Sample records for nanotube modified electrodes

  1. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  2. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  3. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.

    PubMed

    Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan

    2013-01-01

    A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.

  4. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    EPA Science Inventory

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  5. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    PubMed

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    PubMed

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  7. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  8. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    PubMed

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  9. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes.

    PubMed

    Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R

    2010-11-01

    Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode.

    PubMed

    Yang, Jichun; Wang, Qiong; Zhang, Minhui; Zhang, Shuming; Zhang, Lei

    2015-11-15

    In this study, a simple, rapid, sensitive and environmentally friendly electroanalytical detection method for pyrimethanil (PMT) was developed, which was based on multi-walled carbon nanotubes (MWCNTs) and ionic liquids (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) modified glassy carbon electrode (GCE). MWCNTs-IL modified electrode significantly enhanced the oxidation peak current of PMT by combining the excellent electrochemical properties of MWCNTs and IL, suggesting that the modified electrode can remarkably improve the sensitivity of PMT detection. Under the optimum conditions, this electrochemical sensor exhibited a linear concentration range for PMT of 1.0 × 10(-7)-1.0 × 10(-4) mol L(-1) and the detection limit was 1.6 × 10(-8) mol L(-1) (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference, and also it was successfully employed to detect PMT in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    PubMed Central

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213

  12. Modified Carbon Nanotube Paste Electrode for Voltammetric Determination of Carbidopa, Folic Acid, and Tryptophan

    PubMed Central

    Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara

    2012-01-01

    A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634

  13. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  14. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode.

    PubMed

    Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai

    2011-09-15

    A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  17. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  18. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  19. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    PubMed

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Development of amperometric lysine biosensors based on Au nanoparticles/multiwalled carbon nanotubes/polymers modified Au electrodes.

    PubMed

    Chauhan, Nidhi; Singh, Anamika; Narang, Jagriti; Dahiya, Swati; Pundir, C S

    2012-11-07

    The construction of two amperometric l-lysine biosensors is described in this study. The construction comprises the covalent immobilization of lysine oxidase (LOx) onto nanocomposite composed of gold nanoparticles (AuNPs) and carboxylated multiwalled carbon nanotubes (c-MWCNT), decorated on (i) polyaniline (PANI) and (ii) poly 1,2 diaminobenzene (DAB), electrodeposited on Au electrodes. The biosensors were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and electrochemical impedance spectroscopy (EIS) studies. The optimum response (current) was observed within 2 s at pH 7.0 and 25 °C for LOx/AuNPs/c-MWCNT/PANI/Au, and 4 s at pH 7.0 and 30 °C for LOx/AuNPs/c-MWCNT/DAB/Au electrodes. There was a linear relationship between current and lysine concentration ranging from 5.0 to 600 μM for LOx/AuNPs/c-MWCNT/PANI/Au with a detection limit of 5.0 μM, and 20 to 600 μM for the LOx/AuNPs/c-MWCNT/DAB/Au electrode with a detection limit of 20 μM. The PANI modified electrode was in good agreement with the standard HPLC method, with a better correlation (r = 0.992) compared to the DAB modified electrode (r = 0.986). These observations revealed that the PANI modified Au electrode was better than the DAB modified electrode, and hence it was employed for the determination of lysine in milk, pharmaceutical tablets and sera. The PANI modified electrode showed a half life of 120 days, compared to that of 90 days for the DAB modified electrode, after their 100 uses, when stored at 4 °C.

  1. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  2. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine.

    PubMed

    Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen

    2014-07-01

    An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electrochemical sensor for terbutaline sulfate based on a glassy carbon electrode modified with grapheme and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Hua, Xin; Pei, Hongying; Shen, Yuan; Shen, Guijun

    2017-12-01

    A glass carbon electrode was prepared that coated with a composite film containing grapheme and multi-walled carbon nanotubes. It was used to study the electrochemical response of terbutaline sulfate. Under the optimized conditions, the oxidation peak current was found to be proportional to its concentration in the range of 0.2-5 μmol·L-1 and 5-40 μmol·L-1).Compared with the bare GC electrode, the GN-MWNTs-modified GC (GN-MWNTs/GC) had many advantages such as relatively high sensitivity, good stability and long life time. The modified electrode was used to determine the TES tablets with satisfactory results.

  4. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes.

    PubMed

    Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo

    2015-10-07

    In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.

  5. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  6. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode.

    PubMed

    Liu, Jieshu; Zhou, Dazhai; Liu, Xiaopeng; Wu, Kangbing; Wan, Chidan

    2009-04-01

    Based on non-covalent interactions such as pi-pi stacking, van der Waals interactions and strong adsorption, alizarin red S (ARS) interacts with multi-walled carbon nanotubes (MWNT), improving the solubility of MWNT in water and resulting in a stable MWNT/ARS solution. By successive cyclic sweeps between 0.0 and 2.2V in the MWNT/ARS solution, a MWNT/ARS composite film was fabricated on an electrode surface. The electrochemical behaviors of kojic acid at the bare electrode, the ARS film-modified electrode and the MWNT/ARS film-modified electrode were investigated. It was found that the oxidation signal of kojic acid significantly increased at the MWNT/ARS film-modified electrode, which was attributed to the unique properties of MWNT such as large surface area, strong adsorptive ability and subtle electronic character. The effects of pH and cyclic number of electropolymerization were examined. A rapid, sensitive and simple electrochemical method was then developed for the determination of kojic acid. This method exhibits good linearity over the range from 4.0 x 10(-7) to 6.0 x 10(-5)mol L(-1), and the limit of detection is as low as 1.0 x 10(-7)mol L(-1). In order to validate feasibility, the MWNT/ARS film-modified electrode was used for quantitative analysis of kojic acid in food samples.

  7. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    PubMed

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  8. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode.

    PubMed

    Narang, Jagriti; Chauhan, Nidhi; Pundir, C S

    2011-11-07

    We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.

  9. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.

    PubMed

    Scherbahn, V; Putze, M T; Dietzel, B; Heinlein, T; Schneider, J J; Lisdat, F

    2014-11-15

    Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ)GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 µW/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 µW/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 µW/cm(2) is retained with the second system (10mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 µW/cm(2) (390 mV) can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090

  11. Electrochemical Determination of Trace Sudan I Contamination in Chili Powder at Carbon Nanotube Modified Electrodes

    PubMed Central

    Ming, Liang; Xi, Xia; Chen, Tingting; Liu, Jie

    2008-01-01

    We have developed a simple, convenient and inexpensive voltammetric method for determining trace Sudan I contamination in chili powder, based on the catalyzed electrochemical reduction of Sudan I at the carbon nanotube modified electrode. Under optimized conditions, the method exhibited acceptable analytical performance in terms of linearity (over the concentration range 6.0×10−7 to 7.5×10−5 M, r = 0.9967), detection limit (2.0×10−7 M) and reproducibility (RSD = 4.6%, n=10, for 2.0×10−5 M Sudan I). PMID:27879800

  12. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode.

    PubMed

    Dai, Hong; Chi, Yuwu; Wu, Xiaoping; Wang, Youmei; Wei, Mingdeng; Chen, Guonan

    2010-02-15

    A new biocompatible ECL biosensor based on enzyme/titanate nanotubes/chitosan composite film was developed for the determination of analytes in biological samples. In the fabrication of the new ECL biosensor, biocompatible titanate nanotubes (TNTs) and a model enzyme, i.e., choline oxidase (ChOX), were immobilized on a chitosan modified glassy carbon electrode (GCE) via electrostatic adsorption and covalent interaction, respectively. By this ECL biosensor, choline was enzymatically oxidized to hydrogen peroxide and detected by a sensitive luminol ECL system. The use of TNTs not only provided a biocompatible microenvironment for the immobilized enzyme, which resulted in an excellent stability and long lifetime of the ECL biosensor, but also exhibited great enhancement towards luminol ECL and thus led to a significant improvement in sensitivity of ECL biosensor. Satisfactory results were obtained when employing this biosensor in assaying the total choline in milk samples. The work would provide a common platform to develop various sensitive, selective and biocompatible ECL biosensors based on using enzyme/TNTs/CHIT composite films. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Covalently functionalized single-walled carbon nanotubes and graphene composite electrodes for pseudocapacitor application

    NASA Astrophysics Data System (ADS)

    Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe

    2013-09-01

    The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.

  14. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode.

    PubMed

    Ye, Yongkang; Ju, Huangxian

    2005-11-15

    A method for rapid sensitive detection of DNA or RNA was designed using a composite screen-printed carbon electrode modified with multi-walled carbon nanotubes (MWNTs). MWNTs showed catalytic characteristics for the direct electrochemical oxidation of guanine or adenine residues of signal strand DNA (ssDNA) and adenine residues of RNA, leading to indicator-free detection of ssDNA and RNA concentrations. With an accumulation time of 5 min, the proposed method could be used for detection of calf thymus ssDNA ranging from 17.0 to 345 microg ml(-1) with a detection limit of 2.0 microg ml(-1) at 3 sigma and yeast tRNA ranging from 8.2 microg ml(-1) to 4.1 mg ml(-1). AC impedance was employed to characterize the surface of modified electrodes. The advantages of convenient fabrication, low-cost detection, short analysis time and combination with nanotechnology for increasing the sensitivity made the subject worthy of special emphasis in the research programs and sources of new commercial products.

  15. Carbon Nanotube Electrodes for Effective Interfacing with Retinal Tissue

    PubMed Central

    Shoval, Asaf; Adams, Christopher; David-Pur, Moshe; Shein, Mark; Hanein, Yael; Sernagor, Evelyne

    2009-01-01

    We have investigated the use of carbon nanotube coated microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60, 30 μm diameter electrodes at spacing of 200 μm. These electrodes were coated via chemical vapor deposition of carbon nanotubes, resulting in conducting, three dimensional surfaces with a high interfacial area. These attributes are important both for the quality of the cell-surface coupling as well as for electro-chemical interfacing efficiency. The entire chip was packaged to fit a commercial multielectrode recording and stimulation system. Electrical recordings of spontaneous spikes from whole-mount neonatal mouse retinas were consistently obtained minutes after retinas were placed over the electrodes, exhibiting typical bursting and propagating waves. Most importantly, the signals obtained with carbon nanotube electrodes have exceptionally high signal to noise ratio, reaching values as high as 75. Moreover, spikes are marked by a conspicuous gradual increase in amplitude recorded over a period of minutes to hours, suggesting improvement in cell-electrode coupling. This phenomenon is not observed in conventional commercial electrodes. Electrical stimulation using carbon nanotube electrodes was also achieved. We attribute the superior performances of the carbon nanotube electrodes to their three dimensional nature and the strong neuro-carbon nanotube affinity. The results presented here show the great potential of carbon nanotube electrodes for retinal interfacing applications. Specifically, our results demonstrate a route to achieve a reduction of the electrode down to few micrometers in order to achieve high efficacy local stimulation needed in retinal prosthetic devices. PMID:19430595

  16. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  17. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode.

    PubMed

    Qiu, Bin; Lin, Zhenyu; Wang, Jian; Chen, Zhihuang; Chen, Jinhua; Chen, Guonan

    2009-04-15

    A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0x10(-6) to 1.0x10(-4) mol L(-1) with a detection limit of 8.0x10(-8) mol L(-1) (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.

  18. Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode.

    PubMed

    Wan, Dong; Yuan, Shaojun; Li, G L; Neoh, K G; Kang, E T

    2010-11-01

    An amperometric glucose biosensor was prepared using polyaniline (PANI) and chitosan-coupled carbon nanotubes (CS-CNTs) as the signal amplifiers and glucose oxidase (GOD) as the glucose detector on a gold electrode (the Au-g-PANI-c-(CS-CNTs)-GOD biosensor). The PANI layer was prepared via oxidative graft polymerization of aniline from the gold electrode surface premodified by self-assembled monolayer of 4-aminothiophenol. CS-CNTs were covalently coupled to the PANI-modified gold substrate using glutaradehyde as a bifunctional linker. GOD was then covalently bonded to the pendant hydroxyl groups of chitosan using 1,4-carbonyldiimidazole as the bifunctional linker. The surface functionalization processes were ascertained by X-ray photoelectron spectroscopy (XPS) analyses. The field emission scanning electron microscopy (FESEM) images of the Au-g-PANI-c-(CS-CNTs) electrode revealed the formation of a three-dimensional surface network structure. The electrode could thus provide a more spatially biocompatible microenvironment to enhance the amount and biocatalytic activity of the immobilized enzyme and to better mediate the electron transfer. The resulting Au-g-PANI-c-(CS-CNTs)-GOD biosensor exhibited a linear response to glucose in the concentration range of 1-20 mM, good sensitivity (21 μA/(mM·cm(2))), good reproducibility, and retention of >80% of the initial response current after 2 months of storage.

  19. Immobilization of Glucose Oxidase on a Carbon Nanotubes/Dendrimer-Ferrocene Modified Electrode for Reagentless Glucose Biosensing.

    PubMed

    Zhou, Juan; Li, Huan; Yang, Huasong; Cheng, Hui; Lai, Guosong

    2017-01-01

    Ferrocene-grafted dendrimer was covalently linked to the surface of a carbon nanotubes (CNTs)-chitosan (CS) nanocomposite modified electrode for immobilizing high-content glucose oxidase (GOx), which resulted in the successful development a novel reagentless glucose biosensor. Electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry were used to characterize the preparation process and the enzymatically catalytic response of this biosensor. Due to the excellent electron transfer acceleration of the CNTs and the high-content loading of the GOx biomolecule and ferrocene mediator on the electrode matrix, this biosensor showed excellent analytical performance such as fast response time less than 10 s, wide linear range from 0.02 to 2.91 mM and low detection limit down to 7.5 μM as well as satisfactory stability and reproducibility toward the amperometric glucose determination. In addition, satisfactory result was obtained when it was used for the glucose measurements in human blood samples. Thus this biosensor provides great potentials for practical applications.

  20. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOEpatents

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  1. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  2. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    PubMed

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  4. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone.

    PubMed

    Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon

    2016-01-01

    Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes.

    PubMed

    Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R

    2014-06-01

    Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether.

    PubMed

    Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R

    2014-01-01

    A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.

  8. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.

    PubMed

    Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao

    2007-07-16

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.

  9. Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2013-02-15

    The use of glassy carbon electrodes (GCEs) modified with multi-walled carbon nanotube (CNT) films for the continuous monitoring of polyphenols in flow systems has been examined. The performance of these modified electrodes was evaluated and compared to bare GCE by cyclic voltammetry experiments and by flow injection analysis (FIA) with amperometric detection monitoring the response of gallic, caffeic, ferulic and p-coumaric acids in 0.050 M acetate buffer pH 4.5 containing 100 mM NaCl. The GCE modified with CNT dispersions in polyethyleneimine (PEI) provided lower overpotentials, higher sensitivity and much higher signal stability under a dynamic regime than bare GCEs. These properties allowed the estimation of the total polyphenol content in red and white wines with a remarkable long-term stability in the measurements despite the presence of potential fouling substances in the wine matrix. In addition, the versatility of the electrochemical methodology allowed the selective estimation of the easily oxidisable polyphenol fraction as well as the total polyphenol content just by tuning the detection potential at +0.30 or 0.70 V, respectively. The significance of the electrochemical results was demonstrated through correlation studies with the results obtained with conventional spectrophotometric assays for polyphenols (Folin-Ciocalteu, absorbance at 280 nm index and colour intensity index). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Simultaneous quantification of arginine, alanine, methionine and cysteine amino acids in supplements using a novel bioelectro-nanosensor based on CdSe quantum dot/modified carbon nanotube hollow fiber pencil graphite electrode via Taguchi method.

    PubMed

    Hooshmand, Sara; Es'haghi, Zarrin

    2017-11-30

    A number of four amino acids have been simultaneously determined at CdSe quantum dot-modified/multi-walled carbon nanotube hollow fiber pencil graphite electrode in different bodybuilding supplements. CdSe quantum dots were synthesized and applied to construct a modified carbon nanotube hollow fiber pencil graphite electrode. FT-IR, TEM, XRD and EDAX methods were applied for characterization of the synthesized CdSe QDs. The electro-oxidation of arginine (Arg), alanine (Ala), methionine (Met) and cysteine (Cys) at the surface of the modified electrode was studied. Then the Taguchi's method was applied using MINITAB 17 software to find out the optimum conditions for the amino acids determination. Under the optimized conditions, the differential pulse (DP) voltammetric peak currents of Arg, Ala, Met and Cys increased linearly with their concentrations in the ranges of 0.287-33670μM and detection limits of 0.081, 0.158, 0.094 and 0.116μM were obtained for them, respectively. Satisfactory results were achieved for calibration and validation sets. The prepared modified electrode represents a very good resolution between the voltammetric peaks of the four amino acids which makes it suitable for the detection of each in presence of others in real samples. Copyright © 2017. Published by Elsevier B.V.

  11. Redox electrodes comprised of polymer-modified carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  12. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode

    PubMed Central

    Ma, Xiaoyan; Yang, Hongqiao; Xiong, Huabin; Li, Xiaofen; Gao, Jinting; Gao, Yuntao

    2016-01-01

    In this paper, the multi-walled carbon nanotubes modified screen-printed electrode (MWCNTs/SPE) was prepared and the MWCNTs/SPE was employed for the electrochemical determination of the antioxidant substance chlorogenic acids (CGAs). A pair of well-defined redox peaks of CGA was observed at the MWCNTs/SPE in 0.10 mol/L acetic acid-sodium acetate buffer (pH 6.2) and the electrode process was adsorption-controlled. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods for the determination of CGA were proposed based on the MWCNTs/SPE. Under the optimal conditions, the proposed method exhibited linear ranges from 0.17 to 15.8 µg/mL, and the linear regression equation was Ipa (µA) = 4.1993 C (×10−5 mol/L) + 1.1039 (r = 0.9976) and the detection limit for CGA could reach 0.12 µg/mL. The recovery of matrine was 94.74%–106.65% (RSD = 2.92%) in coffee beans. The proposed method is quick, sensitive, reliable, and can be used for the determination of CGA. PMID:27801797

  13. Electrochemical determination of estrogenic compound bisphenol F in food packaging using carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Wang, Xin; Yang, Lijun; Jin, Xudong; Zhang, Lei

    2014-08-15

    A simple and highly sensitive electroanalytical method for the determination of bisphenol F (BPF) was developed, which was carried out on multi-walled carbon nanotubes-COOH (MWCNT-COOH) modified glassy carbon electrode (GCE) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that MWCNT-COOH remarkably enhanced the oxidation of BPF, which improved the anodic peak current of BPF significantly. The mechanism was oxidation of BPF lose electrons on the electrode surface via adsorption-controlled process, electrode reaction is the two electrons/two protons process. Under the optimised conditions, the oxidation peak current was proportional to BPF concentration the range from 0.12 to 6.01 μg mL(-1). The detection limit was 0.11 μg mL(-1) (S/N=3), and the relative standard deviation (R.S.D.) was 3.5% (n=9). Moreover, the MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. Therefore, the proposed method was successfully applied to determine BPF in food packing and the results were satisfactory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit.

    PubMed

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-27

    In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.

  15. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  16. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    PubMed

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, p<0.0001), as might be expected. Positive correlations were observed between gallic acid equivalent AOC of wine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase.

    PubMed

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2016-10-01

    Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    PubMed

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  19. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun

    2016-03-15

    Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes.

    PubMed

    Tran, H V; Piro, B; Reisberg, S; Huy Nguyen, L; Dung Nguyen, T; Duc, H T; Pham, M C

    2014-12-15

    We design an electrochemical immunosensor for miRNA detection, based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. An original immunological approach is followed, using antibodies directed to DNA.RNA hybrids. An electrochemical ELISA-like amplification strategy was set up using a secondary antibody conjugated to horseradish peroxidase (HRP). Hydroquinone is oxidized into benzoquinone by the HRP/H2O2 catalytic system. In turn, benzoquinone is electroreduced into hydroquinone at the electrode. The catalytic reduction current is related to HRP amount immobilized on the surface, which itself is related to miRNA.DNA surface density on the electrode. This architecture, compared to classical optical detection, lowers the detection limit down to 10 fM. Two miRNAs were studied: miR-141 (a prostate biomarker) and miR-29b-1 (a lung cancer biomarker). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  2. Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites.

    PubMed

    Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma

    2017-04-01

    Highly sensitive L-lysine enzyme electrodes were constructed by using poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine (PVF/MWCNTs-GEL) and poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine-graphene (PVF/MWCNTs-GEL/GR) composites as sensing interfaces and their performances were evaluated. Lysine oxidase (LO) was immobilized onto the composite modified glassy carbon electrodes (GCE) by crosslinking using glutaraldehyde and bovine serum albumin. Effects of pH value, enzyme loading, applied potential, electrode composition, and interfering substances on the amperometric response of the enzyme electrodes were discussed. The analytical characteristics of the enzyme electrodes were also investigated. The linear range, detection limit, and sensitivity of the LO/PVF/MWCNTs-GEL/GCE were 9.9 × 10 -7 -7.0 × 10 -4  M, 1.8 × 10 -7  M (S/N = 3), and 13.51 μA mM -1  cm -2 , respectively. PVF/MWCNTs-GEL/GR-based L-lysine enzyme electrode showed a short response time (<5 s) and a linear detection range from 9.9 × 10 -7 to 7.0 × 10 -4  M with good sensitivity of 17.8 μA mM -1  cm -2 and a low detection limit of 9.2 × 10 -8  M. The PVF/MWCNTs-GEL/GR composite-based L-lysine enzyme electrode exhibited about 1.3-fold higher sensitivity than its MWCNTs-based counterpart and its detection limit was superior to the MWCNTs-based one. In addition, enzyme electrodes were successfully applied to determine L-lysine in pharmaceutical sample and cheese.

  3. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode.

    PubMed

    Teixeira, Meryene C; Tavares, Elisângela de F L; Saczk, Adelir A; Okumura, Leonardo L; Cardoso, Maria das Graças; Magriotis, Zuy M; de Oliveira, Marcelo F

    2014-07-01

    We have developed an eletroanalytical method that employs Cu(2+) solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110μgL(-1) and from 10 to 110μgL(-1) for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5μgL(-1) for mineral oil and 3.4 and 11.2μgL(-1) for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    PubMed

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  5. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-11-01

    Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.

  6. Nanotube Film Electrode and an Electroactive Device Fabricated with the Nanotube Film Electrode and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor)

    2017-01-01

    Disclosed is a single wall carbon nanotube (SWCNT) film electrode (FE), all-organic electroactive device systems fabricated with the SWNT-FE, and methods for making same. The SWCNT can be replaced by other types of nanotubes. The SWCNT film can be obtained by filtering SWCNT solution onto the surface of an anodized alumina membrane. A freestanding flexible SWCNT film can be collected by breaking up this brittle membrane. The conductivity of this SWCNT film can advantageously be higher than 280 S/cm. An electroactive polymer (EAP) actuator layered with the SWNT-FE shows a higher electric field-induced strain than an EAP layered with metal electrodes because the flexible SWNT-FE relieves the restraint of the displacement of the polymeric active layer as compared to the metal electrode. In addition, if thin enough, the SWNT-FE is transparent in the visible light range, thus making it suitable for use in actuators used in optical devices.

  7. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.

    PubMed

    Cao, Jianglin; Wang, Ying; Chen, Chunyang; Yu, Fei; Ma, Jie

    2018-05-15

    Capacitive deionization (CDI) is a technology used to remove salt from brackish water, and it is an energy-saving, low-cost method compared with other methods, such as reverse osmosis, multi-stage ash distillation and electrodialysis. In this paper, three-dimensional (3D) graphene hydrogels modified with single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were synthesized by a one-step water bath method to increase the conductivity of materials and reduce the aggregation of the graphene sheets. The CDI performance differences between the two materials were compared and discussed. The results suggested that SWCNTs/rGO had a higher electrosorption capacity (48.73 mg/g) than MWCNTs/rGO, and this was attributed to its high specific surface area (308.37 m 2 /g), specific capacity (36.35 F/g), and smaller charge transfer resistance compared with those of the MWCNTs/rGO electrode. The results indicate SWCNTs/rGO is a promising and suitable material for CDI technology and we provide basic guidance for further CNTs/graphene composite research. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

    PubMed Central

    Khodadadian, Mehdi; Jalili, Ronak; Bahrami, Mohammad Taher; Bahrami, Gholamreza

    2017-01-01

    An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping voltammetry. The electrooxidation of Hy-HCl at MWCNT/GCE occurred at ~32 mV which was lower than that observed at bare GCE (~52 mV). The optimum working conditions for determination of the drug using differential-pulse adsorptive stripping voltammetry (DPAdSV) were established. The method exhibited linear responses to Hy-HCl in the concentration range 10-220 nM with a detection limit of 2.7 nM. The proposed method was successfully applied to the determination of this compound in pharmaceutical dosage forms. PMID:29552043

  9. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  10. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction.

    PubMed

    Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu

    2010-08-01

    Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. High power and high energy electrodes using carbon nanotubes

    DOEpatents

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  13. Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes.

    PubMed

    Moreno, Virginia; Llorent-Martínez, Eulogio J; Zougagh, Mohammed; Ríos, Angel

    2016-12-01

    A supercritical carbon dioxide medium was used for the decoration of functionalized multi-walled carbon nanotubes (MWCNTs) with metallic nanoparticles. This procedure allowed the rapid and simple decoration of carbon nanotubes with the selected metallic nanoparticles. The prepared nanomaterials were used to modify screen-printed electrodes, improving their electrochemical properties and allowing to obtain a wide range of working electrodes based on carbon nanotubes. These electrodes were applied to the amperometric determination of vitamin B6 in food and pharmaceutical samples as an example of the analytical potentiality of the electrodes thus prepared. Using Ru-nanoparticles-MWCNTs as the working electrode, a linear dynamic range between 2.6×10 -6 and 2×10 -4 molL -1 and a limit of detection of 0.8×10 -6 molL -1 were obtained. These parameters represented a minimum 3-fold increase in sensitivity compared to the use of bare MWCNTs or other carbon-based working electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    PubMed Central

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-01-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%). PMID:27527565

  15. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes.

    PubMed

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-16

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via 'sandwich transfer', and MoOx thermal doping via 'bridge transfer'. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  16. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits.

    PubMed

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-10-29

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L(-1) (RHQ = 0.9999) for HQ and 0.1-1150 μmol L(-1) (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L(-1), respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Study of the interaction of 6-mercaptopurine with protein by microdialysis coupled with LC and electrochemical detection based on functionalized multi-wall carbon nanotubes modified electrode.

    PubMed

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Zhang, Wen; Shi, Guo-Yue; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-14

    Microdialysis sampling coupled with liquid chromatography and electrochemical detection (LC-ECD) was developed and applied to study the interaction of 6-Mercaptopurine (6-MP) with bovine serum albumin (BSA). In the LC-ECD, the multi-wall carbon nanotubes fuctionalized with carboxylic groups modified electrode (MWNT-COOH CME) was used as the working electrode for the determination of 6-MP. The results indicated that this chemically modified electrode (CME) exhibited efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP were linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N = 3) of 2.0 x 10(-7) mol l(-1). The method had been successfully applied to assess the association constant (K) and the number of the binding sites (n) on a BSA molecular, which calculated by Scatchard equation, were 3.97 x 10(3) mol(-1) l and 1.51, respectively. This method provided a fast, sensible and simple technique for the study of drug-protein interactions.

  18. One-Step Fabrication of a Multifunctional Magnetic Nickel Ferrite/Multi-walled Carbon Nanotubes Nanohybrid-Modified Electrode for the Determination of Benomyl in Food.

    PubMed

    Wang, Qiong; Yang, Jichun; Dong, Yuanyuan; Zhang, Lei

    2015-05-20

    Benomyl, as one kind of agricultural pesticide, has adverse impact on human health and the environment. It is urgent to develop effective and rapid methods for quantitative determination of benomyl. A simple and sensitive electroanalytical method for determination of benomyl using a magnetic nickel ferrite (NiFe2O4)/multi-walled carbon nanotubes (MWCNTs) nanohybrid-modified glassy carbon electrode (GCE) was presented. The electrocatalytic properties and electroanalysis of benomyl on the modified electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In the phosphate-buffered saline (PBS) of pH 6.0, this constructed biosensor exhibited two linear relationships with the benomyl concentration range from 1.00 × 10(-7) to 5.00 × 10(-7) mol/L and from 5.00 × 10(-7) to 1.00 × 10(-5) mol/L, respectively. The detection limit was 2.51 × 10(-8) mol/L (S/N = 3). Moreover, the proposed method was successfully applied to determine benomyl in real samples with satisfactory results. The NiFe2O4/MWCNTs/GCE showed good reproducibility and stability, excellent catalytic activity, and anti-interference.

  19. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.

    PubMed

    Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai

    2013-09-21

    Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.

  20. A New Sensitive Sensor for Simultaneous Differential Pulse Voltammetric Determination of Codeine and Acetaminophen Using a Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode

    PubMed Central

    Garazhian, Elahe; Shishehbore, M. Reza

    2015-01-01

    A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094

  1. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    PubMed

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOEpatents

    Yang, Peidong [Kensington, CA; Majumdar, Arunava [Orinda, CA; Fan, Rong [Pasadena, CA; Karnik, Rohit [Cambridge, MA

    2011-03-01

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  3. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2013-01-01

    A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (−0.07 V versus Ag/AgCl) on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 μM. The limit of detection was calculated to be 2.54 μM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10−5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods. PMID:24348034

  4. Improved peroxide biosensor based on Horseradish Peroxidase/Carbon Nanotube on a thiol-modified gold electrode.

    PubMed

    Kafi, A K M; Naqshabandi, M; Yusoff, Mashitah M; Crossley, Maxwell J

    2018-06-01

    A new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface has been described in order to build up the effective electrical wiring of the enzyme units with the electrode. The synthesized 3D HRP/CNT network has been characterized with cyclic voltammetry and amperometry which results the establishment of direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the high biological activity and stability is exhibited by the immobilized HRP and a quasi-reversible redox peak of the redox centre of HRP was observed at about -0.355 and -0.275V vs. Ag/AgCl. The electron transfer rate constant, K S and electron transfer co-efficient α were found as 0.57s -1 and 0.42, respectively. Excellent electrocatalytic activity for the reduction of H 2 O 2 was exhibited by the developed biosensor. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H 2 O 2 determination. The linear range is from 1.0×10 -7 to 1.2×10 -4 M with a detection limit of 2.2.0×10 -8 M at 3σ. The Michaelies-Menten constant Kapp M value is estimated to be 0.19mM. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Investigation on simultaneous determination of dihydroxybenzene isomers in water samples using multi-walled carbon nanotube modified screen-printed electrode].

    PubMed

    Li, Yuan-Ting; Li, Da-Wei; Song, Wei; Long, Yi-Tao

    2011-02-01

    A disposable electrode, multi-walled carbon nanotube modified screen printed electrode (MWCNT/SPE), had been fabricated using screen printing technology and drop-coating method to determine dihydroxybenzene isomers (hydroquinone, catechol and resorcinol). The cyclic voltammetry behavior of dihydroxybenzene isomers had been investigated with the MWCNT/SPE. The results reveal that MWCNT/SPE, which shows a strong electrocatalytic activity for the oxidation of dihydroxybenzenes, can entirely separate the oxidation peaks of them. According to differential pulse voltammetry tests, the peak currents of dihydroxybenzene isomers are linear to their concentrations at the range of 8.20 x 10(-6) -1.00 x 10(-3), 8.20 x 10(-6) -1.00 x 10(-3) and 1.64 x 10(-5) -1.16 x 10(-3) mol x L(-1), with the detection limits of 4.34 x 10(-6), 3.42 x 10(-6) and 6.70 x 10(-6) mol x L(-1) for hydroquinone, catechol and resorcinol, respectively. For the determination of dihydroxybenzene isomers in water samples, the value of recovery found by standard addition method was in the range of 96.2%-104.9%. These results indicate MWCNT/SPE can be applied to rapid in-situ determination of dihydroxybenzenes-polluted water samples.

  6. Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of α-fetoprotein.

    PubMed

    Jiang, Wen; Yuan, Ruo; Chai, Ya-Qin; Yin, Bing

    2010-12-01

    In this article, a conspicuously simple and highly sensitive amperometric immunosensor based on the sequential electrodeposition of Prussian blue (PB) and gold nanoparticles (GNPs) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) surface is proposed for the detection of α-fetoprotein (AFP). By comparison with PB, the MWCNT/PB composite film had been proven to show much better electrochemical stability and a larger response current. The electrodeposited GNP film can be used not only to immobilize biomolecules but also to avoid the leakage of PB and to prevent shedding of MWCNT/PB composite film from the electrode surface. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal experimental conditions, the proposed immunosensor for AFP was observed with an ultralow limit of detection (LOD) equal to 3 pg/ml (at 3δ), and the linear working range spanned the concentrations of AFP from 0.01 to 300 ng/ml. Moreover, the immunosensor, as well as a commercially available kit, was examined for use in the determination of AFP in real human serum specimens. More significant, the assay mentioned here is simpler than the traditional enzyme-linked immunosorbent assay (ELISA), and an excellent correlation of levels of AFP measured was obtained, indicating that the developed immunoassay could be a promising alternative approach for detection of AFP and other tumor markers in the clinical diagnosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol.

    PubMed

    Li, Zhen; Yue, Yuhua; Hao, Yanjun; Feng, Shun; Zhou, Xianli

    2018-03-12

    A nafion film containing cerium phosphate nanotubes was pasted onto a glassy carbon electrode (GCE) to obtain a sensor for hydroquinone (HQ). The morphologies and components of the coating were characterized by transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) showed the specific surface of the electrode to be significantly increased and the electron transfer rate to be accelerated. The modified GCE was applied to the determination of hydroquinone (HQ) via DPV. The oxidation current increases linearly in the 0.23 μM to 16 mM HQ concentration range which is as wide as five orders of magnitude. The limit of detection is 0.12 μM (based on a signal-to-noise ratio of 3), and the sensitivity is 1.41 μA·μM -1  cm -2 . The method was further applied to the simultaneous determination of HQ, catechol and resorcinol. The potentials for the three species are well separated (20, 134, and 572 mV vs SCE). Average recoveries from (spiked) real water samples are between 95.2 and 107.0%, with relative standard deviations of 0.9~2.7% (for n = 3) at three spiking levels. The method was validated by independent assays using HPLC. Graphical abstract ᅟ.

  8. A highly sensitive and selective electrochemical sensor for determination of Cr(VI) in the presence of Cr(III) using modified multi-walled carbon nanotubes/quercetin screen-printed electrode.

    PubMed

    Sadeghi, Susan; Garmroodi, Aziz

    2013-12-01

    A novel screen-printed carbon electrode modified with quercetin/multi-walled carbon nanotubes was fabricated for determination of Cr(VI) in the presence of excess of Cr(III) without any pretreatment. The method is based on accumulation of the quercetin-Cr(III) complex generated in situ from Cr(VI) at the modified electrode surface in an open circuit followed by differential pulse voltammetry detection. The new method allowed selective determination of Cr(VI) in the presence of Cr(III). The influence of various parameters affecting the adsorptive stripping voltammetry performance was investigated. Under the optimum conditions, the calibration plot was found to be linear in the Cr(VI) concentration range from 1.0 to 200 μmol(-1) with a limit of detection(S/N=3) of 0.3 μmol L(-1). The relative standard deviation (RSD%) of seven replicates of the current measurements for a 50 μmol(-1) of Cr(VI) solution was 3.0%. The developed electrode displayed a very low or no sensitivity to alkali, alkali-earth and transition metal cations and was successfully applied for the determination of Cr(VI) in drinking water samples. © 2013.

  9. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode.

    PubMed

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90s at an accumulation potential of 0.75V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05-80 μM and a detection limit (S/N=3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. Copyright © 2015. Published by Elsevier B.V.

  10. Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid.

    PubMed

    Liu, Xiaofang; Wei, Shaping; Chen, Shihong; Yuan, Dehua; Zhang, Wen

    2014-08-01

    In this paper, graphene-multiwall carbon nanotube-gold nanocluster (GP-MWCNT-AuNC) composites were synthesized and used as modifier to fabricate a sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical behavior of the sensor was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The combination of GP, MWCNTs, and AuNCs endowed the electrode with a large surface area, good catalytic activity, and high selectivity and sensitivity. The linear response range for simultaneous detection of AA, DA, and UA at the sensor were 120-1,701, 2-213, and 0.7-88.3 μM, correspondingly, and the detection limits were 40, 0.67, and 0.23 μM (S/N=3), respectively. The proposed method offers a promise for simple, rapid, selective, and cost-effective analysis of small biomolecules.

  11. Carbon nanotube modified glassy carbon electrode for electrochemical oxidation of alkylphenol ethoxylate.

    PubMed

    Patiño, Yolanda; Díaz, Eva; Lobo-Castañón, María Jesús; Ordóñez, Salvador

    2018-06-01

    Electrochemical oxidation of an emerging pollutant, 2-(4-methylphenoxy)ethanol (MPET), from water has been studied by cyclic voltammetry (CV). Multiwall carbon nanotubes glassy carbon electrodes (MWCNT-GCE) were used as working electrode due to their extraordinary properties. The oxidation process is irreversible, since no reduction peaks were observed in the reverse scan. The electrocatalytic effect of MWCNT was confirmed as the oxidation peak intensity increases in comparison to bare-GCE. The effect of functional groups on MWCNT was also studied by MWCNT functionalized with NH 2 (MWCNT-NH 2 ) and COOH (MWCNT-COOH) groups. The oxidation peak current decreases in the following order: MWCNT > MWCNT-NH 2 > MWCNT-COOH. Taking into account the normalized peak current, MWCNT-NH 2 exhibits the best results due to its strong interaction with MPET. Under optimal conditions (pH = 5.0 and volume of MWCNT = 10 μL), degradation was studied for MWCNT-GCE and MWCNT-NH 2 -GCE. A complete MPET removal was observed using MWCNT-GCE after four CV cycles, for a volume/area (V/A) ratio equal to 19. In the case of MWCNT-NH 2 -GCE, the maximum MPET removal was close to 90% for V/A = 37, higher than that obtained for MWCNT-GCE at the same conditions (≈80%). In both cases, no organic by-products were detected.

  12. Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells.

    PubMed

    Jeon, Il; Yoon, Jungjin; Ahn, Namyoung; Atwa, Mohamed; Delacou, Clement; Anisimov, Anton; Kauppinen, Esko I; Choi, Mansoo; Maruyama, Shigeo; Matsuo, Yutaka

    2017-11-02

    Transparent carbon electrodes, carbon nanotubes, and graphene were used as the bottom electrode in flexible inverted perovskite solar cells. Their photovoltaic performance and mechanical resilience were compared and analyzed using various techniques. Whereas a conventional inverted perovskite solar cells using indium tin oxide showed a power conversion efficiency of 17.8%, the carbon nanotube- and graphene-based cells showed efficiencies of 12.8% and 14.2%, respectively. An established MoO 3 doping was used for  carbon electrode-based devices. The difference in the photovoltaic performance between the carbon nanotube- and graphene-based cells was due to the difference in morphology and transmittance. Raman spectroscopy, and cyclic flexural testing revealed that the graphene-based cells were more susceptible to strain than the carbon nanotube-based cells, though the difference was marginal. Overall, despite higher performance, the transfer step for graphene has lower reproducibility. Thus, the development of better graphene transfer methods would help maximize the current capacity of graphene-based cells.

  13. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    PubMed

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision. © 2013 Elsevier B.V. All rights reserved.

  14. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications

  15. Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with graphene and carbon nanotubes in the electrochemical determination of escitalopram.

    PubMed

    Baccarin, Marina; Cervini, Priscila; Cavalheiro, Eder Tadeu Gomes

    2018-02-01

    A bare composite graphite-polyurethane electrode (EGPU) and two other modified with graphene (EGPU-GR) and functionalized multi-walled carbon nanotubes (EGPU-CNTs) were prepared and compared regarding their voltammetric response to escitalopran (EST). The modifiers were characterized by Raman spectroscopy and the resulting electrode materials by contact angle measurements with a hydrophilicity character in the ascending order for the composites: GPU > GPU-GR > GPU-CNTs and scanning electron microscopy (SEM). The electroactive areas of the EGPU, EGPU-GR, and EGPU-CNTs were 0.065, 0.080, and 0.092cm 2 , respectively, calculated from the chronocoulometry using K 3 [Fe(CN) 6 ] as a probe and the Cottrell equation. The cyclic voltammograms obtained for EST indicated irreversible electrochemical behavior, with an anodic peak at ca. +0.80V (νs. SCE). These measurements were carried out with the three electrodes, and comparison of the analytical responses led to the EGPU-GR electrode being selected for use in the subsequent experiments. Under optimal conditions, square wave and differential pulse voltammetry at EGPU-GR presented linear dynamic ranges between 1.5 × 10 -6 and 1.2 × 10 -5 mol L -1 , with a detection limit of 2.5 × 10 -7 molL -1 (SWV) and 1.5 × 10 -6 and 1.2 × 10 -5 molL -1 , with a detection limit of 3.2 × 10 -7 molL -1 (DPV) for EST. The proposed method was applied for the quantification of EST in synthetic urine and cerebrospinal fluid samples, offering advantages including simplicity of fabrication, no requirement for analyte preconcentration and surface renewal, fast response, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

    PubMed

    Yu, Yanyan; Chen, Zuanguang; He, Sijing; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2014-02-15

    In this work, poly (diallyldimethylammonium chloride) (PDDA)-capped gold nanoparticles (AuNPs) functionalized graphene (G)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were fabricated. Based on the electrostatic attraction, the G/MWCNTs hybrid material can be decorated with AuNPs uniformly and densely. The new hierarchical nanostructure can provide a larger surface area and a more favorable microenvironment for electron transfer. The AuNPs/G/MWCNTs nanocomposite was used as a novel immobilization platform for glucose oxidase (GOD). Direct electron transfer (DET) was achieved between GOD and the electrode. Field emission scanning electron microscopy (FESEM), UV-vis spectroscopy and cyclic voltammetry (CV) were used to characterize the electrochemical biosensor. The glucose biosensor fabricated based on GOD electrode modified with AuNPs/G/MWCNTs demonstrated satisfactory analytical performance with high sensitivity (29.72mAM(-1)cm(-2)) and low limit of detection (4.8 µM). The heterogeneous electron transfer rate constant (ΚS) and the apparent Michaelis-Menten constant (Km) of GOD were calculated to be 11.18s(-1) and 2.09 mM, respectively. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabricating and glucose biosensing. © 2013 Elsevier B.V. All rights reserved.

  17. Carbon nanotube yarns for deep brain stimulation electrode.

    PubMed

    Jiang, Changqing; Li, Luming; Hao, Hongwei

    2011-12-01

    A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.

  18. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite.

    PubMed

    Yang, Yu Jun; Li, Weikun

    2014-06-15

    We have developed hexadecyl trimethyl ammonium bromide (CTAB) functionalized graphene oxide (GO)/multiwalled carbon nanotubes (MWNTs) modified glassy carbon electrode (CTAB-GO/MWNT) as a novel system for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2(-)). The combination of graphene oxide and MWNTs endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2(-) were obtained over the range of 5.0-300 μM, 5.0-500 μM, 3.0-60 μM and 5.0-800 μM with detection limits of 1.0 μM, 1.5 μM, 1.0 μM and 1.5 μM, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2(-) in urine samples by using standard adding method with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Electrocatalyzed O2 response of myoglobin immobilized on multi-walled carbon nanotube forest electrodes.

    PubMed

    Pacios, M; del Valle, M; Bartroli, J; Esplandiu, M J

    2009-10-01

    Direct electrochemistry and activity of myoglobin (Mb) immobilized on carbon nanotube (CNT) forest electrodes were investigated by probing mainly its electrocatalytical response towards oxygen. The protein was anchored on the CNT electrodes through carbodiimide coupling, which was shown to provide long term stability. The electrochemical response was monitored as a function of oxygen concentration and pH. Conformational changes together with the consequent loss of oxygen affinity were recorded at low pH, which delimits the operative range of the Mb/CNT electrodes for sensing purposes. In general, it can be concluded that CNT forests constitute suitable platforms for Mb attachment without compromising the protein bioactivity and by keeping at the same time the direct electron exchange with the heme core. All these characteristics confer to the protein modified CNT system promising properties for the implementation of (bio)sensor devices with impact in the clinical and environmental field.

  20. Role of carbon nanotubes in electroanalytical chemistry: a review.

    PubMed

    Agüí, Lourdes; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2008-08-01

    This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.

  1. A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules.

    PubMed

    Hong, Chien-Chong; Wang, Chih-Ying; Peng, Kuo-Ti; Chu, I-Ming

    2011-04-15

    This paper presents a microfluidic chip platform with electrochemical carbon nanotube electrodes for preclinical evaluation of antibiotics nanocapsules. Currently, there has been an increasing interest in the development of nanocapsules for drug delivery applications for localized treatments of diseases. So far, the methods to detect antibiotics are liquid chromatography (LC), high performance liquid chromatography (HPLC), mass spectroscopy (MS). These conventional instruments are bulky, expensive, not ease of access, and talented operator required. In order to help the development of nanocapsules and understand drug release profile before planning the clinical experiments, it is important to set up a biosensing platform which could monitor and evaluate the real-time drug release profile of nanocapsules with high sensitivity and long-term measurement ability. In this work, a microfluidic chip platform with electrochemical carbon nanotube electrodes has been developed and characterized for rapid detection of antibiotics teicoplanin nanocapsules. Multi-walled carbon nanotubes are used to modify the gold electrode surfaces to enhance the performance of the electrochemical biosensors. Experimental results show that the limit of detection of the developed platform using carbon nanotubes electrodes is 0.1 μg/ml with a linear range from 1 μg/ml to 10 μg/ml. The sensitivity of the developed system is 0.023 mA ml/μg at 37°C. The drug release profile of teicoplanin nanocapsules in PBS shows that the antibiotics nanocapsules significantly increased the release of drug on the 4th day, measuring 0.4858 μg/(ml hr). The release of drug from the antibiotics nanocapsules reached 34.98 μg/ml on the 7th day. The results showed a similar trend compared with the measurement result using the HPLC instrument. Compared with the traditional HPLC measurements, the electrochemical sensing platform we developed measures results with increased flexibility in controlling experimental

  2. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH 2 -was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH 2 >MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  4. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  5. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    DOEpatents

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  6. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    PubMed

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  7. Electrochemical determination of L-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol-gel film.

    PubMed

    Hu, Yu-fang; Zhang, Zhao-hui; Zhang, Hua-bin; Luo, Li-juan; Yao, Shou-zhuo

    2011-04-15

    A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of L-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards L-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for L-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for L-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10(-7) to 1.0 × 10(-4) mol L(-1) with a detection limit of 1.0 × 10(-9) mol L(-1). With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect L-phenylalanine in blood plasma samples successfully. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  9. Quantitative determination and toxicity evaluation of 2,4-dichlorophenol using poly(eosin Y)/hydroxylated multi-walled carbon nanotubes modified electrode

    PubMed Central

    Zhu, Xiaolin; Zhang, Kexin; Wang, Chengzhi; Guan, Jiunian; Yuan, Xing; Li, Baikun

    2016-01-01

    This study aimed at developing simple, sensitive and rapid electrochemical approach to quantitatively determine and assess the toxicity of 2,4-dichlorophenol (2,4-DCP), a priority pollutant and has potential risk to public health through a novel poly(eosin Y, EY)/hydroxylated multi-walled carbon nanotubes composite modified electrode (PEY/MWNTs-OH/GCE). The distinct feature of this easy-fabricated electrode was the synergistic coupling effect between EY and MWNTs-OH that enabled a high electrocatalytic activity to 2,4-DCP. Under optimum conditions, the oxidation peak current enhanced linearly with concentration increasing from 0.005 to 0.1 μM and 0.2 to 40.0 μM, and revealed the detection limit of 1.5 nM. Moreover, the PEY/MWNTs-OH/GCE exhibited excellent electrocatalytic activity toward intracellular electroactive species. Two sensitive electrochemical signals ascribed to guanine/xanthine and adenine/hypoxanthine in human hepatoma (HepG2) cells were detected simultaneously. The sensor was successfully applied to evaluate the toxicity of 2,4-DCP to HepG2 cells. The IC50 values based on the two electrochemical signals are 201.07 and 252.83 μM, respectively. This study established a sensitive platform for the comprehensive evaluation of 2,4-DCP and posed a great potential to simplify environmental toxicity monitoring. PMID:27941912

  10. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  11. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode.

    PubMed

    Li, Liang; Liang, Bo; Shi, Jianguo; Li, Feng; Mascini, Marco; Liu, Aihua

    2012-03-15

    A novel Nafion/bacteria-displaying xylose dehydrogenase (XDH)/multi-walled carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied for the sensitive and selective determination of d-xylose (INS 967), where the XDH-displayed bacteria (XDH-bacteria) was prepared using a newly identified ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif. The XDH-displayed bacteria can be used directly, eliminating further enzyme-extraction and purification, thus greatly improved the stability of the enzyme. The optimal conditions for the construction of biosensor were established: homogeneous Nafion-MWNTs composite dispersion (10 μL) was cast onto the inverted glassy carbon electrode, followed by casting 10-μL of XDH-bacteria aqueous solution to stand overnight to dry, then a 5-μL of Nafion solution (0.05 wt%) is syringed to the electrode surface. The bacteria-displaying XDH could catalyze the oxidization of xylose to xylonolactone with coenzyme NAD(+) in 0.1M PBS buffer (pH7.4), where NAD(+) (nicotinamide adenine dinucleotide) is reduced to NADH (the reduced form of nicotinamide adenine dinucleotide). The resultant NADH is further electrocatalytically oxidized by MWNTs on the electrode, resulting in an obvious oxidation peak around 0.50 V (vs. Ag/AgCl). In contrast, the bacteria-XDH-only modified electrode showed oxidation peak at higher potential of 0.7 V and less sensitivity. Therefore, the electrode/MWNTs/bacteria-XDH/Nafion exhibited good analytical performance such as long-term stability, a wide dynamic range of 0.6-100 μM and a low detection limit of 0.5 μM D-xylose (S/N=3). No interference was observed in the presence of 300-fold excess of other saccharides including D-glucose, D-fructose, D-maltose, D-galactose, D-mannose, D-sucrose, and D-cellbiose as well as 60-fold excess of L-arabinose. The proposed microbial biosensor is stable, specific, sensitive, reproducible, simple, rapid and cost-effective, which holds

  12. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    PubMed

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  14. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  15. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  16. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes.

    PubMed

    Matyszewska, Dorota; Napora, Ewelina; Żelechowska, Kamila; Biernat, Jan F; Bilewicz, Renata

    2018-01-01

    The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl- sn -glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ.

  17. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes

    NASA Astrophysics Data System (ADS)

    Matyszewska, Dorota; Napora, Ewelina; Żelechowska, Kamila; Biernat, Jan F.; Bilewicz, Renata

    2018-05-01

    The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. [Figure not available: see fulltext.

  18. Voltammetric Determination of Penicillamine Using a Carbon Paste Electrode Modified with Multiwall Carbon Nanotubes In the Presence of Methyldopa as a Mediator.

    PubMed

    Safari, Fardin; Keyvanfard, Mohsen; Karimi-Maleh, Hassan; Alizad, Khadijeh

    2017-01-01

    A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) was fabricated and used to study the electrooxidation of penicillamine (PA) by electrochemical methods in the presence of methyldopa (MDOP) as a homogeneous mediator. The electrochemical oxidation of PA on the new sensor has been carefully studied. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K / h , were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of PA showed a linear dependent on the PA concentrations and linear calibration curves were obtained in the ranges of 0.2-250.0 µM of PA concentration with square wave voltammetry (SWV) method. The detection limit (3σ) was determined as 0.1 µM. This sensor was also examined as a fast, selective, simple and precise new sensor for voltammetric determination of PA in real samples such as drug and urine.

  19. Voltammetric Determination of Penicillamine Using a Carbon Paste Electrode Modified with Multiwall Carbon Nanotubes In the Presence of Methyldopa as a Mediator

    PubMed Central

    Safari, Fardin; Keyvanfard, Mohsen; Karimi-Maleh, Hassan; Alizad, Khadijeh

    2017-01-01

    A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) was fabricated and used to study the electrooxidation of penicillamine (PA) by electrochemical methods in the presence of methyldopa (MDOP) as a homogeneous mediator. The electrochemical oxidation of PA on the new sensor has been carefully studied. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K/h, were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of PA showed a linear dependent on the PA concentrations and linear calibration curves were obtained in the ranges of 0.2-250.0 µM of PA concentration with square wave voltammetry (SWV) method. The detection limit (3σ) was determined as 0.1 µM. This sensor was also examined as a fast, selective, simple and precise new sensor for voltammetric determination of PA in real samples such as drug and urine. PMID:29201090

  20. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.

    PubMed

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g(-1) at 1 A g(-1), which remained at 543 F g(-1) when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg(-1)) was maintained even at a high power density of 6000 W kg(-1). An excellent long cycle life of the electrode was observed with a retention of ∼86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO(2) nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications. © The Royal Society of Chemistry 2011

  1. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.

    PubMed

    Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin

    2018-04-17

    In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).

  2. Carbon nanotubes and graphene modified screen-printed carbon electrodes as sensitive sensors for the determination of phytochelatins in plants using liquid chromatography with amperometric detection.

    PubMed

    Dago, Àngela; Navarro, Javier; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2015-08-28

    Nanomaterials are of great interest for the development of electrochemical sensors. Multi-walled carbon nanotubes and graphene were used to modify the working electrode surface of different screen-printed carbon electrodes (SPCE) with the aim of improving the sensitivity of the SPCE and comparing it with the conventional glassy carbon electrode. To assay the usability of these sensors, a HPLC methodology with amperometric detection was developed to analyze several phytochelatins in plants of Hordeum vulgare and Glycine max treated with Hg(II) or Cd(II) giving detection limits in the low μmolL(-1) range. Phytochelatins are low molecular weight peptides with the general structure γ-(Glu-Cys)n-Gly (n=2-5) which are synthesized in plants in the presence of heavy metal ions. These compounds can chelate heavy metal ions by the formation of complexes which, are transported to the vacuoles, where the toxicity is not threatening. For this reason phytochelatins are essential in the detoxification of heavy metal ions in plants. The developed HPLC method uses a mobile phase of 1% of formic acid in water with KNO3 or NaCl (pH=2.00) and 1% of formic acid in acetonitrile. Electrochemical detection at different carbon-based electrodes was used. Among the sensors tested, the conventional glassy carbon electrode offers the best sensitivity although modification improves the sensitivity of the SPCE. Glutathione and several isoforms of phytochelatin two were found in plant extracts of both studied species. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    PubMed

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  4. Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kazazi, Mahdi; Sedighi, Ali Reza; Mokhtari, Mohammad Amin

    2018-05-01

    A facile and efficient two-step procedure was developed for the fabrication of a high-performance and binder-free cobalt oxide-carbon nanotubes (CO/CNT) pseudocapacitive electrode. First, CNTs were deposited on the surface of a chemically activated graphite sheet by cathodic electrophoretic deposition technique from their ethanolic suspension. In the next step, a thin film of cobalt oxide was electrodeposited on the CNTs coated graphite substrate by a galvanostatic method, followed by a thermal treatment in air. The structure and morphology of the prepared cobaltite electrode with and without CNT interlayer were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption measurement. The results indicated that Co3O4 nanoparticles were uniformly attached on the surface of CNTs, to form a porous-structured CO/CNT composite electrode with a high specific surface area of 144.9 m2 g-1. Owing to the superior electrical conductivity of CNTs, high surface area and open porous structure, and improved integrity of the electrode structure, the composite electrode delivered a high areal capacitance of 4.96F cm-2 at a current density of 2 mA cm-2, a superior rate performance (64.7% capacitance retention from 2 mA cm-2 to 50 mA cm-2), as well as excellent cycling stability (91.8% capacitance retention after 2000 cycles), which are higher than those of the pure cobaltite electrode.

  5. Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose.

    PubMed

    Li, Liang; Liang, Bo; Li, Feng; Shi, Jianguo; Mascini, Marco; Lang, Qiaolin; Liu, Aihua

    2013-04-15

    In this paper, we first report the construction of Nafion/glucose oxidase (GOD)/xylose dehydrogenase displayed bacteria (XDH-bacteria)/multiwalled carbon nanotubes (MWNTs) modified electrode for simultaneous voltammetric determination of D-glucose and D-xylose. The optimal conditions for the immobilized enzymes were established. Both enzymes retained their good stability and activities. In the mixture solution of D-glucose and D-xylose containing coenzyme NAD⁺ (the oxidized form of nicotinamide adenine dinucleotide), the Nafion/GOD/XDH-bacteria/MWNTs modified electrode exhibited quasi-reversible oxidation-reduction peak at -0.5 V (vs. saturated calomel electrode, SCE) originating from the catalytic oxidation of D-glucose, and oxidation peak at +0.55 V(vs. SCE) responding to the oxidation of NADH (the reduced form of nicotinamide adenine dinucleotide) by the carbon nanotubes, where NADH is the resultant product of coenzyme NAD⁺ involved in the catalysis of D-xylose by XDH-displayed bacteria. For the proposed biosensor, cathodic peak current at -0.5 V was linear with the concentration of D-glucose within the range of 0.25-6 mM with a low detection limit of 0.1 mM D-glucose (S/N=3), and the anodic peak current at +0.55 V was linear with the concentration of d-xylose in the range of 0.25∼4 mM with a low detection limit of 0.1 mM D-xylose (S/N=3). Further, D-xylose and D-glucose did not interfere with each other. 300-fold excess saccharides including D-maltose, D-galactose, D-mannose, D-sucrose, D-fructose, D-cellobiose, and 60-fold excess L-arabinose, and common interfering substances (100-fold excess ascorbic acid, dopamine, uric acid) as well as 300-fold excess D-xylitol did not affect the detection of D-glucose and D-xylose (both 1 mM). Therefore, the proposed biosensor is stable, specific, reproducible, simple, rapid and cost-effective, which holds great potential in real applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  7. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    NASA Astrophysics Data System (ADS)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  8. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    PubMed Central

    2011-01-01

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322

  9. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.

    PubMed

    Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo

    2011-04-15

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society

  10. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode.

    PubMed

    Batra, Bhawna; Pundir, C S

    2013-09-15

    A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.

  13. All-Organic Actuator Fabricated with Single Wall Carbon Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Lowther, Sharon E.; Harrison, Joycelyn S.; Kang, Jinho; Park, Cheol; Park, Chan Eon

    2008-01-01

    Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all-organic actuator with single wall carbon nanotube (SWCNT) films as the alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center - Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 C to 280 C) and frequency (from 1 KHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions.

  14. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    PubMed

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  15. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  16. Anti-fouling response of gold-carbon nanotubes composite for enhanced ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sai Siddhardha, R. S.; Anupam Kumar, Manne; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2014-12-01

    We report the synthesis of gold carbon nanotubes composite through a one-pot surfactant free approach and its utility for ethanol electrooxidation reaction (EOR). The method involves the application of laser ablation for nanoparticle synthesis and simultaneous assembly of these on carbon nanotubes. The catalyst has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopic techniques. A systematic study of gold carbon nanotubes modified carbon paste electrode for EOR has been pursued. The kinetic study revealed the excellent stability of the modified electrode even after 200 cycles of EOR and with an Arrhenius energy as low as ∼28 kJ mol-1. Tafel slopes that are the measure of electrode activity have been monitored as a function of temperature of the electrolyte. The results indicate that despite an increase in the reaction rate with temperature, the electrode surface has not been significantly passivated by carbonaceous species produced at high temperatures.

  17. A new modification method of a Cetyl Trimethyl Ammonium Bromide/Nano-ZnO and Multi-walled Carbon Nanotubes Electrode for Determination of Anti Doping in Urine

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiwei; Mu, Shuai; Zheng, Jie; Gu, Lingyan; Shen, Guijun; Shen, Yuan

    2017-07-01

    The preparation and application of Cetyl Trimethyl Ammonium Bromide/Nano-ZnO and Multi-walled Carbon Nanotubes (CTAB/ZnO-MWNTs) Modified Electrodes was studied, establishing a new electrochemical method for determination of carteolol hydrochloride in urine. After its pre-enrichment by adsorption and extraction on modified electrodes, electrochemical behaviors of carteolol hydrochloride on the modified electrodes were studied by CV and DPV. The response is linear at the range of 1×10-3 ∼ 2×10-1 g/L, with a detection limit of 2×10-4 g/L. Under appropriate conditions, the content of carteolol hydrochloride in urine can be determined directly by the method, which had strong anti-interference ability and the recovery is 96.5% - 110.5%. In addition, extraction and adsorption behaviors of the modified electrodes for carteolol hydrochloride were studied by chronocoulumetry, and the results showed that extraction during the enrichment process played a major role at low concentrations, and contribution of surface adsorption became greater with the increase of concentrations.

  18. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.

    PubMed

    Yang, Jiawei; Cheng, Shaoan; Sun, Yi; Li, Chaochao

    2017-10-01

    To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated. Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m -2 , respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves. Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.

  19. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    PubMed

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  1. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    PubMed

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

    PubMed

    Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke

    2018-06-15

    We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.

  3. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less

  4. N- and C-Modified TiO2 Nanotube Arrays: Enhanced Photoelectrochemical Properties and Effect of Nanotubes Length on Photoconversion Efficiency

    PubMed Central

    Mohamed, Ahmed El Ruby; Barghi, Shahzad

    2018-01-01

    In this investigation, a new, facile, low cost and environmental-friendly method was introduced to fabricate N- and C-modified TiO2 nanotube arrays by immersing the as-anodized TiO2 nanotube arrays (TNTAs) in a urea aqueous solution with mechanical agitation for a short time and keeping the TNTAs immersed in the solution for 6 h at room temperature. Then, the TNTAs were annealed at different temperatures. The produced N-, C-modified TNTAs were characterized using FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance spectra. Modified optical properties with narrow band gap energy, Eg, of 2.65 eV was obtained after annealing the modified TNTAs at 550 °C. Modified TNTAs showed enhanced photoelectochemical performance. Photoconversion efficiency (PCE) was increased from 4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length of modified TNTAs on photoelectrochemical performance was also studied. Photocurrent density and PCE were increased by increasing nanotube length with a maximum PCE of 6.38% for nanotube length of 55 µm. This high PCE value was attributed to: band gap reduction due to C- and N-modification of TNTAs surface, increased surface area of long TNTAs compared with short TNTAs, investigated in previous studies. PMID:29597248

  5. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    PubMed

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011

  6. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  7. Sensitive electrochemical detection of NADH and ethanol at low potential based on pyrocatechol violet electrodeposited on single walled carbon nanotubes-modified pencil graphite electrode.

    PubMed

    Zhu, Jun; Wu, Xiao-Yan; Shan, Dan; Yuan, Pei-Xin; Zhang, Xue-Ji

    2014-12-01

    In this work, the electrodeposition of pyrocatechol violet (PCV) was initially investigated by the electrochemical surface plasmon resonance (ESPR) technique. Subsequently, PCV was used as redox-mediator and was electrodeposited on the surface of pencil graphite electrode (PGE) modified with single-wall carbon nanotubes (SWCNTs). Owing to the remarkable synergistic effect of SWCNTs and PCV, PGE/SWCNTs/PCV exhibited excellent electrocatalytic activity towards dihydronicotinamide adenine dinucleotide (NADH) oxidation at low potential (0.2V vs. SCE) with fast amperometric response (<10s), broad linear range (1.3-280 μM), good sensitivity (146.2 μA mM(-1)cm(-2)) and low detection limit (1.3 μM) at signal-to-noise ratio of 3. Thus, this PGE/SWCNTs/PCV could be further used to fabricate a sensitive and economic ethanol biosensor using alcohol dehydrogenase (ADH) via a glutaraldehyde/BSA cross-linking procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  9. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  10. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    PubMed

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  11. Strategically functionalized carbon nanotubes as the ultrasensitive electrochemical probe for picomolar detection of sildenafil citrate (Viagra).

    PubMed

    Gopalan, Anantha Iyengar; Lee, Kwang Pill; Komathi, Shanmugasundaram

    2011-02-15

    The present work demonstrates the utility of the functionalized carbon nanotubes, poly(4-aminobenzene sulfonic acid) (PABS) grafted multiwalled carbon nanotubes, MWNT-g-PABS, as an electrode modifier towards achieving ultrasensitive detection of a model drug, sildenafil citrate (SC). PABS units in MWNT-g-PABS interact with SC, pre-concentrate and accumulate at the surface. The electron transduction from SC to electrode is augmented via MWNT-g-PABS. As a result, the MWNT-g-PABS modified electrode exhibited ultrasensitive (57.7 μA/nM) and selective detection of SC with a detection limit of 4.7 pM. The present work provides scope towards targeting ultrasensitivity for the detection of biomolecules/drug through rational design and incorporation of appropriate chemical components to carbon nanotubes. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish

    2008-01-01

    A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

  13. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  14. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  15. Multiwall carbon nanotubes chemically modified carbon paste electrodes for determination of gentamicin sulfate in pharmaceutical preparations and biological fluids.

    PubMed

    Khalil, M M; Abed El-Aziz, G M

    2016-02-01

    This article focused on the construction and characteristics of novel and sensitive gentamicin carbon paste electrodes which are based on the incorporation of multiwall carbon nanotubes (MWCNTs) which improve the characteristics of the electrodes. The electrodes were constructed based on gentamicin-phosphotungstate (GNS-PTA) called CPE1, gentamicin-phosphomolybdate (GNS-PMA) called CPE2, GNS-PTA+ MWMCNTs called MWCPE1, and GNS-PMA+ MWMCNTs called MWCPE2. The constructed electrodes, at optimum paste composition, exhibited good Nernstian response for determination of gentamicin sulfate (GNS) over a linear concentration range from 2.5×10(-6) to 1×10(-2), 3.0×10(-6) to 1×10(-2), 4.9×10(-7) to 1×10(-2) and 5.0×10(-7) to 1×10(-2)molL(-1), with lower detection limit 1×10(-6), 1×10(-6), 1.9×10(-7) and 2.2×10(-7)molL(-1), and with slope values of 29.0±0.4, 29.2±0.7, 31.2±0.5 and 31.0±0.6mV/decade for CPE1, CPE2, MWCPE1 and MWCPE2, respectively. The response of electrodes is not affected by pH in the range 3-8 for CPE1 and CPE2 and in the range 2.5-8.5 for MWCPE1 and MWCPE2. The results showed fast dynamic response time (about 8-5s) and long lifetime (more than 2months) for all electrodes. The sensors showed high selectivity for gentamicin sulfate (GNS) with respect to a large number of interfering species. The constructed electrodes were successfully applied for determination of GNS in pure form, its pharmaceutical preparations and biological fluids using standard addition and potentiometric titration methods with high accuracy and precision. Published by Elsevier B.V.

  16. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  17. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr [Belmont, CA; Bakajin, Olgica [San Leandro, CA; Letant, Sonia [Livermore, CA; Stadermann, Michael [Dublin, CA; Artyukhin, Alexander B [Menlo Park, CA

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  18. Modifying the electronic and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  19. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.

    PubMed

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho

    2011-06-07

    This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.

  20. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  1. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  2. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2018-07-01

    The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.

  3. Microtitrimetry by differential electrolytic potentiometry using metallic electrodes and nanomaterials modified metallic electrodes

    NASA Astrophysics Data System (ADS)

    Amro, Abdulaziz Nabil

    For the first time silver wire electrodes have been coated with carbon nanotubes using floating catalyst chemical vapor deposition (CVD) method. The production of CNTs has been conducted in a horizontal tubular reactor. Acetylene gas was used as a carbon source. Ferrocene has been used as a catalyst precursor for the growth of CNT. Different parameters have been optimized to get a high yield of CNTs and ensure their growth on the silver electrodes using univariate method. The parameters studied include the hydrogen flow rate, acetylene flow rate, temperature of the furnace, time of the reaction and the location of the electrodes in the reactor tube. The optimum conditions for those parameters were: for hydrogen and acetylene, the flow rates were 25 mL /min and 75 mL / min respectively. The furnace temperature was found to be 700 °C and the reaction time was 15 minutes. Regarding the location of the silver wires it should be located in the first 10 cm of the front side of the tube. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) have been used to characterize carbon on silver electrodes. According to the experimental results, TEM figures show that CNT produced on Silver wire is multiwall carbon nanotubes MWCNT. Silver electrodes either pure or coated with CNT were used as indicating systems in micro titration using both dc differential electrolytic potentiometry (DEP) and mark-space bias DEP techniques. All types of titrimetric reactions were investigated using different types of electrodes like Pt and gold for oxidation reduction titrations, antimony electrodes for acid base titrations, silver electrodes for precipitation titrations in addition to Ag-CNT electrodes. End points at volumes of 1 microL were determined. Different parameters were optimized like the current density, the percentage bias, the volume of the sample and the concentrations of the reactants. Microtitrimetry has been applied on several types of analytes; Ferrous

  4. Vertically aligned carbon nanotube electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Welna, Daniel T.; Qu, Liangti; Taylor, Barney E.; Dai, Liming; Durstock, Michael F.

    As portable electronics become more advanced and alternative energy demands become more prevalent, the development of advanced energy storage technologies is becoming ever more critical in today's society. In order to develop higher power and energy density batteries, innovative electrode materials that provide increased storage capacity, greater rate capabilities, and good cyclability must be developed. Nanostructured materials are gaining increased attention because of their potential to mitigate current electrode limitations. Here we report on the use of vertically aligned multi-walled carbon nanotubes (VA-MWNTs) as the active electrode material in lithium-ion batteries. At low specific currents, these VA-MWNTs have shown high reversible specific capacities (up to 782 mAh g -1 at 57 mA g -1). This value is twice that of the theoretical maximum for graphite and ten times more than their non-aligned equivalent. Interestingly, at very high discharge rates, the VA-MWNT electrodes retain a moderate specific capacity due to their aligned nature (166 mAh g -1 at 26 A g -1). These results suggest that VA-MWNTs are good candidates for lithium-ion battery electrodes which require high rate capability and capacity.

  5. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    PubMed Central

    Stapleton, Andrew J; Yambem, Soniya D; Johns, Ashley H; Afre, Rakesh A; Ellis, Amanda V; Shapter, Joe G; Andersson, Gunther G; Quinton, Jamie S; Burn, Paul L; Meredith, Paul

    2015-01-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems. PMID:27877771

  6. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  7. Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors

    PubMed Central

    Yun, Young Soo; Park, Hyun Ho; Jin, Hyoung-Joon

    2012-01-01

    Nitrogen- and micropore-containing carbon nanotubes (NMCNTs) were prepared by carbonization of nitrogen-enriched, polymer-coated carbon nanotubes (CNTs), and the electrochemical performances of the NMCNTs with different heteroatom contents were investigated. NMCNTs-700 containing 9.1 wt% nitrogen atoms had a capacitance of 190.8 F/g, which was much higher than that of pristine CNTs (48.4 F/g), despite the similar surface area of the two CNTs, and was also higher than that of activated CNTs (151.7 F/g) with a surface area of 778 m2/g and a nitrogen atom content of 1.2 wt%. These results showed that pseudocapacitive effects play an important role in the electrochemical performance of supercapacitor electrodes.

  8. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.

    PubMed

    Rezaei, B; Lotfi-Forushani, H; Ensafi, A A

    2014-04-01

    A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Lin, Jinghuang; Wang, Yiheng; Zheng, Xiaohang; Liang, Haoyan; Jia, Henan; Qi, Junlei; Cao, Jian; Tu, Jinchun; Fei, Weidong; Feng, Jicai

    2018-06-19

    NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

  10. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  11. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  12. Determination of mutagenic amines in water and food samples by high pressure liquid chromatography with amperometric detection using a multiwall carbon nanotubes-glassy carbon electrode.

    PubMed

    Bueno, Ana María; Marín, Miguel Ángel; Contento, Ana María; Ríos, Ángel

    2016-02-01

    A chromatographic method, using amperometric detection, for the sensitive determination of six representative mutagenic amines was developed. A glassy carbon electrode (GCE), modified with multiwall carbon nanotubes (GCE-CNTs), was prepared and its response compared to a conventional glassy carbon electrode. The chromatographic method (HPLC-GCE-CNTs) allowed the separation and the determination of heterocyclic aromatic amines (HAAs) classified as mutagenic amines by the International Agency for Research of Cancer. The new electrode was systematically studied in terms of stability, sensitivity, and reproducibility. Statistical analysis of the obtained data demonstrated that the modified electrode provided better sensitivity than the conventional unmodified ones. Detection limits were in the 3.0 and 7.5 ng/mL range, whereas quantification limits ranged between 9.5 and 25.0 ng/mL were obtained. The applicability of the method was demonstrated by the determination of the amines in several types of samples (water and food samples). Recoveries indicate very good agreement between amounts added and those found for all HAAs (recoveries in the 92% and 105% range). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  14. Simple electro-assisted immobilization of ciprofloxacin on carbon nanotube modified electrodes: its selective hydrogen peroxide electrocatalysis.

    PubMed

    Sornambikai, Sundaram; Kumar, Annamalai Senthil

    2014-09-01

    Ciprofloxacin (Cf) is a synthetic fourth generation fluoroquinolone class antibiotic used for the treatment of gram-positive, gram-negative and mycobacterium species infections. Electrochemical characteristic of the Cf antibiotic on carbon nanotube modified glassy carbon electrode (GCE/CNT) in pH 7 phosphate buffer solution has been investigated. Electrochemically oxidized radical byproduct of the Cf drug, which is formed as intermediate, gets immobilized on the GCE/CNT (GCE/Cf@CNT) and showed stable and well defined surface confined redox peak at -0.220 V versus Ag/AgCl. Control electrochemical experiment with unmodified GCE failed to show any such immobilization and redox features. Physicochemical characterizations of the Cf@CNT by transmission electron microscope, scanning electron microscope, infrared spectroscopy, UV-Vis and gas chromatography coupled mass spectroscopic analyses of Cf@CNT collectively revealed presence of native form of the Cf antibiotic molecule onto the CNT. The interaction between the Cf molecule and the CNT tubes are revealed from the decreased intensity in the Raman spectrum. The GCE/Cf@CNT showed excellent electrocatalytic response to hydrogen peroxide reduction reaction in pH 7 phosphate buffer solution. Amperometric i-t analysis for the detection of H2O2 showed a current linearity plot upto [H2O2] = 200 μM at an applied potential - 0.1 V versus Ag/AgCl with a current sensitivity value 678 μA mM(-1) cm(-2). No interferences were noticed with ascorbic acid, uric acid, cysteine and nitrite. The present study can be highly helpful to understand the interaction between the Cf and H2O2 in physiological systems and for the removal of Cf from the antibiotic polluted water samples especially in the aquaculture and agricultural systems.

  15. Investigation of Lithium-Air Battery Discharge Product Formed on Carbon Nanotube and Nanofiber Electrodes

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert Revell, III

    Carbon nanotubes have been actively investigated for integration in a wide variety of applications since their discovery over 20 years ago. Their myriad desirable material properties including exceptional mechanical strength, high thermal conductivities, large surface-to-volume ratios, and considerable electrical conductivities, which are attributable to a quantum mechanical ability to conduct electrons ballistically, have continued to motivate interest in this material system. While a variety of synthesis techniques exist, carbon nanotubes and nanofibers are most often conveniently synthesized using chemical vapor deposition (CVD), which involves their catalyzed growth from transition metal nanoparticles. Vertically-aligned nanotube and nanofiber carpets produced using CVD have been utilized in a variety of applications including those related to energy storage. Li-air (Li-O2) batteries have received much interest recently because of their very high theoretical energy densities (3200 Wh/kgLi2O2 ). which make them ideal candidates for energy storage devices for future fully-electric vehicles. During operation of a Li-air battery O2 is reduced on the surface a porous air cathode, reacting with Li-ions to form lithium peroxide (Li-O2). Unlike the intercalation reactions of Li-ion batteries, discharge in a Li-air cell is analogous to an electrodeposition process involving the nucleation and growth of the depositing species on a foreign substrate. Carbon nanofiber electrodes were synthesized on porous substrates using a chemical vapor deposition process and then assembled into Li-O2 cells. The large surface to volume ratio and low density of carbon nanofiber electrodes were found to yield a very high gravimetric energy density in Li-O 2 cells, approaching 75% of the theoretical energy density for Li 2O2. Further, the carbon nanofiber electrodes were found to be excellent platforms for conducting ex situ electron microscopy investigations of the deposition Li2O2 phase

  16. Construction and performance characteristics of new ion selective electrodes based on carbon nanotubes for determination of meclofenoxate hydrochloride.

    PubMed

    El-Nashar, Rasha M; Abdel Ghani, Nour T; Hassan, Sherif M

    2012-06-12

    This work offers construction and comparative evaluation the performance characteristics of conventional polymer (I), carbon paste (II) and carbon nanotubes chemically modified carbon paste ion selective electrodes (III) for meclofenoxate hydrochloride are described. These electrodes depend mainly on the incorporation of the ion pair of meclofenoxate hydrochloride with phosphomolybdic acid (PMA) or phosphotungestic acid (PTA). They showed near Nernestian responses over usable concentration range 1.0 × 10(-5) to 1.0 × 10(-2)M with slopes in the range 55.15-59.74 mV(concentrationdecade)(-1). These developed electrodes were fully characterized in terms of their composition, response time, working concentration range, life span, usable pH and temperature range. The electrodes showed a very good selectivity for Meclo with respect to a large number of inorganic cations, sugars and in the presence of the degradation product of the drug (p-chloro phenoxy acetic acid). The standard additions method was applied to the determination of MecloCl in pure solution, pharmaceutical preparations and biological samples. Dissolution testing was also applied using the proposed sensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A tripolar-electrode ionization gas sensor using a carbon nanotube cathode for NO detection

    NASA Astrophysics Data System (ADS)

    Song, Hui; Li, Kun; Li, Quanfu

    2018-06-01

    Nitric oxide accounts for more than 95% of the total NO X emission from power plants, which is a major air pollutant. Therefore, it is imperative to accurately detect NO for environmental protection. A tripolar-electrode ionization sensor with a carbon nanotube (CNT) cathode is proposed for NO detection. The non-self-sustaining discharge state and the tripolar-electrode configuration ensures a long nanotube life, which ensures a good stability and fast response of the sensor. Experimental results demonstrate that the tripolar-electrode ionization sensor with 120 µm separations has an intrinsic monotonously decreasing response to NO and exhibits a fast response time of 7 s and recovery time of 8 s. More consumption of the two metastable states N2(A3  ∑  u +) and N2(aʹ1  ∑  u +) of N2 with the increasing of NO concentration is responsible for this. The tripolar-electrode ionization sensor also shows excellent long-term stability of at least one month due to the long CNT life. In addition, the weak effect of SO2 introduction on NO response indicates a good selectivity of the sensor to NO.

  18. Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.

    2007-12-01

    A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.

  19. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    PubMed

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

  20. Simultaneous voltammetric determination of dopamine and epinephrine in human body fluid samples using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film.

    PubMed

    Figueiredo-Filho, Luiz C S; Silva, Tiago A; Vicentini, Fernando C; Fatibello-Filho, Orlando

    2014-06-07

    A simple and highly selective electrochemical method was developed for the single or simultaneous determination of dopamine (DA) and epinephrine (EP) in human body fluids using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film using square-wave voltammetry (SWV) or differential-pulse voltammetry (DPV). Using DPV with the proposed electrode, a separation of ca. 360 mV between the peak reduction potentials of DA and EP present in binary mixtures was obtained. The analytical curves for the simultaneous determination of dopamine and epinephrine showed an excellent linear response, ranging from 7.0 × 10(-8) to 4.8 × 10(-6) and 3.0 × 10(-7) to 9.5 × 10(-6) mol L(-1) for DA and EP, respectively. The detection limits for the simultaneous determination of DA and EP were 5.0 × 10(-8) mol L(-1) and 8.2 × 10(-8) mol L(-1), respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in human body fluid samples of cerebrospinal fluid, human serum and lung fluid.

  1. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine.

    PubMed

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Emrani, Ahmad Sarreshtehdar; Ramezani, Mohammad; Abnous, Khalil

    2015-11-15

    Cocaine is a strong central nervous system stimulant and one of the most commonly abused drugs. In this study, an electrochemical aptasensor was designed for sensitive and selective detection of cocaine, based on single-walled carbon nanotubes (SWNTs), gold electrode and complimentary strand of aptamer (CS). This electrochemical aptasensor inherits properties of SWNTs and gold such as large surface area and high electrochemical conductivity, as well as high affinity and selectivity of aptamer toward its target and the stronger interaction of SWNTs with single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In the absence of cocaine, a little amount of SWNTs bind to Aptamer-CS-modified electrode, so that the electrochemical signal is weak. In the presence of cocaine, aptamer binds to cocaine, leaves the surface of electrode. So that, a large amount of SWNTs bind to CS-modified electrode, generating to a strong electrochemical signal. The designed electrochemical aptasensor showed good selectivity toward cocaine with a limit of detection (LOD) as low as 105 pM. Moreover, the fabricated electrochemical aptasensor was successfully applied to detect cocaine in serum with a LOD as low as 136 pM. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  3. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  4. Flexible, transparent electrodes using carbon nanotubes

    PubMed Central

    2012-01-01

    We prepare thin single-walled carbon nanotube networks on a transparent and flexible substrate with different densities, using a very simple spray method. We measure the electric impedance at different frequencies Z(f) in the frequency range of 40 Hz to 20 GHz using two different methods: a two-probe method in the range up to 110 MHz and a coaxial (Corbino) method in the range of 10 MHz to 20 GHz. We measure the optical absorption and electrical conductivity in order to optimize the conditions for obtaining optimum performance films with both high electrical conductivity and transparency. We observe a square resistance of 1 to 8.5 kΩ for samples showing 65% to 85% optical transmittance, respectively. For some applications, we need flexibility and not transparency: for this purpose, we deposit a thick film of single-walled carbon nanotubes on a flexible silicone substrate by spray method from an aqueous suspension of carbon nanotubes in a surfactant (sodium dodecyl sulphate), thereby obtaining a flexible conducting electrode showing an electrical resistance as low as 200 Ω/sq. When stretching up to 10% and 20%, the electrical resistance increases slightly, recovering the initial value for small elongations up to 10%. We analyze the stretched and unstretched samples by Raman spectroscopy and observe that the breathing mode on the Raman spectra is highly sensitive to stretching. The high-energy Raman modes do not change, which indicates that no defects are introduced when stretching. Using this method, flexible conducting films that may be transparent are obtained just by employing a very simple spray method and can be deposited on any type or shape of surface. PMID:23074999

  5. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    PubMed Central

    Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong

    2015-01-01

    A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904

  6. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  7. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes.

    PubMed

    Öner, Ibrahim Halil; Querebillo, Christine Joy; David, Christin; Gernert, Ulrich; Walter, Carsten; Driess, Matthias; Leimkühler, Silke; Ly, Khoa Hoang; Weidinger, Inez M

    2018-06-11

    We present the fabrication of TiO 2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochrome b 5 were observed upon covalent immobilization of the protein matrix on the TiO 2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 °C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    PubMed

    Burblies, Niklas; Schulze, Jennifer; Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  9. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells

    PubMed Central

    Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes. PMID:27385031

  10. Helically coiled carbon nanotube forests for use as electrodes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao

    Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.

  11. Binder-free carbon nanotube electrode for electrochemical removal of chromium.

    PubMed

    Wang, Haitao; Na, Chongzheng

    2014-11-26

    Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

  12. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  13. Biointerfacial Property of Plasma-Treated Single-Walled Carbon Nanotube Film Electrodes for Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Eun Jin; Min, Nam Ki

    2013-01-01

    The single-walled carbon nanotube (SWCNT)-based thin film was spray-coated on the Pt support and functionalized using O2 plasma. The effects of plasma treatment on the biointerfacial properties of the SWCNT films were analyzed by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The plasma-functionalized (pf) SWCNT electrodes modified with Legionella pneumophila-specific probe DNA strands showed a much higher peak current and a smaller peak separation in differential pulse voltammetry and a lower charge transfer resistance, compared to the untreated samples. These results suggest that the pf-SWCNT films have a better electrocatalytic character and an electron transfer capability faster than the untreated SWCNTs, due to the fact that the oxygen-containing functional groups promote direct electron transfer in the biointerfacial region of the electrocatalytic activity of redox-active biomolecules.

  14. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    NASA Astrophysics Data System (ADS)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  15. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes

    NASA Astrophysics Data System (ADS)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok

    2017-11-01

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.

  16. Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.

    PubMed

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok

    2017-09-11

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.

  17. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.

  18. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine.

    PubMed

    Bhakta, Arvind K; Mascarenhas, Ronald J; D'Souza, Ozma J; Satpati, Ashis K; Detriche, Simon; Mekhalif, Zineb; Dalhalle, Joseph

    2015-12-01

    Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode (Fe-MWCNTs/MCPE) was prepared by bulk-modification method. The electrochemical impedance spectroscopy (EIS) suggests least charge transfer resistance at the modified electrode. The electrochemical behavior of UA was studied in 0.1M phosphate buffer solution (PBS) of pH3.0 using cyclic voltammetry (CV) while differential pulse voltammetry (DPV) was used for quantification. The spectroelectrochemial study of oxidation of UA at Fe-MWCNTs/MCPE showed a decrease in the absorbance of two peaks with time, which are ascribed to π to π(⁎) and n to π(⁎) transitions. Under optimum condition, the DPV response offered two linear dynamic ranges for UA in the concentration range 7.0×10(-8)M-1.0×10(-6)M and 2.0×10(-6)M-1.0×10(-5)M with detection limit (4.80±0.35)×10(-8)M (S/N=3). The practical analytical application of this sensor was successfully evaluated by determination of spiked UA in clinical samples, such as human blood serum and urine with good percentage recovery. The proposed electrochemical sensor offers a simple, reliable, rapid, reproducible and cost effective analysis of a quaternary mixture of biomolecules containing AA, DA, UA and Tyr which was free from mutual interferences. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hybrid biobattery based on arylated carbon nanotubes and laccase.

    PubMed

    Stolarczyk, Krzysztof; Sepelowska, Małgorzata; Lyp, Dominika; Zelechowska, Kamila; Biernat, Jan F; Rogalski, Jerzy; Farmer, Kevin D; Roberts, Ken N; Bilewicz, Renata

    2012-10-01

    Single-walled carbon nanotubes (SWCNT) were covalently modified with anthracene and anthraquinone and used for the construction of cathodes for biocatalytic reduction of dioxygen. The nanotubes with aromatic groups casted onto the electrode increased the working surface of the electrode and enabled efficient direct electron transfer (DET) between the enzyme and the electrode. The aryl groups enter the hydrophobic pocket of the T1 center of laccase responsible for exchanging electrons with the substrate. Glassy carbon electrode covered with arylated SWCNT and coated with a layer of neutralized Nafion containing laccase was found to be a very efficient cathode in the hybrid battery. Zn wire covered with a Nafion film served as the anode. The cell parameters were determined: power density was 2 mW/cm(2) and the open circuit potential was 1.5 V. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated.more » It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.« less

  1. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.

    PubMed

    Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando

    2014-04-07

    A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

  2. MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Li, L.; Qian, W. J.; Dong, C. K.

    2018-01-01

    The ternary composites of manganese dioxide/multiwall carbon nanotube/Ni-foam (MnO2/MWNT/Ni-foam) for supercapacitors were fabricated via a hydrothermal method after direct growth of MWNTs on the Ni-foam. The structural properties of the electrodes were characterized by SEM and TEM. The electrode exhibited excellent electrochemical properties from the investigation based on the three-electrode setup. Low contact resistance Rs of about 0.291 Ω between MnO2/MWNT and Ni-foam was reached benefited from the direct growth structure. High capacitance of 355.1 F/g at the current density of 2 A/g was achieved, with good capacitive response at high current density. The MnO2/MWNT/Ni-foam electrode exhibits good stability performance after 2000 cycles at a current of 40 mA.

  3. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes.

    PubMed

    Welch, Christine M; Nekrassova, Olga; Dai, Xuan; Hyde, Michael E; Compton, Richard G

    2004-09-20

    The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.

  4. Stabilization of electrogenerated copper species on electrodes modified with quantum dots.

    PubMed

    Martín-Yerga, Daniel; Costa-García, Agustín

    2017-02-15

    Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.

  5. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao

    2012-01-01

    This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.

  6. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.

    PubMed

    Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G

    2015-05-07

    Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.

  7. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.

    PubMed

    Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa

    2015-01-01

    This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

  8. Effect of purity on the electro-optical properties of single wall nanotube-based transparent conductive electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Matthew P; Ivanov, Ilia N; Geohegan, David B

    2013-01-01

    We present a detailed assessment of centrifugation technique for purification of single wall carbon nanotubes (SWCNTs) for application as transparent conductive electrodes. As- grown and highly-purified SWCNTs were dispersed in surfactants by ultrasonication, and then centrifuged to selectively remove carbonaceous and metal impurities. The centrifuged supernatant suspensions were made into thin films by transferring filtrated nanotube coat- ings onto glass slides. The absorbance and resistance of nanotube coatings were measured, and their optical purity level estimated from a comparison of the area of the near-infrared S22 SWCNT optical absorption band relative to the area of the background. The single-step centrifugationmore » process is shown to purify laser-vaporization grown SWCNTs from an initial optical purity of 0.10 to an averaged purity of 0.23, with an 8.8% yield, which is comparable to other purification techniques. The quality of transparent conductive electrodes esti- mated as a ratio of visible-spectrum absorbance to sheet conductivity is improved by a fac- tor of 12 upon purification.« less

  9. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.

  10. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    PubMed

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  11. Biosensor based on ds-DNA decorated chitosan modified multiwall carbon nanotubes for voltammetric biodetection of herbicide amitrole.

    PubMed

    Ensafi, Ali A; Amini, Maryam; Rezaei, Behzad

    2013-09-01

    The interaction of amitrole and salmon sperm ds-DNA was studied using UV-vis and differential pulse voltammetry (DPV) at both bare and DNA-modified electrodes. Amitrole showed an oxidation peak at 0.445 V at a bare pencil graphite electrode (PGE). When ds-DNA was added into the amitrole solution, the peak current of amitrole decreased and the peak potential underwent a shift. UV-vis spectra showed that the absorption intensity of the ds-DNA at 260 nm decreased with increasing amitrole concentration, proving the interaction between amitrole and the ds-DNA. The results also showed that amitrole could interact with the ds-DNA molecules via the intercalative binding mode. Finally, a pretreated pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs) and chitosan (CHIT) decorated with the ds-DNA were tested in order to determine amitrole content in solution. Electrochemical oxidation of amitrole bonded on DNA/MWCNTs-CHIT/PGE was used to obtain an analytical signal. A linear dependence was observed to exist between the peak current and 0.025-2.4 ng mL(-1) amitrole with a detection limit of 0.017 ng mL(-1). The sensor showed a good selectivity and precision for the determination of amitrole. Finally, applicability of the biosensor was evaluated by measuring the analyte in soil and water samples with good selectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. More About Arc-Welding Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  13. Carbon nanotube mat as mediator-less glucose sensor electrode.

    PubMed

    Ryu, Jongeun; Kim, Hansang; Lee, Sangeui; Hahn, H Thomas; Lashmore, David

    2010-02-01

    In this paper, the direct electron transfer of glucose oxidase (GOx) on carbon nanotube (CNT) mat electrode is demonstrated. Because of the electrical conductivity and mechanical strength of CNT mat, it can be used as an electrode as well as a catalyst support. Therefore, the preparation process for the CNT mat based sensor electrode is simpler than that of the conventional CNT dispersed sensor electrodes. GOx was covalently immobilized on the oxidized CNT mat, which is connected to a wire by using silver paste and epoxy glue. Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) result shows transmittance peaks at 1637 cm(-1) and 1525 cm(-1) which are corresponding to the band I and II of amide. Cyclic voltammetric shows a pair of well-defined redox peaks with the average formal potential of -0.425 V (vs. Ag/AgCl reference electrode) in the phosphate buffered saline solution (1 x PBS, pH 7.4). Calculated electron transfer rate constant and the surface density of GOx were 1.71 s(-1) and (3.27 +/- 0.20) x 10(-13) mol/cm2, respectively. Cyclic voltammograms of GOx-CNT mat in glucose solution show that the immobilized GOx retains its catalytic activity to glucose. The amperometric sensor response showed a linear dependence on the glucose concentration in the range of 0.2 mM to 2.18 mM with a detection sensitivity of 4.05 microA mM(-1) cm(-2). The Michaelis-Menten constant of the immobilized GOx was calculated to be 2.18 mM.

  14. Performance improvement in PEMFC using aligned carbon nanotubes as electrode catalyst support.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D. J.; Yang, J.; Kariuki, N.

    2008-01-01

    A novel membrane electrode assembly (MEA) using aligned carbon nanotubes (ACNT) as the electrocatalyst support was developed for proton exchange membrane fuel cell (PEMFC) application. A multiple-step process of preparing ACNT-PEMFC including ACNT layer growth and catalyzing, MEA fabrication, and single cell packaging is reported. Single cell polarization studies demonstrated improved fuel utilization and higher power density in comparison with the conventional, ink based MEA.

  15. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso A.; Guitierrez, Daniel H.; Peaslee, David; Cheng, Arthur; Gao, Theodore; Wong, Chee Wei; Chen, Bin

    2015-10-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT-GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g-1. Upon thermal reduction, MWCNT-GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs.

  16. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lota, Grzegorz; Tyczkowski, Jacek; Kapica, Ryszard; Lota, Katarzyna; Frackowiak, Elzbieta

    The carbon material was modified by RF plasma with various reactive gases: O 2, Ar and CO 2. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application.

  17. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform.

    PubMed

    Shahrokhian, Saeed; Khaki Sanati, Elnaz; Hosseini, Hadi

    2018-07-30

    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically aligned arrays of Cu clusters and Cu(OH) 2 nanotubes, which can act as both mediator and positioning fixing factor for the rapid formation of self-supported MOFs on GCE surface. The effect of both chemically and electrochemically formed Cu(OH) 2 nanotubes on the morphological and electrochemical performance of the prepared MOFs were investigated. Due to the unique properties of the prepared MOFs thin film electrode such as uniform and vertically aligned structure, excellent stability, high electroactive surface area, and good availability to analyte and electrolyte diffusion, it was directly used as the electrode material for non-enzymatic electrocatalytic oxidation of glucose. Moreover, the potential utility of this sensing platform for the analytical determination of glucose concentration was evaluated by the amperometry technique. The results proved that the self-supported MOFs thin film on GCE is a promising electrode material for fabricating and designing non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    NASA Astrophysics Data System (ADS)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  19. Determination of beta-carboline alkaloids in foods and beverages by high-performance liquid chromatography with electrochemical detection at a glassy carbon electrode modified with carbon nanotubes.

    PubMed

    Agüí, Lourdes; Peña-Farfal, Carlos; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2007-03-07

    Simple and sensitive methods for the separation and quantification of beta-carboline alkaloids in foods and beverages by HPLC with electrochemical detection at carbon nanotubes-modified glassy carbon electrodes (CNTs-GCE) are reported. Electrode modification with multi-wall CNTs produced an improved amperometric response to beta-carbolines, in spite of the working medium consisting of methanol:acetonitrile: 0.05 mol L(-1) Na(2)HPO(4) solution of pH 9.0 (20:20:60). On the contrary to that observed at a bare GCE, a good repeatability of the amperometric measurements carried out at +900 mV versus Ag/AgCl (R.S.D. of 3.2% for i(p), n=20) was achieved at the CNTs-GCE. Using an Ultrabase C(18) column and isocratic elution with the above mentioned mobile phase, a complete resolution of the chromatographic peaks for harmalol, harmaline, norharmane, harmane and harmine, was achieved. Calibration graphs over the 0.25-100 microM range with detection limits ranging between 4 and 19 ng mL(-1), were obtained. The HPLC-ED at CNTs-GCE method was applied to the analysis of beer, coffee and cheese samples, spiked with beta-carbolines at concentration levels corresponding to those may be found in the respective samples. The steps involved in sample treatment, such as extraction and clean-up, were optimized for each type of sample. Recoveries ranging between 92 and 102% for beer, 92 and 101% for coffee, and 88 and 100% for cheese, at sub-microg mL(-1) or g(-1) analytes concentration levels were achieved.

  20. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    NASA Astrophysics Data System (ADS)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  1. Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

    PubMed Central

    Ahmadi, Farhad; Karamian, Ehsan

    2014-01-01

    A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to be the best choices of functional monomer and polymerization solvents, respectively. This polymer was then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction (MISPE) procedure followed by differential pulse voltammetry by using modified carbon nanotube electrode. The analysis was performed in phosphate buffer, pH 7.0. Peak currents were measured at +0.67 V versus Ag/AgCl. The linear calibration range was 0.026–8.0 μg mL-1 with a limit of detection 0.01 μg mL-1. The relative standard deviation at 0.5 μg mL-1 was 4.76% (n=5). The mean recoveries of 5 μg mL-1 MTP from plasma was 92.2% (n=5). The data of MISPE-DPV were compared with the MISPE-HPLC-UV. Although, the MISPE-DPV was more sensitive but both techniques have similar accuracy and precision. PMID:25237337

  2. Label-free electrical detection using carbon nanotube-based biosensors.

    PubMed

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2009-01-01

    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  3. Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yanfang; Zhang, Yafei

    2017-03-01

    Reliable interconnection between carbon nanotubes (CNTs) and external circuit is one of the prerequisite in CNT electronics. In this work, ultrasonic nanowelding was used to bond CNTs with metal electrodes. By exerting ultrasonic energy at the interface of CNT/electrode, a reliable joint with negligible contact resistance was obtained between CNTs and electrodes. The performance of welding is susceptible to the ultrasonic parameters such as ultrasonic power and clamping force, as well as the metal type. It is found that the metals with good ductility or low melting point are easier to achieve effective joints. Moreover, interfacial compounds are formed at the welded surface of metal Al and Fe, which is resulted from the interacting and chemical bonding of carbon and metal atoms. After nanowelding, the contact resistance between CNTs and electrode is decreased dramatically, and the two-terminal resistance of the sample approximates to the intrinsic resistance of the CNT itself.

  4. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    PubMed Central

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption. PMID:24963504

  5. Absorptive carbon nanotube electrodes: Consequences of optical interference loss in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Tait, Jeffrey G.; de Volder, Michaël F. L.; Cheyns, David; Heremans, Paul; Rand, Barry P.

    2015-04-01

    A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle

  6. Metallic Electrode: Semiconducting Nanotube Junction Model

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryon (Technical Monitor)

    2001-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in an experiment with a scanning tunneling microscope tip and a carbon nanotube [Collins et al., Science 278, 100 ('97)]. We claim that there are two contact modes for a tip (metal) -nanotube semi conductor) junction depending whether the alignment of the metal and semiconductor band structure is (1) variable (vacuum-gap) or (2) fixed (touching) with V. With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube. However, the Schottky mechanism in (2) would result in forward current with V < 0 for an n-nanotube, while with V > 0 for an p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type. We apply this picture to the source-drain I-V characteristics in a long nanotube-channel field-effect-transistor (Zhou et al., Appl. Phys. Lett. 76, 1597 ('00)], and show that two independent metal-semiconductor junctions connected in series are responsible for the observed behavior.

  7. Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples.

    PubMed

    Rezaei, Behzad; Damiri, Sajjad

    2010-11-15

    A study of the electrochemical behavior and determination of RDX, a high explosive, is described on a multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) using adsorptive stripping voltammetry and electrochemical impedance spectroscopy (EIS) techniques. The results indicated that MWCNTs electrode remarkably enhances the sensitivity of the voltammetric method and provides measurements of this explosive down to the sub-mg/l level in a wide pH range. The operational parameters were optimized and a sensitive, simple and time-saving cyclic voltammetric procedure was developed for the analysis of RDX in ground and tap water samples. Under optimized conditions, the reduction peak have two linear dynamic ranges of 0.6-20.0 and 8.0-200.0 mM with a detection limit of 25.0 nM and a precision of <4% (RSD for 8 analysis). Copyright © 2010 Elsevier B.V. All rights reserved.

  8. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    EPA Science Inventory

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  9. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode.

    PubMed

    David, Lamuel; Asok, Deepu; Singh, Gurpreet

    2014-09-24

    Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.

  10. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes

    PubMed Central

    Im, Hyeongwook; Kim, Taewoo; Song, Hyelynn; Choi, Jongho; Park, Jae Sung; Ovalle-Robles, Raquel; Yang, Hee Doo; Kihm, Kenneth D.; Baughman, Ray H.; Lee, Hong H.; Kang, Tae June; Kim, Yong Hyup

    2016-01-01

    Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m−2 is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated. PMID:26837457

  11. Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: Electrochemical detection of fenitrothion pesticide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canevari, Thiago C., E-mail: tccanevari@gmail.com; Prado, Thiago M.; Cincotto, Fernando H.

    Highlights: • Hybrid material, SiO{sub 2}/MWCNTs containing ruthenium phthalocyanine (RuPc) synthesized in situ. • Silica containing multi-walled carbon nanotube partially oriented. • Determination of pesticide fenitrothion in orange juice. - Abstract: This paper reports on the determination of the pesticide fenitrothion using a glassy carbon electrode modified with silica-coated, multi-walled, partially oriented carbon nanotubes, SiO{sub 2}/MWCNTs, containing ruthenium phthalocyanine (RuPc) synthesized in situ. The hybrid SiO{sub 2}/MWCNTs/RuPc material was characterized by UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and differential pulse voltammetry. The modified electrode showed well-defined peaks in the presencemore » of fenitrothion in acetate buffer, pH 4.5, with a sensitivity of 0.0822 μA μM{sup −1} mm{sup −2} and a detection limit of 0.45 ppm. Notably, the modified SiO{sub 2}/MWCNTs/RuPc electrodes with did not suffer from significant influences in the presence of other organophosphorus pesticides during the determination of the fenitrothion pesticide. Moreover, this modified electrode showed excellent performance in the determination of fenitrothion in orange juice.« less

  12. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.

    PubMed

    Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan

    2011-08-10

    Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation.

  13. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    PubMed

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  14. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  15. Preparation of glucose sensors using gold nanoparticles modified diamond electrode

    NASA Astrophysics Data System (ADS)

    Fachrurrazie; Ivandini, T. A.; Wibowo, W.

    2017-04-01

    A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.

  16. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  17. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    PubMed

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  18. MnO2 nanotubes assembled on conductive graphene/polyester composite fabric as a three-dimensional porous textile electrode for flexible electrochemical capacitors.

    PubMed

    Jin, Chun; Jin, Li-Na; Guo, Mei-Xia; Liu, Ping; Zhang, Jia-Nan; Bian, Shao-Wei

    2017-12-15

    A three-dimensional (3D) electrode material was successfully synthesized through a facile ZnO-assisted hydrothermal process in which vertical MnO 2 nanotube arrays were in situ grown on the conductive graphene/polyester composite fabric. The morphology and structure of MnO 2 nanotubes/graphene/polyester textile electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The 3D electrode structure facilitates to achieve the maximum number of active sites for the pesudocapacitance redox reaction, fast electrolyte ion transportation and short ion diffusion path. The electrochemical measurements showed that the electrode possesses good capacitance capacity which reached 498F/g at a scan rate of 2mV/s in Na 2 SO 4 electrolyte solution. The electrode also showed stable electrochemical performances under the conditions of long-term cycling, and mechanical bending and twisting. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    NASA Astrophysics Data System (ADS)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  20. Effects of proton irradiation on structural and electrochemical charge storage properties of TiO 2 nanotube electrodes for lithium-ion batteries

    DOE PAGES

    Smith, Kassiopeia A.; Savva, Andreas I.; Deng, Changjian; ...

    2017-03-23

    The effects of proton irradiation on nanostructured metal oxides have been investigated. Recent studies suggest that the presence of structural defects (e.g. vacancies and interstitials) in metal oxides may enhance the material's electrochemical charge storage capacity. A new approach to introduce defects in electrode materials is to use ion irradiation as it can produce a supersaturation of point defects in the target material. In this work we report the effect of low-energy proton irradiation on amorphous TiO 2 nanotube electrodes at both room temperature and high temperature (250 °C). Upon room temperature irradiation the nanotubes demonstrate an irradiation-induced phase transformationmore » to a mixture of amorphous, anatase, and rutile domains while showing a 35% reduction in capacity compared to anatase TiO 2. On the other hand, the high temperature proton irradiation induced a disordered rutile phase within the nanotubes as characterized by Raman spectroscopy and transmission electron microscopy, which displays an improved capacity by 20% at ~240 mA h g –1 as well as improved rate capability compared to an unirradiated anatase sample. Voltammetric sweep data were used to determine the contributions from diffusion-limited intercalation and capacitive processes and it was found that the electrodes after irradiation had more contributions from diffusion in lithium charge storage. Finally, our work suggests that tailoring the defect generation through ion irradiation within metal oxide electrodes could present a new avenue for designing advanced electrode materials.« less

  1. Effects of proton irradiation on structural and electrochemical charge storage properties of TiO 2 nanotube electrodes for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kassiopeia A.; Savva, Andreas I.; Deng, Changjian

    The effects of proton irradiation on nanostructured metal oxides have been investigated. Recent studies suggest that the presence of structural defects (e.g. vacancies and interstitials) in metal oxides may enhance the material's electrochemical charge storage capacity. A new approach to introduce defects in electrode materials is to use ion irradiation as it can produce a supersaturation of point defects in the target material. In this work we report the effect of low-energy proton irradiation on amorphous TiO 2 nanotube electrodes at both room temperature and high temperature (250 °C). Upon room temperature irradiation the nanotubes demonstrate an irradiation-induced phase transformationmore » to a mixture of amorphous, anatase, and rutile domains while showing a 35% reduction in capacity compared to anatase TiO 2. On the other hand, the high temperature proton irradiation induced a disordered rutile phase within the nanotubes as characterized by Raman spectroscopy and transmission electron microscopy, which displays an improved capacity by 20% at ~240 mA h g –1 as well as improved rate capability compared to an unirradiated anatase sample. Voltammetric sweep data were used to determine the contributions from diffusion-limited intercalation and capacitive processes and it was found that the electrodes after irradiation had more contributions from diffusion in lithium charge storage. Finally, our work suggests that tailoring the defect generation through ion irradiation within metal oxide electrodes could present a new avenue for designing advanced electrode materials.« less

  2. One-step electrodeposition of Co0·12Ni1·88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance

    NASA Astrophysics Data System (ADS)

    Yu, Cuiping; Wang, Yan; Zhang, Jianfang; Yang, Wanfen; Shu, Xia; Qin, Yongqiang; Cui, Jiewu; Zheng, Hongmei; Zhang, Yong; Ajayan, Pulickel M.; Wu, Yucheng

    2017-10-01

    High-performance battery-type electrodes based on TiO2 nanotube arrays decorated with Co0·12Ni1·88S2@Co8S9 (CNCS) nanoparticles have been successfully prepared in this paper. The highly conductive TiO2 nanotube arrays modified with carbon and oxygen vacancies (Ti3+ defects) (m-TNAs) are selected as the three-dimensional backbones to support electroactive materials and offer direct pathways for electron and ions transport. Then CNCS nanoparticles are electrodeposited on each nanotube uniformly, and the loading mass of nanoparticles can be controlled through adjusting electrodeposition cycles. After optimization, a remarkable specific capacity of 680.1 C g-1 is achieved at 2 A g -1 as a result of the intrinsic synergetic contributions from structural/compositional/componental merits. This specific capacity is much higher than most of the TNAs-based energy storage electrodes. In addition, an asymmetric supercapacitor device is assembled by applying the optimized CNCS/m-TNAs and commercial active carbon as positive and negative electrode, respectively. It displays a high energy density of 45.5 Wh kg-1 at a power density of 400.5 W kg-1, after cycling for 3000 cycles at a high current density of 4 A g-1, the specific capacitance could still remain 85.7%. This self-supported and binder-free CNCS/m-TNAs electrode will be a competitive and promising candidate for the application in energy storage.

  3. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Xiong, Qinqin; Zheng, Cun; Chi, Hongzhong; Zhang, Jun; Ji, Zhenguo

    2017-02-01

    Construction of electrodes with fast reaction kinetics is of great importance for achieving advanced supercapacitors. Herein we report a facile combined synthetic strategy with atomic layer deposition (ALD) and electrodeposition to rationally fabricate nanotube/nanoflake core/shell arrays. ALD-TiO2 nanotubes are used as the skeleton core for assembly of electrodeposited MnO2-C nanoflake shells forming a core/shell structure. Highly porous architecture and good electrical conductivity are combined in this unique core/shell structure, resulting in fast ion/electron transfer. In tests of electrochemical performance, the TiO2/MnO2-C core/shell arrays are characterized as cathode for asymmetric supecapacitors and exhibit high specific capacitance (880 F g-1 at 2.5 A g-1), excellent rate properties (735 F g-1 at 30 A g-1) and good long-term cycling stability (94.3% capacitance retention after 20 000 cycles). The proposed electrode construction strategy is favorable for fabrication of other advanced supercapacitor electrodes.

  4. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes.

    PubMed

    Xiong, Qinqin; Zheng, Cun; Chi, Hongzhong; Zhang, Jun; Ji, Zhenguo

    2017-02-03

    Construction of electrodes with fast reaction kinetics is of great importance for achieving advanced supercapacitors. Herein we report a facile combined synthetic strategy with atomic layer deposition (ALD) and electrodeposition to rationally fabricate nanotube/nanoflake core/shell arrays. ALD-TiO 2 nanotubes are used as the skeleton core for assembly of electrodeposited MnO 2 -C nanoflake shells forming a core/shell structure. Highly porous architecture and good electrical conductivity are combined in this unique core/shell structure, resulting in fast ion/electron transfer. In tests of electrochemical performance, the TiO 2 /MnO 2 -C core/shell arrays are characterized as cathode for asymmetric supecapacitors and exhibit high specific capacitance (880 F g -1 at 2.5 A g -1 ), excellent rate properties (735 F g -1 at 30 A g -1 ) and good long-term cycling stability (94.3% capacitance retention after 20 000 cycles). The proposed electrode construction strategy is favorable for fabrication of other advanced supercapacitor electrodes.

  5. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.

    2017-08-01

    Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.

  6. Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.

    PubMed

    Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun

    2016-11-01

    In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes.

    PubMed

    Kim, Yang-Rae; Bong, Sungyool; Kang, Yeon-Joo; Yang, Yongtak; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck

    2010-06-15

    Dopamine plays a significant role in the function of human metabolism. It is important to develop sensitive sensor for the determination of dopamine without the interference by ascorbic acid. This paper reports the synthesis of graphene using a modified Hummer's method and its application for the electrochemical detection of dopamine. Electrochemical measurements were performed at glassy carbon electrode modified with graphene via drop-casting method. Cyclic voltammogram of ferri/ferrocyanide redox couple at graphene modified electrode showed an increased current intensity compared with glassy carbon electrode and graphite modified electrode. The decrease of charge transfer resistance was also analyzed by electrochemical impedance spectroscopy. The capacity of graphene modified electrode for selective detection of dopamine was confirmed in a sufficient amount of ascorbic acid (1 mM). The observed linear range for the determination of dopamine concentration was from 4 microM to 100 microM. The detection limit was estimated to be 2.64 microM. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects

    PubMed Central

    Bareket-Keren, Lilach; Hanein, Yael

    2013-01-01

    Carbon nanotube (CNT) coatings have been demonstrated over the past several years as a promising material for neuronal interfacing applications. In particular, in the realm of neuronal implants, CNTs have major advantages owing to their unique mechanical and electrical properties. Here we review recent investigations utilizing CNTs in neuro-interfacing applications. Cell adhesion, neuronal engineering and multi electrode recordings with CNTs are described. We also highlight prospective advances in this field, in particular, progress toward flexible, bio-compatible CNT-based technology. PMID:23316141

  9. Comparative study of all-printed polyimide humidity sensors with single- and multiwalled carbon nanotube gas-permeable top electrodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yuan, Zihan

    2017-05-01

    We have developed printed capacitive humidity sensors with highly gas permeable carbon nanotube top electrodes using solution techniques. The hydrophobic, porous multiwalled carbon nanotube (MWCNT) network was suitable for gas permeation, and the response of the capacitive humidity sensors was faster than that of a device with a single-walled carbon nanotube (SWCNT) top electrode. The newly developed measurement system consisting of a small measurement chamber, a computer-controlled high-speed solenoid valve, and a mass-flow controller enabled us to vary the ambient relative humidity within 0.1 s. A comparative study of the devices consisting of a 1.1-µm-thick partially fluorinated polyimide dielectric layer and an MWCNT or SWCNT top electrode revealed that the rise time (humidification process) of the device with MWCNTs (0.49 s) in the transient measurement was almost 3 times shorter than that with SWCNTs (1.48 s) owing to the hydrophobic surface of the MWCNTs. A much larger difference was observed during the drying process (recovery time) probably owing to the hydrophilic parts of the SWCNT surface. It was revealed that the response time was almost proportional to the square of the thickness of the polyimide dielectric layer, d, and the sensitivity was inversely proportional to d. The rise time decreased to 0.15 s and a sensitivity per unit area of 12.1 pF %RH-1 cm-2 was obtained in a device with 0.6-µm-thick polyimide and MWCNT top electrodes. This value is suitable for use in high-speed humidity sensors to realize a real-time humidity and breath-sensing measurement system.

  10. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  11. Improvement on the Repair Effect of Electrochemical Chloride Extraction Using a Modified Electrode Configuration

    PubMed Central

    Feng, Wei; Xu, Jinxia; Jiang, Linhua; Song, Yingbin; Cao, Yalong; Tan, Qiping

    2018-01-01

    To improve the repair effect of electrochemical chloride extraction, a modified electrode configuration is applied in this investigation. In this configuration, two auxiliary electrodes placed in the anodic and cathodic electrolytes were used as the anode and cathode, respectively. Besides this, the steel in the mortar was grounded to protect it from corrosion. By a comparative experiment, the potential evolution, various ions concentrations (Cl−, OH−, Na+, and K+) in different mortar depths, the corrosion potential, and the current density of the steel were measured. The results indicate that compared to electrochemical chloride extraction with the traditional electrode configuration, this electrochemical chloride extraction method with a modified electrode configuration has a similar chloride removal ratio. Besides this, potential of steel is just about 800 mV for a saturated calomel electrode (SCE) during the treatment, which did not reach the hydrogen evolution potential. The phenomenon of the accumulation of OH−, Na+, and K+ did not occur when the modified electrode configuration is applied. Additionally, higher corrosion potentials and lower corrosion current rates were measured after performing electrochemical chloride extraction with the modified electrode configuration. Additionally, it is a short period of time for the steel to go from activation to passivation. On this basis, the modified electrode configuration may overcome the drawbacks of electrochemical chloride extraction. PMID:29389855

  12. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode.

    PubMed

    Li, Yu-Ping; Cao, Hong-Bin; Zhang, Yi

    2007-01-01

    Hemoglobin (Hb) was immobilized on carbon nanotube (CNT) electrode to catalyze the dehalogenation of haloacetic acids (HAAs). FTIR and UV measurements were performed to investigate the activity-keep of Hb after immobilization on CNT. The electrocatalytic behaviors of the Hb-loaded electrode for the dehalogenation of HAAs were studied by cyclic voltammmetry and constant-potential electrolysis technique. An Hb-loaded packed-bed flow reactor was also constructed for bioelectrocatalytic dehalogenation of HAAs. The results showed that Hb retained its nature, the essential features of its native secondary structure, and its biocatalytic activity after immobilization on CNT. Chloroacetic acids and bromoacetic acids could be dehalogenated completely with Hb catalysis through a stepwise dehalogenation process at -0.400V (vs. saturated calomel electrode (SCE)) and -0.200V (vs. SCE), respectively. The removal of 10.5mM trichloroacetic acid and dichloroacetic acid is ca. 97% and 63%, respectively, with electrolysis for 300min at -0.400V (vs. SCE) using the Hb-loaded packed-bed flow reactor, and almost 100% of tribromoacetic acid and dibromoacetic acid was removed with electrolysis for 40min at -0.200V (vs. SCE). The average current efficiency of Hb-catalytic dehalogenation almost reaches 100%.

  13. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.

    PubMed

    Song, Tian-Shun; Peng-Xiao; Wu, Xia-Yuan; Zhou, Charles C

    2013-07-01

    Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m(-2), which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.

  14. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    NASA Astrophysics Data System (ADS)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  15. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells.

    PubMed

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O

    2015-08-21

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  16. Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2016-11-01

    Vertically aligned multiwalled carbon nanotubes (MWCNT) were grown on Si substrate coated with alumina and iron using chemical vapor deposition. Electrode gap of 10, 25 and 50 µm were adopted to determine the effect of varying gap spacing on the sensing properties such as voltage breakdown, sensitivity and selectivity for three gases namely argon, carbon dioxide and ammonia. Argon has the lowest voltage breakdown for every electrode gap. The fabricated MWCNT based gas sensor drastically reduced the voltage breakdown by 89.5% when the electrode spacing is reduced from 50 µm to 10 µm. The reduction is attributed to the high non-uniform electric field between the electrodes caused by the protrusion of nanotips. The sensor shows good sensitivity and selectivity with the ability to detect the gas in the mixture with air provided that the concentration is ≥ 20% where the voltage breakdown will be close to the pure gas.

  17. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  18. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  19. Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode.

    PubMed

    Chen, Wei; Niu, Xueliang; Li, Xiaoyan; Li, Xiaobao; Li, Guangjiu; He, Bolin; Li, Qiutong; Sun, Wei

    2017-11-01

    Palladium-graphene (Pd-GR) nanocomposite was acted as modifier for construction of the modified electrode with direct electrochemistry of hemoglobin (Hb) realized. By using Nafion as the immobilization film, Hb was fixed tightly on Pd-GR nanocomposite modified carbon ionic liquid electrode. Electrochemical behaviors of Hb modified electrode were checked by cyclic voltammetry and a pair of redox peaks originated from direct electron transfer of Hb was appeared. The Hb modified electrode had excellent electrocatalytic activity to the reduction of trichloroacetic acid and sodium nitrite in the concentration range from 0.6 to 13.0mmol·L -1 and from 0.04 to 0.5 mmol·L -1 . Therefore Pd-GR nanocomposite was proven to be a good candidate for the fabrication of third-generation electrochemical biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  1. New β-Cyclodextrin Entrapped in Polyethyleneimine Film-Modified Electrodes for Pharmaceutical Compounds Determination

    PubMed Central

    Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert

    2013-01-01

    The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544

  2. Study of gas adsorption on as-produced and modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rawat, Dinesh Singh

    Volumetric adsorption isotherm measurements were used to study the adsorption characteristics of Ethane (C2H6) and Butane (C 4H10) on as-produced single-walled carbon nanotubes. The binding energy of the adsorbed alkane molecule was found to increase with increasing carbon chain length. Two adsorption substeps were obtained for each alkane molecule. However, the size of the high pressure substep was found to be gradually smearing with the increase in size of the adsorbed molecule. This phenomenon is interpreted as size entropy effect for linear molecules. This interpretation was also verified by determining the specific surface area of the substrate using linear molecules of different sizes. Kinetics measurements of alkane adsorption on SWNTs were also conducted and their dependence on the molecular length was determined. Similar adsorption measurements were performed for Argon (Ar) on as-produced single-walled carbon nanotubes and nanotubes that were structurally modified using acid treatment. Enhancement of the sorptive capacity and the presence of two distinct kinetics of gas adsorption verified partial opening of single walled carbon nanotubes as a result of chemical treatment. Mutiwalled carbon nanotubes were exposed to oxygen plasma treatment for varying time periods. Afterwards, adsorption measurements of Methane (CH 4) were conducted on untreated and oxygen plasma treated tubes. The presence of an additional substep, after exposing multiwalled carbon nanotubes to oxygen plasma for varying time periods, suggested progressive cleaning of nanotube surface.

  3. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis

    PubMed Central

    March, Gregory; Nguyen, Tuan Dung; Piro, Benoit

    2015-01-01

    Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789

  4. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  5. Determination of caffeic acid in wine using PEDOT film modified electrode.

    PubMed

    Bianchini, C; Curulli, A; Pasquali, M; Zane, D

    2014-08-01

    A novel method using PEDOT (poly(3,4-ethylenedioxy) thiophene) modified electrode was developed for the determination of caffeic acid (CA) in wine. Cyclic voltammetry (CV) with the additions standard method was used to quantify the analyte at PEDOT modified electrodes. PEDOT films were electrodeposited on Platinum electrode (Pt) in aqueous medium by galvanostatic method using sodium poly(styrene-4-sulfonate) (PSS) as electrolyte and surfactant. CV allows detecting the analyte over a wide concentration range (10.0nmoll(-1)-6.5mmoll(-1)). The electrochemical method proposed showed good statistical and analytical parameters as linearity range, LOD, LOQ and sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  7. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes.

    PubMed

    Xu, Bin; Ye, Min-Ling; Yu, Yu-Xiang; Zhang, Wei-De

    2010-07-26

    In this report, a highly sensitive amperometric sensor based on MnO(2)-modified vertically aligned multiwalled carbon nanotubes (MnO(2)/VACNTs) for determination of hydrogen peroxide (H(2)O(2)) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO(2)/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H(2)O(2) at the MnO(2)/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO(2)/VACNTs nanocomposite electrode exhibits a linear dependence (R=0.998) on the concentration of H(2)O(2) from 1.2 x 10(-6)M to 1.8 x 10(-3)M, a high sensitivity of 1.08 x 10(6) microA M(-1) cm(-2) and a detection limit of 8.0 x 10(-7) M (signal/noise=3). Meanwhile, the MnO(2)/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and D-(+)-glucose, etc. In addition, the sensor based on the MnO(2)/VACNTs nanocomposite electrode was applied for the determination of trace of H(2)O(2) in milk with high accuracy, demonstrating its potential for practical application. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process.

    PubMed

    Tian, Jiangnan; Olajuyin, Ayobami Matthew; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-06-01

    The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe(2+) dosage and current density were optimized, and comparison among different modified methods-polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT-showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m(2) and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.

  9. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    PubMed

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  10. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.

    PubMed

    Zestos, Alexander G; Jacobs, Christopher B; Trikantzopoulos, Elefterios; Ross, Ashley E; Venton, B Jill

    2014-09-02

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals.

  11. Immobilization of glucose oxidase into a nanoporous TiO₂ film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer.

    PubMed

    Cui, Hui-Fang; Zhang, Kuan; Zhang, Yong-Fang; Sun, Yu-Long; Wang, Jia; Zhang, Wei-De; Luong, John H T

    2013-08-15

    Glucose oxidase (GOD) was adsorbed into a nanoporous TiO₂ film layered on the surface of an iron phthalocyanine (FePc) vertically-aligned carbon nanotube (CNT) modified electrode. A Nafion film was then dropcast on the electrode's surface to improve operational and storage stabilities of the GOD-based electrode. Scanning electron microscopy (SEM) micrographs revealed the formation of FePc and nanoporous TiO₂ nanoparticles along the sidewall and the tip of CNTs. Cyclic voltammograms of the GOD electrode in neutral PBS exhibited a pair of well-defined redox peaks, attesting the direct electron transfer of GOD (FAD/FADH₂) with the underlying electrode. The potential of glucose electro-oxidation under nitrogen was ∼+0.12 V with an oxidation current density of 65.3 μA cm(-2) at +0.77 V. Voltammetric and amperometric responses were virtually unaffected by oxygen, illustrating an efficient and fast direct electron transfer. The modification of the CNT surface with FePc resulted in a biosensor with remarkable detection sensitivity with an oxygen-independent bioelectrocatalysis. In deaerated PBS, the biosensor displayed average response time of 12 s, linearity from 50 μM to 4 mM, and a detection limit of 30 μM (S/N=3) for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes.

    PubMed

    Rivas, Gustavo A; Miscoria, Silvia A; Desbrieres, Jacques; Barrera, Gustavo D

    2007-01-15

    We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity=(0.28+/-0.02)muAmM(-1), r=0.997), fast (4s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700V with detection and quantification limits of 0.035 and 0.107mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.

  13. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    PubMed

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  14. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

    PubMed

    Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei

    2012-12-01

    We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.

  15. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2-Zn2SnO4 nanocomposites paste electrode

    NASA Astrophysics Data System (ADS)

    Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H.

    2016-02-01

    The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. Then, a chemically modified electrode based on incorporating SnO2-Zn2SnO4 into multi-walled carbon nanotube paste matrix (MWCNTs/SnO2-Zn2SnO4/CPE) was prepared for the simultaneous determination of morphine(MO) and codeine (CO). The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry, and chronoamperometry. The MWCNTs/SnO2-Zn2SnO4/CPE showed an efficient electrocatalytic activity for the oxidation of MO and CO. The separation of the oxidation peak potential for MO-CO was about 550 mV. The calibration curves obtained for MO and CO were in the ranges of 0.1-310 μmol L-1 and 0.1-600.0 μmol L-1, respectively. The detection limits (S/N = 3) were 0.009 μmol L-1 for both drugs. The method also successfully employed as a selective, simple, and precise method for the determination of MO and CO in pharmaceutical and biological samples.

  16. Separation of Single-Walled Carbon Nanotubes with DEP-FFF

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Peng, Haiqing; Alvarez, Noe; Mendes, Manuel; Pasquali, Matteo

    2011-01-01

    A process using a modified dielectrophoresis device separates single-walled carbon nanotubes (SWNTs) according to their polarizability in electric fields. This depends on the size and dielectric constant of individual nanotubes and easily separates metallic from semiconducting nanotubes. Separation by length has also been demonstrated. Partial separation (enrichment) according to bandgap (which is linked to polarizability) has also been shown and can be improved to full separation of individual types of semiconducting SWNTs with better control over operational parameters and the length of SWNT starting material. This process and device can be scaled affordably to generate useful amounts of semiconducting SWNTs for electronic device development and production. In this study, a flow injection dielectrophoresis technique was used with a modified dielectrophoresis device. The length, width, and height of the modified chamber were 28, 2.5, and 0.025 cm, respectively. On the bottom of the chamber, there are two arrays of 50-m-wide, 2-m-thick gold electrodes, which are connected to an AC voltage generator and are alternately arranged so that every electrode is adjacent to two electrodes of the opposite polar. There is an additional plate electrode on the top of the chamber that is negatively biased. During the experiment, a syringe pump constantly pumps in the mobile phase, 1-percent sodium dodecylbenzene sulfonate (SDBS) solution, into the chamber. The frequency and voltage are set to 1 MHz and 10 V peak-to-peak, respectively. About 150 micro-L of SWNTs in 1- percent SDBS decanted solution are injected to the mobile phase through a septum near the entrance of the chamber. The flow rate of the mobile phase is set to 0.02 cu cm/min. The injected SWNTs sample flows through the chamber before it is lead into a fluorescence flow-through cell and collected for further analysis. The flow-through cell has three windows, thus allowing the fluorometer to collect fluorescence

  17. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-01-26

    Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.

  18. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  19. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  20. The electrochemical performance of graphene modified electrodes: an analytical perspective.

    PubMed

    Brownson, Dale A C; Foster, Christopher W; Banks, Craig E

    2012-04-21

    We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.

  1. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    PubMed

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  2. Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eungje; Salgado, Ruben Arash; Lee, Byeongdu

    Thermal management remains one of the major challenges in the design of safe and reliable Li-ion batteries. We show that composite electrodes assembled from commercially available 100 μm long carbon nanotubes (CNTs) and LiCoO2 (LCO) particles demonstrate the in-plane thermal conductivity of 205.8 W/m*K. This value exceeds the thermal conductivity of dry conventional laminated electrodes by about three orders of magnitude. The cross-plane thermal conductivity of CNT-based electrodes is in the same range as thermal conductivities of conventional laminated electrodes. The CNT-based electrodes demonstrate a similar capacity to conventional laminated design electrodes, but revealed a better rate performance and stability.more » The introduction of diamond particles into CNT-based electrodes further improves the rate performance. Our lightweight, flexible electrode design can potentially be a general platform for fabricating polymer binder- and aluminum and copper current collector- free electrodes from a broad range of electrochemically active materials with efficient thermal management.« less

  3. Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance

    PubMed Central

    2013-01-01

    One-dimensional anodic titanium oxide (ATO) nanotube arrays hold great potential as photoanode for photoelectrochemical (PEC) water splitting. In this work, we report a facile and eco-friendly electrochemical hydrogenation method to modify the electronic and PEC properties of ATO nanotube films. The hydrogenated ATO (ATO-H) electrodes present a significantly improved photocurrent of 0.65 mA/cm2 in comparison with that of pristine ATO nanotubes (0.29 mA/cm2) recorded under air mass 1.5 global illumination. The incident photon-to-current efficiency measurement suggests that the enhanced photocurrent of ATO-H nanotubes is mainly ascribed to the improved photoactivity in the UV region. We propose that the electrochemical hydrogenation induced surface oxygen vacancies contribute to the substantially enhanced electrical conductivity and photoactivity. PMID:24047205

  4. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Wiggins-Camacho, Jaclyn D; Stevenson, Keith J

    2011-04-15

    Nitrogen-doped carbon nanotube (N-CNT) mat electrodes exhibit high catalytic activity toward O(2) reduction, which can be exploited for the remediation of free cyanide (CN(-)). During the electrochemical O(2) reduction process, the hydroperoxide anion (HO(2)(-)) is formed and then reacts to chemically oxidize cyanide (CN(-)) to form cyanate (OCN(-)). The proposed electrochemical-chemical (EC) mechanism for CN(-) remediation at N-CNTs is supported by cyclic voltammetry and bulk electrolysis, and the formation of OCN(-) is confirmed via spectroscopic methods and electrochemical simulations. Our results indicate that by exploiting their catalytic behavior for O(2) reduction, N-CNTs can efficiently convert toxic CN(-) to the nontoxic OCN(-).

  5. Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes

    NASA Astrophysics Data System (ADS)

    Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir

    Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.

  6. Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode.

    PubMed

    Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S

    2015-12-01

    The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Voltammetric determination of homocysteine using multiwall carbon nanotube paste electrode in the presence of chlorpromazine as a mediator.

    PubMed

    Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali

    2012-01-01

    We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1-210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.

  8. Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries.

    PubMed

    Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J

    2015-05-04

    A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.

  9. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  10. Application of a palladium hexacyanoferrate film-modified aluminum electrode to electrocatalytic oxidation of hydrazine.

    PubMed

    Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini

    2005-11-01

    A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes.

  11. "Quasi-freestanding" graphene-on-single walled carbon nanotube electrode for applications in organic light-emitting diode.

    PubMed

    Liu, Yanpeng; Jung, Eun; Wang, Yu; Zheng, Yi; Park, Eun Ji; Cho, Sung Min; Loh, Kian Ping

    2014-03-12

    An air-stable transparent conductive film with "quasi-freestanding" graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer-by-layer transfer (LBL) on quartz, and modified by 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light-emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m(2) , current efficiency ≈14.7 cd/A). Most importantly, the entire graphene-on-SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly-flexible OLED device, which continues to function without degradation in performance at bending angles >60°. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  13. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  14. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    NASA Astrophysics Data System (ADS)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  15. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting.

    PubMed

    Li, Haoyi; Chen, Shuangming; Zhang, Ying; Zhang, Qinghua; Jia, Xiaofan; Zhang, Qi; Gu, Lin; Sun, Xiaoming; Song, Li; Wang, Xun

    2018-06-22

    Great attention has been focused on the design of electrocatalysts to enable electrochemical water splitting-a technology that allows energy derived from renewable resources to be stored in readily accessible and non-polluting chemical fuels. Herein we report a bifunctional nanotube-array electrode for water splitting in alkaline electrolyte. The electrode requires the overpotentials of 58 mV and 184 mV for hydrogen and oxygen evolution reactions respectively, meanwhile maintaining remarkable long-term durability. The prominent performance is due to the systematic optimization of chemical composition and geometric structure principally-that is, abundant electrocatalytic active sites, excellent conductivity of metallic 1T' MoS 2 , synergistic effects among iron, cobalt, nickel ions, and the superaerophobicity of electrode surface for fast mass transfer. The electrode is also demonstrated to function as anode and cathode, simultaneously, delivering 10 mA cm -2 at a cell voltage of 1.429 V. Our results demonstrate substantial improvement in the design of high-efficiency electrodes for water electrolysis.

  16. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    PubMed

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  17. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    PubMed

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes.

    PubMed

    Ghaedi, Hamed; Afkhami, Abbas; Madrakian, Tayyebeh; Soltani-Felehgari, Farzaneh

    2016-02-01

    A new chemically modified carbon paste electrode (CMCPE) was applied to the simple, rapid, highly selective and sensitive determination of citalopram in human serum and pharmaceutical preparations using adsorptive square wave voltammetry (ASWV). The ZnO nanoparticles and multi-walled carbon nanotubes modified CPE (ZnO-MWCNT/CPE) electrode was prepared by incorporation of the ZnO nanoparticles and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection and the linear range were found to be 0.005 and 0.012 to 1.54μmolL(-1) of citalopram, respectively. The effects of potentially interfering substances on the determination of this compound were investigated and found that the electrode is highly selective. The proposed CMCPE was used to the determination of citalopram in human serum, urine and pharmaceutical samples. This reveals that ZnO-MWCNT/CPE shows excellent analytical performance for the determination of citalopram in terms of very low detection limit, high sensitivity, very good repeatability and reproducibility over other methods reported in the literature. Copyright © 2015. Published by Elsevier B.V.

  19. Low-cost electrodes for stable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  20. Flammable and noxious gas sensing using a microtripolar electrode sensor with diameter and chirality sorted single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Duan, Zhe min; Zhang, Yong

    2013-08-01

    We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.

  1. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-01

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and

  2. Disposable DNA biosensor with the carbon nanotubes-polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines.

    PubMed

    Galandová, Júlia; Ovádeková, Renáta; Ferancová, Adriana; Labuda, Ján

    2009-06-01

    A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)(3)](2+) redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)(6)](3-/4-) indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT-PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT-PEI interface exhibited better properties than the MWCNT-chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time.

  3. Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Karakaya, Mehmet; Zhu, Jingyi; Raghavendra, Achyut J.; Podila, Ramakrishna; Parler, Samuel G.; Kaplan, James P.; Rao, Apparao M.

    2014-12-01

    Although carbon nanomaterials are being increasingly used in energy storage, there has been a lack of inexpensive, continuous, and scalable synthesis methods. Here, we present a scalable roll-to-roll (R2R) spray coating process for synthesizing randomly oriented multi-walled carbon nanotubes electrodes on Al foils. The coin and jellyroll type supercapacitors comprised such electrodes yield high power densities (˜700 mW/cm3) and energy densities (1 mW h/cm3) on par with Li-ion thin film batteries. These devices exhibit excellent cycle stability with no loss in performance over more than a thousand cycles. Our cost analysis shows that the R2R spray coating process can produce supercapacitors with 10 times the energy density of conventional activated carbon devices at ˜17% lower cost.

  4. Poly(3,3‴-didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan Yuan; Shi, Yumeng; Chen, Fuming; Mhaisalkar, S. G.; Li, Lain-Jong; Ong, Beng S.; Wu, Yiliang

    2007-11-01

    A solution processable method for employing single-walled carbon nanotubes (SWCNTs) as bottom contact source/drain electrodes for a significant reduction of contact resistance in poly(3,3‴-didodecylquarterthiophene) based organic field effect transistors (OFETs) is proposed. A two order of magnitude reduction in contact resistance and up to a threefold improvement in field effect mobilities were observed in SWCNT contacted OFETs as opposed to similar devices with gold source/drain electrodes. Based on Kelvin probe measurements, this improvement was attributed to a reduction in the Schottky barrier for hole injection into organic semiconductor.

  5. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    NASA Astrophysics Data System (ADS)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  6. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2011-09-01

    IrOx nanofoils (IrOxNF) of high surface area are sputtered on multi-wall carbon nanotubes (CNT) in the preparation of a structured electrode on a stainless steel (SUS) substrate for supercapacitor applications. This IrOx/CNT/SUS electrode is featured with intriguing IrOx curved foils of 2-3 nm in thickness and 400-500 nm in height, grown on top of the vertically aligned CNT film with a tube diameter of ~ 40 nm. These nanofoils are moderately oxidized during reactive sputtering and appeared translucent under the electron microscope. Detailed structural analysis shows that they are comprised of contiguous grains of iridium metal, iridium dioxide, and glassy iridium oxide. Considerable Raman line broadening is also evidenced for the attributed nanosized iridium oxides. Two capacitive properties of the electrode are significantly enhanced with addition of the curved IrOx foils. First, IrOxNF reduces the electrode Ohmic resistance, which was measured at 3.5 Ω cm2 for the CNT/SUS and 2.5 Ω cm2 for IrOxNF/CNT/SUS using impedance spectroscopy. Second, IrOxNF raises the electrode capacitance from 17.7 F g - 1 (CNT/SUS) to 317 F g - 1 (IrOx/CNT/SUS), measured with cyclic voltammetry. This notable increase is further confirmed by the galvanostatic charge/discharge experiment, measuring 370 F g - 1 after 2000 uninterrupted cycles between - 1.0 and 0.0 V (versus Ag/AgCl).

  7. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.

    PubMed

    Lee, Seung Min; Kim, Jeong Hun; Park, Cheolsoo; Hwang, Ji-Young; Hong, Joung Sook; Lee, Kwang Ho; Lee, Sang Hoon

    2016-01-01

    We fabricated a carbon nanotube (CNT)/adhesive polydimethylsiloxane (aPDMS) composite-based dry electroencephalograph (EEG) electrode for capacitive measuring of EEG signals. As research related to brain-computer interface applications has advanced, the presence of hairs on a patient's scalp has continued to present an obstacle to recorder EEG signals using dry electrodes. The CNT/aPDMS electrode developed here is elastic, highly conductive, self-adhesive, and capable of making conformal contact with and attaching to a hairy scalp. Onto the conductive disk, hundreds of conductive pillars coated with Parylene C insulation layer were fabricated. A CNT/aPDMS layer was attached on the disk to transmit biosignals to the pillar. The top of disk was designed to be solderable, which enables the electrode to connect with a variety of commercial EEG acquisition systems. The mechanical and electrical characteristics of the electrode were tested, and the performances of the electrodes were evaluated by recording EEGs, including alpha rhythms, auditory-evoked potentials, and steady-state visually-evoked potentials. The results revealed that the electrode provided a high signal-to-noise ratio with good tolerance for motion. Almost no leakage current was observed. Although preamplifiers with ultrahigh input impedance have been essential for previous capacitive electrodes, the EEGs were recorded here by directly connecting a commercially available EEG acquisition system to the electrode to yield high-quality signals comparable to those obtained using conventional wet electrodes.

  8. Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weiying; Du, Dan; Gunaratne, Don

    Phosphomolybdate functionalized graphene nanocomposite (PMo 12-GS) has been successfully formed on a glassy carbon electrode (GCE) for the detection of ascorbic acid (AA). The obtained PMo 12-GS modified GCE, was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy and compared with GCE, GS modified GCE, and PMo 12 modified GCE. It shows an increased current and a decrease in over-potential of ~210 mV. The amperometric signals are linearly proportional to the AA concentration in a wide concentration range from 1×10 -6 M to 8×10 -3 M, with a detection limit ofmore » 0.5×10 -6 M. Finally, the PMo 12-GS modified electrode was employed for the determination of the AA level in vitamin C tablets, with recoveries between 96.3 and 100.8 %.« less

  9. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors.

    PubMed

    Deng, Lingjuan; Gu, Yuanzi; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-05-15

    The practical application of graphene (GR) has still been hindered because of its unsatisfied physical and chemical properties resulting from the irreversible agglomerates. Preparation of GR-based materials with designed porosities is essential for its practical application. In this work, a facile and scalable method is developed to synthesize carbon nanotubes/holey graphene (CNT/HGR) flexible film using functional CNT and HGR as precursors. Owing to the existence of the small amount CNT, the CNT-5/HGR flexible film with a 3D conductive interpenetrated architecture exhibit significantly improved ion diffusion rate compared to that of the HGR. Moreover, CNT-5/HGR flexible film can be used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 268Fg -1 , excellent rate capabilities, and superior cycling stabilities. CNT-5/HGR flexible film could be used to fabricate high-performance flexible supercapacitors electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    PubMed

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  11. Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole

    NASA Astrophysics Data System (ADS)

    Muppariqoh, N. M.; Wahyuni, W. T.; Putra, B. R.

    2017-03-01

    Vitamin B1 (thiamine) is oxidized in alkaline medium and can be detected by cyclic voltammetry technique using carbon paste electrode (CPE) as a working electrode. polypyrrole-modified CPE were used in this study to increase sensitivity and selectivity measurement of thiamine. Molecularly imprinted polymers (MIP) of the modified CPE was prepared through electrodeposition of pyrrole. Measurement of thiamine performed in KCl 0.05 M (pH 10, tris buffer) using CPE and the modified CPE gave an optimum condition anodic current of thiamine at 0.3 V, potential range (-1.6_1 V), and scan rate of 100 mV/s. Measurement of thiamine using polypyrrole modified CPE (CPE-MIPpy) showed better result than CPE itself with detection limit of 6.9×10-5 M and quantitation limit 2.1×10-4 M. CPE-MIPpy is selective to vita min B1. In conclusion, CPE-MIPpy as a working electrode showed better performance of thiamine measurement than that of CPE.

  12. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    NASA Astrophysics Data System (ADS)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  13. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine.

    PubMed

    Rodthongkum, Nadnudda; Ruecha, Nipapan; Rangkupan, Ratthapol; Vachet, Richard W; Chailapakul, Orawon

    2013-12-04

    A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN)6](3-/4-) couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Preparation of AN Electrode Modified with a Thermostable Enzyme BACILLUS Subtilis COTA by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshio; Yamada, Yohei; Motonaka, Junko; Yabutani, Tomoki; Sakuraba, Haruhiko; Yasuzawa, Mikito

    In this study, electrodeposition of thermostable enzyme Bacillus subtilis CotA, which is a laccase and has a bilirubin oxidase (BOD) activity, was investigated. The electrodeposition was operated in a mixture of Bacillus subtilis CotA in the PBS (pH 8.0) and TritonX-100 under applying potential (1100 mV vs. Ag/AgCl for 5 min.). The current response was measured by linear sweep voltammetry technique (LSV). The thermostable enzyme Bacillus subtilis CotA electrodeposited electrode was compared with a mesophile BOD electrodeposited electrode. As a result, the Bacillus subtilis CotA modified electrode showed better sensitivity and long-term stability than the mesophile BOD modified electrode.

  15. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk.

    PubMed

    Dong, Jing; Zhao, Han; Xu, Minrong; Ma, Qiang; Ai, Shiyun

    2013-12-01

    A sensitive and stable label-free electrochemical impedance immunosensor for the detection of Salmonella typhimurium was developed by immobilising anti-Salmonella antibodies onto the gold nanoparticles and poly(amidoamine)-multiwalled carbon nanotubes-chitosan nanocomposite film modified glassy carbon electrode (AuNPs/PAMAM-MWCNT-Chi/GCE). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to verify the stepwise assembly of the immunosensor. Co-addition of MWCNT, PAMAM and AuNPs greatly enhanced the sensitivity of the immunosensor. The immobilisation of antibodies and the binding of Salmonella cells to the modified electrode increased the electron-transfer resistance (Ret), which was directly measured with EIS using [Fe(CN)6](3-/4-) as a redox probe. A linear relationship of Ret and Salmonella concentration was obtained in the Salmonella concentration range of 1.0×10(3) to 1.0×10(7) CFU mL(-1) with a detection limit of 5.0×10(2) CFU mL(-1). Additionally, the proposed method was successfully applied to determine S. typhimurium content in milk samples with satisfactory results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode.

    PubMed

    Koçak, Çağrı Ceylan; Nas, Asiye; Kantekin, Halit; Dursun, Zekerya

    2018-07-01

    This work reports the synthesis of new symmetrically substituted manganese(III) phthalocyanine (2eOHMnPc) (2) containing tetra 5-chloroquinolin-8-yloxy group at the peripheral position for the first time. Manganese(III) phthalocyanine (2) was synthesized by cyclotetramerization of 4-(5-chloroquinolin-8-yloxy)phthalonitrile (1) in the presence of corresponding metal salt (manganese(II) chloride). This peripherally substituted phthalocyanine complex (2) was purified by column chromatography and characterized by several techniques such as IR, mass and UV-Visible spectral data. This novel synthesized phthalocyanine was mixed with multiwalled carbon nanotubes in order to prepare the novel catalytic surface on glassy carbon electrode for theophylline and caffeine detection in acidic medium. The novel composite electrode surfaces were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Individual and simultaneous determination of theophylline and caffeine were studied by differential pulse voltammetry. The detection limits were individually calculated for theophylline and caffeine as 6.6 × 10 -9 M and 5.0 × 10 -8 M, respectively. In simultaneous determination, LODs were calculated for theophylline and caffeine as 8.1 × 10 -9 M and 3.0 × 10 -7 M, respectively. The practical applicability of the proposed modified electrode was tested for the determination of theophylline and caffeine in green tea, cola and theophylline serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  18. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus

    NASA Astrophysics Data System (ADS)

    Minnikanti, Saugandhika; Pereira, Marilia G. A. G.; Jaraiedi, Sanaz; Jackson, Kassandra; Costa-Neto, Claudio M.; Li, Qiliang; Peixoto, Nathalia

    2010-02-01

    Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm-2) and in vitro (1.008 mC cm-2) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1β and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1β is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1β are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1β signaling cascade but not that of TLR2.

  19. Electrochemical characteristics of flexible micro supercapacitors with reduced graphene oxide-carbon nanotubes composite electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig

    2018-06-01

    In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.

  20. Electrochemical Detection of p-Aminophenol by Flexible Devices Based on Multi-Wall Carbon Nanotubes Dispersed in Electrochemically Modified Nafion

    PubMed Central

    Scandurra, Graziella; Antonella, Arena; Ciofi, Carmine; Saitta, Gaetano; Lanza, Maurizio

    2014-01-01

    A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs–Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 μM, with a detection limit of 90 nM and a sensitivity of 7 μA·(μM−1)·cm−2. PMID:24854357

  1. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process

    PubMed Central

    Lu, Longsheng; Liang, Linsheng; Teh, Kwok Siong; Xie, Yingxi; Wan, Zhenping; Tang, Yong

    2017-01-01

    Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD). Second, a single CNTs/CF monofilament was selected and encapsulated into a CNTs/CFME with a simple packaging method. The morphologies of as-prepared CNTs/CFs were characterized by scanning electron microscopy. The electrochemical properties of CNTs/CFMEs were measured in potassium ferrocyanide solution (K4Fe(CN)6), by using a cyclic voltammetry (CV) and a chronoamperometry method. Compared with a bare CFME, a CNTs/CFME showed better CV curves with a higher distinguishable redox peak and response current; the higher the CNT content was, the better the CV curves were. Because the as-grown CNTs significantly enhanced the effective electrode area of CNTs/CFME, the contact area between the electrode and reactant was enlarged, further increasing the electrocatalytic active site density. Furthermore, the modified microelectrode displayed almost the same electrochemical behavior after 104 days, exhibiting remarkable stability and outstanding reproducibility. PMID:28358344

  2. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  3. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  4. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.

    PubMed

    Sameenoi, Yupaporn; Mensack, Meghan M; Boonsong, Kanokporn; Ewing, Rebecca; Dungchai, Wijitar; Chailapakul, Orawan; Cropek, Donald M; Henry, Charles S

    2011-08-07

    Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.

  5. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.

    PubMed

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2015-02-18

    A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.

  6. Voltammetric Determination of Homocysteine Using Multiwall Carbon Nanotube Paste Electrode in the Presence of Chlorpromazine as a Mediator

    PubMed Central

    Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R.; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali

    2012-01-01

    We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples. PMID:22675657

  7. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  8. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Guo, Chun Xian; Chitre, Amey Anil; Lu, Xianmao

    2014-03-14

    A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices.

  9. Electrochemical Determination of Pentachlorophenol in Water on a Multi-Wall Carbon Nanotubes-Epoxy Composite Electrode

    PubMed Central

    Remes, Adriana; Pop, Aniela; Manea, Florica; Baciu, Anamaria; Picken, Stephen J.; Schoonman, Joop

    2012-01-01

    The aim of this study was the preparation, characterization, and application of a multi-wall carbon nanotubes-epoxy composite electrode (MWCNT-EP) with 25%, wt. MWCNTs loading for the voltammetric/amperometric determination of pentachlorophenol (PCP) in aqueous solutions. The structural and morphological aspects of the MWCNT-EP composite electrode were examined by scanning electron microscopy. The electrical properties were characterized by direct-current conductivity measurements in relation with the percolation threshold. The electrochemical behavior of PCP at the MWCNT-EP composite electrode was investigated using cyclic voltammetry in 0.1 M Na2SO4 supporting electrolyte in order to establish the parameters for amperometric/voltammetric determination of PCP. The linear dependence of current vs. PCP concentrations was reached in a wide concentration range from 0.2 to 12 μM PCP using cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry, chronoamperometry, and multiple-pulsed amperometry techniques. The best electroanalytical performances of this composite electrode were achieved using a pre-concentration/square-wave voltammetric technique and also multiple-pulsed amperometry techniques envisaging the practical applications. The ease of preparation, high sensitivity, and stability of this composite electrode should open novel avenues and applications for fabricating robust sensors for detection of many important species. PMID:22969335

  10. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  11. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    PubMed Central

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-01-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g−1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g−1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g−1) and high energy density (98.1 Wh kg−1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation. PMID:28272474

  12. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

    PubMed

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-08

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  13. Construction of uric acid biosensor based on biomimetic titanate nanotubes.

    PubMed

    Tao, Haisheng; Wang, Xuebin; Wang, Xizhang; Hu, Yemin; Ma, Yanwen; Lu, Yinong; Hu, Zheng

    2010-02-01

    A uric acid biosensor has been fabricated through the immobilization of uricase on glassy carbon electrode modified by biomimetic titanate nanotubes of high specific surface area synthesized by hydrothermal decomposition. The so-constructed biosensor presents a high affinity to uric acid with a small apparent Michaelis-Menten constant of only 0.66 mM. The biosensor exhibits fairly good electrochemical properties such as the high sensitivity of 184.3 microAcm(-2)mM(-1), the fast response of less than 2 s, as well as the wide linear range from 1 microM to 5 mM. These performances indicate that titanate nanotubes could provide a favorable microenvironment for uricase immobilization, stabilize its biological activity, and function as an efficient electron conducting tunnel to facilitate the electron transfer. This suggests an important potential of titanate nanotubes in uric acid biosensors.

  14. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  15. Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2005-01-01

    We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,

  16. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes

    PubMed Central

    Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong

    2011-01-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822

  17. Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A

    2013-08-01

    We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Nanotubes, nanorods and nanowires having piezoelectric and/or pyroelectric properties and devices manufactured therefrom

    DOEpatents

    Russell, Thomas P [Amherst, MA; Lutkenhaus, Jodie [Wethersfield, CT

    2012-05-15

    Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or pyroelectric polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.

  19. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.

    PubMed

    Seo, Dong Han; Yick, Samuel; Han, Zhao Jun; Fang, Jing Hua; Ostrikov, Kostya Ken

    2014-08-01

    Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  1. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors.

    PubMed

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2011-09-02

    IrO(x) nanofoils (IrO(x)NF) of high surface area are sputtered on multi-wall carbon nanotubes (CNT) in the preparation of a structured electrode on a stainless steel (SUS) substrate for supercapacitor applications. This IrO(x)/CNT/SUS electrode is featured with intriguing IrO(x) curved foils of 2-3 nm in thickness and 400-500 nm in height, grown on top of the vertically aligned CNT film with a tube diameter of ∼ 40 nm. These nanofoils are moderately oxidized during reactive sputtering and appeared translucent under the electron microscope. Detailed structural analysis shows that they are comprised of contiguous grains of iridium metal, iridium dioxide, and glassy iridium oxide. Considerable Raman line broadening is also evidenced for the attributed nanosized iridium oxides. Two capacitive properties of the electrode are significantly enhanced with addition of the curved IrO(x) foils. First, IrO(x)NF reduces the electrode Ohmic resistance, which was measured at 3.5 Ω cm(2) for the CNT/SUS and 2.5 Ω cm(2) for IrO(x)NF/CNT/SUS using impedance spectroscopy. Second, IrO(x)NF raises the electrode capacitance from 17.7 F g(-1) (CNT/SUS) to 317 F g(-1) (IrO(x)/CNT/SUS), measured with cyclic voltammetry. This notable increase is further confirmed by the galvanostatic charge/discharge experiment, measuring 370 F g(-1) after 2000 uninterrupted cycles between - 1.0 and 0.0 V (versus Ag/AgCl).

  3. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  4. Interaction of carbohydrate modified boron nitride nanotubes with living cells.

    PubMed

    Emanet, Melis; Şen, Özlem; Çobandede, Zehra; Çulha, Mustafa

    2015-10-01

    Boron nitride nanotubes (BNNTs) are composed of boron and nitrogen atoms and they show significantly different properties from their carbon analogues (carbon nanotubes, CNTs). Due to their unique properties including low electrical conductivity, and imaging contrast and neutron capture properties; they can be used in biomedical applications. When their use in biological fields is considered, the route of their toxic effect should be clarified. Therefore, the study of interactions between BNNTs and living systems is important in envisaging biological applications at both cellular and sub-cellular levels to fully gain insights of their potential adverse effects. In this study, BNNTs were modified with lactose, glucose and starch and tested for their cytotoxicity. First, the interactions and the behavior of BNNTs with bovine serum albumin (BSA), Dulbecco's Modified Eagle's Medium (DMEM) and DMEM/Nutrient Mixture F-12Ham were investigated. Thereafter, their cellular uptake and the cyto- and genotoxicity on human dermal fibroblasts (HDFs) and adenocarcinoma human alveolar basal epithelial cells (A549) were evaluated. HDFs and A549 cells internalized the modified and unmodified BNNTs, and BNNTs were found to not cause significant viability change and DNA damage. A higher uptake rate of BNNTs by A549 cells compared to HDFs was observed. Moreover, a concentration-dependent cytotoxicity was observed on A549 cells while they were safer for HDFs in the same concentration range. Based on these findings, it can be concluded that BNNTs and their derivatives made with biomacromolecules might be good candidates for several applications in medicine and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Determination of atropine sulfate using a novel sensitive DNA-biosensor based on its interaction on a modified pencil graphite electrode.

    PubMed

    Ensafi, Ali A; Nasr-Esfahani, Parisa; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2015-01-01

    A novel, selective, rapid and simple electrochemical method is developed for the determination of atropine sulfate. UV-Vis and differential pulse voltammetry are used to study the interaction of atropine sulfate with salmon sperm ds-DNA on the surface of salmon sperm ds-DNA modified-pencil graphite electrode (PGE). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs), titanium dioxide nanoparticles (TiO2NPs), and poly-dialyldimethylammonium chloride (PDDA) decorated with ds-DNA is tested for the determination of atropine sulfate. The electrochemical oxidation peak current of adenine and guanine bonded on the surface of ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE is used to obtain the analytical signal. Decreases in the intensities of guanine and adenine oxidation signals after their interaction with atropine sulfate are used as indicator signals for the sensitive determination of atropine sulfate. Using ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE and based on the guanine signal, linear calibration curves were obtained in the range of 0.6 to 30.0 μmol L(-1) and 30.0 to 600.0 μmol L(-1) atropine sulfate with low detection limits of 30.0 nmol L(-1). The biosensor shows a good selectivity for the determination of atropine sulfate. Finally, the applicability of the biosensor is evaluated by measuring atropine sulfate in real samples with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  7. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na

    2017-10-01

    In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.

  8. Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina

    2018-01-01

    Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.

  9. Graphene-carbon nanotube hybrid materials and use as electrodes

    DOEpatents

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  10. A modified ion-selective electrode method for measurement of chloride in sweat.

    PubMed

    Finley, P R; Dye, J A; Lichti, D A; Byers, J M; Williams, R J

    1978-06-01

    A modified method of analysis of sweat chloride concentration with an ion-selective electrode is presented. The original method of sweat chloride analysis proposed by the Orion Research Corporation (Cambridge, Massachusetts 02139) is inadequate because it produces erratic and misleading results. The modified method was compared with the reference quantitative method of Gibson and Cooke. In the modified method, individual electrode pads are cut and placed in the electrodes rather than using the pads supplied by the company; pilocarpine nitrate (2,000 mg/l) is used in place of pilocarpine HCl (640 mg/l); sodium bicarbonate as the weak electrolyte is used instead of K2SO4. A 10-minute period for sweat accumulation is employed rather than a zero-time collection as in the original Orion method. The modification has been studied for reproducibility in individuals, reproducibility between right and left arm in individuals; it has been compared extensively with the quantitative method of Gibson and Cooke, both in normal individuals and in patients with cystic fibrosis. There is excellent agreement between the modified method and the quantitative reference method. There appears to be a slight bias toward higher concentrations of chloride from the right arm compared with the left arm, but this difference is not medically significant.

  11. Vertically Aligned Co9 S8 Nanotube Arrays onto Graphene Papers as High-Performance Flexible Electrodes for Supercapacitors.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Li, Jianwei; Han, Yan; Li, Dejun

    2018-02-16

    Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co 9 S 8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co 9 S 8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g -1 at 10 A g -1 ). These results demonstrate that the new nanostructured Co 9 S 8 /GPs can be potentially applied in high performance flexible supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells.

    PubMed

    Dong, Pei; Pint, Cary L; Hainey, Mel; Mirri, Francesca; Zhan, Yongjie; Zhang, Jing; Pasquali, Matteo; Hauge, Robert H; Verduzco, Rafael; Jiang, Mian; Lin, Hong; Lou, Jun

    2011-08-01

    A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 μm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.

  13. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors.

    PubMed

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-28

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.

  14. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    PubMed Central

    Oliveira Silva, Andréa Claudia; de Oliveira, Luis Carlos Ferreira; Vieira Delfino, Angladis; Meneghetti, Mario Roberto

    2016-01-01

    The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV) and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV), the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples. PMID:27882263

  15. Photoactuation behavior of styrene-b-isoprene-b-styrene filled with covalently modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mosnáček, Jaroslav; Ilčíková, Markéta; Chorvát, Dušan; Czaniková, Klaudia; Krupa, Igor

    2012-07-01

    Styrene-b-isoprene-b-styrene (Kraton) was used as polymer matrix for preparation of multiwall carbon nanotubes (MWCNT) based nanocomposites. In order to suppress aggregation of the he carbon nanotubes and to improve the interations with the Kraton matrix, the MWCNT were modified with cholesteryl molecules and/or polystyrene chains. The effect of the modification on the composite materials was evaluated by using DMTA. The nanocomposite materials were thermoformed to achieve Braille text elements and their elastic response to light (photoactuation) was tested by atomic force microscopy in a contact mode.

  16. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  17. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Tang, Yao; Song, Junhua

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promisingmore » electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less

  18. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  19. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s-1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g-1 with ultrahigh energy and power density of 62.96 W h kg-1 and 566.66 W kg-1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  20. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    PubMed Central

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-01-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s−1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g−1 with ultrahigh energy and power density of 62.96 W h kg−1 and 566.66 W kg−1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED. PMID:26395922

  1. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors.

    PubMed

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-23

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s(-1), the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g(-1) with ultrahigh energy and power density of 62.96 W h kg(-1) and 566.66 W kg(-1) respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  2. MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li

    Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.

  3. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays.

    PubMed

    Kim, Jae-Hun; Zhu, Kai; Yan, Yanfa; Perkins, Craig L; Frank, Arthur J

    2010-10-13

    We report on the synthesis and electrochemical properties of oriented NiO-TiO(2) nanotube (NT) arrays as electrodes for supercapacitors. The morphology of the films prepared by electrochemically anodizing Ni-Ti alloy foils was characterized by scanning and transmission electron microscopies, X-ray diffraction, and photoelectron spectroscopies. The morphology, crystal structure, and composition of the NT films were found to depend on the preparation conditions (anodization voltage and postgrowth annealing temperature). Annealing the as-grown NT arrays to a temperature of 600 °C transformed them from an amorphous phase to a mixture of crystalline rock salt NiO and rutile TiO(2). Changes in the morphology and crystal structure strongly influenced the electrochemical properties of the NT electrodes. Electrodes composed of NT films annealed at 600 °C displayed pseudocapacitor (redox-capacitor) behavior, including rapid charge/discharge kinetics and stable long-term cycling performance. At similar film thicknesses and surface areas, the NT-based electrodes showed a higher rate capability than the randomly packed nanoparticle-based electrodes. Even at the highest scan rate (500 mV/s), the capacitance of the NT electrodes was not much smaller (within 12%) than the capacitance measured at the slowest scan rate (5 mV/s). The faster charge/discharge kinetics of NT electrodes at high scan rates is attributed to the more ordered NT film architecture, which is expected to facilitate electron and ion transport during the charge-discharge reactions.

  4. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  5. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    PubMed

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  6. Direct and Dry Deposited Single-Walled Carbon Nanotube Films Doped with MoO(x) as Electron-Blocking Transparent Electrodes for Flexible Organic Solar Cells.

    PubMed

    Jeon, Il; Cui, Kehang; Chiba, Takaaki; Anisimov, Anton; Nasibulin, Albert G; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka

    2015-07-01

    Organic solar cells have been regarded as a promising electrical energy source. Transparent and conductive carbon nanotube film offers an alternative to commonly used ITO in photovoltaics with superior flexibility. This communication reports carbon nanotube-based indium-free organic solar cells and their flexible application. Direct and dry deposited carbon nanotube film doped with MoO(x) functions as an electron-blocking transparent electrode, and its performance is enhanced further by overcoating with PSS. The single-walled carbon nanotube organic solar cell in this work shows a power conversion efficiency of 6.04%. This value is 83% of the leading ITO-based device performance (7.48%). Flexible application shows 3.91% efficiency and is capable of withstanding a severe cyclic flex test.

  7. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

    PubMed

    Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming

    2013-04-21

    Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

  8. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    PubMed

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  9. Performance of Multi Walled Carbon Nanotubes Grown on Conductive Substrates as Supercapacitors Electrodes using Organic and Ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Winchester, Andrew; Ghosh, Sujoy; Turner, Ben; Zhang, X. F.; Talapatra, Saikat

    2012-02-01

    In this work we will present the use of Multi Walled Carbon Nanotubes (MWNT) directly grown on inconel substrates via chemical vapor deposition, as electrode materials for electrochemical double layer capacitors (EDLC). The performance of the MWNT EDLC electrodes were investigated using two electrolytes, an organic electrolyte, tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4 in PC), and a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements to obtain values for the capacitance and internal resistance of these devices will be presented and compared.

  10. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode.

    PubMed

    Dagar, Kusum; Pundir, C S

    2017-01-01

    An improved amperometric l-lactate biosensor was constructed based on covalent immobilization of lactate oxidase (LOx) from Pediococcus species onto carboxylated multiwalled carbon nanotubes (cMWCNT)/copper nanoparticles (CuNPs)/polyaniline (PANI) hybrid film electrodeposited on the surface of a pencil graphite electrode (PGE). The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS), while CuNPs synthesized by chemical reduction method, were characterized by transmission electron microscopy (TEM), UV spectrascopy and X-ray diffraction (XRD). The biosensor showed maximum response within 5s at pH 8.0 in 0.05M sodium phosphate buffer and 37°C, when operated at 20mVs -1 . The biosensor had a detection limit of 0.25μM with a wide working range between 1μM-2500μM. The biosensor was employed for measurement of l-lactic acid level in plasma of apparently healthy and diseased persons. Analytical recovery of added lactic acid in plasma was 95.5%. Within- and between-batch coefficients of variations were 6.24% and 4.19% respectively. There was a good correlation (R 2 =0.97) between plasma lactate values as measured by standard enzymatic spectrophotometric method and the present biosensor. The working enzyme electrode was used 180 times over a period of 140 days, when stored at 4°C. Copyright © 2016. Published by Elsevier Inc.

  11. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  12. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    PubMed

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  13. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  14. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    NASA Astrophysics Data System (ADS)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo; Han, Sheng

    2015-12-01

    A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO-La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO-La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO-La/CPE electrode for determining DA was linear in the region of 0.01-0.1 μM and 0.1-400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  15. An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes.

    PubMed

    Wei, Chengzhuo; Xu, Qi; Chen, Zeqi; Rao, Weida; Fan, Lingling; Yuan, Ye; Bai, Zikui; Xu, Jie

    2017-08-01

    A novel all-solid-state yarn supercapacitor (YSC) has been fabricated by using the cotton yarns coated with polypyrrole (PPy) nanotubes. The interconnected network structure of PPy can increase the surface area as well as the electrode/electrolyte interface area, thus resulting in improved electrochemical performance. For the proposed YSC, a high areal-specific capacitance of 74.0mFcm -2 and a desirable energy density of 7.5μWhcm -2 are achieved. The flexibility of the YSC demonstrates that it is suitable for the integration as flexible power sources in wearable electronic textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  17. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode

    NASA Astrophysics Data System (ADS)

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-01-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light ( λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  18. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum.

    PubMed

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2017-05-01

    Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM -1 cm -2 . The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SWCNT Supercapacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2011-02-01

    supercapacitor electrodes out of single-wall carbon nanotubes (SWCNT). We have found that it is best to use SWCNT solutions free from additives that...effect on the resulting specific capacitance, as did the deposition methods compared here. 15. SUBJECT TERMS Carbon nanotube , electrochemical...area may increase the capacitance of supercapacitors. Two materials being studied for this are carbon nanotubes (CNTs) and graphene. Graphene is a

  20. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.

    PubMed

    Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah

    2014-09-10

    We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.

  1. Inkjet Printing of Carbon Nanotubes

    PubMed Central

    Tortorich, Ryan P.; Choi, Jin-Woo

    2013-01-01

    In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology. PMID:28348344

  2. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi

    2016-06-15

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less

  3. Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer.

    PubMed

    Zhang, Ding; Yin, Yanli; Liu, Changhong; Fan, Shoushan

    2015-01-07

    A modified secondary lithium metal battery inserted with a polyaniline-carbon nanotube nanoporous composite buffer layer was fabricated. This unique and simple design of battery has the great potential to decrease the safety risk of the secondary Li metal battery in cycles of recharging processes and improve its cycle life in the future.

  4. Enhancing and optimizing electronic transport in biphenyl derivative single-molecule junctions attached to carbon nanotubes electrodes

    NASA Astrophysics Data System (ADS)

    Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2017-02-01

    We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.

  5. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  6. Interfacial characterization and supercapacitive properties of polyaniline-Gum arabic nanocomposite/graphene oxide LbL modified electrodes

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafaela D.; Santos, Cleverson S.; Ferreira, Rodolfo T.; Marciniuk, Gustavo; Marchesi, Luís F.; Garcia, Jarem R.; Vidotti, Marcio; Pessoa, Christiana A.

    2017-12-01

    In this manuscript, we describe the synthesis and electrochemical characterization of polyaniline-gum arabic nanocomposites and graphene oxide (PANI-GA/GO) modified electrodes with a detailed study concerning their supercapacitive properties. The electrode modification was carried out by using the Layer-by-Layer technique (LbL), where the PANI-GA nanocomposite dispersion was used as polycation and the GO colloidal dispersion as polyanion. The bilayer growth was followed by both UV-vis spectroscopy and cyclic voltammetry, and an increase in the characteristic PANI absorption and in the electrochemical signal was verified, confirming the electrode build up. Galvanostatic charge-discharge curves (GCDC) were performed to evaluate the supercapacitive properties of the modified electrodes, these results showed the dependence of the specific capacitance with the number of bilayers, where values of CS around 15 mF cm-2 (i = 0.1 mA cm-2) were found. Electrochemical impedance spectroscopy confirmed the pseudocapacitive properties of the modified electrodes, showing an increase in the low-frequency capacitance with the number of bilayers. Hereby the (PANI-GA/GO)-LbL electrodes were shown to be good candidates for active materials in supercapacitors.

  7. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.

    PubMed

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime.

    PubMed

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-06-07

    Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.

  9. Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode

    NASA Astrophysics Data System (ADS)

    Karthick Kannan, Padmanathan; Hu, Chunxiao; Morgan, Hywel; Moshkalev, Stanislav A.; Sekhar Rout, Chandra

    2016-09-01

    An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.

  10. Spray-coated single walled carbon nanotubes as source and drain electrodes in SnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ryu, Jae Hyeon; Baek, Geun-Woo; Kim, Seung Yeob; Kwon, Hyuck-In; Jin, Sung Hun

    2018-07-01

    In this letter, spray-coated single walled carbon nanotubes (SWNTs) as one of alternative electrodes in SnO thin-film transistors are demonstrated for emerging electronic applications. Herein, the device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. Moreover, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (∼1.49 kΩ cm), field effect mobility (∼0.69 cm2 V‑1 s‑1), sub-threshold slope (∼0.4 V dec‑1), and current on–off ratio (I on/I off ∼ 3.5 × 103). Systematic temperature dependency measurements elucidate that SnO channel transports with an activation energy within several tens of meV, together with decent contact resistance as compared to that of conventional Ni electrodes.

  11. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    PubMed

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  12. Nanotubular polyaniline electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Athira, A. R.; Vimuna, V. M.; Vidya, K.; Xavier, T. S.

    2018-05-01

    Polyaniline(PANI) nanotubes have been successfully synthesised at room temperature by the chemical oxidative polymerization of aniline with Ammoniumpersulphate(APS) in aqueous acetic acid. Chemically synthesised PANI nanotubes were characterized using Field emission scanning electron microscopy(FESEM), Brunauer - Emmett-Teller (BET) analysis, X ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The super capacitive performance of the synthesised PANI nanotubes was tested using cyclic voltammetry (CV) technique in H2SO4 electrolyte with in potential range of -0.2 to 0.8V. The effect of scan rates on specific capacitance of PANI electrode was studied. The highest specific capacitance of 232.2Fg-1 was obtained for the scan rate of 5mVs-1. This study suggests that the synthesized PANI nanotubes are excellent candidate for developing electrode materials for supercapacitors.

  13. Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells

    NASA Astrophysics Data System (ADS)

    Rezaei, Behzad; Majidi, Najmeh; Noori, Shokoofe; Hassan, Zuhair M.

    2011-12-01

    Artemisinin regarded as one of the most promising anticancer drugs can bind to DNA with a binding constant of 1.04 × 104 M-1. The electrochemical experiments indicated that for longer incubation time periods, the reduction peak current of artemisinin on carbon nanotube modified electrode increases. Therefore, the uptake of drug molecules from a solution into CNTs will be achieved automatically by adsorption of 88.7% of artemisinin onto carbon nanotubes surface without alteration in drug properties. Hence, capability of carbon nanotubes to have synergistic effect on the bioavailability of artemisinin was investigated. Experimental tests on K562 cancer cell lines growth by MTT assay proved that multi-walled carbon nanotubes can enhance the cytotoxity of artemisinin to the targeted cancer cells with unprecedented accuracy and efficiency. The IC50 values were 65 and 35 μM for artemisinin and artemisinin loaded on multi-walled carbon nanotubes, respectively; demonstrating that artemisinin loaded on multi-walled carbon nanotubes is more effective in inhibition of cancer cell lines growth.

  14. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.

    PubMed

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011

  15. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.

    PubMed

    Ma, Chih-Yu; Huang, Shih-Ching; Chou, Pei-Hsin; Den, Walter; Hou, Chia-Hung

    2016-03-01

    In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electrochemical characterisation of air electrodes based on La 0.6Sr 0.4CoO 3 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Thiele, Doreen; Züttel, Andreas

    The efficiency of fuel cells suffers from the high activation polarisation at the cathode, where the oxygen reduction reaction takes place. In order to improve the performance, air electrodes composed of carbon nanotubes (CNTs) and the perovskite La 0.6Sr 0.4CoO 3 are produced by two different methods and investigated. In the first method CNTs are directly grown on the perovskite and in the second method CNTs and perovskite are combined by ultrasonic mixing. Their catalytic activity towards oxygen reduction in alkaline solution is evaluated by polarisation curves and electrochemical impedance spectroscopy. Best performance shows the electrode composed of 25 wt% CNTs, 55 wt% La 0.6Sr 0.4CoO 3 and 20 wt% PTFE as binder, produced by ultrasonic mixing. The Nyquist plot of this electrode displays two potential-dependent semi-circles, accounting for processes on the catalyst surface and for processes depending on the morphology of the electrode.

  17. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  18. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    NASA Astrophysics Data System (ADS)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-04-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  19. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  20. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells.

    PubMed

    Joshi, Prakash; Zhou, Zhengping; Poudel, Prashant; Thapa, Amit; Wu, Xiang-Fa; Qiao, Qiquan

    2012-09-21

    A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (R(ct)) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm(2), much lower than that of the Pt electrode (1.81 Ω cm(2)). Such a low value of R(ct) indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (R(s)) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm(2), which was close to the R(s) of 5.77 Ω cm(2) of the Pt electrode, despite the significant difference in their thicknesses: ∼22 μm for Ni-CNT-CNF composite, while ∼40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (R(s-tot)) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (J(sc)) of 15.83 mA cm(-2), open circuit voltage (V(oc)) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with J(sc) of 15.01 mA cm(-2), V(oc) of 0.83, and FF of 0.67.

  1. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures.

    PubMed

    Aguiló-Aguayo, Noemí; Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-12-11

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.

  2. Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes.

    PubMed

    Cumba, Loanda R; Smith, Jamie P; Brownson, Dale A C; Iniesta, Jesús; Metters, Jonathan P; do Carmo, Devaney R; Banks, Craig E

    2015-03-07

    Recent work has reported the first electroanalytical detection of pindolol using reduced graphene oxide (RGO) modified glassy carbon electrodes [S. Smarzewska and W. Ciesielski, Anal. Methods, 2014, 6, 5038] where it was reported that the use of RGO provided significant improvements in the electroanalytical signal in comparison to a bare (unmodified) glassy carbon electrode. We demonstrate, for the first time, that the electroanalytical quantification of pindolol is actually possible using bare (unmodified) screen-printed graphite electrodes (SPEs). This paper addresses the electroanalytical determination of pindolol utilising RGO modified SPEs. Surprisingly, it is found that bare (unmodified) SPEs provide superior electrochemical signatures over that of RGO modified SPEs. Consequently the electroanalytical sensing of pindolol is explored at bare unmodified SPEs where a linear range between 0.1 μM-10.0 μM is found to be possible whilst offering a limit of detection (3σ) corresponding to 0.097 μM. This provides a convenient yet analytically sensitive method for sensing pindolol. The optimised electroanalytical protocol using the unmodified SPEs, which requires no pre-treatment (electrode polishing) or electrode modification step (such as with the use of RGO), was then further applied to the determination of pindolol in urine samples. This work demonstrates that the use of RGO modified SPEs have no significant benefits when compared to the bare (unmodified) alternative and that the RGO free electrode surface can provide electro-analytically useful performances.

  3. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.

    PubMed

    Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J

    2017-01-20

    Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    PubMed

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  5. Production and Characterization of Carbon Nanotubes and Nanotube-Based Composites

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Arepalli, Sivaram; Holmes, William; Gorelik, Olga; Files, Brad; Scott, Carl; Santos, Beatrice; Mayeaux, Brian; Victor, Joe

    1999-01-01

    The Nobel Prize winning discovery of the Buckuball (C60) in 1985 at Rice University by a group including Dr. Richard Smalley led to the whole new class of carbon allotropes including fullerenes and nanotubes. Especially interesting from many viewpoints are single-walled carbon nanotubes, which structurally are like a single graphitic sheet wrapped around a cylinder and capped at the ends. This cylinders have diameter as small as 0.5 - 2 nm (1/100,000th the diameter of a human hair) and are as long as 0.1 - 1 mm. Nanotubes are really individual molecules and believed to be defect-free, leading to high tensile strength despite their low density. Additionally, these fibers exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times higher than steel at one-sixth the weight, and high strain to failure. Thus it is believed that developments in the field of nanotechnology will lead to stronger and lighter composite materials for next generation spacecraft. Lack of a bulk method of production is the primary reason nanotubes are not used widely today. Toward this goal JSC nanotube team is exploring three distinct production techniques: laser ablation, arc discharge and chemical vapor deposition (CVD, in collaboration with Rice University). In laser ablation technique high-power laser impinges on the piece of carbon containing small amount of catalyst, and nanotubes self-assemble from the resulting carbon vapor. In arc generator similar vapor is created in arc discharge between carbon electrodes with catalyst. In CVD method nanotubes grow at much lower temperature on small catalyst particles from carbon-containing feedstock gas (methane or carbon monoxide). As of now, laser ablation produces cleanest material, but mass yield is rather small. Arc discharge produces grams of material, but purity is low. CVD technique is still in baby steps, but preliminary results look promising, as well as perspective of scaling the process

  6. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Tang, Yao; Song, Junhua

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less

  7. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    DOE PAGES

    Li, Xing; Tang, Yao; Song, Junhua; ...

    2017-12-06

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less

  8. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Young; Kim, Kwang Heon; Kim, Kwang Bum

    Carbon nanotube (CNT)/polypyrrole (PPy) composites with controlled pore size in a three-dimensional entangled structure of a CNT film are prepared as electrode materials for a pseudocapacitor. A CNT film electrode containing nanosize silica between the CNTs is first fabricated using an electrostatic spray deposition of a mixed suspension of CNTs and nanosize silica on to a platinium-coated silicon wafer. Later, nanosize silica is removed leaving a three-dimensional entangled structure of a CNT film. Before removal of the silica from the CNT/silica film electrode, PPy is electrochemically deposited on to the CNTs to anchor them in their entangled structure. Control of the pore size of the final CNT/PPy composite film can be achieved by changing the amount of silica in the mixed suspension of CNTs and nanosize silica. Nanosize silica acts as a sacrificial filler to change the pore size of the entangled CNT film. Scanning electron microscopy of the electrochemically prepared PPy on the CNT film substrate shows that the PPy nucleated heterogeneously and deposited on the surface of the CNTs. The specific capacitance and rate capability of the CNT/PPy composite electrode with a heavy loading of PPy of around 80 wt.% can be improved when it is made to have a three-dimensional network of entangled CNTs with interconnected pores through pore size control.

  9. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface ofmore » carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.« less

  10. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor.

    PubMed

    Heydari, Hamid; Gholivand, Mohammad B; Abdolmaleki, Abbas

    2016-09-01

    In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS-MWCNTs composite sensor (CuNS-MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800μM with a low detection limit of 70nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50-800μM with the detection limit of 4.3μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. Copyright © 2016. Published by Elsevier B.V.

  11. Electrochemical detection of Hg (II) ions using EDTA-PANI/SWNTs nanocomposite modified SS electrode

    NASA Astrophysics Data System (ADS)

    Deshmukh, M. A.; Patil, H. K.; Shirsat, M. D.; Ramanavicius, A.

    2017-05-01

    Detection of Hg (II) ions using EDTA modified polyaniline (PANI) and single walled carbon nanotubes (SWNTs) nanocomposite (PANI/SWNTs) was performed electrochemically via cyclic voltammetry (CV) technique. Dodecyl benzene sulphonic next step, PANI/SWNTs nanocomposite was modified acid sodium salt (DBSA) was used as a surfactant during this synthesis to get uniform suspension SWNTs. In the by EDTA solution containing crosslinking agent 1-ethyl-3(3-(dimethylamino) propyl) - carbodiimide (EDC) utilizing dip coating technique. The sensitivity of EDTA modified PANI/SWNTs nanocomposite towards Hg (II) ions was investigated. Differential pulse voltammetry (DPV) technique was applied for the electrochemical detection of Hg (II) ions.

  12. Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Wong, Eric W. (Inventor); Baron, Richard L. (Inventor); Epp, Larry (Inventor)

    2008-01-01

    Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.

  13. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  14. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

    PubMed Central

    Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D.Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy

    2015-01-01

    Objective The dorsal root ganglion (DRG) is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multiwall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as the result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main Results Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities. PMID:25485675

  15. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion

    NASA Astrophysics Data System (ADS)

    Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D. Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy

    2015-02-01

    Objective. The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach. Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main results. Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance. This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.

  16. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  17. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  18. Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Fu, Meimei; Ge, Chongyong; Hou, Zhaohui; Cao, Jianguo; He, Binhong; Zeng, Fanyan; Kuang, Yafei

    2013-07-01

    Graphene/vanadium oxide nanotubes (VOx-NTs) composite was successfully synthesized through the hydrothermal process in which acetone as solvent and 1-hexadecylamine (HDA) as structure-directing template were used. Morphology, structure and composition of the as-obtained composite were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen isothermal adsorption/desorption and thermo gravimetric analysis (TGA). The composite with the VOx-NTs amount of 69.0 wt% can deliver a specific capacitance of 210 F/g at a current density of 1 A/g in 1 M Na2SO4 aqueous solution, which is nearly twice as that of pristine graphene (128 F/g) or VOx-NTs (127 F/g), and exhibit a good performance rate. Compared with pure VOx-NTs, the cycle stability of the composite was also greatly improved due to the enhanced conductivity of the electrode and the structure buffer role of graphene.

  19. Direct determination of creatinine based on poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode.

    PubMed

    Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide

    2016-05-01

    In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Porous carbon derived from aniline-modified fungus for symmetrical supercapacitor electrodes

    DOE PAGES

    Wang, Keliang; Xu, Ming; Wang, Xiaomin; ...

    2017-01-23

    N incorporated carbon materials are proven to be efficient EDLCs electrode materials. In this work, aniline modified fungus served as a raw material, and N-doped porous activated carbon is prepared via an efficient KOH activation method. A porous network with a high specific surface area of 2339 m 2g -1 is displayed by the prepared carbon material, resulting in a high accessible surface area and low ion diffusion resistance which is desirable for EDLC electrode materials. In assembled EDLCs, the N–AC based electrode exhibits a specific capacitance of 218 F g -1 at a current density of 0.1 A gmore » -1. Besides, excellent stability is displayed after 5000 continuous cycles at different current densities ranging from 0.1 to 10 A g -1. Thus, the present work reveals a promising candidate for electrode materials of EDLCs.« less

  1. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sensitive and selective determination of Cu2+ at D-penicillamine functionalized nano-cellulose modified pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Ahour, F.; Keshipour, S.

    2018-06-01

    A novel electrochemical sensor based on D-penicillamine anchored nano-cellulose (DPA-NC) modified pencil graphite electrode was fabricated and used for highly selective and sensitive determination of copper (II) ions in the picomolar concentration by square wave adsorptive stripping voltammetric (SWV) method. The modified electrode showed better and increased SWV response compared to the bare and NC modified electrodes which may be related to the porous structure of modifier along with formation of complex between Cu2+ ions and nitrogen or oxygen containing groups in DPA-NC. Optimization of various experimental parameters influence the performance of the sensor, were investigated. Under optimized condition, DPA-NC modified electrode was used for the analysis of Cu2+ in the concentration range from 0.2 to 50 pM, and a lower detection limit of 0.048 pM with good stability, repeatability, and selectivity. Finally, the practical applicability of DPA-NC-PGE was confirmed via measuring trace amount of Cu (II) in tap and river water samples.

  3. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study.

    PubMed

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-07-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.

  4. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study

    PubMed Central

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-01-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode. PMID:28671561

  5. Transport Modeling for Metallic Electrode: Semiconducting Nanotube Systems

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently, current-voltage (I-V) characteristics have been reported by Collins et al. for a system with a scanning tunneling microscope (STM) tip and a carbon nanotube. The STM tip was driven forward into a film of many entangled nanotubes on a substrate, and then was retracted, so that one of nanotubes bridged the STM and the film. I-V characteristics had two different patterns for different heights. One showed large dI/ dV with V greater than 0, small dI/dV with V less than 0, and I = 0 near V = 0 (type-I), while the other showed rectification, i.e., I does not equal 0 only with V less than 0 (type-II), with the tip grounded. We propose a physical mechanism to explain the observed I-V patterns. We consider that the observed characteristics strongly reflected the nature of the tip (metal) - nanotube (semiconductor) contact. The other end of the nanotube was entangled well in the film, and simply provided a good Ohmic contact. We will argue that there are two different contact modes: vacuum gap and touching modes, depending on the presence or absence of a tiny vacuum gap d approx. 0.1 - 0.2 nm at the junction. These modes may be related to physisorption and chemisorption, respectively. Once admitting their existence, it is naturally shown that I-V characteristics are type-I in the vacuum gap mode, and type-II in the touching mode. We argue that the nanotube had to be an n-type semiconductor judging from the I-V characteristics, contrary to often observed p-type in the transistor applications, where p-type is probably due to the oxidation in air or the trapped charges in the silicon dioxide. Additional information is contained in the original extended abstract.

  6. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery.

    PubMed

    Park, Minjoon; Jung, Yang-jae; Kim, Jungyun; Lee, Ho il; Cho, Jeaphil

    2013-10-09

    Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. The electrode with the composite catalyst prepared at 700 °C (denoted as CNF/CNT-700) demonstrates the best electrocatalytic properties toward the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples among the samples prepared at 500, 600, 700, and 800 °C. Moreover, this composite electrode in the full cell exhibits substantially improved discharge capacity and energy efficiency by ~64% and by ~25% at 40 mA·cm(-2) and 100 mA·cm(-2), respectively, compared to untreated CF electrode. This outstanding performance is due to the enhanced surface defect sites of exposed edge plane in CNF and a fast electron transfer rate of in-plane side wall of the CNT.

  7. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  8. Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You

    2016-09-01

    Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.

  9. Electrodeposition of Ni and CeO₂/Ni Nanotubes for Hydrogen Evolution Reaction Electrode.

    PubMed

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2018-07-01

    Ni NTs and CeO2-Ni nanotubes (NTs) have been prepared by galvanostatic electrodeposition in anodic aluminum oxide (AAO) Templates. Scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopic (EDS) and X-ray Diffraction (XRD) are used to characterize the prepared NTs. The results showed that the preparation process of CeO2-Ni NTs was accompanied by the formation of many new phases CeNix (x = 1, 2, 3.5 or 5) and preferential orientation crystal face of Ni in CeO2-Ni NTs is 〈111〉, which is different from that Ni 〈200〉 in Ni NTs. Then linear scan voltammetry (LSV) is applied to test the electrocatalytic activity for hydrogen revolution reaction (HER) of the two electrodes in 1 M NaCl aqueous solution and find that both of the two materials exhibited good performance. Finally, the kinetics analyses from the HER process showed that Tafel slope b was mainly dependent on phase composition and electric conductivity of the electrode, while j0 was mainly dependent on its real specific surface area.

  10. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  11. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Patry, JoAnne L. (Inventor); Smits, Jan M. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor); Wincheski, Russell A. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  12. Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes

    PubMed Central

    2012-01-01

    Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile, hydrophilic one showed that platinum was hardly deposited within the porous layer, and a film of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effects, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal. PMID:22720690

  13. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: an amperometric sensor for determination of butylated hydroxyanisole (BHA).

    PubMed

    Prabakar, S J Richard; Narayanan, S Sriman

    2006-12-01

    A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.

  14. P(VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications.

    PubMed

    Li, Xue; Lim, Yee-Fun; Yao, Kui; Tay, Francis Eng Hock; Seah, Kar Heng

    2013-01-14

    Poly(vinylidene-fluoride-co-trifluoroethylene) (P(VDF-TrFE)) ferroelectric nanotube arrays were fabricated using an anodized alumina membrane (AAM) as a template and silver electrodes were deposited on both the outer and inner sides of the nanotubes by an electroless plating method. The nanotubes have the unique structure of being sealed at one end and linked at the open end, thus preventing electrical shorting between the inner and outer electrodes. Compared with a P(VDF-TrFE) film with a similar overall thickness, the idealized nanotube array has a theoretical capacitance that is 763 times larger due to the greatly enlarged contact area between the electrodes and the polymer dielectric. A capacitance that is 95 times larger has been demonstrated experimentally, thus indicating that such nanotube arrays are promising for realizing high density capacitance and high power dielectric energy storage.

  15. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    PubMed

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO 2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm -3 , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine

    PubMed Central

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-01-01

    Several neurological disorders such as Alzheimer’s disease and Parkinson’s disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations. PMID:29186040

  17. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine.

    PubMed

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-11-29

    Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.

  18. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  19. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  20. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

    PubMed

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2016-01-07

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.

  1. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    PubMed

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  2. SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases.

    PubMed

    Ghavami, Raouf; Salimi, Abdollah; Navaee, Aso

    2011-05-15

    For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures

    PubMed Central

    Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-01-01

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts. PMID:29232892

  4. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    NASA Astrophysics Data System (ADS)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  5. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection.

    PubMed

    Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo

    2013-10-15

    In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  6. Electrochemically reduced graphene oxide/Poly-Glycine composite modified electrode for sensitive determination of l-dopa.

    PubMed

    Palakollu, Venkata Narayana; Thapliyal, Neeta; Chiwunze, Tirivashe E; Karpoormath, Rajshekhar; Karunanidhi, Sivanandhan; Cherukupalli, Srinivasulu

    2017-08-01

    A facile preparation strategy based on electrochemical technique for the fabrication of glycine (Poly-Gly) and electrochemically reduced graphene oxide (ERGO) composite modified electrode was developed. The morphology of the developed composite (ERGO/Poly-Gly) was investigated using field emission scanning electron microscope (FE-SEM). The composite modified glassy carbon electrode (GCE) was characterized using fourier transform-infrared (FT-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical characterization results revealed that ERGO/Poly-Gly modified GCE has excellent electrocatalytic activity. Further, it was employed for sensing of l-dopa in pH5.5. Differential pulse voltammetry (DPV) was used for the quantification of l-dopa as well as for the simultaneous resolution of l-dopa and uric acid (UA). The LOD (S/N=3) was found to be 0.15μM at the proposed composite modified electrode. Determination of l-dopa could also be achieved in the presence of potentially interfering substances. The sensor showed high sensitivity and selectivity with appreciable reliability and precision. The proposed sensor was also successfully applied for real sample analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene-modified mesoscopic carbon-counter electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Han, Hongwei

    2013-01-01

    A monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene-modified mesoscopic carbon-counter electrode is developed. A TiO2-working electrode layer, ZrO2 spacer layer, and carbon counter electrode layer were constructed on a single conducting glass substrate by screen printing. The quasi-solid-state polymer gel electrolyte employed a polymer composite as the gelator, and effectively infiltrated the porous layers. Fabricated with normal carbon-counter electrode (NC-CE) containing graphite and carbon black, the DSSC had a power conversion efficiency (PCE) of 5.09% with the fill factor of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE was modified with graphene sheets, the PCE and fill factor were enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.

  8. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    PubMed

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  9. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.

    PubMed

    Aoi, Shoko; Mase, Kentaro; Ohkubo, Kei; Fukuzumi, Shunichi

    2015-06-25

    Electrocatalytic reduction of CO2 occurred efficiently using a glassy carbon electrode modified with a cobalt(II) chlorin complex adsorbed on multi-walled carbon nanotubes at an applied potential of -1.1 V vs. NHE to yield CO with a Faradaic efficiency of 89% with hydrogen production accounting for the remaining 11% at pH 4.6.

  10. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  11. Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes

    DOE PAGES

    Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew

    2017-02-22

    Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less

  12. Cerium phosphate nanotubes: synthesis, characterization and biosensing

    NASA Astrophysics Data System (ADS)

    Meng, Ling; Yang, Lige; Zhou, Bo; Cai, Chenxin

    2009-01-01

    Cerium phosphate (CeP) nanotubes have been synthesized and confirmed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The 1D nanomaterial has a monoclinic crystal structure with a mean width of 15-20 nm and a length up to several micrometers. The nanotubes have been employed as electrode substrates for immobilization and direct electrochemistry of heme proteins/enzymes with myoglobin (Mb) as a model. The electrochemical characteristics of the Mb-CeP/GC electrode were studied by voltammetry. After being immobilized on the nanotubes, Mb can keep its natural structure and undergo effective direct electron transfer reaction with a pair of well-defined redox peaks at -(367 ± 3) mV (pH 7.5). The apparent electron transfer rate constant is (9.1 ± 1.4) s-1. The electrode displays good features in the electrocatalytic reduction of H2O2, and thus can be used as a biosensor for detecting the substrate with a low detection limit (0.5 ± 0.05 µM), a wide linear range (0.01-2 mM), high sensitivity (14.4 ± 1.2 µA mM-1), as well as good stability and reproducibility. CeP nanotubes can become a simple and effective biosensing platform for the integration of heme proteins/enzymes and electrodes, which can provide analytical access to a large group of enzymes for a wide range of bioelectrochemical applications.

  13. Modified carbon nanotubes: from nanomedicine to nanotoxicology

    NASA Astrophysics Data System (ADS)

    Bottini, Massimo; Bottini, Nunzio

    2012-09-01

    Nanomedicine is the science of fabricating smart devices able to diagnose and treat diseases more efficiently than conventional medicine while minimizing costs, complexity and adverse effects. Carbon nanotubes (CNTs) are receiving considerable attention for biomedical applications due to their extraordinary properties. In particular, their chemical nature and high aspect ratio (ratio between the length and the diameter) make them ideal carriers to achieve delivery of high doses of therapeutic and imaging cargo to a specific site of interest. A major obstacle to the use of pristine (unmodified) CNTs in biological systems is their complete aqueous insolubility and low biocompatibility and toxicity profiles. To endow CNTs with solubility in a biological milieu, several non-covalent and covalent modification methods have been explored. Suitably modified CNTs have shown increased solubility under physiological conditions, improved biocompatibility profiles and lack of toxicity after injection in living animals. Additionally, after being loaded with cargo (small molecules, proteins, peptides or nucleic acids) they have been successfully evaluated as pharmaceutical, therapeutic and diagnostic tools.

  14. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode.

    PubMed

    Wang, Xiaofeng; You, Zheng; Sha, Hailiang; Cheng, Yong; Zhu, Huanhuan; Sun, Wei

    2014-10-01

    A DNA and graphene (GR) bi-layer modified carbon ionic liquid electrode (CILE) was fabricated by an electrodeposition method. GR nanosheets were electrodeposited on the surface of CILE at the potential of -1.3 V and then DNA was further deposited at the potential of +0.5 V on GR modified CILE. Electrochemical performances of the fabricated DNA/GR/CILE were carefully investigated. Then electrochemical behaviors of dopamine (DA) on the modified electrode were studied with the calculated electrochemical parameters. Under the optimized conditions, a linear relationship between the oxidation peak current and the concentration of DA was obtained in the range from 0.1 μmol/L to 1.0 mmol/L with a detection limit of 0.027 μmol/L (3σ). The modified electrode exhibited excellent reproducibility, repeatability, stability, validation and robustness for the electrochemical detection of DA. The proposed method was further applied to the DA injection solution and human urine samples determination with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  16. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  17. Investigation of the Ionization Mechanism of NAD+/NADH-Modified Gold Electrodes in ToF-SIMS Analysis.

    PubMed

    Hua, Xin; Zhao, Li-Jun; Long, Yi-Tao

    2018-06-04

    Analysis of nicotinamide adenine dinucleotide (NAD + /NADH)-modified electrodes is important for in vitro monitoring of key biological processes. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to analyze NAD + /NADH-modified gold electrodes. Interestingly, no obvious characteristic peaks of nicotinamide fragment could be observed in the mass spectra of NAD + /NADH in their neutral sodium pyrophosphate form. However, after acidification, the characteristic peaks for both NAD + and NADH were detected. This was due to the suppression effect of inner pyrophosphoric salts in both neutral molecules. Besides, it was proved that the suppression by inner salt was intramolecular. No obvious suppression was found between neighboring molecules. These results demonstrated the suppression effect of inner salts in ToF-SIMS analysis, providing useful evidence for the study of ToF-SIMS ionization mechanism of organic molecule-modified electrodes. Graphical Abstract ᅟ.

  18. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Wei, Tong; Fan, Zhuangjun; Qian, Weizhong; Zhang, Milin; Shen, Xiande; Wei, Fei

    Graphene nanosheet/carbon nanotube/polyaniline (GNS/CNT/PANI) composite is synthesized via in situ polymerization. GNS/CNT/PANI composite exhibits the specific capacitance of 1035 F g -1 (1 mV s -1) in 6 M of KOH, which is a little lower than GNS/PANI composite (1046 F g -1), but much higher than pure PANI (115 F g -1) and CNT/PANI composite (780 F g -1). Though a small amount of CNTs (1 wt.%) is added into GNS, the cycle stability of GNS/CNT/PANI composite is greatly improved due to the maintenance of highly conductive path as well as mechanical strength of the electrode during doping/dedoping processes. After 1000 cycles, the capacitance decreases only 6% of initial capacitance compared to 52% and 67% for GNS/PANI and CNT/PANI composites.

  19. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Development of electrochemical sensor for the determination of palladium ions (Pd2+) using flexible screen printed un-modified carbon electrode.

    PubMed

    Velmurugan, Murugan; Thirumalraj, Balamurugan; Chen, Shen-Ming; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed S

    2017-01-01

    To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd 2+ ) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd 2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd 2+ ions. Electrochemical determination of Pd 2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd 2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd 2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Biochips Containing Arrays of Carbon-Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.; Koehne, Jessica; Cassell, Alan; Chen, Hua

    2008-01-01

    Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples. Carbon nanotubes are attractive for use as nanoelectrodes for detection of biomolecules because of their nanoscale dimensions and their chemical properties.

  2. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    PubMed

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.

  3. Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: Enhanced activity and stability.

    PubMed

    Wu, Yifan; Gan, Ling; Zhang, Shupeng; Song, Haiou; Lu, Chang; Li, Wentao; Wang, Zheng; Jiang, Bicun; Li, Aimin

    2018-08-15

    A novel composite bimetallic electrode, palladium-nickel/multi-walled carbon nanotubes/graphite felt (Pd-Ni/MWCNTs/GF), was synthesized for the electrocatalytic hydrodechlorination of 4-chlorophenol (4-CP). GF with a three-dimensional structure was used as the electrode substrate, and doped with MWCNTs, which can improve the GF conductivity and serve as a skeleton for metal loading. Ni and Pd were deposited on the electrode surface stepwise to obtain a well-aligned, highly active and stable Pd-Ni/MWCNTs/GF electrode. The Pd-Ni/MWCNTs/GF cathode showed a high reactivity for the electrocatalytic hydrodechlorination of 4-CP; up to 100% removal of 4-CP was achieved within 30 min, and followed pseudo-first-order kinetics with a rate constant of 0.162 min -1 . Compared with other cathodes, the Pd-Ni/MWCNTs/GF electrode showed superior performance in 4-CP reduction. Excessive current will lower the reaction efficiency and current efficiency because of hydrogen evolution, and acidic solution conditions are more conducive to electrocatalytic reactions. Experiments confirmed that the Ni had a small amount of loss under acidic conditions but remained stable under neutral and alkaline conditions, whereas the loss of Pd for different pH values was constantly low. In cycle tests, the bimetallic electrode exhibits a better reactivity and stability than the single-metal Pd electrode in the long-term. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Gold-coated carbon nanotube electrode arrays: Immunosensors for impedimetric detection of bone biomarkers.

    PubMed

    Ramanathan, Madhumati; Patil, Mitali; Epur, Rigved; Yun, Yeoheung; Shanov, Vasselin; Schulz, Mark; Heineman, William R; Datta, Moni K; Kumta, Prashant N

    2016-03-15

    C-terminal telopeptide (cTx), a fragment generated during collagen degradation, is a key biomarker of bone resorption during the bone remodeling process. The presence of varying levels of cTx in the bloodstream can hence be indicative of abnormal bone metabolism. This study focuses on the development of an immunosensor utilizing carbon nanotube (CNT) electrodes coated with gold nanoparticles for the detection of cTx, which could ultimately lead to the development of an inexpensive and rapid point-of-care (POC) tool for bone metabolism detection and prognostics. Electrochemical impedance spectroscopy (EIS) was implemented to monitor and detect the antigen-antibody binding events occurring on the surface of the gold-deposited CNT electrode. Type I cTx was used as the model protein to test the developed sensor. The sensor was accordingly characterized at various stages of development for evaluation of the optimal sensor performance. The biosensor could detect cTx levels as low as 0.05 ng/mL. The feasibility of the sensor for point-of-care (POC) applications was further demonstrated by determining the single frequency showing maximum changes in impedance, which was determined to be 18.75 Hz. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.

    PubMed

    Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant

    2005-08-30

    A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.

  6. Organic electrode coatings for next-generation neural interfaces

    PubMed Central

    Aregueta-Robles, Ulises A.; Woolley, Andrew J.; Poole-Warren, Laura A.; Lovell, Nigel H.; Green, Rylie A.

    2014-01-01

    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes. PMID:24904405

  7. Intensification of electrochemiluminescence of luminol on TiO2 supported Au atomic cluster nano-hybrid modified electrode.

    PubMed

    Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng

    2012-04-21

    With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.

  8. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor.

    PubMed

    Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei

    2014-09-15

    The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  10. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium.

    PubMed

    Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh

    2014-02-01

    A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of cadmium. This sensor was designed by incorporation of multi-walled carbon nanotubes (MWCNTs) and a new synthesized Schiff base into the carbon paste ionic liquid electrode (CPE(IL)) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Cd(II). The detection limit of the method was found to be 0.08 μg L(-1) (S/N=3) that is lower than the maximum contaminant level of Cd(II) allowed by the Environmental Protection Agency (EPA) in standard drinking waters. The proposed electrode exhibits good applicability for monitoring Cd(II) in various real samples. © 2013.

  11. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon counter electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Li, Xiong; Liu, Guanghui; Wang, Heng; Ku, Zhiliang; Xu, Mi; Liu, Linfeng; Hu, Min; Yang, Ying; Han, Hongwei

    2013-03-01

    We have developed a monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene modified mesoscopic carbon counter electrode (GC-CE), which offers a promising prospect for commercial applications. Based on the design of a triple layer structure, the TiO2 working electrode layer, ZrO2 spacer layer and carbon counter electrode (CE) layer are constructed on a single conducting glass substrate by screen-printing. The quasi-solid-state polymer gel electrolyte employs a polymer composite as the gelator and could effectively infiltrate into the porous layers. Fabricated with normal carbon counter electrode (NC-CE) containing graphite and carbon black, the device shows a power conversion efficiency (PCE) of 5.09% with the fill factor (FF) of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE is modified with graphene sheets, the PCE and FF could be enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.

  12. Vertically aligned carbon nanotube probes for monitoring blood cholesterol

    NASA Astrophysics Data System (ADS)

    Roy, Somenath; Vedala, Harindra; Choi, Wonbong

    2006-02-01

    Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.

  13. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    PubMed

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  14. Composite electronic materials based on poly(3,4-propylenedioxythiophene) and highly charged poly(aryleneethynylene)-wrapped carbon nanotubes for supercapacitors.

    PubMed

    Rosario-Canales, Mariem R; Deria, Pravas; Therien, Michael J; Santiago-Avilés, Jorge J

    2012-01-01

    Supercapacitor charge storage media were fabricated using the semiconducting polymer poly(3,4-propylenedioxythiophene) (PProDOT) and single-walled carbon nanotubes (SWNTs) that were helically wrapped with ionic, conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES). These PNES-wrapped SWNTs (PNES-SWNTs) enable efficient dispersion of individualized nanotubes in a wide range of organic solvents. PNES-SWNT film-modified Pt electrodes were prepared by drop casting PNES-SWNT suspensions in MeOH; high stability, first-generation PProDOT/PNES/SWNT composites were realized via electropolymerization of the ProDOT parent monomer (3,4-propylenedioxythiophene) in a 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/propylene carbonate solution at the PNES-SWNT-modified electrode. The electrochemical properties of PProDOT and PProDOT/PNES/SWNT single electrodes and devices were examined using cyclic voltammetric methods. The hybrid composites were found to enhance key supercapacitor figures of merit (charge capacity and capacitance) by approximately a factor of 2 relative to those determined for benchmark Type I devices that exploited a classic PProDOT-based electrode material. The charge/discharge stability of the supercapacitors was probed by repeated rounds of cyclic voltammetric evaluation at a minimum depth of discharge of 73%; these experiments demonstrated that the hybrid PProDOT/PNES/SWNT composites retained ~90% of their initial charge capacity after 21,000 charge/discharge cycles, contrasting analogous data obtained for PProDOT-based devices, which showed only 84% retention of their initial charge capacity. © 2011 American Chemical Society

  15. Study the effect of active carbon modified using HNO3 for carbon electrodes in capacitive deionization system

    NASA Astrophysics Data System (ADS)

    Blegur, Ernes Josias; Endarko

    2017-01-01

    Carbon electrodes prepared with crosslink method for desalination purpose has been synthesized and characterized. The carbon electrodes were synthesized with activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using crosslink method with temperature crosslink at 120°C. Electrochemical properties of carbon electrodes were examined using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed study was to measure the salt-removal percentage of 330 µS/cm NaCl using a capacitive deionization (CDI) unit cell prepared with two pairs of carbon electrodes. The applied potential of 2.0 V and a flow rate of 25 mL/min were used to desalination tests. The result showed that the greatest value of the percentage of salt-removal was achieved at 36.1% for the carbon electrodes with Active Carbon Modified (ACM) while the salt-removal percentage for the Active Carbon (AC) electrodes only at 22%. The fact indicates that the active carbon modified using HNO3 can improve the efficiency of CDI about 14%.

  16. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  17. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    PubMed

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  18. Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gavilán Arriazu, E. M.; Pinto, O. A.

    2018-03-01

    We present a Monte Carlo study for the electrosorption of an electroactive species on a modified electrode. The surface of the electrode is modified by the irreversible adsorption of a non-electroactive species which is able to block a percentage of the adsorption sites. This generates an electrode with variable connectivity sites. A second species, electroactive in this case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we are interested in the analysis of the effect of the non-electroactive species near of critical regime, where the c(2 × 2) structure is formed. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of voltammograms, order parameters, isotherms, configurational entropy per site, at several values of energies and coverage degrees of the non-electroactive species.

  19. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.

    PubMed

    Chiu, Yi-Hsuan; Lai, Ting-Hsuan; Chen, Chun-Yi; Hsieh, Ping-Yen; Ozasa, Kazunari; Niinomi, Mitsuo; Okada, Kiyoshi; Chang, Tso-Fu Mark; Matsushita, Nobuhiro; Sone, Masato; Hsu, Yung-Jung

    2018-05-01

    Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO 2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO 2 , with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO 2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

  20. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [El Cerrito, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yiying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  1. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  2. Vanadium oxide-carbon nanotube composite electrodes for energy storage by supercritical fluid deposition: experiment design and device performance

    NASA Astrophysics Data System (ADS)

    Do, Quyet H.; Fielitz, Thomas R.; Zeng, Changchun; Arda Vanli, O.; Zhang, Chuck; Zheng, Jim P.

    2013-08-01

    Vanadium pentoxide (V2O5) deposited on porous multiwalled carbon nanotube (MWCNT) buckypaper using supercritical fluid CO2(scCO2) deposition shows excellent performance for electrochemical capacitors. However, the low weight loading of V2O5 is one of the main problems. In this paper, design of experiments and response surface methods were employed to explore strategies for improving the active material loading by increasing the organo-vanadium precursor adsorption. A second-order response surface model was fitted to the designed experiments to predict the loading of the vanadium precursors onto carbon nanotube buckypaper as a function of time, temperature and pressure of CO2, buckypaper functionalization, precursor type, initial precursor mass and stir speed. Operation conditions were identified by employing a model that led to a precursor loading of 19.33%, an increase of 72.28% over the initial screening design. CNTs-V2O5 composite electrodes fabricated from deposited samples using the optimized conditions demonstrated outstanding electrochemical performance (947.1 F g-1 of V2O5 at a high scan rate 100 mV s-1). The model also predicted operation conditions under which light precursor aggregation took place. The V2O5 from aggregated precursor still possessed considerable specific capacitance (311 F g-1 of V2O5 at a scan rate 100 mV s-1), and the significantly higher V2O5 loading (˜81%) contributed to an increase in overall electrode capacitance.

  3. Tunable multiwalled nanotube resonator

    DOEpatents

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  4. Tunable multiwalled nanotube resonator

    DOEpatents

    Zettl, Alex K [Kensington, CA; Jensen, Kenneth J [Berkeley, CA; Girit, Caglar [Albany, CA; Mickelson, William E [San Francisco, CA; Grossman, Jeffrey C [Berkeley, CA

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  5. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    NASA Astrophysics Data System (ADS)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  6. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    NASA Astrophysics Data System (ADS)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  7. Double-Sided Transparent TiO2 Nanotube/ITO Electrodes for Efficient CdS/CuInS2 Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Ling, Lanyu; Li, Fumin

    2017-01-01

    In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of quantum dots (QDs) on the working electrodes. Second, to increase the light absorption of the CdS-sensitized DTTO electrodes and improve the efficiency of charge separation in CdS-sensitized QDSSCs, copper indium disulfide (CuInS2) is selected to cosensitize the DTTO electrodes with CdS, which has a complementary property of light absorption with CdS. The PCEs of QDSSCs based on these prepared QD-sensitized DTTO electrodes are measured. Our experimental results show that compared to those based on the CdS/DTTO electrodes without CuInS2, the PCEs of the QDSSCs based on CdS/CuInS2-sensitized DTTO electrode are significantly improved, which is mainly attributed to the increased light absorption and reduced charge recombination. Under simulated one-sun illumination, the best PCE of 1.42% is achieved for the QDSSCs based on CdS(10)/CuInS2/DTTO electrode, which is much higher than that (0.56%) of the QDSSCs based on CdS(10)/DTTO electrode.

  8. Controlled Synthesis and Functionalization of Vertically-Aligned Carbon Nanotubes for Multifunctional Applications

    DTIC Science & Technology

    2015-05-07

    6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes

  9. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  10. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    PubMed

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  12. Chemically modified electrodes by nucleophilic substitution of chlorosilylated platinum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.

    1994-07-01

    Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.

  13. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  14. Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors

    PubMed Central

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Ruoff, Rodney S.; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Porous nanotubes comprised of MnO2 nanosheets were fabricated with a one-pot hydrothermal method using polycarbonate membrane as the template. The diameter and thickness of nanotubes can be controlled by choice of the membrane pore size and the chemistry. The porous MnO2 nanotubes were used as a supercapacitor electrode. The specific capacitance in a three-electrode system was 365 F g−1 at a current density of 0.25 A g−1 with capacitance retention of 90.4% after 3000 cycles. An asymmetric supercapacitor with porous MnO2 nanotubes as the positive electrode and activated graphene as the negative electrode yielded an energy density of 22.5 Wh kg−1 and a maximum power density of 146.2 kW kg−1; these values exceeded those reported for other MnO2 nanostructures. The supercapacitor performance was correlated with the hierarchical structure of the porous MnO2 nanotubes. PMID:24464344

  15. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles.

    PubMed

    Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A

    2018-03-25

    Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  16. Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction

    PubMed Central

    Harper, Alice; Anderson, Mark R.

    2010-01-01

    In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs) to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme. PMID:22163652

  17. Electrochemical glucose sensors--developments using electrostatic assembly and carbon nanotubes for biosensor construction.

    PubMed

    Harper, Alice; Anderson, Mark R

    2010-01-01

    In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs) to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.

  18. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  19. A hydrogel-mediated scalable strategy toward core-shell polyaniline/poly(acrylic acid)-modified carbon nanotube hybrids as efficient electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Liu, Qingqing; Bai, Zhengyu; Fan, Jingbiao; Sun, Zhipeng; Mi, Hongyu; Zhang, Qing; Qiu, Jieshan

    2018-04-01

    Structural failure of polyaniline (PANI) stemmed from repeated swelling-shrinkage during Faradic process represents an imminent issue hindering the real application of this material for advanced energy storage. Herein, we explore a clean and facile hydrogel-mediated layer-by-layer strategy to conformally coat a layer of oriented PANI nanofibers on multi-walled carbon nanotubes (MWCNTs) where a layer of UV-polymerized poly(acrylic acid) (PAA) hydrogel is first formed in between as electrodes for supercapacitors. Such an intriguing core-shell tri-component structure perfectly alleviates the drawbacks of PANI as well as combines the advantages of MWCNTs. Especially, the hydrogel used increases the adhesion between PANI and MWCNTs, buffers the structural variation of PANI during cycling, and provide extra driving force accelerating electrolyte penetration throughout active materials. Therefore, the well-intergrown hybrids (PANI/P-MWCNT) display high electrochemical performance as compared to PANI and PANI/MWCNT, i.e., an improved capacitance of 612.5 F g-1 at 0.5 A g-1, and excellent cycling behavior of 81.5% capacitance retention at 5 A g-1 over 1500 cycles. Also, the maximum energy density of the PANI/P-MWCNT based symmetric configuration reaches 8.2 Wh kg-1. Significantly, such a hydrogel-bridged design concept may find the important application for the synthesis of competitive candidates for energy storage.

  20. The natural diatomite from caldiran-van (Turkey): electroanalytical application to antimigraine compound naratriptan at modified carbon paste electrode.

    PubMed

    Calışkan, Necla; Sögüt, Eda; Saka, Cafer; Yardım, Yavuz; Sentürk, Zuhre

    2010-09-01

    This paper is the first report describing the characterization of local diatomite of Caldiran-Van region (Eastern Anatolia, Turkey). Special attention was paid to the ability of its electroanalytical performance at modified electrodes and to the potential application of diatomite-modified electrode. For this purpose, the determination of Naratriptan which is a novel oral triptan (5-hydroxytryptamine receptor agonist) in migraine treatment, by means of a carbon paste electrode modified with 10% (w/w) of diatomite was studied using cyclic and square-wave voltammetry. The experimental conditions that affect the electrode reaction process were studied in terms of pH of the supporting electrolyte, scan rate, accumulation variables, modifier composition and square-wave parameters. Using square-wave stripping mode, the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at 0.84 V (vs. Ag/AgCl) (a pre-concentration step being carried out with an open circuit at 120 s). The process could be used to determine Naratriptan concentrations in the range 5x10(-7)-9x10(-7) M, with a detection limit of 1.25x10(-7) M (46.5 mug L(-1)). The applicability of the method to spiked human urine samples was illustrated.