equity funds of a "BioNanotechnology Centre" that will act as a portal for UK industry to access specialist skills to solve issues relating to developing nanotechnology-based medical applications, for example, for environmental screening, diagnostics, and therapy. This article reviews our academic and business strategy with examples from our current biomedical research portfolio.

  13. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents

    PubMed Central

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-01-01

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  14. Nanotechnology-based Cryopreservation of Cell-Scaffold Constructs: A New Breakthrough to Clinical Application.

    PubMed

    Chen, G; Lv, Y

    The developments of "off-the-shelf" cell-scaffold constructs received an increasing interest in tissue engineering and regenerative medicine. Although the direct cryopreservation of a single-cell suspension in the tube is a relative mature technology, the cryopreservation of cell-scaffold constructs remains a challenge. Nanotechnology shows tremendous potential for cryopreservation in regulating of freezing and thawing processes. For example, nanoparticles have been reported to modify the cryoprotective agent (CPA), adjust the process of cooling and warming cycles. In this review, we provide an overview of cryopreservation of cell-scaffold constructs firstly. The review further focuses on the effects of nanotechnology on cryopreservation of cell-scaffold constructs, including the nanostructure of scaffold, nanoparticles in cooling and warming process in cryopreservation. The perspectives on future challenges in this filed are also pointed out.

  15. Nanotechnology in paper electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Österbacka, Professor Ronald; Han, Jin-Woo, Dr

    2014-03-01

    connections in the nervous system, these synaptic transistors can mimic synaptic stimulation response and short-term synaptic plasticity. The idea of harnessing paper electronics for display applications seems a natural update on the familiar traditional uses of paper to host text and images. Jong-Man Kim and Bora Yoon at Hanyang University in Korea screen print a flexible paper-based display for representing the digits 0-9 [5]. The device exploits the electrochromothermic properties of five different polydiacetylenes to allow a range of activation temperatures and operational voltages for the display. A number of other applications also feature in the special issue, including two different supramolecular recognition architectures for DNA hybridization in sensing applications [6] and all-solid flexible micro-supercapacitors with excellent cycling stability [7]. The demonstrated potential in the alternative energy industry seems particularly fitting given the environmental recommendations of paper electronics. Despite the promising outlook demonstrated for fabricating on paper by screen or ink-jet printing, as Henrik A Andersson and colleagues point out, it may be some time before devices can be printed with the functionality of even the most inexpensive microcontroller or other integrated circuit [8]. In their report they consider different methods to mount and contact standard surface mount device components to ink-jet printed conductive tracks on paper substrates. 'If paper is used as a substrate for printed hybrid electronics, it opens the possibility of integrating low-cost electronic functions directly on packages, even possibly directly in the production line', they add. A blank sheet of paper can be considered useful for making notes, convenient for slipping in a purse or pocket and enormously inspiring for the infinity of ideas not yet written on it. As this special issue demonstrates [2-14] all three attributes are at least as valid when using paper for electronics

  16. Nanotechnology - Enabling Future Space Viability

    DTIC Science & Technology

    2009-03-18

    nanotechnology dates back to 1987 when K. Eric Drexler published Engines of Creation: The Coming Era of Nanotechnology; however, the concept itself...The Joint Operating Environment 2008, (Suffolk, VA: USFJCOM, 25 November 2008), 23. 14 Peter Eisler , “Commercial Satellites Alter Global Security

  17. Nanotechnology and its Application in Dentistry

    PubMed Central

    Abiodun-Solanke, IMF; Ajayi, DM; Arigbede, AO

    2014-01-01

    Nanotechnology influences almost every facet of everyday life from security to medicine. The concept of nanotechnology is that when one goes down to the bottom of things, one can discover unlimited possibilities and potential of the basic particle. In nanotechnology, analysis can be made to the level of manipulating atoms, molecules and chemical bonds between them. The growing interest in the dental applications of nanotechnology is leading to the emergence of a new field called nanodentistry. An electronic database search that included PubMed, MedLine, and Cochrane library was conducted. Key words used in the search are nanotechnology dentistry and applications. Language limitation was set as articles reviewed were only those written and published in English language. We did not search the gray literature. Initially, 52 articles were retrieved from the database, and articles considered were those published from 2008 to 2013. Eight articles that met the selection criteria were eventually selected and reviewed. PMID:25364585

  18. Development of Taiwan’s strategies for regulating nanotechnology-based pharmaceuticals harmonized with international considerations

    PubMed Central

    Guo, Jiun-Wen; Lee, Yu-Hsuan; Huang, Hsiau-Wen; Tzou, Mei-Chyun; Wang, Ying-Jan; Tsai, Jui-Chen

    2014-01-01

    Nanotechnology offers potential in pharmaceuticals and biomedical developments for improving drug delivery systems, medical imaging, diagnosis, cancer therapy, and regenerative medicine. Although there is no international regulation or legislation specifically for nanomedicine, it is agreed worldwide that considerably more attention should be paid to the quality, safety, and efficacy of nanotechnology-based drugs. The US Food and Drug Administration and the European Medicines Agency have provided several draft regulatory guidance and reflection papers to assist the development of nanomedicines. To cope with the impact of nanotechnology and to foster its pharmaceutical applications and development in Taiwan, this article reviews the trends of regulating nanotechnology-based pharmaceuticals in the international community and proposes strategies for Taiwan’s regulation harmonized with international considerations. The draft regulatory measures include a chemistry, manufacturing, and controls (CMC) review checklist and guidance for CMC review of liposomal products. These have been submitted for discussion among an expert committee, with membership comprised of multidisciplinary academia, research institutions, the pharmaceutical industry, and regulators, and are currently approaching final consensus. Once a consensus is reached, these mechanisms will be recommended to the Taiwan Food and Drug Administration for jurisdiction and may be initiated as the starting point for regulating nanotechnology-based pharmaceuticals in Taiwan. PMID:25342901

  19. Bimodal MR-PET agent for quantitative pH imaging

    PubMed Central

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  20. Intraoperative imaging using intravascular contrast agent

    NASA Astrophysics Data System (ADS)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek

    2016-03-01

    Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.

  1. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    PubMed

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  2. Protein nanotechnology: what is it?

    PubMed

    Gerrard, Juliet A

    2013-01-01

    Protein nanotechnology is an emerging field that is still defining itself. It embraces the intersection of protein science, which exists naturally at the nanoscale, and the burgeoning field of nanotechnology. In this opening chapter, a select review is given of some of the exciting nanostructures that have already been created using proteins, and the sorts of applications that protein engineers are reaching towards in the nanotechnology space. This provides an introduction to the rest of the volume, which provides inspirational case studies, along with tips and tools to manipulate proteins into new forms and architectures, beyond Nature's original intentions.

  3. Quantitative Whole Body Biodistribution of Fluorescent-Labeled Agents by Non-Invasive Tomographic Imaging

    PubMed Central

    Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.

    2011-01-01

    When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation

  4. Inventory of nanotechnology companies in Mexico

    NASA Astrophysics Data System (ADS)

    Appelbaum, Richard; Zayago Lau, Edgar; Foladori, Guillermo; Parker, Rachel; Vazquez, Laura Liliana Villa; Belmont, Eduardo Robles; Figueroa, Edgar Ramón Arteaga

    2016-02-01

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications.

  5. Nanotechnology in corneal neovascularization therapy--a review.

    PubMed

    Gonzalez, Lilian; Loza, Raymond J; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo; Chang, Jin-Hong

    2013-03-01

    Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1-100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels. The term "nanotechnology" was first coined in 1974. Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods. The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play.

  6. Optical imaging-guided cancer therapy with fluorescent nanoparticles

    PubMed Central

    Jiang, Shan; Gnanasammandhan, Muthu Kumara; Zhang, Yong

    2010-01-01

    The diagnosis and treatment of cancer have been greatly improved with the recent developments in nanotechnology. One of the promising nanoscale tools for cancer diagnosis is fluorescent nanoparticles (NPs), such as organic dye-doped NPs, quantum dots and upconversion NPs that enable highly sensitive optical imaging of cancer at cellular and animal level. Furthermore, the emerging development of novel multi-functional NPs, which can be conjugated with several functional molecules simultaneously including targeting moieties, therapeutic agents and imaging probes, provides new potentials for clinical therapies and diagnostics and undoubtedly will play a critical role in cancer therapy. In this article, we review the types and characteristics of fluorescent NPs, in vitro and in vivo imaging of cancer using fluorescent NPs and multi-functional NPs for imaging-guided cancer therapy. PMID:19759055

  7. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  8. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  9. Hearts and minds and nanotechnology

    NASA Astrophysics Data System (ADS)

    Toumey, Chris

    2009-03-01

    New research by social scientists is presenting a clearer picture of the factors that influence the public perception of nanotechnology and, as Chris Toumey reports, the results present challenges for those working to increase public acceptance of nanoscience and technology.See focus on public perceptions of nanotechnology.

  10. The applications of nanotechnology in food industry.

    PubMed

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  11. Risk of nanotechnology

    NASA Astrophysics Data System (ADS)

    Louda, Petr; Bakalova, Totka

    2014-05-01

    Nano-this and nano-that. These days it seems you need the prefix "nano" for products or applications if you want to be either very trendy or incredibly scary. This "nano-trend" has assumed "mega" proportions. Vague promises of a better life are met by equally vague, generalized fears about a worse future. These debates have some aspects in common: the subject is complex and not easy to explain; there is no consensus on risks and benefits. - A particular problem with nanotechnology lies in the huge gap between the public perception of what the hype promises and the scientific and commercial reality of what the technology actually delivers today and in the near future. There is nanoscience, which is the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Then there is nanotechnology, which is the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale. Nanotechnology should really be called nanotechnologies: There is no single field of nanotechnology. The term broadly refers to such fields as biology, physics or chemistry, any scientific field really, or a combination thereof, that deals with the deliberate and controlled manufacturing of nanostructures. In addressing the health and environmental impact of nanotechnology we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device ("fixed" nanoparticles); and (2) "free" nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. There are four entry routes for nanoparticles into the body: they can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures. Once within the body they are highly mobile and

  12. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  13. Bibliometric analysis of nanotechnology applied in oncology from 2002 to 2011.

    PubMed

    Dong, Xifeng; Qiu, Xiao-chun; Liu, Qian; Jia, Jack

    2013-12-01

    Innovation in the last decade has endowed nanotechnology with an assortment of tools for drug delivery system, imaging, and sensing in cancer research. These rapidly emerging tools are indicative of a burgeoning field ready to expand into medical applications. The aim of this study is to analyze the applications of nanotechnology in oncology with bibliometric methods and evaluate development in this field. Literature search was performed using PubMed search engines with MeSH terms (all)--nanotechnology, nanomedicine, nanoparticle, nanocapsules, micellar systems, and oncology or cancer or neoplasms. Within 2,543 articles from 2002 to 2011 in over 50 medical magazines from over 30 countries, we did a series analysis on these articles' countries, keywords, and authors. Our results show that articles in nanotechnology in oncology are increasing year by year, especially in recent years. Quantity and quality of the articles are becoming more and influential. In the global research, the USA is leading in this field, accounting for half above of the whole articles, followed by countries like Japan, Germany, and France and also some emerging nations like China, in the second place, and India. Subjects like nanoparticles, tumor marker, and drug delivery are the common research focus. So, with more and more scientists' interests and attention drawn to this field, it is likely to make major breakthroughs in the coming years.

  14. Gazelles, unicorns, and dragons battle cancer through the Nanotechnology Startup Challenge.

    PubMed

    Truman, Rosemarie; Locke, Cody J

    On March 4th, 2016, Springer's C ancer Nanotechnology office promoted the launch of the Nanotechnology Startup Challenge in Cancer ( NSC 2 ). This innovation-development model is a partnership among our company, the Center for Advancing Innovation (CAI), MedImmune, the global biologics arm of AstraZeneca, and multiple institutes at the National Institutes of Health (NIH). NSC 2 "crowdsources" talent from around the world to launch startups with near-term, commercially viable cancer nanotechnology inventions, which were developed by the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Biomedical Imaging and Bioengineering (NIBIB). Crowdsourcing is a process in which one uses the internet to engage a large group of people in an activity, such as NSC 2 . For this initiative, CAI engaged universities, industry professionals, foundations, investors, relevant media outlets, seasoned entrepreneurs, and life sciences membership organizations to request that they participate in the challenge. From this outreach, fifty-six key thought leaders have enrolled in NSC 2 as judges, mentors, and/or advisors to challenge teams (http://www.nscsquared.org/judges.html). Along with crowdsourcing talent to bolt startups around NIH inventions, NSC 2 will also catalyze the launch of companies around "third-party" cancer nanotechnology inventions, which were conceived and developed outside of the NIH. Twenty-eight robust teams were accepted to the challenge on March 14th, 2016.

  15. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice.

    PubMed

    Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.

  16. Emerging Biomimetic Applications of DNA Nanotechnology.

    PubMed

    Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan

    2018-06-25

    Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.

  17. Integrating nanotechnology into school education: a review of the literature

    NASA Astrophysics Data System (ADS)

    Ghattas, Nadira I.; Carver, Jeffrey S.

    2012-11-01

    Background : In this era of rapid technical advancement, there are growing debates around the idea of nanotechnology, which are both timely and controversial. Nanotechnology materials are being utilized in our daily lives in many ways, often without consumer knowledge. Due to the explosion of nanotechnology applications, there is a necessity to update school science curricula by integrating nanotechnology-related concepts that are both relevant and meaningful to students. The integration of nanotechnology in school science curricula comes in response to nanoscientific development and our mission as educators to instill and arouse students' curiosity in learning about both what is and what will be more dominantly occupying the marketplace. Purpose : The purpose of this review was to set a baseline for the current work being conducted in moving nanotechnology-based activities into the school science setting. Design and methods: The review was implemented by searching LexisNexis Academic, EBSCOhost, Academic Search Complete, Education Search Complete as well as Google Scholar using search terms of nanotechnology, nanotechnology in schools, nanotechnology activities, history of nanotechnology, implications of nanotechnology, issues of nanotechnology and related combinations with nanotechnology as a consistent keyword. Returned articles were categorized by thematic content with primary and seminal work being given priority for inclusion. Conclusions : Current literature in the area of nanotechnology integration into school science curricula presented seven key categories of discussion: the origins of nanotechnology, challenges for educational implementation, currently available school activities, current consumer product applications, ethical issues, recommendations for educational policy, and implications of nanotechnology. There is limited availability of school-based activities. There are strong proponents for including nanotechnology in school science curricula

  18. The Effects of Image and Animation in Enhancing Pedagogical Agent Persona

    ERIC Educational Resources Information Center

    Baylor, Amy L.; Ryu, Jeeheon

    2003-01-01

    The purpose of this experimental study was to test the role of image and animation on: a) learners' perceptions of pedagogical agent persona characteristics (i.e., extent to which agent was person-like, engaging, credible, and instructor-like); b) agent value; and c) performance. The primary analysis consisted of two contrast comparisons: 1)…

  19. Nanotechnology overview: Opportunities and challenges

    USDA-ARS?s Scientific Manuscript database

    Nanotechnology can be defined as the science of manipulating matter at the nanometer scale in order to discover new properties and possibly produce new products. For the past 30 years, a considerable amount of scientific interest and R&D funding devoted to nanotechnology has led to rapid developmen...

  20. Nanotechnology: From "Wow" to "Yuck"?

    ERIC Educational Resources Information Center

    Kulinowski, Kristen

    2004-01-01

    Nanotechnology is science and engineering resulting from the manipulation of matter's most basic building blocks: atoms and molecules. As such, nanotechnology promises unprecedented control over both the materials we use and the means of their production. Such control could revolutionize nearly every sector of our economy, including medicine,…

  1. DNA nanotechnology

    NASA Astrophysics Data System (ADS)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  2. [Nanopsychiatry. The potential role of nanotechnologies in the future of psychiatry. A systematic review].

    PubMed

    Fond, G; Miot, S

    2013-09-01

    Nanomedicine is defined as the area using nanotechnology's concepts for the benefit of human beings, their health and well being. The field of nanotechnology opened new unsuspected fields of research a few years ago. To provide an overview of nanotechnology application areas that could affect care for psychiatric illnesses. We conducted a systematic review using the PRISMA criteria (preferred reporting items for systematic reviews and meta-analysis). Inclusion criteria were specified in advance: all studies describing the development of nanotechnology in psychiatry. The research paradigm was: "(nanotechnology OR nanoparticles OR nanomedicine) AND (central nervous system)" Articles were identified in three research bases, Medline (1966-present), Web of Science (1975-present) and Cochrane (all articles). The last search was carried out on April 2, 2012. Seventy-six items were included in this qualitative review. The main applications of nanotechnology in psychiatry are (i) pharmacology. There are two main difficulties in neuropharmacology. Drugs have to pass the blood brain barrier and then to be internalized by targeted cells. Nanoparticles could increase drugs' bioavailability and pharmacokinetics, especially improving safety and efficacy of psychotropic drugs. Liposomes, nanosomes, nanoparticle polymers, nanobubbles are some examples of this targeted drug delivery. Nanotechnologies could also add new pharmacological properties, like nanohells and dendrimers; (ii) living analysis. Nanotechnology provides technical assistance to in vivo imaging or metabolome analysis; (iii) central nervous system modeling. Research teams have modelized inorganic synapses and mimicked synaptic behavior, essential for further creation of artificial neural systems. Some nanoparticle assemblies present the same small world and free-scale network architecture as cortical neural networks. Nanotechnologies and quantum physics could be used to create models of artificial intelligence and

  3. NASA Applications of Molecular Nanotechnology

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  4. New radionuclide agents for cardiac imaging: Description and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, J.K.; Pippin, J.J.; Corbett, J.R.

    1989-08-01

    The introduction of three new radiopharmaceuticals into clinical research and practice has broadened the potential applications and scope of nuclear cardiology examinations. Technetium-99m labeled isonitrile perfusion agents have excellent imaging characteristics allowing the accurate identification of coronary artery disease. Simultaneous assessments of ventricular function are possible with these agents. Iodine-123 phenylpentadecanoic acid myocardial scintigraphy permits assessments of myocardial perfusion and fatty acid metabolism, and permits investigations of myocardial metabolism with conventional imaging equipment. Iodine-123 meta-iodobenzyl-guanidine serves as an indicator of the functional integrity of the sympathetic nervous system and permits evaluations of the effects of various disease states on catecholaminemore » handling by the heart. 58 references.« less

  5. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    NASA Astrophysics Data System (ADS)

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  6. Nanotechnology - An emerging technology

    USGS Publications Warehouse

    Buckingham, D.

    2007-01-01

    The science of nanotechnology is still in its infancy. However, progress is being made in research and development of potential beneficial properties of nanomaterials that could play an integral part in the development of new and changing uses for mineral commodities. Nanotechnology is a kind of toolbox that allows industry to make nanomaterials and nanostructures with special properties. New nanotechnology applications of mineral commodities in their nanoscale form are being discovered, researched and developed. At the same time, there is continued research into environmental, human health and safety concerns that inherently arise from the development of a new technology. Except for a few nanomaterials (CNTs, copper, silver and zinc oxide), widespread applications are hampered by processing and suitable commercial-scale production techniques, high manufacturing costs, product price, and environmental, and human health and safety concerns. Whether nanotechnology causes a tidal wave of change or is a long-term evolutionary process of technology, new applications of familiar mineral commodities will be created. As research and development continues, the ability to manipulate matter at the nanoscale into increasingly sophisticated nanomaterials will improve and open up new possibilities for industry that will change the flow and use of mineral commodities and the materials and products that are used.

  7. Technological Prospection on Nanotechnologies Applied to the Petroleum Industry.

    PubMed

    Parreiras, Viviane M A; de S Antunes, Adelaide M

    2015-01-01

    This paper presents a technological prospection on nanotechnologies applied to the petroleum industry through the creation of a worldwide overview regarding scientific paper publications and patents concerning that business, with the purpose of identifying the main trends on research and development (R&D), the annual evolution, as well as the key agents and countries involved. In this research, it was possible to verify the presence of services oil companies, like Baker, Schlumberger and Halliburton. In scientific paper publications, it was possible to observe university departments, related to petroleum studies, from different countries, as Thailand, China, USA, Iran.

  8. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  9. International strategy for Nanotechnology Research

    NASA Astrophysics Data System (ADS)

    Roco, M. C.

    2001-12-01

    The worldwide nanotechnology research and development (R&D) investment reported by government organizations has increased by a factor of 3.5 between 1997 and 2001, and the highest rate of 90% is in 2001. At least 30 countries have initiated or are beginning national activities in this field. Scientists have opened a broad net of discoveries that does not leave any major research area untouched in physical, biological, and engineering sciences. Industry has gained confidence that nanotechnology will bring competitive advantages. The worldwide annual industrial production is estimated to exceed 1 trillion in 10-15 years from now, which would require about 2 million nanotechnology workers. U.S. has initiated a multidisciplinary strategy for development of science and engineering fundamentals through the National Nanotechnology Initiative. Japan and Europe have broad programs, and their current plans look ahead to four to five years. Other countries have encouraged their own areas of strength, several of them focusing on fields of the potential markets. Differences among countries are observed in the research domain they are aiming for, the level of program integration into various industrial sectors, and in the time scale of their R & D targets. Nanotechnology is growing in an environment where international interactions accelerate in science, education and industrial R & D. A global strategy of mutual interest is envisioned by connecting individual programs of contributing countries, professional communities, and international organizations.

  10. German innovation initiative for nanotechnology

    NASA Astrophysics Data System (ADS)

    Rieke, Volker; Bachmann, Gerd

    2004-10-01

    In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative "Nanotechnologie erobert Märkte" (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germany's well-developed and internationally competitive research in science and technology to tap the potential of Germany's important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society.

  11. Nanotechnology: A Vast Field for the Creative Mind

    NASA Technical Reports Server (NTRS)

    Benavides, Jeannette

    2003-01-01

    Nanotechnology is a rapidly developing field worldwide. Nanotechnology is the development of smart systems for many different applications by building from the molecular level up. Current research, sponsored by The National Nanotechnology Alliance in the US will be described. Future needs in manpower of different disciplines will be discussed. Nanotechnology is a field of research that could allow developing countries to establish a technological infrastructure. The nature of nanotechnology requires professionals in many areas, such as engineers, chemists, physicists, mathematicians, computer scientists, materials scientists, etc. One of the materials that provide unique properties for nanotechnology is carbon nanotubes. At Goddard we have develop a process to produce nanotubes at lower costs and without metal catalysts which will be of great importance for the development of new materials for space applications and others outside NASA. Nanotechnology in general is a very broad and exciting field that will provide the technologies of tomorrow including biomedical applications for the betterment of mankind. There is room in this area for many researchers all over the world. The key is collaboration, nationally and internationally.

  12. NASA Efforts on Nanotechnology

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2003-01-01

    An overview of the field of nanotechnology within the theme of "New efforts in Nanotechnology Research," will be presented. NASA's interest, requirements and current efforts in this emerging field will be discussed. In particular, NASA efforts to develop nanoelectronic devices, fuel cells, and other applications of interest using this novel technology by collaborating with academia will be addressed. Progress on current collaborations in this area with the University of Puerto Rico will be highlighted.

  13. Nanotechnology Concepts at MSFC: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar; Kaul, Raj; Shah, Sandeep; Smithers, Gweneth; Watson, Michael D.

    2000-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has needs for miniaturization of components, minimization of weight and maximization of performance, and nanotechnology will help us get there. MSFC - Engineering Directorate (ED) is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science and space optics manufacturing. MSFC-ED has a dedicated group of technologists who are currently developing high pay-off nanotechnology concepts. This poster presentation will outline some of the concepts being developed at this time including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  14. Advances in Nanotechnology for Restorative Dentistry.

    PubMed

    Khurshid, Zohaib; Zafar, Muhammad; Qasim, Saad; Shahab, Sana; Naseem, Mustafa; AbuReqaiba, Ammar

    2015-02-16

    Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients.

  15. Advances in Nanotechnology for Restorative Dentistry

    PubMed Central

    Khurshid, Zohaib; Zafar, Muhammad; Qasim, Saad; Shahab, Sana; Naseem, Mustafa; AbuReqaiba, Ammar

    2015-01-01

    Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients. PMID:28787967

  16. Nanotechnology: The Incredible Invisible World

    ERIC Educational Resources Information Center

    Roberts, Amanda S.

    2011-01-01

    The concept of nanotechnology was first introduced in 1959 by Richard Feynman at a meeting of the American Physical Society. Nanotechnology opens the door to an exciting new science/technology/engineering field. The possibilities for the uses of this technology should inspire the imagination to think big. Many are already pursuing such feats…

  17. Nanotechnology Applications

    EPA Science Inventory

    This book chapter discusses various nanotechnologies for water sustainability. Detailed information on catalysis as an advanced oxidation process, nanofiltration, adsorption, water disinfection, and groundwater remediation is provided for water treatment. These nanomaterials effe...

  18. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review

    PubMed Central

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy. PMID:26078967

  19. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review.

    PubMed

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; Gonçalez, Maíra Lima; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.

  20. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  1. National Nanotechnology Initiative: Driving Innovation & Competitiveness

    DTIC Science & Technology

    2007-09-19

    networking & IT National Nanotechnology Initiative Complex biological systems Environment Next Generation Air Transportation Systems Federal scientific ... collections Science of Science Policy Slide 9: A little history about the National Nanotechnology Initiative: The interagency program was

  2. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    NASA Astrophysics Data System (ADS)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of

  3. Nanotechnology: A Vast Field For The Creative Mind

    NASA Technical Reports Server (NTRS)

    Benavides, Jeannette

    2004-01-01

    This viewgraph presentation gives examples of possible future uses of nanotechnology, with some emphasis on carbon nanotubes and medical applications. The presentation provides an overview of organizations conducting nanotechnology research in the United States, and suggests a timeline for nanotechnology development.

  4. PREFACE: Proceedings of the International Conference on Nanoscience and Nanotechnology (Melbourne, 25-29 February 2008) Proceedings of the International Conference on Nanoscience and Nanotechnology (Melbourne, 25-29 February 2008)

    NASA Astrophysics Data System (ADS)

    Ford, Mike; Russo, Salvy; Gale, Julian

    2009-04-01

    image The International Conference on Nanoscience and Nanotechnology is held bi-annually in Australia, supported by the Australian Research Council and Australian Nanotechnology Network. The purpose of the conference is to provide a forum for discussion about all aspects of nanoscience and nanotechnology, to enable young Australian researchers a chance to meet and engage with leading global scientists in the field, and to set up the exchange mechanisms and collaborations that will enable the field to continue to develop and flourish. The second conference in this series co-chaired by Professor Paul Mulvaney and Professor Abid Khan attracted over eight hundred participants from across academia, industry, government and schools, with 8 plenary talks, 32 invited talks and more than 420 oral and poster papers spread across 6 parallel symposia. These symposia presented the status of international research from nanoelectronics to nanobiotechnology, a stream dedicated to commercialization issues and showcasing Australian success stories, and a final symposium discussing regulatory, environmental and health issues, and the next stage of the nanotechnology roadmap. The development of efficient algorithms and availability of computing power has seen calculation play a crucial role in the progress of nanoscience and nanotechnology, providing a window onto processes occurring at the molecular level that are not easily accessed by experiment alone. Consequently, a symposium was dedicated to nanocomputation, containing contributions ranging from first principles atomistic simulations of nanostructures to classical models of nanotube motion. The papers in this special issue are contributions to this symposium co-chaired by Salvy Russo, Julian Gale and Mike Ford.

  5. Active food packaging evolution: transformation from micro- to nanotechnology.

    PubMed

    Imran, Muhammad; Revol-Junelles, Anne-Marie; Martyn, Agnieszka; Tehrany, Elmira Arab; Jacquot, Muriel; Linder, Michel; Desobry, Stéphane

    2010-10-01

    Predicting which attributes consumers are willing to pay extra for has become straightforward in recent years. The demands for the prime necessity of food of natural quality, elevated safety, minimally processed, ready-to-eat, and longer shelf-life have turned out to be matters of paramount importance. The increased awareness of environmental conservation and the escalating rate of foodborne illnesses have driven the food industry to implement a more innovative solution, i.e. bioactive packaging. Owing to nanotechnology application in eco-favorable coatings and encapsulation systems, the probabilities of enhancing food quality, safety, stability, and efficiency have been augmented. In this review article, the collective results highlight the food nanotechnology potentials with special focus on its application in active packaging, novel nano- and microencapsulation techniques, regulatory issues, and socio-ethical scepticism between nano-technophiles and nano-technophobes. No one has yet indicated the comparison of data concerning food nano- versus micro-technology; therefore noteworthy results of recent investigations are interpreted in the context of bioactive packaging. The next technological revolution in the domain of food science and nutrition would be the 3-BIOS concept enabling a controlled release of active agents through bioactive, biodegradable, and bionanocomposite combined strategy.

  6. Broader Societal Issues of Nanotechnology

    NASA Astrophysics Data System (ADS)

    Roco, M. C.

    2003-08-01

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R&D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about 30 million (of which National Science Foundation (NSF) awards about 23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about 50 million (of which NSF awards about 30 million and EPA about 6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public.

  7. Nanotechnology and the need for risk governance

    NASA Astrophysics Data System (ADS)

    Renn, O.; Roco, M. C.

    2006-04-01

    After identifying the main characteristics and prospects of nanotechnology as an emerging technology, the paper presents the general risks associated with nanotechnology applications and the deficits of the risk governance process today, concluding with recommendations to governments, industry, international organizations and other stakeholders. The International Risk Governance Council (IRGC) has identified a governance gap between the requirements pertaining to the nano- rather than the micro-/macro- technologies. The novel attributes of nanotechnology demand different routes for risk-benefit assessment and risk management, and at present, nanotechnology innovation proceeds ahead of the policy and regulatory environment. In the shorter term, the governance gap is significant for those passive nanostructures that are currently in production and have high exposure rates; and is especially significant for the several `active' nanoscale structures and nanosystems that we can expect to be on the market in the near future. Active nanoscale structures and nanosystems have the potential to affect not only human health and the environment but also aspects of social lifestyle, human identity and cultural values. The main recommendations of the report deal with selected higher risk nanotechnology applications, short- and long-term issues, and global models for nanotechnology governance.

  8. Cultural diversity in nanotechnology ethics.

    PubMed

    Schummer, Joachim

    2011-01-01

    Along with the rapid worldwide advance of nanotechnology, debates on associated ethical issues have spread from local to international levels. However unlike science and engineering issues, international perceptions of ethical issues are very diverse. This paper provides an analysis of how sociocultural factors such as language, cultural heritage, economics and politics can affect how people perceive ethical issues of nanotechnology. By attempting to clarify the significance of sociocultural issues in ethical considerations my aim is to support the ongoing international dialogue on nanotechnology. At the same time I pose the general question of ethical relativism in engineering ethics, that is to say whether or not different ethical views are irreconcilable on a fundamental level.

  9. Nanotechnology: The new perspective in precision agriculture.

    PubMed

    Duhan, Joginder Singh; Kumar, Ravinder; Kumar, Naresh; Kaur, Pawan; Nehra, Kiran; Duhan, Surekha

    2017-09-01

    Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

  10. Nanotechnology research: applications in nutritional sciences.

    PubMed

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  11. Nanotechnology for regenerative medicine.

    PubMed

    Khang, Dongwoo; Carpenter, Joseph; Chun, Young Wook; Pareta, Rajesh; Webster, Thomas J

    2010-08-01

    Future biomaterials must simultaneously enhance tissue regeneration while minimizing immune responses and inhibiting infection. While the field of tissue engineering has promised to develop materials that can promote tissue regeneration for the entire body, such promises have not become reality. However, tissue engineering has experienced great progress due to the recent emergence of nanotechnology. Specifically, it has now been well established that increased tissue regeneration can be achieved on almost any surface by employing novel nano-textured surface features. Numerous studies have reported that nanotechnology accelerates various regenerative therapies, such as those for the bone, vascular, heart, cartilage, bladder and brain tissue. Various nano-structured polymers and metals (alloys) have been investigated for their bio (and cyto) compatibility properties. This review paper discusses several of the latest nanotechnology findings in regenerative medicine (also now called nanomedicine) as well as their relative levels of success.

  12. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  13. Micro- and nanotechnologies in plankton research

    NASA Astrophysics Data System (ADS)

    Mohammed, Javeed Shaikh

    2015-05-01

    A better understanding of the vast range of plankton and their interactions with the marine environment would allow prediction of their large-scale impact on the marine ecosystem, and provide in-depth knowledge on pollution and climate change. Numerous technologies, especially lab-on-a-chip microsystems, are being used to this end. Marine biofouling is a global issue with significant economic consequences. Ecofriendly polymer nanotechnologies are being developed to combat marine biofouling. Furthermore, nanomaterials hold great potential for bioremediation and biofuel production. Excellent reviews covering focused topics in plankton research exist, with only a handful discussing both micro- and nanotechnologies. This work reviews both micro- and nanotechnologies applied to broad-ranging plankton research topics including flow cytometry, chemotaxis/toxicity assays, biofilm formation, marine antifouling/fouling-release surfaces and coatings, green energy, green nanomaterials, microalgae immobilization, and bioremediation. It is anticipated that developments in plankton research will see engineered exploitation of micro- and nanotechnologies. The current review is therefore intended to promote micro-/nanotechnology researchers to team up with limnologists/oceanographers, and develop novel strategies for understanding and green exploitation of the complex marine ecosystem.

  14. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    PubMed

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  15. Enhanced Positive-Contrast Visualization of Paramagnetic Contrast Agents Using Phase Images

    PubMed Central

    Mills, Parker H.; Ahrens, Eric T.

    2009-01-01

    Iron oxide–based MRI contrast agents are increasingly being used to noninvasively track cells, target molecular epitopes, and monitor gene expression in vivo. Detecting regions of contrast agent accumulation can be challenging if resulting contrast is subtle relative to endogenous tissue hypointensities. A postprocessing method is presented that yields enhanced positive-contrast images from the phase map associated with T2*-weighted MRI data. As examples, the method was applied to an agarose gel phantom doped with superparamagnetic iron-oxide nanoparticles and in vivo and ex vivo mouse brains inoculated with recombinant viruses delivering transgenes that induce overexpression of paramagnetic ferritin. Overall, this approach generates images that exhibit a 1- to 8-fold improvement in contrast-to-noise ratio in regions where paramagnetic agents are present compared to conventional magnitude images. This approach can be used in conjunction with conventional T2* pulse sequences, requires no prescans or increased scan time, and can be applied retrospectively to previously acquired data. PMID:19780169

  16. Nanotechnology in Corneal Neovascularization Therapy—A Review

    PubMed Central

    Gonzalez, Lilian; Loza, Raymond J.; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo

    2013-01-01

    Abstract Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1–100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels.1 The term “nanotechnology” was first coined in 1974.2 Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods.3 The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play. PMID:23425431

  17. Scope of nanotechnology in modern textiles

    USDA-ARS?s Scientific Manuscript database

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  18. NCI Alliance for Nanotechnology in Cancer

    Cancer.gov

    The NCI Alliance for Nanotechnology in Cancer funds the Cancer Nanotechnology Training Centers collectively with the NCI Cancer Training Center. Find out about the funded Centers, to date, that train our next generation of scientists in the field of Canc

  19. Molecular nanomagnets as contrast agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Rodríguez, Elisenda; Roig, Anna; Molins, Elies; Arús, Carles; Cabañas, Miquel; Quintero, María Rosa; Cerdán, Sebastián; Sanfeliu, Coral

    2003-03-01

    Magnetic resonance imaging (MRI) is a non-invasive technique used in medicine to produce high quality images of human body slices. In order to enhance the contrast between different organs or to reveal altered portions of them such necrosis or tumors, the administration of a contrast agent is highly convenient. Currently Gd-DTPA, a paramagnetic complex, is the most widely administered compound. In this context, we have assayed molecular nanomagnets as MRI contrast agents. The complex [(tacn)_6Fe_8(μ_3-O)_2(μ_2-OH)_12]Br_8·9H_2O^1(Fe8 in brief) has been evaluated and shorter relaxation times, T1 and T_2, have been obtained for Fe8 than those obtained for the commercial Gd-DTPA. No toxic effects have been observed at concentrations up to 1 mM of Fe8 in cultured cells. Phantom studies with T_1-weighted MRI at 9.4 Tesla suggest that Fe8 can have potentiality as T_1-contrast agent. ^1Wieghardt K Angew Chem Intl Ed Engl 23 1 (1984) 77

  20. Biocompatible astaxanthin as novel contrast agent for biomedical imaging.

    PubMed

    Nguyen, Van Phuc; Park, Suhyun; Oh, Junghwan; Wook Kang, Hyun

    2017-08-01

    Photoacoustic imaging (PAI) is a hybrid imaging modality with high resolution and sensitivity that can be beneficial for cancer staging. Due to insufficient endogenous photoacoustic (PA) contrast, the development of exogenous agents is critical in targeting cancerous tumors. The current study demonstrates the feasibility of marine-oriented material, astaxanthin, as a biocompatible PA contrast agent. Both silicon tubing phantoms and ex vivo bladder tissues are tested at various concentrations (up to 5 mg/ml) of astaxanthin to quantitatively explore variations in PA responses. A Q-switched Nd : YAG laser (λ = 532 nm) in conjunction with a 5 MHz ultrasound transducer is employed to generate and acquire PA signals from the samples. The phantom results presented that the PA signal amplitudes increase linearly with the astaxanthin concentrations (threshold detection = 0.31 mg/ml). The tissue injected with astaxanthin yields up to 16-fold higher PA signals, compared with that with saline. Due to distribution of the injected astaxanthin, PAI can image the margin of astaxanthin boles as well as quantify their volume in 3D reconstruction. Further investigations on selective tumor targeting are required to validate astaxanthin as a potential biocompatible contrast agent for PAI-assisted bladder cancer detection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanotechnology in food science: Functionality, applicability, and safety assessment.

    PubMed

    He, Xiaojia; Hwang, Huey-Min

    2016-10-01

    Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted. Copyright © 2016. Published by Elsevier B.V.

  2. Current research on public perceptions of nanotechnology

    PubMed Central

    Besley, J

    2010-01-01

    This review explores research on public perceptions of nanotechnology. It highlights a recurring emphasis on some researchers’ expectations that there will be a meaningful relationship between awareness of nanotechnology and positive views about nanotechnology. The review, however, also notes that this emphasis is tacitly and explicitly rejected by a range of multivariate studies that emphasize the key roles of non-awareness variables, such as, trust, general views about science, and overall worldview. The review concludes with a discussion of likely future research directions, including the expectation that social scientists will continue to focus on nanotechnology as a unique opportunity to study how individuals assess risk in the context of relatively low levels of knowledge. PMID:22460398

  3. NANOTECHNOLOGY RISK ASSESSMENT CASE STUDY WORKSHOPS

    EPA Science Inventory

    Nanotechnology is expected to present both benefits and risks to human health and the environment. The assessment of risks related to nanotechnology requires information on the potential for exposure to, and adverse effects of, nanomaterials and their by-products. To help ensure...

  4. A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging

    PubMed Central

    Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M

    2014-01-01

    Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210

  5. Nanotechnology applied to treatment of mucopolysaccharidoses.

    PubMed

    Schuh, Roselena S; Baldo, Guilherme; Teixeira, Helder F

    2016-12-01

    Mucopolysaccharidoses (MPS) are genetic disorders caused by the accumulation of glycosaminoglycans due to deficiencies in the lysosomal enzymes responsible for their catabolism. Current treatments are not fully effective and are not available for all MPS types. Accordingly, researchers have tested novel therapies for MPS, including nanotechnology-based enzyme delivery systems and gene therapy. In this review, we aim to analyze some of the approaches involving nanotechnology as alternative treatments for MPS. Areas covered: We analyze nanotechnology-based systems, focusing on the biomaterials, such as polymers and lipids, that comprise these nanostructures, and we have highlighted studies that describe their use as enzyme and gene delivery systems for the treatment of MPS diseases. Expert opinion: Some protocols, such as the use of polymer-based systems or nanostructured carriers associated with enzymes and nanotechnology-based carriers for gene therapy, along with combined approaches, seem to be the future of MPS therapy.

  6. An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology

    PubMed Central

    Jha, Rakhi K.; Jha, Pradeep K.; Chaudhury, Koel; Rana, Suresh V.S.; Guha, Sujoy K.

    2014-01-01

    Among the various applications of nano-biotechnology, healthcare is considered one of the most significant domains. For that possibility to synthesize various kind of nanoparticles (NPs) and the ever-increasing ability to control their size as well as structure, to improve surface characteristics and binding NPs with other desired curing agents has played an important role. In this paper, a brief sketch of various kinds of nanomaterials and their biomedical applications is given. Despite claims of bio-nanotechnology about to touch all areas of medical science, information pertaining to the role of nanotechnology for the betterment of reproductive healthcare is indeed limited. Therefore, the various achievements of nano-biotechnology for healthcare in general have been illustrated while giving special insight into the role of nano-biotechnology for the future of reproductive healthcare betterment as well as current achievements of nanoscience and nanotechnology in this arena. PMID:24600516

  7. An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology.

    PubMed

    Jha, Rakhi K; Jha, Pradeep K; Chaudhury, Koel; Rana, Suresh V S; Guha, Sujoy K

    2014-01-01

    Among the various applications of nano-biotechnology, healthcare is considered one of the most significant domains. For that possibility to synthesize various kind of nanoparticles (NPs) and the ever-increasing ability to control their size as well as structure, to improve surface characteristics and binding NPs with other desired curing agents has played an important role. In this paper, a brief sketch of various kinds of nanomaterials and their biomedical applications is given. Despite claims of bio-nanotechnology about to touch all areas of medical science, information pertaining to the role of nanotechnology for the betterment of reproductive healthcare is indeed limited. Therefore, the various achievements of nano-biotechnology for healthcare in general have been illustrated while giving special insight into the role of nano-biotechnology for the future of reproductive healthcare betterment as well as current achievements of nanoscience and nanotechnology in this arena.

  8. Nanotechnology and Public Interest Dialogue: Some International Observations

    ERIC Educational Resources Information Center

    Bowman, Diana M.; Hodge, Graeme A.

    2007-01-01

    This article examines nanotechnology within the context of the public interest. It notes that though nanotechnology research and development investment totalled US$9.6 billion in 2005, the public presently understands neither the implications nor how it might be best governed. The article maps a range of nanotechnology dialogue activities under…

  9. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Shape Effects in Nanoparticle-Based Imaging Agents

    NASA Astrophysics Data System (ADS)

    Culver, Kayla Shani Brook

    At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used

  11. Anticipating the perceived risk of nanotechnologies

    NASA Astrophysics Data System (ADS)

    Satterfield, Terre; Kandlikar, Milind; Beaudrie, Christian E. H.; Conti, Joseph; Herr Harthorn, Barbara

    2009-11-01

    Understanding emerging trends in public perceptions of nanomaterials is critically important for those who regulate risks. A number of surveys have explored public perceptions of their risks and benefits. In this paper we meta-analyse these surveys to assess the extent to which the following four hypotheses derived from previous studies of new technologies might be said to be valid for nanotechnologies: risk aversion will prevail over benefit appreciation; an increase in knowledge will not result in reduced aversion to risks; judgements will be malleable and subject to persuasion given risk-centric information; and contextual, psychometric and attitudinal predictors of perceived risk from prior studies can help anticipate future perceptions of nanotechnologies. We find that half the public has at least some familiarity with nanotechnology, and those who perceive greater benefits outnumber those who perceive greater risks by 3 to 1. However, a large minority of those surveyed (44%) is unsure, suggesting that risk judgements are highly malleable. Nanotechnology risk perceptions also appear to contradict some long-standing findings. In particular, unfamiliarity with nanotechnology is, contrary to expectations, not strongly associated with risk aversion and reduced `knowledge deficits' are correlated with positive perceptions in this early and controversy-free period. Psychometric variables, trust and affect continue to drive risk perceptions in this new context, although the influence of both trust and affect is mediated, even reversed, by demographic and cultural variables. Given the potential malleability of perceptions, novel methods for understanding future public responses to nanotechnologies will need to be developed.

  12. Element-specific spectral imaging of multiple contrast agents: a phantom study

    NASA Astrophysics Data System (ADS)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  13. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications

    PubMed Central

    Sosnovik, David E.; Nahrendorf, Matthias; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles (MNP) are playing an increasingly important role in cardiovascular molecular imaging. These agents are superparamagnetic and consist of a central core of iron-oxide surrounded by a carbohydrate or polymer coat. The size, physical properties and pharmacokinetics of MNP make them highly suited to cellular and molecular imaging of atherosclerotic plaque and myocardial injury. MNP have a sensitivity in the nanomolar range and can be detected with T1, T2, T2*, off resonance and steady state free precession sequences. Targeted imaging with MNP is being actively explored and can be achieved through either surface modification or through the attachment of an affinity ligand to the nanoparticle. First generation MNP are already in clinical use and second generation agents, with longer blood half lives, are likely to be approved for routine clinical use in the near future. PMID:18324368

  14. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    PubMed

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  15. Gold-manganese nanoparticles for targeted diagnostic and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona Hunyadi

    Imagine the possibility of non-invasive, non-radiation based Magnetic resonance imaging (MRI) in combating cardiac disease. Researchers at the Savannah River National Laboratory (SRNL) are developing a process that would use nanotechnology in a novel, targeted approach that would allow MRIs to be more descriptive and brighter, and to target specific organs. Researchers at SRNL have discovered a way to use multifunctional metallic gold-manganese nanoparticles to create a unique, targeted positive contrast agent. SRNL Senior Scientist Dr. Simona Hunyadi Murph says she first thought of using the nanoparticles for cardiac disease applications after learning that people who survive an infarct exhibitmore » up to 15 times higher rate of developing chronic heart failure, arrhythmias and/or sudden death compared to the general population. Without question, nanotechnology will revolutionize the future of technology. The development of functional nanomaterials with multi-detection modalities opens up new avenues for creating multi-purpose technologies for biomedical applications.« less

  16. Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy.

    PubMed

    Zeineldin, Reema; Syoufjy, Joan

    2017-01-01

    Nanotechnological innovations over the last 16 years have brought about the potential to revolutionize specific therapeutic drug delivery to cancer tissue without affecting normal tissues. In addition, there are new nanotechnology-based platforms for diagnosis of cancers and for theranostics, i.e., integrating diagnosis with therapy and follow-up of effectiveness of therapy. This chapter presents an overview of these nanotechnology-based advancements in the areas of prevention, diagnosis, therapy, and theranostics for cancer. In addition, we stress the need to educate bio- and medical students in the field of nanotechnology.

  17. Exchange-Mediated Contrast Agents for Spin-Lock Imaging

    PubMed Central

    Cobb, Jared G.; Xie, Jingping; Li, Ke; Gochberg, Daniel F.; Gore, John C.

    2011-01-01

    Measurements of relaxation rates in the rotating frame with spin-locking (SL) techniques are sensitive to substances with exchanging protons with appropriate chemical shifts. We develop a novel approach to exchange rate selective imaging based on measured T1ρ dispersion with applied locking field strength, and demonstrate the method on samples containing the X-ray contrast agent Iohexol (IO) with and without cross-linked bovine serum albumin (BSA). T1ρ dispersion of water in the phantoms was measured with a Varian 9.4T magnet by an on-resonance SL pulse with fast spin-echo readout, and the results used to estimate exchange rates. The IO phantom alone gave a fitted exchange rate of ~1 kHz, BSA alone was ~11 kHz, and in combination gave rates in between. By using these estimated rates, we demonstrate how a novel SL imaging method may be used to enhance contrast due to the presence of a contrast agent whose protons have specific exchange rates. PMID:21954094

  18. Sociocultural Meanings of Nanotechnology: Research Methodologies

    NASA Astrophysics Data System (ADS)

    Bainbridge, William Sims

    2004-06-01

    This article identifies six social-science research methodologies that will be useful for charting the sociocultural meaning of nanotechnology: web-based questionnaires, vignette experiments, analysis of web linkages, recommender systems, quantitative content analysis, and qualitative textual analysis. Data from a range of sources are used to illustrate how the methods can delineate the intellectual content and institutional structure of the emerging nanotechnology culture. Such methods will make it possible in future to test hypotheses such as that there are two competing definitions of nanotechnology - the technical-scientific and the science-fiction - that are influencing public perceptions by different routes and in different directions.

  19. Green Chemistry for Nanotechnology: Opportunities and Future Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preeti Nigam, Joshi, E-mail: ph.joshi@ncl.res.in

    2016-01-26

    Nanotechnology is a paradigm for emerging technologies and much talked about area of science. It is the technology of future and has revolutionized all fields of medicine, agriculture, environmental and electronics by providing abilities that would never have previously dreamt of. It is a unique platform of multidisciplinary approaches integrating diverse fields of engineering, biology, physics and chemistry. In recent years, nanotechnology has seen the fastest pace in its all aspects of synthesis methodologies and wide applications in all areas of medicine, agricultural, environmental, and electronics. It is the impact of nanotechnology approaches that new fields of nanomedicine, cancer nanotechnology,more » nanorobotics and nanoelectronics have been emerged and are flourishing with the advances in this expanding field. Nanotechnology holds the potential for pervasive and promising applications and getting significant attention and financial aids also. Although there are different definitions of nanotechnology, in broad prospective, nanotechnology can be described as designing or exploiting materials at nanometer dimensions (i.e., one dimension less than 100 nanometers). At nanoscale, substances have a larger surface area to volume ratio than conventional materials which is the prime reason behind their increased level of reactivity, improved and size tunable magnetic, optical and electrical properties and more toxicity also.« less

  20. Nanotechnology for Stimulating Osteoprogenitor Differentiation

    PubMed Central

    Ibrahim, A.; Bulstrode, N.W.; Whitaker, I.S.; Eastwood, D.M.; Dunaway, D.; Ferretti, P.

    2016-01-01

    Background: Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation. Methods: Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions. Results: Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone. Conclusion: There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this. PMID:28217210

  1. A Regulatory Framework for Nanotechnology

    DTIC Science & Technology

    informed by a map of the regulatory landscape of nanotechnology and a review of the regulatory frameworks for the aviation and biotechnology industries...aviation and biotechnology and maps the regulatory landscape in the United States by examining stakeholders, regulatory entities, and applicable legislation...state of nanotechnology if the limitations of technical expertise are addressed. This expertise can be provided by advisory committees of technical

  2. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  3. The current state of public understanding of nanotechnology

    NASA Astrophysics Data System (ADS)

    Waldron, Anna M.; Spencer, Douglas; Batt, Carl A.

    2006-10-01

    The growing importance of nanotechnology in industry and society has not been accompanied by a widespread understanding of the subject among the general public. Simple questions to initially probe the smallest thing that people can see and can think of reveals a divide in the understanding of the general public. A survey of 1500 individuals ranging in age from 6 to 74 has revealed a lack of knowledge of nanotechnology and especially a lack of understanding of the context of nanotechnology in the world that is too small to see. Survey findings are corroborated by in-depth interviews with 400 adults in studies of nanoscience literacy commisioned by University of California, Berkeley and Cornell in 2002 and 2004, respectively. In general, with the exception of 14-28 year olds, over 60% of respondents say they have never heard of nano or nanotechnology. The results suggest that the general public, especially middle-school children, has no firm foundation to understand nanotechnology and likely will continue to be equally impressed by credible scientific information as well as pure fictional accounts of nanotechnology.

  4. Microspheres and Nanotechnology for Drug Delivery.

    PubMed

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  5. DNA Nanotechnology-Enabled Drug Delivery Systems.

    PubMed

    Hu, Qinqin; Li, Hua; Wang, Lihua; Gu, Hongzhou; Fan, Chunhai

    2018-02-21

    Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.

  6. Nanotechnology-based approaches in anticancer research

    PubMed Central

    Jabir, Nasimudeen R; Tabrez, Shams; Ashraf, Ghulam Md; Shakil, Shazi; Damanhouri, Ghazi A; Kamal, Mohammad A

    2012-01-01

    Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer. PMID:22927757

  7. Perceptions and attitude effects on nanotechnology acceptance: an exploratory framework

    NASA Astrophysics Data System (ADS)

    Ganesh Pillai, Rajani; Bezbaruah, Achintya N.

    2017-02-01

    Existing literature in people's attitude toward nanotechnology and acceptance of nanotechnology applications has generally investigated the impact of factors at the individual or context levels. While this vast body of research is very informative, a comprehensive understanding of how attitude toward nanotechnology are formed and factors influencing the acceptance of nanotechnology are elusive. This paper proposes an exploratory nanotechnology perception-attitude-acceptance framework (Nano-PAAF) to build a systematic understanding of the phenomenon. The framework proposes that perceptions of risks and benefits of nanotechnology are influenced by cognitive, affective, and sociocultural factors. The sociodemographic factors of consumers and contextual factors mitigate the influence of cognitive, affective, and sociocultural factors on the perception of risks and benefits. The perceived risks and benefits in turn influence people's attitude toward nanotechnology, which then influences acceptance of nanotechnology products. This framework will need further development over time to incorporate emerging knowledge and is expected to be useful for researchers, decision and policy makers, industry, and business entities.

  8. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    PubMed

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  9. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease

    PubMed Central

    Gunay, Mine Silindir; Ozer, A. Yekta; Chalon, Sylvie

    2016-01-01

    Background: Although a variety of therapeutic approaches are available for the treatment of Parkinson’s disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. Methods: This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. Results: It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson’s disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α-synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Conclusion: Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson’s disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson’s Disease therapy and reduce its side effects. PMID:26714584

  10. Preserving Charge and Oxidation State of Au(III) Ions in an Agent-Functionalized Nanocrystal Model System

    PubMed Central

    2011-01-01

    Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of the active center is indispensable. We present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support with potential impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy, we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal–ligand bonding interaction and completes the study by providing an illustrative electrostatic model relevant for ionic metalorganic agent molecules, in general. PMID:21736315

  11. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies.

    PubMed

    Fadel, Tarek R; Farrell, Dorothy F; Friedersdorf, Lisa E; Griep, Mark H; Hoover, Mark D; Meador, Michael A; Meyyappan, M

    2016-01-01

    Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.

  12. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies

    PubMed Central

    2017-01-01

    Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) “Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment” Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed. PMID:28261665

  13. Multipixel frequency-domain imaging of spontaneous canine breast disease using fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Reynolds, Jeffery S.; Thompson, Alan B.; Troy, Tamara L.; Mayer, Ralf H.; Waters, David J.; Sevick-Muraca, Eva M.

    1999-07-01

    In this paper we demonstrate the ability to detect the frequency-domain fluorescent signal from the contrast agent indocyanine green within the mammary chain of dogs with spontaneous mammary tumors. We use a gain-modulated image intensifier to rapidly capture multi-pixel images of the fluorescent modulation amplitude, modulation phase, and average intensity signals. Excitation is provided by a 100 MHz amplitude-modulated, 780 nm laser diode. Time series images of the uptake and clearance of the contrast agent in the diseased tissue are also presented.

  14. Nanotechnology: Principles and Applications

    NASA Astrophysics Data System (ADS)

    Logothetidis, S.

    Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel nano- and biomaterials, and nanodevices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below 100 nm. The application and use of nanomaterials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of nanoproducts is rapidly growing since more and more nanoengineered materials are reaching the global market The continuous revolution in nanotechnology will result in the fabrication of nanomaterials with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaics offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes The advances in nanomaterials necessitate parallel progress of the nanometrology tools and techniques to characterize and manipulate nanostructures. Revolutionary new approaches

  15. Nanotechnology: An Untapped Resource for Food Packaging.

    PubMed

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  16. Nanotechnology: An Untapped Resource for Food Packaging

    PubMed Central

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector. PMID:28955314

  17. Viscous optical clearing agent for in vivo optical imaging

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui

    2014-07-01

    By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.

  18. Nanotechnology and nuclear medicine; research and preclinical applications.

    PubMed

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  19. Functionalized surfaces and nanostructures for nanotechnological applications

    NASA Astrophysics Data System (ADS)

    2003-01-01

    order to detect and repair diseased cells is a popular idea of the benefits of nanotechnology, and one that even comes close to reality. Many companies are already in clinical trials for drug delivery mechanisms based on nanotechnology, but unfortunately none of them involve miniature submarines. It turns out that there are a whole range of more efficient ways that nanotechnology can enable better drug delivery without resorting to the use of nanomachines. Just the concept of navigating ones way around the body at will does not bear serious scrutiny. Imagine attempting to go against the flow in an artery—it would be like swimming upstream in a fast flowing river, while boulders the size of houses, red and while blood cells, rained down on you. Current medical applications of nanotechnology are far more likely to involve improved delivery methods, such as pulmonary or epidermal methods to avoid having to pass through the stomach, encapsulation for both delivery and delayed release, and eventually the integration of detection with delivery, in order for drugs to be delivered exactly where they are needed, thus minimizing side effects on healthy tissue and cells. As far as navigation goes, delivery will be by exactly the same method that the human body uses, going with the flow and `dropping anchor' when the drug encounters its target. 7. Shrinking stuff Another common misconception is that nanotechnology is primarily concerned with making things smaller. This has been exacerbated by images of tiny bulls, and miniature guitars that can be strummed with the tip of an AFM, that while newsworthy, merely demonstrate our new found control of matter at the sub-micron scale. While almost the whole focus of micro-technologies has been on taking macro-scale devices such as transistors and mechanical systems and making them smaller, nanotechnology is more concerned with our ability to create from the bottom up. In electronics, there is a growing realization that with the end of the

  20. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes

    PubMed Central

    Dosekova, Erika; Filip, Jaroslav; Bertok, Tomas; Both, Peter; Kasak, Peter; Tkac, Jan

    2017-01-01

    This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well. PMID:27859448

  1. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes.

    PubMed

    Dosekova, Erika; Filip, Jaroslav; Bertok, Tomas; Both, Peter; Kasak, Peter; Tkac, Jan

    2017-05-01

    This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well. © 2016 Wiley Periodicals, Inc.

  2. NANOTECHNOLOGY WHITE PAPER | Science Inventory | US ...

    EPA Pesticide Factsheets

    Nanotechnology is the science of manipulating materials at the atomic and molecular level to develop new or enhanced materials and products. In December 2004, EPA’s Science Policy Council created a cross-Agency workgroup to identify and describe the issues EPA must address to ensure protection of human health and the environment as this new technology is developed. The draft white paper on nanotechnology is the product of the workgroup. The draft white paper describes the technology, and provides a discussion of the potential environmental benefits of nanotechnology and its applications that can foster sustainable use of resources. Risk management issues and the Agency’s statutory mandates are outlined, followed by an extensive discussion of risk assessment issues. The paper identifies research needs for both environmental applications and implications of nanotechnology and concludes with recommendations on next steps for addressing science policy issues and research needs. Supplemental information is provided in a number of appendices. The Agency will use the white paper to address research needs and risk assessment issues concerning nanotechnology. The draft white paper will undergo independent expert review, which will be conducted in the February time frame. All public comments received by January 31, 2006 will be submitted to the external review panel for their consideration. Comments received beyond that time will be considered by EPA. Follo

  3. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  4. Inquire Learning Effects to Elementary School Students' Nanotechnology Instructions

    ERIC Educational Resources Information Center

    Chen, Yueh-Yun; Lu, Chow-Chin; Sung, Chia-Chi

    2012-01-01

    Nanotechnology is an emerging science that involved in different fields. This research inquired elementary school students' learning effect by using quasi-experiment, expositive-teaching and experiential-teaching methods for nanotechnology in the microcosmic world. By utilized the pretest "Nanotechnology Situational Questionnaire (NSQ)",…

  5. Small animal imaging platform for quantitative assessment of short-wave infrared-emitting contrast agents

    NASA Astrophysics Data System (ADS)

    Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-03-01

    We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.

  6. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies.

    PubMed

    Santiesteban, Daniela Y; Kubelick, Kelsey; Dhada, Kabir S; Dumani, Diego; Suggs, Laura; Emelianov, Stanislav

    2016-03-01

    The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.

  7. Nanotechnology and bone healing.

    PubMed

    Harvey, Edward J; Henderson, Janet E; Vengallatore, Srikar T

    2010-03-01

    Nanotechnology and its attendant techniques have yet to make a significant impact on the science of bone healing. However, the potential benefits are immediately obvious with the result that hundreds of researchers and firms are performing the basic research needed to mature this nascent, yet soon to be fruitful niche. Together with genomics and proteomics, and combined with tissue engineering, this is the new face of orthopaedic technology. The concepts that orthopaedic surgeons recognize are fabrication processes that have resulted in porous implant substrates as bone defect augmentation and medication-carrier devices. However, there are dozens of applications in orthopaedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from 10s of nanometers to a few micrometers. Examples include scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. We review the basic science, clinical implications, and early applications of the nanotechnology revolution and emphasize the rich possibilities that exist at the crossover region between micro- and nanotechnology for developing new treatments for bone healing.

  8. The intertwine of nanotechnology with the food industry.

    PubMed

    Hamad, Alshammari Fanar; Han, Jong-Hun; Kim, Byung-Chun; Rather, Irfan A

    2018-01-01

    The past decade has proven the competence of nanotechnology in almost all known fields. The evolution of nanotechnology today in the area of the food industry has been largely and has had a lot of contribution in the food processing, food package, and food preservation. The increasing global human population has come with growing population to be fed, and food production is not adjusted to at par with the growing population. This mismatch has shown the real essence of food preservation so that food products can reach to people on a global scale. The introduction of nanotechnology in the food industry has made it easy to transport foods to different parts of the world by extending the shelf-life of most food products. Even with this beneficial aspect of nanotechnology, it has not been proven an entire full-proof measure, and the field is still open to changing technology. It suffices to note that nanotechnology has to a big extent succeed in curbing the extent of food wastage due to food spoilage by the microbial infestation. Nanotechnology has focused on fresh foods, ensuring a healthier food by employing nano-delivery systems in the process. The delivery systems are the ones, which carries the food supplements. However, these are certain sets of regulations that must be followed to tame or control the health related risks of nanotechnology in food industries. This paper outlines the role of nanotechnology at different levels of the food industry including, packaging of food, processing of food and the various preservation techniques all aiming to increase the shelf life of the food products.

  9. Nanotechnology for forest products. Part 2

    Treesearch

    Theodore Wegner; Phil Jones

    2005-01-01

    In planning for the Nanotechnology for the Forest products Industry Workshop, we considered many different options for organizing technical focus areas for breakout discussion sessions. We felt the fallowing R&D focus areas provide the best path forward for a nanotechnology roadmap by identifying the underlying science and technology needed: also, they foster...

  10. Nanotechnology Education: Contemporary Content and Approaches

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.

    2009-01-01

    Nanotechnology is a multidisciplinary field of research and development identified as a major priority in the United States. Progress in science and engineering at the nanoscale is critical for national security, prosperity of the economy, and enhancement of the quality of life. It is anticipated that nanotechnology will be a major transitional…

  11. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy.

    PubMed

    Siddiqui, Imtiaz A; Sanna, Vanna

    2016-06-01

    Chemoprevention of human cancer by dietary products is a practical approach of cancer control, especially when chemoprevention is involved during the early stages of the carcinogenesis process. Research over the last few decades has clearly demonstrated the efficacy of dietary products for chemoprevention in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated to bedside for clinical use. Among many reasons, inefficient systemic delivery and bioavailability of promising chemopreventive agents are considered to significantly contribute to such a disconnection. Since its advent in the field of cancer, nanotechnology has provided researchers with expertise to explore new avenues for diagnosis, prevention, and therapy of the disease. In a similar trait, we introduced a novel concept in which nanotechnology was utilized for enhancing the outcome of chemoprevention (Cancer Res. 2009; 69:1712-1716). This idea, which we termed as 'nanochemoprevention', was exploited by several laboratories and has now become an advancing field in chemoprevention research. This review summarizes some of these applications of nanotechnology in medicine, particularly focused on controlled and sustained release of bioactive compounds with emphasis on current and future utilization of nanochemoprevention for prevention and therapy of cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  13. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  14. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  15. Nanotechnology and its applications in the food sector.

    PubMed

    Sozer, Nesli; Kokini, Jozef L

    2009-02-01

    Nanoscience and nanotechnology are new frontiers of this century. Their applications to the agriculture and food sector are relatively recent compared with their use in drug delivery and pharmaceuticals. Smart delivery of nutrients, bioseparation of proteins, rapid sampling of biological and chemical contaminants and nanoencapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. Advances in technologies, such as DNA microarrays, microelectromechanical systems and microfluidics, will enable the realization of the potential of nanotechnology for food applications. In this review, we intended to summarize the applications of nanotechnology relevant to food and nutraceuticals together with identifying the outstanding challenges.

  16. Nanotechnology Divides: Development Indicators and Thai Construction Industry

    NASA Astrophysics Data System (ADS)

    Kitisriworaphan, T.; Sawangdee, Y.

    Nanotechnology and disparity between developed and developing nations could increase the gap of global development while it also affects to construction industry where workers have potentially exposed to nanomaterials application. This research examined the influence of development indicators as demographic, social and economic factors on nanotechnology policy among 250 nations. Results revealed that 68.2% of developed countries have policy on nanotechnology while only 18% of developing countries have such a policy. Fertility and mortality declining with the increasing of literacy, urbanization and energy consumption provide significant positive effect on nanotechnology divides. Furthermore, results pointed out the existing gap of development between developed and developing worlds.

  17. Advanced Material Nanotechnology in Israel

    NASA Astrophysics Data System (ADS)

    Figovsky, O.; Beilin, D.; Blank, N.

    One of the most interesting directions in material engineering during the past few years is the technical development of nanocomposite materials consisting from two or more phases with precise interphase border and nanostructured materials based on interpenetrated polymer network. Israel is one of world leaders in fundamental and industrial nanotechnology research, including fostering of start-up companies. Some important developments in the field of nanotechnology material engineering in Israel are summarized in the paper.

  18. Nanotechnology risk perceptions and communication: emerging technologies, emerging challenges.

    PubMed

    Pidgeon, Nick; Harthorn, Barbara; Satterfield, Terre

    2011-11-01

    Nanotechnology involves the fabrication, manipulation, and control of materials at the atomic level and may also bring novel uncertainties and risks. Potential parallels with other controversial technologies mean there is a need to develop a comprehensive understanding of processes of public perception of nanotechnology uncertainties, risks, and benefits, alongside related communication issues. Study of perceptions, at so early a stage in the development trajectory of a technology, is probably unique in the risk perception and communication field. As such it also brings new methodological and conceptual challenges. These include: dealing with the inherent diversity of the nanotechnology field itself; the unfamiliar and intangible nature of the concept, with few analogies to anchor mental models or risk perceptions; and the ethical and value questions underlying many nanotechnology debates. Utilizing the lens of social amplification of risk, and drawing upon the various contributions to this special issue of Risk Analysis on Nanotechnology Risk Perceptions and Communication, nanotechnology may at present be an attenuated hazard. The generic idea of "upstream public engagement" for emerging technologies such as nanotechnology is also discussed, alongside its importance for future work with emerging technologies in the risk communication field. © 2011 Society for Risk Analysis.

  19. Nanotechnology Research: Applications in Nutritional Sciences12

    PubMed Central

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  20. Nanotechnology applications in hematological malignancies (Review)

    PubMed Central

    SAMIR, AHMED; ELGAMAL, BASMA M; GABR, HALA; SABAAWY, HATEM E

    2015-01-01

    A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up. PMID:26134389

  1. Nanotechnology tolls the bell for plastic surgeons.

    PubMed

    Salehahmadi, Zeinab; Hajiliasgari, Fatemeh

    2013-06-01

    Nanotechnology is an emerging discipline, having power to revolutionarize every scientific field to a very deep level which previously thought to be a science fiction. Having a great potential to beneficially change the way a disease is diagnosed, treated and prevented, nanotechnology practically impacts on state of the art healthcare technologies and plays a crucial role in changing the field of surgery. Surgeons are constantly looking for minimally invasive ways to treat their patients, as recovery is faster when a lesser trauma is inflicted upon a patient, scarring is lessened and there are usually fewer complications in the aftermath of the operation. Through nanotechnology, tiny biosensors could be constructed which could take these factors into account, thus shortening the patient recovery period and saving hospitals money, reducing infection rates within the hospital, reducing the waiting lists for operation and allowing doctors to treat more patients in the same period of time. This review employs a thematic analysis of online series of academic papers focuses on the potentials of nanotechnology in surgery, especially in plastic surgery and addresses the possible future prospects of nanotechnology in this field.

  2. Nanotechnology Tolls the Bell for Plastic Surgeons

    PubMed Central

    Salehahmadi, Zeinab; Hajiliasgari, Fatemeh

    2013-01-01

    Nanotechnology is an emerging discipline, having power to revolutionarize every scientific field to a very deep level which previously thought to be a science fiction. Having a great potential to beneficially change the way a disease is diagnosed, treated and prevented, nanotechnology practically impacts on state of the art healthcare technologies and plays a crucial role in changing the field of surgery. Surgeons are constantly looking for minimally invasive ways to treat their patients, as recovery is faster when a lesser trauma is inflicted upon a patient, scarring is lessened and there are usually fewer complications in the aftermath of the operation. Through nanotechnology, tiny biosensors could be constructed which could take these factors into account, thus shortening the patient recovery period and saving hospitals money, reducing infection rates within the hospital, reducing the waiting lists for operation and allowing doctors to treat more patients in the same period of time. This review employs a thematic analysis of online series of academic papers focuses on the potentials of nanotechnology in surgery, especially in plastic surgery and addresses the possible future prospects of nanotechnology in this field. PMID:25489508

  3. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    PubMed Central

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (<1 month). This work significantly increases the shelf life of the new-generation ICG-NPs (>6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014

  4. Fluorescent rhenium-naphthalimide conjugates as cellular imaging agents.

    PubMed

    Langdon-Jones, Emily E; Symonds, Nadine O; Yates, Sara E; Hayes, Anthony J; Lloyd, David; Williams, Rebecca; Coles, Simon J; Horton, Peter N; Pope, Simon J A

    2014-04-07

    A range of biologically compatible, fluorescent rhenium-naphthalimide conjugates, based upon the rhenium fac-tricarbonyl core, has been synthesized. The fluorescent ligands are based upon a N-functionalized, 4-amino-derived 1,8-naphthalimide core and incorporate a dipicolyl amine binding unit to chelate Re(I); the structural variations accord to the nature of the alkylated imide with ethyl ester glycine (L(1)), 3-propanol (L(2)), diethylene glycol (L(3)), and benzyl alcohol (L(4)) variants. The species are fluorescent in the visible region between 505 and 537 nm through a naphthalimide-localized intramolecular charge transfer, with corresponding fluorescent lifetimes of up to 9.8 ns. The ligands and complexes were investigated for their potential as imaging agents for human osteoarthritic cells and protistan fish parasite Spironucleus vortens using confocal fluorescence microscopy. The results show that the specific nature of the naphthalimide structure serves to control the uptake and intracellular localization of these imaging agents. Significant differences were noted between the free ligands and complexes, with the Re(I) complex of L(2) showing hydrogenosomal localization in S. vortens.

  5. Acoustic fingerprints of photoacoustic contrast agents for molecular imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2007-02-01

    Protein nanospheres capable of frequency controlled oscillation in response to laser stimulation are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by dye-labeled protein nanospheres causes thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and greater than 2 orders of magnitude increase in signal amplitude subsequent to converting labeled proteins into nanospheres. Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of protein nanospheres in phantom vessels show enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  6. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    EPA Science Inventory

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  7. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    NASA Astrophysics Data System (ADS)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.

  8. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B. M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S. R.

    2009-09-01

    Photoacoustic tomography (PAT) is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. The ability to quantitatively and non-invasively image nanoparticles has important implications for the development of nanoparticles as in vivo cancer diagnostic and therapeutic agents. In this study, the ability of systemically administered poly(ethylene glycol)-coated (PEGylated) gold nanoparticles as a contrast agent for in vivo tumor imaging with PAT has been evaluated. We demonstrate that gold nanoparticles (20 and 50 nm) have high photoacoustic contrast as compared to mouse tissue ex vivo. Gold nanoparticles can be visualized in mice in vivo following subcutaneous administration using PAT. Following intravenous administration of PEGylated gold nanoparticles to tumor-bearing mice, accumulation of gold nanoparticles in tumors can be effectively imaged with PAT. With gold nanoparticles as a contrast agent, PAT has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  9. Effect of Nanotechnology Instructions on Senior High School Students

    ERIC Educational Resources Information Center

    Lu, Chow-Chin; Sung, Chia-Chi

    2011-01-01

    In this research, we cooperate with senior high school teachers to understand current nanotechnology model of senior high school nanotechnology curriculum in Taiwan. Then design senior high school nanotechnology (nano-tech) curriculum to teach 503 senior high school students. After teaching the nano-tech curriculum we use the "Nanotechnology…

  10. Recent progress in understanding the imaging and metrology using the helium ion microscope

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladar, Andras E.; Ming, Bin

    2009-05-01

    Nanotechnology is pushing imaging and measurement instrument technology to high levels of required performance. As this continues, new barriers confronting innovation in this field are encountered. Particle beam instrument resolution remains one of these barriers. A new tool for imaging and metrology for nanotechnology is the scanning Helium Ion Microscope (HIM). The HIM is a new approach to imaging and metrology for nanotechnology which may be able to push this barrier lower. As a new methodology, it is just beginning to show promise and the number of potentially advantageous applications for nanotechnology and nanometrology has yet to be fully exploited. This presentation will discuss some of the progress made at NIST in collaboration with the manufacturing community in understanding the imaging and metrology for this new technology.

  11. Standardisation in the field of nanotechnology: some issues of legitimacy.

    PubMed

    Forsberg, Ellen-Marie

    2012-12-01

    Nanotechnology will allegedly have a revolutionary impact in a wide range of fields, but has also created novel concerns about health, safety and the environment (HSE). Nanotechnology regulation has nevertheless lagged behind nanotechnology development. In 2004 the International Organization for Standardization established a technical committee for producing nanotechnology standards for terminology, measurements, HSE issues and product specifications. These standards are meant to play a role in nanotechnology development, as well as in national and international nanotechnology regulation, and will therefore have consequences for consumers, workers and the environment. This paper gives an overview of the work in the technical committee on nanotechnology and discusses some challenges with regard to legitimacy in such work. The paper focuses particularly on stakeholder involvement and the potential problems of scientific robustness when standardising in such early stages of the scientific development. The intention of the paper is to raise some important issues rather than to draw strong conclusions. However, the paper will be concluded with some suggestions for improving legitimacy in the TC 229 and a call for increased public awareness about standardisation in the field of nanotechnology.

  12. Machine Phase Fullerene Nanotechnology: 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  13. NanoDesign: Concepts and Software for a Nanotechnology Based on Functionalized Fullerenes

    NASA Technical Reports Server (NTRS)

    Globus, Al; Jaffe, Richard; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Eric Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. While attractive, diamonoid nanotechnology is not physically accessible with straightforward extensions of current laboratory techniques. We propose a nanotechnology based on functionalized fullerenes and investigate carbon nanotube based gears with teeth added via a benzyne reaction known to occur with C60. The gears are single-walled carbon nanotubes with appended coenzyme groups for teeth. Fullerenes are in widespread laboratory use and can be functionalized in many ways. Companion papers computationally demonstrate the properties of these gears (they appear to work) and the accessibility of the benzyne/nanotube reaction. This paper describes the molecular design techniques and rationale as well as the software that implements these design techniques. The software is a set of persistent C++ objects controlled by TCL command scripts. The c++/tcl interface is automatically generated by a software system called tcl_c++ developed by the author and described here. The objects keep track of different portions of the molecular machinery to allow different simulation techniques and boundary conditions to be applied as appropriate. This capability has been required to demonstrate (computationally) our gear's feasibility. A new distributed software architecture featuring a WWW universal client, CORBA distributed objects, and agent software is under consideration. The software architecture is intended to eventually enable a widely disbursed group to develop complex simulated molecular machines.

  14. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    PubMed

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  15. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens.

    PubMed

    Bokhari, Habib

    2018-03-07

    Emerging infectious diseases remain among the leading causes of global mortality. Traditional laboratory diagnostic approaches designed to detect and track infectious disease agents provide a framework for surveillance of bio threats. However, surveillance and outbreak investigations using such time-consuming approaches for early detection of pathogens remain the major pitfall. Hence, reasonable real-time surveillance systems to anticipate threats to public health and environment are critical for identifying specific aetiologies and preventing the global spread of infectious disease. The current review discusses the growing need for monitoring and surveillance of pathogens with the same zeal and approach as adopted by microbial forensics laboratories, and further strengthening it by integrating with the innovative nanotechnology for rapid detection of microbial pathogens. Such innovative diagnostics platforms will help to track pathogens from high risk areas and environment by pre-emptive approach that will minimize damages. The various scenarios with the examples are discussed where the high risk associated human pathogens in particular were successfully detected using various nanotechnology approaches with potential future prospects in the field of microbial forensics.

  16. Responsible nanotechnology development

    NASA Astrophysics Data System (ADS)

    Forloni, Gianluigi

    2012-08-01

    Nanotechnologies have an increasing relevance in our life, numerous products already on the market are associated with this new technology. Although the chemical constituents of nanomaterials are often well known, the properties at the nano level are completely different from the bulk materials. Independently from the specific application the knowledge in this field involves different type of scientific competence. The accountability of the nanomaterial research imply the parallel development of innovative methodological approaches to assess and manage the risks associated to the exposure for humans and environmental to the nanomaterials for their entire life-cycle: production, application, use and waste discharge. The vast numbers of applications and the enormous amount of variables influencing the characteristics of the nanomaterials make particularly difficult the elaboration of appropriate nanotoxicological protocols. According to the official declarations exist an awareness of the public institutions in charge of the regulatory system, about the environmental, health and safety implications of nanotechnology, but the scientific information is insufficient to support appropriate mandatory rules. Public research programmers must play an important role in providing greater incentives and encouragement for nanotechnologies that support sustainable development to avoid endangering humanity's well being in the long-term. The existing imbalance in funds allocated to nanotech research needs to be corrected so that impact assessment and minimization and not only application come high in the agenda. Research funding should consider as a priority the elimination of knowledge gaps instead of promoting technological application only. With the creation of a public register collecting nanomaterials and new applications it is possible, starting from the information available, initiate a sustainable route, allowing the gradual development of a rational and informed approach to

  17. Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.

    PubMed

    Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego

    2006-05-01

    To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for

  18. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  19. Nanotechnology in Science and Art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearinger, J

    2007-02-21

    The burgeoning field of nanotechnology opens windows between science and art. Exploration of this interplay encourages interaction between scientists, artists and educators alike. The image below serves as an example of the fertile ground for exchange. The substrate that this image captures is made of silicon, the material from which computer chips are made. A thin ({approx}1 nm thick) chemical coating was applied homogeneously to the silicon. Specific regions of the coating, 600 nm wide (approximately 150 times smaller than the diameter of a human hair), were then locally removed from the silicon via photocatalytic nanolithography (PCNL(Bearinger, Hiddessen et al.more » 2005)). PCNL engages light, such as from a light emitting diode or an ultraviolet source, to activate molecules that are attached to a transparent mask above the silicon substrate. These molecules can be compounds similar to chlorophyll, the photoactive material that aids plants in photosynthesis, or may be semiconductor materials, such as TiO{sub 2}. Once these molecules are activated, chemical reactions result in local destruction of the coating on the silicon. Thus, only regions of the coated silicon in close contact with mask are affected. A non-fouling polymer hydrogel ({approx}10 nm thick) was then grafted to the retained coating. Hydrogels are superabsorbent and are therefore used on the bulk scale in common items including contact lenses and diapers. They also find utility in topical drug delivery and tissue engineering applications. Because the hydrogel is so absorbent, exposing the silicon chip with patterned hydrogel to water vapor from one's breath reveals the pattern that the lithography dictates(Lopez, Biebuyck et al. 1993). The myriad of colors seen in the image are due to optical interference. The thickness of the swollen layer determines the colors that are visible. While the field of view immediately following hydration appears like a big drop of oil shining in the sun, the oil

  20. Simplifying Skin Disease Diagnosis with Topical Nanotechnology.

    PubMed

    Yeo, David C; Xu, Chenjie

    2018-05-01

    A new study published in the journal Nature Biomedical Engineering 1 documents a novel diagnostic technology that exploits topically applied nanotechnology to detect skin tissue biomarkers for diagnosis. This concept is demonstrated by noninvasively imaging connective tissue growth factor (CTGF) mRNA in abnormal scar cells, whole tissue, and animal models. In this commentary, we highlight the main findings and discuss their implications. Successful implementation in the clinic could give rise to self-applied, biopsy-free diagnostic technology and significantly reduce healthcare burden. Crucially, noninvasive visualization of disease biomarkers, mobile device signal acquisition, and Internet-enabled transmission could significantly transform the diagnosis of skin disease and other superficial tissues.

  1. Computational Nanotechnology Molecular Electronics, Materials and Machines

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  2. Nanotechnology and health: From boundary object to bodily intervention

    NASA Astrophysics Data System (ADS)

    Perry, Karen-Marie Elah

    Nanotechnology is commonly understood to involve the manipulation of individual molecules and atoms. Increasingly, healthcare practices in British Columbia are articulated through the nanotechnological in relationship to the body. The hope for better treatment and diagnosis of disease is located in the specificity of nanotechnological applications -- the finely tuned targeting of cells and treatments geared towards individual molecular profiles. However, this same specificity also alarms regulators, activists and consumer groups in the potential for increased toxicity. Drawing from participant observation, ethnographic interviews, and theoretical orientations adopted by Susan Leigh Star and Jeffrey Bowker, this thesis explores three questions: 1) How can nanotechnology inhabit multiple contexts at once and have both local and shared meaning; 2) How can people who live in one community draw their meanings from people and objects situated there and communicate with those inhabiting another; and 3) What moral and political consequences attend each of these questions? Keywords: nanotechnology; medical anthropology; anthropology of the body; science studies; critical theory; feminist theory; ethnography; qualitative research; biomedicine; nanotoxicology; bionanotechnology; British Columbia; Canada; nanomedicine; medical nanotechnology.

  3. Development of a Model for the Representation of Nanotechnology-Specific Terminology

    PubMed Central

    Bailey, LeeAnn O.; Kennedy, Christopher H.; Fritts, Martin J.; Hartel, Francis W.

    2006-01-01

    Nanotechnology is an important, rapidly-evolving, multidisciplinary field [1]. The tremendous growth in this area necessitates the establishment of a common, open-source terminology to support the diverse biomedical applications of nanotechnology. Currently, the consensus process to define and categorize conceptual entities pertaining to nanotechnology is in a rudimentary stage. We have constructed a nanotechnology-specific conceptual hierarchy that can be utilized by end users to retrieve accurate, controlled terminology regarding emerging nanotechnology and corresponding clinical applications. PMID:17238469

  4. Role of Nanotechnology in Erectile Dysfunction Treatment.

    PubMed

    Wang, Alice Y; Podlasek, Carol A

    2017-01-01

    The biological importance of nanotechnology-based delivery vehicles for in vivo tissue regeneration is gaining acceptance by the medical community; however, its relevance and incorporation into the treatment of sexual dysfunction are evolving and have not been well evaluated. To provide scientific evidence examining the use of state-of-the-art nanotechnology-based delivery methodology in the treatment of erectile dysfunction (ED) in animal models and in patients. This review assessed the current basic science literature examining the role of nanotechnology-based delivery vehicles in the development of potential ED therapies. There are four primary areas where nanotechnology has been applied for ED treatment: (i) topical delivery of drugs for on-demand erectile function, (ii) injectable gels into the penis to prevent morphologic changes after prostatectomy, (iii) hydrogels to promote cavernous nerve regeneration or neuroprotection, and (iv) encapsulation of drugs to increase erectile function (primarily of phosphodiesterase type 5 inhibitors). Basic science studies provide evidence for a significant and evolving role for nanotechnology in the development of therapies for ED and suggest that properly administered nano-based therapies might be advantageous for treating male sexual dysfunction. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  5. Optimal Learning for Efficient Experimentation in Nanotechnology and Biochemistry

    DTIC Science & Technology

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0018 Optimal Learning for Efficient Experimentation in Nanotechnology , Biochemistry Warren Powell TRUSTEES OF PRINCETON...3. DATES COVERED (From - To) 01-07-2012 to 30-09-2015 4. TITLE AND SUBTITLE Optimal Learning for Efficient Experimentation in Nanotechnology and...in Nanotechnology and Biochemistry Principal Investigators: Warren B. Powell Princeton University Department of Operations Research and

  6. Development of New Contrast Agents for Imaging Function and Metabolism by Magnetic Resonance Imaging

    PubMed Central

    Carvalho, Alexandra; Gonçalves, M Clara; Corvo, M Luísa; Martins, M Bárbara F

    2017-01-01

    Liposomes are interesting nanosystems with a wide range of medical application. One particular application is their ability to enhance contrast in magnetic resonance images; when properly loaded with magnetic/superparamagnetic nanoparticles, this means to act as contrast agents. The design of liposomes loaded with magnetic particles, magnetoliposomes, presents a large number of possibilities depending on the application from image function to metabolism. More interesting is its double function application as theranostics (diagnostics and therapy). The synthesis, characterization, and possible medical applications of two types of magnetoliposomes are reviewed. Their performance will be compared, in particular, their efficiency as contrast agents for magnetic resonance imaging, measured by their relaxivities r1 and r2 relating to their particular composition. One of the magnetoliposomes had 1,2-diacyl-sn-glycero-3-phosphocholine (soy) as the main phospholipid component, with and without cholesterol, varying its phospholipid to cholesterol molar ratios. The other formulation is a long-circulating liposome composed of 1,2-diacyl-sn-glycero-3-phosphocholine (egg), cholesterol, and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. Both nanosystems were loaded with superparamagnetic iron oxide nanoparticles with different sizes and coatings. PMID:28804244

  7. Towards a framework for agent-based image analysis of remote-sensing data.

    PubMed

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  8. Engaging Undergraduates through Interdisciplinary Research in Nanotechnology

    ERIC Educational Resources Information Center

    Goonewardene, Anura U.; Offutt, Christine; Whitling, Jacqueline; Woodhouse, Donald

    2012-01-01

    To recruit and retain more students in all science disciplines at our small (5,000 student) public university, we implemented an interdisciplinary strategy focusing on nanotechnology and enhanced undergraduate research. Inherently interdisciplinary, the novelty of nanotechnology and its growing career potential appeal to students. To engage…

  9. The structure and infrastructure of the global nanotechnology literature

    NASA Astrophysics Data System (ADS)

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G. Y.; Tolles, William M.

    2006-08-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective. The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.

  10. Nanotechnology in dentistry: prevention, diagnosis, and therapy.

    PubMed

    Abou Neel, Ensanya Ali; Bozec, Laurent; Perez, Roman A; Kim, Hae-Won; Knowles, Jonathan C

    2015-01-01

    Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation.

  11. Nanotechnology in dentistry: prevention, diagnosis, and therapy

    PubMed Central

    Abou Neel, Ensanya Ali; Bozec, Laurent; Perez, Roman A; Kim, Hae-Won; Knowles, Jonathan C

    2015-01-01

    Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. PMID:26504385

  12. Nanotechnology - A path forward for developing nations

    NASA Astrophysics Data System (ADS)

    Shah, S. Ismat; Powers, Thomas M.

    2015-10-01

    One of the major issues with technology in general, and nanotechnology in particular, is that it could exacerbate the divide between developed and developing nations. If the benefits of the research do not flow beyond the national and geographical borders of the traditional major bastions of R&D, these benefits will not be equally and globally available. The consequence is that the technological divide becomes wider at the expense of mutual reliance. As much as developed nations need to rethink the strategy and the policy to bring nanotechnology products to market with the goal of global prosperity, developing nations cannot afford to simply wait for the lead from the developed nations. In the spirit of collaboration and collegiality, we describe issues with the current practices in nanotechnology R&D in the developing world and suggest a path for nanotechnology research in energy, water and the environment that developing nations could follow in order to become contributors rather than simply consumers.

  13. Quantifying cancer cell receptors with paired-agent fluorescent imaging: a novel method to account for tissue optical property effects

    NASA Astrophysics Data System (ADS)

    Sadeghipour, Negar; Davis, Scott C.; Tichauer, Kenneth M.

    2018-02-01

    Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.

  14. Targeting Ovarian Cancer with Porphysome Nanotechnology

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0442 TITLE: Targeting Ovarian Cancer with Porphysome Nanotechnology PRINCIPAL INVESTIGATOR: Gang Zheng CONTRACTING...Ovarian Cancer with Porphysome Nanotechnology 5b. GRANT NUMBER W81XWH-13-1-0442 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Gang Zheng...the intrinsic multimodal nature of porphyrin-assembled nanoparticles confers high potential for cancer theranostics and clinical translation

  15. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    PubMed Central

    Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter

    2014-01-01

    Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922

  16. Investigation of fluorocarbon blowing agents in insulating polymer foams by 19F NMR imaging.

    PubMed

    Fyfe, C A; Mei, Z; Grondey, H

    1996-01-01

    Currently, there is no reliable and readily accessible technique with which the distribution and diffusion of blowing agents in rigid insulating foams can be detected and monitored. In this paper, we demonstrate that 19F NMR microscopic imaging together with 19F solid-state MAS NMR spectroscopy is ideally suited for such measurements and yield quantitatively reliable information that will be critical to the development and fabrication of optimized insulating materials with alternative blowing agents. Polystyrene (PS) and polyurethane (PU) foam samples were investigated with the objective of determining quantitatively the amount of blowing agents in the gaseous phase and dissolved in the polymer phase, and to determine and monitor the distribution of the blowing agents in aged foams as a function of time and temperature. The concentrations of the gaseous blowing agents in the cells and dissolved in the solid were simultaneously and quantitatively measured by 19F MAS NMR spectroscopy. An unfaced 1-yr-old PS foam filled with CH3CF2Cl has about 13% of total HCFCs dissolved in the solid; while there is about 24% of HCFCs in the solid of a faced 3-mos-old PU foam filled with CH3CCl2F. The data from 19F NMR imaging demonstrate that the distributions of the blowing agents in an aged foam are quite uniform around the center part (2 cm away from any edge) of a foam board; however, a gradient in blowing agent concentration was found as a function of distance from the initial factory cut edge. The effective diffusion coefficients of the blowing agents can be directly calculated from the imaging data. Quantitative diffusion constants and activation barriers were determined. Additionally, a foam treated with a second blowing agent was monitored with chemical shift selective imaging and the diffusion of the second gas into the foam and the out-diffusion of the original gas were determined.

  17. Reductionist Approach in Peptide-Based Nanotechnology.

    PubMed

    Gazit, Ehud

    2018-06-20

    The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.

  18. Toward Sustainable Anticipatory Governance: Analyzing and Assessing Nanotechnology Innovation Processes

    NASA Astrophysics Data System (ADS)

    Foley, Rider Williams

    Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process

  19. Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach

    DTIC Science & Technology

    2016-03-01

    Award Number: W81XWH-12-1-0323 TITLE: Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach PRINCIPAL...SUBTITLE Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...increasing its sensitivity and specificity through nanotechnology . Hypothesis: Detection of DNA methylation from individuals with cancer can be used to

  20. Nanotechnology and Environmental, Health, and Safety: Issues for Consideration

    DTIC Science & Technology

    2008-08-06

    be required. J. Clarence Davies, senior advisor to the Project on Emerging Nanotechnologies and former EPA Assistant Administrator for Policy...and the applications become more diverse. CRS-25 54 Davies, J. Clarence . Managing the Effects of Nanotechnology, Project on Emerging Nanotechnologies...August 2, 2007. 67 Davies, J. Clarence , testimony, EPA Public Meeting on Nanoscale Materials Stewardship Program, August 2, 2007. [http

  1. The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues

    DTIC Science & Technology

    2010-03-18

    and Health, July 2006. 91 Progress Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health, June 2007. 92...2007. Progress Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health. June 2007. Approaches to Safe...Nanotechnology in the Workplace , National Institute for Occupational Safety and Health. July 2006. Nanoscale Science, Engineering, and Technology in

  2. The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues

    DTIC Science & Technology

    2010-05-13

    Health, July 2006. 91 Progress Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health, June 2007. 92 NIOSH...Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health. June 2007. Approaches to Safe Nanotechnology in...the Workplace , National Institute for Occupational Safety and Health. July 2006. Nanoscale Science, Engineering, and Technology in DOE’s Office of

  3. Nanotechnology in dentistry: Present and future

    PubMed Central

    Bhardwaj, Archana; Bhardwaj, Abhishek; Misuriya, Abhinav; Maroli, Sohani; Manjula, S; Singh, Arvind Kumar

    2014-01-01

    Nanotechnology is the manipulation of matter on the molecular and atomic levels. It has the potential to bring enormous changes into the fields of medicine and dentistry. A day may soon come when nanodentistry will succeed in maintaining near-perfect oral health through the aid of nanorobotics, nanomaterials and biotechnology. However, as with all developments, it may also pose a risk for misuse. Time, economical and technical resources, and human needs will determine the direction this revolutionizing development may take. This article reviews the current status and the potential clinical applications of nanotechnology, nanaomedicine and nanodentistry. How to cite the article: Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: Present and future. J Int Oral Health 2013;6(1):121-6. PMID:24653616

  4. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    PubMed

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Potential of nanotechnology as a delivery platform against tuberculosis: current research review.

    PubMed

    Choudhary, S; Kusum Devi, V

    2015-03-28

    This review focusses on the current ongoing research in the field of tuberculosis comprising the resistant strains. It specifies a proper data analysis with results in concise form from areas gripping in: diagnostic nanotechnology, vaccine nanotechnology and the prime field of interest i.e., therapeutic nanotechnology. Primarily, therapeutic area recollects the research findings from advanced drug delivery (primary era) to the targeted drug delivery (modern era). The vaccine-based area derives the immune-specific targeting with enhanced emphasis on vaccine extraction and preparation of nanoparticles. Finally, the diagnostic area signifies the imaging techniques that may be employed in the diagnosis of TB. Not only that, there are some researches that emphasized on finding the comparable diagnostic differences between normal and resistant strains. With the advent of carbon nanotubes, metallic NPs, a newer hope has emerged out in diagnostic research, which may extend to therapeutic research applications too. Modifications of natural polymers, least or no use of organic solvents, size controlled NPs, optimized methodology, etc., are fields that need more effort to bypass toxicity. If above desired possibilities get the priority during research, it may lead to shift in the timeline towards much more oriented research. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review.

    PubMed

    Bayford, Richard; Rademacher, Tom; Roitt, Ivan; Wang, Scarlet Xiaoyan

    2017-07-24

    Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges that need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targeting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to their size and physical properties; hence there is still a great need to improve physiological measurement methods in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future.

  7. A proposed CT contrast agent using carboxybetaine zwitterionic tantalum oxide nanoparticles: Imaging, biological, and physicochemical performance

    PubMed Central

    FitzGerald, Paul F.; Butts, Matthew D.; Roberts, Jeannette C.; Colborn, Robert E.; Torres, Andrew S.; Lee, Brian D.; Yeh, Benjamin M.; Bonitatibus, Peter J.

    2016-01-01

    Objectives To produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ) coated soluble tantalum oxide nanoparticles (CZ-TaO NPs). We chose tantalum to provide superior imaging performance compared to current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. The aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared to clinically-used iodinated agents. Materials and Methods We evaluated CT imaging performance of our CZ-TaO NPs compared to an iodinated agent in live rats, imaged centrally-located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats’ great vessels at high temporal resolution during and following contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. CZ-TaO NPs were synthesized and analyzed in detail. We used multi-dimensional nuclear magnetic resonance (NMR) to determine surface functionality of the nanoparticles. We measured nanoparticle size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations, including

  8. The Legitimation of Novel Technologies: The Case of Nanotechnology

    NASA Astrophysics Data System (ADS)

    Thyroff, Anastasia E.

    Nanotechnology is the control, manipulation, and application of matter on an atomic and molecular level. The technology is complex and confusing to consumers, and its long-term safety and effect on the human body, as well as the environment, are unknown. However, for the past decade, nanotechnology has been used to develop consumer products and food with novel and attractive attributes. Since nanotechnology is still not well known, it is not legitimized; that is, it has not been deemed safe and accepted by society. However, the market for nanotechnology is in the legitimation process. It will take an entire network of key stakeholders playing a specific roles for nanotechnology to legitimize. Specifically, each key stakeholder will align with a certain cultural discourse to frame nanotechnology in a particular way that complements their values. In Essay 1, I follow previous market system dynamic's literature and combine Actor Network Theory (ANT), Foucault's Discourse on Power and Goffman's Frame analysis to theoretically explore what the actor network for nanotechnology looks like. Four dominate frames are identified: 1) Advancement (i.e., government), 2) Management (i.e., industry), 3) Development (i.e., academia/scientists), and 4) Informant (i.e., NGO). Essay 2 empirically explores each actor's perspective on the nanotechnology network through a total of 24 interviews. A hermeneutic approach is used to analyze the 208 page text and themes describing each actor's role from a self and other's perspective are discussed. Additionally, three overarching themes (i.e., contradiction, constance, and cutoff) emerge; these themes describe the degree of similarity in how actors view their role in the nanotechnology network compared to how other actor's view that actor's role. In Essay 3, I bring critical theory into market system's research to better contextualize market formation theories. Specifically, I discuss how critical theory can be used to supplement ANT. I

  9. Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.

    PubMed

    Borlongan, Cesar V; Masuda, Tadashi; Walker, Tiffany A; Maki, Mina; Hara, Koichi; Yasuhara, Takao; Matsukawa, Noriyuki; Emerich, Dwaine F

    2007-11-01

    Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.

  10. Grand Challenges: Nanotechnology and the Social Studies

    ERIC Educational Resources Information Center

    Manfra, Meghan McGlinn

    2013-01-01

    This article explores a multidisciplinary lesson on nanotechnology that can provide an effective means for teaching about both STEM and social studies topics. This approach encourages students to consider the "role that science and technology play in our lives and in our cultures." The extraordinary promise of nanotechnology, however, is…

  11. Potentials of nanotechnology application in forest protection

    Treesearch

    Yadong Qi; K. Lian; Q. Wu; Y. Li; M. Danzy; R. Menard; K.L. Chin; D. Collins; F. Oliveria; Kier Klepzig

    2013-01-01

    This joint research project formed by Southern University, Louisiana State University, and the USDA Forest Service focuses on applying nanotechnology in forest health and natural resource management. The targeted nanotechnology is derived from a new generation of renewable composite nano-material called Copper-Carbon Core-Shell Nanoparticles (CCCSNs), which have...

  12. Engines of Second Creation: Stories about Nanotechnology

    ERIC Educational Resources Information Center

    Shew, Ashley

    2013-01-01

    We are in a position today to appreciate the ambiguity of technologies: that they are good, and bad, and neutral and present challenges in different ways. Reading U.S. national nanotechnology documents and histories of nanotechnology, one finds that rhetoric idealizing progress without serious consideration of negative side-effects remains…

  13. Novel receptor-targeted contrast agents for optical imaging of tumors

    NASA Astrophysics Data System (ADS)

    Becker, Andreas; Hessenius, Carsten; Bhargava, Sarah; Ebert, Bernd; Sukowski, Uwe; Rinneberg, Herbert H.; Wiedenmann, Bertram; Semmler, Wolfhard; Licha, Kai

    2000-04-01

    Many gastroenteropancreatic tumors express receptors for somatostatin (SST) and/or vasoactive intestinal peptide (VIP). These receptors can be used as molecular targets for the delivery of contrast agents for tumor diagnostics. We have synthesized conjugates consisting of a cyanine dye and an SST analogue or VIP for use as contrast agents in optical imaging. Receptor binding and internalization of these compounds were examined with optical methods in transfected RIN38 tumor cells expressing the SST2 receptor or a GFP- labeled VIP (VPAC1) receptor. Furthermore, biodistribution of the conjugates was examined by laser-induced fluorescence imaging in nude mice bearing SST2 or VPAC1 receptor- expressing tumors. After incubation of RIN38 SSTR2 cells in the presence of 100 nM indotricarbocyanine-SST analogue, cell-associated fluorescence increased, whereas no increase was observed when receptor-medicated endocytosis was inhibited. Indodicarbocyanine-VIP accumulated in RIN38 VPAC1 cells and co-localization with the GFP-labeled VPAC1 receptor was observed. After injection of indotricarbocyanine-SST analogue into tumor-bearing nude mice, SST2 receptor-positive tumors could be visualized for a time period from 10 min to at least 48 h. After application of indodicarbocyanine-VIP, a fluorescence signal in VIP1 receptor-expressing tumors was only detected during the first hour. We conclude that cyanine dye-labeled VIP and SST analogue are novel, targeted contrast agents for the optical imaging of tumors expressing the relevant receptor.

  14. Future Directions of the National Nanotechnology Initiative - NNI 2.0

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2017-01-01

    The National Nanotechnology Initiative is a collaboration of 20 Federal agencies and departments with shared interests in nanotechnology research, development and commercialization. These agencies recognize that the ability to understand and exploit the novel phenomena that occur at the nanoscale will enabled the development of new materials and devices with properties and performance that far exceeds that of conventional systems. Due to the combined investments of the Federal government, now close to $24B, and those of industry, nanotechnology has moved out of the laboratory and into commercial products that are enhancing our daily lives. Nanotechnology-based discoveries are poised to revolutionize the way we diagnose and treat disease, radically improve the energy efficiency of aircraft and ground transportation systems, and will someday enable human exploration of Mars. This presentation will provide an overview of the National Nanotechnology Initiative, highlight some accomplishments in nanotechnology research and development, and discuss the future of the initiative.

  15. Factors influencing societal response of nanotechnology: an expert stakeholder analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Nidhi; Fischer, Arnout R. H.; van der Lans, Ivo A.; Frewer, Lynn J.

    2012-05-01

    Nanotechnology can be described as an emerging technology and, as has been the case with other emerging technologies such as genetic modification, different socio-psychological factors will potentially influence societal responses to its development and application. These factors will play an important role in how nanotechnology is developed and commercialised. This article aims to identify expert opinion on factors influencing societal response to applications of nanotechnology. Structured interviews with experts on nanotechnology from North West Europe were conducted using repertory grid methodology in conjunction with generalized Procrustes analysis to examine the psychological constructs underlying societal uptake of 15 key applications of nanotechnology drawn from different areas (e.g. medicine, agriculture and environment, chemical, food, military, sports, and cosmetics). Based on expert judgement, the main factors influencing societal response to different applications of nanotechnology will be the extent to which applications are perceived to be beneficial, useful, and necessary, and how 'real' and physically close to the end-user these applications are perceived to be by the public.

  16. Chemical addressability of potato virus X for its applications in bio/nanotechnology.

    PubMed

    Le, Duc H T; Hu, He; Commandeur, Ulrich; Steinmetz, Nicole F

    2017-12-01

    Potato virus X (PVX), a type member of the plant virus potexvirus group, offers a unique nanotechnology platform based on its high aspect ratio and flexible filamentous shape. The PVX platform has already been engineered and studied for its uses in imaging, drug delivery, and immunotherapies. While genetic engineering procedures are well established for PVX, there is limited information about chemical conjugation strategies for functionalizing PVX, partly due to the lack of structural information of PVX at high resolution. To overcome these challenges, we built a structural model of the PVX particle based on the available structures from pepino mosaic virus (PepMV), a close cousin of PVX. Using the model and a series of chemical conjugation experiments, we identified and probed the addressability of cysteine side chains. Chemical reactivity of cysteines was confirmed using Michael-addition and thiol-selective probes, including fluorescent dyes and biotin tags. LC/MS/MS was used to map Cys 121 as having the highest selectivity for modification. Finally, building on the availability of two reactive groups, the newly identified Cys and previously established Lys side chains, we prepared multifunctional PVX nanoparticles by conjugating Gd-DOTA for magnetic resonance imaging (MRI) to lysines and fluorescent dyes for optical imaging to cysteines. The resulting functionalized nanofilament could have applications in dual-modal optical-MRI imaging applications. These results further extend the understanding of the chemical properties of PVX and enable development of novel multifunctional platforms in bio/nanotechnology. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Published Research - NCI Alliance for Nanotechnology in Cancer

    Cancer.gov

    The NCI Alliance for Nanotechnology in Cancer has published much exciting and impactful research over the years. Find here a list of all of these listed in PubMed and others across the field of Cancer Nanotechnology.

  18. Towards a framework for agent-based image analysis of remote-sensing data

    PubMed Central

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-01-01

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916

  19. Nanotechnology, nanotoxicology, and neuroscience

    PubMed Central

    Suh, Won Hyuk; Suslick, Kenneth S.; Stucky, Galen D.; Suh, Yoo-Hun

    2009-01-01

    Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back ∼30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer’s disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials. PMID:18926873

  20. How interdisciplinary is nanotechnology?

    NASA Astrophysics Data System (ADS)

    Porter, Alan L.; Youtie, Jan

    2009-07-01

    Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using "science overlay maps" of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative—but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos.

  1. Using a Deliberative Exercise to Foster Public Engagement in Nanotechnology

    ERIC Educational Resources Information Center

    Jones, Angela R.; Anderson, Ashley A.; Yeo, Sara K.; Greenberg, Andrew E.; Brossard, Dominique; Moore, John W.

    2014-01-01

    Nanotechnology is an emerging technology poised to benefit society both technically and socially, but as with any new advance, there is potential risk. This paper describes a novel deliberative exercise involving nanotechnology that engages the public in debate regarding the funding of nanotechnology-related research while also discussing…

  2. Nanotechnology in cosmetics: Opportunities and challenges

    PubMed Central

    Raj, Silpa; Jose, Shoma; Sumod, U. S.; Sabitha, M.

    2012-01-01

    Nanotechnology is the science of manipulating atoms and molecules in the nanoscale - 80,000 times smaller than the width of a human hair. The world market for products that contain nanomaterials is expected to reach $2.6 trillion by 2015. The use of nanotechnology has stretched across various streams of science, from electronics to medicine and has now found applications in the field of cosmetics by taking the name of nanocosmetics. This widespread influence of nanotechnology in the cosmetic industries is due to the enhanced properties attained by the particles at the nano level including color, transparency, solubility etc. The different types of nanomaterials employed in cosmetics include nanosomes, liposomes, fullerenes, solid lipid nanoparticles etc. Recently, concerns over the safety of such nanocosmetics are raised and have forced the cosmetic industries to limit the use of nanotechnology in cosmetics and for enforcing laws to undergo a full-fledged safety assessment before they enter into the market. In this review, emphasis is made on the types of nanomaterials used in cosmetics by the various cosmetic brands, the potential risks caused by them both to human life and also to the environment and what all regulations have been undertaken or can be taken to overcome them. PMID:22923959

  3. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice

    DOE PAGES

    Fan, Quli; Cheng, Kai; Yang, Zhen; ...

    2014-11-06

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect

  4. Corporate social responsibility for nanotechnology oversight.

    PubMed

    Kuzma, Jennifer; Kuzhabekova, Aliya

    2011-11-01

    Growing public concern and uncertainties surrounding emerging technologies suggest the need for socially-responsible behavior of companies in the development and implementation of oversight systems for them. In this paper, we argue that corporate social responsibility (CSR) is an important aspect of nanotechnology oversight given the role of trust in shaping public attitudes about nanotechnology and the lack of data about the health and environmental risks of nanoproducts. We argue that CSR is strengthened by the adoption of stakeholder-driven models and attention to moral principles in policies and programs. In this context, we examine drivers of CSR, contextual and leadership factors that influence CSR, and strategies for CSR. To illustrate these concepts, we discuss existing cases of CSR-like behavior in nanotechnology companies, and then provide examples of how companies producing nanomedicines can exhibit morally-driven CSR behavior.

  5. Integrating Nanotechnology into School Education: A Review of the Literature

    ERIC Educational Resources Information Center

    Ghattas, Nadira I.; Carver, Jeffrey S.

    2012-01-01

    Background: In this era of rapid technical advancement, there are growing debates around the idea of nanotechnology, which are both timely and controversial. Nanotechnology materials are being utilized in our daily lives in many ways, often without consumer knowledge. Due to the explosion of nanotechnology applications, there is a necessity to…

  6. Nanotechnology applications in hematological malignancies (Review).

    PubMed

    Samir, Ahmed; Elgamal, Basma M; Gabr, Hala; Sabaawy, Hatem E

    2015-09-01

    A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up.

  7. Concrete Nanoscience and Nanotechnology: Definitions and Applications

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.

    There are many improvements needed in concrete, especially for use in renewal and expansion of the world’s infrastructure. Nanomodification can help solve many of these problems. However, concrete has been slow to catch on to the nanotechnology revolution. There are several reasons for this lag in the nanoscience and nanotechnology of concrete (NNC). First is the lack of a complete basic understanding of chemical and physical mechanisms and structure at the nanometer length scale. Another reason is the lack of a broad understanding of what nanomodification means to concrete, which is a liquid-solid composite. NNC ideas need to profit from, but not be bound by, experience with other materials. As an illustration of these ideas, a specific application will be given of using nano-size molecules in solution to affect the viscosity of the concrete pore solution so that ionic diffusion is slowed. A molecular-based understanding would help move this project towards true nanotechnology. A final section of this paper lists some possibly fruitful focus areas for the nanoscience and nanotechnology of concrete.

  8. Nanotechnology for sustainable development: retrospective and outlook

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-11-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth's global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  9. Applications of nanotechnology in dermatology.

    PubMed

    DeLouise, Lisa A

    2012-03-01

    What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintentional nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease outweigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology.

  10. Applications of Nanotechnology in Dermatology

    PubMed Central

    DeLouise, Lisa A.

    2014-01-01

    What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintended nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease, out weigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three different therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology. PMID:22217738

  11. Improving Peptide Applications Using Nanotechnology.

    PubMed

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  12. Strategic Partnership for Research in Nanotechnology

    DTIC Science & Technology

    2006-08-01

    S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Harold Weinstock, Program Manager, Physics and Electronics Directorate/M/ Air Force Office of...can be broken into two research areas "Nanotechnology for Energy Needs" and "Nanoelectronics". Highlights of both projects are outlines below. The...for Energy Needs" and "Nanoelectronics". Highlights of both projects are outlined below. 1. Nanotechnology for Energy Needs Developing new methods to

  13. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  14. Emerging Synergy between Nanotechnology and Implantable Biosensors: A Review

    PubMed Central

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-01-01

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interest. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology-based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. PMID:20042326

  15. PREFACE: TNT 2004: Trends in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Correia, Antonio; Serena, Pedro A.; Saenz, Juan Jose; Welland, Mark; Reifenberger, Ron

    2005-05-01

    This special issue of Nanotechnology presents representative contributions describing the main topics covered at the fifth `Trends in Nanotechnology' (TNT2004) international conference, held in Segovia, Spain, 13-17 September 2004. During the past few years many international or regional conferences have emerged in response to the growing awareness of the importance of nanotechnology as a key issue for the future of scientific and technological development. Among these, the conference series `Trends in Nanotechnology' (Toledo, Spain, 2000; Segovia, Spain, 2001; Santiago de Compostela, Spain, 2002; Salamanca, Spain, 2003; and Segovia, Spain, 2004) has become one of the most important meeting points in the nanotechnology field: it provides fresh ideas, brings together well-known speakers, and promotes a suitable environment for discussions, exchanging ideas, and enhancing scientific and personal relations among participants. TNT2004 was organized in a similar way to the four previous TNT conferences, with an impressive scientific programme, without parallel sessions, covering a wide spectrum of nanotechnology research. In 2004, more than 370 scientists worldwide attended this event and contributed more than 80 talks, 236 posters, and stimulating discussions about their most recent research. The aim of the conference was to focus on the applications of nanotechnology and to bring together, in a scientific forum, various worldwide groups belonging to industry, universities and government institutions. TNT2004 was particularly effective at transmitting information and establishing contacts among workers in this field. Graduate students attending such conferences understand the importance of interdisciplinary skills in facilitating their future lines of research. Sixty-four graduate students received a grant (from NASA, ONRIFO, IRC, iNANO, SME, NSERC/CRSNG, EU PHANTOMS Network or TNT) allowing them to present their work. During this event, 22 prizes for the best posters

  16. Nanotechnology in medicine and relevance to dermatology: present concepts.

    PubMed

    Basavaraj, K H

    2012-05-01

    Nanotechnology and nanomedicine are complementary disciplines aimed at the betterment of human life. Nanotechnology is an emerging branch of science for designing tools and devices of size 1-100 nm, with unique functions at the cellular, atomic and molecular levels. The concept of using nanotechnology in medical research and clinical practice is known as nanomedicine. Today, nanotechnology and nanoscience approaches to particle design and formulations are beginning to expand the market for many drugs and forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped. Under many conditions, dermal penetration of nanoparticles may be limited for consumer products such as sunscreens, although additional studies are needed on potential photooxidation products, experimental methods and the effect of skin condition on penetration. Today, zinc oxide and titanium dioxide nanoparticles (20-30 nm) are widely used in several topical skin care products such as sunscreens. Thus, in the present scenario, nanotechnology is spreading its wings to address the key problems in the field of medicine. The benefits of nanoparticles have been shown in several scientific fields, but very little is known about their potential to penetrate the skin. Hence, this review discusses in detail the applications of nanotechnology in medicine with more emphasis on the dermatologic aspects.

  17. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    PubMed Central

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  18. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.

    PubMed

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  19. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions

    PubMed Central

    Liang, Wenjie; Ni, Yicheng; Chen, Feng

    2016-01-01

    The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy. PMID:26812886

  20. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers

    PubMed Central

    Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.

    2014-01-01

    Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551

  1. 75 FR 75707 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY... the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology... confidential. Overview: The National Nanotechnology Initiative Strategy for Nanotechnology-Related...

  2. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  3. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review

    PubMed Central

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms. PMID:29520143

  4. DNA nanotechnology and fluorescence applications.

    PubMed

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent

    PubMed Central

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C.; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E.; Sherry, A. Dean

    2015-01-01

    Purpose This study explored the feasibility of using a pH responsive paraCEST agent to image the pH gradient in kidneys of healthy mice. Methods CEST signals were acquired on an Agilent 9.4 T small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Results Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min post-injection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. Conclusion This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. PMID:26173637

  6. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  7. Applied Nanotechnology for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  8. DNA as Sensors and Imaging Agents for Metal Ions

    PubMed Central

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  9. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  10. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  11. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  12. Nanotechnology in Agriculture

    USDA-ARS?s Scientific Manuscript database

    An overview is given of the application of nanotechnology to agriculture. This is an active field of R&D, where a large number of findings and innovations have been reported. For example, in soil management, applications reported include nanofertilizers, soil binders, water retention aids, and nut...

  13. Emerging synergy between nanotechnology and implantable biosensors: a review.

    PubMed

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-03-15

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  14. Carbon Based Nanotechnology: Review

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation reviews publicly available information related to carbon based nanotechnology. Topics covered include nanomechanics, carbon based electronics, nanodevice/materials applications, nanotube motors, nano-lithography and H2O storage in nanotubes.

  15. Nanotechnology in Cancer Research

    Cancer.gov

    The NCI Office of Cancer Nanotechnology Research has had a major impact on bringing novel nano-enabled solutions through the pre-clinical space. The strategic framework of this effort is presented here.

  16. Proflavine derivatives as fluorescent imaging agents of amyloid deposits.

    PubMed

    Garin, Dominique; Oukhatar, Fatima; Mahon, Andrew B; Try, Andrew C; Dubois-Dauphin, Michel; Laferla, Frank M; Demeunynck, Martine; Sallanon, Marcelle Moulin; Chierici, Sabine

    2011-04-15

    A series of proflavine derivatives for use to further image Aβ amyloid deposits were synthesized and characterized. Aged 3xTg-AD (23 months old) mice hippocampus sections incubated with these derivatives revealed preferential labeling of amyloid plaques. Furthermore an in vitro binding study showed an inhibitory effect, although moderate, of these compounds on Aβ(40) fibril formation. This study highlights the potential of proflavine as a molecular scaffold for designing new Aβ imaging agents, its native fluorescence allowing in vitro neuropathological staining in AD damaged brain sections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Comparative analysis of nanotechnology awareness in consumers and experts in South Korea.

    PubMed

    Kim, Yu-Ri; Lee, Eun Jeong; Park, Sung Ha; Kwon, Hyo Jin; An, Seong Soo A; Son, Sang Wook; Seo, Young Rok; Pie, Jae-Eun; Yoon, Myoung; Kim, Ja Hei; Kim, Meyoung-Kon

    2014-01-01

    This study examined the need for public communication about nanotechnologies and nanoparticles by providing a comparative analysis of the differences in risk awareness of nanotechnologies and nanoparticles between consumers and experts. A total of 1,007 consumers and 150 experts participated in this study. A questionnaire was prepared examining their awareness of nanotechnologies and nanomaterials and their view of the necessity for information and education about the latest nanotechnologies and nanomaterials. Our results indicated that the expert group recognized that they knew more than consumers about nanotechnology and that there was a need for relevant education in nanotechnology and nanomaterials among consumers. We found that the consumer group had a more positive attitude toward nanotechnology, even though they did not know much about it. Moreover, the consumer group was inconclusive about the type of information on nanotechnology deemed necessary for the public, as well as the suitable party to be responsible for education and for delivering the information. An education and promotion program targeting consumers should be established to overcome the differences between consumers and experts in their awareness of nanotechnology. Specifically, the establishment of concepts for nanomaterials or nanoproducts is required immediately. With clear standards on nanomaterials, consumers can make informed decisions in selecting nanoproducts in the market.

  18. Comparative analysis of nanotechnology awareness in consumers and experts in South Korea

    PubMed Central

    Kim, Yu-Ri; Lee, Eun Jeong; Park, Sung Ha; Kwon, Hyo Jin; An, Seong Soo A; Son, Sang Wook; Seo, Young Rok; Pie, Jae-Eun; Yoon, Myoung; Kim, Ja Hei; Kim, Meyoung-Kon

    2014-01-01

    Purpose This study examined the need for public communication about nanotechnologies and nanoparticles by providing a comparative analysis of the differences in risk awareness of nanotechnologies and nanoparticles between consumers and experts. Methods A total of 1,007 consumers and 150 experts participated in this study. A questionnaire was prepared examining their awareness of nanotechnologies and nanomaterials and their view of the necessity for information and education about the latest nanotechnologies and nanomaterials. Results Our results indicated that the expert group recognized that they knew more than consumers about nanotechnology and that there was a need for relevant education in nanotechnology and nanomaterials among consumers. We found that the consumer group had a more positive attitude toward nanotechnology, even though they did not know much about it. Moreover, the consumer group was inconclusive about the type of information on nanotechnology deemed necessary for the public, as well as the suitable party to be responsible for education and for delivering the information. Conclusion An education and promotion program targeting consumers should be established to overcome the differences between consumers and experts in their awareness of nanotechnology. Specifically, the establishment of concepts for nanomaterials or nanoproducts is required immediately. With clear standards on nanomaterials, consumers can make informed decisions in selecting nanoproducts in the market. PMID:25565823

  19. Paired-agent fluorescent imaging to detect micrometastases in breast sentinel lymph node biopsy: experiment design and protocol development

    NASA Astrophysics Data System (ADS)

    Li, Chengyue; Xu, Xiaochun; Basheer, Yusairah; He, Yusheng; Sattar, Husain A.; Brankov, Jovan G.; Tichauer, Kenneth M.

    2018-02-01

    Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 +/- 0.06 along the lymph node in the absence of binding. The results demonstrate this approach's potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.

  20. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    PubMed

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  1. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.

    PubMed

    FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J

    2016-12-01

    The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations

  2. [Nanotechnology: a big revolution from the small world].

    PubMed

    Bassi, Matteo; Santinello, Irene; Bevilacqua, Andrea; Bassi, Pierfrancesco

    2013-01-01

    Nanotechnology is a multidisciplinary field originating from the interaction of several different disciplines, such as engineering, physics, biology and chemistry. New materials and devices effectively interact with the body at molecular level, yielding a brand new range of highly selective and targeted applications designed to maximize the therapeutic efficiency while reducing the side effects. Liposomes, quantum dots, carbon nanotubes and superparamagnetic nanoparticles are among the most assessed nanotechnologies. Meanwhile, other futuristic platforms are paving the way toward a new scientific paradigm, able to deeply change the research path in the medical science. The growth of nanotechnology, driven by the dramatic advances in science and technology, clearly creates new opportunities for the development of the medical science and disease treatment in human health care. Despite the concerns and the on-going studies about their safety, nanotechnology clearly emerges as holding the promise of delivering one of the greatest breakthroughs in the history of medical science.

  3. Some cases in applications of nanotechnology to food and agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Food nanotechnology is an emerging technology. Many scientists and engineers have recognized well the potential of nanotechnology to lead all the industries in the 21st century. Even though successful applications of nanotechnology to foods are still limited, some basic concepts based on nano-scale ...

  4. Nanotechnology in the management of cervical cancer.

    PubMed

    Chen, Jiezhong; Gu, Wenyi; Yang, Lei; Chen, Chen; Shao, Renfu; Xu, Kewei; Xu, Zhi Ping

    2015-03-01

    Cervical cancer is a major disease with high mortality. All cervical cancers are caused by infection with human papillomaviruses (HPV). Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. In this review, we summarize the recent application of nanotechnology to the diagnosis and treatment of cervical cancer as well as the development of HPV vaccines. Early detection of cervical cancer enables tumours to be efficiently removed by surgical procedures, leading to increased survival rate. The current method of detecting cervical cancer by Pap smear can only achieve 50% sensitivity, whereas nanotechnology has been used to detect HPVs with greatly improved sensitivity. In cervical cancer treatment, nanotechnology has been used for the delivery of anticancer drugs to increase treatment efficacy and decrease side effects. Nanodelivery of HPV preventive and therapeutic vaccines has also been investigated to increase vaccine efficacy. Overall, these developments suggest that nanoparticle-based vaccine may become the most effective way to prevent and treat cervical cancer, assisted or combined with some other nanotechnology-based therapy. Copyright © 2015 John Wiley & Sons, Ltd.

  5. DNA nanotechnology: understanding and optimisation through simulation

    NASA Astrophysics Data System (ADS)

    Ouldridge, Thomas E.

    2015-01-01

    DNA nanotechnology promises to provide controllable self-assembly on the nanoscale, allowing for the design of static structures, dynamic machines and computational architectures. In this article, I review the state-of-the art of DNA nanotechnology, highlighting the need for a more detailed understanding of the key processes, both in terms of theoretical modelling and experimental characterisation. I then consider coarse-grained models of DNA, mesoscale descriptions that have the potential to provide great insight into the operation of DNA nanotechnology if they are well designed. In particular, I discuss a number of nanotechnological systems that have been studied with oxDNA, a recently developed coarse-grained model, highlighting the subtle interplay of kinetic, thermodynamic and mechanical factors that can determine behaviour. Finally, new results highlighting the importance of mechanical tension in the operation of a two-footed walker are presented, demonstrating that recovery from an unintended 'overstepped' configuration can be accelerated by three to four orders of magnitude by application of a moderate tension to the walker's track. More generally, the walker illustrates the possibility of biasing strand-displacement processes to affect the overall rate.

  6. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  7. Nanotechnology: Scientific challenges and societal benefits and risks

    NASA Astrophysics Data System (ADS)

    Romig, A. D.

    2004-12-01

    The field of nanotechnology is developing rapidly, as are its practical application in society. In this article, we give examples that demonstrate the enormous potential that exists for this new class of materials, and for devices with critical dimensions of less than 100 nm. We also identify some of the challenges that need to be faced in order to fully realize the practical benefits of nanotechnology, and discuss possible risks that may come with this new technology. In all cases, the unique advantage of nanotechnology can be traced back to nanoscale physical and chemical properties that are quite different from those encountered in more traditional microscopic (micro) or macroscopic (macro) materials and devices. Unique nanoscale properties and behaviors are already being used to increase energy efficiency, improve healthcare, and strengthen national security. However, while progress is rapid, many challenges remain. These include manufacturing at the nanoscale, integration of nanoscale materials and devices with more conventional technology, and predictive modeling that will allow nanotechnology to be engineered reliably into useful applications and products. Nanotechnology can be expected to have an increasing impact on human lives and society at large. As we strive to use nanotechnology to improve human life through better healthcare, cleaner environment, and improved national security, we must also work to detect and assess the negative impacts that nanotechnology science (or any new technology) might bring. We suggest that the conduct of should be allowed to proceed unimpeded, so that we can fully understand and appreciate the rules of nature at the nanometer scale. That said, scientific pursuits that involve self-replication in synthetic systems, encryption, defense technology, or the enhancement of human intelligence should be reviewed. The development of new technology from fundamental science and the process of deciding what new technology is to be

  8. A Boost for the Emerging Field of RNA Nanotechnology

    PubMed Central

    2011-01-01

    This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23–25, 2010) (http://www.eng.uc.edu/nanomedicine/RNA2010/), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries. PMID:21604810

  9. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging

    PubMed Central

    Fox, Matthew S.; Gaudet, Jeffrey M.; Foster, Paula J.

    2015-01-01

    Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements. PMID:27042089

  10. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NASA Astrophysics Data System (ADS)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  11. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  12. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    PubMed

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  13. Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation

    PubMed Central

    2018-01-01

    During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management. PMID:29531507

  14. Nanotechnology in bone tissue engineering.

    PubMed

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Molecular Nanotechnology and Space Settlement

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomically precise manipulation of matter is becoming increasingly common in laboratories around the world. As this control moves into aerospace systems, huge improvements in computers, high-strength materials, and other systems are expected. For example, studies suggest that it may be possible to build: 10(exp 18) MIPS computers, 10(exp 15) bytes/sq cm write once memory, $153-412/kg-of-cargo single- stage-to-orbit launch vehicles and active materials which sense their environment and react intelligently. All of NASA's enterprises should benefit significantly from molecular nanotechnology. Although the time may be measured in decades and the precise path to molecular nanotechnology is unclear, all paths (diamondoid, fullerene, self-assembly, biomolecular, etc.) will require very substantial computation. This talk will discuss fullerene nanotechnology and early work on hypothetical active materials consisting of large numbers of identical machines. The speaker will also discuss aerospace applications, particularly missions leading to widespread space settlement (e.g., small near-Earth - object retrieval). It is interesting to note that control of the tiny - individual atoms and molecules - may lead to colonization of the huge -first the solar system, then the galaxy.

  16. Nanotechnology Based Materials and Devices for Health Care

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepaka; Cho, K.; Brenner, Don; Menon, Madhu; Andriotis, Antonis; Sagman, Uri; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on trends in NASA nanotechnology research and development, and future biotechnological applications for that nanotechnology. The presentation covers nanoelectronics, nanosensors, and nanomaterials, biomimetics, devices and materials for health care, carbon nanotubes, biosensors for astrobiology, solid-state nanopores for DNA sequencing, and protein nanotubes.

  17. Factors influencing societal response of nanotechnology: an expert stakeholder analysis.

    PubMed

    Gupta, Nidhi; Fischer, Arnout R H; van der Lans, Ivo A; Frewer, Lynn J

    2012-05-01

    Nanotechnology can be described as an emerging technology and, as has been the case with other emerging technologies such as genetic modification, different socio-psychological factors will potentially influence societal responses to its development and application. These factors will play an important role in how nanotechnology is developed and commercialised. This article aims to identify expert opinion on factors influencing societal response to applications of nanotechnology. Structured interviews with experts on nanotechnology from North West Europe were conducted using repertory grid methodology in conjunction with generalized Procrustes analysis to examine the psychological constructs underlying societal uptake of 15 key applications of nanotechnology drawn from different areas (e.g. medicine, agriculture and environment, chemical, food, military, sports, and cosmetics). Based on expert judgement, the main factors influencing societal response to different applications of nanotechnology will be the extent to which applications are perceived to be beneficial, useful, and necessary, and how 'real' and physically close to the end-user these applications are perceived to be by the public. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11051-012-0857-x) contains supplementary material, which is available to authorized users.

  18. Nanotechnology Applications for Glaucoma.

    PubMed

    Cetinel, Sibel; Montemagno, Carlo

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide, and the antiglaucoma treatments currently available suffer from various complications. Nanotechnology-based treatments show a great deal of promise in overcoming these complications and form the basis for next-generation glaucoma treatment strategies, with the help of applications such as controlled release, targeted delivery, increased bioavailability, diffusion limitations, and biocompatibility. Significant progress has been made in nanomedicine in the efficiency of antiglaucoma medications, nanofabrication systems such as microelectromechanical systems that remove the limitations of nanodevices, and tissue regeneration vesicles for developing glaucoma treatments not based on intraocular pressure. With the use of these advanced technologies, the prevention of glaucoma-induced blindness will be possible in the near future. Herein, we reviewed the recent advances in nanotechnology-based treatment strategies for glaucoma.

  19. Medical biofilms--nanotechnology approaches.

    PubMed

    Neethirajan, Suresh; Clond, Morgan A; Vogt, Adam

    2014-10-01

    Biofilms are colonies of bacteria or fungi that adhere to a surface, protected by an extracellular polymer matrix composed of polysaccharides and extracellular DNA. They are highly complex and dynamic multicellular structures that resist traditional means of killing planktonic bacteria. Recent developments in nanotechnology provide novel approaches to preventing and dispersing biofilm infections, which are a leading cause of morbidity and mortality. Medical device infections are responsible for approximately 60% of hospital acquired infections. In the United States, the estimated cost of caring for healthcare-associated infections is approximately between $28 billion and $45 billion per year. In this review, we will discuss our current understanding of biofilm formation and degradation, its relevance to challenges in clinical practice, and new technological developments in nanotechnology that are designed to address these challenges.

  20. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  1. Cure of tuberculosis using nanotechnology: An overview.

    PubMed

    Kerry, Rout George; Gouda, Sushanto; Sil, Bikram; Das, Gitishree; Shin, Han-Seung; Ghodake, Gajanan; Patra, Jayanta Kumar

    2018-05-01

    Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor-dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.

  2. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    NASA Astrophysics Data System (ADS)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  3. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent.

    PubMed

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E; Sherry, A Dean

    2016-06-01

    This study explored the feasibility of using a pH responsive paramagnetic chemical exchange saturation transfer (paraCEST) agent to image the pH gradient in kidneys of healthy mice. CEST signals were acquired on an Agilent 9.4 Tesla small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min postinjection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. Magn Reson Med 75:2432-2441, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    PubMed

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Nanotechnology controlled drug delivery for treating bone diseases.

    PubMed

    Yang, Lei; Webster, Thomas J

    2009-08-01

    Rapid developments at the intersection of nanotechnology and controlled drug delivery have triggered exceptional growth in treating various bone diseases. As a result, over the past decade, nanotechnology has contributed tremendously to controlling drug delivery for treating various bone diseases, and in many cases, has led to increased bone regeneration. In this review paper, the recent experimental progress towards using nanotechnology to treat bone-specific diseases is reviewed. Novel applications of different types of nanomaterials (from nanoparticles to 3D nanostructured scaffolds) for treating bone diseases are summarized. In addition, fundamental principles for utilizing nanomaterials to create better drug delivery systems, especially for treating bone diseases and regenerating bone, are emphasized.

  6. Molecular Nanotechnology and Designs of Future

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Reviewing the status of current approaches and future projections, as already published in the scientific journals and books, the talk will summarize the direction in which computational and experimental molecular nanotechnologies are progressing. Examples of nanotechnological approach to the concepts of design and simulation of atomically precise materials in a variety of interdisciplinary areas will be presented. The concepts of hypothetical molecular machines and assemblers as explained in Drexler's and Merckle's already published work and Han et. al's WWW distributed molecular gears will be explained.

  7. Students' Perception of Risk About Nanotechnology After an SAQ Teaching Strategy

    NASA Astrophysics Data System (ADS)

    Simonneaux, Laurence; Panissal, Nathalie; Brossais, Emmanuelle

    2013-09-01

    We experimented with teaching nanotechnology in high school within the perspective of citizenship education in science by involving experts in nanotechnology, education, ethics and philosophy. After training, the students debated a Socially Acute Question (SAQ) that they elaborated during the various phases of instruction. The field of SAQs represents a French orientation for the teaching of SocioScientific Issues. We analyzed the interactions of students in the debate to determine their risk perception on nanotechnology. We compared and put their arguments into perspective using various analytical frameworks. We observed two contrasting argumentative tendencies: one reflecting a positivist view that involved an individualistic use of nanotechnology and science and one carrying a critical and humanistic vision of the use of nanotechnology and science.

  8. 76 FR 2428 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY... the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology... considered proprietary, personal, sensitive, or confidential. Overview: The National Nanotechnology...

  9. An Epistemological Framework for Nanoscience and Nanotechnology Literacy

    ERIC Educational Resources Information Center

    Yawson, Robert M.

    2012-01-01

    The need for a new literacy that will allow for meaningful participation in the rapidly evolving field of nanotechnology is very critical to national development. This need is important for nanotechnology to achieve its full potential. This paper describes and analyzes some contemporary philosophical interpretations of the concept of technological…

  10. Radiolabelled D2 agonists as prolactinoma imaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto, C.A.

    1991-12-31

    Research conducted in this terminal year of support centered on three distinct areas: mAChR ligand localization in pancreas and the effect of Ca{sup +2} on localization, continuation of assessment of quaternized and neutral mAChR ligands for possible use as PET myocardial imaging agents, and initiation of a study to determine the relationship of the nAChR receptor to the cellular receptor for measles virus. Several tables and figures illustrating the results are included.

  11. Nanotechnology approaches to eradicating HIV reservoirs.

    PubMed

    Cao, Shijie; Woodrow, Kim A

    2018-06-04

    The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. We also provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure. Copyright © 2018. Published by Elsevier B.V.

  12. Occupational safety and health criteria for responsible development of nanotechnology

    NASA Astrophysics Data System (ADS)

    Schulte, P. A.; Geraci, C. L.; Murashov, V.; Kuempel, E. D.; Zumwalde, R. D.; Castranova, V.; Hoover, M. D.; Hodson, L.; Martinez, K. F.

    2014-01-01

    Organizations around the world have called for the responsible development of nanotechnology. The goals of this approach are to emphasize the importance of considering and controlling the potential adverse impacts of nanotechnology in order to develop its capabilities and benefits. A primary area of concern is the potential adverse impact on workers, since they are the first people in society who are exposed to the potential hazards of nanotechnology. Occupational safety and health criteria for defining what constitutes responsible development of nanotechnology are needed. This article presents five criterion actions that should be practiced by decision-makers at the business and societal levels—if nanotechnology is to be developed responsibly. These include (1) anticipate, identify, and track potentially hazardous nanomaterials in the workplace; (2) assess workers' exposures to nanomaterials; (3) assess and communicate hazards and risks to workers; (4) manage occupational safety and health risks; and (5) foster the safe development of nanotechnology and realization of its societal and commercial benefits. All these criteria are necessary for responsible development to occur. Since it is early in the commercialization of nanotechnology, there are still many unknowns and concerns about nanomaterials. Therefore, it is prudent to treat them as potentially hazardous until sufficient toxicology, and exposure data are gathered for nanomaterial-specific hazard and risk assessments. In this emergent period, it is necessary to be clear about the extent of uncertainty and the need for prudent actions.

  13. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.

    PubMed

    Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor

    2017-01-01

    The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.

  14. Study of Tissue Phantoms, Tissues, and Contrast Agent with the Biophotoacoustic Radar and Comparison to Ultrasound Imaging for Deep Subsurface Imaging

    NASA Astrophysics Data System (ADS)

    Alwi, R.; Telenkov, S.; Mandelis, A.; Gu, F.

    2012-11-01

    In this study, the imaging capability of our wide-spectrum frequency-domain photoacoustic (FD-PA) imaging alias "photoacoustic radar" methodology for imaging of soft tissues is explored. A practical application of the mathematical correlation processing method with relatively long (1 ms) frequency-modulated optical excitation is demonstrated for reconstruction of the spatial location of the PA sources. Image comparison with ultrasound (US) modality was investigated to see the complementarity between the two techniques. The obtained results with a phased array probe on tissue phantoms and their comparison to US images demonstrated that the FD-PA technique has strong potential for deep subsurface imaging with excellent contrast and high signal-to-noise ratio. FD-PA images of blood vessels in a human wrist and an in vivo subcutaneous tumor in a rat model are presented. As in other imaging modalities, the employment of contrast agents is desirable to improve the capability of medical diagnostics. Therefore, this study also evaluated and characterized the use of Food and Drug Administration (FDA)-approved superparamagnetic iron oxide nanoparticles (SPION) as PA contrast agents.

  15. Understanding Imaging and Metrology with the Helium Ion Microscope

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladár, András E.; Ming, Bin

    2009-09-01

    One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.

  16. 75 FR 30874 - National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office, Nanoscale... Technology; The National Nanotechnology Initiative (NNI) Strategic Planning Stakeholder Workshop: Public Meeting ACTION: Notice of public meeting. SUMMARY: The National Nanotechnology Coordination Office (NNCO...

  17. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    PubMed

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  18. A Study of Engineering Freshmen Regarding Nanotechnology Understanding

    ERIC Educational Resources Information Center

    Lu, Kathy

    2009-01-01

    This study was conducted under the grand scheme of nanotechnology education and was focused on examining the nanotechnology readiness of first-year engineering students. The study found that most students learned the term "nano" from popular science magazines or as a measurement unit; less than 5% of the students learned "nano" through…

  19. Nanotechnology - Enabled Sensing

    DTIC Science & Technology

    2009-05-07

    Sailor, Steve Semancik, Selim Shahriar, Ranga nathan Shashidhar, Richard Silberglitt, Joseph Stetter, Duncan Stewart, Mark Stiles, Thomas Thundat...Evans National Nanotechnology Coordination Office Patricia Foland World Technology Evaluation Center Richard Gaster‡ Stanford University Bonnie...Technology Selim Shahriar*, ◊ Northwestern University Ranganathan Shashidhar‡,†,◊ Polestar Technologies, Inc. Richard Silberglitt*,§, ◊ RAND

  20. Interactive survey of consumer awareness of nanotechnologies and nanoparticles in consumer products in South Korea.

    PubMed

    Kim, Yu-Ri; Lee, Eun Jeong; Park, Sung Ha; Kwon, Hyo Jin; An, Seong Soo A; Son, Sang Wook; Seo, Young Rok; Pie, Jae-Eun; Yoon, Myoung; Kim, Ja Hei; Kim, Meyoung-Kon

    2014-01-01

    The purpose of our study was to understand consumers' risk awareness and need for relevant information about nanotechnology and nanoparticles contained in products currently being sold in Korea. One thousand and seven adult consumers (aged 20-50 years) were randomly selected from all over South Korea between November 1 and 9, 2010. We surveyed the origin and degree of their concern and their need for information and education regarding nanomaterials. Analysis of the survey results showed no significant differences in responses by sex, age, and level of education, but significant differences were found in responses based on average monthly household income. Our research showed that consumers have vague expectations for and positive image of nanotechnology and nanoproducts but do not clearly understand what they are. In addition, we found that preparing and disseminating information to consumers is required in order to provide correct information about nanotechnology to the public. A communication system should be established among the multiple stakeholders involved with nanomaterials to address consumer expectations and concerns. Further, a safety evaluation system must be set up, the results of which should be processed by a reliable expert group so they can be disseminated to the public.