Sample records for nanotube cnt electrodes

  1. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  2. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  3. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes.

    PubMed

    Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He

    2015-09-08

    There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented.

  4. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes

    PubMed Central

    Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He

    2015-01-01

    There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797

  5. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  6. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    PubMed

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  7. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    PubMed

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  8. Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Fang, Yuzhu; Liu, Hong; Wu, Xiaoming; Lu, Yong

    2012-04-01

    Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability.Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability. Electronic supplementary information (ESI) available: Experimental details on preparation, characterization, and electrochemical testing; Fig. S1-S8, Schemes S1 and S2. See DOI: 10.1039/c2nr30252g

  9. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  10. Air-bridge and Vertical CNT Switches for High Performance Switching Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Wong, Eric W.; Epp, Larry; Bronikowski, Michael J.; Hunt, BBrian D.

    2006-01-01

    Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT.Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb base electrode, where contact to the CNTs is made using evaporated Au/Ti. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied between the CNT and the Nb-base electrode. The CNT air-bridge switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 - 300 nm wide, approximately 1 micrometer deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw switch architecture.

  11. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries

    PubMed Central

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-01-01

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm−2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm−2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm−2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity. PMID:28378746

  12. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.

    PubMed

    Zestos, Alexander G; Jacobs, Christopher B; Trikantzopoulos, Elefterios; Ross, Ashley E; Venton, B Jill

    2014-09-02

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals.

  13. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters

    PubMed Central

    Bocharov, Grigory S.; Eletskii, Alexander V.

    2013-01-01

    Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342

  14. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    PubMed

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011

  15. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-11-01

    Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.

  16. Carbon nanotube mat as mediator-less glucose sensor electrode.

    PubMed

    Ryu, Jongeun; Kim, Hansang; Lee, Sangeui; Hahn, H Thomas; Lashmore, David

    2010-02-01

    In this paper, the direct electron transfer of glucose oxidase (GOx) on carbon nanotube (CNT) mat electrode is demonstrated. Because of the electrical conductivity and mechanical strength of CNT mat, it can be used as an electrode as well as a catalyst support. Therefore, the preparation process for the CNT mat based sensor electrode is simpler than that of the conventional CNT dispersed sensor electrodes. GOx was covalently immobilized on the oxidized CNT mat, which is connected to a wire by using silver paste and epoxy glue. Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) result shows transmittance peaks at 1637 cm(-1) and 1525 cm(-1) which are corresponding to the band I and II of amide. Cyclic voltammetric shows a pair of well-defined redox peaks with the average formal potential of -0.425 V (vs. Ag/AgCl reference electrode) in the phosphate buffered saline solution (1 x PBS, pH 7.4). Calculated electron transfer rate constant and the surface density of GOx were 1.71 s(-1) and (3.27 +/- 0.20) x 10(-13) mol/cm2, respectively. Cyclic voltammograms of GOx-CNT mat in glucose solution show that the immobilized GOx retains its catalytic activity to glucose. The amperometric sensor response showed a linear dependence on the glucose concentration in the range of 0.2 mM to 2.18 mM with a detection sensitivity of 4.05 microA mM(-1) cm(-2). The Michaelis-Menten constant of the immobilized GOx was calculated to be 2.18 mM.

  17. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  18. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  19. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  20. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    PubMed Central

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504

  1. Electrocatalyzed O2 response of myoglobin immobilized on multi-walled carbon nanotube forest electrodes.

    PubMed

    Pacios, M; del Valle, M; Bartroli, J; Esplandiu, M J

    2009-10-01

    Direct electrochemistry and activity of myoglobin (Mb) immobilized on carbon nanotube (CNT) forest electrodes were investigated by probing mainly its electrocatalytical response towards oxygen. The protein was anchored on the CNT electrodes through carbodiimide coupling, which was shown to provide long term stability. The electrochemical response was monitored as a function of oxygen concentration and pH. Conformational changes together with the consequent loss of oxygen affinity were recorded at low pH, which delimits the operative range of the Mb/CNT electrodes for sensing purposes. In general, it can be concluded that CNT forests constitute suitable platforms for Mb attachment without compromising the protein bioactivity and by keeping at the same time the direct electron exchange with the heme core. All these characteristics confer to the protein modified CNT system promising properties for the implementation of (bio)sensor devices with impact in the clinical and environmental field.

  2. Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors.

    PubMed

    Li, Yuan; Fang, Yuzhu; Liu, Hong; Wu, Xiaoming; Lu, Yong

    2012-04-28

    Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g(-1) at 0.5 A g(-1)) and high energy density at high rates (~22 W h kg(-1) at 2000 W kg(-1), based on total electrode mass) with good cyclability. This journal is © The Royal Society of Chemistry 2012

  3. Binder-free carbon nanotube electrode for electrochemical removal of chromium.

    PubMed

    Wang, Haitao; Na, Chongzheng

    2014-11-26

    Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

  4. Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Litkohi, Hajar Rajaei; Bahari, Ali; Ojani, Reza

    2017-08-01

    In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.

  5. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors.

    PubMed

    Deng, Lingjuan; Gu, Yuanzi; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-05-15

    The practical application of graphene (GR) has still been hindered because of its unsatisfied physical and chemical properties resulting from the irreversible agglomerates. Preparation of GR-based materials with designed porosities is essential for its practical application. In this work, a facile and scalable method is developed to synthesize carbon nanotubes/holey graphene (CNT/HGR) flexible film using functional CNT and HGR as precursors. Owing to the existence of the small amount CNT, the CNT-5/HGR flexible film with a 3D conductive interpenetrated architecture exhibit significantly improved ion diffusion rate compared to that of the HGR. Moreover, CNT-5/HGR flexible film can be used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 268Fg -1 , excellent rate capabilities, and superior cycling stabilities. CNT-5/HGR flexible film could be used to fabricate high-performance flexible supercapacitors electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities

    NASA Astrophysics Data System (ADS)

    Samba, R.; Herrmann, T.; Zeck, G.

    2015-02-01

    Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.

  7. Synthesis of carbon nanotube (CNT)-entangled CuO nanotube networks via CNT-catalytic growth and in situ thermal oxidation as additive-free anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Xia; Song, Bo; Cheng, Shisu; Xie, Yun; Shao, Yijiang; Sun, Yueming

    2018-01-01

    We demonstrated the utility of carbon nanotubes (CNTs) as a catalyst and conductive agent to synthesize CNT-entangled copper nanowire (CuNW-CNT) networks within a melted mixture of hexadecylamine and cetyltrimethy ammounium bromide. The CuNW-CNT networks were further in situ thermally oxidized into CuO nanotube-CNT (CuONT-CNT) with the high retention of network structure. The binder- and conducting-additive-free anodes constructed using the CuONT-CNT networks exhibited high performance, such as high capability (557.7 mAh g-1 at 0.2 °C after 200 cycles), high Coulombic efficiency (near 100%), good rate performance (385.5 mAh g-1 at 5 °C and 310.3 mAh g-1 at 10 °C), and long cycling life.

  8. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Tang, Yao; Song, Junhua

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promisingmore » electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less

  9. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors.

    PubMed

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-05

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  10. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    PubMed Central

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport. PMID:24576342

  11. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  12. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2011-09-01

    IrOx nanofoils (IrOxNF) of high surface area are sputtered on multi-wall carbon nanotubes (CNT) in the preparation of a structured electrode on a stainless steel (SUS) substrate for supercapacitor applications. This IrOx/CNT/SUS electrode is featured with intriguing IrOx curved foils of 2-3 nm in thickness and 400-500 nm in height, grown on top of the vertically aligned CNT film with a tube diameter of ~ 40 nm. These nanofoils are moderately oxidized during reactive sputtering and appeared translucent under the electron microscope. Detailed structural analysis shows that they are comprised of contiguous grains of iridium metal, iridium dioxide, and glassy iridium oxide. Considerable Raman line broadening is also evidenced for the attributed nanosized iridium oxides. Two capacitive properties of the electrode are significantly enhanced with addition of the curved IrOx foils. First, IrOxNF reduces the electrode Ohmic resistance, which was measured at 3.5 Ω cm2 for the CNT/SUS and 2.5 Ω cm2 for IrOxNF/CNT/SUS using impedance spectroscopy. Second, IrOxNF raises the electrode capacitance from 17.7 F g - 1 (CNT/SUS) to 317 F g - 1 (IrOx/CNT/SUS), measured with cyclic voltammetry. This notable increase is further confirmed by the galvanostatic charge/discharge experiment, measuring 370 F g - 1 after 2000 uninterrupted cycles between - 1.0 and 0.0 V (versus Ag/AgCl).

  13. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  14. Effects of carbon nanotube (CNT) dispersion and interface condition on thermo-mechanical behavior of CNT-reinforced vinyl ester

    NASA Astrophysics Data System (ADS)

    Sabet, Seyed Morteza

    In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load

  15. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  16. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  17. Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yanfang; Zhang, Yafei

    2017-03-01

    Reliable interconnection between carbon nanotubes (CNTs) and external circuit is one of the prerequisite in CNT electronics. In this work, ultrasonic nanowelding was used to bond CNTs with metal electrodes. By exerting ultrasonic energy at the interface of CNT/electrode, a reliable joint with negligible contact resistance was obtained between CNTs and electrodes. The performance of welding is susceptible to the ultrasonic parameters such as ultrasonic power and clamping force, as well as the metal type. It is found that the metals with good ductility or low melting point are easier to achieve effective joints. Moreover, interfacial compounds are formed at the welded surface of metal Al and Fe, which is resulted from the interacting and chemical bonding of carbon and metal atoms. After nanowelding, the contact resistance between CNTs and electrode is decreased dramatically, and the two-terminal resistance of the sample approximates to the intrinsic resistance of the CNT itself.

  18. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Tang, Yao; Song, Junhua

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less

  19. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    DOE PAGES

    Li, Xing; Tang, Yao; Song, Junhua; ...

    2017-12-06

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less

  20. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Young; Kim, Kwang Heon; Kim, Kwang Bum

    Carbon nanotube (CNT)/polypyrrole (PPy) composites with controlled pore size in a three-dimensional entangled structure of a CNT film are prepared as electrode materials for a pseudocapacitor. A CNT film electrode containing nanosize silica between the CNTs is first fabricated using an electrostatic spray deposition of a mixed suspension of CNTs and nanosize silica on to a platinium-coated silicon wafer. Later, nanosize silica is removed leaving a three-dimensional entangled structure of a CNT film. Before removal of the silica from the CNT/silica film electrode, PPy is electrochemically deposited on to the CNTs to anchor them in their entangled structure. Control of the pore size of the final CNT/PPy composite film can be achieved by changing the amount of silica in the mixed suspension of CNTs and nanosize silica. Nanosize silica acts as a sacrificial filler to change the pore size of the entangled CNT film. Scanning electron microscopy of the electrochemically prepared PPy on the CNT film substrate shows that the PPy nucleated heterogeneously and deposited on the surface of the CNTs. The specific capacitance and rate capability of the CNT/PPy composite electrode with a heavy loading of PPy of around 80 wt.% can be improved when it is made to have a three-dimensional network of entangled CNTs with interconnected pores through pore size control.

  1. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.

    PubMed

    Jin, Yu; Chen, Hongyuan; Chen, Minghai; Liu, Ning; Li, Qingwen

    2013-04-24

    MnO2 has been widely studied as the pseudo-capactive electrode material of high-performance supercapacitors for its large operating voltage, low cost, and environmental friendliness. However, it suffers from low conductivity and being hardly handle as the electrodes of supercapacitors especially with flexibility, which largely limit its electrochemical performance and application. Herein, we report a novel ternary composite paper composed of reduced graphene sheet (GR)-patched carbon nanotube (CNT)/MnO2, which has controllable structures and prominent electrochemical properties for a flexible electrode of the supercapacitor. The composite paper was prepared by electrochemical deposition of MnO2 on a flexible CNT paper and further adsorption of GR on its surface to enhance the surface conductivity of the electrode and prohibit MnO2 nanospheres from detaching with the electrode. The presence of GR was found remarkably effective in enhancing the initial electrochemical capacitance of the composite paper from 280 F/g to 486.6 F/g. Furthermore, it ensures the stability of the capacitance after a long period of charge/discharge cycles. A flexible CNT/polyaniline/CNT/MnO2/GR asymmetric supercapacitor was assembled with this composite paper as an electrode and aqueous electrolyte gel as the separator. Its operating voltage reached 1.6 V, with an energy density at 24.8 Wh/kg. Such a composite structure derived from a multiscale assembly can offer not only a robust scaffold loading MnO2 nanospheres but also a conductive network for efficient ionic and electronic transport; thus, it is potentially promising as a novel electrode architecture for high-performance flexible energy storage devices.

  2. Absorptive carbon nanotube electrodes: Consequences of optical interference loss in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Tait, Jeffrey G.; de Volder, Michaël F. L.; Cheyns, David; Heremans, Paul; Rand, Barry P.

    2015-04-01

    A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle

  3. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors.

    PubMed

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2011-09-02

    IrO(x) nanofoils (IrO(x)NF) of high surface area are sputtered on multi-wall carbon nanotubes (CNT) in the preparation of a structured electrode on a stainless steel (SUS) substrate for supercapacitor applications. This IrO(x)/CNT/SUS electrode is featured with intriguing IrO(x) curved foils of 2-3 nm in thickness and 400-500 nm in height, grown on top of the vertically aligned CNT film with a tube diameter of ∼ 40 nm. These nanofoils are moderately oxidized during reactive sputtering and appeared translucent under the electron microscope. Detailed structural analysis shows that they are comprised of contiguous grains of iridium metal, iridium dioxide, and glassy iridium oxide. Considerable Raman line broadening is also evidenced for the attributed nanosized iridium oxides. Two capacitive properties of the electrode are significantly enhanced with addition of the curved IrO(x) foils. First, IrO(x)NF reduces the electrode Ohmic resistance, which was measured at 3.5 Ω cm(2) for the CNT/SUS and 2.5 Ω cm(2) for IrO(x)NF/CNT/SUS using impedance spectroscopy. Second, IrO(x)NF raises the electrode capacitance from 17.7 F g(-1) (CNT/SUS) to 317 F g(-1) (IrO(x)/CNT/SUS), measured with cyclic voltammetry. This notable increase is further confirmed by the galvanostatic charge/discharge experiment, measuring 370 F g(-1) after 2000 uninterrupted cycles between - 1.0 and 0.0 V (versus Ag/AgCl).

  4. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects

    PubMed Central

    Bareket-Keren, Lilach; Hanein, Yael

    2013-01-01

    Carbon nanotube (CNT) coatings have been demonstrated over the past several years as a promising material for neuronal interfacing applications. In particular, in the realm of neuronal implants, CNTs have major advantages owing to their unique mechanical and electrical properties. Here we review recent investigations utilizing CNTs in neuro-interfacing applications. Cell adhesion, neuronal engineering and multi electrode recordings with CNTs are described. We also highlight prospective advances in this field, in particular, progress toward flexible, bio-compatible CNT-based technology. PMID:23316141

  5. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  6. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Patry, JoAnne L. (Inventor); Smits, Jan M. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor); Wincheski, Russell A. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  7. Electrochemical characteristics of flexible micro supercapacitors with reduced graphene oxide-carbon nanotubes composite electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig

    2018-06-01

    In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.

  8. A tripolar-electrode ionization gas sensor using a carbon nanotube cathode for NO detection

    NASA Astrophysics Data System (ADS)

    Song, Hui; Li, Kun; Li, Quanfu

    2018-06-01

    Nitric oxide accounts for more than 95% of the total NO X emission from power plants, which is a major air pollutant. Therefore, it is imperative to accurately detect NO for environmental protection. A tripolar-electrode ionization sensor with a carbon nanotube (CNT) cathode is proposed for NO detection. The non-self-sustaining discharge state and the tripolar-electrode configuration ensures a long nanotube life, which ensures a good stability and fast response of the sensor. Experimental results demonstrate that the tripolar-electrode ionization sensor with 120 µm separations has an intrinsic monotonously decreasing response to NO and exhibits a fast response time of 7 s and recovery time of 8 s. More consumption of the two metastable states N2(A3  ∑  u +) and N2(aʹ1  ∑  u +) of N2 with the increasing of NO concentration is responsible for this. The tripolar-electrode ionization sensor also shows excellent long-term stability of at least one month due to the long CNT life. In addition, the weak effect of SO2 introduction on NO response indicates a good selectivity of the sensor to NO.

  9. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Wei, Tong; Fan, Zhuangjun; Qian, Weizhong; Zhang, Milin; Shen, Xiande; Wei, Fei

    Graphene nanosheet/carbon nanotube/polyaniline (GNS/CNT/PANI) composite is synthesized via in situ polymerization. GNS/CNT/PANI composite exhibits the specific capacitance of 1035 F g -1 (1 mV s -1) in 6 M of KOH, which is a little lower than GNS/PANI composite (1046 F g -1), but much higher than pure PANI (115 F g -1) and CNT/PANI composite (780 F g -1). Though a small amount of CNTs (1 wt.%) is added into GNS, the cycle stability of GNS/CNT/PANI composite is greatly improved due to the maintenance of highly conductive path as well as mechanical strength of the electrode during doping/dedoping processes. After 1000 cycles, the capacitance decreases only 6% of initial capacitance compared to 52% and 67% for GNS/PANI and CNT/PANI composites.

  10. Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eungje; Salgado, Ruben Arash; Lee, Byeongdu

    Thermal management remains one of the major challenges in the design of safe and reliable Li-ion batteries. We show that composite electrodes assembled from commercially available 100 μm long carbon nanotubes (CNTs) and LiCoO2 (LCO) particles demonstrate the in-plane thermal conductivity of 205.8 W/m*K. This value exceeds the thermal conductivity of dry conventional laminated electrodes by about three orders of magnitude. The cross-plane thermal conductivity of CNT-based electrodes is in the same range as thermal conductivities of conventional laminated electrodes. The CNT-based electrodes demonstrate a similar capacity to conventional laminated design electrodes, but revealed a better rate performance and stability.more » The introduction of diamond particles into CNT-based electrodes further improves the rate performance. Our lightweight, flexible electrode design can potentially be a general platform for fabricating polymer binder- and aluminum and copper current collector- free electrodes from a broad range of electrochemically active materials with efficient thermal management.« less

  11. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode.

    PubMed

    Li, Yu-Ping; Cao, Hong-Bin; Zhang, Yi

    2007-01-01

    Hemoglobin (Hb) was immobilized on carbon nanotube (CNT) electrode to catalyze the dehalogenation of haloacetic acids (HAAs). FTIR and UV measurements were performed to investigate the activity-keep of Hb after immobilization on CNT. The electrocatalytic behaviors of the Hb-loaded electrode for the dehalogenation of HAAs were studied by cyclic voltammmetry and constant-potential electrolysis technique. An Hb-loaded packed-bed flow reactor was also constructed for bioelectrocatalytic dehalogenation of HAAs. The results showed that Hb retained its nature, the essential features of its native secondary structure, and its biocatalytic activity after immobilization on CNT. Chloroacetic acids and bromoacetic acids could be dehalogenated completely with Hb catalysis through a stepwise dehalogenation process at -0.400V (vs. saturated calomel electrode (SCE)) and -0.200V (vs. SCE), respectively. The removal of 10.5mM trichloroacetic acid and dichloroacetic acid is ca. 97% and 63%, respectively, with electrolysis for 300min at -0.400V (vs. SCE) using the Hb-loaded packed-bed flow reactor, and almost 100% of tribromoacetic acid and dibromoacetic acid was removed with electrolysis for 40min at -0.200V (vs. SCE). The average current efficiency of Hb-catalytic dehalogenation almost reaches 100%.

  12. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells.

    PubMed

    Joshi, Prakash; Zhou, Zhengping; Poudel, Prashant; Thapa, Amit; Wu, Xiang-Fa; Qiao, Qiquan

    2012-09-21

    A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (R(ct)) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm(2), much lower than that of the Pt electrode (1.81 Ω cm(2)). Such a low value of R(ct) indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (R(s)) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm(2), which was close to the R(s) of 5.77 Ω cm(2) of the Pt electrode, despite the significant difference in their thicknesses: ∼22 μm for Ni-CNT-CNF composite, while ∼40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (R(s-tot)) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (J(sc)) of 15.83 mA cm(-2), open circuit voltage (V(oc)) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with J(sc) of 15.01 mA cm(-2), V(oc) of 0.83, and FF of 0.67.

  13. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

    PubMed

    Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming

    2013-04-21

    Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

  14. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors

    NASA Astrophysics Data System (ADS)

    Muralee Gopi, Chandu V. V.; Ravi, Seenu; Rao, S. Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je

    2017-04-01

    Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg-1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.

  15. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors.

    PubMed

    Muralee Gopi, Chandu V V; Ravi, Seenu; Rao, S Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je

    2017-04-19

    Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg -1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.

  16. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    NASA Astrophysics Data System (ADS)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  17. Structural CNT Composites. Part I; Developing a Carbon Nanotube Filament Winder

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey; Kim, Jae-Woo; Wincheski, Russell A.; Antczak, Andrew; Campero, Jamie C.; Luong, Hoa H.; Shanahan, Michelle H.; Stelter, Christopher J.; Siochi, Emilie J.

    2015-01-01

    Carbon nanotube (CNT) based materials promise advances in the production of high strength and multifunctional components for aerospace and other applications. Specifically, in tension dominated applications, the latest CNT based filaments are yielding composite properties comparable to or exceeding composites from more established fibers such as Kevlar and carbon fiber. However, for the properties of these materials to be fully realized at the component level, suitable manufacturing processes have to be developed. These materials handle differently from conventional fibers, with different wetting characteristics and behavior under load. The limited availability of bulk forms also requires that the equipment be scaled down accordingly to tailor the process development approach to material availability. Here, the development of hardware and software for filament winding of carbon nanotube based tapes and yarns is described. This hardware features precision guidance of the CNT material and control of the winding tension over a wide range in an open architecture that allows for effective process control and troubleshooting during winding. Use of the filament winder to develop CNT based Composite Overwrapped Pressure Vessels (COPVs) shall also be discussed.

  18. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors

    PubMed Central

    Muralee Gopi, Chandu V. V.; Ravi, Seenu; Rao, S. Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je

    2017-01-01

    Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg−1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices. PMID:28422182

  19. Advanced 3D Ni(OH)2/CNT Gel Composite Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Hanlin; Duong, Hai Minh

    2015-03-01

    In order to enhance the performance of supercapacitors, advanced 3D Porous CNT/Ni(OH)2 gel composite electrodes are developed in this work. Compared with previously reported graphene gel supercapacitors, our electrodes using 1D CNTs have smaller diffusion resistance due to a shorter ion transport path. The developed 3D xerogel composite electrodes demonstrate the success of a careful engineered guest/host materials interface. Initially, the CNT gels are coated on the nickel foam to form a 3D scaffold, which serves as a microscopic electrical conductive network. Then Ni(OH)2 are incorporated using a traditional electrodeposition method. In this work, two types of the 3D CNT-coated nickel foams are investigated. The gels can be used directly as hydrogels or dried in air to form xerogels. Both hydrogels and xerogels present 3D tangled CNT networks. It shows that the hydrogel composite electrodes with unbundled CNTs, though presenting high capacitances of 1400 F/g at low discharge rate, possess lower capacitances at higher discharge rate and a poor cycling performance of less than 23% retention. In contrast, the xerogel composite electrodes can overcome these limitations in terms of a satisfied discharge performance of 1200 F/g and a good cycling retention more than 85% due to a stronger Ni(OH)2/CNT interface. The CNT bundles in the xerogel electrodes formed during the drying process can give a flat surface with small curvature, which facilitate the Ni(OH)2 nucleation and growth. Thanks for the support from the A star R-265-000-424-305.

  20. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  1. Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III

    2016-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  2. Carbon Nanotube Based Light Sensor

    NASA Technical Reports Server (NTRS)

    Wincheski, russell A. (Inventor); Smits, Jan M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor); Ingram, JoAnne L. (Inventor)

    2006-01-01

    A light sensor substrate comprises a base made from a semi-conductive material and topped with a layer of an electrically non-conductive material. A first electrode and a plurality of carbon nanotube (CNT)-based conductors are positioned on the layer of electrically non-conductive material with the CNT-based conductors being distributed in a spaced apart fashion about a periphery of the first electrode. Each CNT-based conductor is coupled on one end thereof to the first electrode and extends away from the first electrode to terminate at a second free end. A second or gate electrode is positioned on the non-conductive material layer and is spaced apart from the second free end of each CNT-based conductor. Coupled to the first and second electrode is a device for detecting electron transfer along the CNT-based conductors resulting from light impinging on the CNT-based conductors.

  3. Carbon Nanotubes as FET Channel: Analog Design Optimization considering CNT Parameter Variability

    NASA Astrophysics Data System (ADS)

    Samar Ansari, Mohd.; Tripathi, S. K.

    2017-08-01

    Carbon nanotubes (CNTs), both single-walled as well as multi-walled, have been employed in a plethora of applications pertinent to semiconductor materials and devices including, but not limited to, biotechnology, material science, nanoelectronics and nano-electro mechanical systems (NEMS). The Carbon Nanotube Field Effect Transistor (CNFET) is one such electronic device which effectively utilizes CNTs to achieve a boost in the channel conduction thereby yielding superior performance over standard MOSFETs. This paper explores the effects of variability in CNT physical parameters viz. nanotube diameter, pitch, and number of CNT in the transistor channel, on the performance of a chosen analog circuit. It is further shown that from the analyses performed, an optimal design of the CNFETs can be derived for optimizing the performance of the analog circuit as per a given specification set.

  4. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    NASA Astrophysics Data System (ADS)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  5. Solid electroytes for CNT-based actuators

    NASA Astrophysics Data System (ADS)

    Riemenschneider, Johannes; Geier, Sebastian; Mahrholz, Thorsten; Mosch, Jürgen; Monner, Hans Peter; Sinapius, Michael

    2009-03-01

    Actuators based on carbon nanotubes (CNT) have the potential to generate high forces at very low voltages. The density of the raw material is just 1330 kg/m3, which makes them well applicable for lightweight applications. Moreover, active strains of up to 1% can be achieved - due to the CNTs dimensional changes on charge injection. Therefore the nanotubes have to be arranged and electrically wired like electrodes of a capacitor. In previous works the system's response of the Nanotubes comprising a liquid electrolyte was studied in detail. The major challenge is to repeat such experiments with solid electrolytes, which is a prerequisite for structural integration. In this paper a method is proposed which makes sure the expansion is not based on thermal expansion. This is done by analysing the electrical system response. As thermal expansion is dominated by ohmic resistance the CNT based actuators show a strong capacitive behavior. This behavior is referable to the constitution of the electrochemical double layer around the nanotubes, which causes the tubes to expand. Also a novel test setup is described, which guarantees that the displacement which is measured will not be caused by bending of a bimorph but due to expansion of a single layer of nanotubes. This paper also presents experimental results demonstrating both, the method of electrical characterization of CNT based actuators with implemented solid electrolytes and the novel test setup which is used to measure the needed data. The actuators which were characterized are hybrids of CNT and the solid electrolyte NAFION which is supplying the ions needed to constitute the electrochemical double layer. The manufacturing, processing of these actuators and also some first experimental results are shown. Unfortunately, the results are not as clear as those for liquid electrolytes, which depend on the hybrid character of the analyzed devices. In the liquid electrolyte based case the CNTs are the only source of

  6. Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

    PubMed

    Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke

    2018-06-15

    We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.

  7. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    PubMed

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO 2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm -3 , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    PubMed

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery.

    PubMed

    Park, Minjoon; Jung, Yang-jae; Kim, Jungyun; Lee, Ho il; Cho, Jeaphil

    2013-10-09

    Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. The electrode with the composite catalyst prepared at 700 °C (denoted as CNF/CNT-700) demonstrates the best electrocatalytic properties toward the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples among the samples prepared at 500, 600, 700, and 800 °C. Moreover, this composite electrode in the full cell exhibits substantially improved discharge capacity and energy efficiency by ~64% and by ~25% at 40 mA·cm(-2) and 100 mA·cm(-2), respectively, compared to untreated CF electrode. This outstanding performance is due to the enhanced surface defect sites of exposed edge plane in CNF and a fast electron transfer rate of in-plane side wall of the CNT.

  11. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    PubMed

    Burblies, Niklas; Schulze, Jennifer; Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  12. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells

    PubMed Central

    Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes. PMID:27385031

  13. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT.

    PubMed

    Liu, Yazhi; Li, Gaoran; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-04-26

    Rational design of free-standing porous carbon materials with large specific surface area and high conductivity is a great need for ligh-weight suprecapacitors. Here, we report a flexible porous carbon film composed of metal-organic framework (MOF)-derived porous carbon polyhedrons and carbon nanotubes (CNTs) as binder-free supercapacitor electrode for the first time. Due to the synergistic combination of carbon polyhedrons and CNT, the obtained carbon electrode shows a specific capacitance of 381.2 F g -1 at 5 mV s -1 and 194.8 F g -1 at 2 A g -1 and outstanding cycling stability with a Coulombic effciency above 95% after 10000 cycles at 10 A g -1 . The assembled aqueous symmetrical supercapacitor exhibits an energy density of 9.1 Wh kg -1 with a power density of 3500 W kg -1 . The work opens a new way to design flexible MOF-based hierarchical porous carbon film as binder-free electrodes for high-performance energy storage devices.

  14. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.

    PubMed

    Lee, Seung Min; Kim, Jeong Hun; Park, Cheolsoo; Hwang, Ji-Young; Hong, Joung Sook; Lee, Kwang Ho; Lee, Sang Hoon

    2016-01-01

    We fabricated a carbon nanotube (CNT)/adhesive polydimethylsiloxane (aPDMS) composite-based dry electroencephalograph (EEG) electrode for capacitive measuring of EEG signals. As research related to brain-computer interface applications has advanced, the presence of hairs on a patient's scalp has continued to present an obstacle to recorder EEG signals using dry electrodes. The CNT/aPDMS electrode developed here is elastic, highly conductive, self-adhesive, and capable of making conformal contact with and attaching to a hairy scalp. Onto the conductive disk, hundreds of conductive pillars coated with Parylene C insulation layer were fabricated. A CNT/aPDMS layer was attached on the disk to transmit biosignals to the pillar. The top of disk was designed to be solderable, which enables the electrode to connect with a variety of commercial EEG acquisition systems. The mechanical and electrical characteristics of the electrode were tested, and the performances of the electrodes were evaluated by recording EEGs, including alpha rhythms, auditory-evoked potentials, and steady-state visually-evoked potentials. The results revealed that the electrode provided a high signal-to-noise ratio with good tolerance for motion. Almost no leakage current was observed. Although preamplifiers with ultrahigh input impedance have been essential for previous capacitive electrodes, the EEGs were recorded here by directly connecting a commercially available EEG acquisition system to the electrode to yield high-quality signals comparable to those obtained using conventional wet electrodes.

  15. Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jindan; Yu, Mei; Li, Songmei; Meng, Yanbing; Wu, Xueke; Liu, Jianhua

    2016-12-01

    Three-dimensional nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite aerogel (NG/CNT-OH) with unique hierarchical porosity and mechanical stability is developed through a two-step hydrothermal reaction. With plenty of exposed active sites and efficient multidimensional transport pathways of electrons and ions, NG/CNT-OH exhibits great electrocatalytic performances for I-/I3- redox couple. The subsequent compressed NG/CNT-OH papers possess high electrical conductivity and good flexibility, thus generating high-performance flexible counter electrodes (CEs) with transparent conducting oxide free (TCO-free) for dye-sensitized solar cells (DSSCs). The flexible NG/CNT-OH electrodes show good stability and the DSSCs with the optimized NG/CNT-OH CE had higher short-circuit current density (13.62 mA cm-2) and cell efficiency (6.36%) than DSSCs using Pt CE, whereas those of the DSSCs using Pt CE were only 12.81 mA cm-2 and 5.74%, respectively. Increasing the ratio of hydroxylated carbon nanotubes (CNT-OH) to the graphene oxide (GO) in the reactant would lead to less content of doped N, but better diffusion of electrolyte in the CEs because of more complete GO etching reaction. The design strategy presents a facile and cost effective way to synthesis three-dimensional graphene/CNT composite aerogel with excellent performance, and it can be potentially used as flexible TCO-free CE in other power conversion or energy storage devices.

  16. Multifunctional Characteristics of Carbon Nanotube (CNT) Yarn Composites

    NASA Technical Reports Server (NTRS)

    Hernandez, Corey D.; Zhang, Mei; Fang, Shaoli; Baughman, Ray H.; Gates, Thomas S.; Kahng, Seun K.

    2006-01-01

    By forming composite structures with Carbon Nanotube (CNT) yarns we achieve materials capable of measuring strain and composite structures with increased mechanical strength. The CNT yarns used are of the 2-ply and 4-ply variety with the yarns having diameters of about 15-30 micrometers. The strain sensing characteristics of the yarns are investigated on test beams with the yarns arranged in a bridge configuration. Additionally, the strain sensing properties are also investigated on yarns embedded on the surface of a flexible membrane. Initial mechanical strength tests also show an increase in the modulus of elasticity of the composite materials while incurring a weight penalty of less than one-percent. Also presented are initial temperature characterizations of the yarns.

  17. Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif

    2016-08-01

    Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.

  18. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  19. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.

    PubMed

    Liu, Mingkai; Miao, Yue-E; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-08-21

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as "bridges" connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g(-1)) than the GNR-CNT hybrid (195 F g(-1)) and neat PANI (283 F g(-1)) at a discharge current density of 0.5 A g(-1). At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  20. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Miao, Yue-E.; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-07-01

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as ``bridges'' connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g-1) than the GNR-CNT hybrid (195 F g-1) and neat PANI (283 F g-1) at a discharge current density of 0.5 A g-1. At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  1. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  2. New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors.

    PubMed

    Barsan, Madalina M; Pifferi, Valentina; Falciola, Luigi; Brett, Christopher M A

    2016-07-13

    A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  4. A carbon nanotube based ammonia sensor on cotton textile

    NASA Astrophysics Data System (ADS)

    Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.

    2013-05-01

    A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.

  5. Development of the Electrochemical Biosensor for Organophosphate Chemicals Using CNT/Ionic Liquid Bucky Gel Electrode

    DTIC Science & Technology

    2010-04-01

    www.elsevier .com/locate /e lecomDevelopment of the electrochemical biosensor for organophosphate chemicals using CNT/ ionic liquid bucky gel electrode Bong...hydrolase Ionic liquid CNT Electrochemical property1388-2481/$ - see front matter 2009 Elsevier B.V. A doi:10.1016/j.elecom.2009.01.006 * Corresponding...kaist.ac.kr (S.Y. Lee), whhOrganophosphorus hydrolase (OPH) immobilized on CNT/ ionic liquid (IL) electrodes were prepared by using three different intrinsic

  6. Increased Alignment in Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  7. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  8. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  9. Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.

    PubMed

    Ravi, Seenu; Gopi, Chandu V V M; Kim, Hee Je

    2016-08-02

    Great attention has been paid to the design and synthesis of distinct core/shell heterostructures for high-performance supercapacitors. We have prepared unique heterostructures consisting of polyimidazole-coated copper sulphide over a carbon nanotube network (CuS@CNT) on nickel foam, which was accomplished through a facile and cost-effective solvothermal method combined with a dip coating process. Hexagonal covellite CuS nanoparticles were dispersed on CNTs using a solvothermal method where dimethylformamide and distilled water were used as solvents. The synthesized CuS and CuS@CNT supercapacitor electrode materials were thoroughly characterized. The polymer supported electrode (PIM/CuS@CNT) shows a high areal capacitance of 1.51 F cm(-2) at a current density of 1.2 A g(-1), which is higher than the CuS@CNT electrode and many other previously reported CuS electrode materials. After 1000 cycles at a high current density of 1.2 A g(-1), the retention rate is 92%, indicating good long-term cycling stability. These results indicate that the PIM/CuS@CNT electrode is promising for high-performance supercapacitor applications.

  10. CNT based actuators: experimental and theoretical investigation of the in-plain strain generation.

    PubMed

    Riemenschneider, Johannes; Temmen, Hubert; Monner, Hans Peter

    2007-10-01

    Actuators based on carbon nanotubes (CNT) have the potential to generate high forces at very low voltages. The density of the raw material is just 1330 kg/m3, which makes them well applicable for lightweight applications. Moreover, active strains of up to 1% can be achieved-due to the CNTs dimensional changes on charge injection. Therefore the nanotubes have to be arranged and electrically wired like electrodes of a capacitor. Immersing the nanotubes in an electrolyte increases the capacity of the system by allowing electro-chemical double layers to be built around the CNT. For the experimental investigation of the strain generation, carbon nanotube sheets are manufactured by vacuum filtration. The in-plain strain response is being examined, when applying a voltage to the system. This paper presents experimental investigations of the systems response in dependence of varying system parameters like capacity and resistance. Dependencies of the actuator system were formulated from these experimental results. A guideline of how to improve a CNT based actuator is derived from these dependencies.

  11. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene.

    PubMed

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C Raman

    2013-03-15

    Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson-Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available OH and COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n=3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    PubMed

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  13. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s-1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g-1 with ultrahigh energy and power density of 62.96 W h kg-1 and 566.66 W kg-1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  14. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    PubMed Central

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-01-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s−1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g−1 with ultrahigh energy and power density of 62.96 W h kg−1 and 566.66 W kg−1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED. PMID:26395922

  15. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors.

    PubMed

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-23

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s(-1), the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g(-1) with ultrahigh energy and power density of 62.96 W h kg(-1) and 566.66 W kg(-1) respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  16. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    PubMed

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Construction of Hierarchical CNT/rGO-Supported MnMoO4 Nanosheets on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors.

    PubMed

    Mu, Xuemei; Du, Jingwei; Zhang, Yaxiong; Liang, Zhilin; Wang, Huan; Huang, Baoyu; Zhou, Jinyuan; Pan, Xiaojun; Zhang, Zhenxing; Xie, Erqing

    2017-10-18

    Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO 4 composites (CNT/rGO/MnMoO 4 ) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g -1 at the scan rate of 2 mV s -1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO 4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg -1 at the power density of 1367.9 W kg -1 . These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO 4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.

  18. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone.

    PubMed

    Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon

    2016-01-01

    Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

    PubMed

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2016-01-07

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.

  20. Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals.

    PubMed

    Zhao, Daoli; Siebold, David; Alvarez, Noe T; Shanov, Vesselin N; Heineman, William R

    2017-09-19

    In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg 2+ , Cu 2+ , and Pb 2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg 2+ , Cu 2+ , and Pb 2+ , respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.

  1. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation.

    PubMed

    Huang, Houjin; Maruyama, Ryuichiro; Noda, Kazuhiro; Kajiura, Hisashi; Kadono, Koji

    2006-04-13

    Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.

  2. Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kazazi, Mahdi; Sedighi, Ali Reza; Mokhtari, Mohammad Amin

    2018-05-01

    A facile and efficient two-step procedure was developed for the fabrication of a high-performance and binder-free cobalt oxide-carbon nanotubes (CO/CNT) pseudocapacitive electrode. First, CNTs were deposited on the surface of a chemically activated graphite sheet by cathodic electrophoretic deposition technique from their ethanolic suspension. In the next step, a thin film of cobalt oxide was electrodeposited on the CNTs coated graphite substrate by a galvanostatic method, followed by a thermal treatment in air. The structure and morphology of the prepared cobaltite electrode with and without CNT interlayer were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption measurement. The results indicated that Co3O4 nanoparticles were uniformly attached on the surface of CNTs, to form a porous-structured CO/CNT composite electrode with a high specific surface area of 144.9 m2 g-1. Owing to the superior electrical conductivity of CNTs, high surface area and open porous structure, and improved integrity of the electrode structure, the composite electrode delivered a high areal capacitance of 4.96F cm-2 at a current density of 2 mA cm-2, a superior rate performance (64.7% capacitance retention from 2 mA cm-2 to 50 mA cm-2), as well as excellent cycling stability (91.8% capacitance retention after 2000 cycles), which are higher than those of the pure cobaltite electrode.

  3. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S; Bradford, Philip D

    2018-07-20

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  4. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S.; Bradford, Philip D.

    2018-07-01

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam’s extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  5. Transport properties of CNT/oligosilane/CNT heterojunctions

    NASA Astrophysics Data System (ADS)

    Yu, J.; Zhang, G. L.; Shang, Y.; Wang, K. D.; Zhang, H.; Sun, M.; Liu, B.; Zeng, T.

    2013-02-01

    Combining the non-equilibrium Green's function formalism with density functional theory, the transport properties of nine CNT/oligosilane/CNT heterojunctions were systematically studied. We have found that the incorporation of oligosilane linkage to the carbon nanotube mouth could significantly tune the transport properties compared with the pure oligosilane and pure CNT. The P- and B-dopings upon the oligosilane moiety could not only enhance the conductivity but also give rise to multiple negative differential resistance behavior for the CNT/oligosilane/CNT heterojunctions. The concentration of heteroatom plays an important role in the transport properties of the CNT/oligosilane/CNT heterojunctions, while the number of the oligosilane linkage exerts little effect on the conductivity. The B-doped CNT/oligosilane/CNT heterojunctions show higher conductivity than those of the P-doped ones. The p-n junction caused by B- and P-codopings exhibits a rectifying effect and the rectification ratio is up to 7.19.

  6. Ultra High Energy Density Cathodes with Carbon Nanotubes

    DTIC Science & Technology

    2013-12-10

    a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The

  7. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Wiggins-Camacho, Jaclyn D; Stevenson, Keith J

    2011-04-15

    Nitrogen-doped carbon nanotube (N-CNT) mat electrodes exhibit high catalytic activity toward O(2) reduction, which can be exploited for the remediation of free cyanide (CN(-)). During the electrochemical O(2) reduction process, the hydroperoxide anion (HO(2)(-)) is formed and then reacts to chemically oxidize cyanide (CN(-)) to form cyanate (OCN(-)). The proposed electrochemical-chemical (EC) mechanism for CN(-) remediation at N-CNTs is supported by cyclic voltammetry and bulk electrolysis, and the formation of OCN(-) is confirmed via spectroscopic methods and electrochemical simulations. Our results indicate that by exploiting their catalytic behavior for O(2) reduction, N-CNTs can efficiently convert toxic CN(-) to the nontoxic OCN(-).

  8. Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C.

    2017-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  9. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    PubMed

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  10. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    PubMed

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages. Copyright © 2015. Published by Elsevier B.V.

  11. Mechanism of amperometric biosensor with electronic-type-controlled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroki; Nowaki, Kohei; Muguruma, Hitoshi

    2016-03-01

    An amperometric enzyme biosensor with electronic-type-controlled (metallic and semiconducting) single-walled carbon nanotubes (CNTs) is presented. In this research, we investigate how the electronic types of CNTs influence the amperometric response of enzyme biosensors and what their working mechanisms are. The biosensor of interest is for glucose detection using enzyme glucose oxidase (GOD). In the presence of oxygen, the response of a metallic CNT-GOD electrode was 2.5 times more sensitive than that of a semiconducting CNT-GOD electrode. In contrast, in the absence of oxygen, the response of the semiconducting CNT-GOD electrode was retained, whereas that of the metallic CNT-GOD electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting CNT-GOD electrode, whereas the metallic CNT-GOD electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. Electrochemical impedance spectroscopy was used to show that the semiconducting CNT network has less resistance for electron transfer than the metallic CNT network. The optimized glucose biosensor revealed a sensitivity of 5.6 µA mM-1 cm-2 at +0.6 V vs Ag/AgCl, a linear dynamic range of 0.025-1.4 mM, and a response time of 8 s.

  12. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.

    PubMed

    Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan

    2011-08-10

    Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation.

  13. Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Chen, Jie-Jie; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Li, Dao-Bo; Xiong, Lu; Zhang, Yuan-Yuan; Zhao, Feng; Yu, Han-Qing

    2014-01-01

    Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges.

  14. Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors.

    PubMed

    Cheng, Tao; Yu, Baozhi; Cao, Linli; Tan, Huiyun; Li, Xinghua; Zheng, Xinliang; Li, Weilong; Ren, Zhaoyu; Bai, Jinbo

    2017-09-01

    The ternary composite electrodes, nitrogen-doped graphene foam/carbon nanotube/manganese dioxide (NGF/CNT/MnO 2 ), have been successfully fabricated via chemical vapor deposition (CVD) and facile hydrothermal method. The morphologies of the MnO 2 nanoflakes presented the loading-dependent characteristics and the nanoflake thickness could also be tuned by MnO 2 mass loading in the fabrication process. The correlation between their morphology and electrochemical performance was systematically investigated by controlling MnO 2 mass loading in the ternary composite electrodes. The electrochemical properties of the flexible ternary electrode (MnO 2 mass loading of 70%) exhibited a high areal capacitance of 3.03F/cm 2 and a high specific capacitance of 284F/g at the scan rate of 2mV/s. Moreover, it was interesting to find that the capacitance of the NGF/CNT/MnO 2 composite electrodes showed a 51.6% increase after 15,000 cycles. The gradual increase in specific capacitance was due to the formation of defective regions in the MnO 2 nanostructures during the electrochemical cycles of the electrodes, which further resulted in increased porosity, surface area, and consequently increased electrochemical capacity. This work demonstrates a rarely reported conclusion about loading-dependent characteristics for the NGF/CNT/MnO 2 ternary composite electrodes. It will bring new perspectives on designing novel ternary or multi-structure for various energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    PubMed

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  16. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-01

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.

  17. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.

    PubMed

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-17

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm(-2), representing a more than 200% improvement over that of bare CNT electrodes.

  18. Microfluidic and Label-Free Multi-Immunosensors Based on Carbon Nanotube Microelectrodes

    NASA Astrophysics Data System (ADS)

    Tsujita, Yuichi; Maehashi, Kenzo; Matsumoto, Kazuhiko; Chikae, Miyuki; Takamura, Yuzuru; Tamiya, Eiichi

    2009-06-01

    We fabricated microfluidic and label-free multi-immunosensors by the integration of carbon nanotube (CNT)-arrayed electrodes and microchannels with pneumatic micropumps made of poly(dimethylsiloxane). In the microfluidic systems, four kinds of sample solutions were transported from each liquid inlet to microchannels using six pneumatic micropumps. As a result, two kinds of antibodies were immobilized onto different CNT electrodes using the microfluidic systems. Next, two kinds of cancer markers, prostate specific antigen and human chorionic gonadotropin in phosphate buffer solution, were simultaneously detected by differential pulse voltammetry. Therefore, microfludic multi-immunosensors based on CNT electrodes and pneumatic micropumps are useful for the development of multiplex hand-held biosensors.

  19. A cone-shaped 3D carbon nanotube probe for neural recording.

    PubMed

    Su, Huan-Chieh; Lin, Chia-Min; Yen, Shiang-Jie; Chen, Yung-Chan; Chen, Chang-Hsiao; Yeh, Shih-Rung; Fang, Weileun; Chen, Hsin; Yao, Da-Jeng; Chang, Yen-Chung; Yew, Tri-Rung

    2010-09-15

    A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for applications in neural recording. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type CNT electrodes. An approach to improve CNT characteristics by O(2) plasma treatment to modify the CNT surface will be also presented. Electrochemical characterization of O(2) plasma-treated 3D CNT (OT-CNT) probes revealed low impedance per unit area (∼64.5 Ω mm(-2)) at 1 kHz and high specific capacitance per unit area (∼2.5 mF cm(-2)). Furthermore, the OT-CNT probes were employed to record the neural signals of a crayfish nerve cord. Our findings suggest that OT-CNT probes have potential advantages as high spatial resolution and superb electrochemical properties which are suitable for neural recording applications. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

    PubMed Central

    Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D.Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy

    2015-01-01

    Objective The dorsal root ganglion (DRG) is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multiwall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as the result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main Results Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities. PMID:25485675

  1. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

    NASA Astrophysics Data System (ADS)

    Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D. Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy

    2015-02-01

    Objective. The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach. Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main results. Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance. This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.

  2. Ice-assisted transfer of carbon nanotube arrays.

    PubMed

    Wei, Haoming; Wei, Yang; Lin, Xiaoyang; Liu, Peng; Fan, Shoushan; Jiang, Kaili

    2015-03-11

    Decoupling the growth and the application of nanomaterials by transfer is an important issue in nanotechnology. Here, we developed an efficient transfer technique for carbon nanotube (CNT) arrays by using ice as a binder to temporarily bond the CNT array and the target substrate. Ice makes it an ultraclean transfer because the evaporation of ice ensures that no contaminants are introduced. The transferred superaligned carbon nanotube (SACNT) arrays not only keep their original appearance and initial alignment but also inherit their spinnability, which is the most desirable feature. The transfer-then-spin strategy can be employed to fabricate patterned CNT arrays, which can act as 3-dimensional electrodes in CNT thermoacoustic chips. Besides, the flip-chipped CNTs are promising field electron emitters. Furthermore, the ice-assisted transfer technique provides a cost-effective solution for mass production of SACNTs, giving CNT technologies a competitive edge, and this method may inspire new ways to transfer other nanomaterials.

  3. Two Studies from the Development Cycle of Macroscopic Carbon Nanotube Materials: Rheology of Carbon Nanotubes in Superadds and Characterization of the Electrochemical Circuit Behavior of Carbon Nanotube Fiber Electrodes for Electrophysiology

    NASA Astrophysics Data System (ADS)

    Young, Colin Christopher

    Carbon nanotubes (CNTs) possess a variety of properties which make them attractive as building blocks for high performance multi-functional materials. The discovery that superacids such as chlorosulfonic acid (ClHSO 3) act as true solvents for CNTs has led to the development of fluid processing techniques by which a variety of macroscopic CNT materials can be fabricated. This work presents two studies which are linked by the common thread of CNT materials development from acid solution precursors. The first study compares the rheology of two different CNT species in ClHSO3 as a function of concentration and frequency. The development of elastic structure with increasing solution concentration is found to depend strongly on the morphology of the liquid crystalline phase domains in the biphasic regime; physical interactions between non-interpenetrating liquid crystal domains are found to be a significant source of viscoelastic stress. An analysis of the scaling of viscoelastic behavior at short time scales, based on models of semiflexible polymer rheology, reveals that the primary contribution to the stress at short times is longitudinal tension resulting from contour fluctuations of individual CNTs; this tension-dominated stress is the primary viscoelastic stress for low concentration solutions. The second study investigates the electrochemical properties of macroscopic CNT fibers for applications in electrophysiology and cardiac medicine. CNT fibers exhibit much lower interfacial impedance with physiological saline and cardiac tissue than platinum wire of the same geometric surface area. Equivalent circuit modeling demonstrates that the low area-specific impedance of these fibers arises from a large double layer capacitance, which in turn arises from wetting of the internal porous surface area. Aging and storage conditions are shown to affect the wettability of this structure, and an electrowetting treatment is demonstrated which creates a stable increase in CNT

  4. Gold-coated carbon nanotube electrode arrays: Immunosensors for impedimetric detection of bone biomarkers.

    PubMed

    Ramanathan, Madhumati; Patil, Mitali; Epur, Rigved; Yun, Yeoheung; Shanov, Vasselin; Schulz, Mark; Heineman, William R; Datta, Moni K; Kumta, Prashant N

    2016-03-15

    C-terminal telopeptide (cTx), a fragment generated during collagen degradation, is a key biomarker of bone resorption during the bone remodeling process. The presence of varying levels of cTx in the bloodstream can hence be indicative of abnormal bone metabolism. This study focuses on the development of an immunosensor utilizing carbon nanotube (CNT) electrodes coated with gold nanoparticles for the detection of cTx, which could ultimately lead to the development of an inexpensive and rapid point-of-care (POC) tool for bone metabolism detection and prognostics. Electrochemical impedance spectroscopy (EIS) was implemented to monitor and detect the antigen-antibody binding events occurring on the surface of the gold-deposited CNT electrode. Type I cTx was used as the model protein to test the developed sensor. The sensor was accordingly characterized at various stages of development for evaluation of the optimal sensor performance. The biosensor could detect cTx levels as low as 0.05 ng/mL. The feasibility of the sensor for point-of-care (POC) applications was further demonstrated by determining the single frequency showing maximum changes in impedance, which was determined to be 18.75 Hz. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  6. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  7. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges

    NASA Astrophysics Data System (ADS)

    Afzal, Adeel; Abuilaiwi, Faraj A.; Habib, Amir; Awais, Muhammad; Waje, Samaila B.; Atieh, Muataz A.

    2017-06-01

    The supercapacitors are advanced electrochemical energy storage devices having characteristics such as high storage capacity, rapid delivery of charge, and long cycle life. Polypyrrole (PPy) - an electronically conducting polymer, and carbon nanotubes (CNT) with high surface area and exceptional electrical and mechanical properties are among the most frequently studied advanced electrode materials for supercapacitors. The asymmetric supercapacitors composed of PPy/CNT composite electrodes offer complementary benefits to improve the specific capacitance, energy density, and stability. This article presents an overview of the recent technological advances in PPy/CNT composite supercapacitors and their limitations. Various strategies for synthesis and fabrication of PPy/CNT composites are discussed along with the factors that influence their ultimate electrochemical performance. The drawbacks and challenges of modern PPy/CNT composite supercapacitors are also reviewed, and potential areas of concern are identified for future research and development.

  8. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  9. Effect of platelet-shaped graphene additives on actuating response of carbon nanotube/ionic liquid/polymer composite actuators

    NASA Astrophysics Data System (ADS)

    Monobe, Hirosato; Tsuchiya, Nobuyuki; Yamamura, Masahiro; Mukai, Ken; Sugino, Takushi; Asaka, Kinji

    2018-03-01

    In this study, the platelet-shaped graphene was used as a conductive additive in porous electrodes of a dry-type polymer actuator consisting of carbon nanotube (CNT), ionic liquid, and a base polymer to improve actuation properties. The generated strain was estimated from the bending motion of the actuator in the frequency range from 0.005 to 10 Hz. Ten different types of electrode film were prepared by changing the mixing amounts and surface areas of the platelet-shaped graphene. When a small amount of graphene (30 mg) relative to CNT (50 mg) was added to the CNT electrode, the strain was increased to be almost twice larger than that of CNT (50 mg) without any additives. The strain coefficient of the three-layered actuator with CNT electrodes with graphene additives is positively correlated with the capacitance per volume of such electrodes.

  10. Label-free electrical detection using carbon nanotube-based biosensors.

    PubMed

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2009-01-01

    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  11. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    NASA Astrophysics Data System (ADS)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  12. Carbon Nanotube Electrodes for Effective Interfacing with Retinal Tissue

    PubMed Central

    Shoval, Asaf; Adams, Christopher; David-Pur, Moshe; Shein, Mark; Hanein, Yael; Sernagor, Evelyne

    2009-01-01

    We have investigated the use of carbon nanotube coated microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60, 30 μm diameter electrodes at spacing of 200 μm. These electrodes were coated via chemical vapor deposition of carbon nanotubes, resulting in conducting, three dimensional surfaces with a high interfacial area. These attributes are important both for the quality of the cell-surface coupling as well as for electro-chemical interfacing efficiency. The entire chip was packaged to fit a commercial multielectrode recording and stimulation system. Electrical recordings of spontaneous spikes from whole-mount neonatal mouse retinas were consistently obtained minutes after retinas were placed over the electrodes, exhibiting typical bursting and propagating waves. Most importantly, the signals obtained with carbon nanotube electrodes have exceptionally high signal to noise ratio, reaching values as high as 75. Moreover, spikes are marked by a conspicuous gradual increase in amplitude recorded over a period of minutes to hours, suggesting improvement in cell-electrode coupling. This phenomenon is not observed in conventional commercial electrodes. Electrical stimulation using carbon nanotube electrodes was also achieved. We attribute the superior performances of the carbon nanotube electrodes to their three dimensional nature and the strong neuro-carbon nanotube affinity. The results presented here show the great potential of carbon nanotube electrodes for retinal interfacing applications. Specifically, our results demonstrate a route to achieve a reduction of the electrode down to few micrometers in order to achieve high efficacy local stimulation needed in retinal prosthetic devices. PMID:19430595

  13. Modeling of Carbon Nanotube Schottky Barrier Reduction for Holes in Air

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes Phi(sub Bh) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We consider that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower Phi(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  14. Semiconducting carbon nanotube network thin-film transistors with enhanced inkjet-printed source and drain contact interfaces

    NASA Astrophysics Data System (ADS)

    Lee, Yongwoo; Yoon, Jinsu; Choi, Bongsik; Lee, Heesung; Park, Jinhee; Jeon, Minsu; Han, Jungmin; Lee, Jieun; Kim, Yeamin; Kim, Dae Hwan; Kim, Dong Myong; Choi, Sung-Jin

    2017-10-01

    Carbon nanotubes (CNTs) are emerging materials for semiconducting channels in high-performance thin-film transistor (TFT) technology. However, there are concerns regarding the contact resistance (Rcontact) in CNT-TFTs, which limits the ultimate performance, especially the CNT-TFTs with the inkjet-printed source/drain (S/D) electrodes. Thus, the contact interfaces comprising the overlap between CNTs and metal S/D electrodes play a particularly dominant role in determining the performances and degree of variability in the CNT-TFTs with inkjet-printed S/D electrodes. In this work, the CNT-TFTs with improved device performance are demonstrated to enhance contact interfaces by controlling the CNT density at the network channel and underneath the inkjet-printed S/D electrodes during the formation of a CNT network channel. The origin of the improved device performance was systematically investigated by extracting Rcontact in the CNT-TFTs with the enhanced contact interfaces by depositing a high density of CNTs underneath the S/D electrodes, resulting in a 59% reduction in Rcontact; hence, the key performance metrics were correspondingly improved without sacrificing any other device metrics.

  15. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  16. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi

    2016-08-01

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ˜30% and ˜300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  17. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer

    2016-08-22

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ∼30% andmore » ∼300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.« less

  18. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOEpatents

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  19. Carbon nanotube balls and their application in supercapacitors.

    PubMed

    Kang, Da-Young; Moon, Jun Hyuk

    2014-01-08

    We have provided a design of the macroscopic morphology of carbon nanotubes (CNTs) using emulsion droplet confinement. The evaporation of CNT-dispersed aqueous emulsion droplets in oil produces spherical CNT assemblies, i.e., CNT balls. In this emulsion-assisted method, compact packing of CNT was obtained by the presence of capillary pressure during droplet evaporation. The size of the CNT balls could be controlled by changing the concentration of the CNT dispersion solution; typically, CNT balls with an average size in the range of 8-12 μm were obtained with a Brunauer-Emmett-Teller (BET) specific area of 200 m(2)/g. Heat treatment of the CNT balls, which was required to remove residual solvent, and cement CNTs was followed, and their effect has been characterized; the heat treatment at high temperature desorbed surface oxygenated groups of CNTs and created defective carbon structures, but did not change pore structure. The dispersion of CNT balls was applied to form CNT ball-assembled film for a supercapacitor electrode. The specific capacitance of 80 F/g was obtained at 500 °C heat treatment, but the CNT balls prepared at a higher temperature actually decreased the capacitance, because of the removal of surface oxygenated groups, thereby decreasing the pseudo-capacitance. The capacitive properties of CNT ball-assembled electrodes were compared to CNT films; the CNT ball electrodes showed 40% higher specific electrochemical capacitance and higher rate performance, which is attributed to the compact packing of CNTs in the CNT ball and the hierarchical porous structures in the ball assemblies.

  20. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  1. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  2. Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi

    2015-12-01

    After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.

  3. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua

    2010-04-01

    A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.

  4. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    NASA Astrophysics Data System (ADS)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  5. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

    PubMed Central

    Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong

    2011-01-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822

  6. Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems

    NASA Astrophysics Data System (ADS)

    Uddin, Nasir Mohammad

    An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant

  7. AC-dielectrophoretic force assisted fabrication of conducting quantum dot aggregates in the electrical breakdown-induced CNT nanogap

    NASA Astrophysics Data System (ADS)

    Shim, Hyung Cheoul; Choi, Hyekyoung; Jeong, Sohee

    2018-03-01

    In this paper, we fabricated quantum dot (QD) aggregates at desired locations using dielectrophoretic (DEP) forces induced in the carbon nanotube (CNT) nanogap created by Joule heating-induced electrical breakdown. Nanogaps with a size of at least 20-30 nm can be effectively fabricated in the ambient condition, and fabrication yield can be monitored through in-situ electrical signal without post morphological analysis. The geometry of CNT electrodes with high aspect ratio as well as the gap size of the electrodes to a few tens of nanometers scale enabled the derivation of sufficiently high DEP forces that facilitate the trapping of QD in the CNT nanogap. Above all, we were able to fabricate a conducting crack-free QD aggregates by exchanging the ligands on the surface of the QDs in the presence of a DEP force and this approach showed the possibility of being applied as a QD based optoelectronic devices.

  8. Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A

    2013-08-01

    We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors

    NASA Astrophysics Data System (ADS)

    Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair

    2016-04-01

    Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.

  10. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.

    PubMed

    Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Singh, Dinesh Pratap; Yadav, Ram Manohar

    2015-07-15

    Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.

  11. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes.

    PubMed

    Hou, Ye; Cheng, Yingwen; Hobson, Tyler; Liu, Jie

    2010-07-14

    For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.

  12. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  13. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

    PubMed

    Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S

    2010-03-01

    Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.

  14. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  15. CNT/conductive polymer composites for low-voltage driven EAP actuators

    NASA Astrophysics Data System (ADS)

    Sugino, Takushi; Shibata, Yoshiyuki; Kiyohara, Kenji; Asaka, Kinji

    2012-04-01

    We investigated the effects of additives incorporated into the electrode layer in order to improve the actuation performance of dry-type carbon nanotube (CNT) actuators. Especially, the addition of conductive nano-particles such as polyaniline (PANI) and polypyrrole (PPy) improves actuation performance very much rather than the addition of nonconductive nano-particles such as mesoprous silica (MCM-41 type). In this paper, we studied on the influences of applied voltage, species of ionic liquid (IL), amounts of IL, thickness of actuator to optimize actuation performance. Imidazolium type ionic liquids with three different anions, that is, 1-ethyl-3-methylimidazolium (EMI) as a cation and tetrafluoroborate (BF4), trifluoromethanesulfonate (OTf), and bis(trifluoromethanesulfonyl)imide (TFSI) as anions were chosen in this study. EMIBF4 is the most suitable IL for our CNT actuator including PANI in the electrode layer. We tuned the amount of IL and the thickness of actuator. As a result, the strain was improved to be 2.2% at 0.1 Hz by applying the voltage of 2.5 V. This improved value is almost 2 times larger than our previous results. We also show the potential of improved CNT actuators for a thin and light Braille display.

  16. Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations

    NASA Astrophysics Data System (ADS)

    Sheikhi, Masoome; Shahab, Siyamak; Khaleghian, Mehrnoosh; Hajikolaee, Fatemeh Haji; Balakhanava, Iryna; Alnajjar, Radwan

    2018-05-01

    In the present work the adsorption properties of the molecule Resveratrol (RSV) (trans-3,5,4‧-Trihydroxystilbene) on CNT(8,0-10) nanotube was investigated by Density Functional Theory (DFT) in the gaseous phase for the first time. The non-bonded interaction effects of compounds RSV and CNT(8,0-10) nanotube on the electronic properties, chemical shift tensors and natural charge were determined and discussed. The electronic spectra of the RSV and the complex CNT(8,0-10)/RSV in the gaseous phase were calculated by Time Dependent Density Functional Theory (TD-DFT) for investigation of the maximum wavelength value of the RSV before and after the non-bonded interaction with the CNT(8,0-10) nanotube and molecular orbitals involved in the formation of absorption spectrum of the complex RSV at maximum wavelength.

  17. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.

    PubMed

    Zhu, Guoyin; He, Zhi; Chen, Jun; Zhao, Jin; Feng, Xiaomiao; Ma, Yanwen; Fan, Quli; Wang, Lianhui; Huang, Wei

    2014-01-21

    Carbon nanotube (CNT)-graphene hybrids grown on porous Ni foam are used as substrates to immobilize MnO2 nanoflakes, thus forming three-dimensional (3D) MnO2-CNT-graphene-Ni hybrid foam. The as-prepared hybrid materials could be used as supercapacitor electrodes directly without any binder and conductive additives, and fully maintain the high conductivity and high surface-to-volume ratio of CNTs, large pseudocapacitance of MnO2 nanoflakes and high porosity provided by the framework of Ni foam. The conductivity of the 3D MnO2-CNT-graphene-Ni foam is as high as 117 S cm(-1) due to the seamless integration of MnO2 nanoflakes, CNTs, graphene and Ni foam among the 3D frameworks, which guarantee its low internal resistance (1.25 ohm) when compacted into supercapacitor devices. In aqueous electrolytes, the 3D MnO2-CNT-graphene-Ni based prototype supercapacitors show specific capacitances of ~251 F g(-1) with good cycling stability at a current density of 1.0 A g(-1). In addition, these 3D hybrids also demonstrate their potential in all-solid-state flexible supercapacitors.

  18. Simple electro-assisted immobilization of ciprofloxacin on carbon nanotube modified electrodes: its selective hydrogen peroxide electrocatalysis.

    PubMed

    Sornambikai, Sundaram; Kumar, Annamalai Senthil

    2014-09-01

    Ciprofloxacin (Cf) is a synthetic fourth generation fluoroquinolone class antibiotic used for the treatment of gram-positive, gram-negative and mycobacterium species infections. Electrochemical characteristic of the Cf antibiotic on carbon nanotube modified glassy carbon electrode (GCE/CNT) in pH 7 phosphate buffer solution has been investigated. Electrochemically oxidized radical byproduct of the Cf drug, which is formed as intermediate, gets immobilized on the GCE/CNT (GCE/Cf@CNT) and showed stable and well defined surface confined redox peak at -0.220 V versus Ag/AgCl. Control electrochemical experiment with unmodified GCE failed to show any such immobilization and redox features. Physicochemical characterizations of the Cf@CNT by transmission electron microscope, scanning electron microscope, infrared spectroscopy, UV-Vis and gas chromatography coupled mass spectroscopic analyses of Cf@CNT collectively revealed presence of native form of the Cf antibiotic molecule onto the CNT. The interaction between the Cf molecule and the CNT tubes are revealed from the decreased intensity in the Raman spectrum. The GCE/Cf@CNT showed excellent electrocatalytic response to hydrogen peroxide reduction reaction in pH 7 phosphate buffer solution. Amperometric i-t analysis for the detection of H2O2 showed a current linearity plot upto [H2O2] = 200 μM at an applied potential - 0.1 V versus Ag/AgCl with a current sensitivity value 678 μA mM(-1) cm(-2). No interferences were noticed with ascorbic acid, uric acid, cysteine and nitrite. The present study can be highly helpful to understand the interaction between the Cf and H2O2 in physiological systems and for the removal of Cf from the antibiotic polluted water samples especially in the aquaculture and agricultural systems.

  19. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.

    PubMed

    Su, Fenghua; Miao, Menghe

    2014-04-04

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO₂ are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@Mn₂2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO₂ composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg(-1) at a lower power density of 483.7 W kg(-1), and 28.02 Wh kg(-1) at a higher power density of 19,250 W kg(-1). The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.

  20. Carbon nanotube/poly(ethylene-co-vinyl acetate) composite electrode for capillary electrophoretic determination of esculin and esculetin in Cortex Fraxini.

    PubMed

    Chen, Zhi; Zhang, Luyan; Chen, Gang

    2009-10-01

    In this report, a novel carbon nanotube/poly(ethylene-co-vinyl acetate) (CNT/EVA) composite electrode was developed for the amperometric detection in CE. The composite electrode was fabricated by packing a mixture of CNTs and melted EVA in a piece of fused-silica capillary under heat. It was coupled with CE for the separation and detection of esculin and esculetin in Cortex Fraxini, a traditional Chinese medicine, to demonstrate its feasibility and performance. Esculin and esculetin have been well separated within 9 min in a 40 cm long capillary at a separation voltage of 12 kV using a 50 mM borate buffer (pH 9.2). The new CNT-based CE detector offered significantly lower detection potentials, yielded enhanced S/N characteristics, and exhibited high resistance to surface fouling and enhanced stability. It showed long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n=15) and should also find a wide range of applications in other microfluidic analysis systems.

  1. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode.

    PubMed

    David, Lamuel; Asok, Deepu; Singh, Gurpreet

    2014-09-24

    Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.

  2. Tunable Free-Standing Core-Shell CNT@MoSe2 Anode for Lithium Storage.

    PubMed

    Yousaf, Muhammad; Wang, Yunsong; Chen, Yijun; Wang, Zhipeng; Aftab, Waseem; Mahmood, Asif; Wang, Wei; Guo, Shaojun; Han, Ray P S

    2018-05-02

    Heterogeneous nanostructuring of MoSe 2 over a carbon nanotube (CNT) sponge as a free-standing electrode not only brings higher performance but also eliminates the need for dead elements such as a binder, conductive carbon, and supportive current collectors. Further, the porous CNT sponge can be easily compacted via an intense densification of the active material MoSe 2 to produce an electrode with a high mass loading for a significantly improved areal capacity. In this work, we present a tunable coating of MoSe 2 on a CNT sponge to fabricate a core-shell MoSe 2 @CNT anode. The three-dimensional nanotubular sponge is synthesized via a solvothermal process, followed by thermal annealing to improve crystallization. Structural and morphological studies revealed that MoSe 2 grew as a layered structure ( d = 0.66 nm), where numbers of layers can be controlled to yield optimized results for Li + storage. We showed that the 10-layer core-shell CNT@MoSe 2 hybrid sponge delivered a discharge capacity of 820.5 mAh g -1 after 100 cycles at 100 mA g -1 with a high cyclic stability and rate capability. Further, an ex situ structural and morphological analysis revealed that ionic storage causes a phase change in MoSe 2 from a crystalline to a partial amorphous state for a continuous increase in the capacity with extended cycling. We believe that the strategy developed here will assist users to tune the electrode materials for future energy-storage devices, especially how the materials are changing with the passage of time and their effects on the device performance.

  3. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid.

    PubMed

    Yang, Huijia; Zhou, Minghua; Yang, Weilu; Ren, Gengbo; Ma, Liang

    2018-05-04

    H 2 O 2 production plays an important role in electro-Fenton process for pharmaceutical and personal care products (PPCPs) degradation. In this work, carbon nanotube (CNT) was attempted to make a gas diffusion electrode (GDE) by rolling method to achieve a high H 2 O 2 production and current efficiency, and it was further used as electro-Fenton cathode for the degradation of acetylsalicylic acid (ASA) as one kind of PPCPs. The optimal amount of catalyst layer was 0.15 g CNT and 93.75 μL PTFE, obtaining the production of H 2 O 2 of 805 mg L -1 in 0.05 mM Na 2 SO 4 solution at 100 mA after 180 min. The degradation of ASA by electro-Fenton on such a CNT-GDE cathode was studied, and some important parameters such as current, pH as well as the dosage of Fe 2+ were optimized. The degradation ratio of ASA could achieve almost 100% after 10 min and the TOC removal ratio was 62% at 1 h under the condition of 100 mA and pH 3, showing a great potential for the treatment of PPCPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Determination of arbutin and bergenin in Bergeniae Rhizoma by capillary electrophoresis with a carbon nanotube-epoxy composite electrode.

    PubMed

    Zhang, Luyan; Zhang, Wei; Chen, Gang

    2015-11-10

    This report describes the fabrication and the application of a novel carbon nanotube (CNT)-epoxy composite electrode as a sensitive amperometric detector for the capillary electrophoresis (CE). The composite electrode was fabricated on the basis of the in situ polycondensation of a mixture of CNTs and 1,2-ethanediamine-containing bisphenol A epoxy resin in the inner bore of a piece of fused silica capillary under heat. It was coupled with CE for the separation and detection of arbutin and bergenin in Bergeniae Rhizoma, a traditional Chinese medicine, to demonstrate its feasibility and performance. The two phenolic constituents were well separated within 10min in a 45cm capillary length at a separation voltage of 12kV using a 50mM borate buffer (pH 9.2). The CNT-based detector offered higher sensitivity, significantly lower operating potential, satisfactory resistance to surface fouling, and lower expense of operation, indicating great promise for a wide range of analytical applications. It showed long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n=15). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Ying; Shih, Zih-Yu; Yang, Zusing; Chang, Huan-Tsung

    2012-10-01

    We have prepared carbon nanotube (CNT)/cobalt sulfide (CoS) composites from cobalt nitrate, thioacetamide, and CNTs in the presence of poly(vinylpyrrolidone). CNT/CoS composites are deposited onto fluorine-doped tin oxide glass substrates and then subjected to simple annealing at 300 °C for 0.5 h to fabricate CNT/CoS electrodes. Data collected from Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and d-spacing reveal the changes in the CoS structures and crystalline lattices after annealing. Cyclic voltammetry results reveal that the annealed CNT/CoS composite electrodes yield values of 2140 ± 90 and 1370 ± 50 F g-1 for specific capacitance at scan rates of 10 and 100 mV s-1, respectively. To the best of our knowledge, the annealed CNT/CoS composite electrodes provide higher specific capacitance relative to other reported ones at a scan rate of 100 mV s-1. CNT/CoS composite electrodes yield a power density of 62.4 kW kg-1 at a constant discharge current density of 217.4 A g-1. With such a high-rate capacity and power density, CNT/CoS composite supercapacitors demonstrate great potential as efficient energy storage devices.

  6. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.

  7. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    PubMed Central

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724

  8. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Xiangjun; Dou, Hui; Yuan, Changzhou; Yang, Sudong; Hao, Liang; Zhang, Fang; Shen, Laifa; Zhang, Luojiang; Zhang, Xiaogang

    2012-01-01

    The flexible electrodes have important potential applications in energy storage of portable electronic devices for their powerful structural properties. In this work, unique flexible films with polypyrrole/carbon nanotube (PPy/CNT) composite homogeneously distributed between graphene (GN) sheets are successfully prepared by flow-assembly of the mixture dispersion of GN and PPy/CNT. In such layered structure, the coaxial PPy/CNT nanocables can not only enlarge the space between GN sheets but also provide pseudo-capacitance to enhance the total capacitance of electrodes. According to the galvanostatic charge/discharge analysis, the mass and volume specific capacitances of GN-PPy/CNT (52 wt% PPy/CNT) are 211 F g-1 and 122 F cm-3 at a current density of 0.2 A g-1, higher than those of the GN film (73 F g-1 and 79 F cm-3) and PPy/CNT (164 F g-1 and 67 F cm-3). Significantly, the GN-PPy/CNT electrode shows excellent cycling stability (5% capacity loss after 5000 cycles) due to the flexible GN layer and the rigid CNT core synergistical releasing the intrinsic differential strain of PPy chains during long-term charge/discharge cycles.

  9. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics

    NASA Astrophysics Data System (ADS)

    Su, Fenghua; Miao, Menghe

    2014-04-01

    Strong and flexible two-ply carbon nanotube yarn supercapacitors are electrical double layer capacitors that possess relatively low energy storage capacity. Pseudocapacitance metal oxides such as MnO2 are well known for their high electrochemical performance and can be coated on carbon nanotube yarns to significantly improve the performance of two-ply carbon nanotube yarn supercapacitors. We produced a high performance asymmetric two-ply yarn supercapacitor from as-spun CNT yarn and CNT@MnO2 composite yarn in aqueous electrolyte. The as-spun CNT yarn serves as negative electrode and the CNT@MnO2 composite yarn as positive electrode. This asymmetric architecture allows the operating potential window to be extended from 1.0 to 2.0 V and results in much higher energy and power densities than the reference symmetric two-ply yarn supercapacitors, reaching 42.0 Wh kg-1 at a lower power density of 483.7 W kg-1, and 28.02 Wh kg-1 at a higher power density of 19 250 W kg-1. The asymmetric supercapacitor can sustain cyclic charge-discharge and repeated folding/unfolding actions without suffering significant deterioration of specific capacitance. The combination of high strength, flexibility and electrochemical performance makes the asymmetric two-ply yarn supercapacitor a suitable power source for flexible electronic devices for applications that require high durability and wearer comfort.

  10. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    PubMed

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  11. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    PubMed Central

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs. PMID:28074847

  12. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-01

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m2/g and a pore volume 0.366 cm3/g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  13. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors.

    PubMed

    Wang, Yanqing; Fugetsu, Bunshi; Wang, Zhipeng; Gong, Wei; Sakata, Ichiro; Morimoto, Shingo; Hashimoto, Yoshio; Endo, Morinobu; Dresselhaus, Mildred; Terrones, Mauricio

    2017-01-11

    Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-dispersed into a tubular level of dispersions, were used as the starting material and the 3D-NDP-ACMs were obtained via a template-free process. First, a continuous mesoporous PAN/CNT based 3D monolith was established by using a template-free temperature-induced phase separation (TTPS). Second, a nitrogen-doped 3D-ACM with a surface area of 613.8 m 2 /g and a pore volume 0.366 cm 3 /g was obtained. A typical supercapacitor with our 3D-NDP-ACMs as the functioning electrodes gave a specific capacitance stabilized at 216 F/g even after 3000 cycles, demonstrating the advantageous performance of the PAN/CNT based 3D-NDP-ACMs.

  14. Investigation of Lithium-Air Battery Discharge Product Formed on Carbon Nanotube and Nanofiber Electrodes

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert Revell, III

    Carbon nanotubes have been actively investigated for integration in a wide variety of applications since their discovery over 20 years ago. Their myriad desirable material properties including exceptional mechanical strength, high thermal conductivities, large surface-to-volume ratios, and considerable electrical conductivities, which are attributable to a quantum mechanical ability to conduct electrons ballistically, have continued to motivate interest in this material system. While a variety of synthesis techniques exist, carbon nanotubes and nanofibers are most often conveniently synthesized using chemical vapor deposition (CVD), which involves their catalyzed growth from transition metal nanoparticles. Vertically-aligned nanotube and nanofiber carpets produced using CVD have been utilized in a variety of applications including those related to energy storage. Li-air (Li-O2) batteries have received much interest recently because of their very high theoretical energy densities (3200 Wh/kgLi2O2 ). which make them ideal candidates for energy storage devices for future fully-electric vehicles. During operation of a Li-air battery O2 is reduced on the surface a porous air cathode, reacting with Li-ions to form lithium peroxide (Li-O2). Unlike the intercalation reactions of Li-ion batteries, discharge in a Li-air cell is analogous to an electrodeposition process involving the nucleation and growth of the depositing species on a foreign substrate. Carbon nanofiber electrodes were synthesized on porous substrates using a chemical vapor deposition process and then assembled into Li-O2 cells. The large surface to volume ratio and low density of carbon nanofiber electrodes were found to yield a very high gravimetric energy density in Li-O 2 cells, approaching 75% of the theoretical energy density for Li 2O2. Further, the carbon nanofiber electrodes were found to be excellent platforms for conducting ex situ electron microscopy investigations of the deposition Li2O2 phase

  15. Interaction Between New Anti-cancer Drug Syndros and CNT(6,6-6) Nanotube for Medical Applications: Geometry Optimization, Molecular Structure, Spectroscopic (NMR, UV/Vis, Excited state), FMO, MEP and HOMO-LUMO Investigation

    NASA Astrophysics Data System (ADS)

    Sheikhi, Masoome; Shahab, Siyamak; Khaleghian, Mehrnoosh; Kumar, Rakesh

    2018-03-01

    In the present work, Density Functional Theory (DFT) was first time employed to investigate the interaction between new drug (6aR,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol (Syndros) and the CNT(6,6-6) Nanotube in the gaseous phase. The interaction effects of compounds Syndros and CNT (6,6-6) nanotube on the electronic properties, chemical shift tensors and natural charge was also determined and discussed. The electronic spectra of the Syndros and the complex CNT(6,6-6)/Syndros in the gas phase were calculated by Time Dependent Density Functional Theory (TD-DFT) for the formation of adsorption effect on maximum wavelength of the Syndros. Nucleus-Independent Chemical Shifts (NICS) calculations have also been carried out for the compound Syndors and the complex CNT(6,6-6)/Syndros and the aromaticity of the compound Syndors before and after interaction with the CNT(6,6-6) Nanotube was investigated.

  16. Carbon Nanotube-based Sensor and Method for Continually Sensing Changes in a Structure

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffry D. (Inventor); Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Ingram, JoAnne L. (Inventor)

    2007-01-01

    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between resistance of a carbon nanotube and carbon nanotube strain, changes experienced by the portion of the structure to which the sensor is coupled induce a change in electrical properties of the conductors.

  17. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.

    PubMed

    Gissinger, Jacob R; Pramanik, Chandrani; Newcomb, Bradley; Kumar, Satish; Heinz, Hendrik

    2018-01-10

    Polyacrylonitrile (PAN)/carbon nanotube (CNT) composites are used as precursors for ultrastrong and lightweight carbon fibers. However, insights into the structure at the nanoscale and the relationships to mechanical and thermal properties have remained difficult to obtain. In this study, molecular dynamics simulation with accurate potentials and available experimental data were used to describe the influence of different degrees of PAN preorientation and CNT diameter on the atomic-scale structure and properties of the composites. The inclusion of CNTs in the polymer matrix is favored for an intermediate degree of PAN orientation and small CNT diameter whereas high PAN crystallinity and larger CNT diameter disfavor CNT inclusion. The glass transition at the CNT/PAN interface involves the release of rotational degrees of freedom of the polymer backbone and increased mobility of the protruding nitrile side groups in contact with the carbon nanotubes. The glass-transition temperature of the composite increases in correlation with the amount of CNT/polymer interfacial area per unit volume, i.e., in the presence of CNTs, for higher CNT volume fraction,  and inversely with CNT diameter. The increase in glass-transition temperature upon CNT addition is larger for PAN of lower crystallinity than for PAN of higher crystallinity. Interfacial shear strengths of the composites are higher for CNTs of smaller diameter and for PAN with preorientation, in correlation with more favorable CNT inclusion energies. The lowest interfacial shear strength was observed in amorphous PAN for the same CNT diameter. PAN with ∼75% crystallinity exhibited hexagonal patterns of nitrile groups near and far from the CNT interface which could influence carbonization into regular graphitic structures. The results illustrate the feasibility of near-quantitative insights into macroscale properties of polymer/CNT composites from simulations of nanometer-scale composite domains. Guidance is most

  18. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    PubMed

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  19. The effect of temperature deposited on the performance of ZnO-CNT-graphite for supercapacitors

    NASA Astrophysics Data System (ADS)

    Darari, Alfin; Hakim, Istajib S.; Priyono; Subagio, Agus; Pardoyo; Subhan, Achmad

    2017-07-01

    Carbon nanotubes (CNTs), graphite are now widely studied as the electrodes of supercapacitor, owing to their high conductivity, large surface area, chemical stability, etc. A lot of research has been focused on Carbon/metal oxide nanocomposite electrode for Electrode supercapacitor because it will increase the total capacitance. In this research, ZnO nanoparticles were deposited onto substrate CNT:Graphite in different temperatures such as 300°, 350°, and 400°C. The characterization of the crystal size using X-Ray Diffraction (XRD) patterns showed ZnO material peak was detected a ZnO crystallite. The size of ZnO crystallite in 300°, 350°, and 400°C consecutively is 101.1; 103.4; and 116.7 nm. The test results are Electrochemical impedance spectrometry (EIS) high electrical conductivity values obtained on the composition of ZnO-CNT-graphite with a temperature of 350°C 4.6 (S/m); and (2) the highest value of capacitance in 300°C is 1.23 F/g.

  20. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    NASA Astrophysics Data System (ADS)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  1. Characterization of CNT-MnO{sub 2} nanocomposite by electrophoretic deposition as potential electrode for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darari, Alfin, E-mail: alfindarari@st.fisika.undip.ac.id; Rismaningsih, Nurmanita; Ardiansah, Hafidh Rahman

    Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO{sub 2} thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the bestmore » CNT-MnO{sub 2} composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO{sub 2} potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.« less

  2. Hierarchically structured carbon nanotubes for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  3. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.

    PubMed

    Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung

    2010-08-15

    Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.

  4. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  5. Dispersant affects the cellular influences of single-wall carbon nanotube: the role of CNT as carrier of dispersants.

    PubMed

    Horie, Masanori; Stowe, Mayumi; Tabei, Miki; Kato, Haruhisa; Nakamura, Ayako; Endoh, Shigehisa; Morimoto, Yasuo; Fujita, Katsuhide

    2013-06-01

    The application of carbon nanotube (CNT) as a functional material to engineering and life sciences is advanced. In order to evaluate the cytotoxicity of CNT in vitro, some chemical and biological reagents are used for dispersants. In the present study, the cellular influences of six kinds of chemical or biological reagents used as dispersants were examined. Pluronic F-127, Pluronic F-68, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), pulmonary surfactant preparation Surfacten®, bovine serum albumin (BSA) and Tween 80 were used in the preparation of CNT-medium dispersants. The influences of each reagent on cell viability in human lung carcinoma A549 cells were small. However, Pluronic F-127, DPPC, Surfacten® and Tween 80 induced an increase of intracellular reactive oxygen species (ROS) level. Next, CNT-medium dispersions were prepared, using each reagent as a dispersant and applied to A549 cells. The cellular influences depended on the kind of dispersant. Cells exposed to CNT dispersion including Pluronic® F-127, Surfacten®, DPPC and Tween 80 showed LDH release to the culture supernatant. Induction of intracellular ROS level was observed in cells exposed to CNT dispersion including each reagent except BSA. These results suggest that the adsorbed dispersant reagents on the surface of the CNT affect its cellular influences, particularly the induction of oxidative stress.

  6. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    PubMed

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Spin transport in carbon nanotubes bundles: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Meena, Shweta; Choudhary, Sudhanshu

    2017-10-01

    First principles investigations are performed on understanding the spin-polarized transport in carbon nanotubes and carbon nanotube bundles consisting of (8 , 0) and (17 , 0) SWCNTs kept in vertical (out-of-plane) arrangement and contacted by two CrO2 Half-Metallic-Ferromagnetic (HMF) electrodes. On comparison of the results for all the structures, it is observed that carbon nanotube bundle consisting of (17 , 0) CNT offers high TMR ∼100% and the transport phenomenon is tunneling, since there are no transmission states near Fermi level. However, in individual (8 , 0) and (17 , 0) CNT the transport is not because of tunneling, since there are significant number of transmission states near Fermi level. High Magneto Resistance (MR) 96% and 99% is observed in individual (8 , 0) and (17 , 0) CNTs respectively. Both TMR and Spin Injection Efficiency η (Spin-Filtration) are higher in (17 , 0) carbon nanotube bundle structure, which is due to carbon nanotube bundle acting as a perfect barrier in vertical (out-of-plane) arrangement resulting in negligible spin-down current (I↓) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).

  9. Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Jung; Wu, Tzu-Ho; Hsu, Chun-Tsung; Li, Shin-Ming; Chen, Ming-Guan; Hu, Chi-Chang

    2014-12-01

    Polypyrrole (PPy) has been polymerized onto reduced graphene oxide/carbon nanotube (rGO/CNT) to form an rGO/CNT/PPy composite using the chemical oxidation method. The electrochemical characteristics of the above composite in various aqueous electrolytes are systematically compared for the asymmetric supercapacitor application. The electrochemical characteristics of rGO/CNT/PPy in the electrolytes containing K+ show improved reversibility and higher stability. Introducing XC-72 in preparing the electrode has been found to enhance the specific capacitance and the cycle stability of rGO/CNT/PPy. The charge storage stability of rGO/CNT/PPy + XC-72 in various potential windows has been evaluated through the potential bias stress test. An asymmetric supercapacitor (ASC) with a positive electrode of Mn3O4 and a negative electrode of rGO/CNT/PPy + XC-72 is successfully demonstrated, which shows specific energy and power of 14. Wh kg-1 and 6.62 kW kg-1 with a cell voltage of 1.6 V. This ASC with a cell voltage of 1.6 V shows excellent charge-discharge cycle stability and ideal capacitive behavior in NaNO3 even after the application of 3250 charge-discharge cycles.

  10. Stable doping of carbon nanotubes via molecular self assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.; Chen, Y.; Podzorov, V., E-mail: podzorov@physics.rutgers.edu

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodesmore » greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.« less

  11. Implementation of a Thick-Film Composite Li-Ion Microcathode Using Carbon Nanotubes as the Conductive Filler

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Harb, John N.

    2004-01-01

    This paper describes the development of a thick-film microcathode for use in Li-ion microbatteries in order to provide increased power and energy per area. These cathodes take advantage of a composite porous electrode structure, utilizing carbon nanotubes (CNT) as the conductive filler. The use of carbon nanotubes was found to significantly reduce the measured resistance of the electrodes, increase active material accessibility, and improve electrode performance. In particular, the cycling and power performance of the thick-film cathodes was significantly improved, and the need for compression was eliminated. Cathode thickness and CNT content were optimized to maximize capacity and power performance. Power capability of >50 mW/sq cm (17 mA/sq cm) with discharge capacity of >0.17 mAh/sq cm was demonstrated. The feasibility of fabricating thick-film microcathodes capable of providing the power and capacity needed for use in autonomous microsensor systems was also demonstrated.

  12. Glucose oxidase/cellulose-carbon nanotube composite paper as a biocompatible bioelectrode for biofuel cells.

    PubMed

    Won, Keehoon; Kim, Young-Hoo; An, Seulji; Lee, Hye Jung; Park, Saerom; Choi, Yong-Keun; Kim, Ji Hyeon; Hwang, Hak-In; Kim, Hyung Joo; Kim, Hyungsup; Lee, Sang Hyun

    2013-11-01

    Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)-CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL-CNT composite paper. Cyclic voltammograms revealed that the GOx/CL-CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.

  13. Effect of carbon nano tube working electrode thickness on charge transport kinetics and photo-electrochemical characteristics of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.

    2018-02-01

    Physiochemical processes at the photo-electrode and the counter electrode of dye sensitized solar cells (DSSCs) involving having carbon nanotubes (CNTs) instead of the TiO2 layer, within the working electrode, are simulated in this work. Attention is paid to find the effect of CNT layer thickness on photo-electrochemical (PEC) characteristics of the CNT-DSSCs. Comparison with other conventional TiO2-DSSC systems, taking into account the working electrode film thickness, is also described here. To achieve these goals, a model is presented to explain charge transport and electron recombination which involve electron photo-excitation in dye molecules, injection of electrons from the excited dye to CNT working electrode conduction band, diffusion of electrons inside the CNT electrode, charge transfer between oxidized dye and (I-) and recombination of electrons. The simulation is based on solving non-linear equations using the Newton-Raphson numerical method. This concept is proposed for modelling numerical Faradaic impedance at the photo-electrode and the platinum counter electrode. It then simulates the cell impedance spectrum describing the locus of the three semicircles in the Nyquist diagram. The transient equivalent circuit model is also presented based on optimizing current-voltage curves of CNT-DSSCs so as to optimize the fill factor (FF) and conversion efficiency (η). The results show that the simulated characteristics of CNT-DSSCs, with different active CNT layer thicknesses, are superior to conventional TiO2-DSSCs.

  14. Advanced oxidation (H₂O₂ and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka

    2015-05-01

    The properties of carbon nanotubes (CNTs) functionalized with -OH and -COOH groups during simulated water treatment with H2O2 and/or UV were tested. There following properties of CNTs were investigated: specific surface area, elemental composition (CHN), dynamic light scattering, Raman spectroscopy, X-ray photoelectron spectroscopy and changes in the CNTs structure were observed using transmission electron microscopy. Treatment of CNTs with H2O2 and/or UV affected their properties. This effect, however, was different depending on the functionalization of CNTs and also on the factor used (UV and/or H2O2). H2O2 plays a key role as a factor modifying the surface of CNT-OHs, whereas the properties of CNT-COOHs were most affected by UV rays. A shortening of the nanotubes, exfoliation, the opening of their ends, and changes in the surface charge were observed as a result of the action of UV and/or H2O2. The changes in observed parameters may influence the stability of the aqueous suspensions of CNTs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Anisotropic D-EAP Electrodes and their Application in Spring Roll Actuators

    NASA Astrophysics Data System (ADS)

    Fang, Xiaomeng

    Electroactive polymers (EAPs) exhibit shape change when subjected to an electric field. They are lightweight, soft, and inexpensive, while they are easy to process, shape, and tune to offer a broad range of mechanical and electrical properties. Dielectric electroactive polymers (DEAP) constitute a class of EAPs with great potential. D-EAPs consist of physically or chemically cross-linked macromolecular networks and are mechanically isotopic. Therefore, in most actuator applications that require directional electromechanical response, it is necessary to use other complex means to direct the stress/strain in the preferred direction. In this work, a simple carbon nanotube (CNT) based electrode for D-EAP actuators is demonstrated that vastly improves directional strain response originating from the mechanical anisotropy of the electrode material. Using this novel approach, the mechanical anisotropy, defined as the ratio of initial modulus in fiber direction and that in cross-fiber direction, of the CNT electroded VHB actuators, ranges from 7.9 to 11.2. Hence, the CNT-VHB flat film actuators show high directed linear actuation strain in cross-fiber direction of greater than 25% meanwhile almost no strain in fiber direction at a relatively low electric field (120 V mum-1). The morphology of the CNT sheets has critical influence on their mechanical properties and resultant actuator performance. The results demonstrate the efficacy of microcombing and selective laser etching processes to improve the CNT fiber alignment to produce pure unidirectional strain of 33% at a relatively moderate electric field. Unidirectional D-EAP composite laminates using polyurethane and polyamide monofilaments are also employed in spring roll actuators to investigate their directional mechanical and electromechanical properties. While CNT electroded D-EAP spring roll actuators were found to have about the same performance as actuators with carbon grease electrodes (6.5% strain in CNT

  16. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Wu, Xianwen; Doan, The Nam Long; Tian, Ye; Zhao, Hongbin; Chen, P.

    2016-09-01

    Highly flexible LiMn2O4/carbon nanotube (CNT) electrodes are developed and used as a high power cathode for the Rechargeable Hybrid Aqueous Battery (ReHAB). LiMn2O4 particles are entangled into CNT networks, forming a self-supported free-standing hybrid films. Such hybrid films can be used as electrodes of ARLB without using any additional binders. The binder-free LiMn2O4/CNT electrode exhibits good mechanical properties, high conductivity, and effective charge transport. High-rate capability and high cycling stability are obtained. Typically, the LiMn2O4/CNT electrode achieves a discharge capacity of 72 mAh g-1 at the large-current of 20 C (1 C = 120 mAh g-1), and exhibits good cycling performance and high reversibility: Coulombic efficiency of almost 100% over 300 charge-discharge cycles at 4 C. By reducing the weight, and improving the large-current rate capability simultaneously, the LiMn2O4/CNT electrode can highly enhance the energy/power density of ARLB and hold potential to be used in ultrathin, lightweight electronic devices.

  17. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell.

    PubMed

    Fei, Kangqing; Song, Tian-Shun; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-10-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m -2 , and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal.

  18. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Fei, Kangqing; Song, Tian-shun; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-10-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m-2, and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal.

  19. INHALATION EXPOSURE TO CARBON NANOTUBES (CNT) AND CARBON NANOFIBERS (CNF): METHODOLOGY AND DOSIMETRY

    PubMed Central

    Oberdörster, Günter; Castranova, Vincent; Asgharian, Bahman; Sayre, Phil

    2015-01-01

    Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation

  20. Microelectrode array fabrication for electrochemical detection with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Clark, James

    Understanding how the brain works remains one of the key challenges for scientists. To further this understanding a wide variety of technologies and research methods have been developed. One such technology is conductive electrodes, used to measure the electrical signals elicited from neuronal cells and tissues. These electrodes can be fabricated as a singular electrode or as a multi-electrode array (MEA). This permits bio-electrical measurements from one particular area or simultaneous measurements from multiple areas, respectively. Studying electrical and chemical signals of individual cells in situ requires the use of electrodes with ≤20 µm diameter. However, electrodes of this size generally produce high impedance, perturbing recording of the small signals generated from individual cells. Nanomaterials, such as carbon nanotubes (CNTs), can be deposited to increase the real surface area of these electrodes, producing higher sensitivity measurements. This thesis investigates the potential for using photo-thermal chemical vapour deposition grown CNTs as the electrode material for a de novo fabricated MEA. This device aimed to measure electrochemical signals in the form of dopamine, an important mammalian neurotransmitter, as well as conventional bio-electrical signals that the device is designed for. Realising this aim began with improving CNT aqueous wetting behaviour via oxygen plasma functionalisation. This procedure demonstrated grafting of oxygen functional groups to the CNT structure, and dramatic improvements in aqueous wetting behaviour, with CNTs attached to the device. Subsequently, oxygen plasma functionalised CNT-based MEAs were fabricated and tested, allowing comparisons with a non-functionalised CNT MEA and a state-of-the-art commercial MEA. The functionalised CNT MEA demonstrated an order of magnitude improvement compared to commercial MEAs (2.75 kΩ vs. 25.6 kΩ), at the biologically relevant frequency of 1 kHz. This was followed by measurement

  1. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  2. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    NASA Astrophysics Data System (ADS)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  3. Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2013-02-15

    The use of glassy carbon electrodes (GCEs) modified with multi-walled carbon nanotube (CNT) films for the continuous monitoring of polyphenols in flow systems has been examined. The performance of these modified electrodes was evaluated and compared to bare GCE by cyclic voltammetry experiments and by flow injection analysis (FIA) with amperometric detection monitoring the response of gallic, caffeic, ferulic and p-coumaric acids in 0.050 M acetate buffer pH 4.5 containing 100 mM NaCl. The GCE modified with CNT dispersions in polyethyleneimine (PEI) provided lower overpotentials, higher sensitivity and much higher signal stability under a dynamic regime than bare GCEs. These properties allowed the estimation of the total polyphenol content in red and white wines with a remarkable long-term stability in the measurements despite the presence of potential fouling substances in the wine matrix. In addition, the versatility of the electrochemical methodology allowed the selective estimation of the easily oxidisable polyphenol fraction as well as the total polyphenol content just by tuning the detection potential at +0.30 or 0.70 V, respectively. The significance of the electrochemical results was demonstrated through correlation studies with the results obtained with conventional spectrophotometric assays for polyphenols (Folin-Ciocalteu, absorbance at 280 nm index and colour intensity index). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes

    NASA Astrophysics Data System (ADS)

    Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.

    2016-04-01

    Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c

  5. Nanotube Film Electrode and an Electroactive Device Fabricated with the Nanotube Film Electrode and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor)

    2017-01-01

    Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.

  6. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai

    2015-12-22

    Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.

  7. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  8. Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood.

    PubMed

    Zhou, Haifeng; Ran, Guoxia; Masson, Jean-Francois; Wang, Chan; Zhao, Yuan; Song, Qijun

    2018-05-15

    Biosensors based on converting the concentration of analytes in complex samples into single electrochemical signals are attractive candidates as low cost, high-throughput, portable and renewable sensor platforms. Here, we describe a simple but practical analytical device for sensing an anticancer drug in whole blood, using the detection of methotrexate (MTX) as a model system. In this biosensor, a novel carbon-based composite, tungsten phosphide embedded nitrogen-doped carbon nanotubes (WP/N-CNT), was fixed to the electrode surface that supported redox cycling. The electronic transmission channel in nitrogen doped carbon nanotubes (N-CNT) and the synergistic effect of uniform distribution tungsten phosphide (WP) ensured that the electrode materials have outstanding electrical conductivity and catalytic performance. Meanwhile, the surface electronic structure also endows its surprisingly reproducible performance. To demonstrate portable operation for MTX sensing, screen printing electrodes (SPE) was modified with WP/N-CNT. The sensor exhibited low detection limits (45 nM), wide detection range (0.01-540 μM), good selectivity and long-term stability for the determination of MTX. In addition, the technique was successfully applied for the determination of MTX in whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell

    PubMed Central

    Fei, Kangqing; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-01-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m−2, and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal. PMID:29134084

  10. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  11. Improvement of carbon nanotubes films conductivity for use in biomedical application

    NASA Astrophysics Data System (ADS)

    Dybowska-Sarapuk, Łucja; Janczak, Daniel; Krzemiński, Jakub; Lepak, Sandra; Łekawa-Raus, Agnieszka; MłoŻniak, Anna; Jakubowska, Małgorzata

    2017-08-01

    Carbon nanotube (CNT) yarns and sheets due to their biocompatibility, very good mechanical strength and flexibility can find wide range of applications in nanomedicine, inter alia as mechanical actuators for artificial muscles or electrodes used for deep brain stimulation. However, because of CNT film behavior in liquid environment, before their using in biological applications, they should be coated with a special protective layer. The purpose of created coatings is not only to protect the films, but also to increase their conductivity. The aim of the research was to test various methods of achieving such coatings on CNT films and to evaluate quality and flexibility of coated CNT films. The coatings were made using various suspensions containing polymer materials such methyl polymethacrylate and conductive silver flakes. The methods tested in this study were: dipping, painting and flooding of the CNT yarns.

  12. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  13. A comprehensive theoretical investigation about the bio-functionalization capability of single walled CNT, BNNT and SiCNT using DNA/RNA nucleobases

    NASA Astrophysics Data System (ADS)

    Alinezhad, Heshmatollah; Ganji, Masoud Darvish; Soleymani, Elham; Tajbakhsh, Mahmood

    2017-11-01

    By means of Density Functional Theory (DFT) based calculations, we have elucidated the interactions between five nucleobases and three nanotubes, namely: CNT, BNNT and SiCNT. The energetics and equilibrium geometries have been calculated within the framework of revPBE method in combination with third version of Grimme's atom pair-wise dispersion corrections with Becke-Johnson damping (D3BJ). The obtained results in terms of adsorption energy values and geometrical parameters suggest that the overall interactions are divided into two parts: non-covalently and covalently bonded systems as the nucleobases are physisorbed onto the surface of CNT and BNNT (Eads ranges from -0.57 to -0.76 eV and -0.54 to -0.78 eV for CNT and BNNT complexes, respectively) while the type of interactions between nucleobase molecules and SiCNT has been found to be of covalent type with the Eads ranging from -0.61 to -1.8 eV. Moreover, the empirical dispersion corrections have been found to play crucial roles in obtaining reliable geometries and adsorption energy values for the non-covalently bonded systems. The role of solvation on the overall interactions has also been explored using the COSMO model within a media with dielectric constant of 78.39 which resembles the water environment and the results revealed that the interaction strength showed a decreasing trend with increasing the polarity of the system. Considering the adsorption energy differences between each nucleobase and the nanotubes, the SiCNT showed promising performance in differentiating between the nucleobase molecules and exhibited the highest affinity to be biofunctionalized in comparison to other nanotubes. The findings of the present work would be very useful for understanding the underlying phenomena behind the interface interactions and would aid future experimental investigations in the fields of biotechnology and materials science.

  14. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors.

    PubMed

    Yang, Wanlu; Gao, Zan; Wang, Jun; Ma, Jing; Zhang, Milin; Liu, Lianhe

    2013-06-26

    A Ni-Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nanocomposite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni-Al LDH/CNT nanocrystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance (1562 F/g at 5 mA/cm(2)), excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.

  15. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.

    PubMed

    Ma, Chih-Yu; Huang, Shih-Ching; Chou, Pei-Hsin; Den, Walter; Hou, Chia-Hung

    2016-03-01

    In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Gu, Taoli; Wei, Bingqing

    2015-07-01

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid

  17. Improved peroxide biosensor based on Horseradish Peroxidase/Carbon Nanotube on a thiol-modified gold electrode.

    PubMed

    Kafi, A K M; Naqshabandi, M; Yusoff, Mashitah M; Crossley, Maxwell J

    2018-06-01

    A new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface has been described in order to build up the effective electrical wiring of the enzyme units with the electrode. The synthesized 3D HRP/CNT network has been characterized with cyclic voltammetry and amperometry which results the establishment of direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the high biological activity and stability is exhibited by the immobilized HRP and a quasi-reversible redox peak of the redox centre of HRP was observed at about -0.355 and -0.275V vs. Ag/AgCl. The electron transfer rate constant, K S and electron transfer co-efficient α were found as 0.57s -1 and 0.42, respectively. Excellent electrocatalytic activity for the reduction of H 2 O 2 was exhibited by the developed biosensor. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H 2 O 2 determination. The linear range is from 1.0×10 -7 to 1.2×10 -4 M with a detection limit of 2.2.0×10 -8 M at 3σ. The Michaelies-Menten constant Kapp M value is estimated to be 0.19mM. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. High power and high energy electrodes using carbon nanotubes

    DOEpatents

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  19. Thermoacoustic chips with carbon nanotube thin yarn arrays.

    PubMed

    Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan

    2013-10-09

    Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.

  20. Molecular transport properties through carbon nanotube membrane

    NASA Astrophysics Data System (ADS)

    Majumder, Mainak

    Molecular transport through hollow cores of crystalline carbon nanotubes (CNTs) are of considerable interest from the fundamental and application point of view. This dissertation focuses on understanding molecular transport through a membrane platform consisting of open ended CNTs with ˜ 7 nm core diameter and ˜ 1010 CNTs/cm2 encapsulated in an inert polymer matrix. While ionic diffusion through the membrane is close to bulk diffusion expectations, gases and liquids were respectively observed to be transported ˜ 10 times faster than Knudsen diffusion and ˜ 10000--100000 times faster than hydrodynamic flow predictions. This phenomenon has been attributed to the non-interactive and frictionless graphitic interface. Functionalization of the CNT tips was observed to change selectivity and flux through the CNT membranes with analogy to 'gate-keeper' functionality in biological membranes. An electro-chemical diazonium grafting chemistry was utilized for enhancing the functional density on the CNT membranes. A strategy to confine the reactions at the CNT tips by a fast flowing liquid column was also designed. Characterization using electrochemical impedance spectroscopy and dye assay indicated ˜ 5--6 times increase in functional density. Electrochemical impedance spectroscopy experiments on CNT membrane/electrode functionalized with charged macro-molecules showed voltage-controlled conformational change. Similar chemistry has been applied for realizing 'voltage-gated' transport channels with potential application in trans-dermal drug delivery. Electrically-facilitated transport (a geometry in which an electric field gradient acts across the membrane) through the CNT and functionalized CNT membranes was observed to be electrosmotically controlled. Finally, a simulation framework based on continuum electrostatics and finite elements has been developed to further the understanding of transport through the CNT membranes. KEYWORDS: carbon nanotube membrane, nano

  1. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries.

    PubMed

    Wu, Yang; Wei, Yang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2013-02-13

    A uniform Fe(3)O(4) sheath is magnetron sputtered onto aligned carbon nanotube (CNT) scaffolds that are directly drawn from CNT arrays. The Fe(3)O(4)-CNT composite electrode, with the size of Fe(3)O(4) confined to 5-7 nm, exhibits a high reversible capacity over 800 mAh g(-1) based on the total electrode mass, remarkable capacity retention, as well as high rate capability. The excellent performance is attributable to the superior electrical conductivity of CNTs, the uniform loading of Fe(3)O(4) sheath, and the structural retention of the composite anode on cycling. As Fe(3)O(4) is inexpensive and environmentally friendly, and the synthesis of Fe(3)O(4)-CNT is free of chemical wastes, this composite anode material holds considerable promise for high-performance lithium ion batteries.

  2. Carbon nanotube-based sensor and method for detection of crack growth in a structure

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Moore, Thomas C. (Inventor); Kite, Marlen T. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony N. (Inventor); Williams, Phillip A. (Inventor)

    2007-01-01

    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure.

  3. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  4. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    PubMed

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field.

  5. Structural CNT Composites Part II: Assessment of CNT Yarns as Reinforcement for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. This combination of properties offers routes to enable lightweight structural aerospace components. Recent advances in the manufacturing of CNTs have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use, where the superior tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum rings were overwrapped with thermoset/CNT yarn composite and their mechanical properties measured. CNT composite overwrap characteristics such as processing method, CNT/resin ratio, and applied tension during CNT yarn winding were varied to determine their effects on the mechanical performance of the CNT composite overwrapped Al rings (CCOARs). Mechanical properties of the CCOARs were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their mechanical performance relative to bare Al rings. At room temperature, the breaking load of CCOARs with a 10.8% additional weight due to the CNT yarn/thermoset overwrap increased by over 200% compared to the bare Al ring. The quality of the wound CNT composites was also investigated using x-ray computed tomography.

  6. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    PubMed Central

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-01-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%). PMID:27527565

  7. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes.

    PubMed

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-16

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via 'sandwich transfer', and MoOx thermal doping via 'bridge transfer'. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  8. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    PubMed

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-05-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  9. Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology

    PubMed Central

    Vollebregt, Sten; Ishihara, Ryoichi

    2015-01-01

    We demonstrate a method for the low temperature growth (350 °C) of vertically-aligned carbon nanotubes (CNT) bundles on electrically conductive thin-films. Due to the low growth temperature, the process allows integration with modern low-κ dielectrics and some flexible substrates. The process is compatible with standard semiconductor fabrication, and a method for the fabrication of electrical 4-point probe test structures for vertical interconnect test structures is presented. Using scanning electron microscopy the morphology of the CNT bundles is investigated, which demonstrates vertical alignment of the CNT and can be used to tune the CNT growth time. With Raman spectroscopy the crystallinity of the CNT is investigated. It was found that the CNT have many defects, due to the low growth temperature. The electrical current-voltage measurements of the test vertical interconnects displays a linear response, indicating good ohmic contact was achieved between the CNT bundle and the top and bottom metal electrodes. The obtained resistivities of the CNT bundle are among the average values in the literature, while a record-low CNT growth temperature was used. PMID:26709530

  10. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.

    PubMed

    Gu, Taoli; Wei, Bingqing

    2015-07-21

    Pseudocapacitors, which are energy storage devices that take advantage of redox reactions to store electricity, have a different charge storage mechanism compared to lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs), and they could realize further gains if they were used as stretchable power sources. The realization of dynamically stretchable pseudocapacitors and understanding of the underlying fundamentals of their mechanical-electrochemical relationship have become indispensable. We report herein the electrochemical performance of dynamically stretchable pseudocapacitors using buckled MnO2/CNT hybrid electrodes. The extremely small relaxation time constant of less than 0.15 s indicates a fast redox reaction at the MnO2/CNT hybrid electrodes, securing a stable electrochemical performance for the dynamically stretchable pseudocapacitors. This finding and the fundamental understanding gained from the pseudo-capacitive behavior coupled with mechanical deformation under a dynamic stretching mode would provide guidance to further improve their overall performance including a higher power density than LIBs, a higher energy density than EDLCs, and a long-life cycling stability. Most importantly, these results will potentially accelerate the applications of stretchable pseudocapacitors for flexible and biomedical electronics.

  11. Freeze-Dried Sulfur-Graphene Oxide-Carbon Nanotube Nanocomposite for High Sulfur-Loading Lithium/Sulfur Cells.

    PubMed

    Hwa, Yoon; Seo, Hyeon Kook; Yuk, Jong-Min; Cairns, Elton J

    2017-11-08

    The ambient-temperature rechargeable lithium/sulfur (Li/S) cell is a strong candidate for the beyond lithium ion cell since significant progress on developing advanced sulfur electrodes with high sulfur loading has been made. Here we report on a new sulfur electrode active material consisting of a cetyltrimethylammonium bromide-modified sulfur-graphene oxide-carbon nanotube (S-GO-CTA-CNT) nanocomposite prepared by freeze-drying. We show the real-time formation of nanocrystalline lithium sulfide (Li 2 S) at the interface between the S-GO-CTA-CNT nanocomposite and the liquid electrolyte by in situ TEM observation of the reaction. The combination of GO and CNT helps to maintain the structural integrity of the S-GO-CTA-CNT nanocomposite during lithiation/delithiation. A high S loading (11.1 mgS/cm 2 , 75% S) S-GO-CTA-CNT electrode was successfully prepared using a three-dimensional structured Al foam as a substrate and showed good S utilization (1128 mAh/g S corresponding to 12.5 mAh/cm 2 ), even with a very low electrolyte to sulfur weight ratio of 4. Moreover, it was demonstrated that the ionic liquid in the electrolyte improves the Coulombic efficiency and stabilizes the morphology of the Li metal anode.

  12. Conductive contact area estimation for carbon nanotube via interconnects using secondary-electron imaging

    NASA Astrophysics Data System (ADS)

    Abe, Yusuke; Suzuki, Makoto; Vyas, Anshul; Yang, Cary Y.

    2018-01-01

    A major challenge for carbon nanotube (CNT) to become a viable replacement of copper and tungsten in the next-generation on-chip via interconnects is the high contact resistance between CNT and metal electrodes. A first step in meeting this challenge is an accurate characterization of via contact resistance. In this paper, the scanning electron microscope (SEM) image contrast at low landing energy is employed to estimate the conductive CNT area inside vias. The total conductive CNT area inside each via is deduced using SEM image with 0.1 keV landing energy and a specified threshold brightness, yielding via resistance versus CNT area behavior, which correlates well with electrical nanoprobing measurements of via resistance. Monte Carlo simulation of secondary electron generation lends further support for our analysis and suggests that the residue covering the CNT does not affect the conduction across the contact for residue thickness below 1 nm. This imaging and analysis technique can add much value to CNT via interconnect contact characterization.

  13. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.

    PubMed

    Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R

    2018-05-23

    We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.

  14. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    PubMed Central

    Xiong, Zhili; Yun, Young Soo; Jin, Hyoung-Joon

    2013-01-01

    Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs. PMID:28809361

  15. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.

    PubMed

    Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai

    2013-09-21

    Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.

  16. Hydrodynamics of CNT dispersion in high shear dispersion mixers

    NASA Astrophysics Data System (ADS)

    Park, Young Min; Lee, Dong Hyun; Hwang, Wook Ryol; Lee, Sang Bok; Jung, Seung-Il

    2014-11-01

    In this work, we investigate the carbon nanotube (CNT) fragmentation mechanism and dispersion in high shear homogenizers as a plausible dispersion technique, correlating with device geometries and processing conditions, for mass production of CNT-aluminum composites for automobile industries. A CNT dispersion model has been established in a turbulent flow regime and an experimental method in characterizing the critical yield stress of CNT flocs are presented. Considering CNT dispersion in ethanol as a model system, we tested two different geometries of high shear mixers — blade-stirrer type and rotor-stator type homogenizers — and reported the particle size distributions in time and the comparison has been made with the modeling approach and partly with the computational results.

  17. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.

    PubMed

    Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun

    2013-09-25

    High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  19. Nanotubes in Nanoelectronics: Transport, Growth and Modeling

    NASA Technical Reports Server (NTRS)

    Anantram, M.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) baud nanotechnology appears to be promising for future Theoretical analysis and results for the ballistic current carrying capacity of nanotube wires am presented. Aspects of metal-nanotube coupling are examined. Results am also presented for chemical vapor deposition of CNT from hydrocarbon feedstock.

  20. Synthesis of a highly efficient 3D graphene-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors.

    PubMed

    Asif, Muhammad; Tan, Yi; Pan, Lujun; Rashad, Muhammad; Li, Jiayan; Fu, Xin; Cui, Ruixue

    2016-09-29

    Graphene based nanocomposites have been investigated intensively, as electrode materials for energy storage applications. In the current work, a graphene-CNT-MnO 2 -PANI (GCM@PANI) nanocomposite has been synthesized on 3D graphene grown on nickel foam, as a highly efficient binder free electrode material for supercapacitors. Interestingly, the specific capacitance of the synthesized electrode increases up to the first 1500 charge-discharge cycles, and is thus referred to as an electrode activation process. The activated GCM@PANI nanocomposite electrode exhibits an extraordinary galvanostatic specific capacitance of 3037 F g -1 at a current density of 8 A g -1 . The synthesized nanocomposite exhibits an excellent cyclic stability with a capacitance retention of 83% over 12 000 charge-discharge cycles, and a high rate capability by retaining a specific capacitance of 84.6% at a current density of 20 A g -1 . The structural and electrochemical analysis of the synthesized nanocomposite suggests that the astonishing electrochemical performance might be attributed to the growth of a novel PANI nanoparticle layer and the synergistic effect of CNT/MnO 2 nanostructures.

  1. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    NASA Astrophysics Data System (ADS)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  2. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    NASA Astrophysics Data System (ADS)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  3. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM.

    PubMed

    Gahlot, Swati; Kulshrestha, Vaibhav

    2015-01-14

    Nanohybrid membranes of electrically aligned functionalized carbon nanotube f CNT with sulfonated poly ether ether ketone (SPEEK) have been successfully prepared by solution casting. Functionalization of CNTs was done through a carboxylation and sulfonation route. Further, a constant electric field (500 V·cm(-2)) has been applied to align CNTs in the same direction during the membrane drying process. All the membranes are characterized chemically, thermally, and mechanically by the means of FTIR, DSC, DMA, UTM, SEM, TEM, and AFM techniques. Intermolecular interactions between the components in hybrid membranes are established by FTIR. Physicochemical measurements were done to analyze membrane stability. Membranes are evaluated for proton conductivity (30-90 °C) and methanol crossover resistance to reveal their potential for direct methanol fuel cell application. Incorporation of f CNT reasonably increases the ion-exchange capacity, water retention, and proton conductivity while it reduces the methanol permeability. The maximum proton conductivity has been found in the S-sCNT-5 nanohybrid PEM with higher methanol crossover resistance. The prepared membranes can be also used for electrode material for fuel cells and batteries.

  4. Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.

    PubMed

    Kim, Jaehwan; Bae, Seok-Hu; Kotal, Moumita; Stalbaum, Tyler; Kim, Kwang J; Oh, Il-Kwon

    2017-08-01

    Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m -1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes.

    PubMed

    Sun, Zhaowei; Jin, Song; Jin, Hongchang; Du, Zhenzhen; Zhu, Yanwu; Cao, Anyuan; Ji, Hengxing; Wan, Li-Jun

    2018-06-19

    There has been a renewed interest in using lithium (Li) metal as an anode material for rechargeable batteries owing to its high theoretical capacity of 3860 mA h g -1 . Despite extensive research, modifications to effectively inhibit Li dendrite growth still result in decreased Li loading and Li utilization. As a result, real capacities are often lower than values expected, if the total mass of the electrode is taken into consideration. Herein, a lightweight yet mechanically robust carbon nanotube (CNT) paper is demonstrated as a freestanding framework to accommodate Li metal with a Li mass fraction of 80.7 wt%. The highly conductive network made of sp2-hybridized carbon effectively inhibits formation of Li dendrites and affords a favorable coulombic efficiency of >97.5%. Moreover, the Li/CNT electrode retains practical areal and gravimetric capacities of 10 mA h cm -2 and 2830 mA h g -1 (vs the mass of electrode), respectively, with 90.9% Li utilization for 1000 cycles at a current density of 10 mA cm -2 . It is demonstrated that the robust and expandable nature is a distinguishing feature of the CNT paper as compared to other 3D scaffolds, and is a key factor that leads to the improved electrochemical performance of the Li/CNT anodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electron percolation in realistic models of carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  7. Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors.

    PubMed

    Yu, Lei; Wang, Guilong; Wan, Gengping; Wang, Guizhen; Lin, Shiwei; Li, Xinyue; Wang, Kan; Bai, Zhiming; Xiang, Yang

    2016-09-21

    In this work, we report an atomic layer deposition (ALD) method for the fabrication of NiO/CNT hybrid structures in order to improve electronic conductivity, enhance cycling stability and increase rate capability of NiO used as supercapacitor electrodes. A uniform NiO coating can be well deposited on carbon nanotubes (CNTs) through simultaneously employing O3 and H2O as oxidizing agents in a single ALD cycle of NiO for the first time, with a high growth rate of nearly 0.3 Å per cycle. The electrochemical properties of the as-prepared NiO/CNT were then investigated. The results show that the electrochemical capacitive properties are strongly associated with the thickness of the NiO coating. The NiO/CNT composite materials with 200 cycles of NiO deposition exhibit the best electrochemical properties, involving high specific capacitance (622 F g(-1) at 2 A g(-1), 2013 F g(-1) for NiO), excellent rate capability (74% retained at 50 A g(-1)) and outstanding cycling stability. The impressive results presented here suggest a great potential for the fabrication of composite electrode materials by atomic layer deposition applied in high energy density storage systems.

  8. In situ electrodeposition of CoP nanoparticles on carbon nanomaterial doped polyphenylene sulfide flexible electrode for electrochemical hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Tingxia; Jiang, Yimin; Zhou, Yaxin; Du, Yongling; Wang, Chunming

    2018-06-01

    Active and durable electrocatalyst for hydrogen evolution reaction (HER) is pivotal to generate molecular hydrogen more energy-efficient, but directly grafting electrocatalyst on electrode material by a single-step method without compromising the catalytic activity and stability remains a challenge. Herein, an intriguing electrode, reduced graphene oxide modified carbon nanotube/reduced graphene oxide/polyphenylene sulfide (RGO-CNT/RGO/PPS) film, is used to replace conventional electrodes. In situ electrodeposition is proposed to fabricate CoP on the RGO-CNT/RGO/PPS (CoP-RGO-CNT/RGO/PPS) electrode and achieves a favorably electrical contact between CoP nanoparticles and RGO-CNT/RGO/PPS electrode due to without any polymer binder. Additionally, the coupling of different electrodeposition stages with scanning electron microscope (SEM) can investigate the nanostructure evolution of CoP nanoparticles, which gives valuable insights into the optimized electrodeposition cycles. The rational integration of RGO onto CNT/RGO/PPS film is an effective approach for enhancing its intrinsic electrical conductivity and favoring the formation of a high density of dispersive CoP nanoparticles. The CoP-RGO-CNT/RGO/PPS film has shown outstanding HER electrocatalytic behaviors performed a current density of 10 mA cm-2 at a relatively low overpotential of 160 mV with a Tafel slope of 60 mV dec-1 in acidic medium, which can be mainly attributed to the synergistic effect between optimized morphology and accelerated kinetics. Additionally, this film electrocatalyst exhibits a good HER activity and stability under both neutral and basic conditions.

  9. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Treesearch

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  10. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shiftingmore » of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.« less

  11. Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability via Improved Interfacial Impedance.

    PubMed

    Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F

    2015-07-28

    We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector.

  12. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  13. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  14. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, themore » measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.« less

  15. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, S.; Hu, N.; Han, X.; Zhou, L.; Ning, H.; Wu, L.; Alamusi, Yamamoto, G.; Chang, C.; Hashida, T.; Atobe, S.; Fukunaga, H.

    2013-04-01

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on the nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.

  16. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Liu, S.; Hu, N.

    2013-04-14

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on themore » nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.« less

  17. Laser Processing of Carbon Nanotube Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  18. Enhanced Metal Contacts to Carbon Nanotube Networks through Chemical and Physical Modification

    NASA Astrophysics Data System (ADS)

    Cox, Nathanael David

    Carbon nanotubes (CNTs) are an emerging class of nano-structured carbon materials which are currently being studied for applications which would benefit from their desirable electrical and mechanical properties. Potential benefits such as improved current density, flexure tolerance, weight savings, and even radiation tolerance have led to their implementation into numerous devices and structures, many of which are slated for use in space environments. The role of CNTs can be quite diverse, with varied CNT electronic-types and morphologies dictated by the specific application. Despite numerous CNT types and morphologies employed by these technologies, a common link between nearly all of these devices and structures is metal contact to CNTs, where the metal components often provide the link between the carbon nanotubes and the external system. In this work, a variety of CNT-metal systems were characterized in terms of metal morphology analysis and CNT-metal electrical and mechanical interactions, in response to chemical and structural modifications. A large portion of the work additionally focuses on ion irradiation environments. A diverse number of experiments related to CNT-metal interactions will be discussed. For instance, electrochemical interactions between ion-irradiated single-wall CNTs (SWCNTs) and metal salt solutions were utilized to selectively deposit Au nanoparticles (Au-NPs) onto the SWCNTs. A direct correlation was established between defect density and Au-NP areal density, resulting in a method for rapid spatial profiling of ion-irradiation induced defects in SWCNTs. The effect of ion irradiation on the CNT-metal interface was also investigated and it was found that the contact resistance of Ag-SWCNT structures increases, while the specific contact resistance decreases. The increase in overall contact resistance was attributed to increased series resistance in the system due to damage of the bulk SWCNT films, while the decrease in specific contact

  19. Carbon nanotubes based vacuum gauge

    NASA Astrophysics Data System (ADS)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  20. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.

    PubMed

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-09

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  1. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors.

    PubMed

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-27

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  2. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-01

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  3. An experimental study of the composite CNT/copper coating

    NASA Astrophysics Data System (ADS)

    Panarin, Valentin Ye.; Svavil‧nyi, Nikolai Ye.; Khominich, Anastasiya I.

    2018-03-01

    This paper presents experimental results on the preparation and investigation of the carbon nanotubes-copper composite material. Carbon nanotubes (CNTs) were synthesized on silicon substrates by the chemical vapor deposition (CVD) method and then filled with copper by evaporation from a melting pot in a vacuum. Copper evenly covered both the surface of the entangled tubes and the free substrate surface between the tubes. To improve the adhesion of tubes and matrix material, a carbon substructure was grown on the surface of tubes by adding working gas plasma to the CNT synthesis area. It is proposed to use a copper coating as a diffusion barrier upon subsequent filling of the reinforcing CNT frame by a carbide-forming materials matrix with predetermined physico-mechanical and tribological properties.

  4. Linear increases in carbon nanotube density through multiple transfer technique.

    PubMed

    Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish

    2011-05-11

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

  5. Improvement of thermal radiation characteristic of AC servomotor using Al-CNT composite material

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Wakiwaka, H.; Yanagihara, M.

    2018-02-01

    This study deals with a high thermal conductivity material of aluminum-carbon nanotube (CNT) composite with carbon fiber (CF) and the high radiation performance of AC servomotor using a stator made of nanotube composite material. The composite fabrication process was performed by melting a mixture of granular aluminum of less than 200 μm and CNT under conditions of pressed atmosphere at the same time. Two kinds of motors made using aluminum and the composite were evaluated to confirm the effect of thermal conductivity as the motor stator. A test rod of the composite with 14 wt% CF-7 wt% CNT-aluminum indicated the excellent thermal conductivity of 169 W/(mK) in the radial direction and 173 W/(mK) in the lengthwise direction. According to the obtained temperature radiation characteristic of the AC servomotor, the composite stator using CNT decreased the consumption energy to 16% compared to the conventional one. As a result, the highly efficient motor improved the radiation characteristic using the CNT composite stator.

  6. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    NASA Astrophysics Data System (ADS)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  7. Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells.

    PubMed

    Jeon, Il; Yoon, Jungjin; Ahn, Namyoung; Atwa, Mohamed; Delacou, Clement; Anisimov, Anton; Kauppinen, Esko I; Choi, Mansoo; Maruyama, Shigeo; Matsuo, Yutaka

    2017-11-02

    Transparent carbon electrodes, carbon nanotubes, and graphene were used as the bottom electrode in flexible inverted perovskite solar cells. Their photovoltaic performance and mechanical resilience were compared and analyzed using various techniques. Whereas a conventional inverted perovskite solar cells using indium tin oxide showed a power conversion efficiency of 17.8%, the carbon nanotube- and graphene-based cells showed efficiencies of 12.8% and 14.2%, respectively. An established MoO 3 doping was used for  carbon electrode-based devices. The difference in the photovoltaic performance between the carbon nanotube- and graphene-based cells was due to the difference in morphology and transmittance. Raman spectroscopy, and cyclic flexural testing revealed that the graphene-based cells were more susceptible to strain than the carbon nanotube-based cells, though the difference was marginal. Overall, despite higher performance, the transfer step for graphene has lower reproducibility. Thus, the development of better graphene transfer methods would help maximize the current capacity of graphene-based cells.

  8. Simplified equation for Young's modulus of CNT reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chandran, RameshBabu; Gifty Honeyta A, Maria

    2017-12-01

    This research investigation focuses on finite element modeling of carbon nanotube (CNT) reinforced concrete matrix for three grades of concrete namely M40, M60 and M120. Representative volume element (RVE) was adopted and one-eighth model depicting the CNT reinforced concrete matrix was simulated using FEA software ANSYS17.2. Adopting random orientation of CNTs, with nine fibre volume fractions from 0.1% to 0.9%, finite element modeling simulations replicated exactly the CNT reinforced concrete matrix. Upon evaluations of the model, the longitudinal and transverse Young's modulus of elasticity of the CNT reinforced concrete was arrived. The graphical plots between various fibre volume fractions and the concrete grade revealed simplified equation for estimating the young's modulus. It also exploited the fact that the concrete grade does not have significant impact in CNT reinforced concrete matrix.

  9. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  10. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications

  11. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  12. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.

    PubMed

    Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs

    2017-05-01

    Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pyrolytic Carbon Coatings on Aligned Carbon Nanotube Assemblies and Fabrication of Advanced Carbon Nanotube/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh

    Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial

  14. Carbon nanotube yarns for deep brain stimulation electrode.

    PubMed

    Jiang, Changqing; Li, Luming; Hao, Hongwei

    2011-12-01

    A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.

  15. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  16. Improved Photoresist Coating for Making CNT Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Manohara, Harish

    2009-01-01

    An improved photoresist-coating technique has been developed for use in the fabrication of carbon-nanotube- (CNT) based field emitters is described. The improved photoresist coating technique overcomes what, heretofore, has been a major difficulty in the fabrication process.

  17. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer

    NASA Astrophysics Data System (ADS)

    Yan, Lingjia; Luo, Nannan; Kong, Weibang; Luo, Shu; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-06-01

    Ultrathin and lightweight MoS2/carbon nanotube (CNT) interlayers are developed to effectively trap polysulfides in high-performance lithium-sulfur (Li-S) batteries. The MoS2/CNT interlayer is constructed by loading MoS2 nanosheets onto a cross-stacked CNT film. The CNT film with excellent conductivity and superior mechanical properties provides the Li-S batteries with a uniform conductive network, a supporting skeleton for the MoS2 nanosheets, as well as a physical barrier for the polysulfides. Moreover, chemical interactions and bonding between the MoS2 nanosheets and the polysulfides are evident. The electrode with the MoS2/CNT interlayer delivers an attractive specific capacity of 784 mA h g-1 at a high capacity rate of 10 C. In addition, the electrode demonstrates a high initial capacity of 1237 mA h g-1 and a capacity fade as low as -0.061% per cycle over 500 charge/discharge cycles at 0.2 C. The problem of self-discharge can also be suppressed with the introduction of the MoS2/CNT interlayer. The simple fabrication procedure, which is suitable for commercialization, and the outstanding electrochemical performance of the cells with the MoS2/CNT interlayer demonstrate a great potential for the development of high-performance Li-S batteries.

  18. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets

    PubMed Central

    Chen, Tao; Peng, Huisheng; Durstock, Michael; Dai, Liming

    2014-01-01

    By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g−1 and can be biaxially stretched up to 30% strain without any obvious change in electrochemical performance even over hundreds stretching cycles. PMID:24402400

  19. Modeling Ballistic Current Flow in Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Experiments have shown carbon nanotubes (CNT) to be almost perfect conductors at small applied biases. The features of the CNT band structure, large velocity of the crossing subbands and the small number of modes that an electron close to the band center / Fermi energy can scatter into, are the reasons for the near perfect small bias conductance. We show that the CNT band structure does not help at large applied biases - electrons injected into the non crossing subbands can either be Bragg reflected or undergo Zener-type tunneling. This limits the current carrying capacity of CNT. We point out that the current carrying capacity of semiconductor quantum wires in the ballistic limit is different, owing to its band structure. The second aspect addressed is the relationship of nanotube chirality in determining the physics of metal-nanotube coupling. We show that a metallic-zigzag nanotube couples better than an armchair nanotube to a metal contact. This arises because in the case of armchair nanotubes, while the pi band couples well, the pi* band does not couple well to the metal. In the case of zigzag nanotube both crossing modes couple reasonably well to the metal. Many factors such as the role of curvature, strain and defects will play a role in determining the suitability of nanotubes as nanowires. From the limited view point of metal-nanotube coupling, we feel that metallic-zigzag nanotubes are preferable to armchair nanotubes.

  20. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  1. Polyaniline/carbon nanotubes platform for sexually transmitted disease detection.

    PubMed

    Singh, Renu; Dhand, Chetna; Sumana, Gajjala; Verma, Rachna; Sood, Seema; Gupta, Rajinder Kumar; Malhotra, Bansi Dhar

    2010-01-01

    Polyaniline/carbon nanotubes composite (PANI-CNT) electrochemically deposited onto indium-tin-oxide (ITO) coated glass plate has been utilized for Neisseria gonorrhoeae detection by immobilizing 5'-amino-labeled Neisseria gonorrhoeae probe (aDNA) using glutaraldehyde as a cross-linker. PANI-CNT/ITO and aDNA-Glu-PANI-CNT/ITO electrodes have been characterized using scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This bioelectrode can be used to detect N. gonorrhoeae using methylene blue (MB) as redox indicator with response time of 60 s and stability of about 75 days when stored under refrigerated conditions. DPV studies reveal that this bioelectrode can detect complementary DNA concentration from 1 x 10(-6) M to 1 x 10(-17) M with detection limit of 1.2 x 10(-17) M. Further, this bioelectrode (aDNA-Glu-PANI-CNT/ITO) exhibits specificity toward N. gonorrhoeae species and shows negative response with non-Neisseria gonorrhoeae Neisseria species (NgNS) and other gram negative bacteria (GNB).

  2. Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina

    2018-01-01

    Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.

  3. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  4. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistor

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The threshold voltages of a carbon-nanotube (CNT) field-effect transistor (FET) are studied. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, and this makes the device characteristics quite unique. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and inversion and accumulation threshold voltages (V(sub Ti), and V(sub Ta)) are derived. V(sub Ti) of the CNTFETs has a much stronger doping dependence than that of the metal-oxide- semiconductor FETs, while V(sub Ta) of both devices depends weakly on doping with the same functional form.

  6. Mucin and carbon nanotube-based biosensor for detection of glucose in human plasma.

    PubMed

    Comba, Fausto N; Romero, Marcelo R; Garay, Fernando S; Baruzzi, Ana M

    2018-06-01

    This work reports an amperometric enzyme-electrode prepared with glucose oxidase, which have been immobilized by a cross-linking step with glutaraldehyde in a mixture containing albumin and a novel carbon nanotubes-mucin composite (CNT-muc). The obtained hydrogel matrix was trapped between two polycarbonate membranes and then fixed at the surface of a Pt working electrode. The developed biosensor was optimized by evaluating different compositions and the analytical properties of an enzymatic matrix with CNT-muc. Then, the performance of the resulting enzymatic matrix was evaluated for direct glucose quantification in human blood plasma. The novel CNT-muc composite provided a sensitivity of 0.44 ± 0.01 mA M -1 and a response time of 28 ± 2 s. These values were respectively 20% higher and 40% shorter than those obtained with a sandwich-type biosensor prepared without CNT. Additionally, CNT-muc based biosensor exhibited more than 3 orders of magnitude of linear dynamic calibration range and a detection limit of 3 μM. The short-term and long-term stabilities of the biosensors were also examined and excellent results were obtained through successive experiments performed within the first 60 days from their preparation. Finally, the storage stability was remarkable during the first 300 days. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Enhanced specific capacitance of an electrophoretic deposited MnO2-carbon nanotube supercapacitor

    NASA Astrophysics Data System (ADS)

    Tagsin, Patin; Klangtakai, Pawinee; Harnchana, Viyada; Amornkitbamrung, Vittaya; Pimanpang, Samuk; Kumnorkaew, Pisist

    2017-12-01

    MnO2 and MnO2-carbon nanotubes (CNT) composite films were grown directly on stainless- steel substrates using an electrophoretic process employing supercapacitor electrodes. An electrophoretic MnO2 film with a nanoplate-like structure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Supercapacitor performance was studied using cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The specific capacitance (SC) of the electrophoretic MnO2 film was 60 F/g at 1 A/g, with a 38.33% retention of the initial SC values after 1000 cycles. The low SC value of the MnO2 films was attributed to the high series and charge-transfer resistances of 1.70 Ω and 3.20, respectively. The MnO2-CNT composites with the addition of 0.04, 0.06 and 0.08 g CNT to the electrophoretic MnO2 film were found to greatly increase the SC to 300, 206 and 169 F/g at 1 A/g, respectively. The series and charge-transferred resistances of MnO2-CNT composite films decreased to 1.38 - 1.52 Ω and 2.62 - 2.86 Ω, respectively. The SC improvement of the composite electrodes was attributed to presence of two active storage materials (MnO2 and CNT), a high film specific surface area and electrical conductivity.

  8. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood.

    PubMed

    Liu, Yang; Zhu, Fanjiao; Dan, Wangxia; Fu, Yu; Liu, Shaoqin

    2014-10-21

    A carbon nanotube (CNT) based nanoarchitecture is developed for rapid, sensitive and specific detection of cancer cells by using real time electrical impedance sensing. The sensor is constructed with carbon nanotube (CNT) multilayers and EpCAM (epithelial cell adhesion molecule) antibodies, which are assembled on an indium tin oxide (ITO) electrode surface. The binding of tumor cells to EpCAM antibodies causes increase of the electron-transfer resistance. The electrochemical impedance of the prepared biosensors is linear with the logarithm of concentration of the liver cancer cell line (HepG2) within the concentration range of 10 to 10(5) cells per mL. The detection limit for HepG2 cells is 5 cells per mL. The proposed impedimetric sensing devices allow for sensitive and specific detection of cancer cells in whole-blood samples without any sample pretreatment steps.

  9. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life

    NASA Astrophysics Data System (ADS)

    Yi, Huan; Wang, Huanwen; Jing, Yuting; Peng, Tianquan; Wang, Xuefeng

    2015-07-01

    Aqueous electrolyte based asymmetric supercapacitors (ASCs) has recently attracted increasing interest by virtue of their operation voltage and high ionic conductivity. Herein, we developed a novel ASC based on carbon nanotubes@nickel oxide nanosheets (CNT@NiO) core-shell composites as positive electrode and porous carbon polyhedrons (PCPs) as negative electrode in aqueous KOH solution as electrolyte. The CNT@NiO core-shell hybrids were prepared through a facile chemical bath deposition method followed by thermal annealing, while PCPs were obtained by direct carbonization of Zn-based metal-organic frameworks (MOFs). Owing to their unique microstructures, outstanding electrochemical properties have been achieved in three-electrode configuration, e.g., 996 F g-1 at 1 A g-1, 500 at 20 A g-1 for the CNT@NiO electrode within 0-0.5 V window, and 245 F g-1 at 1 A g-1 for the PCPs electrode within -1-0 V window. Resulting from these merits, the as-fabricated CNT@NiO//PCPs ASC exhibits maximum energy density of 25.4 Wh kg-1 at a power density of 400 W kg-1 and even remains 9.8 Wh kg-1 at 16,000 W kg-1 (a full charge-discharge within 4.4 s) in the wide voltage region of 0-1.6 V. More importantly, the CNT@NiO//PCPs asymmetric supercapacitor shows ultralong cycling stability, with 93% capacitance retention after 10,000 cycles.

  10. Carbon Nanotubes Growth on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  11. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  12. Carbon nanotube dispersed conductive network for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.

    2014-08-01

    Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.

  13. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  14. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    PubMed Central

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  15. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    PubMed

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  16. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  17. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  18. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    PubMed

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.

  19. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  20. A novel multi-wall CNT synthesis technique using conventional CVD with controlled pressure

    NASA Astrophysics Data System (ADS)

    Kara, M. H. S.; Amir, M. H.; Teh, A. A.; Ahmad, R.; Mahmood, M. R.; Awang, Z.

    2012-09-01

    In this paper we have demonstrated successfully for the first time, a simple but efficient and reliable approach for the growth of multi walled carbon nanotubes (MWCNTs) with high degree of crystallinity, purity and density under a wide range of growth parameters. Multi-walled carbon nanotubes (MWCNTs) were synthesized at 800 - 950°C by thermal chemical vapor deposition (TCVD) method using a thin nickel film as catalyst and methane gas as carbon source. In this process, two substrates were placed in a long alumina boat inside a double-heater TCVD. One of the substrates was covered with a short upside down alumina boat. The prepared nanotubes were characterized by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and it was found that, CNT growth on the covered substrate was improved in terms of quality and density compared to the other uncovered substrate. In addition, the nanotube diameter is reduced more than half. Results also revealed that the temperature gradient played a key factor for growth efficiency and purity of nanotubes. In addition, the diameter of CNT can be influenced by growth temperature too. The catalyst thickness and gas flow rate were found to influence the diameter and density of tubes, whereas the effect of synthesis time was on the CNT length. This growth technique is unique because of its simplicity, high efficiency and its ability to yield CNTs of high purity and density. This finding is supported by Raman spectrometry analysis.

  1. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  2. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A study on carbon nanotube bridge as a electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Kang, Jeong Won; Ha Lee, Jun; Joo Lee, Hoong; Hwang, Ho Jung

    2005-04-01

    A nanoelectromechanical (NEM) nanotube random access memory (NRAM) device based on carbon nanotube (CNT) was investigated using atomistic simulations. For the CNT-based NEM memory, the mechanical properties of the CNT-bridge and van der Waals interactions between the CNT-bridge and substrate were very important. The critical amplitude of the CNT-bridge was 16% of the length of the CNT-bridge. As molecular dynamics time increased, the CNT-bridge went to the steady state under the electrostatic force with the damping of the potential and the kinetic energies of the CNT-bridge. The interatomic interaction between the CNT-bridge and substrate, value of the CNT-bridge slack, and damping rate of the CNT-bridge were very important for the operation of the NEM memory device as a nonvolatile memory.

  4. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    PubMed

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  5. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    PubMed

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  6. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  7. Thermal Characterization of Carbon Nanotubes by Photothermal Techniques

    NASA Astrophysics Data System (ADS)

    Leahu, G.; Li Voti, R.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.; Nefedov, I.; Anoshkin, I. V.

    2015-06-01

    Carbon nanotubes (CNTs) are multifunctional materials commonly used in a large number of applications in electronics, sensors, nanocomposites, thermal management, actuators, energy storage and conversion, and drug delivery. Despite recent important advances in the development of CNT purity assessment tools and atomic resolution imaging of individual nanotubes by scanning tunnelling microscopy and high-resolution transmission electron microscopy, the macroscale assessment of the overall surface qualities of commercial CNT materials remains a great challenge. The lack of quantitative measurement technology to characterize and compare the surface qualities of bulk manufactured and engineered CNT materials has negative impacts on the reliable and consistent nanomanufacturing of CNT products. In this paper it is shown how photoacoustic spectroscopy and photothermal radiometry represent useful non-destructive tools to study the optothermal properties of carbon nanotube thin films.

  8. Dynamic behavior of a black phosphorus and carbon nanotube composite system

    NASA Astrophysics Data System (ADS)

    Shi, Jiao; Cai, Haifang; Cai, Kun; Qin, Qing-Hua

    2017-01-01

    A double walled nanotube composite is constructed by placing a black-phosphorene-based nanotube (BPNT) in a carbon nanotube (CNT). When driving the CNT to rotate by stators in a thermal driven rotary nanomotor, the BPNT behaves differently from the CNT. For instance, the BPNT can be actuated to rotate by the CNT, but its rotational acceleration differs from that of the CNT. The BPNT oscillates along the tube axis when it is longer than the CNT. The results obtained indicate that the BPNT functions with high structural stability when acting as a rotor with rotational frequency of ~20 GHz at 250 K. If at a higher temperature than 250 K, say 300 K, the rotating BPNT shows weaker structural stability than its status at 250 K. When the two tubes in the rotor are of equal length, the rotational frequency of the BPNT drops rapidly after the BPNT is collapsed, owing to more broken P-P bonds. When the black-phosphorene nanotube is longer than the CNT, it rotates synchronously with the CNT even if it is collapsed. Hence, in the design of a nanomotor with a rotor from BPNT, the working rotational frequency should be lower than a certain threshold at a higher temperature.

  9. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    NASA Astrophysics Data System (ADS)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  10. Spray-coated carbon nanotube thin-film transistors with striped transport channels

    NASA Astrophysics Data System (ADS)

    Jeong, Minho; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Lee, Seung-Beck

    2012-12-01

    We present results for the transfer characteristics of carbon nanotube thin-film transistors (CNT-TFTs) that utilize single-walled carbon nanotube thin-films prepared by direct spray-coating on the substrate. By varying the number of spray-coatings (Nsp) and the concentration of nanotubes in solution (CNT), it was possible to control the conductivity of the spray-coated nanotube thin-film from 129 to 0.1 kΩ/□. Also, by introducing stripes into the channel of the CNT-TFT, and thereby reducing the number of metallic percolation paths between source and drain, it was possible to enhance the on/off current ratio 1000-fold, from 10 to 104, demonstrating that it may be possible to utilize spray-coating as a method to fabricate CNT-TFTs for large area switching array applications.

  11. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  12. CoNi2 S4 Nanoparticle/Carbon Nanotube Sponge Cathode with Ultrahigh Capacitance for Highly Compressible Asymmetric Supercapacitor.

    PubMed

    Cao, Xin; He, Jin; Li, Huan; Kang, Liping; He, Xuexia; Sun, Jie; Jiang, Ruibing; Xu, Hua; Lei, Zhibin; Liu, Zong-Huai

    2018-05-30

    Compared with other flexible energy-storage devices, the design and construction of the compressible energy-storage devices face more difficulty because they must accommodate large strain and shape deformations. In the present work, CoNi 2 S 4 nanoparticles/3D porous carbon nanotube (CNT) sponge cathode with highly compressible property and excellent capacitance is prepared by electrodepositing CoNi 2 S 4 on CNT sponge, in which CoNi 2 S 4 nanoparticles with size among 10-15 nm are uniformly anchored on CNT, causing the cathode to show a high compression property and gives high specific capacitance of 1530 F g -1 . Meanwhile, Fe 2 O 3 /CNT sponge anode with specific capacitance of 460 F g -1 in a prolonged voltage window is also prepared by electrodepositing Fe 2 O 3 nanosheets on CNT sponge. An asymmetric supercapacitor (CoNi 2 S 4 /CNT//Fe 2 O 3 /CNT) is assembled by using CoNi 2 S 4 /CNT sponge as positive electrode and Fe 2 O 3 /CNT sponge as negative electrode in 2 m KOH solution. It exhibits excellent energy density of up to 50 Wh kg -1 at a power density of 847 W kg -1 and excellent cycling stability at high compression. Even at a strain of 85%, about 75% of the initial capacitance is retained after 10 000 consecutive cycles. The CoNi 2 S 4 /CNT//Fe 2 O 3 /CNT device is a promising candidate for flexible energy devices due to its excellent compressibility and high energy density. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Toxicity study of complex CNT-PEG(-NH2)-DOX synthesis on neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Nurulhuda, I.; Mazatulikhma, M. Z.; Alrokayan, S.; Khan, H.; Rusop, M.

    2018-05-01

    The synthesized carbon nanotubes was functionalized with PEG and drug (doxorubicin) was tested on neuroblastoma cells. The treatment was done for 24 and 48 h. The concentration of CNT and doxorubicin were at 2.5, 5, 10 µg/ml and 0.5, 0.1, 0.05 µM, respectively. The result showed the longer time treatment do have effect on the cells viability and the complex functionalized CNT have high cells viability rather than the drug and CNT treatment alone.

  14. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  15. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    PubMed

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-06-22

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study of distribution of Carbon nanotube in Al-CNT nanocomposite synthesized via Spark-Plasma sintering

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Laha, T.

    2018-03-01

    In the present study, first ever attempt has been made to develop physically functionalized multiwalled carbon nanotube (MWCNT) reinforced Al-11 5Si alloy nanocomposites synthesized via novel consolidation technique viz spark plasma sintering (SPS). There is a recent trend in employing carbon nanotubes (CNTs), an allotrope of carbon, as reinforcement for high strength structural metallic composite materials, as these cylindrical nano-fibers poses extremely unique mechanical properties such as very high elastic modulus (~ 300 GPa to 1.5 TPa) as well as tensile strength (~150 GPa). However, it has remained as an ever-existing problem to achieve a porosity-free nanocrystalline matrix with homogenously dispersed CNTs, owing to the very high coagulation tendency of CNTs. The gas-atomized, spherical Al-11.5Si alloy powders (1-8 μm) were subjected to high energy ball milling for the purpose of achieving nanocrystallinity in the powders. The improvement in MWCNT dispersion was effort by treating the MWCNTs with a physical surfactant, sodium dodecyl sulfate (SDS). The nano-grained ball-milled Al-Si powders with varying MWCNT content (0.5 and 1 wt%) were consolidated via spark plasma sintering in order to retain the nano-sized grains in the Al-Si matrix, attributed to the faster and highly effective sintering kinetics of the sintering techniques. FESEM study shows problem of MWCNT agglomeration persists by addition of non-SDS treated as pristine MWCNT in the composite. After treated with SDS, MWCNTs are well separated out from each other and as a result of that good morphological and mechanical property such as high hardness value obtained after analysis. Detailed TEM study of the 0.5wt% MWCNT reinforced SPS nanocomposite revealed that the distribution of CNTs in the matrix. Mechanical analysis study of the nanocomposite attributes higher hardness in case of SDS treated CNT reinforced nanocomposite owing to less agglomeration problem of the CNT in the matrix. Nano

  17. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.

    PubMed

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g(-1) at 1 A g(-1), which remained at 543 F g(-1) when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg(-1)) was maintained even at a high power density of 6000 W kg(-1). An excellent long cycle life of the electrode was observed with a retention of ∼86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO(2) nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications. © The Royal Society of Chemistry 2011

  18. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles-A study of surface area and spinel inversion influence

    NASA Astrophysics Data System (ADS)

    Zampiva, Rúbia Young Sun; Kaufmann Junior, Claudir Gabriel; Pinto, Juliano Schorne; Panta, Priscila Chaves; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2017-11-01

    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully.

  19. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.

    PubMed

    Ma, Yanwen; Li, Pan; Sedloff, Jennifer W; Zhang, Xiao; Zhang, Hongbo; Liu, Jie

    2015-02-24

    Graphene fibers are a promising electrode material for wire-shaped supercapacitors (WSSs) that can be woven into textiles for future wearable electronics. However, the main concern is their high linear resistance, which could be effectively decreased by the addition of highly conductive carbon nanotubes (CNTs). During the incorporation process, CNTs are typically preoxidized by acids or dispersed by surfactants, which deteriorates their electrical and mechanical properties. Herein, unfunctionalized few-walled carbon nanotubes (FWNTs) were directly dispersed in graphene oxide (GO) without preoxidation or surfactants, allowing them to maintain their high conductivity and perfect structure, and then used to prepare CNT-reduced GO (RGO) composite fibers by wet-spinning followed by reduction. The pristine FWNTs increased the stress strength of the parent RGO fibers from 193.3 to 385.7 MPa and conductivity from 53.3 to 210.7 S cm(-1). The wire-shaped supercapacitors (WSSs) assembled based on these CNT-RGO fibers presented a high volumetric capacitance of 38.8 F cm(-3) and energy density of 3.4 mWh cm(-3). More importantly, the performance of WSSs was revealed to decrease with increasing length due to increased resistance, revealing a key issue for graphene-based electrodes in WSSs.

  20. The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study.

    PubMed

    Wang, Yue; Zhang, Juan; Huang, Gang; Yao, Xinhua; Shao, Qingyi

    2014-12-01

    Rapid developments of the silicon electronics industry have close to the physical limits and nanotube materials are the ideal materials to replace silicon for the preparation of next generation electronic devices. Boron-carbon-nitrogen nanotubes (BCNNT) can be formed by joining carbon nanotube (CNT) and boron nitride nanotube (BNNT) segments, and BC2N nanotubes have been widely and deeply studied. Here, we employed first-principles calculations based on density function theory (DFT) to study the structure, stability, and electronic properties of ultra thin (4 Å diameter) BC2N nanotubes. Our results showed that the cross sections of BC2N nanotubes can transform from round to oval when CNT and BNNT segments are parallel to the tube axis. It results when the curvature of BNNT segments become larger than CNT segments. Further, we found the stability of BC2N nanotubes is sensitive to the number of B-N bonds, and the phase segregation of BNNT and CNT segments is energetically favored. We also obtained that all (3,3) BC2N nanotubes are semiconductor, whereas (5,0) BC2N nanotubes are conductor when CNT and BNNT segments are perpendicular to the tube axis; and semiconductor when CNT and BNNT segments are parallel to the tube axis. These electronic properties are abnormal when compared to the relative big ones.

  1. Electronic and Electrochemical Properties of Nitrogen Doped Carbon Nanotubes

    DTIC Science & Technology

    2006-10-31

    will be investigated. The research results will evaluate the potentials of nitrogen-doped carbon nanotubes for development of cathodes, gas sensors ...DPA – diphenylanthracene CVD – chemical vapor deposition CNx – nitrogen-doped carbon CNT – carbon nanotube MWNT – multiwall carbon nanotube SEM...3 Summary Page The aim of the project was a study of effect of nitrogen doping on the electronic and electrochemical properties of CNT . During

  2. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Sapiai, Napisah; Jumahat, Aidah; Mahmud, Jamaluddin

    2018-04-01

    This paper aims to study the effect of functionalised carbon nanotubes (CNT) on mechanical properties of kenaf fibre reinforced polymer composites. The CNT was functionalised using acid mixtures of H2SO4:HNO3 and 3-Aminopropyl Triethoxysilane before it was incorporated into epoxy resin. Three different types of CNT were used, i.e. pristine (PCNT), acid-treated (ACNT) and acid-silane treated (SCNT), to fabricate kenaf composite. Three different filler contents were mixed in each composite system, i.e. 0.5, 0.75 and 1.0 wt%. The functionalised CNT was characterized using x-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Tensile, flexural and Izod impact tests were conducted in order to evaluate the effect of CNT contents and surface treatment of mechanical properties of kenaf composites. It was observed that the inclusion of 1 wt% acid-silane treated CNT improved the tensile, flexural and impact strengths of kenaf/epoxy composite by 43.30%, 21.10%, and 130%, respectively. Silane modification had been proven to be beneficial in enhancing the dispersibility and reducing agglomeration of CNT in the epoxy matrix.

  3. Electrical properties of carbon nanotubes modified GaSe glassy system

    NASA Astrophysics Data System (ADS)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  4. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.

    PubMed

    Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin

    2018-04-17

    In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).

  5. Study of electron transport in the functionalized nanotubes and their impact on the electron transfer in the active site of horseradish peroxidase

    NASA Astrophysics Data System (ADS)

    Feizabadi, Mina; Ajloo, Davood; Soleymanpour, Ahmad; Faridnouri, Hassan

    2018-05-01

    Electrochemical characterization of functionalized carbon nanotubes (f-CNT) including carboxyl (CNT-COOH), amine (CNT-NH2) and hydroxyl (CNT-OH) functional groups were studied using differential pulse voltammetry (DPV). The current-voltage (I-V) curves were obtained from each system and the effect of f-CNT on redox interaction of horseradish peroxidase (HRP) immobilized on the electrode surface was investigated. The non-equilibrium Green's function (NEGF) combined with density functional theory (DFT) were used to study the transport properties of f-CNT. Additionally, the effect of the number of functional groups on transport properties of CNT, I-V characteristics, electronic transmission coefficients and spatial distribution of f-CNTs have been calculated and analyzed. The results showed that the carboxyl derivative has larger transmission coefficients and current value than other f-CNTs. Then, the effect of functional groups on the electron transport in heme group of HRP is discussed. Finally, the effect of a covalent bond between active site amino acids and amine functional group of CNT was investigated and discussed.

  6. Carbon nanotube mechanics in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Strus, Mark Christopher

    Carbon nanotubes (CNTs) possess unique electrical, thermal, and mechanical properties which have led to the development of novel nanomechanical materials and devices. In this thesis, the mechanical properties of carbon nanotubes are studied with an Atomic Force Microscope (AFM) and, conversely, the use of CNTs to enhance conventional AFM probes is also investigated. First, the performance of AFM probes with multiwalled CNT tips are evaluated during attractive regime AFM imaging of high aspect ratio structures. The presented experimental results show two distinct imaging artifacts, the divot and large ringing artifacts, which are inherent to such CNT AFM probes. Through the adjustment of operating parameters, the connection of these artifacts to CNT bending, adhesion, and stiction is described qualitatively and explained. Next, the adhesion and peeling of CNTs on different substrates is quantitatively investigated with theoretical models and a new AFM mode for nanomechanical peeling. The theoretical model uncovers the rich physics of peeling of CNTs from surfaces, including sudden transitions between different geometric configurations of the nanotube with vastly different interfacial energies. The experimental peeling of CNTs is shown to be capable of resolving differences in CNT peeling energies at attoJoule levels on different materials. AFM peeling force spectroscopy is further studied on a variety of materials, including several polymers, to demonstrate the capability of direct measurement of interfacial energy between an individual nanotube or nanofiber and a given material surface. Theoretical investigations demonstrate that interfacial and flexural energies can be decoupled so that the work of the applied peeling force can be used to estimate the CNT-substrate interfacial fracture energy and nanotube's flexural stiffness. Hundreds of peeling force experiments on graphite, epoxy, and polyimide demonstrate that the peeling force spectroscopy offers a convenient

  7. Thermal and mechanical analysis of PVA / sulfonated carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Sharma, Prem P.; Rajput, Abhishek; Kulshrestha, Vaibhav

    2018-04-01

    Nanocomposites of polyvinyl alcohol (PVA) and sulfonated carbon nanotubes (s-CNT) with enhanced properties were synthesized successfully. Effect of different amount of sulfonated nanotubes on thermal and mechanical properties of resultant nanocomposites derived from s-CNT and PVA were studied. Structural analysis for functionalization of CNT was done by using FTIR spectra. Thermal and mechanical analysis were done by using TGA, DSC and UTM. Nanocomposite containing s-CNT shows higher elastic moduli, higher melting temperature in consort with lower weight loss at same temperature, compared with pristine PVA. The novelty of this work is to use PVA/s-CNT based composites with improved thermomechanical properties in different nanotechnologies.

  8. Performance of Nanotube-Based Ceramic Composites: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Curtin, W. A.; Sheldon, B. W.; Xu, J.

    2004-01-01

    The excellent mechanical properties of carbon-nanotubes are driving research into the creation of new strong, tough nanocomposite systems. In this program, our initial work presented the first evidence of toughening mechanisms operating in carbon-nanotube- reinforced ceramic composites using a highly-ordered array of parallel multiwall carbon-nanotubes (CNTs) in an alumina matrix. Nanoindentation introduced controlled cracks and the damage was examined by SEM. These nanocomposites exhibit the three hallmarks of toughening in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Furthermore, for certain geometries a new mechanism of nanotube collapse in shear bands was found, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models were used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality.

  9. Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-05-01

    Mesoporous three-dimensional (3D) TiO2/carbon nanotube conductive hybrid nanostructures can be successfully developed using polyethylene oxide (PEO) to modify the surfaces of carbon nanotubes (CNTs). During the synthesis process, PEO acts as not only "bridges" to connect the TiO2 nanoparticles to the CNT surfaces but also as "hosts" to accommodate and stabilize the in situ generated TiO2 particles. As the electrodes for lithium-ion batteries, such mesoporous 3D TiO2/CNT hybrids, demonstrate high Li storage capacity, superior rate performance and excellent long-term cycling stability. They exhibit a reversible specific capacity of 203 mA h g-1 at 100 mA g-1 and a stable capacity retention of 91 mA h g-1 at 8000 mA g-1 (47.6 C) over 100 cycles; they also retain approximately 90% (71 mA h g-1) of their initial discharge capacity after 900 cycles at an extremely high rate of 15,000 mA g-1 (89 C). This facile synthetic strategy to construct mesoporous 3D TiO2/CNT conductive hybrids provides a convenient route that efficiently assembles various inorganic oxide components on the CNTs' surfaces and enables the formation of heterogeneous nanostructures with novel functionalities. In particular, utilizing a conductive 3D CNT network can serve as a promising strategy for developing high-performance electrodes for Li secondary batteries and supercapacitors.

  10. Microinjection moulding of polymeric composites with functionalized carbon nanotubes =

    NASA Astrophysics Data System (ADS)

    Ferreira, Tania Sofia Araujo Figueiras

    Microinjection moulding of polymeric composites with functionalized carbon nanotubes The unique electronic, mechanical, and structural properties of carbon nanotubes (CNT) make them suitable for applications in the fields of electronics, sensors, medical devices, aerospace and automotive industries. The preparation of CNT/polymer nanocomposites presents particular interest among the various possible applications. However, the long entangled nanotubes form agglomerates that poses serious obstacles to further development of nanocomposites with the target properties. One of the approaches to overcome the CNT chemical inertness, enhance the compatibility with the matrix and improve homogeneous dispersion through the matrix is through its covalent functionalization. This is expected to improve the CNT interface with the polymer matrix, thus improving the mechanical properties of the nanocomposites at very low content. One of the purposes of this thesis was to implement the covalent modification of the CNT surface using a simple functionalization method, to increase the CNT surface reactivity and possibly help their dispersion into the polyamide matrix without inducing structural damage on the CNT. The functionalization of CNT was carried out through the 1,3-dipolar cycloaddition reaction of azomethine ylides using a solvent-free reaction route. CNT were successful functionalized with pyrrolidine groups through a simple and fast procedure that was scaled up, and may be compatible with current industrial processes. Another objective was to disperse the CNT in polyamide 6 (PA6) using melt mixing, and to produce PA6/CNT nanocomposites by microinjection molding (plM). Finally, the morphological and physical properties of the mouldings produced were evaluated. The plM process is becoming of greater importance for the manufacturing of polymeric micro- components considering its low cost and short cycle times, useful for mass production. The as-received and functionalized CNT

  11. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo

    2018-01-01

    Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.

  12. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite.

    PubMed

    Cui, Xiaoqiang; Li, Chang Ming; Zang, Jianfeng; Yu, Shucong

    2007-06-15

    A novel chitosan/PVI-Os(polyvinylimidazole-Os)/CNT(carbon nanotube)/LOD (lactate oxidase) network nanocomposite was constructed on gold electrode for detection of lactate. The composite was nanoengineered by selected matched material components and optimized composition ratio to produce a superior lactate sensor. Positively charged chitosan and PVI-Os were used as the matrix and the mediator to immobilize the negatively charged LOD and to enhance the electron transfer, respectively. CNTs were introduced as the essential component in the composite for the network nanostructure. FESEM (field emission scan electron microscopy) and electrochemical characterization demonstrated that CNT behaved as a cross-linker to network PVI and chitosan due to its nanoscaled and negative charged nature. This significantly improved the conductivity, stability and electroactivity for detection of lactate. The standard deviation of the sensor without CNT in the composite was greatly reduced from 19.6 to 4.9% by addition of CNTs. With optimized conditions the sensitivity and detection limit of the lactate sensor was 19.7 microA mM(-1)cm(-2) and 5 microM, respectively. The sensitivity was remarkably improved in comparison to the newly reported values of 0.15-3.85 microA mM(-1)cm(-2). This novel nanoengineering approach for selecting matched components to form a network nanostructure could be extended to other enzyme biosensors, and to have broad potential applications in diagnostics, life science and food analysis.

  13. Electrochemical Implications of Defects in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hall, Jonathan Peter

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multi-walled CNT morphologies. The controlled addition of argon, hydrogen, and chlorine ions in addition to atomic hydrogen and magnesium vapor was used for varying the charge and type of extrinsic defects. To quantify changes in the CNTs upon treatment, Raman spectroscopy and electrochemical techniques were employed. It was indicated from Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and chronopotentiometric experiments that the electrochemical response of hollow type CNTs could be tailored more significantly compared to bamboo type CNTs, which have innately high reactive site densities and are less amenable to modification. Total defect density and edge-plane-like defect concentrations monitored through Raman spectroscopy were used to correlate changes in the electrochemical response of the CNT electrodes as a function of treatment. The implementation of CNT electrodes in a prototypical electrolytic capacitor device was then explored and characterized. Dependencies on source current and redox couple concentration were evaluated, as well as changes in the total capacitance as a function of treatment. Cyclability studies were also performed as a function of source current magnitude to evaluate the longevity of the faradaic currents which typically decrease over time in other similar capacitors. This thesis then concludes with an overall summary of the themes and findings of the research presented in this work.

  14. Temperature dependence of thermal boundary resistances between multiwalled carbon nanotubes and some typical counterpart materials.

    PubMed

    Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2012-04-24

    We directly measured the temperature dependence of thermal boundary resistances (TBRs) between multiwalled carbon nanotubes (MWCNTs) and different materials at elevated temperatures. Using the steady-state heat flow and the noncontacted measurement method, we could conveniently obtain the TBR-temperature relations. Our results indicate that the TBR-temperature relations vary distinctively with different contact materials when heating temperatures change from about 300 to 450 K; that is, the CNT-metal TBRs increase with increasing temperatures, whereas the CNT-insulator TBRs decrease. As a comparison, the TBRs between superaligned MWCNTs were measured and we found that the CNT-CNT TBRs remain basically unchanged as temperatures increase. We also found that the magnitude of TBRs between MWCNTs and different materials could differ from each other significantly. These results suggest that the choice of the right electrode may have an obvious influence on the thermal properties and other properties of the CNT-based devices. From another perspective, in view of some existing theoretical models about TBRs, our results support the validity of the molecular dynamics (MD) simulations in the calculation of CNT-solid TBRs at elevated temperatures.

  15. Novel planar field emission of ultra-thin individual carbon nanotubes.

    PubMed

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  16. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.

    PubMed

    Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D

    2017-05-09

    Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m -2 at a current density of 69±7 mA m -2 . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carbon nanotube growth density control

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  18. Nanocomposite electrodes for smartphone enabled healthcare garments: e-bra and smart vest

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Rai, Pratyush; Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-10-01

    The financial burden of hospital readmissions and treatment of chronic cardiac diseases are global concerns. Point of Care (POC) has been presented as an elegant solution for healthcare cost reduction. However, large scale adoption of POC systems requires an intuitive, unobtrusive and easy to use health monitoring system from patient's perspective. Healthcare textiles are sensor systems mounted on textile platform that function as wearable unobtrusive health monitoring systems. Although much work has been done in the development and demonstration of textile mounted monitoring systems, material and production costs are still high. Nanomaterials based devices and technology can be employed in these healthcare textiles for improved electrical characteristics of the sensors, lowered cost due to less material consumption and compatibility to varied manufacturing techniques. Carbon nanotube composite ink based printable conductive electrodes is such a textile adaptable nanomaterial technology. Screen printed Nanocomposite electrodes made of carbon nanotubes and an acrylic polymer can be used in undergarments like vests and brassieres, for cardiac biopotential (Electrocardiography, ECG) sensing. A Bluetooth module and a smartphone can then be used to provide cyber-infrastructure connectivity for the healthcare data from these healthcare garments. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. In this study, we evaluate screen printed CNT-acrylic Nanocomposite electrodes for ECG signal quality and any CNT leaching hazard that might lead to skin toxicity.

  19. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Chen, Di; Wang, Xuemei

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNTmore » films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.« less

  20. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.

    PubMed

    Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T

    2014-11-01

    We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.

  1. All-Organic Actuator Fabricated with Single Wall Carbon Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Lowther, Sharon E.; Harrison, Joycelyn S.; Kang, Jinho; Park, Cheol; Park, Chan Eon

    2008-01-01

    Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all-organic actuator with single wall carbon nanotube (SWCNT) films as the alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center - Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 C to 280 C) and frequency (from 1 KHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions.

  2. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  3. Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes.

    PubMed

    Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Yang, Lichun; Zhu, Min

    2017-05-23

    To solve the problem of large volume change and low electronic conductivity of earth-abundant ilmenite used in rechargeable Na-ion batteries (SIBs), an anode of tiny ilmenite FeTiO 3 nanoparticle embedded carbon nanotubes (FTO⊂CNTs) has been successfully proposed. By introducing a TiO 2 shell on metal-organic framework (Fe-MOF) nanorods by sol-gel deposition and subsequent solid-state annealing treatment of these core-shell Fe-MOF@TiO 2 , such well-defined FTO⊂CNTs are obtained. The achieved FTO⊂CNT electrode has several distinct advantages including a hollow interior in the hybrid nanostructure, fully encapsulated ultrasmall electroactive units, flexible conductive carbon matrix, and stable solid electrolyte interface (SEI) of FTO in cycles. FTO⊂CNT electrodes present an excellent cycle stability (358.8 mA h g -1 after 200 cycles at 100 mA g -1 ) and remarkable rate capability (201.8 mA h g -1 at 5000 mA g -1 ) with a high Coulombic efficiency of approximately 99%. In addition, combined with the typical Na 3 V 2 (PO 4 ) 3 cathode to constitute full SIBs, the assembled FTO⊂CNT//Na 3 V 2 (PO 4 ) 3 batteries are also demonstrated with superior rate capability and a long cycle life.

  4. High activity of g-C3N4/multiwall carbon nanotube in catalytic ozonation promotes electro-peroxone process.

    PubMed

    Guo, Zhuang; Cao, Hongbin; Wang, Yuxian; Xie, Yongbing; Xiao, Jiadong; Yang, Jin; Zhang, Yi

    2018-06-01

    Three kinds of graphitic carbon nitride materials (bulk, porous and nanosheet g-C 3 N 4 ) were composited with a multiwall carbon nanotube (MWCNT) by a hydrothermal method, and the obtained b-C 3 N 4 /CNT, p-C 3 N 4 /CNT and n-C 3 N 4 /CNT materials were used in the electrodes for electro-peroxone process. It was found that the n-C 3 N 4 /CNT composite exhibited the highest efficiency in oxalate degradation, though it performed the worst in the oxygen-reduction reaction for H 2 O 2 production. The n-C 3 N 4 /CNT composite exhibited higher activity than CNT and other composites in catalytic ozonation experiments, due to the higher pyrrolic-N content modified on the CNT surface and higher surface area. It also has higher electron transfer ability, which benefited to the electro-reduction of both O 2 and O 3 . The result confirmed that catalytic ozonation process was an important means to enhance the degradation efficiency in the electro-peroxone process, besides peroxone process and O 3 -electrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Liao, Chen-Yu; Chen, Chieh-Wen; Hao, Yu-Chuan; Yu, Ing-Song; Chen, Jian-Zhang

    2017-11-01

    This study investigates a quasi-solid-state gel-electrolyte supercapacitor fabricated with nanoporous SnO2/CNT nanocomposite electrodes and a polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte. First, pastes containing SnO2 nanoparticles, CNTs, ethyl cellulose, and terpineol are screen-printed onto carbon cloth. A tube furnace is then used for calcining the SnO2/CNT electrodes on carbon cloth. After furnace-calcination, the wettability of SnO2/CNT significantly improved; furthermore, the XPS analysis shows that number of C-O bond and oxygen content significantly decrease after furnace-calcination owing to the burnout of the ethyl cellulose by the furnace calcination processes. The furnace-calcined SnO2/CNT electrodes sandwich the PVA/H2SO4 gel electrolyte to form a supercapacitor. The fabricated supercapacitor exhibits an areal capacitance of 5.61 mF cm-2 when flat and 5.68 mF cm-2 under bending with a bending radius (R) of 1.0 cm. After a 1000 cycle stability test, the capacitance retention rates of the supercapacitor are 96% and 97% when flat and under bending (R  =  1.0 cm), respectively.

  6. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  7. Controlled growth of aligned carbon nanotube using pulsed glow barrier discharge

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Kimura, Yoshihito; Okazaki, Ken

    2002-10-01

    We first achieved a catalytic growth of aligned carbon nanotube (CNT) using atmospheric pressure pulsed glow barrier discharge combined with DC bias (1000 V). Aligned CNT can grow with the directional electric field, and this is a big challenge in barrier discharges since dielectric barrier does not allow DC bias and forces to use AC voltage to maintain stable plasma conditions. To overcome this, we developed a power source generating Gaussian-shape pulses at 20 kpps with 4% duty, and DC bias was applied to the GND electrode where Ni-, Fe-coated substrate existed. With positive pulse, i.e. substrate was the cathode, random growth of CNT was observed at about 10^9 cm-2. Growth rate significantly reduced when applied negative pulse; Negative glow formation near substrate is essential for sufficient supply of radical species to the catalyst. If -DC was biased, aligned CNT with 20 nm was synthesized because negative bias enhanced negative glow formation. Interestingly, 2 to 3 CNTs stuck each other with +DC bias, resulting in 50-70 nm and non-aligned CNT. Atmospheric pressure glow barrier discharges can be highly controlled and be a potential alternative to vacuum plasmas for CVD, micro-scale, nano-scale fabrication.

  8. Self-assembled dopamine nanolayers wrapped carbon nanotubes as carbon-carbon bi-functional nanocatalyst for highly efficient oxygen reduction reaction and antiviral drug monitoring

    NASA Astrophysics Data System (ADS)

    Khalafallah, Diab; Akhtar, Naeem; Alothman, Othman Y.; Fouad, H.; Abdelrazek khalil, Khalil

    2017-09-01

    Oxygen reduction reaction (ORR) catalysts are the heart of eco-friendly energy resources particularly low temperature fuel cells. Although valuable efforts have been devoted to synthesize high performance catalysts for ORR, considerable challenges are extremely desirable in the development of energy technologies. Herein, we report a simple self-polymerization method to build a thin film of dopamine along the tubular nanostructures of multi-walled carbon nanotubes (CNT) in a weak alkaline solution. The dopamine@CNT hybrid (denoted as DA@CNT) reveals an enhanced electrocatalytic activity towards ORR with highly positive onset potential and cathodic current as a result of their outstanding features of longitudinal mesoporous structure, high surface area, and ornamentation of DA layers with nitrogen moieties, which enable fast electron transport and fully exposed electroactive sites. Impressively, the as-obtained hybrid afford remarkable electrochemical durability for prolonged test time of 60,000 s compared to benchmark Pt/C (20 wt%) catalyst. Furthermore, the developed DA@CNT electrode was successfully applied to access the quality of antiviral drug named Valacyclovir (VCR). The DA@CNT electrode shows enhanced sensing performance in terms of large linear range (3-75 nM), low limit of detection (2.55 nM) than CNT based electrode, indicating the effectiveness of the DA coating. Interestingly, the synergetic effect of nanostructured DA and CNT can significantly boost the electronic configuration and exposure level of active species for ORR and biomolecule recognition. Therefore, the existing carbon-based porous electrocatalyst may find numerous translational applications as attractive alternative to noble metals in polymer electrolyte membrane fuel cells and quality control assessment of pharmaceutical and therapeutic drugs.

  9. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  10. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    NASA Astrophysics Data System (ADS)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  11. Multifunctional Structural-Energy Storage Nanocomposites for Ultra Lightweight Micro Autonomous Systems (First-year Report)

    DTIC Science & Technology

    2012-02-01

    SUBJECT TERMS Carbon nanotubes , CNTs, supercapacitor, multifunctional, energy, structural-Energy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Pulickel M. Ajayan of Rice University for providing us with the vertically aligned carbon nanotube (CNT) forests used in this project and for helpful...10–18) and man-portable unmanned vehicles (19). In related research, ARL has also investigated using carbon nanotube (CNT)-based electrodes for

  12. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li

    2010-05-01

    CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  13. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  14. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-08-01

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the

  15. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    NASA Astrophysics Data System (ADS)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  16. Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites.

    PubMed

    Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma

    2017-04-01

    Highly sensitive L-lysine enzyme electrodes were constructed by using poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine (PVF/MWCNTs-GEL) and poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine-graphene (PVF/MWCNTs-GEL/GR) composites as sensing interfaces and their performances were evaluated. Lysine oxidase (LO) was immobilized onto the composite modified glassy carbon electrodes (GCE) by crosslinking using glutaraldehyde and bovine serum albumin. Effects of pH value, enzyme loading, applied potential, electrode composition, and interfering substances on the amperometric response of the enzyme electrodes were discussed. The analytical characteristics of the enzyme electrodes were also investigated. The linear range, detection limit, and sensitivity of the LO/PVF/MWCNTs-GEL/GCE were 9.9 × 10 -7 -7.0 × 10 -4  M, 1.8 × 10 -7  M (S/N = 3), and 13.51 μA mM -1  cm -2 , respectively. PVF/MWCNTs-GEL/GR-based L-lysine enzyme electrode showed a short response time (<5 s) and a linear detection range from 9.9 × 10 -7 to 7.0 × 10 -4  M with good sensitivity of 17.8 μA mM -1  cm -2 and a low detection limit of 9.2 × 10 -8  M. The PVF/MWCNTs-GEL/GR composite-based L-lysine enzyme electrode exhibited about 1.3-fold higher sensitivity than its MWCNTs-based counterpart and its detection limit was superior to the MWCNTs-based one. In addition, enzyme electrodes were successfully applied to determine L-lysine in pharmaceutical sample and cheese.

  17. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  18. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  19. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.

    PubMed

    Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan

    2013-01-01

    A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.

  20. Effect of Pre-Ozonation and UF Membrane Modification with CNT on Fouling Control

    NASA Astrophysics Data System (ADS)

    Wang, Kailun; Guan, Yuqi; Zhu, Xuedong; Dong, Dan; Guo, Jin

    2018-01-01

    The effect of carbon nanotubes (CNT) modification on ultrafiltration membrane fouling control was explored. Three kinds of base membrane were chosen in the study: 20 kDa polysulfone (PS) membrane, 20 kDa and 100 kDa polyethersulfone (PES) membrane. Besides, the effect of pre-ozonation on the three CNT modified membranes for fouling alleviation was further studied. CNT modification presented antifouling properties at the beginning of filtration, while the recoverability of the CNT modified membranes are relatively lower as for the blocking of CNT layer by foulants. Pre-ozonation with a lower ozone concentration (0.25 mgO3/mgDOC) did not efficiently alleviate the fouling of CNT modified membranes. With the ozone concentration increased to 0.81 mgO3/mgDOC, the CNT modified membranes exhibited their higher antifouling properties. Water quality analysis results showed that CNT modification presented a higher capture ability for the humic-like and protein-like substances. After pre-ozonation, more organic materials could be retained in the interior of CNT layer, which decreased the fouling of base membranes and increased the permeate quality as well. Base membrane with large molecular size cut-off is more helpful for the synergistic effect of pre-ozonation and CNT modification.

  1. Characterization of Hybrid CNT Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  2. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  3. Carbon nanotube and graphene device modeling and simulation

    NASA Astrophysics Data System (ADS)

    Yoon, Young Ki

    The performance of the semiconductors has been improved and the price has gone down for decades. It has been continuously scaled down in size year by year, and now it encounters the fundamental scaling limit. We, therefore, should prepare a new era beyond the conventional semiconductor technologies. One of the most promising devices is possible by carbon nanotube (CNT) or graphene nanoribbon (GNR) in terms of its excellent charge transport properties. Their fundamental material properties and device physics are totally different to those of the conventional devices. In this nano-regime, more sophisticated device modeling and simulation are really needed to elucidate nano-device operation and to save our resources from errors. The numerical simulation works in this dissertation will provide novel view points on the emerging devices. In this dissertation, CNT and GNR devices are numerically studied. The first part of this work is on CNT devices, and a common structure of CNT device has CNT channel, metal source and drain contacts, and gate electrode. We investigate the strain, geometry, and scattering effects on the device performance of CNT field-effect transistors (FETs). It is shown that even a small amount of strain can result in a large effect on the performance of CNTFETs due to the variation of the bandgap and band-structure-limited velocity. A type of strain which produces a larger bandgap results in increased Schottky barrier (SB) height and decreased band-structure-limited velocity, and hence a smaller minimum leakage current, smaller on current, larger maximum achievable Ion/Ioff, and larger intrinsic delay. We also examine geometry effect of partial gate CNTFETs. In the growth process of vertical CNT, underlap between the gate and the bottom electrode is advantageous for transistor operation because it suppresses ambipolar conduction of SBFETs. Both n-type and p-type transistor operations with balanced performance metrics can be achieved on a single

  4. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhii, V.; Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005

    2016-07-28

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”)more » and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.« less

  5. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites

    PubMed Central

    Zeng, You; Lu, Guixia; Wang, Han; Du, Jinhong; Ying, Zhe; Liu, Chang

    2014-01-01

    In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods, and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks. Moreover, the CNT/HDPE thermistors exhibit rapid electrical response to applied voltages, comparable to commercial CB-based thermistors. In light of their high current-bearing capacity and quick response, the CNT-based thermistors have great potential to be used as high-performance thermistors in practical application, especially in some critical circumstances of high temperature, large applied currents, and high applied voltages. PMID:25327951

  6. Exploring the novel donor-nanotube archetype as an efficient third-order nonlinear optical material: asymmetric open-shell carbon nanotubes.

    PubMed

    Muhammad, Shabbir; Nakano, Masayoshi; Al-Sehemi, Abdullah G; Irfan, Ahmad; Chaudhry, Aijaz Rasool; Tonami, Takayoshi; Ito, Soichi; Kishi, Ryohei; Kitagawa, Yasutaka

    2018-06-06

    Contrary to the enormous number of previous studies on carbon nanotubes (CNTs), herein, we realized the origin of the intrinsic open-shell diradical character and second hyperpolarizability γ using a broken symmetry approach. This study was inspired by our recent findings (S. Muhammad, et al., Nanoscale, 2016, 8, 17998 and Nakano, et al., J. Phys. Chem. C, 2016, 120, 1193). We performed structural modifications through a unique asymmetric donor-nanotube framework, which led to a novel paradigm of modified CNTs with tunable open-shell diradical character and remarkably superior NLO response properties. Interestingly, asymmetry and diradical character were found to be the crucial factors to modulate the second hyperpolarizability γ. We initially performed a comparative analysis of the diradical characters and γ amplitudes of boron nitride nanotubes (BNNTs) and CNTs possessing significant ionic characters and covalent characters, respectively. The basic findings for these simple configurations were further extended to the donor-acceptor CNT paradigm, which finally led to excellent asymmetric donor-CNT configurations with remarkably larger γ amplitudes. Furthermore, among the CNTs, finite length zigzag CNT(6,0)3 were modified with different donor-acceptor configurations. Interestingly, for the first time, unique donor-nanotube configurations [1,4-(NH2)2CNT-(6,0)3 and 1,4-(NH2)2CNT-(6,0)5] were found; they showed significantly robust γ amplitudes as large as 2519 × 103 and 4090 × 103 a.u. at the LC-UBLYP(μ = 0.33)/6-31G* level of theory. Additionally, several molecular level insights have been obtained for these novel donor-nanotube configurations using their odd electron densities, molecular electrostatic maps, densities of states and γ density analyses to highlight the realization of these novel materials for highly efficient optical and NLO applications.

  7. Influence of composite processing on the properties of CNT grown on carbon surfaces

    NASA Astrophysics Data System (ADS)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2018-01-01

    Carbon nanotubes (CNT) grafted on carbon fibres (CF) are the subject of more and more studies on the reinforcement of composite materials thanks to the CNT' mechanical properties. This study concerns the growth of CNT directly on CF by the flame method, which is an assembly-line process. However the industrial-scale use of this method and of the composite processing leads to stresses on the CNT-grafted fabrics, such as friction and pulling-out. The aim of this study is to determine the behaviour of the CNT under these kinds of stresses and to study theirs consequences in composite processing. For this purpose, adhesion tests and friction tests were performed as well as analysis of the surface by Scanning Electron Microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). In friction tests, CNT formed a transfer film, and its effect on the wettability of the fabric with epoxy resin is determined. Finally, the wear of the CNT does not influence the wettability of the fabric. Furthermore, it is proven that the nature of the catalyst needed to grow the CNT modifies the behaviour of the surface.

  8. Identification of Complex Carbon Nanotube Structures

    NASA Technical Reports Server (NTRS)

    Han, Jie; Saini, Subhash (Technical Monitor)

    1998-01-01

    A variety of complex carbon nanotube (CNT) structures have been observed experimentally. These include sharp bends, branches, tori, and helices. They are believed to be formed by using topological defects such as pentagons and heptagons to connect different CNT. The effects of type, number, and arrangement (separation and orientation) of defects on atomic structures and energetics of complex CNT are investigated using topology, quantum mechanics and molecular mechanics calculations. Energetically stable models are derived for identification of observed complex CNT structures.

  9. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.

    PubMed

    Sobhani, Zahra; Behnam, Mohammad Ali; Emami, Farzin; Dehghanian, Amirreza; Jamhiri, Iman

    2017-01-01

    Photothermal therapy (PTT) is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs) have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs) and then polyethylene glycol (PEG) was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w). Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P =2 W and I =8 W/cm 2 ) for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for eradicating solid tumors in PTT technique.

  10. 2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors.

    PubMed

    Kim, Byoung Soo; Lee, Kangsuk; Kang, Seulki; Lee, Soyeon; Pyo, Jun Beom; Choi, In Suk; Char, Kookheon; Park, Jong Hyuk; Lee, Sang-Soo; Lee, Jonghwi; Son, Jeong Gon

    2017-09-14

    Stretchable energy storage systems are essential for the realization of implantable and epidermal electronics. However, high-performance stretchable supercapacitors have received less attention because currently available processing techniques and material structures are too limited to overcome the trade-off relationship among electrical conductivity, ion-accessible surface area, and stretchability of electrodes. Herein, we introduce novel 2D reentrant cellular structures of porous graphene/CNT networks for omnidirectionally stretchable supercapacitor electrodes. Reentrant structures, with inwardly protruded frameworks in porous networks, were fabricated by the radial compression of vertically aligned honeycomb-like rGO/CNT networks, which were prepared by a directional crystallization method. Unlike typical porous graphene structures, the reentrant structure provided structure-assisted stretchability, such as accordion and origami structures, to otherwise unstretchable materials. The 2D reentrant structures of graphene/CNT networks maintained excellent electrical conductivities under biaxial stretching conditions and showed a slightly negative or near-zero Poisson's ratio over a wide strain range because of their structural uniqueness. For practical applications, we fabricated all-solid-state supercapacitors based on 2D auxetic structures. A radial compression process up to 1/10 th densified the electrode, significantly increasing the areal and volumetric capacitances of the electrodes. Additionally, vertically aligned graphene/CNT networks provided a plentiful surface area and induced sufficient ion transport pathways for the electrodes. Therefore, they exhibited high gravimetric and areal capacitance values of 152.4 F g -1 and 2.9 F cm -2 , respectively, and had an excellent retention ratio of 88% under a biaxial strain of 100%. Auxetic cellular and vertically aligned structures provide a new strategy for the preparation of robust platforms for stretchable

  11. Strain and Temperature Sensing Properties of Multiwalled Carbon Nanotube Yarn Composites

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gates, Thomas S.; Jefferson, Gail D.

    2008-01-01

    Strain and temperature response of Multiwalled Carbon Nanotube (MWCNT/CNT) yarns on a stainless steel test beam has been studied. The carbon nanotube yarns are spun from a multiwalled carbon nanotube forest grown on a silicon substrate to a 4-ply yarn with a diameter of about 15-20 microns. Four of the 4-ply CNT yarns are arranged in a Wheatstone bridge configuration on the stainless steel test beam using a thin layer of polyurethane resin that insulates and protects the yarns from the test beam. Strain sensitivities of the CNT yarn sensors range from 1.39 to 1.75 mV/V/1000 microstrain at room temperature, and temperature sensitivity of the CNT yarn bridge is 91 microA/degC. Resistance of the yarns range from 215 to 270 ohms for CNT yarn length of approximately 5 mm. Processes used in attaching the CNT yarns on the test beam and experimental procedures used for the measurements are described. Conventional metallic foil strain gages are attached to the test beam to compare with the CNT sensors. The study demonstrates multifunctional capability of the sensor for strain and temperature measurements and shows its applicability where engineering strain is less than 3%.

  12. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  13. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  14. Nanomechanics of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    This review focusses on introducing the mechanics in carbon nanotubes (CNT), and the major applications of CNT and its composites in biomedicine. It emphasizes the nanomechanics of these materials by reviewing the widely followed experimental methods, theoretical models, simulations, classification, segregation and applications the aforementioned materials. First, several mechanical properties contributing to the classification of the CNT, for various biomedicine applications, are discussed in detail to provide a cursory glance at the uses of CNT. The mechanics of CNT discussed in this paper include: elasticity, stress, tension, compression, nano-scale mechanics. In addition to these basic properties, a brief introduction about nanoscale composites is given. Second, a brief review on some of the major applications of CNT in biomedicine including drug delivery, therapeutics, diagnostics and regenerative medicine is given.

  15. Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl thiophene)/carbon nanotube composite cathode

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook

    A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.

  16. Bonding Unidirectional Carbon Nanotube with Carbon for High Performance

    DTIC Science & Technology

    2015-06-24

    the longest time of 80 minutes had an aerogel -like density, with CNT packing density lower than even the as-grown CNT array. This highly porous nature...nanotube foams with ultralow densities. Unlike other routes for fabrication of CNT aerogels , foam and sponges, this processing method allows the fast

  17. Photodetector based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  18. Curvature induced L-defects in water conduction in carbon nanotubes.

    PubMed

    Zimmerli, Urs; Gonnet, Pedro G; Walther, Jens H; Koumoutsakos, Petros

    2005-06-01

    We conduct molecular dynamics simulations to study the effect of the curvature induced static dipole moment of small open-ended single-walled carbon nanotubes (CNTs) immersed in water. This dipole moment generates a nonuniform electric field, changing the energy landscape in the CNT and altering the water conduction process. The CNT remains practically filled with water at all times, whereas intermittent filling is observed when the dipole term is not included. In addition, the dipole moment induces a preferential orientation of the water molecules near the end regions of the nanotube, which in turn causes a reorientation of the water chain in the middle of the nanotube. The most prominent feature of this reorientation is an L-defect in the chain of water molecules inside the CNT. The analysis of the water energetics and structural characteristics inside and in the vicinity of the CNT helps to identify the role of the dipole moment and to suggest possible mechanisms for controlled water and proton transport at the nanoscale.

  19. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  20. A display module implemented by the fast high-temperatue response of carbon nanotube thin yarns.

    PubMed

    Wei, Yang; Liu, Peng; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    Suspending superaligned multiwalled carbon nanotube (MWCNT) films were processed into CNT thin yarns, about 1 μm in diameter, by laser cutting and an ethanol atomization bath treatment. The fast high-temperature response under a vacuum was revealed by monitoring the incandescent light with a photo diode. The thin yarns can be electrically heated up to 2170 K in 0.79 mS, and the succeeding cool-down time is 0.36 mS. The fast response is attributed to the ultrasmall mass of the independent single yarn, large radiation coefficient, and improved thermal conductance through the two cool ends. The millisecond response time makes it possible to use the visible hot thin yarns as light-emitting elements of an incandescent display. A fully sealed display with 16 × 16 matrix was successfully fabricated using screen-printed thick electrodes and CNT thin yarns. It can display rolling characters with a low power consumption. More applications can be further developed based on the addressable CNT thermal arrays.

  1. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites

    PubMed Central

    Kim, Jun Young

    2009-01-01

    This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are highly dependent on the uniform dispersion of CNT and the interactions between the CNT and TLCP, which can be enhanced by chemical modification of the CNT, providing a design guide of CNT-reinforced TLCP nanocomposites with great potential for industrial uses.

  2. Mechanical deformation of carbon nanotube nano-rings on flat substrate

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Ke, Changhong

    2011-04-01

    We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.

  3. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  4. Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Sudibandriyo, M.; Wulan, P. P. D. K.

    2018-03-01

    This work aimed to observe the performance of a fluidized bed reactor which was equipped with a cyclone in the synthesis of carbon nanotubes (CNT) by chemical vapor deposition. Liquefied petroleum gas with a constant volumetric flow rate of 1940 cm3/minutes was fed to the reactor as a carbon source, while a combination of metal components of Fe-Co-Mo supported on MgO was used as catalyst. The CNT synthesis was carried out at a reaction temperature which was maintained at around 800 – 850 °C for 1 hour. The CNT yield was decreased sharply when the catalyst feed was increased. The carbon efficiency is directly proportional to the mass of catalyst fed. It was found from the experiment that the mass of as-grown CNT increased in proportion to the increase of the catalyst mass fed. A sharp increase of the mass percentage of carbon nanotubes entrainment happened when the catalyst feed was raised from 3 to 7 grams. Agglomerates of carbon nanotubes have been formed. The agglomerates composed of mutually entangled carbon nanotubes which have an outer diameter range 8 – 14 nm and an inner diameter range 4 – 10 nm, which confirmed that the multi-walled carbon nanotubes were formed in this synthesis. It was found that the mesopores dominate the pore structure of the CNT product and contribute more than 90 % of the total pore volume.

  5. Modeling the interaction Between Ethylene Diamine and Water Films on the Surface of a Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros

    2004-01-01

    It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.

  6. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Oviedo, M Belén; Sánchez, Cristián G; Rubianes, María D; Rivas, Gustavo A

    2014-10-01

    We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) μA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Carbon nanotube suspensions, dispersions, & composites

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  8. Polymer Composite Containing Carbon Nanotubes and their Applications.

    PubMed

    Park, Sung-Hoon; Bae, Joonwon

    2017-07-10

    Carbon nanotubes (CNTs) are attractive nanostructures in this regard, primarily due to their high aspect ratio coupled with high thermal and electrical conductivities. Consequently, CNT polymer composites have been extensively investigated for various applications, owing to their light weight and processibility. However, there have been several issues affecting the utilization of CNTs, such as aggregation (bundling) which leads to a non-uniform dispersion and poor interfacial bonding of the CNTs with the polymer, resulting in variation in composite performance, along with the additional issue of high cost of CNTs. In this article, recent research and patents for polymer composites containing carbon nanomaterial are presented and summarized. In addition, a rationale for optimally designed carbon nanotube polymer composites and their applications are suggested. Above the electrical percolation threshold, a transition from insulator to conductor occurs. The percolation threshold values of CNT composite are dependent on filler shape, intrinsic properties of filler, type of polymer, CNT dispersion condition and so on. Different values of percolation threshold CNT polymer composites have been summarized. The difference in percolation threshold and conductivity of CNT composites could be explained by the degree of effective interactions between nanotubes and polymer matrix. The reaction between surface functional groups of CNTs and polymer could contribute to better dispersion of CNTs in polymer matrix. Consequently, it increased the number of electrical networks of CNTs in polymer, resulting in an enhancement of composite conductivity. In addition, to exfoliate nanotubes from heavy bundles, ultrasonication with proper solvent and three roll milling processes were used. Potential reactions of covalent bonding between functionalized CNTs and polymer were suggested based on the above rationale. Through the use of CNT functionalization, high aspect ratio CNTs, and proper

  9. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  10. Na4Mn9O18/Carbon Nanotube Composite as a High Electrochemical Performance Material for Aqueous Sodium-Ion Batteries.

    PubMed

    Yin, Fuxing; Liu, Zhengjun; Yang, Shuang; Shan, Zhenzhen; Zhao, Yan; Feng, Yuting; Zhang, Chengwei; Bakenov, Zhumabay

    2017-10-17

    The aqueous sodium-ion battery (ASIB) is one of the promising new energy storage systems owing to the abundant resources of sodium as well as efficiency and safety of electrolyte. Herein, we report an ASIB system with Na 4 Mn 9 O 18 /carbon nanotube (NMO/CNT) as cathode, metal Zn as anode and a novel Na + /Zn 2+ mixed ion as electrolyte. The NMO/CNT with microspherical structure is prepared by a simple spray-drying method. The prepared battery delivers a high reversible specific capacity and stable cyclability. Furthermore, the battery displays a stable reversible discharge capacity of 53.2 mAh g -1 even at a high current rate of 4 C after 150 cycles. Our results confirm that the NMO/CNT composite is a promising electrode cathode material for ASIBs.

  11. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    NASA Astrophysics Data System (ADS)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  12. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  13. Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  14. In-line manufacture of carbon nanotubes

    DOEpatents

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  15. Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish

    2008-01-01

    A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

  16. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Yu, Ning; Shi, Qing; Nakajima, Masahiro; Wang, Huaping; Yang, Zhan; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-10-01

    Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy.

  17. Boron nitride nanotubes and nanosheets.

    PubMed

    Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi

    2010-06-22

    Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments.

  18. A combined approach for high-performance Li-O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor-promoter

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Seop; Seo, Gi Won; Kwon, Kyoungwoo; Jung, Kyu-Nam; Lee, Sang Ick; Choi, Eunsoo; Kim, Hansung; Hwang, Jin-Ha; Lee, Jong-Won

    2018-04-01

    A rechargeable lithium-oxygen (Li-O2) battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode) for Li-O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li-O2 batteries. Here, a binder-free carbon nanotube (CNT) electrode surface-modified by atomic layer deposition (ALD) of dual acting RuO2 as an inhibitor-promoter is proposed for rechargeable Li-O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (˜0.9 V) as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  19. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  20. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    PubMed

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  1. Covalently functionalized single-walled carbon nanotubes and graphene composite electrodes for pseudocapacitor application

    NASA Astrophysics Data System (ADS)

    Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe

    2013-09-01

    The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.

  2. Carbon Nanotubes Growth by CVD on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Cochrane, J. C.; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Due to the superior electrical and mechanical properties of carbon nanotubes (CNT), synthesizing CNT on various substances for electronics devices and reinforced composites have been engaged in many efforts for applications. This presentation will illustrate CNT synthesized on graphite fibers by thermal CVD. On the fiber surface, iron nanoparticles as catalysts for CNT growth are coated. The growth temperature ranges from 600 to 1000 C and the pressure ranges from 100 Torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than or equal to 900 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in the rough fiber surface without any CNT grown on it. When the growth temperature is relative low (650-800 C), CNT with catalytic particles on the nanotube top ends are fabricated on the graphite surface. (Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis.) (By measuring the samples) Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT (MWCNT), depending on growth concentrations, are found. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  3. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  4. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  5. Hybridizing CNT/PMMA/PVDF towards high-performance piezoelectric nanofibers

    NASA Astrophysics Data System (ADS)

    Fang, K. Y.; Fang, F.; Wang, S. W.; Yang, W.; Sun, W.; Li, J. F.

    2018-07-01

    Piezoelectric nanofibers are of great importance in their potential applications as smart fibers and textiles to bring changes to daily lives. By employing the technique of electrospinning, polyvinylidene fluoride (PVDF) nanofibers modified with polymethyl methacrylate (PMMA) and single-wall carbon nanotubes (CNTs) (referred to as CNT/PMMA/PVDF) are prepared. The electric field induced displacement of the as-prepared nanofibers is characterized by piezoresponse force microscopy. Compared with the pure PVDF nanofibers, the CNT/PMMA/PVDF nanofibers exhibit a great enhancement of about 196% for the electric field induced displacement, while increments of about 104% and 78% are obtained for the PMMA/PVDF and CNT/PVDF nanofibers, respectively. A structural analysis indicates that the hydrogen bonding between the O atom in the carbonyl group of PMMA and the hydrogen atom in the CH2 groups of PVDF, the promotion of the nucleation of crystallites by CNTs, work synergistically to produce the high electroactive response of the CNT/PMMA/PVDF nanofibers. Based on the high-performance nanofibers, a prototype of a flexible nanofiber generator is fabricated, which exhibits a typical electrical output of 3.11 V upon a repeated impact-release loading at a frequency of 50 Hz.

  6. Carbon Nanotubes by CVD and Applications

    NASA Technical Reports Server (NTRS)

    Cassell, Alan; Delzeit, Lance; Nguyen, Cattien; Stevens, Ramsey; Han, Jie; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) exhibits extraordinary mechanical and unique electronic properties and offers significant potential for structural, sensor, and nanoelectronics applications. An overview of CNT, growth methods, properties and applications is provided. Single-wall, and multi-wall CNTs have been grown by chemical vapor deposition. Catalyst development and optimization has been accomplished using combinatorial optimization methods. CNT has also been grown from the tips of silicon cantilevers for use in atomic force microscopy.

  7. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.

    PubMed

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho

    2011-06-07

    This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.

  8. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  9. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  10. Synthesis of Millimeter-Scale Carbon Nanotube Arrays and Their Applications on Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cui, Xinwei

    This research is aimed at synthesizing millimeter-scale carbon nanotube arrays (CNTA) by conventional chemical vapor deposition (CCVD) and water-assisted chemical vapor deposition (WACVD) methods, and exploring their application as catalyst supports for electrochemical supercapacitors. The growth mechanism and growth kinetics of CNTA under different conditions were systematically investigated to understand the relationship among physical characteristics of catalyst particles, growth parameters, and carbon nanotube (CNT) structures within CNTAs. Multiwalled CNT (MWCNT) array growth demonstrates lengthening and thickening stages in CCVD and WACVD. In CCVD, the lengthening and thickening were found to be competitive. By investigating catalyst particles after different pretreatment conditions, it has been found that inter-particle spacing plays a significant role in influencing CNTA height, CNT diameter and wall number. In WACVD, a long linear lengthening stage has been found. CNT wall number remains constant and catalysts preserve the activity in this stage, while MWCNTs thicken substantially and catalysts deactivate following the previously proposed radioactive decay model in the thickening stage of WACVD. Water was also shown to preserve the catalyst activity by significantly inhibiting catalyst-induced and gas phase-induced thickening processes in WACVD. Mn3O4 nanoparticles were successfully deposited and uniformly distributed within millimeter-long CNTAs by dip-casting method from non-aqueous solutions. After modification with Mn3O4 nanoparticles, CNTAs have been changed from hydrophobic to hydrophilic without their alignment and integrity being destroyed. The hydrophilic Mn 3O4/CNTA composite electrodes present ideal capacitive behavior with high reversibility. This opens up a new route of utilizing ultra-long CNTAs, based on which a scalable and cost-effective method was developed to fabricate composite electrodes using millimeter-long CNTAs. To improve the

  11. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2018-07-01

    The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.

  12. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    EPA Science Inventory

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  13. CNT-based saturable absorbers with scalable modulation depth for Thulium-doped fiber lasers operating at 1.9 μm

    PubMed Central

    Sobon, Grzegorz; Duzynska, Anna; Świniarski, Michał; Judek, Jarosław; Sotor, Jarosław; Zdrojek, Mariusz

    2017-01-01

    In this work, we demonstrate a comprehensive study on the nonlinear parameters of carbon nanotube (CNT) saturable absorbers (SA) as a function of the nanotube film thickness. We have fabricated a set of four saturable absorbers with different CNT thickness, ranging from 50 to 200 nm. The CNTs were fabricated via a vacuum filtration technique and deposited on fiber connector end facets. Each SA was characterized in terms of nonlinear transmittance (i.e. optical modulation depth) and tested in a Thulium-doped fiber laser. We show, that increasing the thickness of the CNT layer significantly increases the modulation depth (up to 17.3% with 200 nm thick layer), which strongly influences the central wavelength of the laser, but moderately affects the pulse duration. It means, that choosing the SA with defined CNT thickness might be an efficient method for wavelength-tuning of the laser, without degrading the pulse duration. In our setup, the best performance in terms of bandwidth and pulse duration (8.5 nm and 501 fs, respectively) were obtained with 100 nm thick CNT layer. This is also, to our knowledge, the first demonstration of a fully polarization-maintaining mode-locked Tm-doped laser based on CNT saturable absorber. PMID:28368014

  14. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  15. Vertically aligned carbon nanotube electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Welna, Daniel T.; Qu, Liangti; Taylor, Barney E.; Dai, Liming; Durstock, Michael F.

    As portable electronics become more advanced and alternative energy demands become more prevalent, the development of advanced energy storage technologies is becoming ever more critical in today's society. In order to develop higher power and energy density batteries, innovative electrode materials that provide increased storage capacity, greater rate capabilities, and good cyclability must be developed. Nanostructured materials are gaining increased attention because of their potential to mitigate current electrode limitations. Here we report on the use of vertically aligned multi-walled carbon nanotubes (VA-MWNTs) as the active electrode material in lithium-ion batteries. At low specific currents, these VA-MWNTs have shown high reversible specific capacities (up to 782 mAh g -1 at 57 mA g -1). This value is twice that of the theoretical maximum for graphite and ten times more than their non-aligned equivalent. Interestingly, at very high discharge rates, the VA-MWNT electrodes retain a moderate specific capacity due to their aligned nature (166 mAh g -1 at 26 A g -1). These results suggest that VA-MWNTs are good candidates for lithium-ion battery electrodes which require high rate capability and capacity.

  16. Preparation and characterization of CNT-CeO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Jasmeet, E-mail: jasmeet.dayal@gmail.com; Anand, Kanika; Singh, Ravi Chand

    2015-06-24

    This paper reports decoration of CeO{sub 2} nanoparticles on multi-walled carbon nanotubes through a reflux process in which Ce (NO{sub 3}) {sub 3}·6H{sub 2}O serves as precursor and hydrazine hydrate (N{sub 2}H{sub 4}.H{sub 2}O) as reducing agent. Successful deposition of cubic fluorite CeO{sub 2} nanoparticles onto multi-walled carbon nanotubes has been confirmed by x-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). It was found that CeO{sub 2} nanoparticles formed in the presence of CNTs were larger as compared to pure CeO{sub 2} nanoparticles. Raman analysis showed that CeO{sub 2} induced a decreasemore » in the size of the carbon grain in the CNTs. A red shift from 460 cm{sup −1} to 463 cm{sup −1} for F{sub 2g} mode of CeO{sub 2} has also been observed in Raman spectra of CNT- CeO{sub 2} nanocomposite as compared to pure CeO{sub 2}. The CeO{sub 2} coated multi-wall carbon nanotubes (CNT-CeO{sub 2}) nanocomposite would be a promising candidate for practical applications such as catalysis, sensing and power source applications.« less

  17. Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(DL-lactide-co-glycolide)/CNT films.

    PubMed

    Armentano, Ilaria; Dottori, Mariaserena; Puglia, Debora; Kenny, Josè M

    2008-06-01

    Nanocomposite films based on single wall carbon nanotubes (SWNTs) and poly(DL-lactide-co-glycolide) copolymer (50:50 PLGA) were processed and analyzed. The purpose of this study was to investigate the effect of different functionalization systems on the physical stability and morphology of PLGA films. Both covalent and non covalent functionalization of carbon nanotubes were considered in order to control the interactions between PLGA and SWNTs and to understand the role of the filler in the biodegradation properties. Using a solvent casting process, different PLGA/SWNT nanocomposites were prepared and incubated using organic solution under physiological conditions. In-vitro degradation studies were conducted by measurements of weight loss, infrared spectroscopy, glass transition temperature and SEM observations as a function of the incubation time, over a 9-week period. All PLGA films were degraded by hydrolitical degradation. However, a different degradation mechanism was observed in the case of functionalized SWNTs with respect to pristine material. It has been observed that system composition and SWNT functionalization may play a crucial role on the autocatalytic effect of the degradation process. These studies suggest that the degradation kinetics of the films can be engineered by varying carbon nanotube (CNT) content and functionalization. The combination of biodegradable polymers and CNTs opens a new perspective in the self-assembly of nanomaterials and nanodevices.

  18. Plasma and cold sprayed aluminum carbon nanotube composites: Quantification of nanotube distribution and multi-scale mechanical properties

    NASA Astrophysics Data System (ADS)

    Bakshi, Srinivasa Rao

    Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al

  19. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    PubMed Central

    Stapleton, Andrew J; Yambem, Soniya D; Johns, Ashley H; Afre, Rakesh A; Ellis, Amanda V; Shapter, Joe G; Andersson, Gunther G; Quinton, Jamie S; Burn, Paul L; Meredith, Paul

    2015-01-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems. PMID:27877771

  20. Carbon-nanotube probes for three-dimensional critical-dimension metrology

    NASA Astrophysics Data System (ADS)

    Park, B. C.; Ahn, S. J.; Choi, J.; Jung, K. Y.; Song, W. Y.

    2006-03-01

    We fabricate three kinds of carbon nanotube (CNT) probes to be employed in critical dimension atomic force microscope (CD-AFM). Despite unique advantages in its size and hardness, use of nanotube tip has been limited due to the lack of reproducible control of CNT orientation and its shape. We proposed that CNT alignment issues can be addressed based on the ion beam bending process, where a CNT free-standing on the apex of an AFM tip aligns itself in parallel to the FIB direction so that its free end is directed toward the ion source, with no external electric or magnetic field involved. The process allowed us to embody cylindrical probes of CNT diameters, and subsequently two additional types of CNT tips. One is ball-ended CNT tip which has, at the end of CNT tip, side-protrusions of tungsten/amorphous carbon in the horizontal dithering direction. The other is 'bent' CNT tip where the end of CNT is bent to a side direction. Using the former type of CNT tip, both sides of trench/line sidewall can be measured except for bottom corners, while the corners can be reached with the latter type, but the only one sidewall can be measured at a tip setting. The three types of tips appear to satisfy the requirements in both the size and accessibility to the re-entrant sidewall, and are awaiting actual test in CD-AFM.

  1. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-10-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.

  2. Low-cost, solution processable carbon nanotube supercapacitors and their characterization

    NASA Astrophysics Data System (ADS)

    Lehtimäki, Suvi; Tuukkanen, Sampo; Pörhönen, Juho; Moilanen, Pasi; Virtanen, Jorma; Honkanen, Mari; Lupo, Donald

    2014-06-01

    We report ecological and low-cost carbon nanotube (CNT) supercapacitors fabricated using a simple, scalable solution processing method, where the use of a highly porous and electrically conductive active material eliminates the need for a current collector. Electrodes were fabricated on a poly(ethylene terephthalate) substrate from a printable multi-wall CNT ink, where the CNTs are solubilized in water using xylan as a dispersion agent. The dispersion method facilitates a very high concentration of CNTs in the ink. Supercapacitors were assembled using a paper separator and an aqueous NaCl electrolyte and the devices were characterized with a galvanostatic discharge method defined by an industrial standard. The capacitance of the 2 cm^2 devices was 6 mF/cm^2 (2.3 F/g) and equivalent series resistance 80 Ω . Low-cost supercapacitors fabricated from safe and environmentally friendly materials have potential applications as energy storage devices in ubiquitous and autonomous intelligence as well as in disposable low-end products.

  3. Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors

    PubMed Central

    Yun, Young Soo; Park, Hyun Ho; Jin, Hyoung-Joon

    2012-01-01

    Nitrogen- and micropore-containing carbon nanotubes (NMCNTs) were prepared by carbonization of nitrogen-enriched, polymer-coated carbon nanotubes (CNTs), and the electrochemical performances of the NMCNTs with different heteroatom contents were investigated. NMCNTs-700 containing 9.1 wt% nitrogen atoms had a capacitance of 190.8 F/g, which was much higher than that of pristine CNTs (48.4 F/g), despite the similar surface area of the two CNTs, and was also higher than that of activated CNTs (151.7 F/g) with a surface area of 778 m2/g and a nitrogen atom content of 1.2 wt%. These results showed that pseudocapacitive effects play an important role in the electrochemical performance of supercapacitor electrodes.

  4. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.A., E-mail: asyadi@utem.edu.my; Jantan, N.H.; Dorah, N.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, amongmore » others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.« less

  5. CNT Nanobombs for Specific Eradication of Cancer Cells: A New Concept in Cancer Theranostics.

    PubMed

    Omidi, Yadollah

    2011-01-01

    Whole extermination of cancerous cells/tissue seems no longer to be a dream. Exploiting advanced photoactive nanomaterials such as functionalized fullerenes and carbon nano-tubes (CNTs) can act as CNT nanobombs (CNT-NBs) when exposed to the near infrared (NIR) radiation. PEGylated CNTs tagged with an antibody/aptamer can target cancer cells. Once attached to cancer cells, the NIR emission (700-1100 nm), in which body tissues are mostly transparent, can be applied to CNT-NBs which can absorb the light and get heated up. The resultant enhanced temperature can abolish the cancer. Once stealth CNT-NBs are tagged with imaging moieties, it would be a matter of computer gaming for physician who can inject it for real time visualization and destruction of cancer by activation of the NIR laser. While, many nanosystems (NSs) are still in waiting list for clinical translation, our dreams may come true by applying stealth CNT-NBs against cancer.

  6. P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Lin, Jinghuang; Wang, Yiheng; Zheng, Xiaohang; Liang, Haoyan; Jia, Henan; Qi, Junlei; Cao, Jian; Tu, Jinchun; Fei, Weidong; Feng, Jicai

    2018-06-19

    NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

  7. Carbon nanotubes in blends of polycaprolactone/thermoplastic starch.

    PubMed

    Taghizadeh, Ata; Favis, Basil D

    2013-10-15

    Despite the importance of polymer-polymer multiphase systems, very little work has been carried out on the preferred localization of solid inclusions in such multiphase systems. In this work, carbon nanotubes (CNT) are dispersed with polycaprolactone (PCL) and thermoplastic starch (TPS) at several CNT contents via a combined solution/twin-screw extrusion melt mixing method. A PCL/CNT masterbatch was first prepared and then blended with 20 wt% TPS. Transmission and scanning electron microscopy images reveal a CNT localization principally in the TPS phase and partly at the PCL/TPS interface, with no further change by annealing. This indicates a strong driving force for the CNTs toward TPS. Young's model predicts that the nanotubes should be located at the interface. X-ray photoelectron spectroscopy (XPS) of extracted CNTs quantitatively confirms an encapsulation by TPS and reveals a covalent bonding of CNTs with thermoplastic starch. It appears likely that the nanotubes migrate to the interface, react with TPS and then are subsequently drawn into the low viscosity TPS phase. In a low shear rate/low shear stress internal mixer the nanotubes are found both in the PCL phase and at the PCL/TPS interface and have not completed the transit to the TPS phase. This latter result indicates the importance of choosing appropriate processing conditions in order to minimize kinetic effects. The addition of CNTs to PCL results in an increase in the crystallization temperature and a decrease in the percent crystallinity confirming the heterogeneous nucleating effect of the nanotubes. Finally, DMA analysis reveals a dramatic decrease in the starch rich phase transition temperature (~26 °C), for the system with nanotubes located in the TPS phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Carbon Nanotube-Based Chemiresistive Sensors

    PubMed Central

    Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming

    2017-01-01

    The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future. PMID:28420195

  9. Carbon Nanotube-Based Chemiresistive Sensors.

    PubMed

    Tang, Ruixian; Shi, Yongji; Hou, Zhongyu; Wei, Liangming

    2017-04-18

    The development of simple and low-cost chemical sensors is critically important for improving human life. Many types of chemical sensors have been developed. Among them, the chemiresistive sensors receive particular attention because of their simple structure, the ease of high precise measurement and the low cost. This review mainly focuses on carbon nanotube (CNT)-based chemiresistive sensors. We first describe the properties of CNTs and the structure of CNT chemiresistive sensors. Next, the sensing mechanism and the performance parameters of the sensors are discussed. Then, we detail the status of the CNT chemiresistive sensors for detection of different analytes. Lastly, we put forward the remaining challenges for CNT chemiresistive sensors and outlook the possible opportunity for CNT chemiresistive sensors in the future.

  10. Column with CNT/magnesium oxide composite for lead(II) removal from water.

    PubMed

    Saleh, Tawfik A; Gupta, Vinod K

    2012-05-01

    In this study, manganese dioxide-coated multiwall carbon nanotube (MnO(2)/CNT) nanocomposite has been successfully synthesized. The as-produced nanocomposite was characterized by different characteristic tools, such as X-ray diffraction, SEM, and FTIR. The MnO(2)/CNT nanocomposite was utilized as a fixed bed in a column system for removal of lead(II) from water. The experimental conditions were investigated and optimized. The pH range between 3 and 7 was studied; the optimum removal was found when the pH was equal to 6 and 7. The thickness of MnO(2)/CNT nanocomposite compact layer was also changed to find the optimum parameter for higher removal. It was observed that the slower the flow rates of the feed solution the higher the removal because of larger contact time.

  11. Carbon Nanotube Based Nano-Electro-Mechanical Systems (NEMS)

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai, Hongjie; Saini, Subhash

    1998-01-01

    Carbon nanotubes (CNT) enable nanoelectromechanical systems (NEMS) because of their inherent nanostructure, intrinsic electric conductivity and mechanical resilience. The collaborative work between Stanford (experiment) and NASA Ames (theory and simulation) has made progress in two types of CNT based NEMS for nanoelectronics and sensor applications. The CNT tipped scanning probe microscopy (SPM) is a NEMS in which CNT tips are used for nanoscale probing, imaging and manipulating. It showed great improvement in probing surfaces and biological systems over conventional tips. We have recently applied it to write (lithography) and read (image) uniform SiO2 lines on large Si surface area at speed up to 0.5 mm per s. Preliminary work using approximately 10 nm multiwall nanotube tips produced approximately 10 nm structures and showed that the CNT tips didn't wear down when crashed as conventional tips often do. This presents a solution to the long standing tip-wear problem in SPM nanolithography. We have also explored potential of CNT tips in imaging DNA in water. Preliminary experiment using 10 nm CNT tips reached 5 nm resolution. The 1 nm nanolithography and 1 nm DNA imaging can be expected by using approximately 1 nm CNT tips. In contrast to CNT tipped SPM, we also fabricated CNT devices on silicon wafer in which CNTs connect patterned metallic lines on SiO2/Si by a simple chemical vapor deposition process. Using conventional lithography for silicon wafer, we have been able to obtain CNT based transistors and sensors. Investigations of the CNT NEMS as physical, biological and chemical sensors are in progress and will be discussed.

  12. Ionic Adsorption and Desorption of CNT Nanoropes

    PubMed Central

    Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow

    2016-01-01

    A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment. PMID:28335306

  13. Ionic Adsorption and Desorption of CNT Nanoropes.

    PubMed

    Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow

    2016-09-28

    A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  14. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  15. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  16. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors.

    PubMed

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-09-21

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g(-1) has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g(-1). Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg(-1) (2.24 mW h cm(-3)) at a power density of 100 W kg(-1) (5.83 mW cm(-3)), and they maintain 59.52% of the initial value at 10,000 W kg(-1) (0.583 W cm(-3)). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.

  17. Monodisperse CNT Microspheres for High Permeability and Efficiency Flow-Through Filtration Applications.

    PubMed

    Copic, Davor; Maggini, Laura; De Volder, Michael

    2018-03-01

    Carbon nanotube (CNT)-based filters have the potential to revolutionize water treatment because of their high capacity and fast kinetics in sorption of organic, inorganic, and biological pollutants. To date, CNT filters either rely on CNTs dispersed in liquids, which are difficult to recover and cause safety concerns, or on CNT buckypaper, which offers high efficiency, but suffers from an intrinsic trade-off between filter permeability and capacity. Here, a new approach is presented that bypasses this trade-off and achieves buckypaper-like efficiency combined with filter-column-like permeability and capacity. For this, CNTs are first assembled into porous microspheres and then are packed into microfluidic column filters. These microcolumns exhibit large flow-through filtration efficiencies, while maintaining membrane permeabilities an order of magnitude larger then CNT buckypaper and specific permeabilities double that of activated carbon for similar flowrates (232 000 L m -2 h -1 bar -1 , 1.23 × 10 -12 m 2 ). Moreover, in a test to remove sodium dodecyl sulfate (SDS) from water, these microstructured CNT columns outperform activated carbon columns. This improved filtration efficiency and permeability is an important step toward a broader implementation of CNT-based filtration devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polymer/Carbon Nanotube Networks for Smart, Self-Repairing and Light-Weighted Nanocomposites

    DTIC Science & Technology

    2012-11-05

    was develop smart, strong, and light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by...light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by inhibiting such degradation...one of support references for EPSRC instrument grant application for Micro Materials NanoTest Vantage Testing Suite with NTX4Controller. The grant

  19. Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire

    PubMed Central

    Adam, Tijjani; U, Hashim

    2014-01-01

    An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FESEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis. PMID:25237290

  20. Probing Photosensitization by Functionalized Carbon Nanotubes.

    PubMed

    Chen, Chia-Ying; Zepp, Richard G

    2015-12-01

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that may damage organisms by biomembrane oxidation or mediate environmental transformations of CNTs. Photosensitization by derivatized carbon nanotubes from various synthetic methods, and thus with different intrinsic characteristics (e.g., diameter and electronic properties), has been investigated under environmentally relevant aquatic conditions. We used the CNT-sensitized photoisomerization of sorbic acid ((2E,4E)-hexa-2,4-dienoic acid) and singlet oxygen formation to quantify the triplet states ((3)CNT*) formed upon irradiation of selected single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The CNTs used in our studies were derivatized by carboxyl groups to facilitate their dispersion in water. Results indicate that high-defect-density (thus well-stabilized), small-diameter, and semiconducting-rich CNTs have higher-measured excited triplet state formation and therefore singlet oxygen ((1)O2) yield. Derivatized SWCNTs were significantly more photoreactive than derivatized MWCNTs. Moreover, addition of sodium chloride resulted in increased aggregation and small increases in (1)O2 production of CNTs. The most photoreactive CNTs exhibited comparable photoreactivity (in terms of (3)CNT* formation and (1)O2 yield) to reference natural organic matter (NOM) under sunlight irradiation with the same mass-based concentration. Selected reference NOM could therefore be useful in evaluating environmental photoreactivity or intended antibacterial applications of CNTs.

  1. Morphing Carbon Nanotube Microstructures

    DTIC Science & Technology

    2015-02-20

    most fibrous nanoscale aerogels and foams, having n=2-3, which is attributed to 2 low connectivity between the constituent struts 7. When comparing...CNTs incidentally resembles the Young’s moduli of isotropic CNT foams 30, CNT aerogels 31, and Si aerogels 32 which scale as ~ρ3, and commonly...characteristics of ultrahigh surface area single-walled carbon nanotube aerogels . Adv. Funct. Mater. 23, 377-383 (2013). 8. R. M. German, Sintering

  2. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes.

    PubMed

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F; Ajayan, Pulickel M; Harutyunyan, Avetik R

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.

  3. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes

    PubMed Central

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F.; Ajayan, Pulickel M.; Harutyunyan, Avetik R.

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications. PMID:23712556

  4. Effects of multiple polyaniline layers immobilized on carbon nanotube and glutaraldehyde on performance and stability of biofuel cell

    NASA Astrophysics Data System (ADS)

    Christwardana, Marcelinus; Kwon, Yongchai

    2015-12-01

    Enzymatic biofuel cell (EBC) employing new catalyst for anode electrode is fabricated. The new catalyst consists of glucose oxidase (GOx), polyaniline (PANI) and carbon nanotube (CNT) that are multiply stacked together and finally the stack layer is surrounded by glutaraldehyde (GA) (GA/[GOx/PANI/CNT]n). To evaluate how the GA/[GOx/PANI/CNT]n layer affects EBC performance and stability, electrochemical characterizations are implemented. Regarding optimization, GA/[GOx/PANI/CNT]3 is determined. For elucidating reaction mechanism between glucose and flavin adenine dinucleotide (FAD) of GA/[GOx/PANI/CNT]3, associated investigations are performed. In the evaluations, drop in reduction current peak of FAD is observed with provisions of glucose and O2, while glucose does not influence FAD reaction without O2, confirming O2 makes mediator role. When the GA/[GOx/PANI/CNT]3 layer is adopted, superior catalytic activity and EBC performance are gained (electron transfer rate constant of 5.1 s-1, glucose sensitivity of 150 ìA mM-1 cm-2, and EBC maximum power density (MPD) of 0.29 mW cm-2). Regarding EBC stability, MPD of EBC adopting GA/[GOx/PANI/CNT]3 maintains up to 93% of their initial value even after four weeks. Although GA is little effective for improving EBC performance, EBC stability is helped by GA due to its adhesion promotion capability with [GOx/PANI/CNT]n layer.

  5. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    PubMed

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.

    2007-12-01

    A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.

  7. Electrochemical supramolecular recognition of hemin-carbon composites

    NASA Astrophysics Data System (ADS)

    Le, Hien Thi Ngoc; Jeong, Hae Kyung

    2018-04-01

    Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.

  8. Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer.

    PubMed

    Cui, Hui-Fang; Zhang, Kuan; Zhang, Yong-Fang; Sun, Yu-Long; Wang, Jia; Zhang, Wei-De; Luong, John H T

    2013-08-15

    Glucose oxidase (GOD) was adsorbed into a nanoporous TiO₂ film layered on the surface of an iron phthalocyanine (FePc) vertically-aligned carbon nanotube (CNT) modified electrode. A Nafion film was then dropcast on the electrode's surface to improve operational and storage stabilities of the GOD-based electrode. Scanning electron microscopy (SEM) micrographs revealed the formation of FePc and nanoporous TiO₂ nanoparticles along the sidewall and the tip of CNTs. Cyclic voltammograms of the GOD electrode in neutral PBS exhibited a pair of well-defined redox peaks, attesting the direct electron transfer of GOD (FAD/FADH₂) with the underlying electrode. The potential of glucose electro-oxidation under nitrogen was ∼+0.12 V with an oxidation current density of 65.3 μA cm(-2) at +0.77 V. Voltammetric and amperometric responses were virtually unaffected by oxygen, illustrating an efficient and fast direct electron transfer. The modification of the CNT surface with FePc resulted in a biosensor with remarkable detection sensitivity with an oxygen-independent bioelectrocatalysis. In deaerated PBS, the biosensor displayed average response time of 12 s, linearity from 50 μM to 4 mM, and a detection limit of 30 μM (S/N=3) for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application

    NASA Astrophysics Data System (ADS)

    Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive

    2018-01-01

    We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ˜1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ˜32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ˜100 nA cm-2 at 2.5 V when held for 72 h.

  10. Amplified detection of streptomycin using aptamer-conjugated palladium nanoparticles decorated on chitosan-carbon nanotube.

    PubMed

    Aghajari, Rozita; Azadbakht, Azadeh

    2018-04-15

    A streptomycin-specific aptamer was used as a receptor molecule for ultrasensitive quantitation of streptomycin. The glassy carbon (GC) electrode was modified with palladium nanoparticles decorated on chitosan-carbon nanotube (PdNPs/CNT/Chi) and aminated aptamer against streptomycin. Modification of the sensing interface was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), wavelength-dispersive X-ray spectroscopy (WDX), cyclic voltammetry (CVs), and electrochemical impedance spectroscopy (EIS). The methodologies applied for designing the proposed biosensor are based on target-induced conformational changes of streptomycin-specific aptamer, leading to detectable signal change. Sensing experiments were performed in the streptomycin concentration range from 0.1 to 1500 nM in order to evaluate the sensor response as a function of streptomycin concentration. Based on the results, the charge transfer resistance (R ct ) values increased proportionally to enhanced streptomycin content. The limit of detection was found to be as low as 18 pM. The superior selectivity and affinity of aptamer/PdNPs/CNT/Chi modified electrode for streptomycin recognition made it favorable for versatile applications such as streptomycin analysis in real samples. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets.

    PubMed

    Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-04-11

    Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. © 2012 American Chemical Society

  12. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  13. Metal Nanoparticle Catalysts for Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Pierce, Benjamin F.

    2003-01-01

    Work this summer involved and new and unique process for producing the metal nanoparticle catalysts needed for carbon nanotube (CNT) growth. There are many applications attributed to CNT's, and their properties have deemed them to be a hot spot in research today. Many groups have demonstrated the versatility in CNT's by exploring a wide spectrum of roles that these nanotubes are able to fill. A short list of such promising applications are: nanoscaled electronic circuitry, storage media, chemical sensors, microscope enhancement, and coating reinforcement. Different methods have been used to grow these CNT's. Some examples are laser ablation, flame synthesis, or furnace synthesis. Every single approach requires the presence of a metal catalyst (Fe, Co, and Ni are among the best) that is small enough to produce a CNT. Herein lies the uniqueness of this work. Microemulsions (containing inverse micelles) were used to generate these metal particles for subsequent CNT growth. The goal of this summer work was basically to accomplish as much preliminary work as possible. I strived to pinpoint which variable (experimental process, metal product, substrate, method of application, CVD conditions, etc.) was the determining factor in the results. The resulting SEM images were sufficient for the appropriate comparisons to be made. The future work of this project consists of the optimization of the more promising experimental procedures and further exploration onto what exactly dictated the results.

  14. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    PubMed Central

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.

    2016-01-01

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301

  15. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

    PubMed

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-17

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  16. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    NASA Astrophysics Data System (ADS)

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  17. Non-faradic carbon nanotube-based supercapacitors: state of the art. Analysis of all the main scientific contributions from 1997 to our days

    NASA Astrophysics Data System (ADS)

    Bondavalli, P.; Pribat, D.; Schnell, J.-P.; Delfaure, C.; Gorintin, L.; Legagneux, P.; Baraton, L.; Galindo, C.

    2012-10-01

    This contribution deals with the state of the art of studies concerning the fabrication of electric double-layer capacitors (EDLCs) also called super- or ultracapacitors and obtained using carbon nanotubes (CNTs) without exploiting Faradic reactions. From the first work published in 1997, EDLCs fabricated using carbon nanotubes as constitutive material for electrodes showed very interesting characteristics. It appeared that they could potentially outperform traditional technologies based on activated carbon. Different methods to fabricate the CNT-based electrodes have been proposed in order to improve the performances (mainly energy densities and power densities), for example filtration, direct growth on metal collector or deposition using an air-brush technique. In this contribution we will introduce the main works in the field. Finally, we will point out an emerging interest for supercapacitors fabricated on flexible substrates, exploiting the outstanding mechanical performances of CNTs, for new kinds of applications such as portable electronics.

  18. Flexible, transparent electrodes using carbon nanotubes

    PubMed Central

    2012-01-01

    We prepare thin single-walled carbon nanotube networks on a transparent and flexible substrate with different densities, using a very simple spray method. We measure the electric impedance at different frequencies Z(f) in the frequency range of 40 Hz to 20 GHz using two different methods: a two-probe method in the range up to 110 MHz and a coaxial (Corbino) method in the range of 10 MHz to 20 GHz. We measure the optical absorption and electrical conductivity in order to optimize the conditions for obtaining optimum performance films with both high electrical conductivity and transparency. We observe a square resistance of 1 to 8.5 kΩ for samples showing 65% to 85% optical transmittance, respectively. For some applications, we need flexibility and not transparency: for this purpose, we deposit a thick film of single-walled carbon nanotubes on a flexible silicone substrate by spray method from an aqueous suspension of carbon nanotubes in a surfactant (sodium dodecyl sulphate), thereby obtaining a flexible conducting electrode showing an electrical resistance as low as 200 Ω/sq. When stretching up to 10% and 20%, the electrical resistance increases slightly, recovering the initial value for small elongations up to 10%. We analyze the stretched and unstretched samples by Raman spectroscopy and observe that the breathing mode on the Raman spectra is highly sensitive to stretching. The high-energy Raman modes do not change, which indicates that no defects are introduced when stretching. Using this method, flexible conducting films that may be transparent are obtained just by employing a very simple spray method and can be deposited on any type or shape of surface. PMID:23074999

  19. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    PubMed

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes.

    PubMed

    Öner, Ibrahim Halil; Querebillo, Christine Joy; David, Christin; Gernert, Ulrich; Walter, Carsten; Driess, Matthias; Leimkühler, Silke; Ly, Khoa Hoang; Weidinger, Inez M

    2018-06-11

    We present the fabrication of TiO 2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochrome b 5 were observed upon covalent immobilization of the protein matrix on the TiO 2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 °C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  2. Helically coiled carbon nanotube forests for use as electrodes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao

    Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.

  3. On the vibrational characteristics of single- and double-walled carbon nanotubes containing ice nanotube in aqueous environment

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2015-10-01

    The properties and behavior of carbon nanotubes (CNTs) in aqueous environment due to their considerable potential applications in nanobiotechnology and designing nanobiosensors have attracted the attention of researchers. In this study, molecular dynamics simulations are carried out to investigate the vibrational characteristics of single- and double-walled CNTs containing ice nanotubes (a new phase of ice) in vacuum and aqueous environments. The results demonstrate that formation of ice nanotubes inside the CNTs reduces the natural frequency of pure CNTs. Moreover, it is demonstrated that increasing the number of walls considerably reduces the sensitivity of frequency to the presence of ice nanotube inside CNT. Additionally, it is shown that increasing the length decreases the effect of ice nanotube on reducing the frequency. The calculation of natural frequency of CNTs in aqueous media demonstrates that the interaction of CNTs with water molecules considerably reduces the natural frequency up to 50 %. Finally, it is demonstrated that in the case of CNTs with one free end in aqueous environment, the CNT does not vibrate in its first mode, and its frequency is between the frequencies of first and second modes of vibration.

  4. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  5. Field emission properties of SiO2-wrapped CNT field emitter.

    PubMed

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-05

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  6. FIB Secondary Etching Method for Fabrication of Fine CNT Forest Metamaterials

    NASA Astrophysics Data System (ADS)

    Pander, Adam; Hatta, Akimitsu; Furuta, Hiroshi

    2017-10-01

    Anisotropic materials, like carbon nanotubes (CNTs), are the perfect substitutes to overcome the limitations of conventional metamaterials; however, the successful fabrication of CNT forest metamaterial structures is still very challenging. In this study, a new method utilizing a focused ion beam (FIB) with additional secondary etching is presented, which can obtain uniform and fine patterning of CNT forest nanostructures for metamaterials and ranging in sizes from hundreds of nanometers to several micrometers. The influence of the FIB processing parameters on the morphology of the catalyst surface and the growth of the CNT forest was investigated, including the removal of redeposited material, decreasing the average surface roughness (from 0.45 to 0.15 nm), and a decrease in the thickness of the Fe catalyst. The results showed that the combination of FIB patterning and secondary etching enabled the growth of highly aligned, high-density CNT forest metamaterials. The improvement in the quality of single-walled CNTs (SWNTs), defined by the very high G/D peak ratio intensity of 10.47, demonstrated successful fine patterning of CNT forest for the first time. With a FIB patterning depth of 10 nm and a secondary etching of 0.5 nm, a minimum size of 150 nm of CNT forest metamaterials was achieved. The development of the FIB secondary etching method enabled for the first time, the fabrication of SWNT forest metamaterials for the optical and infrared regime, for future applications, e.g., in superlenses, antennas, or thermal metamaterials.

  7. Field emission properties of SiO2-wrapped CNT field emitter

    NASA Astrophysics Data System (ADS)

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-01

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  8. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    NASA Astrophysics Data System (ADS)

    Ciambelli, P.; Arurault, L.; Sarno, M.; Fontorbes, S.; Leone, C.; Datas, L.; Sannino, D.; Lenormand, P.; Le Blond Du Plouy, S.

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  9. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation.

    PubMed

    Ciambelli, P; Arurault, L; Sarno, M; Fontorbes, S; Leone, C; Datas, L; Sannino, D; Lenormand, P; Du Plouy, S Le Blond

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  10. Molecular dynamics simulation of water in and around carbon nanotubes: A coarse-grained description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantawane, Sanwardhini; Choudhury, Niharendu, E-mail: nihcho@barc.gov.in

    2016-05-23

    In the present study, we intend to investigate behaviour of water in and around hydrophobic open ended carbon nanotubes (CNTs) using a coarse-grained, core-softened model potential for water. The model potential considered here for water has recently been shown to successfully reproduce dynamic, thermodynamic and structural anomalies of water. The epitome of the study is to understand the incarceration of this coarse-grained water in a single-file carbon nanotube. In order to examine the effect of fluid-water van der Waals interaction on the structure of fluid in and around the nanotube, we have simulated three different CNT-water systems with varying degreemore » of solute-water dispersion interaction. The analyses of the radial one-particle density profiles reveal varying degree of permeation and wetting of the CNT interior depending on the degree of fluid-solute attractive van der Waals interaction. A peak in the radial density profile slightly off the nanotube axis signifies a zigzag chain of water molecule around the CNT axis. The average numbers of water molecules inside the CNT have been shown to increase with the increase in fluid-water attractive dispersion interaction.« less

  11. Energy dissipation in intercalated carbon nanotube forests with metal layers

    USDA-ARS?s Scientific Manuscript database

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectiv...

  12. Electrical behaviour of carbon nanotubes under low-energy proton irradiation

    NASA Astrophysics Data System (ADS)

    Abbe, Elisabeth; Schüler, Tilman; Klosz, Stefan; Starruß, Elisa; Pilz, Wolfgang; Böttger, Roman; Kluge, Oliver; Schmiel, Tino; Tajmar, Martin

    2017-11-01

    Several applications for carbon nanotubes (CNT) have been proposed for space applications in the last years. However, their behaviour in the harsh space environment is mostly unknown. Energetic particles such as protons can influence the material degradation in space. This material damage could result in a system failure of space systems. Therefore it is necessary to investigate the performance of new materials under proton irradiation. Screen and jet printed disordered single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and multi-walled carbon nanotubes/resin composites (ME) were exposed to 1 keV, 15 keV and 100 keV protons. The electrical behaviour of the CNT conductor paths was measured during the experiment. After this exposure, the CNTs were analyzed using Raman scattering and a scanning electron microscope (SEM). Their is a clear evidence that proton radiation can destroy carbon nanotubes and influence their electrical performance.

  13. The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement

    DTIC Science & Technology

    2007-06-01

    includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT

  14. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    PubMed

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  15. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  16. Effect of B, N, Ge, Sn, K doping on electronic-transport properties of (5, 0) zigzag carbon nanotube

    NASA Astrophysics Data System (ADS)

    Kamalian, Monir; Seyed Jalili, Yousef; Abbasi, Afshin

    2018-04-01

    In this paper the effect of impurity on the electronic properties and quantum conductance of zigzag (5, 0) carbon nanotube have been studied by using the Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with TranSIESTA software. The effect of Boron (B), Nitrogen (N), Germanium (Ge), Tin (Sn) and Potassium (K) impurities on the CNT conduction behavior and physical characteristics, like density of states (DOS), band structure, transmission coefficients and quantum conductance was considered and discussed simultaneously. The current‑voltage (I‑V) curves of all the proposed models were studied for comparative study under low-bias conditions. The distinct changes in conductance reported as the positions, number and type of dopants was varied in central region of the CNT between two electrodes at different bias voltages. This suggested conductance enhancement mechanism for the charge transport in the doped CNT at different positions is important for the design of CNT based nanoelectronic devices. The results show that Germanium, Tin and Potassium dopant atoms has increased the conductance of the model manifold than other doping atoms furthermore 10 Boron and 10 Nitrogen dopant atoms showed the amazing property of Negative Differential Resistance (NDR).

  17. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.

    PubMed

    Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin

    2009-06-02

    Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.

  18. Electroactive Shape Memory Property of a Cu-decorated CNT Dispersed PLA/ESO Nanocomposite

    PubMed Central

    Alam, Javed; Khan, Aslam; Alam, Manawwer; Mohan, Raja

    2015-01-01

    Shape memory polymer (SMP) nanocomposites with a fast electro-actuation speed were prepared by dispersing Cu-decorated carbon nanotubes (CNTs) (Cu-CNTs, 1 wt %, 2 wt %, and 3 wt %) in a polylactic acid (PLA)/epoxidized soybean oil (ESO) blend matrix. The shape memory effect (SME) induced by an electrical current was investigated by a fold-deploy “U”-shape bending test. In addition, the Cu-CNT dispersed PLA/ESO nanocomposite was characterized by atomic force microscopy (AFM), dynamic mechanical analysis (DMA) and tensile and electrical measurements. The results demonstrated that the SME was dependent on the Cu-CNT content in the nanocomposites. When comparing the SMEs of the nanocomposite specimens with different Cu-CNT contents, the 2 wt % Cu-CNT dispersed system exhibited a shape recovery as high as 98% within 35 s due to its higher electrical conductivity that results from uniform Cu-CNT dispersion. However, the nanocomposites that contained 1 wt % and 3 wt % Cu-CNTs required 75 s and 63 s, respectively, to reach a maximum recovery level. In addition, the specimens exhibited better mechanical properties after the addition of Cu-CNTs. PMID:28793570

  19. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  20. CNT based thermal Brownian motor to pump water in nanodevices

    NASA Astrophysics Data System (ADS)

    Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.

    2016-11-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.

  1. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

    PubMed

    Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I

    2012-07-01

    Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  3. Carbon Nanotube based Nanotechnolgy

    NASA Astrophysics Data System (ADS)

    Meyyappan, M.

    2000-10-01

    Carbon nanotube(CNT) was discovered in the early 1990s and is an off-spring of C60(the fullerene or buckyball). CNT, depending on chirality and diameter, can be metallic or semiconductor and thus allows formation of metal-semiconductor and semiconductor-semiconductor junctions. CNT exhibits extraordinary electrical and mechanical properties and offers remarkable potential for revolutionary applications in electronics devices, computing and data storage technology, sensors, composites, storage of hydrogen or lithium for battery development, nanoelectromechanical systems(NEMS), and as tip in scanning probe microscopy(SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization and applications touch upon all disciplines of science and engineering. A common growth method now is based on CVD though surface catalysis is key to synthesis, in contrast to many CVD applications common in microelectronics. A plasma based variation is gaining some attention. This talk will provide an overview of CNT properties, growth methods, applications, and research challenges and opportunities ahead.

  4. Mesoscale mechanics of twisting carbon nanotube yarns.

    PubMed

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2015-03-12

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  5. Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes.

    PubMed

    Lima, Ravi M A P; Alcaraz-Espinoza, Jose Jarib; da Silva, Fernando A G; de Oliveira, Helinando P

    2018-04-25

    Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g -1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.

  6. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes

    NASA Astrophysics Data System (ADS)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok

    2017-11-01

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.

  7. Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.

    PubMed

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok

    2017-09-11

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.

  8. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction.

    PubMed

    Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu

    2010-08-01

    Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.

  10. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  11. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    NASA Astrophysics Data System (ADS)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  12. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-08-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research.

  13. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE PAGES

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; ...

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and themore » tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.« less

  14. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons.

    PubMed

    Raymundo-Piñero, Encarnación; Cadek, Martin; Wachtler, Mario; Béguin, François

    2011-07-18

    The advantages provided by multiwalled carbon nanotubes (CNTs) as backbones for composite supercapacitor electrodes are discussed. This paper particularly highlights the electrochemical properties of carbon composites obtained by pyrolysis of seaweed/CNTs blends. Due to the nanotexturing effect of CNTs, supercapacitors fabricated with electrodes from these composites exhibit enhanced electrochemical performances compared with CNT-free carbons. The cell resistance is dramatically reduced by the excellent conductivity of CNTs and by the good propagation of ions favored by the presence of opened mesopores. As a consequence, the specific power of supercapacitors based on these nanocomposites is very high. Another advantage related to the presence of CNTs is a better life cycle of the systems. The composite electrodes are resilient during the charge/discharge of capacitors; these are able to perfectly accommodate the dimensional changes appearing in the active material without mechanical damages. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carbon Nanotube Array for Infrared Detection

    DTIC Science & Technology

    2008-12-05

    ctron Transport Charact eri stic s of a Carbon nanotub es/S i He terodimensional He tero structure." Materials Research Society, Spring meeting (2008). 3...From - To) 05-12-2008 Final 27 09 2006-26 09 2008 4 . TITLE AND SUBTITLE 5a . CONTRACT NUMBER Carbon Nanotube Array for Infrared Detection 5b...Distribution is unlimited 13 . SUPPLEMENTARY NOTES 14 . ABSTRACT We explore the basic science issues and device potential of our carbon nanotube-silicon (CNT

  16. Bioaccumulation and ecotoxicity of carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships. PMID:24034413

  17. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity.

    PubMed

    Zou, Jingyun; Liu, Dandan; Zhao, Jingna; Hou, Ligan; Liu, Tong; Zhang, Xiaohua; Zhao, Yonghao; Zhu, Yuntian T; Li, Qingwen

    2018-03-07

    Carbon nanotube (CNT) fiber has not shown its advantage as next-generation light-weight conductor due to the large contact resistance between CNTs, as reflected by its low conductivity and ampacity. Coating CNT fiber with a metal layer like Cu has become an effective solution to this problem. However, the weak CNT-Cu interfacial bonding significantly limits the mechanical and electrical performances. Here, we report that a strong CNT-Cu interface can be formed by introducing a Ni nanobuffer layer before depositing the Cu layer. The Ni nanobuffer layer remarkably promotes the load and heat transfer efficiencies between the CNT fiber and Cu layer and improves the quality of the deposited Cu layer. As a result, the new composite fiber with a 2 μm thick Cu layer can exhibit a superhigh effective strength >800 MPa, electrical conductivity >2 × 10 7 S/m, and ampacity >1 × 10 5 A/cm 2 . The composite fiber can also sustain 10 000 times of bending and continuously work for 100 h at 90% ampacity.

  18. Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures

    PubMed Central

    Dai, Zhaohe; Liu, Luqi; Qi, Xiaoying; Kuang, Jun; Wei, Yueguang; Zhu, Hongwei; Zhang, Zhong

    2016-01-01

    Efficient assembly of carbon nanotube (CNT) based cellular solids with appropriate structure is the key to fully realize the potential of individual nanotubes in macroscopic architecture. In this work, the macroscopic CNT sponge consisting of randomly interconnected individual carbon nanotubes was grown by CVD, exhibiting a combination of super-elasticity, high strength to weight ratio, fatigue resistance, thermo-mechanical stability and electro-mechanical stability. To deeply understand such extraordinary mechanical performance compared to that of conventional cellular materials and other nanostructured cellular architectures, a thorough study on the response of this CNT-based spongy structure to compression is conducted based on classic elastic theory. The strong inter-tube bonding between neighboring nanotubes is examined, believed to play a critical role in the reversible deformation such as bending and buckling without structural collapse under compression. Based on in-situ scanning electron microscopy observation and nanotube deformation analysis, structural evolution (completely elastic bending-buckling transition) of the carbon nanotubes sponges to deformation is proposed to clarify their mechanical properties and nonlinear electromechanical coupling behavior. PMID:26732143

  19. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less

  20. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce; ...

    2016-10-12

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less