Sample records for nanotubes cnts possess

  1. Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications

    PubMed Central

    Masotti, Andrea; Caporali, Andrea

    2013-01-01

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838

  2. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications.

    PubMed

    Masotti, Andrea; Caporali, Andrea

    2013-12-18

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields.

  3. Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: synthesis and characterization.

    PubMed

    Hesabi, Zohreh R; Allam, Nageh K; Dahmen, Klaus; Garmestani, Hamid; A El-Sayed, Mostafa

    2011-04-01

    In the present study, we report for the first time synthesis of TiO(2) nanotubes/CNTs heterojunction membrane. Chemical vapor deposition (CVD) of CNTs at 650 °C in a mixture of H(2)/He atmosphere led to in situ detachment of the anodically fabricated TiO(2) nanotube layers from the Ti substrate underneath. Morphological and structural evolution of TiO(2) nanotubes after CNTs deposition were investigated by field- emission scanning electron microscopy (FESEM), glancing angle X-ray diffraction (GAXRD), and X-ray photoelectron spectroscopy (XPS) analyses. © 2011 American Chemical Society

  4. Carbon Nanotubes (CNTs) for the Development of Electrochemical Biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Yantasee, Wassana; Wang, Joseph

    2005-01-01

    Carbon nanotube (CNT) is a very attractive material for the development of biosensors because of its capability to provide strong electrocatalytic activity and minimize surface fouling of the sensors. This article reviews our recent developments of oxidase- and dehydrogenase-amperometric biosensors based on the immobilization of CNTs, the co-immobilization of enzymes on the CNTs/Nafion or the CNT/Teflon composite materials, or the attachment of enzymes on the controlled-density aligned CNT-nanoelectrode arrays. The excellent electrocatalytic activities of the CNTs on the redox reactions of hydrogen peroxide, nicotinamide adenine dinucleotide (NADH), and homocysteine have been demonstrated. Successful applications of the CNT-based biosensors reviewed hereinmore » include the low-potential detections of glucose, organophosphorus compounds, and alcohol.« less

  5. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    PubMed Central

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined. PMID:28335452

  6. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    PubMed

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  7. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    PubMed

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  8. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    PubMed Central

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  9. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    PubMed

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  10. Simulation for Carbon Nanotube Dispersion and Microstructure Formation in CNTs/AZ91D Composite Fabricated by Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Yang, Yuansheng; Zhao, Fuze; Feng, Xiaohui

    2017-10-01

    The dispersion of carbon nanotubes (CNTs) in AZ91D melt by ultrasonic processing and microstructure formation of CNTs/AZ91D composite were studied using numerical and physical simulations. The sound field and acoustic streaming were predicted using finite element method. Meanwhile, optimal immersion depth of the ultrasonic probe and suitable ultrasonic power were obtained. Single-bubble model was used to predict ultrasonic cavitation in AZ91D melt. The relationship between sound pressure amplitude and ultrasonic cavitation was established. Physical simulations of acoustic streaming and ultrasonic cavitation agreed well with the numerical simulations. It was confirmed that the dispersion of carbon nanotubes was remarkably improved by ultrasonic processing. Microstructure formation of CNTs/AZ91D composite was numerically simulated using cellular automation method. In addition, grain refinement was achieved and the growth of dendrites was changed due to the uniform dispersion of CNTs.

  11. Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide.

    PubMed

    Liu, Qi; Zhao, Han-Qing; Li, Lei; He, Pan-Pan; Wang, Yi-Xuan; Yang, Hou-Yun; Hu, Zhen-Hu; Mu, Yang

    2018-06-04

    Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L -1 ; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential.

    PubMed

    Kuche, Kaushik; Maheshwari, Rahul; Tambe, Vishakha; Mak, Kit-Kay; Jogi, Hardi; Raval, Nidhi; Pichika, Mallikarjuna Rao; Kumar Tekade, Rakesh

    2018-05-17

    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.

  13. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.

    PubMed

    Singh, Ravi; Pantarotto, Davide; McCarthy, David; Chaloin, Olivier; Hoebeke, Johan; Partidos, Charalambos D; Briand, Jean-Paul; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2005-03-30

    Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f

  14. A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers.

    PubMed

    Li, J; Mei, H; Zheng, W; Pan, P; Sun, X J; Li, F; Guo, F; Zhou, H M; Ma, J Y; Xu, X X; Zheng, Y F

    2014-06-01

    In this paper, carbon nanotubes (CNTs) were successfully incorporated in the composite composed of hemoglobin (Hb) and collagen using co-electrospinning technology. The formed Hb-collagen-CNTs composite nanofibers possessed distinct advantage of three-dimensional porous structure, biocompatibility and excellent stability. The Hb immobilized in the electrospun nanofibers retained its natural structure and the heterogeneous electron transfer rate constant (ks) of the direct electron transfer between Hb and electrodes was 5.3s(-1). In addition, the electrospun Hb-collagen-CNTs nanofibers modified electrodes showed good electrocatalytic properties toward H2O2 with a detection limit of 0.91μM (signal-to-noise ratio of 3) and the apparent Michaelis-Menten constant (Km(app)) of 32.6μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dispersion and Filtration of Carbon Nanotubes (CNTs) and Measurement of Nanoparticle Agglomerates in Diesel Exhaust.

    PubMed

    Wang, Jing; Pui, David Y H

    2013-01-14

    Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors.

  16. Nature and electronic properties of Y-junctions in CNTs and N-doped CNTs obtained by the pyrolysis of organometallic precursors

    NASA Astrophysics Data System (ADS)

    Deepak, F. L.; John, Neena Susan; Govindaraj, A.; Kulkarni, G. U.; Rao, C. N. R.

    2005-08-01

    Carbon nanotubes (CNTs) and N-doped CNTs with Y-junctions have been prepared by the pyrolysis of nickelocene-thiophene and nickel phthalocyanine-thiophene mixtures, respectively, the latter being reported for the first time. The junctions are free from the presence of sulfur and contain only carbon or carbon and nitrogen. The electronic properties of the junction nanotubes have been investigated by scanning tunneling microscopy. Tunneling conductance measurements reveal rectifying behavior with regions of coulomb blockade, the effect being much larger in the N-doped junction nanotubes.

  17. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhsan, Ali Samer, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Ahmad, Faiz, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt, E-mail: puteris@petronas.com.my

    2014-10-24

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050°C formore » 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.« less

  18. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  19. Water plasma functionalized CNTs/MnO2 composites for supercapacitors.

    PubMed

    Hussain, Shahzad; Amade, Roger; Jover, Eric; Bertran, Enric

    2013-01-01

    A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs) synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure) and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg(-1), for untreated CNTs, up to 750 Fg(-1), for water plasma-treated CNTs.

  20. Sustained Release of Naproxen in a New Kind Delivery System of Carbon Nanotubes Hydrogel

    PubMed Central

    Peng, Xiahui; Zhuang, Qiang; Peng, Dongming; Dong, Qiuli; Tan, Lini; Jiao, Feipeng; Liu, Linqi; Liu, jingyu; Zhao, Chenxi; Wang, Xiaomei

    2013-01-01

    In this paper, carbon nanotubes (CNTs) were added into chitosan (CS) hydrogels in the form of chitosan modified CNTs (CS-CNTs) composites to prepare carbon nanotubes hydrogels (CNTs-GEL). The products, named CS-MWCNTs, were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Swelling properties and effect of pH on controlled release performance of the two kinds of hydrogels, CNTs- GEL and pure chitosan hydrogels without CNTs (GEL), were investigated respectively. The results showed that CNTs-GEL possess better controlled release performance than GEL. The releasing equilibrium time of CNTs-GEL was longer than that of GEL in both pH = w7.4 and pH=1.2 conditions, although the release ratios of the model drug are similar in the same pH buffer solutions. It is found that release kinetics is better fitted Ritger-Peppas empirical model indicating a fick-diffusion process in pH = 1.2, while in pH = 7.4 it was non-fick diffusion involving surface diffusion and corrosion diffusion processes. PMID:24523738

  1. Water Plasma Functionalized CNTs/MnO2 Composites for Supercapacitors

    PubMed Central

    Hussain, Shahzad; Jover, Eric; Bertran, Enric

    2013-01-01

    A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs) synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure) and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg−1, for untreated CNTs, up to 750 Fg−1, for water plasma-treated CNTs. PMID:24348189

  2. Nanoscale adhesion interactions in carbon nanotube based systems and experimental study of the mechanical properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Meng

    Part I: Carbon nanotubes (CNTs) are a type of 1D nanostructures, which possess extraordinary mechanical, electrical, thermal, and chemical properties and are promising for a number of applications. For many of their applications, CNTs will be assembled into micro or macro-scale structures (e.g. thin-films and yarns), or integrated with other bulk materials to form heterogeneous material systems and devices (e.g. nanocomposites and solid-state electronics). The interfaces formed among CNTs themselves and between the CNT and other material surfaces play crucial roles in the functioning and performance of CNT-based material systems and devices. Therefore, characterization of the interfacial interaction in CNT-based systems is a critical step to understand the nanoscale interface and tune the system and device design and manufacturing for optimal functioning and performance. In this part of dissertation, a combination of both mechanical and theoretical methods was employed to study the adhesion interactions in CNT-based systems. Part II: Both CNTs and boron nitride nanotubes (BNNTs) possess superb mechanical properties and are promising for a great many applications. They can be used in similar applications, such as reinforcing fibers in polymer composites based on their similar mechanical and thermal properties. CNTs are promising for electronics and sensors while BNNTs can be used as electrical insulators due to the tremendous differences of the electrical property. Furthermore, BNNTs can survive in high temperature and hazardous environments because of their resistant to oxidation and harsh chemicals. In order to optimize their applications, their mechanical properties should be fully understood. In this part of the dissertation research, first, the radial elasticity of single-walled CNTs and BNNTs was investigated by means of atomic force microscopy (AFM); secondly, the engineering radial deformations in single walled CNTs and BNNTs covered by monolayer grapheme

  3. Preparation and characterisation of core-shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples.

    PubMed

    Gao, Ruixia; Su, Xiaoqian; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2011-01-15

    This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites.

    PubMed

    Liu, Shoujie; Li, Hejun; Su, Yangyang; Guo, Qian; Zhang, Leilei

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86±1.43MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Advanced oxidation (H₂O₂ and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka

    2015-05-01

    The properties of carbon nanotubes (CNTs) functionalized with -OH and -COOH groups during simulated water treatment with H2O2 and/or UV were tested. There following properties of CNTs were investigated: specific surface area, elemental composition (CHN), dynamic light scattering, Raman spectroscopy, X-ray photoelectron spectroscopy and changes in the CNTs structure were observed using transmission electron microscopy. Treatment of CNTs with H2O2 and/or UV affected their properties. This effect, however, was different depending on the functionalization of CNTs and also on the factor used (UV and/or H2O2). H2O2 plays a key role as a factor modifying the surface of CNT-OHs, whereas the properties of CNT-COOHs were most affected by UV rays. A shortening of the nanotubes, exfoliation, the opening of their ends, and changes in the surface charge were observed as a result of the action of UV and/or H2O2. The changes in observed parameters may influence the stability of the aqueous suspensions of CNTs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development and application of carbon nanotubes assisted electromembrane extraction (CNTs/EME) for the determination of buprenorphine as a model of basic drugs from urine samples.

    PubMed

    Hasheminasab, Kobra Sadat; Fakhari, Ali Reza

    2013-03-12

    In this work carbon nanotubes assisted electromembrane extraction (CNTs/EME) coupled with capillary electrophoresis (CE) and ultraviolet (UV) detection was developed for the determination of buprenorphine as a model of basic drugs from urine samples. Carbon nanotubes reinforced hollow fiber was used in this research. Here the CNTs serve as a sorbent and provide an additional pathway for solute transport. The presence of CNTs in the hollow fiber wall increased the effective surface area and the overall partition coefficient on the membrane; and lead to an enhancement in the analyte transport. For investigating the influence of the presence of CNTs in the SLM on the extraction efficiency, a comparative study was carried out between EME and CNTs/EME methods. Optimization of the variables affecting these methods was carried out in order to achieve the best extraction efficiency. Optimal extractions were accomplished with NPOE as the SLM, with 200V as the driving force, and with pH 2.0 in the donor and pH 1.0 in the acceptor solutions with the whole assembly agitated at 750rpm after 25min and 15min for EME and CNTs/EME, respectively. Under the optimized conditions, in comparison with the conventional EME method, CNTs/EME provided higher extraction efficiencies in shorter time. This method provided lower limit of detection (1ngmL(-1)), higher preconcentration factor (185) and higher recovery (92). Finally, the applicability of this method was evaluated by the extraction and determination of buprenorphine in patients' urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Exploring the novel donor-nanotube archetype as an efficient third-order nonlinear optical material: asymmetric open-shell carbon nanotubes.

    PubMed

    Muhammad, Shabbir; Nakano, Masayoshi; Al-Sehemi, Abdullah G; Irfan, Ahmad; Chaudhry, Aijaz Rasool; Tonami, Takayoshi; Ito, Soichi; Kishi, Ryohei; Kitagawa, Yasutaka

    2018-06-06

    Contrary to the enormous number of previous studies on carbon nanotubes (CNTs), herein, we realized the origin of the intrinsic open-shell diradical character and second hyperpolarizability γ using a broken symmetry approach. This study was inspired by our recent findings (S. Muhammad, et al., Nanoscale, 2016, 8, 17998 and Nakano, et al., J. Phys. Chem. C, 2016, 120, 1193). We performed structural modifications through a unique asymmetric donor-nanotube framework, which led to a novel paradigm of modified CNTs with tunable open-shell diradical character and remarkably superior NLO response properties. Interestingly, asymmetry and diradical character were found to be the crucial factors to modulate the second hyperpolarizability γ. We initially performed a comparative analysis of the diradical characters and γ amplitudes of boron nitride nanotubes (BNNTs) and CNTs possessing significant ionic characters and covalent characters, respectively. The basic findings for these simple configurations were further extended to the donor-acceptor CNT paradigm, which finally led to excellent asymmetric donor-CNT configurations with remarkably larger γ amplitudes. Furthermore, among the CNTs, finite length zigzag CNT(6,0)3 were modified with different donor-acceptor configurations. Interestingly, for the first time, unique donor-nanotube configurations [1,4-(NH2)2CNT-(6,0)3 and 1,4-(NH2)2CNT-(6,0)5] were found; they showed significantly robust γ amplitudes as large as 2519 × 103 and 4090 × 103 a.u. at the LC-UBLYP(μ = 0.33)/6-31G* level of theory. Additionally, several molecular level insights have been obtained for these novel donor-nanotube configurations using their odd electron densities, molecular electrostatic maps, densities of states and γ density analyses to highlight the realization of these novel materials for highly efficient optical and NLO applications.

  8. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    PubMed Central

    Hemasa, Ayman L.; Maher, William A.; Ghanem, Ashraf

    2017-01-01

    Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns. PMID:28718832

  9. On the vibrational characteristics of single- and double-walled carbon nanotubes containing ice nanotube in aqueous environment

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2015-10-01

    The properties and behavior of carbon nanotubes (CNTs) in aqueous environment due to their considerable potential applications in nanobiotechnology and designing nanobiosensors have attracted the attention of researchers. In this study, molecular dynamics simulations are carried out to investigate the vibrational characteristics of single- and double-walled CNTs containing ice nanotubes (a new phase of ice) in vacuum and aqueous environments. The results demonstrate that formation of ice nanotubes inside the CNTs reduces the natural frequency of pure CNTs. Moreover, it is demonstrated that increasing the number of walls considerably reduces the sensitivity of frequency to the presence of ice nanotube inside CNT. Additionally, it is shown that increasing the length decreases the effect of ice nanotube on reducing the frequency. The calculation of natural frequency of CNTs in aqueous media demonstrates that the interaction of CNTs with water molecules considerably reduces the natural frequency up to 50 %. Finally, it is demonstrated that in the case of CNTs with one free end in aqueous environment, the CNT does not vibrate in its first mode, and its frequency is between the frequencies of first and second modes of vibration.

  10. Methods for producing reinforced carbon nanotubes

    DOEpatents

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  11. Functionalizing CNTs for Making Epoxy/CNT Composites

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Rajagopal, Ramasubramaniam

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) with linear molecular side chains of polyphenylene ether (PPE) has been shown to be effective in solubilizing the CNTs in the solvent components of solutions that are cast to make epoxy/CNT composite films. (In the absence of solubilization, the CNTs tend to clump together instead of becoming dispersed in solution as needed to impart, to the films, the desired CNT properties of electrical conductivity and mechanical strength.) Because the PPE functionalizes the CNTs in a noncovalent manner, the functionalization does not damage the CNTs. The functionalization can also be exploited to improve the interactions between CNTs and epoxy matrices to enhance the properties of the resulting composite films. In addition to the CNTs, solvent, epoxy resin, epoxy hardener, and PPE, a properly formulated solution also includes a small amount of polycarbonate, which serves to fill voids that, if allowed to remain, would degrade the performance of the film. To form the film, the solution is drop-cast or spin-cast, then the solvent is allowed to evaporate.

  12. ZrB₂-CNTs Nanocomposites Fabricated by Spark Plasma Sintering.

    PubMed

    Jin, Hua; Meng, Songhe; Xie, Weihua; Xu, Chenghai; Niu, Jiahong

    2016-11-29

    ZrB₂-based nanocomposites with and without carbon nanotubes (CNTs) as reinforcement were prepared at 1600 °C by spark plasma sintering. The effects of CNTs on the microstructure and mechanical properties of nano-ZrB₂ matrix composites were studied. The results indicated that adding CNTs can inhibit the abnormal grain growth of ZrB₂ grains and improve the fracture toughness of the composites. The toughness mechanisms were crack deflection, crack bridging, debonding, and pull-out of CNTs. The experimental results of the nanograined ZrB₂-CNTs composites were compared with those of the micro-grained ZrB₂-CNTs composites. Due to the small size and surface effects, the nanograined ZrB₂-CNTs composites exhibited stronger mechanical properties: the hardness, flexural strength and fracture toughness were 18.7 ± 0.2 GPa, 1016 ± 75 MPa, and 8.5 ± 0.4 MPa·m 1/2 , respectively.

  13. Functionalization of vertically aligned carbon nanotubes.

    PubMed

    Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François

    2013-01-01

    This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.

  14. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  15. Silicon Carbide Nanotube Synthesized

    NASA Technical Reports Server (NTRS)

    Lienhard, Michael A.; Larkin, David J.

    2003-01-01

    Carbon nanotubes (CNTs) have generated a great deal of scientific and commercial interest because of the countless envisioned applications that stem from their extraordinary materials properties. Included among these properties are high mechanical strength (tensile and modulus), high thermal conductivity, and electrical properties that make different forms of single-walled CNTs either conducting or semiconducting, and therefore, suitable for making ultraminiature, high-performance CNT-based electronics, sensors, and actuators. Among the limitations for CNTs is their inability to survive in high-temperature, harsh-environment applications. Silicon carbon nanotubes (SiCNTs) are being developed for their superior material properties under such conditions. For example, SiC is stable in regards to oxidation in air to temperatures exceeding 1000 C, whereas carbon-based materials are limited to 600 C. The high-temperature stability of SiCNTs is envisioned to enable high-temperature, harsh-environment nanofiber- and nanotube-reinforced ceramics. In addition, single-crystal SiC-based semiconductors are being developed for hightemperature, high-power electronics, and by analogy to CNTs with silicon semiconductors, SiCNTs with single-crystal SiC-based semiconductors may allow high-temperature harsh-environment nanoelectronics, nanosensors, and nanoactuators to be realized. Another challenge in CNT development is the difficulty of chemically modifying the tube walls, which are composed of chemically stable graphene sheets. The chemical substitution of the CNTs walls will be necessary for nanotube self-assembly and biological- and chemical-sensing applications. SiCNTs are expected to have a different multiple-bilayer wall structure, allowing the surface Si atoms to be functionalized readily with molecules that will allow SiCNTs to undergo self-assembly and be compatible with a variety of materials (for biotechnology applications and high-performance fiber-reinforced ceramics).

  16. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  17. A review on protein functionalized carbon nanotubes.

    PubMed

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  18. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin

    2009-07-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.

  19. Strain-induced bi-thermoelectricity in tapered carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Algharagholy, L. A. A.; Pope, T.; Lambert, C. J.

    2018-03-01

    We show that carbon-based nanostructured materials are a novel testbed for controlling thermoelectricity and have the potential to underpin the development of new cost-effective environmentally-friendly thermoelectric materials. In single-molecule junctions, it is known that transport resonances associated with the discrete molecular levels play a key role in the thermoelectric performance, but such resonances have not been exploited in carbon nanotubes (CNTs). Here we study junctions formed from tapered CNTs and demonstrate that such structures possess transport resonances near the Fermi level, whose energetic location can be varied by applying strain, resulting in an ability to tune the sign of their Seebeck coefficient. These results reveal that tapered CNTs form a new class of bi-thermoelectric materials, exhibiting both positive and negative thermopower. This ability to change the sign of the Seebeck coefficient allows the thermovoltage in carbon-based thermoelectric devices to be boosted by placing CNTs with alternating-sign Seebeck coefficients in tandem.

  20. Carbon nanotubes: engineering biomedical applications.

    PubMed

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. A critical evaluation of the enhancement of mechanical properties of epoxy modified using CNTs

    NASA Astrophysics Data System (ADS)

    Bedsole, Robert W.; Park, Cheol; Bogert, Philip B.; Tippur, Hareesh V.

    2015-09-01

    Carbon nanotubes (CNTs) have been widely shown in the literature to improve mechanical properties of epoxy, such as tensile strength, elastic modulus, strain to failure, and fracture toughness. These improvements in nanocomposite properties have been attributed to the extraordinary properties of the nanotubes, as well as the quality of their dispersion within and adhesion to the epoxy matrix. However, many authors have also struggled to show significant mechanical improvements using similar methodologies and despite, in some cases, showing qualitative improvements in dispersion with optical microscopy. These authors have frequently resorted to other methods for improving the mechanical properties of CNT/epoxy, such as electrically aligning CNTs, using different types of CNTs, or modifying the stoichiometry. The current work examines many different dispersion techniques, types of CNTs, types of epoxies, curing cycles, and other variables in an attempt to improve the mechanical properties of neat epoxy with CNTs. Despite seeing significant changes in the microscopy, no significant improvements in tensile or fracture properties have been attributed to CNTs in this work.

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Probing Photosensitization by Functionalized Carbon Nanotubes.

    PubMed

    Chen, Chia-Ying; Zepp, Richard G

    2015-12-01

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that may damage organisms by biomembrane oxidation or mediate environmental transformations of CNTs. Photosensitization by derivatized carbon nanotubes from various synthetic methods, and thus with different intrinsic characteristics (e.g., diameter and electronic properties), has been investigated under environmentally relevant aquatic conditions. We used the CNT-sensitized photoisomerization of sorbic acid ((2E,4E)-hexa-2,4-dienoic acid) and singlet oxygen formation to quantify the triplet states ((3)CNT*) formed upon irradiation of selected single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The CNTs used in our studies were derivatized by carboxyl groups to facilitate their dispersion in water. Results indicate that high-defect-density (thus well-stabilized), small-diameter, and semiconducting-rich CNTs have higher-measured excited triplet state formation and therefore singlet oxygen ((1)O2) yield. Derivatized SWCNTs were significantly more photoreactive than derivatized MWCNTs. Moreover, addition of sodium chloride resulted in increased aggregation and small increases in (1)O2 production of CNTs. The most photoreactive CNTs exhibited comparable photoreactivity (in terms of (3)CNT* formation and (1)O2 yield) to reference natural organic matter (NOM) under sunlight irradiation with the same mass-based concentration. Selected reference NOM could therefore be useful in evaluating environmental photoreactivity or intended antibacterial applications of CNTs.

  4. ZrB2-CNTs Nanocomposites Fabricated by Spark Plasma Sintering

    PubMed Central

    Jin, Hua; Meng, Songhe; Xie, Weihua; Xu, Chenghai; Niu, Jiahong

    2016-01-01

    ZrB2-based nanocomposites with and without carbon nanotubes (CNTs) as reinforcement were prepared at 1600 °C by spark plasma sintering. The effects of CNTs on the microstructure and mechanical properties of nano-ZrB2 matrix composites were studied. The results indicated that adding CNTs can inhibit the abnormal grain growth of ZrB2 grains and improve the fracture toughness of the composites. The toughness mechanisms were crack deflection, crack bridging, debonding, and pull-out of CNTs. The experimental results of the nanograined ZrB2-CNTs composites were compared with those of the micro-grained ZrB2-CNTs composites. Due to the small size and surface effects, the nanograined ZrB2-CNTs composites exhibited stronger mechanical properties: the hardness, flexural strength and fracture toughness were 18.7 ± 0.2 GPa, 1016 ± 75 MPa, and 8.5 ± 0.4 MPa·m1/2, respectively. PMID:28774087

  5. Boron nitride nanotubes and nanosheets.

    PubMed

    Golberg, Dmitri; Bando, Yoshio; Huang, Yang; Terao, Takeshi; Mitome, Masanori; Tang, Chengchun; Zhi, Chunyi

    2010-06-22

    Hexagonal boron nitride (h-BN) is a layered material with a graphite-like structure in which planar networks of BN hexagons are regularly stacked. As the structural analogue of a carbon nanotube (CNT), a BN nanotube (BNNT) was first predicted in 1994; since then, it has become one of the most intriguing non-carbon nanotubes. Compared with metallic or semiconducting CNTs, a BNNT is an electrical insulator with a band gap of ca. 5 eV, basically independent of tube geometry. In addition, BNNTs possess a high chemical stability, excellent mechanical properties, and high thermal conductivity. The same advantages are likely applicable to a graphene analogue-a monatomic layer of a hexagonal BN. Such unique properties make BN nanotubes and nanosheets a promising nanomaterial in a variety of potential fields such as optoelectronic nanodevices, functional composites, hydrogen accumulators, electrically insulating substrates perfectly matching the CNT, and graphene lattices. This review gives an introduction to the rich BN nanotube/nanosheet field, including the latest achievements in the synthesis, structural analyses, and property evaluations, and presents the purpose and significance of this direction in the light of the general nanotube/nanosheet developments.

  6. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  7. Using ALD To Bond CNTs to Substrates and Matrices

    NASA Technical Reports Server (NTRS)

    Wong, Eric W.; Bronikowski, Michael J.; Kowalczyk, Robert S.

    2008-01-01

    Atomic-layer deposition (ALD) has been shown to be effective as a means of coating carbon nanotubes (CNTs) with layers of Al2O3 that form strong bonds between the CNTs and the substrates on which the CNTs are grown. ALD is a previously developed vaporphase thin-film-growth technique. ALD differs from conventional chemical vapor deposition, in which material is deposited continually by thermal decomposition of a precursor gas. In ALD, material is deposited one layer of atoms at a time because the deposition process is self-limiting and driven by chemical reactions between the precursor gas and the surface of the substrate or the previously deposited layer.

  8. A new approach to design safe CNTs with an understanding of redox potential.

    PubMed

    Tsuruoka, Shuji; Cassee, Flemming R; Castranova, Vincent

    2013-09-02

    Carbon nanotubes (CNTs) are being increasingly industrialized and applied for various products. As of today, although several toxicological evaluations of CNTs have been conducted, designing safer CNTs is not practiced because reaction kinetics of CNTs with bioactive species is not fully understood. The authors propose a kinetic mechanism to establish designing safe CNTs as a new goal. According to a literature search on the behavior of CNTs and the effects of impurities, it is found that chemical reactions on CNT surface are attributed to redox reactions involving metal impurities and carbon structures at the CNT surface. A new goal is proposed to design safer CNTs using the redox potential hypothesis. The value of this hypothesis must be practically investigated and proven through the further experiments.

  9. Elastomeric nanocomposite scaffolds made from poly (glycerol sebacate) chemically crosslinked with carbon nanotubes

    PubMed Central

    Patel, Alpesh; Dolatshahi-Pirouz, Alireza; Zhang, Hongbin; Rangarajan, Kaushik; Iviglia, Giorgio; Shin, Su-Ryon; Hussain, Mohammad Asif

    2015-01-01

    Carbon nanotube (CNT)-based nanocomposites often possess properties such as high stiffness, electrical conductivity, and thermal stability and have been studied for various biomedical and biotechnological applications. However, the current design approaches utilize CNTs as physical filler, and thus, the true potential of CNT-based nanocomposites has not been achieved. Here, we introduce a general approach of fabricating stiff, elastomeric nanocomposites from poly(glycerol sebacate) (PGS) and CNTs. The covalent crosslinking between the nanotubes and polymer chains resulted in novel property combinations that are not observed in conventional nanocomposites. The addition of 1% CNTs resulted a five-fold increase in the tensile modulus and a six-fold increase in compression modulus compared with PGS alone, which is far superior to the previously reported studies for CNT-based nanocomposites. Despite significant increase in mechanical stiffness, the elasticity of the network was not compromised and the resulting nanocomposites showed more than 94% recovery. This study demonstrates that the chemical conjugation of CNTs to a PGS backbone results in stiff and elastomeric nanocomposites. Additionally, in vitro studies using human mesenchymal stem cells (hMSCs) indicated that the incorporation of CNTs to PGS network significantly enhanced the differentiation potential of the seeded hMSCs rendering them potentially suitable for applications ranging from scaffolding in musculoskeletal tissue engineering to biosensors in biomedical devices. PMID:26146547

  10. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes.

    PubMed

    Malek, Kourosh; Sahimi, Muhammad

    2010-01-07

    Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N(2), H(2), CO(2), CH(4), and n-C(4)H(10) in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.

  11. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Malek, Kourosh; Sahimi, Muhammad

    2010-01-01

    Silicon carbide nanotubes (SiCNTs) are new materials with excellent properties, such as high thermal stability and mechanical strength, which are much improved over those of their carboneous counterparts, namely, carbon nanotubes (CNTs). Gas separation processes at high temperatures and pressures may be improved by developing mixed-matrix membranes that contain SiCNTs. Such nanotubes are also of interest in other important processes, such as hydrogen production and its storage, as well as separation by supercritical adsorption. The structural parameters of the nanotubes, i.e., their diameter, curvature, and chirality, as well as the interaction strength between the gases and the nanotubes' walls, play a fundamental role in efficient use of the SiCNTs in such processes. We employ molecular dynamics simulations in order to examine the adsorption and diffusion of N2, H2, CO2, CH4, and n-C4H10 in the SiCNTs, as a function of the pressure and the type of the nanotubes, namely, the zigzag, armchair, and chiral tubes. The simulations indicate the strong effect of the nanotubes' chirality and curvature on the pressure dependence of the adsorption isotherms and the self-diffusivities. Detailed comparison is made between the results and those for the CNTs. In particular, we find that the adsorption capacity of the SiCNTs for hydrogen is higher than the CNTs' under the conditions that we have studied.

  12. Skeleton/skin structured (RGO/CNTs)@PANI composite fiber electrodes with excellent mechanical and electrochemical performance for all-solid-state symmetric supercapacitors.

    PubMed

    Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Hongxing; Wang, Qi; Liu, Peng

    2018-03-01

    Polyaniline coated reduced graphene oxide/carbon nanotube composite fibers ((RGO/CNTs)@PANI, RCP) with skeleton/skin structure are designed as fiber-shaped electrodes for high performance all-solid-state symmetric supercapacitor. The one-dimensional reduced graphene oxide/carbon nanotube composite fibers (RGO/CNTs, RC) are prepared via a simple in-situ reduction of graphene oxide in presence of carbon nanotubes in quartz glass pipes, which exhibit excellent mechanical performance of >193.4 MPa of tensile strength. Then polyaniline is coated onto the RC fibers by electrodepositing technique. The electrochemical properties of the RCP fiber-shaped electrodes are optimized by adjusting the feeding ratio of carbon nanotubes. The optimized one exhibits good electrochemical characteristic such as highest volumetric specific capacitance of 193.1 F cm -3 at 1 A cm -3 , as well as excellent cyclic retention of 92.60% after 2000 cyclic voltammetry cycles. Furthermore, the all-solid-state symmetric supercapacitor, fabricated by using the final composite fiber as both positive and negative electrodes pre-coated with the poly(vinyl alcohol)/H 2 SO 4 gel polyelectrolyte, possesses volumetric capacitance of 36.7 F cm -3 at 0.2 A cm -3 and could light up a red light-emitting diode easily. The excellent mechanical and electrochemical performances make the designed supercapacitor as promising high performance wearable energy storage device. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Aligned carbon nanotubes patterned photolithographically by silver

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming; Mau, Albert H. W.

    2003-02-01

    Selective growth of aligned carbon nanotubes (CNTs) by pyrolysis of iron (II) phthalocyanine (FePc) on quartz substrate patterned photolithographically by metallic silver has been demonstrated. Micro/nanopattern of aligned CNTs can be achieved by using a photomask with features on a microscale. With convenient use of simple high-contract black and white films as a photomask, aligned nanotubes patterned with 20 μm resolution in large scale can be fabricated. This practical fabrication of aligned CNTs on patterned conducting substrate could be applied to various device applications of CNTs.

  14. Hydrothermal conversion of graphite to carbon nanotubes (CNTs) induced by bubble collapse

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang

    2016-11-01

    Cu-Fe-CNTs and Ni-Fe-CNTs coatings were deposited on gray cast iron by a hydrothermal approach. It was demonstrated that, the flaky graphite of gray cast iron was exfoliated to graphene nanosheets under hydrothermal reactions, and graphene nanosheets were scrolled to CNTs. After high temperature treatments, the volume losses of Cu-Fe-CNTs and Ni-Fe-CNTs coatings were 52.6 % and 40.0 % of gray cast iron substrate at 60 min wear tests, respectively, obviously increasing the wear properties of gray cast iron. During hydrothermal reactions, water jets and shock waves were produced by bubble collapse. Induced by the water jets and shock waves, exfoliation of flaky graphite was performed, producing exfoliated graphene nanosheets. Attacked by the radially distributed water jets and shock waves, graphene nanosheets were curved, shaped to semicircle morphology and eventually scrolled to tubular CNTs.

  15. Surface properties of CNTs and their interaction with silica.

    PubMed

    Sobolkina, Anastasia; Mechtcherine, Viktor; Bellmann, Cornelia; Khavrus, Vyacheslav; Oswald, Steffen; Hampel, Silke; Leonhardt, Albrecht

    2014-01-01

    In order to improve the embedding of carbon nanotubes (CNTs) in cement-based matrices, silica was deposited on the sidewall of CNTs by a sol-gel method. Knowledge of the conditions of CNTs' surfaces is a key issue in understanding the corresponding interaction mechanisms. In this study various types of CNTs synthesized using acetonitrile, cyclohexane, and methane were investigated with regard to their physicochemical surface properties. Significant differences in surface polarity as well as in the wetting properties of the CNTs, depending on the precursors used, were revealed by combining electro-kinetic potential and contact angle measurements. The hydrophobicity of CNTs decreases by utilising the carbon sources in the following order: cyclohexane, methane, and finally acetonitrile. The XPS analysis, applied to estimate the chemical composition at the CNT surface, showed nitrogen atoms incorporated into the tube structure by using acetonitrile as a carbon source. It was found that the simultaneous presence of nitrogen- and/or oxygen-containing sites with different acid-base properties increased the surface polarity of the CNTs, imparting amphoteric characteristics to them and improving their wetting behaviour. Regarding the silica deposition, strong differences in adsorption capacity of the CNTs were observed. The mechanism of silica adsorption through interfacial bond formation was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  17. Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Min; Guo, Hongyan; Ge, Changchun

    2014-05-14

    A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (α-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, α-CNTs/amorphous tungsten carbide, α-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

  18. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  19. Synthesis and characterization of a novel tube-in-tube nanostructured PPy/MnO{sub 2}/CNTs composite for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Juan, E-mail: lj-panpan@163.com; Beijing National Laboratory for Molecular Sciences; Que, Tingli

    2013-02-15

    Graphical abstract: A novel tube-in-tube nanostructured PPy/MnO{sub 2}/CNTs composite have been successfully fabricated. Its inner tubules are CNTs and the outer tubules are template-synthesized PPy. Most MnO{sub 2} nanoparticles are sandwiched between the inner and outer wall, some relatively large particles are also latched onto the outside wall of the PPy tube. The composite yields a good electrochemical reversibility through 1000 cycles’ cyclic voltammogram (CV) test and galvanostatic charge–discharge experiments at different current densities. Display Omitted Highlights: ► We fabricate a ternary organic–inorganic complex of PPy/MnO{sub 2}/CNTs composite. ► We characterize its morphological structures and properties by several techniques. ►more » The composite possesses the typical tube-in-tube nanostructures. ► Most MnO{sub 2} nanoparticles are sandwiched between the inner CNTs and outer PPy wall. ► The composite has good electrochemical reversibility for supercapacitor. -- Abstract: Ternary organic–inorganic complex of polypyrrole/manganese dioxide/carbon nanotubes (PPy/MnO{sub 2}/CNTs) composite was prepared by in situ chemical oxidation polymerization of pyrrole in the host of inorganic matrix of MnO{sub 2} and CNTs, using complex of methyl orange (MO)/FeCl{sub 3} was used as a reactive self-degraded soft-template. The morphological structures of the composite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopic (HRTEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), respectively. All the results indicate that the PPy/MnO{sub 2}/CNTs composite possesses the typical tube-in-tube nanostructures: the inner tubules are CNTs and the outer tubules are template-synthesized PPy. MnO{sub 2} nanoparticles may either sandwich the space between the inner and outer tubules or directly latch onto the wall of the PPy tubes. The

  20. Carbon nanotube mechanics in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Strus, Mark Christopher

    Carbon nanotubes (CNTs) possess unique electrical, thermal, and mechanical properties which have led to the development of novel nanomechanical materials and devices. In this thesis, the mechanical properties of carbon nanotubes are studied with an Atomic Force Microscope (AFM) and, conversely, the use of CNTs to enhance conventional AFM probes is also investigated. First, the performance of AFM probes with multiwalled CNT tips are evaluated during attractive regime AFM imaging of high aspect ratio structures. The presented experimental results show two distinct imaging artifacts, the divot and large ringing artifacts, which are inherent to such CNT AFM probes. Through the adjustment of operating parameters, the connection of these artifacts to CNT bending, adhesion, and stiction is described qualitatively and explained. Next, the adhesion and peeling of CNTs on different substrates is quantitatively investigated with theoretical models and a new AFM mode for nanomechanical peeling. The theoretical model uncovers the rich physics of peeling of CNTs from surfaces, including sudden transitions between different geometric configurations of the nanotube with vastly different interfacial energies. The experimental peeling of CNTs is shown to be capable of resolving differences in CNT peeling energies at attoJoule levels on different materials. AFM peeling force spectroscopy is further studied on a variety of materials, including several polymers, to demonstrate the capability of direct measurement of interfacial energy between an individual nanotube or nanofiber and a given material surface. Theoretical investigations demonstrate that interfacial and flexural energies can be decoupled so that the work of the applied peeling force can be used to estimate the CNT-substrate interfacial fracture energy and nanotube's flexural stiffness. Hundreds of peeling force experiments on graphite, epoxy, and polyimide demonstrate that the peeling force spectroscopy offers a convenient

  1. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.

    PubMed

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-05-01

    Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Filling carbon nanotubes with particles.

    PubMed

    Kim, Byong M; Qian, Shizhi; Bau, Haim H

    2005-05-01

    The filling of carbon nanotubes (CNTs) with fluorescent particles was studied experimentally and theoretically. The fluorescent signals emitted by the particles were visible through the walls of the nanotubes, and the particles inside the tubes were observable with an electron microscope. Taking advantage of the template-grown carbon nanotubes' transparency to fluorescent light, we measured the filling rate of the tubes with particles at room conditions. Liquids such as ethylene glycol, water, and ethylene glycol/water mixtures, laden with 50 nm diameter fluorescent particles, were brought into contact with 500 nm diameter CNTs. The liquid and the particles' transport were observed, respectively, with optical and fluorescence microscopy. The CNTs were filled controllably with particles by the complementary action of capillary forces and the evaporation of the liquid. The experimental results were compared and favorably agreed with theoretical predictions. This is the first report on fluorescence studies of particle transport in carbon nanotubes.

  3. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  4. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  5. Enhanced performance of inverted organic photovoltaic cells using CNTs-TiO(X) nanocomposites as electron injection layer.

    PubMed

    Zhang, Hong; Xu, Meifeng; Cui, Rongli; Guo, Xihong; Yang, Shangyuan; Liao, Liangsheng; Jia, Quanjie; Chen, Yu; Dong, Jinquan; Sun, Baoyun

    2013-09-06

    In this study, we fabricated inverted organic photovoltaic cells with the structure ITO/carbon nanotubes (CNTs)-TiO(X)/P3HT:PCBM/MoO₃/Al by spin casting CNTs-TiO(X) nanocomposite (CNTs-TiO(X)) as the electron injection layer onto ITO/glass substrates. The power conversion efficiency (PCE) of the 0.1 wt% single-walled nanotubes (SWNTs)-TiO(X) nanocomposite device was almost doubled compared with the TiO(X) device, but with increasing concentration of the incorporated SWNTs in the TiO(X) film, the performance of the devices appeared to decrease rapidly. Devices with multi-walled NTs in the TiO(X) film have a similar trend. This phenomenon mainly depends on the inherent physical and chemical characteristics of CNTs such as their high surface area, their electron-accepting properties and their excellent carrier mobility. However, with increasing concentration of CNTs, CNTs-TiO(X) current leakage pathways emerged and also a recombination of charges at the interfaces. In addition, there was a significant discovery. The incorporated CNTs were highly conducive to enhancing the degree of crystallinity and the ordered arrangement of the P3HT in the active layers, due to the intermolecular π-π stacking interactions between CNTs and P3HT.

  6. Synthesis and characterization of functionalized CNTs using soya and milk protein

    NASA Astrophysics Data System (ADS)

    saxena, Sanjay; ranu, Rachana; Hait, Chandan; Priya, Shruti

    2014-10-01

    Nanotechnology is the study of the phenomenon and manipulation of matter at atomic and molecular scale to enhance their older property and generate several new properties. Carbon nanotubes (CNTs) are one of the most commonly mentioned building blocks of nanotechnology. CNTs are very prevalent in today's world of medical research and are being highly researched in the fields of efficient drug delivery and bio sensing methods for disease treatment and health monitoring. There are number of methods for synthesizing CNTs. This is a biological method for synthesis of CNTs in which protein is used as carbon source and amino acids present in protein form complex with metal salt. The CNTs synthesized are then characterized and functionalized using techniques such as transmission electron microscopy, Fourier transform infra-red, nuclear magnetic resonance, ultra-violet visible spectroscopy, X-ray diffraction, etc. The properties of the synthesized CNTs are studied with the help of techniques such as thermo-gravimetric analysis, differential thermal analysis, and vibrating sample magnetometer, etc.

  7. Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal.

    PubMed

    Bibi, Saira; Yasin, Tariq; Hassan, Safia; Riaz, Muhammad; Nawaz, Mohsan

    2015-01-01

    Carbon nanotubes (CNTs) were irradiated in air at 100 kGy under gamma radiations. The Raman spectroscopy of γ-treated CNTs showed distinctive changes in the absorption bands. The CNTs were mixed with blend of chitosan (Cs)/poly (vinyl alcohol) (PVA) and crosslinked with silane. The chemical reactions between the components affected the position and intensities of the infrared bands. Scanning electron micrograph of Cs/CNTs nanocomposite membrane showed the homogeneous dispersion of CNTs in the polymer matrix. The addition of CNTs lowered its swelling in water. Naphthalene (NAPH) was selected as a model compound and its removal was studied using HPLC technique. This membrane showed fast uptake of NAPH and 87% was removed from water within 30 min. The NAPH loaded membrane showed strong chemical interactions and cannot be desorbed. The fast uptake of PAHs and the green nature of this membrane made them suitable candidates for clean-up purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  9. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Patry, JoAnne L. (Inventor); Smits, Jan M. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor); Wincheski, Russell A. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  10. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  11. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  12. Growth of carbon nanotubes (CNTs) on metallic underlayers by diffusion plasma-enhanced chemical vapour deposition (DPECVD)

    NASA Astrophysics Data System (ADS)

    Kim, S. M.; Gangloff, L.

    2009-10-01

    Here, we demonstrate the low-temperature (480-612 °C) synthesis of carbon nanotubes (CNTs) on different metallic underlayers (i.e., NiV, Ir, Ag, Pt, W, and Ta) using diffusion (dc) plasma-enhanced (~20 W, -600 V) chemical vapour deposition (DPECVD). The catalyst used is bi-layered Fe/Al and the feedstock used is a mixture of C 2H 2 and NH 3 (1:4). The crucial component is the diffusion of radical ions and hydrogen generated such as H 2/H +/H 2+/NH 3+/CH 2+/C 2H 2+ (which are confirmed by in-situ mass spectroscopy) from the nozzle, where it is inserted for most effective plasma diffusion between a substrate and a gas distributor.

  13. Polymer Composite Containing Carbon Nanotubes and their Applications.

    PubMed

    Park, Sung-Hoon; Bae, Joonwon

    2017-07-10

    Carbon nanotubes (CNTs) are attractive nanostructures in this regard, primarily due to their high aspect ratio coupled with high thermal and electrical conductivities. Consequently, CNT polymer composites have been extensively investigated for various applications, owing to their light weight and processibility. However, there have been several issues affecting the utilization of CNTs, such as aggregation (bundling) which leads to a non-uniform dispersion and poor interfacial bonding of the CNTs with the polymer, resulting in variation in composite performance, along with the additional issue of high cost of CNTs. In this article, recent research and patents for polymer composites containing carbon nanomaterial are presented and summarized. In addition, a rationale for optimally designed carbon nanotube polymer composites and their applications are suggested. Above the electrical percolation threshold, a transition from insulator to conductor occurs. The percolation threshold values of CNT composite are dependent on filler shape, intrinsic properties of filler, type of polymer, CNT dispersion condition and so on. Different values of percolation threshold CNT polymer composites have been summarized. The difference in percolation threshold and conductivity of CNT composites could be explained by the degree of effective interactions between nanotubes and polymer matrix. The reaction between surface functional groups of CNTs and polymer could contribute to better dispersion of CNTs in polymer matrix. Consequently, it increased the number of electrical networks of CNTs in polymer, resulting in an enhancement of composite conductivity. In addition, to exfoliate nanotubes from heavy bundles, ultrasonication with proper solvent and three roll milling processes were used. Potential reactions of covalent bonding between functionalized CNTs and polymer were suggested based on the above rationale. Through the use of CNT functionalization, high aspect ratio CNTs, and proper

  14. Size-dependent impact of CNTs on dynamic properties of calmodulin

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Wang, Liming; Kang, Seung-Gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan

    2014-10-01

    There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca2+-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca2+-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca2+-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca2+ regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca2+ concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca2+-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca2+-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca2+-free CaM, wider CNTs still

  15. Carbon nanotubes in hyperthermia therapy

    PubMed Central

    Singh, Ravi; Torti, Suzy V.

    2013-01-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single-and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs. PMID:23933617

  16. Teslaphoresis of Carbon Nanotubes.

    PubMed

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.

  17. Functionalization of ( n, 0) CNTs ( n = 3-16) by uracil: DFT studies

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Harismah, Kun; Jafari, Elham; Gülseren, Oğuz; Rad, Ali Shokuhi

    2018-01-01

    Density functional theory (DFT) calculations were performed to investigate stabilities and properties for uracil (U)-functionalized carbon nanotubes (CNTs). To this aim, the optimized molecular properties were evaluated for ( n, 0) models of CNTs ( n = 3-16) in the original and U-functionalized forms. The results indicated that the dipole moments and energy gaps were independent of tubular diameters whereas the binding energies showed that the U-functionalization could be better achieved for n = 8-11 curvatures of ( n, 0) CNTs. Further studies based on the evaluated atomic-scale properties, including quadrupole coupling constants ( C Q ), indicated that the electronic properties of atoms could detect the effects of diameters variations of ( n, 0) CNTs, in which the effects were very much significant for the atoms around the U-functionalization regions. Finally, the achieved results of singular U, original CNTs, and CNT-U hybrids were compared to each other to demonstrate the stabilities and properties for the U-functionalized ( n, 0) CNTs.

  18. Synthesis and interface characterization of CNTs on graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Changjian; Senegor, Richard; Baron, Zachary; Chen, Yihan; Raju, Salahuddin; Vyas, Anshul A.; Chan, Mansun; Chai, Yang; Yang, Cary Y.

    2017-02-01

    Carbon nanotubes (CNTs) and graphene are potential candidates for future interconnect materials. CNTs are promising on-chip via interconnect materials due to their readily formed vertical structures, their current-carrying capacity, which is much larger than existing on-chip interconnect materials such as copper and tungsten, and their demonstrated ability to grow in patterned vias with sub-50 nm widths; meanwhile, graphene is suitable for horizontal interconnects. However, they both present the challenge of having high-resistance contacts with other conductors. An all-carbon structure is proposed in this paper, which can be formed using the same chemical vapor deposition method for both CNTs and graphene. Vertically aligned CNTs are grown directly on graphene with an Fe or Ni catalyst. The structural characteristics of the graphene and the grown CNTs are analyzed using Raman spectroscopy and electron microscopy techniques. The CNT-graphene interface is studied in detail using transmission electron microscopic analysis of the CNT-graphene heterostructure, which suggests C-C bonding between the two materials. Electrical measurement results confirm the existence of both a lateral conduction path within graphene and a vertical conduction path in the CNT-graphene heterostructure, giving further support to the C-C bonding at the CNT-graphene interface and resulting in potential applications for all-carbon interconnects.

  19. Synthesis and interface characterization of CNTs on graphene.

    PubMed

    Zhou, Changjian; Senegor, Richard; Baron, Zachary; Chen, Yihan; Raju, Salahuddin; Vyas, Anshul A; Chan, Mansun; Chai, Yang; Yang, Cary Y

    2017-02-03

    Carbon nanotubes (CNTs) and graphene are potential candidates for future interconnect materials. CNTs are promising on-chip via interconnect materials due to their readily formed vertical structures, their current-carrying capacity, which is much larger than existing on-chip interconnect materials such as copper and tungsten, and their demonstrated ability to grow in patterned vias with sub-50 nm widths; meanwhile, graphene is suitable for horizontal interconnects. However, they both present the challenge of having high-resistance contacts with other conductors. An all-carbon structure is proposed in this paper, which can be formed using the same chemical vapor deposition method for both CNTs and graphene. Vertically aligned CNTs are grown directly on graphene with an Fe or Ni catalyst. The structural characteristics of the graphene and the grown CNTs are analyzed using Raman spectroscopy and electron microscopy techniques. The CNT-graphene interface is studied in detail using transmission electron microscopic analysis of the CNT-graphene heterostructure, which suggests C-C bonding between the two materials. Electrical measurement results confirm the existence of both a lateral conduction path within graphene and a vertical conduction path in the CNT-graphene heterostructure, giving further support to the C-C bonding at the CNT-graphene interface and resulting in potential applications for all-carbon interconnects.

  20. Polyamidoamine dendrimer-functionalized carbon nanotubes-mediated GFP gene transfection for HeLa cells: effects of different types of carbon nanotubes.

    PubMed

    Yang, Keqin; Qin, Weiling; Tang, Hao; Tan, Liang; Xie, Qingji; Ma, Ming; Zhang, Youyu; Yao, Shouzhuo

    2011-11-01

    Three types of functionalized carbon nanotubes (f-CNTs), polyamidoamine (PAMAM) dendrimer-functionalized single and multi-walled CNTs (MWCNT-PAMAM-1, MWCNT-PAMAM-2, and SWCNT-PAMAM-3), were prepared by covalent linkage approach. The micro-morphologies of the three f-CNTs and the interaction of MWCNT-PAMAM-2 with HeLa cells were characterized by transmission electron microscopy (TEM). The free amine groups on the surface of the three types of CNTs-PAMAM hybrids were quantitatively analyzed. Their cytotoxicity and transfection efficiency of plasmid DNA of enhanced green fluorescent protein (pEGFP-N1) to HeLa cells were investigated in detail. The results suggest that although all three types of CNTs-PAMAM hybrids can deliver pEGFP-N1 into HeLa cells and the exogenous GFP gene has been successfully expressed, MWCNT-PAMAM-2 with shorter length and larger amount of free amine groups on its surface possesses higher transfection efficiency (6.79%), being about 3.0 and 1.7 times as large as those of MWCNT-PAMAM-1 (2.24%) and SWCNT-PAMAM-3 (4.08%), respectively; their cytotoxicity to HeLa cells decrease following the sequence of SWCNT-PAMAM-3 > MWCNT-PAMAM-2 > MWCNT-PAMAM-1. These results may be useful for understanding the effects of the chemical/physical properties of f-CNTs on their gene transfection efficiency and cytotoxicity, allowing for construction of promising CNT-based intracellular delivery vectors for gene therapy. Copyright © 2011 Wiley Periodicals, Inc.

  1. Mesoscale mechanics of twisting carbon nanotube yarns.

    PubMed

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2015-03-12

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  2. Liquid-phase synthesis of vertically aligned carbon nanotubes and related nanomaterials on preheated alloy substrates

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Kiyofumi

    2018-02-01

    Carbon nanotubes (CNTs) and related nanocarbons were selectively synthesized on commercially available alloy substrates by a simple liquid-phase technique. Fe- and Ni-rich stainless-steel (JIS SUS316L and Inconel®600, respectively) and Ni-Cu alloy (Monel®400) substrates were used for the synthesis, and each substrate was preheated in air to promote the self-formation of catalyst nanolayers on the surface. The substrates were resistance heated in ethanol without any addition of catalysts to grow CNTs. The yield of the CNTs effectively increased when the preheating process was employed. Highly aligned CNT arrays grew on the SUS316L substrate, while non-aligned CNTs and distinctive twisted fibers were observed on the other substrates. An Fe oxide layer was selectively formed on the preheated SUS316L substrate promoting the growth of the CNT arrays. Characterizations including cyclic voltammetry for the arrays revealed that the CNTs possess a comparatively defect-rich surface, which is a desirable characteristic for its application such as electrode materials for capacitors.

  3. Enzyme-free monitoring of glucose utilization in stimulated macrophages using carbon nanotube-decorated electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Madhurantakam, Sasya; Karnam, Jayanth Babu; Rayappan, John Bosco Balaguru; Krishnan, Uma Maheswari

    2017-11-01

    Carbon nanotubes (CNTs) have been extensively explored for a diverse range of applications due to their unique electrical and mechanical properties. CNT-incorporated electrochemical sensors have exhibited enhanced sensitivity towards the analyte molecule due to the excellent electron transfer properties of CNTs. In addition, CNTs possess a large surface area-to-volume ratio that favours the adhesion of analyte molecules as well as enhances the electroactive area. Most of the electrochemical sensors have employed CNTs as a nano-interface to promote electron transfer and as an immobilization matrix for enzymes. The present work explores the potential of CNTs to serve as a catalytic interface for the enzymeless quantification of glucose. The figure of merits for the enzymeless sensor was comparable to the performance of several enzyme-based sensors reported in literature. The developed sensor was successfully employed to determine the glucose utilization of unstimulated and stimulated macrophages. The significant difference in the glucose utilization levels in activated macrophages and quiescent cells observed in the present investigation opens up the possibilities of new avenues for effective medical diagnosis of inflammatory disorders.

  4. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    NASA Astrophysics Data System (ADS)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  5. Interface structure and properties of CNTs/Cu composites fabricated by electroless deposition and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Song, Qi; Yin, Shi-Pan

    2018-01-01

    In this paper, we fabricated a novel copper matrix composites reinforced by carbon nanotubes (CNTs) using electroless deposition (ED) and spark plasma sintering technique. Microstructure, mechanical, electric conductivity, and thermal properties of the CNTs/Cu composites were investigated. The results show that a favorable interface containing C-O and O-Cu bond was formed between CNTs and matrix when the CNTs were coated with nano-Cu by ED method. Thus, we accomplished the uniformly dispersed CNTs in the CNTs/Cu powders and compacted composites, which eventually leads to the enhancement of the mechanical properties of the CNTs/Cu composites in the macro-scale environment. However, the interface structure can hinder the movement of carriers and free electrons and increase the interface thermal resistance, which leads to modest decrease of electrical and thermal conductivity of the CNTs/Cu composites.

  6. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  7. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  8. [Preparation and catalytic activity of surface-modification CNTs/TiO2 composite photocatalysts].

    PubMed

    Wang, Huan-Ying; Li, Wen-Jun; Chang, Zhi-Dong; Zhou, Hua-Lei; Guo, Hui-Chao

    2011-09-01

    A novel kind of carbon nanotubes/titanium dioxide (CNTs/TiO2) composite photocatalyst was prepared by a modified sol-gel method in which the nanoscaled TiO2 particles were uniformly deposited on the CNTs modified with poly(vinyl pyrrolidone) (PVP). The composites were characterized by a range of analytical techniques including high resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show the successful covering of the CNTs with PVP, forming core-shell structure. The nanoscaled TiO2 particles were uniformly deposited on the surface of CNTs reducing the bare CNTs which avoid losing the absorption and scattering of photons. The combination of CNTs and TiO2 particles imply the enhanced interactions between the CNTs and TiO2 interface which possibly becomes heterojunction. The composites become mesoporous crystalline TiO2 (anatase) clusters after annealing at 500 degrees C, and the surface area increases obviously. The photocatalytic activities of surface modification CNTs/TiO2 (smCNTs/TiO2) composites are extremely enhanced from the results of the photodegradation of methylene blue (MB).

  9. Nanotubes in biological applications.

    PubMed

    Mundra, Ruchir V; Wu, Xia; Sauer, Jeremy; Dordick, Jonathan S; Kane, Ravi S

    2014-08-01

    Researchers over the last few years have recognized carbon nanotubes (CNTs) as promising materials for a number of biological applications. CNTs are increasingly being explored as potent drug carriers for cancer treatment, for biosensing, and as scaffolds for stem cell culture. Moreover, the integration of CNTs with proteins has led to the development of functional nanocomposites with antimicrobial properties. This review aims at understanding the critical role of CNTs in biological applications with a particular emphasis on more recent studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.

    PubMed

    Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-06-15

    In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites.

    PubMed

    Alian, A R; Meguid, S A

    2017-02-08

    Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.

  12. Size-dependent impact of CNTs on dynamic properties of calmodulin.

    PubMed

    Gao, Jian; Wang, Liming; Kang, Seung-gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan

    2014-11-07

    There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca(2+)-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca(2+)-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca(2+)-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca(2+) regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca(2+) concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.

  13. Induction heating process of ferromagnetic filled carbon nanotubes based on 3-D model

    NASA Astrophysics Data System (ADS)

    Wiak, Sławomir; Firych-Nowacka, Anna; Smółka, Krzysztof; Pietrzak, Łukasz; Kołaciński, Zbigniew; Szymański, Łukasz

    2017-12-01

    Since their discovery by Iijima in 1991 [1], carbon nanotubes have sparked unwavering interest among researchers all over the world. This is due to the unique properties of carbon nanotubes (CNTs). Carbon nanotubes have excellent mechanical and electrical properties with high chemical and thermal stability. In addition, carbon nanotubes have a very large surface area and are hollow inside. This gives a very broad spectrum of nanotube applications, such as in combination with polymers as polymer composites in the automotive, aerospace or textile industries. At present, many methods of nanotube synthesis are known [2, 3, 4, 5, 6]. It is also possible to use carbon nanotubes in biomedical applications [7, 8, 9, 10, 11, 12, 13, 14], including the destruction of cancer cells using iron-filled carbon nanotubes in the hyperthermia process. Computer modelling results of Fe-CNTs induction heating process are presented in the paper. As an object used for computer model creation, Fe-CNTs were synthesized by the authors using CCVD technique.

  14. Chirality dependent interaction of ammonia with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2018-04-01

    For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.

  15. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  16. On the Synthesis of Carbon Nanotubes from Waste Solid Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhuo, Chuanwei

    Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. They consist of coaxial tubular graphene sheets, with diameters in the order of nanometers (1 x 10-9 m) and lengths in the order of micrometers (1 x 10-6 m). The latter can now be extended into the order of meters. Carbon nanotubes (CNTs) have been studied for more than 20 years. CNTs possess superior electrical, mechanical, thermal, chemical, and structural properties, which make their potential applications nowadays overwhelmingly widespread. Now entering into the growth phase of product life cycle, increasing usage of CNTs in commercial products is part of the beginning of the nano-technological revolution. Expanding markets for CNTs' large volume applications place ever-increasing demands on lowering their production costs to the level acceptable by the end-user applications. It is estimated that the mass application of CNTs will be facilitated only when the price of CNTs approaches that of conductive carbon black. The synthesis of CNTs involves three elements: the carbonaceous feedstocks (raw materials), the catalysts, and the necessary process power consumption. Therefore, they jointly contribute to the major operation expenditures in CNT synthesis/production. Current technologies for large-scale production of CNTs (either chemical vapor deposition, CVD, or combustion synthesis) require intensive consumption of premium feedstocks and catalysts, and the CVD process requires high energy consumption. Therefore, there is a pressing need for resource-benign and energy-benign, cost-effective nano-manufacturing processes. In the search for sustainable alternatives, it would be prudent to explore renewable and/or replenishable low-cost feedstocks, such as those found in municipal, industrial, and agricultural recycling streams. In the search for low cost catalysts, stainless steels have been proposed as cost-effective dual purpose substrates and catalysts, as they contain transition

  17. Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry

    PubMed Central

    Ma, Xingmao; Uddin, Sheikh

    2013-01-01

    The strong affinity of carbon nanotubes (CNTs) to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength) and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB) from multi-walled carbon nanotubes (MWNTs). The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH < 7 vs. pH > 7). In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs. PMID:28348336

  18. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  19. Spinning, structure and properties of PP/CNTs and PP/carbon black composite fibers

    NASA Astrophysics Data System (ADS)

    Marcincin, A.; Hricova, M.; Ujhelyiova, A.

    2014-08-01

    In this paper, the effect of the compatibilisers-dispersants and other nanofillers on melt spinning of the polypropylene (PP) composites, containing carbon nanotubes (CNTs), and carbon black pigment (CBP) has been investigated. Further, the structure and selected properties of composite fibers, such as mechanical and electrical have been studied. The results revealed, that percolation threshold for PP/CBP composite fibres was situated within the concentration of 15 - 20 wt%, what is several times higher than for PP/CNTs fibers.

  20. Bandgap oscillation in quasiperiodic (BN)xCy nanotubes

    NASA Astrophysics Data System (ADS)

    Freitas, A.; Bezerra, C. G.; Azevedo, S.; Machado, L. D.; Pedreira, D. O.

    2016-12-01

    In the present contribution, we apply first-principles calculations to study the effects of quasiperiodic disorder on the physical properties of BN and C nanotubes. We take BN nanotubes (BNNTs) and C nanotubes (CNTs) as building blocks and construct quasiperiodic BNxCy nanotubes according to the Fibonacci sequence. We studied armchair and zigzag nanotubes of varying diameters. Our results demonstrate that the energy gap oscillates as a function of the n-generation index of the Fibonacci sequence. Moreover, we show that the choice of the BNNTs and CNTs may lead to a quasiperiodic BNxCy nanotube presenting an adjustable energy gap. We obtained a variety of quasiperiodic nanotubes with energy gaps ranging from 0.29 eV to 1.06 eV, which may be of interest for specific technological applications. Finally, it is also demonstrated that the specific heat of the quasiperiodic zigzag and armchair nanotubes presents an oscillatory behavior in the low temperature regime, and that this behavior depends on the curvature of the nanotube.

  1. Textile fibers coated with carbon nanotubes for smart clothing applications

    NASA Astrophysics Data System (ADS)

    Lepak, Sandra; Lalek, Bartłomiej; Janczak, Daniel; Dybowska-Sarapuk, Łucja; Krzemiński, Jakub; Jakubowska, Małgorzata; Łekawa-Raus, Agnieszka

    2017-08-01

    Carbon nanomaterials: graphene, fullerenes and in particular carbon nanotubes (CNTs) are extremely interesting and extraordinary materials. It is mostly thanks to theirs unusual electrical and mechanical properties. Carbon nanotubes are increasingly examined to enable its usage in many fields of science and technology. It has been reported that there is a high possibility to use CNTs in electronics, optics, material engineering, biology or medicine. However, this material still interests and inspire scientists around the world and the list of different CNTs applications is constantly expanding. In this paper we are presenting a study on the possibility of application carbon nanotubes as a textile fiber coating for smart clothing applications. Various suspensions and pastes containing CNTs have been prepared as a possible coating onto textile fibers. Different application techniques have also been tested. Those techniques included painting with nanotube suspension, spray coating of suspensions and immersion. Following textile fibers were subject to tests: cotton, silk, polyester, polyamide and wool. Obtained composites materials were then characterized electrically by measuring the electrical resistance.

  2. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review.

    PubMed

    Sarkar, Binoy; Mandal, Sanchita; Tsang, Yiu Fai; Kumar, Pawan; Kim, Ki-Hyun; Ok, Yong Sik

    2018-01-15

    The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. NRAM: a disruptive carbon-nanotube resistance-change memory.

    PubMed

    Gilmer, D C; Rueckes, T; Cleveland, L

    2018-04-03

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  4. NRAM: a disruptive carbon-nanotube resistance-change memory

    NASA Astrophysics Data System (ADS)

    Gilmer, D. C.; Rueckes, T.; Cleveland, L.

    2018-04-01

    Advanced memory technology based on carbon nanotubes (CNTs) (NRAM) possesses desired properties for implementation in a host of integrated systems due to demonstrated advantages of its operation including high speed (nanotubes can switch state in picoseconds), high endurance (over a trillion), and low power (with essential zero standby power). The applicable integrated systems for NRAM have markets that will see compound annual growth rates (CAGR) of over 62% between 2018 and 2023, with an embedded systems CAGR of 115% in 2018-2023 (http://bccresearch.com/pressroom/smc/bcc-research-predicts:-nram-(finally)-to-revolutionize-computer-memory). These opportunities are helping drive the realization of a shift from silicon-based to carbon-based (NRAM) memories. NRAM is a memory cell made up of an interlocking matrix of CNTs, either touching or slightly separated, leading to low or higher resistance states respectively. The small movement of atoms, as opposed to moving electrons for traditional silicon-based memories, renders NRAM with a more robust endurance and high temperature retention/operation which, along with high speed/low power, is expected to blossom in this memory technology to be a disruptive replacement for the current status quo of DRAM (dynamic RAM), SRAM (static RAM), and NAND flash memories.

  5. Core-shell structured MnSiO3 supported with CNTs as a high capacity anode for lithium-ion batteries.

    PubMed

    Feng, Jing; Li, Qin; Wang, Huijun; Zhang, Min; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2018-04-17

    Metal silicates are good candidates for use in lithium ion batteries (LIBs), however, their electrochemical performance is hindered by their poor electrical conductivity and volume expansion during Li+ insertion/desertion. In this work, one-dimensional core-shell structured MnSiO3 supported with carbon nanotubes (CNTs) (referred to as CNT@MnSiO3) with good conductivity and electrochemical performance has been successfully synthesized using a solvothermal process under moderate conditions. In contrast to traditional composites of CNTs and nanoparticles, the CNT@MnSiO3 composite in this work is made up of CNTs with a layer of MnSiO3 on the surface. The one-dimensional CNT@MnSiO3 nanotubes provide a useful channel for transferring Li+ ions during the discharge/charge process, which accelerates the Li+ diffusion speed. The CNTs inside the structure not only enhance the conductivity of the composite, but also prevent volume expansion. A high reversible capacity (920 mA h g-1 at 500 mA g-1 over 650 cycles) and good rate performance were obtained for CNT@MnSiO3, showing that this strategy of synthesizing coaxial CNT@MnSiO3 nanotubes offers a promising method for preparing other silicates for LIBs or other applications.

  6. Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4.

    PubMed

    Qu, Yuanyuan; Wang, Jingwei; Zhou, Hao; Ma, Qiao; Zhang, Zhaojing; Li, Duanxing; Shen, Wenli; Zhou, Jiti

    2016-02-01

    To enrich the understanding on interactions between carbon nanotubes (CNTs) and microbes, the responses of a biphenyl-degrading bacterium to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and carboxyl single-walled carbon nanotubes (SWCNT-COOHs) were investigated. Electron microscopy, viability test, cellular membrane integrity, and oxidative stress analyses indicated that CNT toxicity was mainly caused by physical piercing. Apart from antibacterial activities, the experimental results showed that CNTs enhanced cell growth and biphenyl degradation at certain concentrations (1.0-1.5 mg/L). The CNTs aggregated and adsorbed cells and biphenyl to form a CNTs-cells-biphenyl coexisting system, thus it created a suitable microenvironment for cell attachment and proliferation where the cells could utilize biphenyl easier for their growth. To the best of our knowledge, this is the first report about CNTs' impact on biodegradation efficacy and growth of aromatic-degrading bacterium.

  7. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  8. Catalytic decomposition of toxic chemicals over metal-promoted carbon nanotubes.

    PubMed

    Li, Lili; Han, Changxiu; Han, Xinyu; Zhou, Yixiao; Yang, Li; Zhang, Baogui; Hu, Jianli

    2011-01-15

    Effective decomposition of toxic gaseous compounds is important for pollution control at many chemical manufacturing plants. This study explores catalytic decomposition of phosphine (PH(3)) using novel metal-promoted carbon nanotubes (CNTs). The cerium-promoted Co/CNTs catalysts (CoCe/CNTs) are synthesized by means of coimpregnation method and reduced by three different methods (H(2), KBH(4), NaH(2)PO(2)·H(2)O/KBH(4)). The morphology, structure, and composition of the catalysts are characterized using a number of analytical instrumentations including high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area measurement, and inductively coupled plasma. The activity of the catalysts in PH(3) decomposition reaction is measured and correlated with their surface and structural properties. The characterization results show that the CoCe/CNTs catalyst reduced by H(2) possesses small particles and is shown thermally stable in PH(3) decomposition reaction. The activities of these catalysts are compared and are shown in the following sequence: CoCe/CNTs > Co/CNTs > CoCeBP/CNTs> CoCeB/CNTs. The difference in reduction method results in the formation of different active phases during the PH(3) decomposition reaction. After a catalytic activity test, only the CoP phase is formed on CoCe/CNTs and Co/CNTs catalysts, whereas multiphases CoP, Co(2)P, and Co phases are formed on CoCeBP/CNTs and CoCeB/CNTs. Results show that the CoP phase is formed predominantly on the CoCe/CNTs and Co/CNTs catalysts and is found to likely be the most active phase for this reaction. Furthermore, the CoCe/CNTs catalyst exhibits not only highest activity but also long-term stability in PH(3) decomposition reaction. When operated in a fixed-bed reactor at 360 °C, single-pass PH(3) conversion of about 99.8% can be achieved.

  9. The optimization of CNT-PVA nanocomposite for mild steel coating: Effect of CNTs concentration on the corrosion rate of mild steel

    NASA Astrophysics Data System (ADS)

    Maryam, M.; Ibrahim, N. M. A. A.; Eswar, K. A.; Guliling, M.; Suhaimi, M. H. F.; Khusaimi, Z.; Abdullah, S.; Rusop, M.

    2018-05-01

    Carbon Nanotubes (CNTs) are molecular-scale tubes of graphitic carbon which have outstanding mechanical and magnetic properties with extraordinary strength. It can be said that CNTs can be used in coating application to prevent corrosion and lower the rate of corrosion on steel. However, CNT alone cannot be used for coating purposes. Therefore, by combining it with polymer to produce a nanocomposite thin film, it can be used for nanocoating on mild steel substrate. Polyvinyl alcohol (PVA) was chosen due to its high strength and high modulus polymer fibers and has the possibilities of improving the physicochemical properties of carbon nanotubes. Carbon nanotubes and polyvinyl alcohol (CNT-PVA) nanocomposite were prepared by using sol-gel method and coated as thin film on mild steel substrate by using spin coating. Sol-gel is a convenient technique used for the production of nanocomposite aqueous solution. Five samples were prepared at the different concentration of CNTs-PVA to verify the corrosion rate application. The samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) obtaining the structural properties, surface morphology and topography of samples. Raman spectroscopy was used to determine the microraman spectra of CNTs which showed the quality and purity of samples. Finally, corrosion test was done to measure the corrosion rate of samples at the different concentration of CNTs/PVA nanocomposite.

  10. Carbon nanotube: the inside story.

    PubMed

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  11. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  12. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  13. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  14. Transforming graphene nanoribbons into nanotubes by use of point defects.

    PubMed

    Sgouros, A; Sigalas, M M; Papagelis, K; Kalosakas, G

    2014-03-26

    Using molecular dynamics simulations with semi-empirical potentials, we demonstrate a method to fabricate carbon nanotubes (CNTs) from graphene nanoribbons (GNRs), by periodically inserting appropriate structural defects into the GNR crystal structure. We have found that various defect types initiate the bending of GNRs and eventually lead to the formation of CNTs. All kinds of carbon nanotubes (armchair, zigzag, chiral) can be produced with this method. The structural characteristics of the resulting CNTs, and the dependence on the different type and distribution of the defects, were examined. The smallest (largest) CNT obtained had a diameter of ∼ 5 Å (∼ 39 Å). Proper manipulation of ribbon edges controls the chirality of the CNTs formed. Finally, the effect of randomly distributed defects on the ability of GNRs to transform into CNTs is considered.

  15. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.

    PubMed

    Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights

  16. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity.

    PubMed

    Alshehri, Reem; Ilyas, Asad Muhammad; Hasan, Anwarul; Arnaout, Adnan; Ahmed, Farid; Memic, Adnan

    2016-09-22

    Carbon nanotubes (CNTs) represent one of the most studied allotropes of carbon. The unique physicochemical properties of CNTs make them among prime candidates for numerous applications in biomedical fields including drug delivery, gene therapy, biosensors, and tissue engineering applications. However, toxicity of CNTs has been a major concern for their use in biomedical applications. In this review, we present an overview of carbon nanotubes in biomedical applications; we particularly focus on various factors and mechanisms affecting their toxicity. We have discussed various parameters including the size, length, agglomeration, and impurities of CNTs that may cause oxidative stress, which is often the main mechanism of CNTs' toxicity. Other toxic pathways are also examined, and possible ways to overcome these challenges have been discussed.

  17. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  18. Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors

    PubMed Central

    Yun, Young Soo; Park, Hyun Ho; Jin, Hyoung-Joon

    2012-01-01

    Nitrogen- and micropore-containing carbon nanotubes (NMCNTs) were prepared by carbonization of nitrogen-enriched, polymer-coated carbon nanotubes (CNTs), and the electrochemical performances of the NMCNTs with different heteroatom contents were investigated. NMCNTs-700 containing 9.1 wt% nitrogen atoms had a capacitance of 190.8 F/g, which was much higher than that of pristine CNTs (48.4 F/g), despite the similar surface area of the two CNTs, and was also higher than that of activated CNTs (151.7 F/g) with a surface area of 778 m2/g and a nitrogen atom content of 1.2 wt%. These results showed that pseudocapacitive effects play an important role in the electrochemical performance of supercapacitor electrodes.

  19. Fabrication and mechanical properties of aluminum composite reinforced with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alavijeh, Elham Zamani; Kokhaei, Saeed; Dehghani, Kamran

    2018-01-01

    Composite aluminum alloy (5000 series) and multi-walled carbon nanotubes (MWCNTs) were made using mechanical alloying, cold press and sintering. The quality of interactions between Al powders and CNTs in the metal matrix composite has a significant effect on mechanical properties. Motivated from the properties of functionalized CNTs, the current study use this material rather than the raw type, because of its reactivity. Besides, a poly-vinyl-alcohol pre-mixing is done, the aim of which is to enhance mixing process. The functionalized carbon nanotubes ware made by chemically method through refluxing with nitric acid. By this method functional groups have been created on CNTs surfaces. 1% and 3% functionalized carbon nanotubes were manufactured using the aforementioned method. To provide unbiased comparisons, 1% and 3% with raw CNTs and pure aluminum is produced with same manner. The numerical experiments affirm the superiority of the functionalized carbon nano-tubes in terms of the relative density and hardness of nanocomposites. As a final activity, the Fourier transformation infrared spectroscopy and field emission scanning electron microscopy techniques were used to characterize the carbon nanotubes and the powders.

  20. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    PubMed

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.

  1. Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Shen, Lang; Yang, Sisi; Chen, Jihan; Echternach, Juliana; Dhall, Rohan; Kang, DaeJin; Cronin, Stephen

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The utilization of defects in carbon nanotubes to improve their photoluminescence efficiency has become a widespread study of the realization of efficient light-emitting devices. Here, we report a detailed comparison of the defects in nanotubes (quantified by Raman spectroscopy) and photoluminescence (PL) intensity of individual suspended carbon nanotubes (CNTs). We also evaluate the impact of these defects on the electron or hole transport in the nanotubes, which is crucial for the ultimate realization of optoelectronic devices. We find that brightly luminescent nanotubes exhibit a pronounced D-band in their Raman spectra, and vice versa, dimly luminescent nanotubes exhibit almost no D-band. Here, defects are advantageous for light emission by trapping excitons, which extend their lifetimes. We quantify this behavior by plotting the PL intensity as a function of the ID /IG -band Raman intensity ratio, which exhibits a Lorentzian distribution peaked at ID /IG=0.17 . For CNTs with a ID /IG ratio >0.25 , the PL intensity decreases, indicating that above some critical density, nonradiative recombination at defect sites dominates over the advantages of exciton trapping. In an attempt to fabricate optoelectronic devices based on these brightly luminescent CNTs, we transfer these suspended CNTs to platinum electrodes and find that the brightly photoluminescent nanotubes exhibit nearly infinite resistance due to these defects, while those without bright photoluminescence exhibit finite resistance. These findings indicate a potential limitation in the use of brightly luminescent CNTs for optoelectronic applications.

  2. Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ

    NASA Astrophysics Data System (ADS)

    Mata, Diogo Miguel Rodrigues Marinho da

    The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the

  3. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations.

    PubMed

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.

  4. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    PubMed Central

    Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones. PMID:27284692

  5. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids.

    PubMed

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Al-Mdallal, Qasem M

    2017-05-26

    This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.

  6. ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO.

    PubMed

    Tsuruoka, S; Takeuchi, K; Koyama, K; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Matsumoto, H; Saito, N; Usui, Y; Porter, D W; Castranova, V

    Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.

  7. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang

    2018-06-01

    A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.

  8. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.

    PubMed

    Vu, Pham Gia; Truc, Trinh Anh; Chinh, Nguyen Thuy; Tham, Do Quang; Trung, Tran Huu; Oanh, Vu Ke; Hang, To Thi Xuan; Olivier, Marjorie; Hoang, Thai

    2018-04-01

    In this study, carbon nanotubes (CNTs)/ZnO composites had been prepared using the sol-gel method and then incorporated into an epoxy resin for reinforcement of mechanical and electrical properties. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) Field Emission Scanning Electron Microscope (FE-SEM) analyses show that the ZnO nanoparticles deposited on CNTs were crystallized in a hexagonal wurtzite structure. Average particle size of ZnO deposited on the CNT was about 8 nm. The mechanical and dielectric properties of epoxy containing CNTs/ZnO were investigated in comparison to epoxy resin and epoxy resin containing only CNT or ZnO nanoparticles. The results indicated that tensile strength and elongation at break of the nanocomposite were substantially improved with the presence of CNTs/ZnO at the equal volume. The DSC analysis associate with the dielectric results shows that the behavior of epoxy/CNTs/ZnO is identical to epoxy/ZnO composite, and the CNTs is essential to the distributed arrangement of ZnO in the epoxy resin.

  9. Investigations on the antiretroviral activity of carbon nanotubes using computational molecular approach.

    PubMed

    Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela

    2014-01-01

    Carbon nanotubes are the interesting class of materials with wide range of applications. They have excellent physical, chemical and electrical properties. Numerous reports were made on the antiviral activities of carbon nanotubes. However the mechanism of antiviral action is still in infancy. Herein we report, our recent novel findings on the molecular interactions of carbon nanotubes with the three key target proteins of HIV using computational chemistry approach. Armchair, chiral and zigzag CNTs were modeled and used as ligands for the interaction studies. The structure of the key proteins involved in HIV mediated infection namely HIV- Vpr, Nef and Gag proteins were collected from the PDB database. The docking studies were performed to quantify the interaction of the CNT with the three different disease targets. Results showed that the carbon nanotubes had high binding affinity to these proteins which confirms the antagonistic molecular interaction of carbon nanotubes to the disease targets. The modeled armchair carbon nanotubes had the binding affinities of -12.4 Kcal/mole, -20 Kcal/mole and -11.7 Kcal/mole with the Vpr, Nef and Gag proteins of HIV. Chiral CNTs also had the maximum affinity of -16.4 Kcal/mole to Nef. The binding affinity of chiral CNTs to Vpr and Gag was found to be -10.9 Kcal/mole and -10.3 Kcal/mole respectively. The zigzag CNTs had the binding affinity of -11.1 Kcal/mole with Vpr, -18.3 Kcal/mole with Nef and -10.9 with Gag respectively. The strong molecular interactions suggest the efficacy of CNTs for targeting the HIV mediated retroviral infections.

  10. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  11. Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(DL-lactide-co-glycolide)/CNT films.

    PubMed

    Armentano, Ilaria; Dottori, Mariaserena; Puglia, Debora; Kenny, Josè M

    2008-06-01

    Nanocomposite films based on single wall carbon nanotubes (SWNTs) and poly(DL-lactide-co-glycolide) copolymer (50:50 PLGA) were processed and analyzed. The purpose of this study was to investigate the effect of different functionalization systems on the physical stability and morphology of PLGA films. Both covalent and non covalent functionalization of carbon nanotubes were considered in order to control the interactions between PLGA and SWNTs and to understand the role of the filler in the biodegradation properties. Using a solvent casting process, different PLGA/SWNT nanocomposites were prepared and incubated using organic solution under physiological conditions. In-vitro degradation studies were conducted by measurements of weight loss, infrared spectroscopy, glass transition temperature and SEM observations as a function of the incubation time, over a 9-week period. All PLGA films were degraded by hydrolitical degradation. However, a different degradation mechanism was observed in the case of functionalized SWNTs with respect to pristine material. It has been observed that system composition and SWNT functionalization may play a crucial role on the autocatalytic effect of the degradation process. These studies suggest that the degradation kinetics of the films can be engineered by varying carbon nanotube (CNT) content and functionalization. The combination of biodegradable polymers and CNTs opens a new perspective in the self-assembly of nanomaterials and nanodevices.

  12. Flame Synthesis Of Single-Walled Carbon Nanotubes And Nanofibers

    NASA Technical Reports Server (NTRS)

    Wal, Randy L. Vander; Berger, Gordon M.; Ticich, Thomas M.

    2003-01-01

    Carbon nanotubes are widely sought for a variety of applications including gas storage, intercalation media, catalyst support and composite reinforcing material [1]. Each of these applications will require large scale quantities of CNTs. A second consideration is that some of these applications may require redispersal of the collected CNTs and attachment to a support structure. If the CNTs could be synthesized directly upon the support to be used in the end application, a tremendous savings in post-synthesis processing could be realized. Therein we have pursued both aerosol and supported catalyst synthesis of CNTs. Given space limitations, only the aerosol portion of the work is outlined here though results from both thrusts will be presented during the talk. Aerosol methods of SWNT, MWNT or nanofiber synthesis hold promise of large-scale production to supply the tonnage quantities these applications will require. Aerosol methods may potentially permit control of the catalyst particle size, offer continuous processing, provide highest product purity and most importantly, are scaleable. Only via economy of scale will the cost of CNTs be sufficient to realize the large-scale structural and power applications on both earth and in space. Present aerosol methods for SWNT synthesis include laser ablation of composite metalgraphite targets or thermal decomposition/pyrolysis of a sublimed or vaporized organometallic [2]. Both approaches, conducted within a high temperature furnace, have produced single-walled nanotubes (SWNTs). The former method requires sophisticated hardware and is inherently limited by the energy deposition that can be realized using pulsed laser light. The latter method, using expensive organometallics is difficult to control for SWNT synthesis given a range of gasparticle mixing conditions along variable temperature gradients; multi-walled nanotubes (MWNTs) are a far more likely end products. Both approaches require large energy expenditures and

  13. One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts.

    PubMed

    Yang, Li; Yan, Xiaopei; Wang, Qiwu; Wang, Qiong; Xia, Haian

    2015-03-02

    A series of Pt nanoparticles supported on carbon nanotubes (CNTs) were synthesized using the incipient-wetness impregnation method. These catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM) techniques. The characterization results indicate that the Pt nanoparticles were highly dispersed on the surface of the CNTs, and the mean size was less than 5 nm. These catalysts were utilized to convert cellulose to hexitol, ethylene glycerol (EG), and 1,2-propylene glycol (1,2-PG) under low H2 pressure. The total yields were as high as 71.4% for EG and 1,2-PG using 1Pt/CNTs as the catalyst in the hydrolytic hydrogenation of cellulose under mild reaction conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare.

    PubMed

    Chik, Mazzura Wan; Hussain, Zahid; Zulkefeli, Mohd; Tripathy, Minaketan; Kumar, Sunil; Majeed, Abu Bakar Abdul; Byrappa, K

    2018-03-28

    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.

  15. High dispersity of carbon nanotubes diminishes immunotoxicity in spleen.

    PubMed

    Lee, Soyoung; Khang, Dongwoo; Kim, Sang-Hyun

    2015-01-01

    From the various physiochemical material properties, the chemical functionalization order of single-walled carbon nanotubes (swCNTs) has not been considered as a critical factor for modulating immunological responses and toxicological aspects in drug delivery applications. Although most nanomaterials, including carbon nanotubes, are specifically accumulated in spleen, few studies have focused on spleen immunotoxicity. For this reason, this study demonstrated that the dispersity of swCNTs significantly influenced immunotoxicity in vitro and in vivo. For cytotoxicity of swCNTs, MTT assay, reactive oxygen species production, superoxide dismutase activity, cellular uptake, and confocal microscopy were used in macrophages. In the in vivo study, female BALB/c mice were intravenously administered with 1 mg/kg/day of swCNTs for 2 weeks. The body weight, organ weight, hematological change, reverse-transcription polymerase chain reaction, and lymphocyte population were evaluated. Different orders of chemical functionalization of swCNTs controlled immunotoxicity. In short, less-dispersed swCNTs caused cytotoxicity in macrophages and abnormalities in immune organs such as spleen, whereas highly dispersed swCNTs did not result in immunotoxicity. This study clarified that increasing carboxyl groups on swCNTs significantly mitigated immunotoxicity in vitro and in vivo. Our findings clarified the effective immunotoxicological factors of swCNTs by increasing dispersity of swCNTs and provided useful guidelines for the effective use of nanomaterials.

  16. Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution

    NASA Astrophysics Data System (ADS)

    Sari, Amir Hossein; Khazali, Arezoo; Parhizgar, Sara Sadat

    2018-02-01

    In this study, electrical arc discharge method is used for the synthesis of multi wall carbon nanotubes (CNTs). The advantages of applied setup for producing CNTs are simplicity, low-cost procedures and avoiding the multistep purification. The experiments were optimized by submerging graphite electrodes inside deionized water and various concentrations of sodium chloride solution. The purpose of this research is to investigate the effect of liquid medium on growth, size and quality of the CNTs structures. The results show that CNTs of 150 Â µm length or larger with high purity and quality without using catalyst are produced on the cathode surface. Furthermore, the quantity of CNTs is influenced by NaCl concentration. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction technique were used to characterize the results.

  17. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gujba, Kachalla Abdullahi

    Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and

  18. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  19. [Carbon nanotubes - Characteristic of the substance, biological effects and occupational exposure levels].

    PubMed

    Świdwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2017-03-24

    Carbon nanotubes (CNTs) are a diverse group of nano-objects in terms of structure, size (length, diameter), shape and characteristics. The growing interest in these structures is due to the increasing number of people working in exposure to CNTs. Occupational exposure to carbon nanotubes may occur in research laboratories, as well as in plants producing CNTs and their nanocomposites. Carbon nanotubes concentration at the emission source may reach 107 particles/cm3. These values, however, are considerably reduced after the application of adequate ventilation. Animal studies suggest that the main route of exposure is inhalation. Carbon nanotubes administered orally are largely excreted in the feces. In animals exposed by inhalation, CNTs caused mainly inflammation, as a result of oxidative stress, leading above all to changes in the lungs. The main effect of animal dermal exposure is oxidative stress causing local inflammation. In animals exposed by ingestion the mild or no toxicity was observed. Carbon nanotubes did not induce mutations in the bacterial tests, but they were genotoxic in a series of tests on cells in vitro, as well as in exposed mice in vivo. Embryotoxicity of nanotubes depends mainly on their modifications and carcinogenicity - primarily on the CNT size and its rigidity. Occupational exposure limits for CNTs proposed by world experts fall within the range of 1-80 μg/m3. The different effects of various kinds of CNT, leads to the conclusion that each type of nanotube should be treated as a separate substance with individual estimation of hygienic normative. Med Pr 2017;68(2):259-276. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers.

    PubMed

    Castranova, Vincent; Schulte, Paul A; Zumwalde, Ralph D

    2013-03-19

    Carbon nanotubes (CNTs) are carbon atoms arranged in a crystalline graphene lattice with a tubular morphology. CNTs exhibit high tensile strength, possess unique electrical properties, are durable, and can be functionalized. These properties allow applications as structural materials, in electronics, as heating elements, in batteries, in the production of stain-resistant fabric, for bone grafting and dental implants, and for targeted drug delivery. Carbon nanofibers (CNFs) are strong, flexible fibers that are currently used to produce composite materials. Agitation can lead to aerosolized CNTs and CNFs, and peak airborne particulate concentrations are associated with workplace activities such as weighing, transferring, mixing, blending, or sonication. Most airborne CNTs or CNFs found in workplaces are loose agglomerates of micrometer diameter. However, due to their low density, they linger in workplace air for a considerable time, and a large fraction of these structures are respirable. In rat and mouse models, pulmonary exposure to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), or CNFs causes the following pulmonary reactions: acute pulmonary inflammation and injury, rapid and persistent formation of granulomatous lesions at deposition sites of large CNT agglomerates, and rapid and progressive alveolar interstitial fibrosis at deposition sites of more dispersed CNT or CNF structures. Pulmonary exposure to SWCNTs can induce oxidant stress in aortic tissue and increases plaque formation in an atherosclerotic mouse model. Pulmonary exposure to MWCNTs depresses the ability of coronary arterioles to respond to dilators. These cardiovascular effects may result from neurogenic signals from sensory irritant receptors in the lung. Pulmonary exposure to MWCNTs also upregulates mRNA for inflammatory mediators in selected brain regions, and pulmonary exposure to SWCNTs upregulates the baroreceptor reflex. In addition, pulmonary exposure to

  1. Preparation of CNTs rope by electrostatic and airflow field carding with high speed rotor spinning

    NASA Astrophysics Data System (ADS)

    Dai, J. F.; Liu, J. F.; Zou, J. T.; Dai, Y. L.

    2015-12-01

    The large-scale preparation of disorderly CNTs with a length larger than 3 mm using CVD method were aligned in polymer monomer airflow fields in a quartz tube with an internal diameter of 200 μm and a length of 1.5 m. The airflow aligned CNTs at the output end of the pipe connects to a copper nozzle with an electrostatic field of applied voltage 5x105 V/m and space length of 0.03 m, which were further realigned using via electrostatic spinning. End to end spray into the high speed rotor twisted single-stranded carbon nanotubes threads via rotor spinning technology. The essential component of this technique was the use of carbon nanotubes at a high rotory speed (200000 r/min) combined with the double twisting of filaments that were twisted together to increase the radial friction of the entire section. SEM micrography showed that carbon nanotube thread has a uniform diameter of approximately 200 μm. Its tensile strength was tested up to 2.7 Gpa, with a length of several meters.

  2. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  3. Ceramic pore channels with inducted carbon nanotubes for removing oil from water.

    PubMed

    Chen, Xinwei; Hong, Liang; Xu, Yanfang; Ong, Zheng Wei

    2012-04-01

    Water contaminated with tiny oil emulsions is costly and difficult to treat because of the colloidal stability and deformable nature of emulsified oil. This work utilizes carbon nanotubes (CNTs) in macro/mesopore channels of ceramic membrane to remove tiny oil droplets from water. The CNTs were implanted into the porous ceramic channels by means of chemical vapor deposition. Being hydrophobic in nature and possessing an interfacial curvature at nanoscale, CNTs enabled tiny oil emulsion in submicrometer and nano scales to be entrapped while permeating through the CNTs implanted pore channels. Optimizing the growth condition of the CNTs resulted in a uniform distribution of CNT grids, which allowed the development of lipophilic layers during filtration. These lipo-layers drastically enhanced the separation performance. The filtration capability of CNT-ceramic membrane was assessed by the purification of a dilute oil-in-water (o/w) emulsion containing ca. 210 ppm mineral oil 1600 ppm emulsifier, and a trace amount of dye, a proxy polluted water source. The best CNT-tailored ceramic membrane, prepared under the optimized CNT growth condition, claimed 100% oil rejection rate and a permeation flux of 0.6 L m(-2) min(-1), driven by a pressure drop of ca. 1 bar for 3 days on the basis of UV measurement. The CNT-sustained adsorption complements the size-exclusion mechanism in removing soluble oil.

  4. Nitrogen-Doped Carbon Nanotube-Supported Pd Catalyst for Improved Electrocatalytic Performance toward Ethanol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Zhang, Xinyuan; Luo, Zhiyong; Tang, Dian; Chen, Changxin; Zhang, Teng; Xie, Zailai

    2017-07-01

    In this study, hydrothermal carbonization (HTC) was applied for surface functionalization of carbon nanotubes (CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt% were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs. Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping (Pd/HTC-CNTs). Further experiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0) loading and increased the binding energy.

  5. The Use of Multi-Walled Carbon Nanotubes as Possible Carrier in Drug Delivery System for Aspirin

    NASA Astrophysics Data System (ADS)

    Yusof, Alias Mohd.; Buang, Nor Aziah; Yean, Lee Sze; Ibrahim, Mohd. Lokman

    2009-06-01

    Carbon nanotubes (CNTs) have raised great interest in a number of applications, including field emission, energy storage, molecular electronics, sensors, biochips and drug delivery systems. This is due to their remarkable mechanical properties, chemical stability and biofunctionalizability. This nanomaterial is low in weight, has high strength and a high aspect ratio (long length compared to a small diameter). This paper will present a brief overview of drugs adsorbed onto the surface of carbon nanotubes via sonication method. The surface area of carbon nanotubes was measured by methylene blue method, Carbon nanotubes synthesized by catalytic chemical vapor deposition (CCVD) method were purified and functionalized in a mixture of concentrated acids (H2SO4:HNO3 = 3:1) at room temperature (25° C) via sonication in water bath, yielding carboxylic acid group on the CNTs' surface. CNT was successfully loaded with 48 %(w/w) aspirin molecules by suspending CNTs in a solution of aspirin in alcohol. Analysis of loaded CNTs by Field Emission-Scanning Electron Microscope (FESEM), Fourier Transform Infrared Spectrum (FITR) and UV-visible Spectroscopy confirmed the loading of the drug onto the CNTs. The work presented is a prelude to the direction of using carbon nanotubes as a drug delivery system to desired sites in human body.

  6. Carbon nanotubes in blends of polycaprolactone/thermoplastic starch.

    PubMed

    Taghizadeh, Ata; Favis, Basil D

    2013-10-15

    Despite the importance of polymer-polymer multiphase systems, very little work has been carried out on the preferred localization of solid inclusions in such multiphase systems. In this work, carbon nanotubes (CNT) are dispersed with polycaprolactone (PCL) and thermoplastic starch (TPS) at several CNT contents via a combined solution/twin-screw extrusion melt mixing method. A PCL/CNT masterbatch was first prepared and then blended with 20 wt% TPS. Transmission and scanning electron microscopy images reveal a CNT localization principally in the TPS phase and partly at the PCL/TPS interface, with no further change by annealing. This indicates a strong driving force for the CNTs toward TPS. Young's model predicts that the nanotubes should be located at the interface. X-ray photoelectron spectroscopy (XPS) of extracted CNTs quantitatively confirms an encapsulation by TPS and reveals a covalent bonding of CNTs with thermoplastic starch. It appears likely that the nanotubes migrate to the interface, react with TPS and then are subsequently drawn into the low viscosity TPS phase. In a low shear rate/low shear stress internal mixer the nanotubes are found both in the PCL phase and at the PCL/TPS interface and have not completed the transit to the TPS phase. This latter result indicates the importance of choosing appropriate processing conditions in order to minimize kinetic effects. The addition of CNTs to PCL results in an increase in the crystallization temperature and a decrease in the percent crystallinity confirming the heterogeneous nucleating effect of the nanotubes. Finally, DMA analysis reveals a dramatic decrease in the starch rich phase transition temperature (~26 °C), for the system with nanotubes located in the TPS phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Functionalized carbon nanotubes: biomedical applications

    PubMed Central

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  8. Functionalized carbon nanotubes: biomedical applications.

    PubMed

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  9. Different Technical Applications of Carbon Nanotubes.

    PubMed

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  10. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atchudan, R.; Department of Chemistry, CEG Campus, Anna University, Chennai 600025; Joo, Jin., E-mail: joojin@knu.ac.kr

    2013-06-01

    Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTsmore » using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.« less

  11. Superaligned carbon nanotube arrays, films, and yarns: a road to applications.

    PubMed

    Jiang, Kaili; Wang, Jiaping; Li, Qunqing; Liu, Liang; Li, Changhong; Fan, Shoushan

    2011-03-04

    A superaligned carbon nanotube (CNT) array is a special kind of vertically aligned CNT array with the capability of being converted into continuous fi lms and yarns. The as-produced CNT fi lms are transparent and highly conductive, with aligned CNTs parallel to the direction of drawing. After passing through volatile solutions or being twisted, CNT fi lms can be further condensed into shrunk yarns. These shrunk yarns possess high tensile strengths and Young’s moduli, and are good conductors. Many applications of CNT fi lms and shrunk yarns have been demonstrated, such as TEM grids, loudspeakers, touch screens, etc.

  12. PEGylation of magnetic multi-walled carbon nanotubes for enhanced selectivity of dispersive solid phase extraction.

    PubMed

    Zeng, Qiong; Liu, Yi-Ming; Jia, Yan-Wei; Wan, Li-Hong; Liao, Xun

    2017-02-01

    Carbon nanotubes (CNTs) possess large potential as extraction absorbents in solid phase extraction. They have been widely applied in biomedicine research, while very rare application in natural product chemistry has been reported. In this work, methoxypolyethylene glycol amine (mPEG-NH 2 ) is covalently coupled to CNTs-magnetic nanoparticles (CNTs-MNP) to prepare a novel magnetic nanocomposite (PEG-CNTs-MNP) for use as dispersive solid-phase extraction (DSPE) absorbent. The average particle size was 86nm, and the saturation magnetization was 52.30emu/g. This nanocomposite exhibits excellent dispersibility in aqueous systems, high selectivity and fast binding kinetics when used for extraction of Z-ligustilide, the characteristic bioactive compound from two popular Asian herbal plants, R. chuanxiong and R. ligusticum. HPLC quantification of Z-ligustilide extracted from the standard sample solution showed a high recovery of 98.9%, and the extraction rate from the extracts of the above two herbs are both around 70.0%. To our knowledge, this is the first report on using PEG-CNTs-MNP as DSPE nanosorbents for selective extraction of natural products. This nano-material has promising application in isolation and enrichment of targeted components from complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Catalysts for Efficient Production of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  14. Carbon Nanotube Composites from Modified Plant Oils

    NASA Astrophysics Data System (ADS)

    McAninch, Ian; Wool, Richard

    2006-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes. CNTs mixed into AESO, both with and without styrene as a co-monomer, using mechanical shear mixing showed dispersion only on the micron level, resulting in modest mechanical property improvements. Greater improvements were seen, especially in the rubbery modulus, when the resin's viscosity was kept high, either through a reduction of the styrene content, or by curing at a lower temperature. CNTs were also dispersed via sonication in methyl methacrylate. The resulting dispersion was then mixed with AESO. The resulting composites showed better CNT dispersion, with no micron-sized aggregates, as verified using SEM and optical microscopy. The mechanical properties also showed greater improvement.

  15. Characterization of DOM adsorption of CNTs by using excitation-emission matrix fluorescence spectroscopy and multiway analysis.

    PubMed

    Peng, Mingguo; Li, Huajie; Li, Dongdong; Du, Erdeng; Li, Zhihong

    2017-06-01

    Carbon nanotubes (CNTs) were utilized to adsorb DOM in micro-polluted water. The characteristics of DOM adsorption on CNTs were investigated based on UV 254 , TOC, and fluorescence spectrum measurements. Based on PARAFAC (parallel factor) analysis, four fluorescent components were extracted, including one protein-like component (C4) and three humic acid-like components (C1, C2, and C3). The adsorption isotherms, kinetics, and thermodynamics of DOM adsorption on CNTs were further investigated. A Freundlich isotherm model fit the adsorption data well with high values of correlation. As a type of macro-porous and meso-porous adsorbent, CNTs preferably adsorb humic acid-like substances rather than protein-like substances. The increasing temperature will speed up the adsorption process. The self-organizing map (SOM) analysis further explains the fluorescent properties of water samples. The results provide a new insight into the adsorption behaviour of DOM fluorescent components on CNTs.

  16. A Controlled Arc Welding and Separation Processes for Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeannette; Shaw, Harry; Day, John H. (Technical Monitor)

    2001-01-01

    Stage 1 for the Carbon Nanotube Project has been completed. This videograph presents the proposal for Stage 2. The goals of this stage are to: (1) produce CNTs under different conditions such as cooling temperature, voltage, current, cathode and anode sizes; (2) use ferrocene to make longer CNTs; (3) characterize CNTs by spectroscopic methods; (4) develop applications of CNTs, i.e., batteries, composites, wires, etc.; and (5) complete the patent application.

  17. Dielectric Response and Born Dynamic Charge of BN Nanotubes from Ab Initio Finite Electric Field Calculations

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki

    2007-03-01

    Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

  18. Ethylbenzene Removal by Carbon Nanotubes from Aqueous Solution

    PubMed Central

    Bina, Bijan; Pourzamani, Hamidreza; Rashidi, Alimorad; Amin, Mohammad Mehdi

    2012-01-01

    The removal of ethylbenzene (E) from aqueous solution by multiwalled, single-walled, and hybrid carbon nanotubes (MWCNTs, SWCNTs, and HCNTs) was evaluated for a nanomaterial dose of 1 g/L, concentration of 10–100 mg/L, and pH 7. The equilibrium amount removed by SWCNTs (E: 9.98 mg/g) was higher than by MWCNTs and HCNTs. Ethylbenzene has a higher adsorption tendency on CNTs, so that more than 98% of it adsorbed in first 14 min, which is related to the low water solubility and the high molecular weight. The SWCNTs performed better for ethylbenzene sorption than the HCNTs and MWCNTs. Isotherms study indicates that the BET isotherm expression provides the best fit for ethylbenzene sorption by SWCNTs. Carbon nanotubes, specially SWCNTs, are efficient and rapid adsorbents for ethylbenzene which possess good potential applications to maintain high-quality water. Therefore, it could be used for cleaning up environmental pollution to prevent ethylbenzene borne diseases. PMID:22187576

  19. Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

    PubMed

    Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S

    2012-07-01

    Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.

  20. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications.

    PubMed

    Battigelli, Alessia; Ménard-Moyon, Cécilia; Da Ros, Tatiana; Prato, Maurizio; Bianco, Alberto

    2013-12-01

    The scope of nanotechnology is gaining importance in biology and medicine. Carbon nanotubes (CNTs) have emerged as a promising tool due to their unique properties, high specific surface area, and capacity to cross biological barriers. These properties offer a variety of opportunities for applications in nanomedicine, such as diagnosis, disease treatment, imaging, and tissue engineering. Nevertheless, pristine CNTs are insoluble in water and in most organic solvents; thereby functionalization of their surface is necessary to increase biocompatibility. Derivatization of CNTs also gives the possibility to conjugate different biological and bioactive molecules including drugs, proteins, and targeting ligands. This review focuses on the chemical modifications of CNTs that have been developed to impart specific properties for biological and medical purposes. Biomolecules can be covalently grafted or non-covalently adsorbed on the nanotube surface. In addition, the inner core of CNTs can be exploited to encapsulate drugs, nanoparticles, or radioactive elements. © 2013.

  1. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability

    PubMed Central

    Liu, Dong; Wang, Xue; Deng, Jinxing; Zhou, Chenglong; Guo, Jinshan; Liu, Peng

    2015-01-01

    The poor cycling stability of polyaniline (PANI) limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI) composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs), which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor. PMID:28347050

  2. Interaction between Carbon Nanotubes and Aromatic Hydrocarbon-degrading Microbes and its Effect on Carbon Nanotubes Transformation

    NASA Astrophysics Data System (ADS)

    You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.

    2015-12-01

    Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.

  3. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties.

    PubMed

    Caoduro, Cécile; Hervouet, Eric; Girard-Thernier, Corine; Gharbi, Tijani; Boulahdour, Hatem; Delage-Mourroux, Régis; Pudlo, Marc

    2017-02-01

    Carbon nanotubes represent promising transporters for delivery of DNA and other biomolecules into living cells. Various methods of CNTs surface functionalization have been developed. These are essential to improve CNTs dispersibility and permit their interactions with biological structures that broaden their use in advanced biomedical applications. The present review discusses the different single walled carbon nanotubes and multiwalled carbon nanotubes functionalization methods, leading to the formation of optimized and functionalized-CNT complexes with DNA. F-CNTs are recognized as efficient and promising gene carriers. Emphasis is then placed on the processes used by f-CNTs/DNA complexes to cross cell membranes. Energy independent pathways and uptake mechanisms dependent on energy, such as endocytosis or phagocytosis, are reported by many studies, and if these mechanisms seem contradictory at first sight, a detailed review of the literature illustrates that they are rather complementary. Preferential use of one or the other depends on the DNA and CNTs chemical nature and physical parameters, experimental procedures and cell types. Efficient non-viral gene delivery is desirable, yet challenging. CNTs appear as a promising solution to penetrate into cells and successfully deliver DNA. Moreover, the field of use of CNTs as gene carrier is large and is currently growing. This critical review summarizes the development and evaluation of CNTs as intracellular gene delivery system and provides an overview of functionalized CNTs/DNA cellular uptake mechanisms, depending on several parameters of CNTs/DNA complexes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  5. Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites.

    PubMed

    Nam, Dong Hoon; Cha, Seung Il; Jeong, Yong Jin; Hong, Soon Hyung

    2013-11-01

    The carbon nanotubes (CNTs) are actively applied to the reinforcements for composite materials during last decade. One of the attempts is development of CNT/Carbon composites. Although there are some reports on the enhancement of mechanical properties by addition of CNTs in carbon or carbon fiber, it is far below the expectation. Considering the microstructure of carbon materials such as carbon fiber, the properties of them can be modified and enhanced by control of graphitization and alignment of graphene planes. In this study, enhanced graphitization of carbon has been observed the vicinity of CNTs during the pyrolysis of CNT/Polyaniline composites. As a result, novel types of composite, consisting of treading CNTs and coated graphite, can be fabricated. High-resolution transmission electron microscopy revealed a specific orientation relationship between the graphene layers and the CNTs, with an angle of 110 degrees between the layers and the CNT axis. The possibility of graphene alignment control in the carbon by the addition of CNTs is demonstrated.

  6. Performance of Nanotube-Based Ceramic Composites: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Curtin, W. A.; Sheldon, B. W.; Xu, J.

    2004-01-01

    The excellent mechanical properties of carbon-nanotubes are driving research into the creation of new strong, tough nanocomposite systems. In this program, our initial work presented the first evidence of toughening mechanisms operating in carbon-nanotube- reinforced ceramic composites using a highly-ordered array of parallel multiwall carbon-nanotubes (CNTs) in an alumina matrix. Nanoindentation introduced controlled cracks and the damage was examined by SEM. These nanocomposites exhibit the three hallmarks of toughening in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Furthermore, for certain geometries a new mechanism of nanotube collapse in shear bands was found, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models were used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality.

  7. Carbon nanotubes: physics and applications

    NASA Astrophysics Data System (ADS)

    Bellucci, S.

    2005-01-01

    We overview definitions, properties and applications of Carbon nanotubes (CNTs). We describe the CNTs lifecycle: starting with phases and requirements, going through the different synthesis methods, describing then the various purification techniques. The fundamentals of functionalization and the use of defects in CNTs are reviewed, in connection also to ion irradiation techniques. Metal oxides and other semiconducting 1D nanostructures are then considered, before entering the description of the main features of the present status of INFN-LNF research in nanoscience, focusing on CNTs, as well as on aluminium nitride NTs (AlN NTs). We conclude our review by illustrating device application criteria for many applications in different areas of the field of nanotechnology.

  8. Toxicity of carbon nanotubes: A review.

    PubMed

    Francis, Arul Prakash; Devasena, Thiyagarajan

    2018-03-01

    Carbon nanotubes (CNTs) are widely used in the aerospace, automotive, and electronics industries because of their stability, enhanced metallic, and electrical properties. CNTs are also being investigated for biomedical applications such as drug delivery systems and biosensors. However, the toxic potential of CNTs was reported in various cell lines and animal models. The toxicity depends on diverse properties of the CNTs, such as length, aspect ratio, surface area, degree of aggregation, purity, concentration, and dose. In addition, CNTs and/or associated contaminants were well known for oxidative stress, inflammation, apoptosis, pulmonary inflammation, fibrosis, and granuloma in lungs. The increased production of CNTs likely enhanced the possibility of its exposure in people. Studies on the toxicity of CNTs are mainly focused on the pulmonary effects after intratracheal administration, and only a few studies are reported about the toxicity of CNTs via other routes of exposure. So, it is essential to consider the chronic toxicity of CNTs before using them for various biomedical applications. This review focuses on the potential toxicities of CNTs.

  9. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Csub60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods (Open Access)

    DTIC Science & Technology

    2015-01-02

    fullerenes , collapsed carbon nanotubes, silocrystals Hybrid nanostructures are of great interest due to thepotential for engineering new materials with...tunable physical and chemical properties. An example is the so-called nanotube “peapod” first described by Smith et al.,1 where fullerene C60 molecules...an interesting derivative of CNTs. It has been theoretically shown that CNTs are prone to collapse into a nearly flat, ribbon- like configuration if

  11. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  12. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  13. Carbon nanotubes: properties, synthesis, purification, and medical applications

    PubMed Central

    2014-01-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering. PMID:25170330

  14. Carbon nanotubes: properties, synthesis, purification, and medical applications

    NASA Astrophysics Data System (ADS)

    Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Joo, Sang Woo

    2014-08-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.

  15. Carbon nanotubes: properties, synthesis, purification, and medical applications.

    PubMed

    Eatemadi, Ali; Daraee, Hadis; Karimkhanloo, Hamzeh; Kouhi, Mohammad; Zarghami, Nosratollah; Akbarzadeh, Abolfazl; Abasi, Mozhgan; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.

  16. Benzoate Acid-Dependent Lattice Dimension of Co-MOFs and MOF-Derived CoS2@CNTs with Tunable Pore Diameters for Supercapacitors.

    PubMed

    Zou, Kang-Yu; Liu, Yi-Chen; Jiang, Yi-Fan; Yu, Cheng-Yan; Yue, Man-Li; Li, Zuo-Xi

    2017-06-05

    Herein three novel cobalt metal-organic frameworks (Co-MOFs) with similar ingredients, [Co(bib)(o-bdc)] ∞ (1), [Co 2 (bib) 2 (m-bdc) 2 ] ∞ (2), and {[Co(bib)(p-bdc)(H 2 O)](H 2 O) 0.5 } ∞ (3), have been synthesized from the reaction of cobalt nitrate with 1,4-bis(imidazol-1-yl)benzene (bib) and structure-related aromatic acids (1,2-benzenedicarboxylic acid = o-bdc, 1,3-benzenedicarboxylic acid = m-bdc, and 1,4-benzenedicarboxylic acid = p-bdc) by the solvothermal method. It is aimed to perform systematic research on the relationship among the conformation of benzoate acid, lattice dimension of Co-MOF, and pore diameter of MOF-derived carbon composite. Through the precursor strategy, Co-MOFs 1-3 have been utilized to synthesize porous cobalt@carbon nanotube composites (Co@CNTs). After the in situ gas-sulfurization, secondary composites CoS 2 @CNTs were successfully obtained, which kept similar morphologies of corresponding Co@CNTs without destroying previous highly dispersed structures. Co-MOFs and two series of composites (Co@CNTs and CoS 2 @CNTs) have been well characterized. Topology and Brunauer-Emmett-Teller analyses elucidate that the bdc 2- ion could control the pore diameters of MOF-derived carbon composites by adjusting the lattice dimension of Co-MOFs. The systematic studies on electrochemical properties demonstrate that (p)-CoS 2 @CNT possesses hierarchical morphology, moderate specific surface area, proper pore diameter distribution, and high graphitization, which lead to remarkable specific capacitances (839 F g -1 at 5 mV s -1 and 825 F g -1 at 0.5 A g -1 ) in 2 M potassium hydroxide solution. In addition, the (p)-CoS 2 @CNT electrode exhibits good electrochemical stability and still retains 82.9% of initial specific capacitance at the current density of 1 A g -1 after 5000 cycles.

  17. ZnO Functionalization of Surface Pre-treated Multi-walled Carbon Nanotubes for Methane Sensing

    EPA Science Inventory

    Bare carbon nanotubes (CNTs) cannot be used to sense most gases due to poor bonding between the chemically inert graphitic surface and the different compounds CNTs are exposed to. Consequently, for gas sensing applications, functionalization of CNTs with reactive compounds is req...

  18. Functionalization of carbon nanotubes by water plasma.

    PubMed

    Hussain, S; Amade, R; Jover, E; Bertran, E

    2012-09-28

    Multiwall carbon nanotubes grown by plasma enhanced chemical vapour deposition were functionalized by H(2)O plasma treatment. Through a controlled functionalization process of the carbon nanotubes (CNTs) we were able to modify and tune their chemical reactivity, expanding the range of potential applications in the field of energy and environment. In particular, different oxygen groups were attached to the surfaces of the nanotubes (e.g. carboxyl, hydroxyl and carbonyl), which changed their physicochemical properties. In order to optimize the main operational parameters of the H(2)O plasma treatment, pressure and power, a Box-Wilson experimental design was adopted. Analysis of the morphology, electrochemical properties and functional groups attached to the surfaces of the CNTs allowed us to determine which treatment conditions were suitable for different applications. After water plasma treatment the specific capacitance of the nanotubes increased from 23 up to 68 F g(-1) at a scan rate of 10 mV s(-1).

  19. Synthesis of copper coated carbon nanotubes for aluminium matrix composites

    NASA Astrophysics Data System (ADS)

    Maqbool, Adnan; Khalid, F. Ahmad; Hussain, M. Asif; Bakhsh, Nabi

    2014-06-01

    In this investigation copper coated carbon nanotubes (CNTs) were prepared to enhance the interfacial bonding between CNTs and aluminum matrix by the molecular-level mixing process. In optimized plating bath of (1:1) by wt. CNT with Cu, thickness of coated CNTs is reduced to 100 nm to promote uniform distribution of Cu nanoparticle on the surface of pretreated CNTs. The mixing of CNTs was accomplished by ultrasonication and ball milling. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in nanocomposites samples compared to the uncoated CNTs. The samples were pressureless sintered under vacuum. The densification increased with the increase in the CNTs content and is more pronounced in Cu-coated CNT nanocomposites.

  20. Electrical, structural and thermal studies of carbon nanotubes from natural legume seeds: kala chana

    NASA Astrophysics Data System (ADS)

    Ranu, Rachana; Chauhan, Yatishwar; Singh, Pramod K.; Bhattacharya, B.; Tomar, S. K.

    2016-12-01

    Carbon nanotubes (CNTs) are the carbon materials measured at nanoscale level and they are defined in two types according to the number of concentric layers, i.e. single-layer tube is single-walled nanotubes, while multi-layer tube structure is called multi-walled nanotubes. The green method synthesis for the preparation of CNTs begins with the smashing of legume seeds kala chana, and then they form complex with cobalt salt. Desiccation of the complex compound forms cobalt salt and seed protein. The complex is then decomposed at 625 °C in muffle furnace for 20 min. Purification of the decomposed sample is done through acid wash treatment and dried in vacuum oven. The confirmations of CNTs are done by nuclear magnetic resonance and Fourier transform infrared, which analyzes the denatured protein, reacted to the metal salt. X-Ray diffraction determines the MWNTs with transmission electron microscope (TEM) reports the network structure of CNTs. thermal gravimetric analysis (TGA)-differential thermal analysis (DTA)-thermogravimetric analysis (DTG) tests the amount of sample under thermal treatment. Vibrating sample magnetometer determines the paramagnetic nature of CNTs. CNTs thus prepared can be used in mechanical fields, in solar cells, in electronics fields, etc. because of their multidisciplinary properties. The synthesized CNTs are eco-friendly in nature, prepared by the legume seed natural precursor.

  1. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  2. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    PubMed

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.

  3. Synthesis, Adsorptive, and Photocatalytic Properties of Carbon Nanotubes/TiO2 Nanocomposite Photocatalysts

    NASA Astrophysics Data System (ADS)

    Shao, Xiankun; Nie, Shibin; Shao, Liangzhi; Zhang, Baoshan; Li, Benxia

    2017-12-01

    The carbon nanotubes/TiO2 (CNTs/TiO2) composite photocatalysts composed of TiO2 nanoparticles and multiwalled carbon nanotubes (CNTs) were prepared by a facile hydrothermal method. The photocatalysts were characterized by a range of analytical techniques including X-ray powder diffraction, field emission scanning electron microscope, thermal gravimetric analysis and UV-Vis optical absorption spectra, etc. The amount of TiO2 nanoparticles growing on CNTs could be tuned by adjusting the dosage of precursor in the reaction solution. Both the adsorptivity and photocatalytic activities of pure CNTs, pure TiO2, and the CNTs/TiO2 nanocomposites were tested by the removal of methylene blue from water in dark and under a simulated sunlight, respectively. By comparison, the improved photocatalytic activity of the CNTs/TiO2 nanocomposite is mainly due to that the CNTs can disperse the active component of TiO2 nanoparticles, provide a larger the specific surface area, as well as act as an electron sink to accelerate the separation of the photogenerated charges.

  4. Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates

    NASA Astrophysics Data System (ADS)

    Damodar, D.; Sahoo, R. K.; Jacob, C.

    2013-06-01

    Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.

  5. Ammonium Laurate Surfactant for Cleaner Deposition of Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Hanna M.; Meany, Brendan; Ticey, Jeremy

    2015-06-15

    Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastlymore » cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS.« less

  6. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  7. Carbon nanotubes for stabilization of nanostructured lipid particles

    NASA Astrophysics Data System (ADS)

    Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.

    2014-12-01

    Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development

  8. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  9. Structures of water molecules in carbon nanotubes under electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji

    2015-03-28

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electricmore » field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.« less

  10. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    PubMed

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  11. Aligned Carbon Nanotube to Enhance Through Thickness Thermal Conductivity in Adhesive Joints (Preprint)

    DTIC Science & Technology

    2006-12-01

    aligned CNT films were prepared by pyrolyzing iron (II) phthalocyanine under Ar/H2 at 900°C as described in details elsewhere16. The average diameter...zone. Keywords: thermal conductivity, carbon nanotubes The unique properties of carbon nanotubes ( CNTs ) have generated interest amongst many...structure and high aspect ratio. These 2 unique properties make CNTs the material of choice for numerous applications like sensors5, actuators6, energy

  12. Chemical activation of commercial CNTs with simultaneous surface deposition of manganese oxide nano flakes for the creation of CNTs-graphene supported oxygen reduction ternary composite catalysts applied in air fuel cell

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Liu, Danxian

    2018-07-01

    To elevate power performance is crucial for commercally potential metal air fuel cells. Non-precious metal oxide-based oxygen reduction catalytic electrode is much desirable. Rational combination with low-dimension nanomaterials are greatly expected as the supports. Herein, carbon nanotubes (CNTs)-graphene supported manganese oxides composite catalysts (CMnCs) were obtained through activating commercial CNTs, namely, immersing them in acidic KMnO4 solution at room condition. It avoided conventional hydrothermal process and template surfactants. CMnCs-based air cathodes were made via pilot manufacture technology and equipped in fuel cells. Through characterizations, CNTs was found structurally defective and their outer walls suffered cracking into graphene nano pieces during processing, which further enhanced oxygen reduction reaction (ORR). Nano sized manganese oxide flakes were simulataneously grown on the CNTs-graphene surfaces, identified as the manganite. The areal distribution was found closely related to the additive amount of KMnO4 with regard to CNTs, somewhat influencing catalytic performance. The ORR activities of these CMnCs exceeded raw CNTs and referred manganese catalysts under identical conditions, and also the CMnCs air fuel cells were capable of outputting ∼15% more power at 100 mA/cm2. This reseach provided an inspiring pilot evidence for updating air fuel cell power from economical carbon as well as industrialization.

  13. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  14. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties

    PubMed Central

    Liu, Xinxin; Song, Tao; Chang, Minmin; Meng, Ling; Wang, Xiaohui; Sun, Runcang; Ren, Junli

    2018-01-01

    Introducing multifunctional groups and inorganic material imparts xylan-based hydrogels with excellent properties, such as responsiveness to pH, temperature, light, and external magnetic field. In this work, a composite hydrogel was synthesized by introducing acid treated carbon nanotubes (AT-CNTs) into the maleic anhydride modified xylan grafted with poly(N-isopropylacrylamide) (MAX-g-PNIPAM) hydrogels network. It was found that the addition of AT-CNTs affected the MAX-g-PNIPAM hydrogel structure, the swelling ratio and mechanical properties, and imparted the hydrogel with new properties of electrical conductivity and near infrared region (NIR) photothermal conversion. AT-CNTs could reinforce the mechanical properties of MAX-g-PNIPAM hydrogels, being up to 83 kPa for the compressive strength when the amount was 11 wt %, which was eight times than that of PNIPAM hydrogel and four times than that of MAX-g-PNIPAM hydrogel. The electroconductibility was enhanced by the increase of AT-CNTs amounts. Meanwhile, the composite hydrogel also exhibited multiple shape memory and NIR photothermal conversion properties, and water temperature was increased from 26 °C to 56 °C within 8 min under the NIR irradiation. Thus, the AT-CNTs reinforced MAX-g-PNIPAM hydrogel possessed promising multifunctional properties, which offered many potential applications in the fields of biosensors, thermal-arrest technology, and drug-controlled release. PMID:29495611

  15. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties.

    PubMed

    Liu, Xinxin; Song, Tao; Chang, Minmin; Meng, Ling; Wang, Xiaohui; Sun, Runcang; Ren, Junli

    2018-02-28

    Introducing multifunctional groups and inorganic material imparts xylan-based hydrogels with excellent properties, such as responsiveness to pH, temperature, light, and external magnetic field. In this work, a composite hydrogel was synthesized by introducing acid treated carbon nanotubes (AT-CNTs) into the maleic anhydride modified xylan grafted with poly(N-isopropylacrylamide) (MAX-g-PNIPAM) hydrogels network. It was found that the addition of AT-CNTs affected the MAX-g-PNIPAM hydrogel structure, the swelling ratio and mechanical properties, and imparted the hydrogel with new properties of electrical conductivity and near infrared region (NIR) photothermal conversion. AT-CNTs could reinforce the mechanical properties of MAX-g-PNIPAM hydrogels, being up to 83 kPa for the compressive strength when the amount was 11 wt %, which was eight times than that of PNIPAM hydrogel and four times than that of MAX-g-PNIPAM hydrogel. The electroconductibility was enhanced by the increase of AT-CNTs amounts. Meanwhile, the composite hydrogel also exhibited multiple shape memory and NIR photothermal conversion properties, and water temperature was increased from 26 °C to 56 °C within 8 min under the NIR irradiation. Thus, the AT-CNTs reinforced MAX-g-PNIPAM hydrogel possessed promising multifunctional properties, which offered many potential applications in the fields of biosensors, thermal-arrest technology, and drug-controlled release.

  16. Functionalized Carbon Nanotubes in Modified Plant Oil Composites.

    NASA Astrophysics Data System (ADS)

    McAninch, Ian M.; Wool, Richard P.

    2007-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes; however a mixture of aggregates and dispersed tubes were found even at low CNT concentrations. In order to prevent re-aggregation, the CNTs were functionalized with a 10 carbon long aliphatic chain. These aliphatic chains are similar to the fatty acids that make up soy oil. Functionalization was verified using XPS and IR spectroscopy. These functionalized CNTs were dispersed by mechanical shear mixing into AESO both with and without styrene as a comonomer. No large aggregates were observed in the liquid, uncured, samples or in the final cured composites. Dispersion in the solid composites was verified using optical and electron microscopy. Better dispersion also resulted in improved mechanical properties.

  17. Carbon nanotube suspensions, dispersions, & composites

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  18. Toxicity of Carbon Nanotubes and its Implications for Occupational and Environmental Health

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2007-01-01

    This viewgraph document reviews the sources of Nano particles in the environment, the structure and properties of Carbon Nanotubes (CNTs), the physical characteristics of CNT materials, pulmonary and other health concerns of exposure to CNTs. The toxicity of CNT in rodents is summarized and some natural, and man-made sources of CNTs are shown. CNTs are electrically and thermally conductive, fibrous, biopersistent and very complicated in structures. The factors affecting toxicity of CNTs are more than size and surface area.

  19. Defect engineering of the electrochemical characteristics of carbon nanotube varieties

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.; Bandaru, Prabhakar R.

    2010-08-01

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multiwalled CNT morphologies. The controlled addition of argon ions was used for varying the charge and type of extrinsic defects. It was indicated from Raman spectroscopy and voltammetry that the electrocatalytic response of hollow type CNTs could be tailored more significantly, compared to bamboo type CNTs which have innately high reactive site densities and are less amenable to modification. An in-plane correlation length parameter was used to understand the variation of the defect density as a function of argon ion irradiation. The work has implications in the design of nanotube based chemical sensors, facilitated through the introduction of suitable reactive sites.

  20. Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

    PubMed

    Yang, Wenyao; Chen, Yan; Wang, Jingfeng; Peng, Tianjun; Xu, Jianhua; Yang, Bangchao; Tang, Ke

    2018-06-15

    We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.

  1. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity.

    PubMed

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-04-29

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.

  2. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity

    PubMed Central

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-01-01

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation. PMID:28468248

  3. Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible.

    PubMed

    González-Domínguez, Elena; Iturrioz-Rodríguez, Nerea; Padín-González, Esperanza; Villegas, Juan; García-Hevia, Lorena; Pérez-Lorenzo, Moisés; Parak, Wolfgang J; Correa-Duarte, Miguel A; Fanarraga, Mónica L

    2017-01-01

    Carbon nanotubes (CNTs) are likely to transform the therapeutic and diagnostic fields in biomedicine during the coming years. However, the fragmented vision of their side effects and toxicity in humans has proscribed their use as nanomedicines. Most studies agree that biocompatibility depends on the state of aggregation/dispersion of CNTs under physiological conditions, but conclusions are confusing so far. This study designs an experimental setup to investigate the cytotoxic effect of individualized multiwalled CNTs compared to that of identical nanotubes assembled on submicrometric structures. Our results demonstrate how CNT cytotoxicity is directly dependent on the nanotube dispersion at a given dosage. When CNTs are gathered onto silica templates, they do not interfere with cell proliferation or survival becoming highly compatible. These results support the hypothesis that CNT cytotoxicity is due to the biomimetics of these nanomaterials with the intracellular nanofilaments. These findings provide major clues for the development of innocuous CNT-containing nanodevices and nanomedicines.

  4. Enhanced degradation and mineralization of 4-chloro-3-methyl phenol by Zn-CNTs/O3 system.

    PubMed

    Liu, Yong; Zhou, Anlan; Liu, Yanlan; Wang, Jianlong

    2018-01-01

    A novel zinc-carbon nanotubes (Zn-CNTs) composite was prepared, characterized and used in O 3 system for the enhanced degradation and mineralization of chlorinated phenol. The Zn-CNTs was characterized by SEM, BET and XRD, and the degradation of 4-chloro-3-methyl phenol (CMP) in aqueous solution was investigated using Zn-CNTs/O 3 system. The experimental results showed that the rate constant of total organic carbon (TOC) removal was 0.29 min -1 , much higher than that of only O 3 system (0.059 min -1 ) because Zn-CNTs/O 2 system could generate H 2 O 2 in situ, the concentration of H 2 O 2 could reach 156.14 mg/L within 60 min at pH 6.0. The high mineralization ratio of CMP by Zn-CNTs/O 3 occurred at wide pH range (3.0-9.0). The increase of Zn-CNTs dosage or gas flow rate contributed to the enhancement of CMP mineralization. The intermediates of CMP degradation were identified and the possible degradation pathway was tentatively proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hypervelocity Impact Studies of Carbon Nanotubes and Fiber-Reinforced Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Khatiwada, Suman

    This dissertation studies the hypervelocity impact characteristics of carbon nanotubes (CNTs), and investigates the use of CNTs as reinforcements in ultra-high molecular weight polyethylene (UHMWPE) fiber composites for hypervelocity impact shielding applications. The first part of this dissertation is aimed at developing an understanding of the hypervelocity impact response of CNTs--at the nanotube level. Impact experiments are designed with CNTs as projectiles to impact and crater aluminum plates. The results show that carbon nanotubes are resistant to the high-energy shock pressures and the ultra-high strain loading during hypervelocity impacts. Under our experimental conditions, single-walled carbon nanotubes survive impacts up to 4.07 km/s, but transform to graphitic ribbons and nanodiamonds at higher impact velocities. The nanodiamonds are metastable and transform to onion-like nanocarbon over time. Double-walled carbon nanotubes retain their form and structure even at impacts over 7 km/s. Higher hypervelocity impact resistance of DWCNTs could be attributed to the absorption of additional energy due to relative motion between the layers in the transverse direction of these coaxial nanotubes. The second part of this dissertation researches the effect of reinforcement of carbon nanotubes and their buckypapers on the hypervelocity impact shielding properties of UHMWPE-fiber composites arranged in a Whipple Shield configuration (a shield design used for the protection of the international space station from hypervelocity impacts by orbital debris). Composite laminates were prepared via compression molding and nanotube buckypapers via vacuum filtration. Dispersed nanotubes were introduced to the composite laminates via direct spraying onto the fabric prior to composite processing. The experimental results show that nanotubes dispersed in polymer matrix do not affect the hypervelocity impact resistance of the composite system. Nanotube buckypapers, however, improve

  6. A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage.

    PubMed

    Chen, Zhi; Wang, Taihong; Zhang, Ming; Cao, Guozhong

    2017-06-01

    Porous carbon nanotubes (CNTs) are obtained by removing MoO 2 nanoparticles from MoO 2 @C core@shell nanofibers which are synthesized by phase-segregation via a single-needle electrospinning method. The specific surface area of porous CNTs is 502.9 m 2 g -1 , and many oxygen-containing functional groups (COH, CO) are present. As anodes for sodium-ion batteries, the porous CNT electrode displays excellent rate performance and cycling stability (110 mA h g -1 after 1200 cycles at 5 A g -1 ). Those high properties can be attributed to the porous structure and surface modification to steadily store Na + with high capacity. The work provides a facile and broadly applicable way to fabricate the porous CNTs and their composites for batteries, catalysts, and fuel cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Toxicity of Carbon Nanotubes and Its Implications for Occupational and Environmental Health

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2007-01-01

    Carbon nanotubes (CNTs), which possess desirable electrical and mechanical properties, potentially have wide industrial applications. CNTs exist in two forms, single-wall (SW) and multi-wall (MW). There has been great concern that if CNTs enter the work environment as suspended respirable particulate matter (PM), they could pose an inhalation hazard. The results of recent rodent studies have collectively shown that CNTs can produce inflammation, epithelioid granulomas, fibrosis, and biochemical changes in the lungs. Studies in mice given equal amounts of test dusts showed that CNTs were more toxic than quartz and produced lesions that became progressively more pronounced. These results have led us to recommend that respirable CNT dust be considered a serious occupational health hazard, and that exposure limits be established in the expectation of expanded industrial applications. CNTs, which are totally insoluble and fibrous, would be expected to be more biopersistent than mineral fibers. Biopersistence is the key factor determining the long-term toxicity of mineral fibers and certainly of CNTs too. We have postulated that the electrical and fibrous properties of CNTs also play important roles in the toxicity of CNTs in the lungs. Recently, MWCNTs have been found in ultrafine PM aggregates in combustion streams of methane, propane, and natural-gas flames of typical stoves; indoor and outdoor fine (< 2.5 micron) PM samples were reported to contain significant fractions of MWCNTs. Environmental fine PM is mainly formed from combustion of fuels, and fine PM has been reported to be a major contributor to the induction of cardiopulmonary diseases by pollutants. Given that manufactured SWCNTs and/or MWCNTs have elicited pathological changes in the lungs and heart, we have postulated that exposure to combustion-generated MWCNTs in fine PM in the air may play a significant role in air pollution-related cardiopulmonary diseases. Therefore, CNTs from manufacturing and

  8. Pyrolytic Carbon Coatings on Aligned Carbon Nanotube Assemblies and Fabrication of Advanced Carbon Nanotube/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh

    Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial

  9. Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs.

    PubMed

    Yazdandoost, Fatemeh; Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2017-05-04

    While individual carbon nanotubes (CNTs) are known as one of the strongest fibers ever known, even the strongest fabricated macroscale CNT yarns and fibers are still significantly weaker than individual nanotubes. The loss in mechanical properties is mainly because the deformation mechanism of CNT fibers is highly governed by the weak shear strength corresponding to sliding of nanotubes on each other. Adding polymer coating to the bundles, and twisting the CNT yarns to enhance the intertube interactions are both efficient methods to improve the mechanical properties of macroscale yarns. Here, we perform molecular dynamics (MD) simulations to unravel the unknown deformation mechanism in the intertube polymer chains and also local deformations of the CNTs at the atomistic scale. Our results show that the lateral pressure can have both beneficial and adverse effects on shear strength of polymer coated CNTs, depending on the local deformations at the atomistic scale. In this paper we also introduce a bottom-up bridging strategy between a full atomistic model and a coarse-grained (CG) model. Our trained CG model is capable of incorporating the atomistic scale local deformations of each CNT to the larger scale collect behavior of bundles, which enables the model to accurately predict the effect of lateral pressure on larger CNT bundles and yarns. The developed multiscale CG model is implemented to study the effect of lateral pressure on the shear strength of straight polymer coated CNT yarns, and also the effect of twisting on the pull-out force of bundles in spun CNT yarns.

  10. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  11. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.

    PubMed

    Sobhani, Zahra; Behnam, Mohammad Ali; Emami, Farzin; Dehghanian, Amirreza; Jamhiri, Iman

    2017-01-01

    Photothermal therapy (PTT) is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs) have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs) and then polyethylene glycol (PEG) was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w). Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P =2 W and I =8 W/cm 2 ) for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for eradicating solid tumors in PTT technique.

  12. Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs.

    PubMed

    Lawal, Isiaka A; Lawal, Monsurat M; Akpotu, Samson O; Azeez, Mayowa A; Ndungu, Patrick; Moodley, Brenda

    2018-06-18

    The adsorption of sulfamethoxazole (SMZ) and ketoprofen (KET) using carbon nanotubes (CNTs) and CNTs modified with ionic liquids (ILs) was investigated. Two ionic liquids (1-benzyl, 3-hexyl imidazolium, IL1 and 1-benzyl, 3-decahexyl imidazolium, IL2) were synthesized, and characterized by nuclear magnetic resonance ( 1 H and 13 C NMR) and high resolution-mass spectrometry (HR-MS). CNTs and modified CNTs were characterized using FT-IR, X-ray diffraction (XRD), surface area and porosity analysis, thermal gravimetric analysis (TGA), Zeta potential, Raman and scanning electron microscopy (SEM). Kinetics, isotherm and computational studies were carried out to determine the efficiency and adsorption mechanism of SMZ and KET on modified CNTs. A density functional theory (DFT) method was applied to shed more light on the interactions between the pharmaceutical compounds and the adsorbents at the molecular level. The effects of adsorbent dosage, concentration, solution pH, energetics and contact time of SMZ and KET on the adsorption process were investigated. The adsorption of SMZ and KET on CNTs and modified CNTs were pH dependent, and adsorption was best described by pseudo-second-order kinetics and the Freundlich adsorption isotherm. Ionic liquid modified CNTs showed improved adsorption capacities compared to the unmodified ones for both SMZ and KET, which is in line with the computational results showing performance order; CNT+KET/SMZ < CNT-ILs+SMZ < CNT-ILs+KET. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Pharmacokinetics Evaluation of Carbon Nanotubes Using FTIR Analysis and Histological Analysis.

    PubMed

    Gherman, Claudia; Tudor, Matea Cristian; Constantin, Bele; Flaviu, Tabaran; Stefan, Razvan; Maria, Bindea; Chira, Sergiu; Braicu, Cornelia; Pop, Laura; Petric, Roxana Cojocneanu; Berindan-Neagoe, Ioana

    2015-04-01

    Carbon nanotubes (CNTs) are biologically non-toxic and long-circulating nanostructures that have special physical properties. This study was focused on developing alternative methods that track carbon nanotubes, like FR-IR to classical tissue histological procedure. FT-IR absorption spectra were used to confirm the carboxylation of carbon nanotubes and to evaluate the presence of carbon nanotubes from bulk spleen samples and histologically prepared samples (control spleen and spleen with SWCNT-COOH). FT-IR spectrum of spleen sample from animals injected with CNTs shows major spectral differences consisting in infrared bands located at ~1173 cm(-1), ~ 1410 cm(-1); ~1658 cm(-1), ~1737 cm(-1) and around 1720 cm(-1) respectively. In terms of localization of carbon nanotubes, selective accumulation of marginal zone macrophages and splenic red pulp is observed for all treated groups, indicating the presence of carbon nanotubes even at 3, 4 and 7 days after treatment. In summary, we believe that histological evaluation and FT-IR can provide more characteristic information about the pharmacokinetcis and the clearance of carbon nanotubes.

  14. Tuning carbon nanotube assembly for flexible, strong and conductive films

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-01

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction

  15. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications.

    PubMed

    Zhang, Yexin; Zhang, Jian; Su, Dang Sheng

    2014-05-01

    The electronic properties of carbon nanotubes (CNTs) can be tuned by substitutional doping with heteroatoms (mainly B and N) to expand the applications of CNTs. Based on the comprehensive understanding of the substitutional doping of CNTs, it should be possible to deliberately design doped CNTs for specific purposes. Thus, relevant experimental and theoretical works are reviewed herein in an attempt to correlate the synthetic methods, electronic properties, and applications of heteroatom-doped CNTs. The distribution and arrangement of heteroatoms in the graphitic lattice of CNTs can be modulated through the choice of synthetic conditions, which would further lead to different electronic properties of CNTs for their chemical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Linear increases in carbon nanotube density through multiple transfer technique.

    PubMed

    Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish

    2011-05-11

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

  17. Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.

    PubMed

    Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S

    2018-08-17

    This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.

  18. Self-assembled ordered carbon-nanotube arrays and membranes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growthmore » and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.« less

  19. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes.

    PubMed

    Ünlü, Ayhan; Meran, Mehdi; Dinc, Bircan; Karatepe, Nilgün; Bektaş, Muhammet; Güner, F Seniha

    2018-05-24

    Carbon nanotube (CNTs) is a new alternative for efficient drug delivery and it has a great potential to change drug delivery system profile in pharmaceutical industry. One of the important advantage of CNTs is their needle-like, cylindrical shape. This shape provides a high surface area for multiple connections and adsorption onto for millions of therapeutic molecules. CNTs can be internalized by cells via endocytosis, passive diffusion and phagocytosis and release the drug with different effects like pH and temperature. The acidic nature of cancer cells and the susceptibility of CNTs to release the drug in the acidic environment have made it a promising area of research in cancer drug delivery. In this research, we investigated cell viability, cytotoxicity and drug delivery in breast cancer cell line by designing non-covalent single walled carbon nanotubes (SWNT)-doxorubicin (DOX) supramolecular complex that can be developed for cancer therapy. Applied high concentrations of DOX loaded SWNTs changed the actin structure of the cells and prevented the proliferation of the cells. It was showed that doxorubicin loaded SWNTs were more effective than free doxorubicin at relatively small concentrations. Once we applied same procedure for short and long (short: 1-1.3 µm; long: 2.5-4 µm) SWNTs and compared the results, more disrupted cell structure and reduction in cell proliferation were observed for long CNTs. DOX is bounded more to nanotubes in basic medium, less bound in acidic environment. Cancer cells were also examined for concentration at which they were effective by applying DOX and it was seen that 3.68 µM doxorubicin kills more than 55% of the cells.

  20. Improvement of carbon nanotube field emission properties by ultrasonic nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei

    2008-12-01

    Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.

  1. Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix

    NASA Astrophysics Data System (ADS)

    Petrunin, S.; Vaganov, V.; Reshetniak, V.; Zakrevskaya, L.

    2015-11-01

    The potential of application of CNTs as a reinforcing agent in cement composites is governed by their unique mechanical and electronic properties. The analysis of concrete strength changes under CNTs introduction shows non-uniformity and sometimes inconsistency of results. Due to the fact that CNTs influence the hydration kinetics, structure and phase composition of concrete, an idea concerning the importance of interaction between the surface of CNTs and hydrate ions formed by the dissolution of the clinker phases has been suggested. In this paper, the theoretical and experimental study of interaction between hydrate ions and CNTs surface is discussed. Reference nanotubes and nanotubes functionalized by carboxylic groups are used in this research. Phase composition was determined by X-Ray analysis according to the Rietveld method. It was found that the presence of oxygen-containing functional groups on CNTs surface leads to intensification of the hydration process and increase in concentration of C-S-H gel from 65.9% to 74.4%. Special attention is usually paid to interactions between Ca2+ ions and CNTs, because the hardening rate and structure of cement stone are determined by principle of Ca2+ localization in the solution. In this paper the possible binding mechanisms are discussed. Based on the experimental results, the hypothesis regarding the formation of cement composite structure for different CNTs surface functionalizations is considered. According to this hypothesis, the CNTs act as the centers of crystallization for hydration products contributing to the acceleration of hydration, increase of the concentration of C-S-H gel and strength improvement of CNTs based composites.

  2. Fowler Nordheim theory of carbon nanotube based field emitters

    NASA Astrophysics Data System (ADS)

    Parveen, Shama; Kumar, Avshish; Husain, Samina; Husain, Mushahid

    2017-01-01

    Field emission (FE) phenomena are generally explained in the frame-work of Fowler Nordheim (FN) theory which was given for flat metal surfaces. In this work, an effort has been made to present the field emission mechanism in carbon nanotubes (CNTs) which have tip type geometry at nanoscale. High aspect ratio of CNTs leads to large field enhancement factor and lower operating voltages because the electric field strength in the vicinity of the nanotubes tip can be enhanced by thousand times. The work function of nanostructure by using FN plot has been calculated with reverse engineering. With the help of modified FN equation, an important formula for effective emitting area (active area for emission of electrons) has been derived and employed to calculate the active emitting area for CNT field emitters. Therefore, it is of great interest to present a state of art study on the complete solution of FN equation for CNTs based field emitter displays. This manuscript will also provide a better understanding of calculation of different FE parameters of CNTs field emitters using FN equation.

  3. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  4. Enhancement mechanism of field electron emission properties in hybrid carbon nanotubes with tree- and wing-like features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a

    2009-12-15

    In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less

  5. Carbon nanotubes: a potential concept for drug delivery applications.

    PubMed

    Kumar, Rakesh; Dhanawat, Meenakshi; Kumar, Sudhir; Singh, Brahma N; Pandit, Jayant K; Sinha, Vivek R

    2014-04-01

    The unique properties of carbon nanotubes (CNTs) make them a highly interesting and demandable nanocarrier in the field of nanoscience. CNTs facilitate efficient delivery of therapeutics like drugs, proteins, genes, nucleic acids, vitamins and lot more. Even though highly beneficial, the biocompatibility of CNTs is a major issue in their questioning their potential application in targeting drug delivery. Studies confirmed subdued toxicity of CNTs following slight modifications like functionalization, controlled dimensions, purification etc. A well-established mechanism for cellular internalization is an insistent need to attain a more efficient and targeted delivery. Recent patents have been thoroughly discussed in the text below.

  6. A novel three-dimensional carbonized PANI1600@CNTs network for enhanced enzymatic biofuel cell.

    PubMed

    Kang, Zepeng; Jiao, Kailong; Cheng, Jin; Peng, Ruiyun; Jiao, Shuqiang; Hu, Zongqian

    2018-03-15

    A novel three-dimensional (3D) carbon composite of PANI 1600 @CNTs with rhizobium-like structure is prepared by in-situ polymerization of aniline monomers around and along the functionalized carbon nanotubes (CNTs) and then carbonized at 1600°C for enzymatic biofuel cells (EBFCs). The SEM and TEM images clearly show that the carbonized PANI grew seamlessly on the surface of CNTs and presented the rhizobium-like structure. The carbonized PANI acts like conductive "glue" and connects the adjacent tubes together, which can assemble the CNTs into a 3D network. The PANI 1600 @CNTs composite modified glassy carbon electrodes based on glucose oxidase (GOx) and laccase (Lac) exhibit high electrochemical performance. A glucose//O 2 EBFC constitutes of the fabricated anode and cathode performs a maximum power density of 1.12mWcm -2 at 0.45V. Furthermore, three of the fabricated EBFCs in series are able to lightening up a yellow light-emitting diode (LED) whose turn-on voltage is about at 1.8V. This work may be helpful for exploiting novel substrates by carbonizing the composites of conducting polymer with nano materials at high-temperature for immobilization of enzymes in the EBFCs or biosensor fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Failure mechanism of the polymer infiltration of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Park, Hyung Gyu

    2016-11-01

    Polymer melt infiltration is one of the feasible methods for manufacturing filter membranes out of carbon nanotubes (CNTs) on large scales. Practically, however, its process suffers from low yields, and the mechanism behind this failure is rather poorly understood. Here, we investigate a failure mechanism of polymer melt infiltration of vertical aligned (VA-) CNTs. In penetrating the VA-CNT interstices, polymer melts exert a capillarity-induced attractive force laterally on CNTs at the moving meniscus, leading to locally agglomerated macroscale bunches. Such a large configurational change can deform and distort individual CNTs so much as to cause buckling or breakdown of the alignment. In view of membrane manufacturing, this irreversible distortion of nanotubes is detrimental, as it could block the transport path of the membranes. The failure mechanism of the polymer melt infiltration is largely attributed to steric hindrance and an energy penalty of confined polymer chains. Euler beam theory and scaling analysis affirm that CNTs with low aspect ratio, thick walls and sparse distribution can maintain their vertical alignment. Our results can enrich a mechanistic understanding of the polymer melt infiltration process and offer guidelines to the facile large-scale manufacturing of the CNT-polymer filter membranes.

  8. Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.

    PubMed

    Wang, Yichun; Bahng, Joong Hwan; Che, Quantong; Han, Jishu; Kotov, Nicholas A

    2015-08-25

    Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.

  9. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    PubMed

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  10. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds

    PubMed Central

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering. PMID:27144173

  11. Application of carbon nanotube technology for removal of contaminants in drinking water: a review.

    PubMed

    Upadhyayula, Venkata K K; Deng, Shuguang; Mitchell, Martha C; Smith, Geoffrey B

    2009-12-15

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  12. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    , an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ˜35% and ˜65%, respectively, in tensile strength (˜0.8 GPa) and modulus (˜90 GPa) during tensile testing; an ˜20% improvement in electrical conductivity (˜80000 S m-1) was also reported. The mechanism of the microwave response of CNTs was discussed. Such a microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ˜30 mm2 s-1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ˜27 and ˜540 W m-1 K-1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing

  13. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.

    PubMed

    Seo, Dong Han; Yick, Samuel; Han, Zhao Jun; Fang, Jing Hua; Ostrikov, Kostya Ken

    2014-08-01

    Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    PubMed

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  15. Nanohashtag structures based on carbon nanotubes and molecular linkers

    NASA Astrophysics Data System (ADS)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  16. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.

    PubMed

    Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T

    2014-11-01

    We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.

  17. Tailored Carbon Nanotubes for Tissue Engineering Applications

    PubMed Central

    Veetil, Jithesh V.; Ye, Kaiming

    2008-01-01

    A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT-based tissue engineering applications. This review focuses on the recent developments of CNT-based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT’s biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. PMID:19496152

  18. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    NASA Astrophysics Data System (ADS)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87

  19. Noble Metal Decoration and Alignment of Carbon Nanotubes in Carboxymethyl Cellulose

    EPA Science Inventory

    A facile microwave (MW) method is described that accomplishes alignment and decoration of noble metals on carbon nanotubes wrapped with carboxymethyl cellulose (CMC). Carbon nanotubes (CNTs) such as single-wall (SWNT), multi-wall (MWNT) and Buckminsterfullerene (C-60) were well ...

  20. Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Nadeem, S.; Khan, Zafar Hayat

    2014-10-01

    Peristaltic flow is used to study the flow and heat transfer of carbon nanotubes in an asymmetric channel with thermal and velocity slip effects. Two types of carbon nanotubes, namely, single- and multi-wall carbon nanotubes are utilized to see the analysis with water as base fluids. Empirical correlations are used for the thermo-physical properties of carbon nanotubes (CNTs) in terms of solid volume fraction of CNTs. The governing equations are simplified using long wavelength and low Reynolds number approximation. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of CNTs and temperature profile. The effects of various flow parameters, i.e. Hatmann number M, the solid volume fraction of the nanoparticles ϕ, Grashof number G, velocity slip parameter β, thermal slip parameter γ and Prandtl number P r are presented graphically for both single- (SWCNT) and multi-wall carbon nanotubes (MWCNT).

  1. Thermostable luciferase from Luciola cruciate for imaging of carbon nanotubes and carbon nanotubes carrying doxorubicin using in vivo imaging system.

    PubMed

    El-Sayed, Ramy; Eita, Mohamed; Barrefelt, Asa; Ye, Fei; Jain, Himanshu; Fares, Mona; Lundin, Arne; Crona, Mikael; Abu-Salah, Khalid; Muhammed, Mamoun; Hassan, Moustapha

    2013-04-10

    In the present study, we introduce a novel method for in vivo imaging of the biodistribution of single wall carbon nanotubes (SWNTs) labeled with recombinant thermo-stable Luciola cruciata luciferase (LcL). In addition, we highlight a new application for green fluorescent proteins in which they are utilized as imaging moieties for SWNTs. Carbon nanotubes show great positive potential compared to other drug nanocarriers with respect to loading capacity, cell internalization, and biodegradability. We have also studied the effect of binding mode (chemical conjugation and physical adsorption) on the chemiluminescence activity, decay rate, and half-life. We have shown that through proper chemical conjugation of LcL to CNTs, LcL remained biologically active for the catalysis of d-luciferin in the presence of ATP to release detectable amounts of photons for in vivo imaging. Chemiluminescence of LcL allows imaging of CNTs and their cargo in nonsuperficial locations at an organ resolution with no need of an excitation source. Loading LcL-CNTs with the antitumor antibiotic doxorubicin did not alter their biological activity for imaging. In vivo imaging of LcL-CNTs has been carried out using "IVIS spectrum" showing the uptake of LcL-CNTs by different organs in mice. We believe that the LcL-CNT system is an advanced powerful tool for in vivo imaging and therefore a step toward the advancement of the nanomedicine field.

  2. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurulhuda, I., E-mail: nurulnye@gmail.com; Poh, R.; Mazatulikhma, M. Z.

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from themore » process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm{sup −1}, respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm{sup −1}. Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.« less

  3. Wear of carbon nanotubes grafted on carbon fibers and this influence on the properties of composites materials

    NASA Astrophysics Data System (ADS)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2017-10-01

    Carbon nanotubes (CNTs) grafted on carbon surfaces can be used to reinforce composite materials. During an industrial process of CNTs production and composite processing, friction stresses will be applied on CNTs. This study showed that CNTs formed a transfer film under friction stresses and that the wear of the CNTs has no influence on the wettability of the surface, so we can predict no decrease in the properties of composites.

  4. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  5. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes

    USDA-ARS?s Scientific Manuscript database

    This study explores the mechanical properties of an E-glass fabric composite reinforced with anchored multi-walled carbon nanotubes (CNTs). The CNTs were grown on the E-glass fabric using a floating catalyst chemical vapor deposition procedure. The E-glass fabric with attached CNTs was then incorpor...

  6. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.

    PubMed

    Niguès, A; Siria, A; Vincent, P; Poncharal, P; Bocquet, L

    2014-07-01

    Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons-Coulomb. Here, by using a 'Christmas cracker'-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF-AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.

  7. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber.

    PubMed

    Yin, Yichao; Liu, Xiaofang; Wei, Xiaojun; Yu, Ronghai; Shui, Jianglan

    2016-12-21

    Porous carbon nanotubes/cobalt nanoparticles (CNTs/Co) composite with dodecahedron morphology was synthesized by in situ pyrolysis of the Co-based zeolitic imidazolate framework in a reducing atmosphere. The morphology and microstructure of the composite can be well tuned by controlling the pyrolysis conditions. At lower pyrolysis temperature, the CNTs/Co composite is composed of well-dispersed Co nanoparticles and short CNT clusters with low graphitic degree. The increase of pyrolysis temperature/time promotes the growth and graphitization of CNTs and leads to the aggregation of Co nanoparticles. The optimized CNTs/Co composite exhibits strong dielectric and magnetic losses as well as a good impedance matching property. Interestingly, the CNTs/Co composite displays extremely strong electromagnetic wave absorption with a maximum reflection loss of -60.4 dB. More importantly, the matching thickness of the absorber is as thin as 1.81 mm, and the filler loading of composite in the matrix is only 20 wt %. The highly efficient absorption is closely related to the well-designed structure and the synergistic effect between CNTs and Co nanoparticles. The excellent absorbing performance together with lightweight and ultrathin thickness endows the CNTs/Co composite with the potential for application in the electromagnetic wave absorbing field.

  8. Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes.

    PubMed

    Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina M

    2018-04-17

    The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al 2 O 3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al 2 O 3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrabreathable and protective membranes with sub-5 nm carbon nanotube pores

    DOE PAGES

    Bui, Ngoc; Meshot, Eric R.; Kim, Sangil; ...

    2016-05-09

    Here, small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.

  10. Localized plasmon resonance in boron-doped multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shuba, M. V.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Chigir, G. G.; Pyatlitski, A. N.; Sedelnikova, O. V.; Okotrub, A. V.; Lambin, Ph.

    2018-05-01

    Substitutionally boron-doped multiwalled carbon nanotubes (B-CNTs) with lengths mainly less than 0.5 μ m and diameters 10-30 nm have been obtained by arc-discharge evaporation of the graphite anode containing boron material. The broad peak has been observed in the midinfrared conductivity spectra of the thin film comprising B-CNTs. The peak was suggested to be associated with a phenomenon known as localized plasmon resonance. Theoretical analysis has been done to confirm the possibility of this phenomenon to occur in the B-CNTs.

  11. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes.

    PubMed

    Mehra, Neelesh Kumar; Jain, Keerti; Jain, Narendra Kumar

    2015-06-01

    Surface engineered carbon nanotubes (CNTs) are attracting recent attention of scientists owing to their vivid biomedical and pharmaceutical applications. The focus of this review is to highlight the important role of surface engineered CNTs in the highly challenging but rewarding area of nanotechnology. The major strength of this review lies in highlighting the exciting applications of CNTs to boost the research efforts, which unfortunately are otherwise scattered in the literature making the reading non-coherent and non-homogeneous. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, Mohamed; Farghali, Ahmed Ali; El Rouby, Waleed; Khedr, Mohamed; Mohassab-Ahmed, Mohassab Y.

    2013-06-01

    This research was carried out to evaluate the capability of multi-walled carbon nanotubes (CNTs) and NiFe2O4-decorated multi-walled carbon nanotubes (NiFe2O4-CNTs) toward waste water treatment relevant to organic dyes. CNTs were prepared via chemical vapor deposition method. NiFe2O4-CNTs were prepared by in-situ chemical precipitation of metal hydroxides followed by hydrothermal processing. The samples were characterized using XRD and TEM. The adsorption efficiency of CNTs and NiFe2O4-CNTs of methyl green dye at various temperatures was examined. The adsorbed amount increased with the CNTs and NiFe2O4-CNTs dosage. The linear correlation coefficients and standard deviations of Langmuir and Freundlich isotherms were determined. It was found that Langmuir isotherm fitted the experimental results well in both adsorption cases n of methyl green onto CNTs and NiFe2O4-CNTs. Kinetics analyses were conducted using pseudo first-order, second-order and the intraparticle diffusion models. The results showed that the adsorption kinetics was controlled by a pseudo second-order model for adsorption of methyl green onto CNTs and best controlled by pseudo first-order in case of NiFe2O4-CNTs. Changes in the free energy of adsorption (Δ G°), enthalpy (Δ H°), entropy (Δ S°), and the activation energy ( E a) were determined. The Δ H°, Δ G° and E a values indicated that the adsorption of methyl green onto MWCNTs and NiFe2O4-MWCNTs was physisorption.

  13. Effect of pH on enhancement of hydrogen storage capacity in carbon nanotubes on a copper substrate

    NASA Astrophysics Data System (ADS)

    Varshoy, Sh.; Khoshnevisan, B.; Mohammadi, M.; Behpour, M.

    2017-12-01

    Electrochemical storage of hydrogen in Cu-CNTs (copper and carbon nanotubes) electrodes was studied by Chronopotentiometry technique. In this project effective absorption factors in atomic hydrogenation by CNTs such as charge/discharge (C&D) cyclic number, current and also different pHs were studied. Acidic method was used for purifying and functionalizing the CNTs, and the outputs were characterized using XRD spectroscopy. The CNTs were deposited on copper foam with nano metric porosity by electrophoretic method (EPD). By comparing the results of different experiments in different charge and discharge cycles, it was observed that multi-wall carbon nanotubes in the current of 3 mA with pH=5.4 have a maximum discharge capacity ‎about 10,000 mA h/g.

  14. Applications of carbon nanotubes in stem cell research.

    PubMed

    Ramón-Azcón, Javier; Ahadian, Samad; Obregón, Raquel; Shiku, Hitoshi; Ramalingam, Murugan; Matsue, Tomokazu

    2014-10-01

    Stem cells are a key element in tissue engineering and regenerative medicine. However, they require a suitable microenvironment to grow and regenerate. Carbon nanotubes (CNTs) have attracted much attention as promising materials for stem cell research due to their extraordinary properties, such as their extracellular matrix-like structure, high mechanical strength, optical properties, and high electrical conductivity. Of particular interest is the use of CNTs as biomimetic substrates to control the differentiation of stem cells. CNTs have also been combined with commonly used scaffolds to fabricate functional scaffolds to direct stem cell fate. CNTs can also be used for stem cell labeling due to their high optical absorbance in the near-infrared regime. In this paper, we review and discuss the applications of CNTs in stem cell research along with CNT toxicity issues.

  15. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  16. Electron-Phonon and Electron-Electron Interactions in Individual Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Cronin, Stephen

    2010-03-01

    The fabrication of pristine, nearly defect-free, suspended carbon nanotubes (CNTs) enables the observation of several phenomena not seen before in carbon nanotubes, including breakdown of the Born-Oppenheimer approximation^1, mode selective electron-phonon coupling^2, and a Mott insulator transition^3. Raman spectroscopy of these nanotubes under applied gate and bias potentials reveals exceptionally strong electron-phonon coupling, arising from Kohn anomalies, which result in mode selective electron-phonon coupling, negative differential conductance (NDC), and non-equilibrium phonon populations^2,4. Due to the extremely long electron lifetimes, we observe a breakdown of the Born-Oppenheimer approximation, as deduced from the gate voltage-induced changes in the vibrational energies of suspended carbon nanotubes^1. We also report strikingly large variations in the Raman intensity of pristine metallic CNTs in response to gate voltages, which are attributed to a Mott insulating state of the strongly correlated electrons^3. As will be shown, preparing clean, defect-free devices is an essential prerequisite for studying the rich low-dimensional physics of CNTs. (1.) Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and Cronin, S.B., ``Direct Observation of Born-Oppenheimer Approximation Breakdown in Carbon Nanotubes.'' Nano Letters, 9, 607 (2009). (2.) Bushmaker, A.W., Deshpande, V.V., Bockrath, M.W., and Cronin, S.B., ``Direct Observation of Mode Selective Electron-Phonon Coupling in Suspended Carbon Nanotubes.'' Nano Letters, 7, 3618 (2007) (3.) Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and Cronin, S.B., ``Large Modulations in the Intensity of Raman-Scattered Light from Pristine Carbon Nanotubes.'' Physical Review Letters, 103, 067401 (2009). (4.) Bushmaker, A.W., Deshpande, V.V., Hsieh, S., Bockrath, M.W., and Cronin, S.B., ``Gate Voltage Controlled Non-Equilibrium and Non-Ohmic Behavior in Suspended Carbon Nanotubes.'' Nano Letters, 9

  17. Nanoengineered thermal materials based on carbon nanotube array composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Dangelo, Carlos (Inventor)

    2010-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  18. Nanoengineered thermal materials based on carbon nanotube array composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  19. Carbon Nanotubes Facilitate Oxidation of Cysteine Residues of Proteins.

    PubMed

    Hirano, Atsushi; Kameda, Tomoshi; Wada, Momoyo; Tanaka, Takeshi; Kataura, Hiromichi

    2017-10-19

    The adsorption of proteins onto nanoparticles such as carbon nanotubes (CNTs) governs the early stages of nanoparticle uptake into biological systems. Previous studies regarding these adsorption processes have primarily focused on the physical interactions between proteins and nanoparticles. In this study, using reduced lysozyme and intact human serum albumin in aqueous solutions, we demonstrated that CNTs interact chemically with proteins. The CNTs induce the oxidation of cysteine residues of the proteins, which is accounted for by charge transfer from the sulfhydryl groups of the cysteine residues to the CNTs. The redox reaction simultaneously suppresses the intermolecular association of proteins via disulfide bonds. These results suggest that CNTs can affect the folding and oxidation degree of proteins in biological systems such as blood and cytosol.

  20. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  1. Quantification of Carbon Nanotubes in Different Environmental Matrices by a Microwave Induced Heating Method

    EPA Science Inventory

    Carbon nanotubes (CNTs) have been incorporated into numerous consumer products, and have also been employed in various industrial areas because of their extraordinary properties. The large scale production and wide applications of CNTs make their release into the environment a ma...

  2. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  3. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    PubMed

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  4. Carbon nanotubes: potential medical applications and safety concerns.

    PubMed

    Amenta, Valeria; Aschberger, Karin

    2015-01-01

    Carbon nanotubes (CNTs) have unique atomic structure, as well as outstanding thermal, mechanical, and electronic properties, making them extremely attractive materials for several different applications. Many research groups are focusing on biomedical applications of carbon-based nanomaterials, however the application of CNTs to the biomedical field is not developing as fast as in other areas. While CNTs-based products are already being used in textiles, polymer matrices to strengthen materials, sports articles, microelectronics, energy storage, etc., medicinal products and medical devices for in vivo application based on CNTs have not been commercialized yet. However, CNTs for biomedical application, i.e., CNTs conjugated to siRNA for cancer therapy, or CNTs for imaging of colorectal cancer and many other products may enter clinical trials in the next years. Concerns related to the toxicity of CNTs must be overcome in order to have these products commercialized in a near future. This article reviews emerging biomedical applications of CNTs, specifically for therapy. It also deals with challenges associated with possible medical applications of CNTs, such as their not fully understood toxicological profile in the human body. © 2014 Wiley Periodicals, Inc.

  5. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  6. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal.

    PubMed

    Kayvani Fard, Ahmad; Mckay, Gordon; Manawi, Yehia; Malaibari, Zuhair; Hussien, Muataz A

    2016-12-01

    Oil removal from water is a highly important area due to the large production rate of emulsified oil in water, which is considered one of the major pollutants, having a negative effect on human health, environment and wildlife. In this study, we have reported the application of high quality carbon nanotube bundles produced by an injected vertical chemical vapor deposition (IV-CVD) reactor for oil removal. High quality, bundles, super hydrophobic, and high aspect ratio carbon nanotubes were produced. The average diameters of the produced CNTs ranged from 20 to 50 nm while their lengths ranged from 300 to 500 μm. Two types of CNTs namely, P-CNTs and C-CNTs, (Produced CNTs from the IV-CVD reactor and commercial CNTs) were used for oil removal from water. For the first time, thermogravimetric analysis (TGA) was conducted to measure maximum oil uptake using CNT and it was found that P-CNT can take oil up to 17 times their weight. The effect of adsorbent dosage, contact time, and agitation speed were examined on the oil spill clean-up efficiency using batch sorption experiments. Higher efficiency with almost 97% removal was achieved using P-CNTs compared to 87% removal using C-CNTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Carbon Nanotubes Influence the Enzyme Activity of Biogeochemical Cycles of Carbon, Nitrogen, Phosphorus and the Pathogenesis of Plants in Annual Agroecosystems

    NASA Astrophysics Data System (ADS)

    Vaishlya, O. B.; Osipov, N. N.; Guseva, N. V.

    2015-09-01

    We conducted pre-sowing seed treatment of spring wheat carbon nanotubes modified with thionyl chloride, ethylene diamine, azobenzole, and dodecylamine. CNTs did not disrupt the structure of the crop, but the activity of extracellular enzymes in the rhizosphere of plants in the flowering stage changed: laccase works more poorly in the variant of the CNTs with the amino groups exochitinase and phosphatase activity increased in the case of chlorinated CNTs, OH and COOH groups on the surface of the nanotubes twice accelerate work β-glucosidase. The changes observed in the biogeochemical cycles in the rhizosphere are a possible cause of the effect of nanotubes on the development of epidemic diseases of wheat.

  8. Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes.

    PubMed

    Lado Touriño, Isabel; Naranjo, Arisbel Cerpa; Negri, Viviana; Cerdán, Sebastián; Ballesteros, Paloma

    2015-11-01

    Computational modeling of the translational diffusion of water molecules in anisotropic environments entails vital relevance to understand correctly the information contained in the magnetic resonance images weighted in diffusion (DWI) and of the diffusion tensor images (DTI). In the present work we investigated the validity, strengths and weaknesses of a coarse-grained (CG) model based on the MARTINI force field to simulate water diffusion in a medium containing carbon nanotubes (CNTs) as models of anisotropic water diffusion behavior. We show that water diffusion outside the nanotubes follows Ficḱs law, while water diffusion inside the nanotubes is not described by a Ficḱs behavior. We report on the influence on water diffusion of various parameters such as length and concentration of CNTs, comparing the CG results with those obtained from the more accurate classic force field calculation, like the all-atom approach. Calculated water diffusion coefficients decreased in the presence of nanotubes in a concentration dependent manner. We also observed smaller water diffusion coefficients for longer CNTs. Using the CG methodology we were able to demonstrate anisotropic diffusion of water inside the nanotube scaffold, but we could not prove anisotropy in the surrounding medium, suggesting that grouping several water molecules in a single diffusing unit may affect the diffusional anisotropy calculated. The methodologies investigated in this work represent a first step towards the study of more complex models, including anisotropic cohorts of CNTs or even neuronal axons, with reasonable savings in computation time. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Maskless writing of a flexible nanoscale transistor with Au-contacted carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Dockendorf, Cedric P. R.; Poulikakos, Dimos; Hwang, Gilgueng; Nelson, Bradley J.; Grigoropoulos, Costas P.

    2007-12-01

    A flexible polymer field effect transistor with a nanoscale carbon nanotube channel is conceptualized and realized herein. Carbon nanotubes (CNTs) were dispersed on a polyimide substrate and marked in an scanning electron microscope with focused ion beam such that they could be contacted with gold nanoink. The CNTs were divided into two parts forming the source and drain of the transistor. A micropipette writing method was used to contact the carbon nanotube electrodes with gold nanoink and to deposit the poly(3-hexylthiophene) as an active layer. The mobility of the transistors is of the order of 10-5cm/Vs. After fabrication, the flexible transistors can be peeled off the substrate.

  10. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

    PubMed Central

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-01-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15–30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g−1 and a high conductivity of 0.471 S cm−1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g−1 at a current density of 10 mA cm−2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons. PMID:26568518

  11. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-11-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g-1 and a high conductivity of 0.471 S cm-1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g-1 at a current density of 10 mA cm-2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons.

  12. Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle

    PubMed Central

    Karimi, Mahdi; Solati, Navid; Amiri, Mohammad; Mirshekari, Hamed; Mohamed, Elmira; Taheri, Mahdiar; Hashemkhani, Mahshid; Saeidi, Ahad; Estiar, Mehrdad Asghari; Kiani, Parnian; Ghasemi, Amir; Basri, Seyed Masoud Moosavi; Aref, Amir R

    2015-01-01

    Introduction It is 23 years since carbon allotrope known as carbon nanotubes (CNT) was discovered by Iijima, who described them as “rolled graphite sheets inserted into each other”. Since then, CNTs have been studied in nanoelectronic devices. However, CNTs also possess the versatility to act as drug- and gene-delivery vehicles. Areas covered This review covers the synthesis, purification and functionalization of CNTs. Arc discharge, laser ablation and chemical vapor deposition are the principle synthesis methods. Non-covalent functionalization relies on attachment of biomolecules by coating the CNT with surfactants, synthetic polymers and biopolymers. Covalent functionalization often involves the initial introduction of carboxylic acids or amine groups, diazonium addition, 1,3-dipolar cycloaddition or reductive alkylation. The aim is to produce functional groups to attach the active cargo. Expert opinion In this review, the feasibility of CNT being used as a drug-delivery vehicle is explored. The molecular composition of CNT is extremely hydrophobic and highly aggregation-prone. Therefore, most of the efforts towards drug delivery has centered on chemical functionalization, which is usually divided in two categories; non-covalent and covalent. The biomedical applications of CNT are growing apace, and new drug-delivery technologies play a major role in these efforts. PMID:25601356

  13. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors.

    PubMed

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-11-16

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m(2) g(-1) and a high conductivity of 0.471 S cm(-1). As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g(-1) at a current density of 10 mA cm(-2) over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons.

  14. Carbon Nanotube Based Devices for Intracellular Analysis

    NASA Astrophysics Data System (ADS)

    Singhal, Riju Mohan

    Scientific investigations on individual cells have gained increasing attention in recent years as efforts are being made to understand cellular functioning in complex processes, such as cell division during embryonic development, and owing to realization of heterogeneity amongst a population of a single cell type (for instance, certain individual cancer cells being immune to chemotherapy). Therefore devices enabling electrochemical detection, spectroscopy, optical observations, and separation techniques, along with cell piercing and fluid transfer capabilities at the intra-cellular level, are required. Glass pipettes have conventionally been used for single cell interrogation, however their poor mechanical properties and an intrusive conical geometry have led to limited precision and frequent cell damage or death, justifying research efforts to develop novel, non-intrusive cell probes. Carbon nanotubes (CNTs) are known for their superior physical properties and tunable chemical structure. They possess a high aspect ratio and offer minimally invasive thin carbon walls and tubular geometry. Moreover, possibility of chemical functionalization of CNTs enables multi-functional probes. In this dissertation, novel nanofluidic instruments that have nanostructured carbon tips will be presented along with techniques that utilize the exceptional physical properties of carbon nanotubes, to take miniature biomedical instrumentation to the next level. New methods for fabricating the probes were rigorously developed and their operation was extensively studied. The devices were mechanically robust and were used to inject liquids to a single cell, detect electrochemical signals and enable surface enhanced Raman spectroscopy (SERS) while inducing minimal harm to the cell. Particular attention was focused on the CVD process-which was used to deposit carbon, fluid flow through the nanotubes, and separation of chemical species (atto-liter chromatography) at the nanometer scale that

  15. Flightweight Carbon Nanotube Magnet Technology

    NASA Technical Reports Server (NTRS)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  16. DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shahabi, Dana; Tavakol, Hossein

    2017-10-01

    In this study, noncovalent interactions between Fluoxetine (FX) and different carbon nanotubes (CNTs) or sulfur doped carbon nanotubes (SCNTs) were fully considered using DFT, natural bond orbital (NBO) and molecular docking calculations. Two different CNTs (and SCNTs) with 7,7 and 8,8 chiralities were considered as the adsorbents and the adsorption of FX by these adsorbents were studied in two cases: into the nanotubes and on their surfaces. The results of DFT and NBO calculations proposed that the 8,8 nanotubes are more suitable adsorbents for FX because the energies of their adsorptions are minimum. Population: analyses were also proposed that the adsorption of FX by SCNTs lead to more changes in electronic and sensing properties than the adsorption by CNTs. Moreover, the adsorption energies, obtained from molecular docking calculations (using 94 different models), proposed that the adsorption of FX into (versus out of) the nanotubes, adsorption processes by double-walled or triple-walled (versus single-walled) nanotubes and the adsorption by nanotubes with 8,8 chiralities are the most favorable adsorption processes.

  17. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.

    PubMed

    Boncel, Slawomir; Pattinson, Sebastian W; Geiser, Valérie; Shaffer, Milo S P; Koziol, Krzysztof K K

    2014-01-01

    The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 10(8) nanotubes per mm(2) (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a 'bamboo'-like or 'membrane'-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp(2)-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a 'mixed base-and-tip' (primarily of the base-type) type as compared to the purely 'base'-type for undoped

  18. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    PubMed Central

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970

  19. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .

  20. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.

    PubMed

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-15

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH.

  1. Cost-effective single-step carbon nanotube synthesis using microwave oven

    NASA Astrophysics Data System (ADS)

    Algadri, Natheer A.; Ibrahim, K.; Hassan, Z.; Bououdina, M.

    2017-08-01

    This paper reports the characterization of carbon nanotubes (CNTs) synthesised using a conventional microwave oven method, offering several advantages including fast, simple, low cost, and solvent free growth process. The procedure involves flattening of graphite/ferrocene mixture catalyst inside the microwave oven under ambient conditions for a very short duration of 5 s, which inhibits the loss factor of graphite and ferrocene. The effect of graphite/ferrocene mixture ratio for the synthesis of CNTs is investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), Raman spectroscopy and UV-NIR-Vis measurements. The samples produced using the different ratios contain nanotubes with an average diameter in the range 44-79 nm. The highest yield of CNTs is attained with graphite/ferrocene mixture ratio of 70:30. The lowest I D/I G ratio intensity as identified by Raman spectroscopy for 70:30 ratio indicates the improved crystallinity of CNTs. Due to the capillary effect of CNTs, Fe nanoparticles are found to be encapsulated inside the tubes at different positions along the tube length. The obtained results showed that the smaller the diameter of graphite and ferrocene favors the synthesis of graphene oxide upon microwave radiation.

  2. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  3. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.

    PubMed

    Samadishadlou, Mehrdad; Farshbaf, Masoud; Annabi, Nasim; Kavetskyy, Taras; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl; Mousavi, Sepideh

    2017-10-18

    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields.

  4. CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors.

    PubMed

    Kim, Jeonghun; Young, Christine; Lee, Jaewoo; Park, Min-Sik; Shahabuddin, Mohammed; Yamauchi, Yusuke; Kim, Jung Ho

    2016-10-27

    Carbon nanotubes (CNT) grown on nanoporous carbon (NPC), which yields coexisting amorphous and graphitic nanoarchitectures, have been prepared on a large scale from zeolitic imidazolate framework (ZIF) by introducing bimetallic ions (Co 2+ and Zn 2+ ). Interestingly, the hybrid Co/Zn-ZIF-derived NPC showed rich graphitic CNTs on the surface. This NPC was utilized for a coin-type supercapacitor cell with an aqueous electrolyte, which showed enhanced retention at high current density and good stability over 10 000 cycles.

  5. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    PubMed

    Burblies, Niklas; Schulze, Jennifer; Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  6. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells

    PubMed Central

    Schwarz, Hans-Christoph; Kranz, Katharina; Motz, Damian; Vogt, Carla; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2016-01-01

    Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs), either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes. PMID:27385031

  7. Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Hesabi, Maryam; Behjatmanesh-Ardakani, Reza

    2018-01-01

    Nowadays, an important process applied in the design of novel composite materials and drug delivery fields is the carboxylation of carbon nanotubes. In this work, we study the interaction of the anti-cancer drug hydroxyurea with carboxyl-functionalized zigzag carbon nanotubes (CNTs) by employing the method of the density functional theory (DFT) at B3LYP and CAM-B3LYP levels in gas and solvent phases. The results show that all complexes are energetically favorable, especially in the aqueous phase. The enthalpy energy values are negative in all cases, which indicate their exothermic adsorption nature. The presence of sbnd COOH groups would create enough free space on the nanotube surface for the adsorption between interacting atoms. Thus, these can increase the activity of CNTs. Data indicates that adsorption is dependent on the carboxyl sites of the nanotube as well as on the sites of the drug. Furthermore, the hydrogen-bonding interactions between drug and sbnd COOH-CNTs play an important role for the different kinds of adsorption observed.

  8. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    EPA Science Inventory

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and the...

  9. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Sato, C.; Naka, Y.; Whitby, R.; Shimizu, N.

    2010-03-01

    Low concentrations (0.11-1.7 µg ml - 1) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 µg ml - 1 CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  10. Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction

    PubMed Central

    Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.

    2015-01-01

    Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells. PMID:26616719

  11. Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.

    2015-11-01

    Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.

  12. The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis.

    PubMed

    Yang, Hua-feng; Xie, Peng-yang; Yu, Hui-you; Li, Xiao-nian; Wang, Jian-guo

    2012-12-28

    The structures and catalytic properties of AuPd clusters supported on carbon nanotubes (CNTs) for H(2)O(2) synthesis have been investigated by means of density functional theory calculations. Firstly, the structures of AuPd clusters are strongly influenced by CNTs, in which the bottom layers are mainly composed of Pd and the top layers are a mix of Au and Pd due to the stronger binding of Pd than Au on CNTs. Especially, it is found that O(2) adsorption on the Pd/CNTs interfacial sites is much weaker than that on the only Pd sites, which is in contrast to transition metal oxide (for example TiO(2), Al(2)O(3), CeO(2)) supported metal clusters. Furthermore, Pd ensembles on the interfacial sites have far superior catalytic properties for H(2)O(2) formation than those away from CNT supports due to the changes in electronic structures caused by the CNTs. Therefore, our study provides a physical insight into the enhanced role of carbon supports in H(2)O(2) synthesis over supported AuPd catalysts.

  13. Engineering of oriented carbon nanotubes in composite materials

    PubMed Central

    Beigmoradi, Razieh; Mohebbi-Kalhori, Davod

    2018-01-01

    The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook. PMID:29515955

  14. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems--A review.

    PubMed

    Boncel, Sławomir; Kyzioł-Komosińska, Joanna; Krzyżewska, Iwona; Czupioł, Justyna

    2015-10-01

    Due to their unique molecular architecture translating into numerous every-day applications, carbon nanotubes (CNTs) will be ultimately an increasingly significant environmental contaminant. This work reviews qualitative/quantitative analyses of interactions of various types of CNTs and their chemically modified analogues with aqueous/aquatic media containing organic and inorganic contaminants and selected organisms of aquatic ecosystems. A special emphasis was placed on physicochemical interactions between CNTs as adsorbents of heavy metal cations and aromatic compounds (dyes) with its environmental consequences. The studies revealed CNTs as more powerful adsorbents of aromatic compounds (an order of magnitude higher adsorption capacity) than metal cations. Depending on the presence of natural organic matter (NOM) and/or co-contaminants, CNTs may act as Trojan horse while passing through biological membranes (in the absence of NOM coordinating metal ions). Nanotubes, depending on flow conditions and their morphology/surface chemistry, may travel with natural waters or sediment with immobilized PAHs or metals and/or increase cyto- and ecotoxicity of PAHs/metal ions by their release via competitive complexation, or cause synergic ecotoxicity while adsorbing nutrients. Additionally, toxicity of CNTs against exemplary aquatic microorganisms was reviewed. It was found for Daphnia magna that longer exposures to CNTs led to higher ecotoxicity with a prolonged CNTs excretion. SWCNTs were more toxic than MWCNTs, while hydrophilization of CNTs via oxidation or anchoring thereto polar/positively charged polymer chains enhanced stability of nanotubes dispersion in aqueous media. On the other hand, bioavailability of functionalized CNTs was improved leading to more complex both mechanisms of uptake and cytotoxic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  16. Benchmark study of ionization potentials and electron affinities of armchair single-walled carbon nanotubes using density functional theory

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Hu, Zhubin; Jiang, Yanrong; He, Xiao; Sun, Zhenrong; Sun, Haitao

    2018-05-01

    The intrinsic parameters of carbon nanotubes (CNTs) such as ionization potential (IP) and electron affinity (EA) are closely related to their unique properties and associated applications. In this work, we demonstrated the success of optimal tuning method based on range-separated (RS) density functionals for both accurate and efficient prediction of vertical IPs and electron affinities (EAs) of a series of armchair single-walled carbon nanotubes C20n H20 (n  =  2–6) compared to the high-level IP/EA equation-of-motion coupled-cluster method with single and double substitutions (IP/EA-EOM-CCSD). Notably, the resulting frontier orbital energies (–ε HOMO and –ε LUMO) from the tuning method exhibit an excellent approximation to the corresponding IPs and EAs, that significantly outperform other conventional density functionals. In addition, it is suggested that the RS density functionals that possess both a fixed amount of exact exchange in the short-range and a correct long-range asymptotic behavior are suitable for calculating electronic structures of finite-sized CNTs. Next the performance of density functionals for description of various molecular properties such as chemical potential, hardness and electrophilicity are assessed as a function of tube length. Thanks to the efficiency and accuracy of this tuning method, the related behaviors of much longer armchair single-walled CNTs until C200H20 were studied. Lastly, the present work is proved to provide an efficient theoretical tool for future materials design and reliable characterization of other interesting properties of CNT-based systems.

  17. Quantification of Carbon Nanotubes in Different ...

    EPA Pesticide Factsheets

    Carbon nanotubes (CNTs) have been incorporated into numerous consumer products, and have also been employed in various industrial areas because of their extraordinary properties. The large scale production and wide applications of CNTs make their release into the environment a major concern. Therefore, it is crucial to determine the degree of potential CNT contamination in the environment, which requires a sensitive and accurate technique for selectively detecting and quantifying CNTs in environmental matrices. In this study, a simple device based on utilizing heat generated/temperature increase from CNTs under microwave irradiation was built to quantify single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs) and carboxylated CNTs (MWCNT-COOH) in three environmentally relevant matrices (sand, soil and sludge). Linear temperature vs CNT mass relationships were developed for the three environmental matrices spiked with known amounts of different types of CNTs that were then irradiated in a microwave at low energies (70-149 W) for a short time (15-30 s). MWCNTs had a greater microwave response in terms of heat generated/temperature increase than SWCNTs and MWCNT-COOH. An evaluation of microwave behavior of different carbonaceous materials showed that the microwave measurements of CNTs were not affected even with an excess of other organic, inorganic carbon or carbon based nanomaterials (fullerene, granular activated carbon and graphene oxide) mainly because micr

  18. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    NASA Astrophysics Data System (ADS)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  19. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  20. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    PubMed Central

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-01-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage. PMID:27406239

  1. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.

    PubMed

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-11

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  2. Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.

    PubMed

    Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong

    2018-05-15

    In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The cardiac effects of carbon nanotubes in rat.

    PubMed

    Hosseinpour, Mina; Azimirad, Vahid; Alimohammadi, Maryam; Shahabi, Parviz; Sadighi, Mina; Ghamkhari Nejad, Ghazaleh

    2016-01-01

    Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials' biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. RESULTS of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate.

  4. Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles

    PubMed Central

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2011-01-01

    The thermal stability of multiwalled carbon nanotubes (CNTs) was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (∼3400 K). The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis. PMID:27877413

  5. Shear modulus and damping ratio of natural rubber containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Ibrahim, A.; Rusop, M.; Adnan, A.

    2018-05-01

    This paper presents the results of an investigation into the potential application of Natural rubber (NR) containing Carbon Nanotubes (CNTs) by measuring its shear modulus and damping ratio. Four different types of rubber specimens which fabricated with different MWCNT loadings: 0 wt% (pure natural rubber), 1 wt%, 3 wt%, and 5 wt%. It is observed that the shear modulus and damping ratio of CNTs filled rubber composites are remarkably higher than that of raw rubber indicating the inherent reinforcing potential of CNTs.

  6. Direct Synthesis of Carbon Nanotubes at Low Temperature by the Reaction of CCl4 and Ferrocene

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Tang, Yan; He, Mingsheng; Ouyang, Degang; Ding, Cuijiao; Han, Bin; Zhu, Shanhe; Li, Minghui

    Islands-like amorphous carbon nanotubes (a-CNTs) and multi-wall carbon nanotubes (MWCNTs) have been synthesized by the reaction of CCl4 and ferrocene without or with Co/N alloy as growth catalyst at 160 and 350 ºC, respectively. The as-obtained products are characterized by FESEM, TEM, HRTEM, Raman spectroscopy, and nitrogen adsorption-desorption analysis. The results show that a-CNTs have an outer diameter around 450 nm and a length of up to 5 μm, whereas MWCNTs are 20 nm in diameter and 1.5 μm in length. The specific surface area of a-CNTs and MWCNTs are determined to be 1092 and 364 m2×g-1, respectively. Dichlorocarbene and cyclopentadienyl groups are proved to be the reaction intermediates by GC-MS measurements. A possible growth mechanism of the a-CNTs and MWCNTs has been proposed.

  7. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analytical, numerical, and experimental investigations on effective mechanical properties and performances of carbon nanotubes and nanotube based nanocomposites with novel three dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Askari, Davood

    The theoretical objectives and accomplishment of this work are the analytical and numerical investigation of material properties and mechanical behavior of carbon nanotubes (CNTs) and nanotube nanocomposites when they are subjected to various loading conditions. First, the finite element method is employed to investigate numerically the effective Young's modulus and Poisson's ratio of a single-walled CNT. Next, the effects of chirality on the effective Young's modulus and Poisson's ratio are investigated and then variations of their effective coefficient of thermal expansions and effective thermal conductivities are studied for CNTs with different structural configurations. To study the influence of small vacancy defects on mechanical properties of CNTs, finite element analyses are performed and the behavior of CNTs with various structural configurations having different types of vacancy defects is studied. It is frequently reported that nano-materials are excellent candidates as reinforcements in nanocomposites to change or enhance material properties of polymers and their nanocomposites. Second, the inclusion of nano-materials can considerably improve electrical, thermal, and mechanical properties of the bonding agent, i.e., resin. Note that, materials atomic and molecular level do not usually show isotropic behaviour, rather they have orthotropic properties. Therefore, two-phase and three-phase cylindrically orthotropic composite models consisting of different constituents with orthotropic properties are developed and introduced in this work to analytically predict the effective mechanical properties and mechanical behavior of such structures when they are subjected to various external loading conditions. To verify the analytically obtained exact solutions, finite element analyses of identical cylindrical structures are also performed and then results are compared with those obtained analytically, and excellent agreement is achieved. The third part of this

  9. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    PubMed

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  10. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108.

    PubMed

    Wang, Ruhung; N Meredith, Alicea; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford

    2016-08-01

    Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity.

  11. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108

    PubMed Central

    Wang, Ruhung; Meredith, Alicea N.; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford

    2015-01-01

    Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity. PMID:26559437

  12. Coaxial nanocable composed by imogolite and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez, M.; González, R. I.; Munoz, F.

    2015-12-31

    The discovery and development of Carbon Nanotubes (CNTs) at the beginning of the 1990s has driven a major part of solid state research. The electronic properties of the CNTs have generated a large number of ideas, as building coaxial nanocables. In this work we propose a possible type of such nanocables, which is formed by three nanostructures: two conducting CNTs, where one of them is covered by an insulator (an inorganic oxide nanotube: the imogolite aluminosilicate). The theoretical calculations were carried out using the density functional tight-binding formalism, by means of the DFTB+ code. This formalism allows to calculate themore » band structure, which compares favorably with DFT calculations, but with a significantly lower computational cost. As a first step, we reproduce the calculations of already published results, where the formation of a nanocable composed by one CNT and the imogolite as an insulator. Afterwards, we simulate the band structure for the proposed structure to study the feasibility of the coaxial nanocable. Finally, using classical MD simulations, we study the possible mechanisms of formation of these nanocables.« less

  13. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.

    PubMed

    Ma, Chih-Yu; Huang, Shih-Ching; Chou, Pei-Hsin; Den, Walter; Hou, Chia-Hung

    2016-03-01

    In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    PubMed Central

    Bikiaris, Dimitrios

    2010-01-01

    In the last few years, great attention has been paid to the preparation of polypropylene (PP) nanocomposites using carbon nanotubes (CNTs) due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  15. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  16. Drying induced upright sliding and reorganization of carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Qingwen; DePaula, Raymond; Zhang, Xiefei; Zheng, Lianxi; Arendt, Paul N.; Mueller, Fred M.; Zhu, Y. T.; Tu, Yi

    2006-09-01

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns.

  17. Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance.

    PubMed

    Yang, Zunxian; Lv, Jun; Pang, Haidong; Yan, Wenhuan; Qian, Kun; Guo, Tailiang; Guo, Zaiping

    2015-12-01

    Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAhg(-1), a high reversible specific capacity of 560.5 mAhg(-1) after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAhg(-1) when cycled at the current density of 1000 mAg(-1), indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries.

  18. Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance

    PubMed Central

    Yang, Zunxian; Lv, Jun; Pang, Haidong; Yan, Wenhuan; Qian, Kun; Guo, Tailiang; Guo, Zaiping

    2015-01-01

    Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAhg−1, a high reversible specific capacity of 560.5 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries. PMID:26621615

  19. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials

    NASA Astrophysics Data System (ADS)

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M.; Peterson, Deforest; Stone, Julia M.; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-01

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering.

  20. High conductivity carbon nanotube wires from radial densification and ionic doping

    NASA Astrophysics Data System (ADS)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  1. Carbon Nanotubes as FET Channel: Analog Design Optimization considering CNT Parameter Variability

    NASA Astrophysics Data System (ADS)

    Samar Ansari, Mohd.; Tripathi, S. K.

    2017-08-01

    Carbon nanotubes (CNTs), both single-walled as well as multi-walled, have been employed in a plethora of applications pertinent to semiconductor materials and devices including, but not limited to, biotechnology, material science, nanoelectronics and nano-electro mechanical systems (NEMS). The Carbon Nanotube Field Effect Transistor (CNFET) is one such electronic device which effectively utilizes CNTs to achieve a boost in the channel conduction thereby yielding superior performance over standard MOSFETs. This paper explores the effects of variability in CNT physical parameters viz. nanotube diameter, pitch, and number of CNT in the transistor channel, on the performance of a chosen analog circuit. It is further shown that from the analyses performed, an optimal design of the CNFETs can be derived for optimizing the performance of the analog circuit as per a given specification set.

  2. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors.

    PubMed

    Gao, Chao; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-03-21

    Since the discovery of carbon nanotubes (CNTs), they have drawn considerable research attention and have shown great potential application in many fields due to their unique structural, mechanical, and electronic properties. However, their native insolubility severely holds back the process of application. In order to overcome this disadvantage and broaden the scope of their application, chemical functionalization of CNTs has attracted great interest over the past several decades and produced various novel hybrid materials with specific applications. Notably, the rapid development of functionalized CNTs used as electrochemical sensors has been successfully witnessed. In this featured article, the recent progress of electrochemical sensors based on functionalized CNTs is discussed and classified according to modifiers covering organic (oxygen functional groups, small organic molecules, polymers, DNA, protein, etc.), inorganic (metal nanoparticles, metal oxide, etc.) and organic-inorganic hybrids. By employing some representative examples, it will be demonstrated that functionalized CNTs as templates, carriers, immobilizers and transducers are promising for the construction of electrochemical sensors. This journal is © The Royal Society of Chemistry 2012

  3. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Mathur, Ashish; Tweedie, Mark; Roy, Susanta Sinha; Maguire, P D; McLaughlin, James A

    2009-07-01

    Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.

  4. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Connell, John W. (Inventor); Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Watson, Kent A. (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  5. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model

    NASA Astrophysics Data System (ADS)

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2015-12-01

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as

  6. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes

    PubMed Central

    Fröhlich, Eleonore; Meindl, Claudia; Höfler, Anita; Leitinger, Gerd; Roblegg, Eva

    2012-01-01

    The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants. PMID:22963691

  7. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    PubMed

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  9. Surface protection of austenitic steels by carbon nanotube coatings

    NASA Astrophysics Data System (ADS)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  10. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  11. Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution

    PubMed Central

    Kotagiri, Nalinikanth; Kim, Jin-Woo

    2014-01-01

    Carbon nanotubes (CNTs) have recently been in the limelight for their potential role in disease diagnostics and therapeutics, as well as in tissue engineering. Before these medical applications can be realized, there is a need to address issues like opsonization, phagocytosis by macrophages, and sequestration to the liver and spleen for eventual elimination from the body; along with equally important issues such as aqueous solubility, dispersion, biocompatibility, and biofunctionalization. CNTs have not been shown to be able to evade such biological obstacles, which include their nonspecific attachments to cells and other biological components in the bloodstream, before reaching target tissues and cells in vivo. This will eventually determine their longevity in circulation and clearance rate from the body. This review article discusses the current status, challenges, practical strategies, and implementations of coating CNTs with biocompatible and opsonin-resistant moieties, rendering CNTs transparent to opsonins and deceiving the innate immune response to make believe that the CNTs are not foreign. A holistic approach to the development of such “stealth” CNTs is presented, which encompasses not only several biophysicochemical factors that are not limited to surface treatment of CNTs, but also extraneous biological factors such as the protein corona formation that inevitably controls the in vivo fate of the particles. This review also discusses the present and potential applications, along with the future directions, of CNTs and their hybrid-based nanotheranostic agents for multiplex, multimodal molecular imaging and therapy, as well as in other applications, such as drug delivery and tissue engineering. PMID:24872705

  12. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Guo, Chun Xian; Chitre, Amey Anil; Lu, Xianmao

    2014-03-14

    A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices.

  13. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters

    PubMed Central

    Bocharov, Grigory S.; Eletskii, Alexander V.

    2013-01-01

    Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342

  14. Functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  15. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  16. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  17. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes

    NASA Astrophysics Data System (ADS)

    He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua

    2018-02-01

    Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.

  18. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects

    PubMed Central

    Bareket-Keren, Lilach; Hanein, Yael

    2013-01-01

    Carbon nanotube (CNT) coatings have been demonstrated over the past several years as a promising material for neuronal interfacing applications. In particular, in the realm of neuronal implants, CNTs have major advantages owing to their unique mechanical and electrical properties. Here we review recent investigations utilizing CNTs in neuro-interfacing applications. Cell adhesion, neuronal engineering and multi electrode recordings with CNTs are described. We also highlight prospective advances in this field, in particular, progress toward flexible, bio-compatible CNT-based technology. PMID:23316141

  19. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  20. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2011-12-15

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less

  1. High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.

    PubMed

    Varanasi, Srinivasa Rao; Subramanian, Yashonath; Bhatia, Suresh K

    2018-06-26

    Water displays anomalous fast diffusion in narrow carbon nanotubes (CNTs), a behavior that has been reproduced in both experimental and simulation studies. However, little is reported on the effect of bulk water-CNT interfaces, which is critical to exploiting the fast transport of water across narrow carbon nanotubes in actual applications. Using molecular dynamics simulations, we investigate here the effect of such interfaces on the transport of water across arm-chair CNTs of different diameters. Our results demonstrate that diffusion of water is significantly retarded in narrow CNTs due to bulk regions near the pore entrance. The slowdown of dynamics can be attributed to the presence of large energy barriers at bulk water-CNT interfaces. The presence of such intense barriers at the bulk-CNT interface arises due to the entropy contrast between the bulk and confined regions, with water molecules undergoing high translational and rotational entropy gain on entering from the bulk to the CNT interior. The intensity of such energy barriers decreases with increase in CNT diameter. These results are very important for emerging technological applications of CNTs and other nanoscale materials, such as in nanofluidics, water purification, nanofiltration, and desalination, as well as for biological transport processes.

  2. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites

    PubMed Central

    2012-01-01

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV–vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs. PMID:22559082

  3. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  4. Ozone assisted oxidation of gaseous PCDD/Fs over CNTs-containing composite catalysts at low temperature.

    PubMed

    Wang, Qiulin; Tang, Minghui; Peng, Yaqi; Du, Cuicui; Lu, Shengyong

    2018-05-01

    Ozone assisted carbon nanotubes (CNTs) supported vanadium oxide/titanium dioxide (V/Ti-CNTs) or vanadium oxide-manganese oxide/titanium dioxide (V-Mn/Ti-CNTs) catalysts towards gaseous PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) catalytic oxidations at low temperature (150 °C) were investigated. The removal efficiency (RE) and decomposition efficiency (DE) of PCDD/Fs achieved with V-Mn/Ti-CNTs alone were 95% and 45% at 150 °C under a space velocity (SV) of 14000 h -1 ; yet, these values reached 99% and 91% when catalyst and low concentration (50 ppm) ozone were used in combined. The ozone promotion effect on catalytic activity was further enhanced with the addition of manganese oxide (MnO x ) and CNTs. Adding MnO x and CNTs in V/Ti catalysts facilitated the ozone decomposition (creating more active species on catalyst surface), thus, improved ozone utilization (demanding relatively lower ozone addition concentration). On the other hand, this study threw light upon ozone promotion mechanism based on the comparison of catalyst properties (i.e. components, surface area, surface acidity, redox ability and oxidation state) before and after ozone treatment. The experimental results indicate that a synergistic effect exists between catalyst and ozone: ozone is captured and decomposed on catalyst surface; meanwhile, the catalyst properties are changed by ozone in return. Reactive oxygen species from ozone decomposition and the accompanied catalyst properties optimization are crucial reasons for catalyst activation at low temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Synthesis and characterization of self-bridged silver vanadium oxide/CNTs composite and its enhanced lithium storage performance.

    PubMed

    Liang, Liying; Liu, Haimei; Yang, Wensheng

    2013-02-07

    The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.

  6. Influence of gamma irradiation on carbon nanotube-reinforced polypropylene.

    PubMed

    Castell, P; Medel, F J; Martinez, M T; Puértolas, J A

    2009-10-01

    Single walled carbon nanotubes (SWNT) have been incorporated into a polypropylene (PP) matrix in different concentrations (range: 0.25-2.5 wt%). The nanotubes were blended with PP particles (approximately 500 microm in size) before mixing in an extruder. Finally, rectangular plates were obtained by compression moulding. PP-SWNT composites were gamma irradiated at different doses, 10 and 20 kGy, to promote crosslinking in the matrix and potentially enhance the interaction between nanotubes and PP. Extensive thermal, structural and mechanical characterization was conducted by means of DSC, X-ray diffraction, Raman spectroscopy, uniaxial tensile tests and dynamic mechanical thermal (DMTA) techniques. DSC thermograms reflected higher crystallinity with increasing nanotube concentration. XRD analysis confirmed the only presence of a monoclinic crystals and proved unambiguously that CNTs generated a preferred orientation. Raman spectroscopy confirmed that the intercalation of the polymer between bundles is favored at low CNTs contents. Elastic modulus results confirmed the reinforcement of the polypropylene matrix with increasing SWNT concentration, although stiffness saturation was observed at the highest concentration. Loss tangent DMTA curves showed three transitions for raw polypropylene. While gamma relaxation remained practically unchanged in all the samples, beta relaxation temperatures showed an increase with increasing CNT content due to the reduced mobility of the system. Gamma-irradiated PP exhibited an increase in the beta relaxation temperature, associated with changes in glass transition due to radiation-induced crosslinking. On the contrary, gamma-irradiated nanocomposites did not show this effect probably due to the reaction of radiative free radicals with CNTs.

  7. Investigation of dielectric properties of polymer composites reinforced with carbon nanotubes in the frequency band of 0.01 Hz - 10 MHz

    NASA Astrophysics Data System (ADS)

    Goshev, A. A.; Eseev, M. K.; Kapustin, S. N.; Vinnik, L. N.; Volkov, A. S.

    2016-08-01

    The goal of this work is experimental study of dielectric properties of polymer nanocomposites reinforced with multiwalled carbon nanotubes (MWCNTs) in alternating electric field in low frequency band of 0.01 Hz - 10 MHz. We investigated the influence, functionalization degree, aspect ratio, concentration of carbon nanotubes (CNTs) on dielectric properties of polymer sample. We also studied the dependence of dielectric properties on the polymerization temperature. The dependence of CNTs agglomeration on sample polymerization temperature and temperature's influence on conductivity has been shown. We conducted model calculation of percolation threshold and figured out its dependence on CNTs aspect ratio.

  8. Arc-discharge in solution: A novel synthesis method for carbon nanotubes and in situ decoration of carbon nanotubes with nanoparticles

    NASA Astrophysics Data System (ADS)

    Bera, Debasis

    2005-11-01

    During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrument is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3--4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 +/- 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were

  9. Comparison of nitrogen adsorption and transmission electron microscopy analyses for structural characterization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.

    2017-10-01

    Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.

  10. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials.

    PubMed

    Oyefusi, Adebola; Olanipekun, Opeyemi; Neelgund, Gururaj M; Peterson, Deforest; Stone, Julia M; Williams, Ebonee; Carson, Laura; Regisford, Gloria; Oki, Aderemi

    2014-11-11

    In the present study, hydroxyapatite (HA) was successfully grafted to carboxylated carbon nanotubes (CNTs) and graphene nanosheets. The HA grafted CNTs and HA-graphene nanosheets were characterized using FT-IR, TGA, SEM and X-ray diffraction. The HA grafted CNTs and graphene nanosheets (CNTs-HA and Gr-HA) were further used to examine the proliferation and differentiation rate of temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19). Total protein assays and western blot analysis of osteocalcin expression were used as indicators of cell proliferation and differentiation. Results indicated that hFOB 1.19 cells proliferate and differentiate well in treatment media containing CNTs-HA and graphene-HA. Both CNTs-HA and graphene-HA could be promising nanomaterials for use as scaffolds in bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Carbon nanotube chemistry and assembly for electronic devices

    NASA Astrophysics Data System (ADS)

    Derycke, Vincent; Auvray, Stéphane; Borghetti, Julien; Chung, Chia-Ling; Lefèvre, Roland; Lopez-Bezanilla, Alejandro; Nguyen, Khoa; Robert, Gaël; Schmidt, Gregory; Anghel, Costin; Chimot, Nicolas; Lyonnais, Sébastien; Streiff, Stéphane; Campidelli, Stéphane; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcelo F.; Goux-Capes, Laurence; Latil, Sylvain; Blase, Xavier; Triozon, François; Roche, Stephan; Bourgoin, Jean-Philippe

    2009-05-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).

  12. Electric conductivity of high explosives with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rubtsov, I. A.; Pruuel, E. R.; Ten, K. A.; Kashkarov, A. O.; Kremenko, S. I.

    2017-09-01

    The paper presents a technique for introducing carbon nanotubes into high explosives (HEs). For a number of explosives (trinitrotoluene, pentaerythritol tetranitrate, benzotrifuroxan), it was possible to achieve the appearance of conductivity by adding a small amount (up to 1% by mass) of single-walled carbon nanotubes TUBALL COATE H2O (CNTs) produced by OCSiAl. Thus it is possible to reduce the sensitivity of explosives to static electricity by adding an insignificant part of conductive nanotubes. This will increase safety of HEs during production and application and will reduce the number of accidents.

  13. Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration

    DOEpatents

    Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng

    2013-10-22

    In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.

  14. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    NASA Astrophysics Data System (ADS)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  15. Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cui, H.; Eres, G.; Howe, J. Y.; Puretkzy, A.; Varela, M.; Geohegan, D. B.; Lowndes, D. H.

    2003-06-01

    The temperature and time dependences of carbon nanotube (CNT) growth by chemical vapor deposition are studied using a multilayered Al/Fe/Mo catalyst on silicon substrates. Within the 600-1100 °C temperature range of these studies, narrower temperature ranges were determined for the growth of distinct types of aligned multi-walled CNTs and single-walled CNTs by using high-resolution transmission electron microscopy and Raman spectroscopy. At 900 °C, in contrast to earlier work, double-walled CNTs are found more abundant than single-walled CNTs. Defects also are found to accumulate faster than the ordered graphitic structure if the growth of CNTs is extended to long durations.

  16. Nanomanipulation and Lithography for Carbon Nanotube Based Nondestructive Evaluation Sensor Development

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Smits, Jan; Namkung, Min; Ingram, JoAnne; Watkins, Neal; Jordan, Jeffrey D.; Louie, Richard

    2002-01-01

    Carbon nanotubes (CNTs) offer great potential for advanced sensor development due to the unique electronic transport properties of the material. However, a significant obstacle to the realization of practical CNT devices is the formation of reliable and reproducible CNT to metallic contacts. In this work, scanning probe techniques are explored for both fabrication of metallic junctions and positioning of singlewalled CNTs across these junctions. The use of a haptic force feedback interface to a scanning probe microscope is used to enable movement of nanotubes over micron length scales with nanometer precision. In this case, imaging of the surface is performed with light or intermittent contact to the surface. Increased tip-to-sample interaction forces are then applied to either create junctions or position CNTs. The effect of functionalization of substrate surfaces on the movement and tribology of the materials is also studied. The application of these techniques to the fabrication of CNT-based sensors for nondestructive evaluation applications is discussed.

  17. Surface-charge-governed electrolyte transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xue, Jian-Ming; Guo, Peng; Sheng, Qian

    2015-08-01

    The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid-liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).

  18. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  19. In Situ Growth of MnO2 Nanosheets on N-Doped Carbon Nanotubes Derived from Polypyrrole Tubes for Supercapacitors.

    PubMed

    Ou, Xu; Li, Qi; Xu, Dan; Guo, Jiangna; Yan, Feng

    2018-03-02

    Nitrogen-doped porous carbon nanotubes@MnO 2 (N-CNTs@MnO 2 ) nanocomposites are prepared through the in situ growth of MnO 2 nanosheets on N-CNTs derived from polypyrrole nanotubes (PNTs). Benefiting from the synergistic effects between N-CNTs (high conductivity and N doping level) and MnO 2 nanosheets (high theoretical capacity), the as-prepared N-CNTs@MnO 2 -800 nanocomposites show a specific capacitance of 219 F g -1 at a current density of 1.0 A g -1 , which is higher than that of pure MnO 2 nanosheets (128 F g -1 ) and PNTs (42 F g -1 ) in 0.5 m Na 2 SO 4 solution. Meanwhile, the capacitance retention of 86.8 % (after 1000 cycles at 10 A g -1 ) indicates an excellent electrochemical performance of N-CNTs@MnO 2 prepared in this work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.

    PubMed

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang

    2015-01-14

    In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.

  1. Porous VO(x)N(y) nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction.

    PubMed

    Huang, K; Bi, K; Lu, Y K; Zhang, R; Liu, J; Wang, W J; Tang, H L; Wang, Y G; Lei, M

    2015-11-30

    Novel nanocomposites of carbon nanotubes supported porous VO(x)N(y) nonoribbons (VO(x)N(y)-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VO(x)N(y)-CNTs. Inspiringly, the results indicate that VO(x)N(y)-CNTs catalyst exhibits a 0.4 mA/cm(2) larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VO(x)N(y)-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.

  2. Capillarity-induced disassembly of virions in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Barclay, J. Elaine; Peng, Wenchao; Li, Yang; Li, Xianyu; Zhang, Guoliang; Evans, David J.; Zhang, Fengbao

    2008-04-01

    Studying the transport and fate of viruses through nanochannels is of great importance. By using the nanochannel of a carbon nanotube (CNT) as an ideal model, we evaluated the possibility of capillarity-induced viral transport through a closely fitting nanochannel and explored the mechanisms involved. It is shown both experimentally and theoretically that Cowpea mosaic virus can enter CNTs by capillarity. However, when introduced into a nanotube the protein capsid may disassemble. During the initial capillary filling stage, anomalous needle-shaped high pressure exists in the centre of the nanotube's entrance. This high pressure, combining with the significant negative pressure within the nanotube, may account for the disassembly of the virions.

  3. Tuning carbon nanotube assembly for flexible, strong and conductive films.

    PubMed

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-21

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.

  4. Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation

    NASA Astrophysics Data System (ADS)

    Dadras, Sedigheh; Faraji, Maryam

    2018-05-01

    In this study, we achieved superfast growth of carbon nanotubes (CNTs) in an anodic aluminum oxide (AAO) template by applying microwave (MW) radiation. This is a simple and direct approach for growing CNTs using a MW oven. The CNTs were synthesized using MW radiation at a frequency of 2.45 GHz and power was applied at various levels of 900, 600, and 450 W. We used graphite and ferrocene in equal portions as precursors. The optimum conditions for the growth of CNTs inside a MW oven were a time period of 5 s and power of 450 W. In order to grow uniform CNTs, an AAO template was applied with the CNTs synthesized under optimum conditions. The morphology of the synthesized CNTs was investigated by scanning electron microscopy analysis. The average diameters of the CNTs obtained without the template were 22-27 nm, whereas the diameters of the CNTs prepared inside the AAO template were about 4-6 nm.

  5. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  6. Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Dintcheva, Nadka Tzankova; Arrigo, Rossella; Gambarotti, Cristian; Guenzi, Monica; Carroccio, Sabrina; Cicogna, Francesca; Filippone, Giovanni

    2014-05-01

    The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a synergistic effect of the natural anti-oxidant and carbon nanotubes, i.e. strong interaction between CNT surface and anti-oxidant molecules. Particularly, these interactions cause the formation of structural defects onto outer CNT surfaces, which, in turn, increase the CNT radical scavenging activity.

  7. Effect of degassing on the aggregation of carbon nanotubes dispersed in water

    NASA Astrophysics Data System (ADS)

    Chen, C.-J.; Huang, J.-R.; Hwang, I.-S.; Choi, H. J.; Lai, P.-Y.; Chan, C. K.

    2017-10-01

    Dynamic light scattering (DLS) along with centrifugation and shaking tests reveal that dissolved gases can significantly affect the aggregation behavior of carbon nanotubes (CNTs) dispersed in water. The CNTs in non-degassed samples form loose, stable networks having the DLS result reminiscent of semidilute polymer solutions, whereas the CNTs in degassed samples aggregate to form Brownian colloids that sediment quickly. Interestingly, the CNTs dispersed in acetone, with or without degassing, also behave like semidilute polymers in DLS experiments. We propose a surface nanobubble-assisted mechanism to explain the observed aggregation behaviors. Our work signifies that dissolved gases may play an important role in determining hydrophobicity and biomolecular functions in aqueous environments.

  8. Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure

    NASA Astrophysics Data System (ADS)

    Ariu, G.; Hamerton, I.; Ivanov, D.

    2016-01-01

    This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs). The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.

  9. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.

    PubMed

    Schierz, A; Zänker, H

    2009-04-01

    The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.

  10. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    PubMed Central

    Xiong, Zhili; Yun, Young Soo; Jin, Hyoung-Joon

    2013-01-01

    Carbon nanotubes (CNTs) have displayed great potential as anode materials for lithium ion batteries (LIBs) due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs. PMID:28809361

  11. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    NASA Astrophysics Data System (ADS)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  12. Metal-nanotube composites as radiation resistant materials

    NASA Astrophysics Data System (ADS)

    González, Rafael I.; Valencia, Felipe; Mella, José; van Duin, Adri C. T.; So, Kang Pyo; Li, Ju; Kiwi, Miguel; Bringa, Eduardo M.

    2016-07-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  13. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ram Sevak, E-mail: singh915@gmail.com

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to havemore » metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.« less

  14. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells

    PubMed Central

    Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  15. Porous carbon nanotube/graphene composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jing; Tang, Jie; Yuan, Jinshi; Zhang, Kun; Yu, Xiaoliang; Sun, Yige; Zhang, Han; Qin, Lu-Chang

    2018-02-01

    Carbon nanotubes (CNTs) are an effective spacer to prevent the re-stacking of graphene layers. However, the aggregation of CNTs always reduces the specific surface area of resulting CNT/graphene composites. Meanwhile, different pores always have different contributions to the specific capacitance. In this study, CNT/graphene composites with different porous structures are synthesized by co-reduction of oxidized CNTs and graphene oxide with different mixing ratios. With an optimized CNT content of 20%, the CNT/graphene composite shows 206 F g-1 in 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. It is found that pores larger than twice the size of electrolyte ions can make greater contributions to the specific capacitance.

  16. Large-scale synthesis of high-purity well-aligned carbon nanotubes using pyrolysis of iron(II) phthalocyanine and acetylene

    NASA Astrophysics Data System (ADS)

    Liu, B. C.; Lee, T. J.; Lee, S. H.; Park, C. Y.; Lee, C. J.

    2003-08-01

    Well-aligned carbon nanotubes (CNTs) with high purity have been produced by pyrolysis of iron(II) phthalocyanine and acetylene at 800 °C. The synthesized CNTs have a length of 75 μm and diameters ranging from 20 to 60 nm. The CNTs have a bamboo-like structure and exhibit good crystallinity of graphite sheets. The growth rate of the CNTs was rapidly increased with adding C 2H 2. Our results demonstrate that the proposed growth method is suitable to large-scale synthesis of high-purity well-aligned CNTs on various substrates.

  17. Continuous flow chemical vapour deposition of carbon nanotube sea urchins.

    PubMed

    de La Verpilliere, Jean; Jessl, Sarah; Saeed, Khuzaimah; Ducati, Caterina; De Volder, Michael; Boies, Adam

    2018-04-26

    Hybrid structures consisting of functional materials enhanced by carbon nanotubes (CNTs) have potential for a variety of high impact applications, as shown by the impressive progress in sensing and mechanical applications enabled by CNT-enhanced materials. The hierarchical organisation of CNTs with other materials is key to the design of macroscale devices benefiting from the unique properties of individual CNTs, provided CNT density, morphology and binding with other materials are optimized. In this paper, we provide an analysis of a continuous aerosol process to create a hybrid hierarchical sea urchin structure with CNTs organized around a functional metal oxide core. We propose a new mechanism for the growth of these carbon nanotube sea urchins (CNTSU) and give new insight into their chemical composition. To corroborate the new mechanism, we examine the influence of CNT growth conditions on CNTSU morphology and demonstrate a new in-line characterisation technique to continuously monitor aerosol CNT growth during synthesis, which enables industrial-scale production optimization. Based upon the new formation mechanism we describe the first substrate-based chemical vapour deposition growth of CNTSUs which increases CNT length and improves G to D ratio, which also allows for the formation of CNTSU carpets with unique structures.

  18. Electrostatic-assembly three-dimensional CNTs/rGO implanted Cu2O composite spheres and its photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zeng, Bin; Chen, Xiaohua; Ning, Xutao; Chen, Chuansheng; Deng, Weina; Huang, Qun; Zhong, Wenbin

    2013-07-01

    Carbon nanotubes/reduced graphene oxides (CNTs/rGO) implanting cuprous oxide (Cu2O) composite spheres have been successfully prepared via an electrostatic self-assemble with microwave-assisted. Scanning electron microscopy and transmission electron microscopy observations confirmed that the hybrid of CNTs and rGO was implanted into Cu2O matrix and formed a three-dimensional embedded micrometer sphere structure. The possible formation mechanism of this architecture was also proposed. The photocatalytic properties were further investigated by evaluating on photo-degradation of a pollutant methyl orange (MO). The experimental results indicated that this novel architecture enhanced photocatalytic performance with 99.8% decomposition of MO after 40 min in the presence of H2O2 under visible light irradiation, which was much higher than that of pure Cu2O powders (67.9%). This study provides a convenient method for assembling various CNTs/rGO-semiconductor composites in the future applications of water purification as well as optoelectronic fields at a large scale.

  19. Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery

    NASA Astrophysics Data System (ADS)

    Balaish, Moran; Ein-Eli, Yair

    2018-03-01

    Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.

  20. Highly conductive and anticorrosion Ag/CNTs/NDs hybrid films on molecular-grafted PET substrate for flexible electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Kang, Zhixin

    2018-01-01

    We reported an approach of preparing highly conductive, anticorrosion, flexible Ag hybrid films enhanced by multi-walled carbon nanotubes (CNTs) and nanodaimonds (NDs) on molecular-grafted PET substrate by spin-spray for flexible electronics. we studied in this paper and found that even an outstanding enhancement on conductivity of Ag films, CNTs have a negative effect on anticorrosion property. Meanwhile, NDs decreased the conductivity of Ag/CNTs hybrids, but it remained a relatively high conductivity property and even was affirmed a distinctly boost improvement on anticorrosion, microhardness and tensile strength, which meant a better mechanical chemical stabilization and practicability in real flexible electronics. To obtain the strong adhesive strength of films/substrate, molecular-grafting technology was applied, which was affirmed by XPS and cross-cut test. What's more, we evaluated anticorrosion property by electrochemistry test, including Tafel measurements and electrochemical impedance spectroscopy measurements, proving the positive effect of NDs on Ag/CNTs hybrid films. For practical application, a flexible light-emitting diode (LED) circuit was successfully structured and remained steady under bending, folding and twisting. Besides, after 1000000 cycles inner/outer bending deformation, the hybrid films showed a mechanical compliance, fatigue stability and practicability in real flexible electronics.

  1. Highly Sensitive and Selective In-Situ SERS Detection of Pb(2+), Hg(2+), and Cd(2+) Using Nanoporous Membrane Functionalized with CNTs.

    PubMed

    Shaban, Mohamed; Galaly, A R

    2016-05-04

    Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg(2+), Cd(2+), and Pb(2+). The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb(2+) over other metal ions, where the enhancement factor is decreased from ~17 for Pb(2+) to ~12 for Hg(2+) and to ~4 for Cd(2+). Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions.

  2. Highly Sensitive and Selective In-Situ SERS Detection of Pb2+, Hg2+, and Cd2+ Using Nanoporous Membrane Functionalized with CNTs

    PubMed Central

    Shaban, Mohamed; Galaly, A. R.

    2016-01-01

    Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg2+, Cd2+, and Pb2+. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb2+ over other metal ions, where the enhancement factor is decreased from ~17 for Pb2+ to ~12 for Hg2+ and to ~4 for Cd2+. Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions. PMID:27143512

  3. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    PubMed

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  4. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology

    PubMed Central

    Umemura, Kazuo

    2015-01-01

    Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs. PMID:28347014

  5. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology.

    PubMed

    Umemura, Kazuo

    2015-03-12

    Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs.

  6. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    PubMed

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  7. Chemistry of Carbon Nanotubes for Everyone

    ERIC Educational Resources Information Center

    Basu-Dutt, Sharmistha; Minus, Marilyn L.; Jain, Rahul; Nepal, Dhriti; Kumar, Satish

    2012-01-01

    Carbon nanotubes (CNTs) have the extraordinary potential to change our lives by improving existing products and enabling new ones. Current and future research and industrial workforce professionals are very likely to encounter some aspects of nanotechnology including CNT science and technology in their education or profession. The simple structure…

  8. Systems analysis of carbon nanotubes: opportunities and challenges for space applications.

    PubMed

    Samareh, Jamshid A; Siochi, Emilie J

    2017-09-15

    Recent availability of carbon nanotubes (CNTs) in quantities and formats amenable to producing macroscale components invites consideration of these materials in space applications where their attractive properties can enable the realization of bold concepts for affordable space exploration. The challenge is to identify relevant systems and quantify the benefits at the systems level. Before significant investment or adoption of CNTs for large aerospace systems can be justified, there must be a plausible path to attain the perceived systems level benefits. This challenging step requires a close collaboration among experts on CNTs and aerospace system communities. This paper provides an overview of a few relevant potential CNTs applications for space systems and the gap that must be overcome for deployment of CNTs. It also provides a simple engineering-level systems analysis approach to quantify the benefits of using CNTs over state of the art material solutions.

  9. Systems analysis of carbon nanotubes: opportunities and challenges for space applications

    NASA Astrophysics Data System (ADS)

    Samareh, Jamshid A.; Siochi, Emilie J.

    2017-09-01

    Recent availability of carbon nanotubes (CNTs) in quantities and formats amenable to producing macroscale components invites consideration of these materials in space applications where their attractive properties can enable the realization of bold concepts for affordable space exploration. The challenge is to identify relevant systems and quantify the benefits at the systems level. Before significant investment or adoption of CNTs for large aerospace systems can be justified, there must be a plausible path to attain the perceived systems level benefits. This challenging step requires a close collaboration among experts on CNTs and aerospace system communities. This paper provides an overview of a few relevant potential CNTs applications for space systems and the gap that must be overcome for deployment of CNTs. It also provides a simple engineering-level systems analysis approach to quantify the benefits of using CNTs over state of the art material solutions.

  10. Adsorption of nicotine and tar from the mainstream smoke of cigarettes by oxidized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Zhang, Lisha; Tang, Yiwen; Jia, Zhijie

    2006-02-01

    The adsorption of nicotine and tar from the mainstream smoke (MS) by the filter tips filled respectively with oxidized carbon nanotubes (O-CNTs), activated carbon and zeolite (NaY) has been investigated. O-CNTs show exceptional removal efficiency and their adsorption mechanism is investigated. Capillary condensation of some ingredients from MS in the inner hole of O-CNTs is observed and may be the primary reason for their superior removal efficiency. The effect of O-CNTs mass on the removal efficiencies is also studied and the results show that about 20-30 mg O-CNTs per cigarette can effectively remove most of nicotine and tar.

  11. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  12. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.

    PubMed

    Nessim, Gilbert D

    2010-08-01

    Carbon nanotubes (CNTs) have been extensively investigated in the last decade because their superior properties could benefit many applications. However, CNTs have not yet made a major leap into industry, especially for electronic devices, because of fabrication challenges. This review provides an overview of state-of-the-art of CNT synthesis techniques and illustrates their major technical difficulties. It also charts possible in situ analyses and new reactor designs that might enable commercialization. After a brief description of the CNT properties and of the various techniques used to synthesize substrate-free CNTs, the bulk of this review analyzes chemical vapor deposition (CVD). This technique receives special attention since it allows CNTs to be grown in predefined locations, provides a certain degree of control of the types of CNTs grown, and may have the highest chance to succeed commercially. Understanding the primary growth mechanisms at play during CVD is critical for controlling the properties of the CNTs grown and remains the major hurdle to overcome. Various factors that influence CNT growth receive a special focus: choice of catalyst and substrate materials, source gases, and process parameters. This review illustrates important considerations for in situ characterization and new reactor designs that may enable researchers to better understand the physical growth mechanisms and to optimize the synthesis of CNTs, thus contributing to make carbon nanotubes a manufacturing reality.

  13. Exploring the ring current of carbon nanotubes by first-principles calculations.

    PubMed

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe

    2015-02-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.

  14. Exploring the ring current of carbon nanotubes by first-principles calculations

    PubMed Central

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian

    2015-01-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175

  15. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  16. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    PubMed Central

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  17. Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes

    PubMed Central

    Bakather, Omer Y.; Khraisheh, Majeda; Nasser, Mustafa S.

    2017-01-01

    The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions. PMID:28555093

  18. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.

    PubMed

    Liu, Mingkai; Miao, Yue-E; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-08-21

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as "bridges" connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g(-1)) than the GNR-CNT hybrid (195 F g(-1)) and neat PANI (283 F g(-1)) at a discharge current density of 0.5 A g(-1). At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  19. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Miao, Yue-E.; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-07-01

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as ``bridges'' connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g-1) than the GNR-CNT hybrid (195 F g-1) and neat PANI (283 F g-1) at a discharge current density of 0.5 A g-1. At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  20. Direct Assembly of Modified Proteins on Carbon Nanotubes in an Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol; Harrison, Joycelyn S.

    2007-01-01

    Carbon nanotubes (CNTs) have superior mechanical and electrical properties that have opened up many potential applications. However, poor dispersibility and solubility, due to the substantial van der Waals attraction between tubes, have prevented the use of CNTs in practical applications, especially biotechnology applications. Effective dispersion of CNTs into small bundles or individual tubes in solvents is crucial to ensure homogeneous properties and enable practical applications. In addition to dispersion of CNTs into a solvent, the selection of appropriate solvent, which is compatible with a desired matrix, is an important factor to improve the mechanical, thermal, optical, and electrical properties of CNT-based fibers and composites. In particular, dispersion of CNTs into an aqueous system has been a challenge due to the hydrophobic nature of CNTs. Here we show an effective method for dispersion of both single wall CNTs (SWCNTs) and few wall CNTs (FWCNTs) in an aqueous buffer solution. We also show an assembly of cationized Pt-cored ferritins on the well dispersed CNTs in an aqueous buffer solution.

  1. Carbon nanotube computer.

    PubMed

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  2. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  3. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water

    NASA Astrophysics Data System (ADS)

    Yang, Weijie; Jiao, Feipeng; Zhou, Lei; Chen, Xiaoqing; Jiang, Xinyu

    2013-11-01

    A new and facile method was presented to graft molecularly imprinted polymers (MIPs) on carbon nanotubes (CNTs) for 2,4-dichlorophenoxyacetic acid (2,4-D) analysis. In brief, CNTs were firstly coated with a layer of vinyl group modified silica, followed by a common precipitation polymerization with 2,4-D as the template, ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The imprinted effects obtained by using different monomers were investigated, and the results showed that acrylamide (AM) and styrene as mixed monomers was the best choice. This functionalized material was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG), which demonstrated a successful polymerization reaction on CNTs with MIPs grafting ratio of about 80%. The results of static adsorption experiments indicated the imprinted material possessed fast kinetics and good selectivity for 2,4-D molecules. A corresponding analytical method was developed and demonstrated to be applicable for the determination of 2,4-D in environmental water. The recoveries were in the range from 74.6% to 81.2% with relative standard deviation below 7.0%. To be emphasized, the method for MIPs coating proposed herein also provides a significant reference for other radical polymerization reactions based on CNTs.

  4. The effects of multi-walled carbon nanotubes on soil microbial community functional and structural diversity

    USDA-ARS?s Scientific Manuscript database

    Applications of nanomaterials, including carbon nanotubes (CNTs), are increasing; however, their impact on the environment is still not well understood. A semi-arid soil was treated with multi-walled carbon nanotubes (MWCNTs) at four different concentrations (10-10000 mgMWCNTs kg-1soil), and incubat...

  5. Combination of carbon nitride and carbon nanotubes: synergistic catalysts for energy conversion.

    PubMed

    Gong, Yutong; Wang, Jing; Wei, Zhongzhe; Zhang, Pengfei; Li, Haoran; Wang, Yong

    2014-08-01

    Due to their versatile features and environmental friendliness, functionalized carbon materials show great potential in practical applications, especially in energy conversion. Developing carbon composites with properties that can be modulated by simply changing the ratio of the original materials is an intriguing synthetic strategy. Here, we took cyanamide and multiwalled carbon nanotubes as precursors and introduced a facile method to fabricate a series of graphitic carbon nitride/carbon nanotubes (g-C3 N4 /CNTs) composites. These composites demonstrated different practical applications with different weight ratios of the components, that is, they showed synergistic effects in optoelectronic conversion when g-C3 N4 was the main ingredient and in oxygen reduction reaction (ORR) when CNTs dominated the composites. Our experiments indicated that the high electrical conductivity of carbon nanotubes promoted the transmission of the charges in both cases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT

    DTIC Science & Technology

    2006-09-01

    packed uni- form CNTs that are spatially isolated from each other is to use a growth template. Highly ordered anodic aluminum oxide ( AAO ) template can...process for evaporating thick aluminum of high quality and good adhesion. 15. SUBJECT TERMS Anodic Aluminum Oxide Template, Carbon Nanotubes (CNTs...within the highly ordered nanopores of an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented

  7. Targeted Delivery of Carbon Nanotubes to Cancer Cells

    DTIC Science & Technology

    2009-09-01

    Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, Gu LR, Zhou B, Sun YP. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 14: 527...respectively. For car- boxylated-CNTs and RFB4-coupled CNTs, 20 ll of the dispersion was spun cast on to freshly cleaved mica at 3500 rpm for 30 sec...Lin Y, Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, Gu LR, Zhou B, Sun YP. Advances toward bioapplications of carbon nano- tubes. J Mater Chem

  8. Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Kotake, M.; Ata, S.; Honda, K.

    2017-06-01

    The release of free carbon nanotubes (CNTs) and CNTs partly embedded in matrix debris into the air may occur during mechanical and abrasion processes involving CNT composites. Since the harmful effects of CNT-matrix mixtures have not yet been fully evaluated, it is considered that any exposure to CNTs, including CNT-matrix mixtures, should be measured and controlled. Thermal carbon analysis, such as Method 5040 of the National Institute for Occupational Safety and Health, is one of the most reliable quantitative methods for measuring CNTs in the air. However, when CNTs are released together with polymer matrices, this technique may be inapplicable. In this study, we evaluated the potential for using thermal carbon analysis to determine CNTs in the presence of polymer matrices. Our results showed that thermal carbon analysis was potentially capable of determining CNTs in distinction from polyamide 12, polybutylene terephthalate, polypropylene, and polyoxymethylene. However, it was difficult to determine CNTs in the presence of polyethylene terephthalate, polycarbonate, polyetheretherketone, or polyamide 6.

  9. Carbon nanotube synthesis with different support materials and catalysts

    NASA Astrophysics Data System (ADS)

    Gümüş, Fatih; Yuca, Neslihan; Karatepe, Nilgün

    2013-09-01

    Having remarkable characteristics, carbon nanotubes (CNTs) have attracted a lot of interest. Their mechanical, electrical, thermal and chemical properties make CNTs suitable for several applications such as electronic devices, hydrogen storage, textile, drug delivery etc. CNTs have been synthesized by various methods, such as arc discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In comparison with the other techniques, CCVD is widely used as it offers a promising route for mass production. High capability of decomposing hydrocarbon formation is desired for the selected catalysts. Therefore, transition metals which are in the nanometer scale are the most effective catalysts. The common transition metals that are being used are Fe, Co, Ni and their binary alloys. The impregnation of the catalysts over the support material has a crucial importance for the CNT production. In this study, the influence of the support materials on the catalytic activity of metals was investigated. CNTs have been synthesized over alumina (Al2O3), silica (SiO2) and magnesium oxide (MgO) supported Fe, Co, Fe-Co catalysts. Catalyst - support material combinations have been investigated and optimum values for each were compared. Single walled carbon nanotubes (SWCNTs) were produced at 800°C. The duration of synthesis was 30 minutes for all support materials. The synthesized materials were characterized by thermal gravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy.

  10. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model.

    PubMed

    Bussy, Cyrill; Hadad, Caroline; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas

    2016-01-07

    Chemically functionalized carbon nanotubes (f-CNTs) have been used in proof-of-concept studies to alleviate debilitating neurological conditions. Previous in vivo observations in brain tissue have suggested that microglia - acting as resident macrophages of the brain - play a critical role in the internalization of f-CNTs and their partial in situ biodegradation following a stereotactic administration in the cortex. At the same time, several reports have indicated that immune cells such as neutrophils, eosinophils and even macrophages could participate in the processing of carbon nanomaterials via oxidation processes leading to degradation, with surface properties acting as modulators of CNT biodegradability. In this study we questioned whether degradability of f-CNTs within microglia could be modulated depending on the type of surface functionalization used. We investigated the kinetics of degradation of multi-walled carbon nanotubes (MWNTs) functionalized via different chemical strategies that were internalized within isolated primary microglia over three months. A cellular model of rat primary microglia that can be maintained in cell culture for a long period of time was first developed. The Raman structural signature of the internalized f-CNTs was then studied directly in cells over a period of up to three months, following a single exposure to a non-cytotoxic concentration of three different f-CNTs (carboxylated, aminated and both carboxylated and aminated). Structural modifications suggesting partial but continuous degradation were observed for all nanotubes irrespective of their surface functionalization. Carboxylation was shown to promote more pronounced structural changes inside microglia over the first two weeks of the study.

  11. Fermentation based carbon nanotube multifunctional bionic composites

    NASA Astrophysics Data System (ADS)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  12. Fermentation based carbon nanotube multifunctional bionic composites

    PubMed Central

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  13. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.

    PubMed

    Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto

    2008-02-01

    Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.

  14. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.

    PubMed

    Wu, Donghai; Lu, Guanghua; Zhang, Ran; Lin, Qiuhong; Yan, Zhenhua; Liu, Jianchao; Li, Yi

    2015-10-01

    Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater.

  15. Electron beam induced etching of carbon nanotubes enhanced by secondary electrons in oxygen.

    PubMed

    Yoshida, Hideto; Tomita, Yuto; Soma, Kentaro; Takeda, Seiji

    2017-05-12

    Multi-walled carbon nanotubes (CNTs) are subjected to electron-beam-induced etching (EBIE) in oxygen. The EBIE process is observed in situ by environmental transmission electron microscopy. The partial pressure of oxygen (10 and 100 Pa), energy of the primary electrons (80 and 200 keV), and environment of the CNTs (suspended or supported on a silicon nitride membrane) are investigated as factors affecting the etching rate. The EBIE rate of CNTs was markedly promoted by the effects of secondary electrons that were emitted from a silicon nitride membrane under irradiation by primary electrons. Membrane supported CNTs can be cut by EBIE with a spatial accuracy better than 3 nm, and a nanogap of 2 nm can be successfully achieved between the ends of two suspended CNTs.

  16. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  17. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.

    PubMed

    Wu, Xiaoshuai; Qiao, Yan; Shi, Zhuanzhuan; Tang, Wei; Li, Chang Ming

    2018-04-11

    Interfacial electron transfer between an electroactive biofilm and an electrode is a crucial step for microbial fuel cells (MFCs) and other bio-electrochemical systems. Here, a hierarchically porous nitrogen-doped carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composite with polyaniline as the nitrogen source has been developed for the MFC anode. This composite possesses a nitrogen atom-doped surface for improved flavin redox reaction and a three-dimensional hierarchically porous structure for rich bacterial biofilm growth. The maximum power density achieved with the N-CNTs/rGO anode in S. putrefaciens CN32 MFCs is 1137 mW m -2 , which is 8.9 times compared with that of the carbon cloth anode and also higher than those of N-CNTs (731.17 mW m -2 ), N-rGO (442.26 mW m -2 ), and the CNTs/rGO (779.9 mW m -2 ) composite without nitrogen doping. The greatly improved bio-electrocatalysis could be attributed to the enhanced adsorption of flavins on the N-doped surface and the high density of biofilm adhesion for fast interfacial electron transfer. This work reveals a synergistic effect from pore structure tailoring and surface chemistry designing to boost both the bio- and electrocatalysis in MFCs, which also provide insights for the bioelectrode design in other bio-electrochemical systems.

  18. Effect of Acid and Alcohol Network Forces within Functionalized Multiwall Carbon Nanotubes Bundles on Adsorption of Copper (II) Species

    EPA Science Inventory

    Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...

  19. Modified carbon nanotubes: from nanomedicine to nanotoxicology

    NASA Astrophysics Data System (ADS)

    Bottini, Massimo; Bottini, Nunzio

    2012-09-01

    Nanomedicine is the science of fabricating smart devices able to diagnose and treat diseases more efficiently than conventional medicine while minimizing costs, complexity and adverse effects. Carbon nanotubes (CNTs) are receiving considerable attention for biomedical applications due to their extraordinary properties. In particular, their chemical nature and high aspect ratio (ratio between the length and the diameter) make them ideal carriers to achieve delivery of high doses of therapeutic and imaging cargo to a specific site of interest. A major obstacle to the use of pristine (unmodified) CNTs in biological systems is their complete aqueous insolubility and low biocompatibility and toxicity profiles. To endow CNTs with solubility in a biological milieu, several non-covalent and covalent modification methods have been explored. Suitably modified CNTs have shown increased solubility under physiological conditions, improved biocompatibility profiles and lack of toxicity after injection in living animals. Additionally, after being loaded with cargo (small molecules, proteins, peptides or nucleic acids) they have been successfully evaluated as pharmaceutical, therapeutic and diagnostic tools.

  20. Lower limits of detection in using carbon nanotubes as thermoluminescent dosimeters of beta radiation

    NASA Astrophysics Data System (ADS)

    Alanazi, Abdulaziz; Jurewicz, Izabela; Alalawi, Amani I.; Alyahyawi, Amjad; Alsubaie, Abdullah; Hinder, Steven; Bañuls-Ciscar, Jorge; Alkhorayef, Mohammed; Bradley, D. A.

    2017-11-01

    World-wide, on-going intensive research is being seen in adaptation of carbon nanotubes (CNTs) for a wide variety of applications, particular interest herein being in the thermoluminescent (TL) properties of CNTs and their sensitivity towards energetic radiations. Using beta radiation delivering dose levels of a few Gy it has been observed in previous study that strain and impurity defects in CNTs give rise to significant TL yields, providing an initial measure of the extent to which electron trapping centres exist in various qualities of CNT, from super-pure to raw. This in turn points to the possibility that there may be considerable advantage in using such media for radiation dosimetry applications, including for in vivo dosimetry. CNTs also have an effective atomic number similar to that of adipose tissue, making them suitable for soft tissue dosimetry. In present investigations various single-wall carbon nanotubes (SWCNT) samples in the form of buckypaper have been irradiated to doses in the range 35-1.3 Gy, use being made of a 90Sr beta source, the response of the CNTs buckypaper with dose showing a trend towards linearity. It is shown for present production methodology for buckypaper samples that the raw SWCNT buckypaper offer the greatest sensitivity, detecting doses down to some few tens of mGy.

  1. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    PubMed

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  2. Fluid breakup in carbon nanotubes: An explanation of ultrafast ion transport

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2017-09-01

    Ultrafast ion transport in carbon nanotubes (CNTs) has been experimentally observed, but the underlying mechanism is unknown. In this work, we investigate ion transport in CNTs through molecular dynamics (MD) simulations. It is found that the flow in CNTs undergoes a transition from the passage of a continuous liquid chain to the transport of isolated ion-water clusters as the CNT length or the external electric filed strength is increased. The breakup of the liquid chain in CNTs greatly reduces the resistance caused by the hydrogen bonds of water and significantly enhances the ionic mobility, which explains the two-order-magnitude enhancement of ionic conductance in CNTs reported in the literature. A theoretical criterion for fluid breakup is proposed, which agrees well with MD results. The fluid breakup phenomenon provides new insights into enhancing ion transport in nanoconfinements.

  3. Investigation of chemical and physical properties of carbon nanotubes and their effects on cell biomechanics

    NASA Astrophysics Data System (ADS)

    Dong, Chenbo

    Carbon nanotubes (CNTs) are used for a variety of applications from nanocircuits, to hydrogen storage devices, and from designing optical fibers to forming conductive plastics. Recently, their functionalization with biomolecules led to exciting biological and biomedical applications in drug delivery or bioimaging. However, because of CNTs interactions with biological systems and their ability to translocate and persist into the circulatory and lymphatic systems and biological tissues, concerns about CNTs intrinsic toxicity have risen. It is thus necessary to develop and implement sensitive analysis technologies that allow investigation of CNTs toxicity upon uptake into a biological system. This thesis provides a comprehensive guide of experiments that have been performed during my Ph.D. tenure at West Virginia University in the Department of Chemical Engineering, in the group of Prof. Cerasela Zoica Dinu. Briefly: Chapter one presents a systematic study of the CNTs physical and chemical properties and how these properties are changed upon exposure to chemical agents normally used during their cleaning and purification processes. Also, this chapter shows how acid oxidation treatment leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive x-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity making CNTs feasible platforms to be used for biomedical applications or the next generation of biosensors. (Publication: Chenbo Dong, Alan S Campell, Reem Eldawud, Gabriela Perhinschi, and

  4. Extension of coarse-grained UNRES force field to treat carbon nanotubes.

    PubMed

    Sieradzan, Adam K; Mozolewska, Magdalena A

    2018-04-26

    Carbon nanotubes (CNTs) have recently received considerable attention because of their possible applications in various branches of nanotechnology. For their cogent application, knowledge of their interactions with biological macromolecules, especially proteins, is essential and computer simulations are very useful for such studies. Classical all-atom force fields limit simulation time scale and size of the systems significantly. Therefore, in this work, we implemented CNTs into the coarse-grained UNited RESidue (UNRES) force field. A CNT is represented as a rigid infinite-length cylinder which interacts with a protein through the Kihara potential. Energy conservation in microcanonical coarse-grained molecular dynamics simulations and temperature conservation in canonical simulations with UNRES containing the CNT component have been verified. Subsequently, studies of three proteins, bovine serum albumin (BSA), soybean peroxidase (SBP), and α-chymotrypsin (CT), with and without CNTs, were performed to examine the influence of CNTs on the structure and dynamics of these proteins. It was found that nanotubes bind to these proteins and influence their structure. Our results show that the UNRES force field can be used for further studies of CNT-protein systems with 3-4 order of magnitude larger timescale than using regular all-atom force fields. Graphical abstract Bovine serum albumin (BSA), soybean peroxidase (SBP), and α-chymotrypsin (CT), with and without CNTsᅟ.

  5. Morphology- and ion size-induced actuation of carbon nanotube architectures

    NASA Astrophysics Data System (ADS)

    Geier; Mahrholz; Wierach; Sinapius

    2018-04-01

    Future adaptive applications require lightweight and stiff materials with high active strain but low energy consumption. A suitable combination of these properties is offered by carbon nanotube-based actuators. Papers made of carbon nanotubes (CNTs) are charged within an electrolyte, which results in an electrical field forming a double-layer of ions at their surfaces and a deflection of the papers can be detected. Until now, there is no generally accepted theory for the actuation mechanism. This study focuses on the actuation mechanism of CNT papers, which represent architectures of randomly oriented CNTs. The samples are tested electrochemically in an in-plane set-up to detect the free strain. The elastic modulus of the CNT papers is analyzed in a tensile test facility. The influence of various ion sizes of water-based electrolytes is investigated.

  6. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengju; Hu, Yanjie; Jiang, Hao; Li, Chunzhong

    2014-01-01

    A three-dimensional ordered mesoporous carbon (OMC)/carbon nanotubes (CNTs) nanocomposite is prepared via a two-step procedure. Firstly, OMC is synthesized through a co-assembly strategy associated with the incorporation of Ni nanoparticles. Then Ni nanoparticles are used as catalyst for the growth of CNTs. The introduction of CNTs into OMC can construct a 3D conductive network, greatly improving the rate performance of the nanocomposites. The nanocomposite with optimal CNTs content, when applied as supercapacitor electrodes, exhibits a high specific capacitance (338.1 F g-1 at 1 A g-1), excellent rate capability (130.2 F g-1 at 50 A g-1) and high cycling stability (91.6% capacity retention after 4000 cycles) in 6 M KOH aqueous solution. Such intriguing electrochemical performance is mainly attributed to the synergistic effects between OMC and CNTs. It is reckoned that the present 3D OMC/CNTs nanocomposite can serve as a promising electrode material for supercapacitors.

  7. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-preparedmore » Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.« less

  8. Vertically aligned BCN nanotubes with high capacitance.

    PubMed

    Iyyamperumal, Eswaramoorthi; Wang, Shuangyin; Dai, Liming

    2012-06-26

    Using a chemical vapor deposition method, we have synthesized vertically aligned BCN nanotubes (VA-BCNs) on a Ni-Fe-coated SiO(2)/Si substrate from a melamine diborate precursor. The effects of pyrolysis conditions on the morphology and thermal property of grown nanotubes, as well as the nanostructure and composition of an individual BCN nanotube, were systematically studied. It was found that nitrogen atoms are bonded to carbons in both graphitic and pyridinic forms and that the resultant VA-BCNs grown at 1000 °C show the highest specific capacitance (321.0 F/g) with an excellent rate capability and high durability with respect to nonaligned BCN (167.3 F/g) and undoped multiwalled carbon nanotubes (117.3 F/g) due to synergetic effects arising from the combined co-doping of B and N in CNTs and the well-aligned nanotube structure.

  9. Application of Carbon Nanotubes for Plant Genetic Transformation

    NASA Astrophysics Data System (ADS)

    Burlaka, Olga M.; Pirko, Yaroslav V.; Yemets, Alla I.; Blume, Yaroslav B.

    In this chapter, the current state of using carbon nanotubes (CNTs; single- and multi-walled) that have attracted great interdisciplinary interest in recent decades due to their peculiar properties for genetic transformation of prokaryotic and eukaryotic cells will be enlightened. The covalent and non-covalent surface chemistry for the CNT functionalization with focus on the potential applications of surface modifications in design of biocompatible CNTs will be discussed. The properties of CNTs that are favorable for biotechnological use and current status of technical approaches that allow the increase in biocompatibility and lower nanotoxicity of engineered CNTs will be described. Decisions proposed by non-covalent surface modification of CNTs will be discussed. Existing data concerning mechanisms of CNT cell entry and factors governing toxicity, cellular uptake, intracellular traffic, and biodegradation of CNTs along with bioavailability of molecular cargoes of loaded CNTs will be discussed. Eco-friendly production of water dispersions of biologically functionalized multi-walled and single-walled CNTs for use as nano-vehicles for the DNA delivery in plant genetic transformation of plants will be described. The background, advantages, and problems of using CNTs in developing of novel methods of genetic transformation, including plant genetic transformation, will be highlighted. Special attention will be paid to the limitations of conventional gene transfer techniques and promising features of CNT-based strategies having improved efficacy, reproducibility, and accuracy along with less time consumption. Issues impeding manipulation of CNTs such as entangled bundle formation, low water solubility, inert properties of pristine CNTs, etc., and ways to solve arising tasks will be overviewed.

  10. Laser Processing of Carbon Nanotube Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  11. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light.

    PubMed

    Shi, Huixian; Chen, Jiangyao; Li, Guiying; Nie, Xin; Zhao, Huijun; Wong, Po-Keung; An, Taicheng

    2013-08-14

    A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.

  12. CoMn2O4-supported functionalized carbon nanotube: efficient catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin

    2017-10-01

    Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.

  13. Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp.

    PubMed

    Zhang, Chengdong; Li, Mingzhu; Xu, Xu; Liu, Na

    2015-04-28

    The environmental risks of engineered nanoparticles have attracted attention. However, little is known regarding the effects of carbon nanotubes (CNTs) on the biodegradation and persistence of organic contaminants in water. We investigated the impacts of pristine and oxidized multiwalled CNTs on the atrazine biodegradation rate and efficiency using Arthrobacter sp. At a concentration of 25mg/L, the CNTs enhanced the biodegradation rate by up to 20%; however, at a concentration of 100mg/L, the CNTs decreased the biodegradation rate by up to 50%. The stimulation effects resulted from enhanced bacterial growth and the overexpression of degradation genes. The inhibitory effects resulted from the toxicity of the CNTs at high concentrations. The differences between the two CNTs at tested concentrations were not significant. The biodegradation efficiency was not impacted by adsorption, and the pre-adsorbed atrazine on the CNTs was fully biodegraded when the CNT concentration was ≤25mg/L. This finding was consistent with the lack of observable desorption hysteresis for atrazine on the tested CNTs. Our results indicate that CNTs can enhance or inhibit biodegradation through a balance of two effects: the toxic effects on microbial activity and the effects of the changing bioavailability that result from adsorption and desorption. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Peapods: Exploring the inner space of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shinohara, Hisanori

    2018-02-01

    During the past quarter century, the development of nanoscience and nanotechnology has been very much influenced and substantiated by the emergence of real nanometer-scale materials headed by fullerenes, carbon nanotubes (CNTs), and graphene, the so-called nanocarbons. This review article deals with some of the recent progress in the syntheses, characterization, and applications of the hybrid materials composed of nanopeapods (CNTs encapsulating atoms, molecules, nanowires, and nanoribbons). All of these studies are closely related to the characteristic usages of the internal nanospace prepared by the CNTs. Furthermore, the two-dimensional (2D) space prepared by two sheets of graphene has also been used as a 2D template for observing some dynamical phenomena of liquidus materials by transmission electron microscopy even under high-vacuum conditions.

  15. Therapeutic applications of carbon nanotubes: opportunities and challenges.

    PubMed

    Rogers-Nieman, Gabrielle M; Dinu, Cerasela Zoica

    2014-01-01

    Based on their physicochemical properties that allow efficient functionalization with biomolecules and cellular membrane translocation, as well as on their applications in Raman and near-infrared fluorescence imaging, carbon nanotubes (CNTs) have been proposed as viable candidates for developing therapeutic platforms that ensure targeting of tumor cells without affecting healthy cells. This article reviews the research on toxicological effects of CNTs on host cells, as well as their pharmacological profiles on cancer cells. The potential impact of this approach is discussed along with some potential pitfalls that will need to be overcome when therapeutic implementation CNTs are considered. For further resources related to this article, please visit the WIREs website. The authors declare no competing financial interest. © 2014 Wiley Periodicals, Inc.

  16. Piezoelectric effect in non-uniform strained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ilina, M. V.; Blinov, Yu F.; Ilin, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-10-01

    The piezoelectric effect in non-uniform strained carbon nanotubes (CNTs) has been studied. It is shown that the magnitude of strained CNTs surface potential depends on a strain value. It is established that the resistance of CNT also depends on the strain and internal electric field, which leads to the hysteresis in the current-voltage characteristics. Analysis of experimental studies of the non-uniform strained CNT with a diameter of 92 nm and a height of 2.1 μm allowed us to estimate the piezoelectric coefficient 0.107 ± 0.032 C/m2.

  17. Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhou, Xiaoyan; Wang, Dongqi; Yin, Jun-Jie; Chen, Hanqing; Gao, Xingfa; Zhang, Jing; Ibrahim, Kurash; Chai, Zhifang; Feng, Weiyue; Zhao, Yuliang

    2015-01-01

    Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing π electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C&z.dbd;C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C π* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media.Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing π electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C&z.dbd;C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the

  18. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites.

    PubMed

    Zhou, Yongsheng; Jin, Pan; Zhou, Yatong; Zhu, Yingchun

    2018-06-13

    This work reports the nanocomposites of graphitic nanofibers (GNFs) and carbon nanotubes (CNTs) as the electrode material for supercapacitors. The hybrid CNTs/GNFs was prepared via a synthesis route that involved catalytic chemical vapor deposition (CVD) method. The structure and morphology of CNTs/GNFs can be precisely controlled by adjusting the flow rates of reactant gases. The nest shape entanglement of CNTs and GNFs which could not only have high conductivity to facilitate ion transmission, but could also increase surface area for more electrolyte ions access. When assembled in a symmetric two-electrode system, the CNTs/GNFs-based supercapacitor showed a very good cycling stability of 96% after 10 000 charge/discharge cycles. Moreover, CNTs/GNFs-based symmetric device can deliver a maximum specific energy of 72.2 Wh kg -1 at a power density of 686.0 W kg -1 . The high performance of the hybrid performance can be attributed to the wheat like GNFs which provide sufficient accessible sites for charge storage, and the CNTs skeleton which provide channels for charge transport.

  19. Carbon nanotube mass production: principles and processes.

    PubMed

    Zhang, Qiang; Huang, Jia-Qi; Zhao, Meng-Qiang; Qian, Wei-Zhong; Wei, Fei

    2011-07-18

    Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the most important advanced materials. This Review describes the state-of-the-art of CNT synthesis, with a focus on their mass-production in industry. At the nanoscale, the production of CNTs involves the self-assembly of carbon atoms into a one-dimensional tubular structure. We describe how this synthesis can be achieved on the macroscopic scale in processes akin to the continuous tonne-scale mass production of chemical products in the modern chemical industry. Our overview includes discussions on processing methods for high-purity CNTs, and the handling of heat and mass transfer problems. Manufacturing strategies for agglomerated and aligned single-/multiwalled CNTs are used as examples of the engineering science of CNT production, which includes an understanding of their growth mechanism, agglomeration mechanism, reactor design, and process intensification. We aim to provide guidelines for the production and commercialization of CNTs. Although CNTs can now be produced on the tonne scale, knowledge of the growth mechanism at the atomic scale, the relationship between CNT structure and application, and scale-up of the production of CNTs with specific chirality are still inadequate. A multidisciplinary approach is a prerequisite for the sustainable development of the CNT industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yu, J.

    2005-07-01

    Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

  1. The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez-Bustamante, R.

    Although carbon nanotubes/aluminum (CNT/Al) composites are promising materials in the production of structural components, their mechanical behavior under overaging conditions has not been considered. In this paper the effect of CNTs on the microstructural and mechanical behavior of a 2024 aluminum alloy (Al2024) synthesized by mechanical alloying (MA) and powder metallurgy routes is discussed, as well as the effect of aging heat treatments at different temperatures and aging times. The mechanical behavior of composites was screened by hardness measurements as function of aging time. After 96 h of aging time, composites showed mechanical stability in their hardness performance. Images frommore » transmission electron microscopy showed that the mechanical stability of composites was due to a homogeneous dispersion of CNTs in the aluminum matrix and a subsequent alteration in the kinetics of precipitation is due to their presence in the aluminum matrix. Even though strengthening precipitation took place during aging, this was not the main strengthening mechanism observed in composites. - Highlights: • Dispersion of carbon nanotubes during mechanical alloying • Microstructural evolution observed by HRTEM. • Mechanical performance evaluated through micro-hardness test. • Increased mechanical performance at high working temperatures • Acceleration of kinetics of precipitation due to CNTs, and milling conditions.« less

  2. Carbon Nanotubes: Applications in Pharmacy and Medicine

    PubMed Central

    He, Hua; Pham-Huy, Lien Ai; Dramou, Pierre; Xiao, Deli; Zuo, Pengli

    2013-01-01

    Carbon nanotubes (CNTs) are allotropes of carbon, made of graphite and constructed in cylindrical tubes with nanometer in diameter and several millimeters in length. Their impressive structural, mechanical, and electronic properties are due to their small size and mass, their strong mechanical potency, and their high electrical and thermal conductivity. CNTs have been successfully applied in pharmacy and medicine due to their high surface area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They have been first proven to be an excellent vehicle for drug delivery directly into cells without metabolism by the body. Then other applications of CNTs have been extensively performed not only for drug and gene therapies but also for tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants. Moreover, CNTs have been recently revealed as a promising antioxidant. This minireview focuses the applications of CNTs in all fields of pharmacy and medicine from therapeutics to analysis and diagnosis as cited above. It also examines the pharmacokinetics, metabolism and toxicity of different forms of CNTs and discusses the perspectives, the advantages and the obstacles of this promising bionanotechnology in the future. PMID:24195076

  3. Carbon nanotubes: applications in pharmacy and medicine.

    PubMed

    He, Hua; Pham-Huy, Lien Ai; Dramou, Pierre; Xiao, Deli; Zuo, Pengli; Pham-Huy, Chuong

    2013-01-01

    Carbon nanotubes (CNTs) are allotropes of carbon, made of graphite and constructed in cylindrical tubes with nanometer in diameter and several millimeters in length. Their impressive structural, mechanical, and electronic properties are due to their small size and mass, their strong mechanical potency, and their high electrical and thermal conductivity. CNTs have been successfully applied in pharmacy and medicine due to their high surface area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic agents (drugs, genes, vaccines, antibodies, biosensors, etc.). They have been first proven to be an excellent vehicle for drug delivery directly into cells without metabolism by the body. Then other applications of CNTs have been extensively performed not only for drug and gene therapies but also for tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants. Moreover, CNTs have been recently revealed as a promising antioxidant. This minireview focuses the applications of CNTs in all fields of pharmacy and medicine from therapeutics to analysis and diagnosis as cited above. It also examines the pharmacokinetics, metabolism and toxicity of different forms of CNTs and discusses the perspectives, the advantages and the obstacles of this promising bionanotechnology in the future.

  4. Growth behavior of carbon nanotubes on multilayered metal catalyst film (Al/Fe/Mo) in chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cui, H.; Eres, G.; Howe, J. Y.; Puretzky, A.; Varela, M.; Geohegan, D. B.; Lowndes, D. H.

    2003-03-01

    The temperature- and time- dependences of carbon nanotube (CNT) growth by chemical vapor deposition are studied using a multilayered Al/Fe/Mo catalyst on silicon substrates. Within the 600 - 1100 ^oC temperature range in these studies, narrower temperature ranges were determined for the growth of aligned multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). Aligned MWCNT growth is favored at lower temperatures ( ˜700 ^oC). At 900 ^oC, in contrast to earlier work, double-walled carbon nanotubes (DWCNTs) are found more abundant than SWCNTs. At further elevated temperature, highly defective carbon structures are produced. Defects also are found to accumulate faster than the ordered graphitic structure if the growth of CNTs is extended to long growth durations. Atomic force microscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Raman spectroscopy are used to characterize the catalyst and various types of CNTs.

  5. Carbon Nanotubes: Present and Future Commercial Applications

    NASA Astrophysics Data System (ADS)

    De Volder, Michael F. L.; Tawfick, Sameh H.; Baughman, Ray H.; Hart, A. John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  6. Carbon nanotubes: present and future commercial applications.

    PubMed

    De Volder, Michael F L; Tawfick, Sameh H; Baughman, Ray H; Hart, A John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  7. Evaluation of the sorption mechanism of ionic liquids onto multi-walled carbon nanotubes.

    PubMed

    Wojsławski, Jerzy; Białk-Bielińska, Anna; Paszkiewicz, Monika; Toński, Michał; Stepnowski, Piotr; Dołżonek, Joanna

    2018-01-01

    The knowledge of the sorption mechanism of different chemicals onto third generation carbon sorbents such as carbon nanotubes (CNTs) is needed in order to project systems for the effective removal of pollutants from the environment. This paper reports evaluation of the sorption mechanism of selected ionic liquids (ILs), being considered as potential pollutant in environment, onto various CNTs. CNTs characterized by the smallest diameter and the biggest surface area showed the highest sorption capacity to isolate ILs from an aqueous solution. CNTs with a bigger diameter, a functionalized surface and particularly a helical shape showed a lower sorption capacity. The sorption mechanism has been defined as complex, including van der Waals, π-π and electrostatic interactions with dominating π-π interactions. Due to the relatively high sorption coefficient (355.98 ± 20.69-6397.10 ± 355.42 L kg -1 depending on the IL) the study showed that multi-walled carbon nanotubes can potentially be used to effectively isolate ILs from an aqueous solution. Moreover, proved in this study, the fast sorption kinetic, and uncomplicated regeneration process, leading to an even higher sorption capacity, means that CNTs are promising material which could find potential applications in the treatment of water contaminated by ILs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of carbon nanotube (CNT) dispersion and interface condition on thermo-mechanical behavior of CNT-reinforced vinyl ester

    NASA Astrophysics Data System (ADS)

    Sabet, Seyed Morteza

    In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load

  9. Parameterizing A Surface Water Model for Multiwalled Carbon Nanotubes

    EPA Science Inventory

    The unique electronic, mechanical, and structural properties of carbon nanotubes (CNTs) has lead to increasing production of these versatile materials; currently, the use of carbon-based nanomaterials in consumer products is second only to that of nano-scale silver. Although ther...

  10. Facile method for the synthesis of a magnetic CNTs-C@Fe-chitosan composite and its application in tetracycline removal from aqueous solutions.

    PubMed

    Ma, Jie; Zhuang, Yuan; Yu, Fei

    2015-06-28

    A magnetic CNTs-C@Fe-chitosan composite (CNTs-C@Fe-CS) was prepared based on as-prepared carbon nanotubes (APCNTs). The metal nanoparticles in APCNTs could be utilized directly without any purification treatment, and the carbon shells provide an effective barrier against oxidation, acid dissolution, and movement of the MNPs, thus ensuring the long-term stability of CNTs-C@Fe-CS. The results showed that CNTs-C@Fe-CS contained more abundant oxygen and nitrogen containing functional groups after chitosan modification and the composite had good magnetization characteristics, even in acidic solutions. Then CNTs-C@Fe-CS was used as an adsorbent for the removal of tetracycline from aqueous solutions. Adsorption experiments indicated that CNTs-C@Fe-CS have a good adsorption capacity (qe) of tetracycline (104 mg g(-1)). The Freundlich isotherm model fitted the experimental data better than the Langmuir isotherm model. Kinetic regression results showed that the adsorption kinetics was more accurately represented by a pseudo second-order model. Intra-particle diffusion was involved in the adsorption, but it was not the only rate-controlling step. Cu(2+) and humic acid could promote the adsorption of tetracycline on CNTs-C@Fe-CS. The CNTs-C@Fe-CS adsorbents could be effectively and quickly separated by applying an external magnetic field and the adsorption capacity was still maintained at 99.3 mg g(-1) after being used 10 times. Therefore, CNTs-C@Fe-CS is a promising magnetic nanomaterial for preconcentration and separation of organic pollutants for environmental remediation.

  11. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake.

    PubMed

    Miralles, Pola; Johnson, Errin; Church, Tamara L; Harris, Andrew T

    2012-12-07

    Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l(-1) CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe(3)O(4)-functionalized CNTs were prepared and studied using energy-filter mapping of Fe(3)O(4). CNTs bearing Fe(3)O(4) nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up.

  12. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake

    PubMed Central

    Miralles, Pola; Johnson, Errin; Church, Tamara L.; Harris, Andrew T.

    2012-01-01

    Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe3O4-functionalized CNTs were prepared and studied using energy-filter mapping of Fe3O4. CNTs bearing Fe3O4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up. PMID:22977097

  13. A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu

    2003-01-01

    A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.

  14. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  15. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  16. Directed-Assembly of Carbon Nanotubes on Soft Substrates for Flexible Biosensor Array

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung Woo; Koh, Juntae; Lee, Byung Yang; Kim, Tae Hyun; Lee, Joohyung; Hong, Seunghun; Yi, Mihye; Jhon, Young Min

    2009-03-01

    We developed a method to selectively assemble and align carbon nanotubes (CNTs) on soft substrates for flexible biosensors. In this strategy, thin oxide layer was deposited on soft substrates via low temperature plasma enhanced chemical vapor deposition, and linker-free assembly process was applied onto the oxide surface where the assembly of carbon nanotubes was guided by methyl-terminated molecular patterns on the oxide surface. The electrical characterization of the fabricated CNT devices exhibited typical p-type gating effect and 1/f noise behavior. The bare oxide regions near CNTs were functionalized with glutamate oxidase to fabricate selective biosensors to detect two forms of glutamate substances existing in different situations: L-glutamic acid, a neuro-transmitting material, and monosodium glutamate, a food additive.

  17. A review on the removal of antibiotics by carbon nanotubes.

    PubMed

    Cong, Qiao; Yuan, Xing; Qu, Jiao

    2013-01-01

    Increasing concerns have been raised regarding the potential risks of antibiotics to human and ecological health due to their extensive use. Carbon nanotubes (CNTs) have drawn special research attention because of their unique properties and potential applications as a kind of adsorbents. This review summarizes the currently available research on the adsorption of antibiotics on CNTs, and will provide useful information for CNT application and risk assessment. Four different models, the Freundlich model (FM), Langmuir model (LM), Polanyi-Mane model (PMM), and Dubinin-Ashtakhov model (DAM), are often used to fit the adsorption isotherms. Because different mechanisms may act simultaneously, including electrostatic interactions, hydrophobic interactions, π-π bonds, and hydrogen bonds, the prediction of organic chemical adsorption on CNTs is not straightforward. Properties of CNTs, such as specific surface area, adsorption sites, and oxygen content, may influence the adsorption of antibiotics on CNTs. Adsorption heterogeneity and hysteresis are two features of antibiotic-CNT interactions. In addition, CNTs with adsorbed antibiotics may have potential risks for human health. So, further research examining how to reduce such risks is needed.

  18. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.

    PubMed

    Chen, Pingan; Zhang, Jian; Shen, Qiang; Luo, Guoqiang; Dai, Yang; Wang, Chuanbing; Li, Meijuan; Zhang, Lianmeng

    2017-04-01

    Microstructure and thermal conductivity (TC) of carbon nanotubes reinforced Cu (CNT-Cu) composites have been studied. When CNTs were coated with nano Cu by electroless plating, the TC of CNT-Cu composites showed a noticeable improvement and increased with CNT contents. When 1.0 vol% CNTs was added, the TC of CNT-Cu composites increased to 420.4 W/(m · K), 30% higher than that of monolithic Cu (323.1 W/(m · K)). According to the measured TC of CNT-Cu composites, the interfacial thermal resistance of CNT-Cu composites was calculated as 3.0 × 10⁻⁹ m² K/W which was lower than the reported values of CNTs reinforced polymer matrix composites and ceramic matrix composites. Microstructures showed that CNTs modified with nano Cu were homogeneously dispersed and embedded in the Cu matrix, indicating that there was strong bonding between CNTs and Cu. The homogeneously dispersed CNTs and reduction of interfacial thermal resistance resulted in the improvement of thermal conductivity of CNT-Cu composites. Therefore, the prepared CNT-Cu composites are promising materials for thermal management applications.

  19. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Masato, E-mail: masato.ohnishi@rift.mech.tohoku.ac.jp; Suzuki, Ken; Miura, Hideo, E-mail: hmiura@rift.mech.tohoku.ac.jp

    2015-04-15

    When a radial strain is applied to a carbon nanotube (CNT), the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  20. In vivo biodistribution of CNTs using a BALB/c mouse experimental model.

    PubMed

    Fufă, Mariana Oana Mihaela; Mihaiescu, Dan Eduard; Mogoantă, Laurenţiu; Bălşeanu, Tudor Adrian; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Bolocan, Alexandra

    2015-01-01

    Due to their unique behaviors, carbon nanotubes (CNTs)-based systems meet essential requirements for modern applications, such as electronics, optics, photovoltaics, fuel cells, aerospace engineering, military and biomedical applications. CNTs biocompatibility and toxic effects were assessed both in vitro and in vivo, in terms of hemocompatibility, cytocompatibility, immunoreactions and genetic behavior. The aim of this paper is to evaluate the in vivo biodistribution and biocompatibility of carbon nanopowder synthesized by plasma processing, using a BALB/c mouse experimental model. Three months old BALB/c mice were aseptically injected with 100 μL of 1 mg/mL dispersions. The obtained carbon-based nano-systems were dispersed in saline solution and subsequently sterilized by using a 30 minutes treatment with UV irradiation. The reference mice were injected with 100 μL of saline. The mice were kept under standard conditions of light, temperature, humidity, food and water (ad libitum) before the vital organ harvest. The animal welfare was daily monitored. At two and 10 days after the inoculation, the animals were euthanized under general anesthesia, for the sampling of internal organs (brain, myocardium, pancreas, liver, lung, kidney and spleen). No animal died during the experiment. Brain, myocardium and pancreas were histologically normal, with no tissue damage, inflammatory infiltrate or inorganic deposits. CNTs were evidenced only in hepatic, renal, pulmonary and spleen tissue samples. Increased amounts of inorganic granular structures were reported after 10 days of treatment, when compared to the short-term (two days) inoculation. Our BALB/c mouse experimental model was found to be useful for the in vivo assessment of biodistribution and biocompatibility of CNTs.

  1. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.

  2. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification

  3. Simultaneous detection of multiple DNA targets by integrating dual-color graphene quantum dot nanoprobes and carbon nanotubes.

    PubMed

    Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui

    2014-12-01

    Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carbon nanotubes/carbon fiber hybrid material: a super support material for sludge biofilms.

    PubMed

    Liu, Qijie; Dai, Guangze; Bao, Yanling

    2017-07-16

    Carbon fiber (CF) is widely used as a sludge biofilm support material for wastewater treatment. Carbon nanotubes/carbon fiber (CNTs/CF) hybrid material was prepared by ultrasonically assisted electrophoretic deposition (EPD). CF supports (CF without handling, CF oxidized by nitric acid, CNTs/CF hybrid material) were evaluated by sludge immobilization tests, bacterial cell adsorption tests and Derjaguin -Landau -Verwey -Overbeek (DLVO) theory. We found that the CNTs/CF hybrid material has a high capacity for adsorbing activated sludge, nitrifying bacterial sludge and pure strains (Escherichia coli and Staphylococcus aureus). CNTs deposited on CF surface easily wound around the curved surface of bacterial cell which resulted in capturing more bacterial cells. DLVO theory indicated the lowest total interaction energy of CNTs/CF hybrid material, which resulted in the highest bacteria cell adsorption velocity. Experiments and DLVO theory results proved that CNTs/CF hybrid material is a super support material for sludge biofilms.

  5. Selective nuclear localization of siRNA by metallic versus semiconducting single wall carbon nanotubes in keratinocytes

    PubMed Central

    Huzil, John Torin; Saliaj, Evi; Ivanova, Marina V; Gharagozloo, Marjan; Loureiro, Maria Jimena; Lamprecht, Constanze; Korinek, Andreas; Chen, Ding Wen; Foldvari, Marianna

    2015-01-01

    Background: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. Results/Methodology: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. Conclusion: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages. PMID:28031892

  6. Massive radius-dependent flow slippage in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Siria, Alessandro; Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Bocquet, Lydéric

    2016-11-01

    Nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter. Recent reports indicate that carbon nanotubes exhibit exceptional water transport properties due to nearly frictionless interfaces and this has stimulated interest in nanotube-based membranes for desalination, nano-filtration, and energy harvesting. However, the fundamental mechanisms of water transport inside nanotubes and at water-carbon interfaces remain controversial, as existing theories fail to provide a satisfying explanation for the limited experimental results. We report a study of water jets emerging from single nanotubes made of carbon and boron-nitride materials. Our experiments reveal extensive and radius-dependent surface slippage in carbon nanotubes (CNT). In stark contrast, boron-nitride nanotubes (BNNT), which are crystallographically similar to CNTs but electronically different, exhibit no slippage. This shows that slippage originates in subtle atomic-scale details of the solid-liquid interface. ERC StG - NanoSOFT.

  7. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method

    NASA Astrophysics Data System (ADS)

    Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md

    2017-09-01

    Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.

  8. Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jiang, Jian; Li, Linpo; Liu, Yani; Liu, Siyuan; Xu, Maowen; Zhu, Jianhui

    2017-04-01

    The main obstacles to building better supercapacitors are still trade-offs between energy and power parameters. To promote commercial supercapacitor behaviors, proper optimization toward electrode configurations/architectures may be a feasible and effective way. We herein propose a smart and reliable electrode engineering protocol, by in situ implantation of carbon nanotubes (CNTs) on total activated carbon (AC) surfaces via a mild chemical vapor deposition process at ˜550 °C, using nickel nitrate hydroxide (NNH) thin films and waste ethanol solvents as the catalyst and carbon sources, respectively. The direct and conformal growth of NNH layers onto carbonaceous scaffold guarantees the later uniform implantation of long and high-quality CNTs on total AC outer surfaces. Such fluffy and entangled CNTs preserve ionic diffusion channels, well connect neighboring ACs and function as superhighways for electrons transfer, endowing electrodes with outstanding capacitive behaviors including large output capacitances of ˜230 F g-1 in 1 M Na2SO4 neutral solution and ˜502.5 F g-1 in 6 M KOH using Ni valence state variation, and very negligible capacity decay in long-term cycles. Furthermore, a full symmetric supercapacitor device of CNTs@ACs//CNTs@ACs has been constructed, capable of delivering both high specific energy and power densities (maximum values reaching up to ˜97.2 Wh kg-1 and ˜10.84 kW kg-1), which holds great potential in competing with current mainstream supercapacitors.

  9. Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications.

    PubMed

    Jiang, Jian; Li, Linpo; Liu, Yani; Liu, Siyuan; Xu, Maowen; Zhu, Jianhui

    2017-04-07

    The main obstacles to building better supercapacitors are still trade-offs between energy and power parameters. To promote commercial supercapacitor behaviors, proper optimization toward electrode configurations/architectures may be a feasible and effective way. We herein propose a smart and reliable electrode engineering protocol, by in situ implantation of carbon nanotubes (CNTs) on total activated carbon (AC) surfaces via a mild chemical vapor deposition process at ∼550 °C, using nickel nitrate hydroxide (NNH) thin films and waste ethanol solvents as the catalyst and carbon sources, respectively. The direct and conformal growth of NNH layers onto carbonaceous scaffold guarantees the later uniform implantation of long and high-quality CNTs on total AC outer surfaces. Such fluffy and entangled CNTs preserve ionic diffusion channels, well connect neighboring ACs and function as superhighways for electrons transfer, endowing electrodes with outstanding capacitive behaviors including large output capacitances of ∼230 F g -1 in 1 M Na 2 SO 4 neutral solution and ∼502.5 F g -1 in 6 M KOH using Ni valence state variation, and very negligible capacity decay in long-term cycles. Furthermore, a full symmetric supercapacitor device of CNTs@ACs//CNTs@ACs has been constructed, capable of delivering both high specific energy and power densities (maximum values reaching up to ∼97.2 Wh kg -1 and ∼10.84 kW kg -1 ), which holds great potential in competing with current mainstream supercapacitors.

  10. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    PubMed

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    NASA Astrophysics Data System (ADS)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  12. Universal interaction-driven gap in metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senger, Mitchell J.; McCulley, Daniel R.; Lotfizadeh, Neda; Deshpande, Vikram V.; Minot, Ethan D.

    2018-02-01

    Suspended metallic carbon nanotubes (m-CNTs) exhibit a remarkably large transport gap that can exceed 100 meV. Both experiment and theory suggest that strong electron-electron interactions play a crucial role in generating this electronic structure. To further understand this strongly interacting system, we have performed electronic measurements of suspended m-CNTs with known diameter and chiral angle. Spectrally resolved photocurrent microscopy was used to determine m-CNT structure. The room-temperature electrical characteristics of 18 individually contacted m-CNTs were compared to their respective diameter and chiral angle. At the charge neutrality point, we observe a peak in m-CNT resistance that scales exponentially with inverse diameter. Using a thermally activated transport model, we estimate that the transport gap is (450 meV nm)/D , where D is CNT diameter. We find no correlation between the gap and the CNT chiral angle. Our results add important constraints to theories attempting to describe the electronic structure of m-CNTs.

  13. Substitution reactions of carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Li, Chi Pui; Chen, Ying; Gerald, John Fitz

    2006-05-01

    Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO-C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200°C for 1h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000°C ). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO-C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

  14. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.

    PubMed

    Schmidt, Grégory; Gallon, Salomé; Esnouf, Stéphane; Bourgoin, Jean-Philippe; Chenevier, Pascale

    2009-01-01

    On the tube: The coupling of diazonium ions onto single-walled carbon nanotubes is shown to proceed through a radical chain reaction by kinetic analysis of the absorption peak drop (see picture). Radical species are also revealed by ESR. Metallic (m) nanotubes play a special catalytic role in the functionalization of semiconducting (sc) nanotubes.Due to its simplicity and versatility, diazonium coupling is the most widely used method for carbon nanotube (CNT) functionalization to increase CNT processability and add new functionalities. Yet, its mechanism is so far mostly unknown. Herein, we use kinetic analysis to shed light on this complex mechanism. A free-radical chain reaction is revealed by absorption spectroscopy and ESR. Metallic CNTs are shown to play an unexpected catalytic role. The step determining the selectivity towards metallic CNTs is identified by a Hammett correlation. A mechanistic model is proposed that predicts reactivity and selectivity as a function of diazonium electrophilicity and metallic-to-semiconducting CNT ratio, thus opening perspectives of controlled high-yield functionalization and purification.

  15. Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Karlsen, P.; Shuba, M. V.; Beckerleg, C.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V.; Viet, Ho; Nasibulin, A. G.; Tenne, R.; Hendry, E.

    2018-01-01

    We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 μm length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2 nanotubes and CNTs versus CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.

  16. A self-assembled synthesis of carbon nanotubes for interconnects.

    PubMed

    Chen, Zexiang; Cao, Guichuan; Lin, Zulun; Koehler, Irmgard; Bachmann, Peter K

    2006-02-28

    We report a novel approach to grow highly oriented, freestanding and structured carbon nanotubes (CNTs) between two substrates, using microwave plasma chemical vapour deposition. Sandwiched, multi-layered catalyst structures are employed to generate such structures. The as-grown CNTs adhere well to both the substrate and the top contact, and provide a low-resistance electric contact between the two. High-resolution scanning electron microscope (SEM) images show that the CNTs grow perpendicular to these surfaces. This presents a simple way to grow CNTs in different, predetermined directions in a single growth step. The overall resistance of a CNT bundle and two CNT-terminal contacts is measured to be about 14.7 k Ω. The corresponding conductance is close to the quantum limit conductance G(0). This illustrates that our new approach is promising for the direct assembly of CNT-based interconnects in integrated circuits (ICs) or other micro-electronic devices.

  17. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid.

    PubMed

    Liu, Hui; Xiang, Kaisong; Yang, Bentao; Xie, Xiaofeng; Wang, Dongli; Zhang, Cong; Liu, Zhilou; Yang, Shu; Liu, Cao; Zou, Jianping; Chai, Liyuan

    2017-06-01

    Converting the NO from gaseous pollutant into NH 4 + through electrocatalytical reduction using cost-effective materials holds great promise for pollutant purifying and resources recycling. In this work, we developed a highly selective and stable catalyst CoSe 2 nanoparticle hybridized with carbon nanotubes (CoSe 2 @CNTs). The CoSe 2 @CNTs hybrid catalysts performed an extraordinary high selectivity for NH 4 + formation in NO electroreduction with minimal N 2 O production and H 2 evolution. The specific spatial structure of CoSe 2 is conductive to the predominant formation of N-H bond between the N from adsorbed NO and H and inhibition of N-N formation from adjacent adsorbed NO. It was also the first time to convert the coordinated NO into NH 4 + using non-noble metal catalysis. Moreover, the original concept of employing CoSe 2 as eletrocatalyst for NO hydrogenation presented in this work can broaden horizons and provide new dimensions in the design of new highly efficient catalysts for NH 4 + synthesis in aqueous solution.

  18. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    PubMed

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  19. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum.

    PubMed

    Zhang, Cai; Chen, Xiaohua; Tan, Liju; Wang, Jinagtao

    2018-05-01

    To investigate the combined toxicities of copper nanoparticles (nano-Cu) with carbon nanotubes (CNTs) on marine microalgae Skeletonema costatum, algal growth inhibition tests were carried out. Toxicities of nano-Cu with CNTs and without CNTs on microalgae were determined, respectively. Chlorophyll content and photosynthetic efficiency (ΦPSII) were determined to compare negative effects of nano-Cu with CNTs and without CNTs on photosynthesis. The concentration of Cu 2+ released by nano-Cu into the medium was determined, and interactions between nano-Cu and CNTs were analyzed to study toxic mechanisms of combined toxicities of nano-Cu with CNTs. It was found that both nano-Cu and CNTs could inhibit the growth of the microalgae; however, the toxicity of CNTs on the microalgae was far lower than that of nano-Cu. The maximum growth inhibition ratio (IR) of nano-Cu on the microalgae was 86% appearing at 96 h under 1.0 mg/L nano-Cu treatment, while the maximum IR of CNTs on the microalgae was 58% at 96 h under 200 mg/L CNT treatment. CNTs could reduce the toxicity of nano-Cu on the microalgae in processes of growth and photosynthesis. Adsorption of Cu 2+ on CNTs and aggregate between Cu and CNTs in the medium were main reasons for attenuation of toxicity of nano-Cu with adding CNTs.

  20. Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance

    DTIC Science & Technology

    2011-01-01

    nanotubes ( CNTs ) and two-dimensional (2D) single-atomic layer graphene, have been demonstrated to show superior thermal, electrical, and mechanical...and the much weaker van der Waals interaction in the transverse direction between the layers, how- ever, CNTs and graphene exhibit strong direction...structure are governed by the minimum interpillar distance (MIPD) and the CNT -pillar length (PL) (Figure 1a). Some successes in fabricating randomly

  1. Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Khan, Zafar Hayat; Khan, Waqar Ahmed

    2014-09-01

    This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.

  2. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers.

    PubMed

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2009-11-01

    In recent years carbon-nanotube-based thermal interface materials have shown great potential for solving the thermal management problem of integrated circuits and nanodevices. For a long time, the exceptionally high thermal boundary resistances (TBRs) between carbon nanotubes (CNTs) and their surroundings have been suspected as a major factor to restraining their performance. But so far, there are few or no reported work to determine or compare the TBRs between CNTs and various materials. In this paper, we carefully design and carry out the TBR measurements of CNTs in contact with metal and polymer materials, and we present a conclusion that the CNT/polymer generally gives a lower TBR compared to the CNT/metal, which seems a little counterintuitive. We further suggest that the larger CNT-metal TBRs arise from the smaller phonon-mode overlapping between the CNT and the metals at low frequencies, and the low phonon transmission coefficient at the metal-CNT interface in the intermediate and high frequency range. This work may inspire deeper understanding of the TBR and shed light on related theoretical and applied research.

  3. Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes.

    PubMed

    Wang, Jiangtao; Liu, Peng; Xia, Bingyu; Wei, Haoming; Wei, Yang; Wu, Yang; Liu, Kai; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2016-07-13

    Carbon nanotube (CNT) is believed to be the most promising material for next generation IC industries with the prerequisite of chirality specific growth. For various approaches to controlling the chiral indices of CNTs, the key is to deepen the understanding of the catalytic growth mechanism in chemical vapor deposition (CVD). Here we show our discovery that the as-grown CNTs are all negatively charged after Fe-catalyzed CVD process. The extra electrons come from the charge generation and transfer during the growth of CNTs, which indicates that an electrochemical process happens in the surface reaction step. We then designed an in situ measurement equipment, verifying that the CVD growth of CNTs can be regarded as a primary battery system. Furthermore, we found that the variation of the Fermi level in Fe catalysts have a significant impact on the chirality of CNTs when different external electric fields are applied. These findings not only provide a new perspective on the growth of CNTs but also open up new possibilities for controlling the growth of CNTs by electrochemical methods.

  4. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    PubMed

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures

    NASA Astrophysics Data System (ADS)

    Purceno, Aluir D.; Machado, Bruno F.; Teixeira, Ana Paula C.; Medeiros, Tayline V.; Benyounes, Anas; Beausoleil, Julien; Menezes, Helvecio C.; Cardeal, Zenilda L.; Lago, Rochel M.; Serp, Philippe

    2014-11-01

    In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and

  6. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma

    PubMed Central

    Muñoz-Sandoval, Emilio; Magaña-Maldonado, Roxana; Hernández Pedro, Norma; Rangel López, Edgar; González Aguilar, Alberto; Sánchez García, Aurora; Sotelo, Julio; Pérez de la Cruz, Verónica; Pineda, Benjamín

    2017-01-01

    Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma. PMID:28860763

  7. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma.

    PubMed

    Romano-Feinholz, Samuel; Salazar-Ramiro, Alelí; Muñoz-Sandoval, Emilio; Magaña-Maldonado, Roxana; Hernández Pedro, Norma; Rangel López, Edgar; González Aguilar, Alberto; Sánchez García, Aurora; Sotelo, Julio; Pérez de la Cruz, Verónica; Pineda, Benjamín

    2017-01-01

    Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma.

  8. Filament Winding Multifunctional Carbon Nanotube Composites of Various Dimensionality

    NASA Astrophysics Data System (ADS)

    Wells, Brian David

    Carbon nanotubes (CNT) have been long considered an optimal material for composites due to their high strength, high modulus, and electrical/thermal conductivity. These composite materials have the potential to be used in the aerospace, computer, automotive, medical industry as well as many others. The nano dimensions of these structures make controlled alignment and distribution difficult using many production techniques. An area that shows promise for controlled alignment is the formation of CNT yarns. Different approaches have been used to create yarns with various winding angles and diameters. CNTs resemble traditional textile fiber structures due to their one-dimensional dimensions, axial strength and radial flexibility. One difference is, depending on the length, CNTs can have aspect ratios that far exceed those of traditional textile fibers. This can complicate processing techniques and cause agglomeration which prevents optimal structures from being created. However, with specific aspect ratios and spatial distributions a specific type of CNT, vertically aligned spinnable carbon nanotubes (VASCNTs), have interesting properties that allow carbon nanotubes to be drawn from an array in a continuous aligned web. This dissertation examines the feasibility of combining VASCNTs with another textile manufacturing process, filament winding, to create structures with various levels of dimensionality. While yarn formation with CNTs has been largely studied, there has not been significant work studying the use of VASCNTs to create composite materials. The studies that have been produces revolve around mixing CNTs into epoxy or creating uni-directional wound structures. In this dissertation VASCNTs are used to create filament wound materials with various degrees of alignment. These structures include 1 dimensional coatings applied to non-conductive polymer monofilaments, two dimensional multifunctional adhesive films, and three dimensional hybrid-nano composites. The

  9. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study

    PubMed Central

    Abbas, Aamir; Ihsanullah; Al-Baghli, Nadhir A. H.

    2017-01-01

    Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene. PMID:28386208

  10. The Effects of Multi-walled Carbon Nanotubes on the Physiology, Morphology, and Rhizoshpere Microbial Community of Medicago Sative and Pteris Vittata.

    USDA-ARS?s Scientific Manuscript database

    Applications of nanomaterials are increasing due to their noble physical structures. Carbon nanotubes (CNTs) are one of the most widely used carbon nanomaterial at present, however the fate, transport and toxicity of CNTs is still not well understood. Potential concern has been raised regarding fut...

  11. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-01

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can

  12. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections.

    PubMed

    Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2018-05-17

    Carbon nanotubes (CNTs) and their derivatives have emerged as a series of efficient biocatalysts to mimic the function of natural enzymes in recent years. However, the unsatisfiable enzymatic efficiency usually limits their practical usage ranging from materials science to biotechnology. Here, for the first time, we present the synthesis of several oxygenated-group-enriched carbon nanotubes (o-CNTs) via a facile but green approach, as well as their usage as high-performance peroxidase mimics for biocatalytic reaction. Exhaustive characterizations of the enzymatic activity of o-CNTs have been provided by exploring the accurate effect of various oxygenated groups on their surface including carbonyl, carboxyl, and hydroxyl groups. Because of the "competitive inhibition" effect among all of these oxygenated groups, the catalytic efficiency of o-CNTs is significantly enhanced by weakening the presence of noncatalytic sites. Furthermore, the admirable enzymatic activity of these o-CNTs has been successfully applied in the treatment of bacterial infections, and the results of both in vitro and in vivo nanozyme-mediated bacterial clearance clearly demonstrate the feasibility of o-CNTs as robust peroxidase mimics to effectively decrease the bacterial viability under physiological conditions. We believe that the present study will not only facilitate the construction of novel efficient nanozymes by rationally adjusting the degree of the "competitive inhibition" effect, but also broaden the biological usage of o-CNT-based nanomaterials via their satisfactory enzymatic activity.

  13. Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells.

    PubMed

    Meng, Li; Jiang, Aihua; Chen, Rui; Li, Chen-zhong; Wang, Liming; Qu, Ying; Wang, Peng; Zhao, Yuliang; Chen, Chunying

    2013-11-08

    The increasing use of carbon nanotubes (CNTs) in biomedical applications has garnered a great concern on their potential negative effects to human health. CNTs have been reported to potentially disrupt normal neuronal function and they were speculated to accumulate and cause brain damage, although a lot of distinct and exceptional properties and potential wide applications have been associated with this material in neurobiology. Fe impurities strapped inside the CNTs may be partially responsible for neurotoxicity generation. In the present study, we selected rat pheochromocytoma (PC12) cells to investigate and compare the effects of two kinds of multiwall carbon nanotubes (MWCNTs) with different concentrations of Fe impurities which usually come from the massive production of CNTs by chemical vapor deposition. Exposure to Fe-high MWCNTs can reduce cell viability and increase cytoskeletal disruption of undifferentiated PC12 cells, diminish the ability to form mature neurites, and then adversely influence the neuronal dopaminergic phenotype in NGF-treated PC-12 cells. The present results highlight the critical role of iron residue in the adverse response to MWCNTs exposure in neural cells. These findings provide useful information for understanding the toxicity and safe application of carbon nanotubes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.

  15. On the Origin of Water Flow through Carbon Nanotubes.

    PubMed

    Su, Jiaye; Yang, Keda

    2015-11-16

    The transport of water molecules through carbon nanotubes (CNTs) is of primary importance for understanding water-mediated biological activities as well as for the design of novel nanoporous materials. Herein, we analyze the water flow through CNTs by using molecular dynamics simulations with the hope of finding basic parameters determining the flow value. Of particular interest is that a simple equation as a function of water diffusion, occupancy and CNT size, can well describe the water flow through CNTs with different sizes. Specifically, both the simulation and equation flow exhibit power law relations with the CNT diameter and length, where the two exponents are close to each other. The water occupancy and translocation time also demonstrate interesting relations with the CNT size. The water dipole orientations and density profiles are also sensitive to the change of CNT size. These results greatly enhance our knowledge on the nature of water flow through CNTs and are helpful in predicting the water flow of CNTs up to the experimental length scale. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    PubMed

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  17. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water

    NASA Astrophysics Data System (ADS)

    AlOmar, Mohamed Khalid; Alsaadi, Mohammed Abdulhakim; Hayyan, Maan; Akib, Shatirah; Hashim, Mohd Ali

    2016-12-01

    Herein, we present the use of deep eutectic solvent (DES) as functionalization agents for carbon nanotubes (CNTs) to form novel adsorbents for removal of arsenic ions (As3+) from water. Two DESs systems were prepared using methyltriphenylphosphonium bromide (MTPB) and benzyltriphenylphosphonium chloride (BTPC) as salts, in conjugation with glycerol (Gly) as a hydrogen bond donor. The resulting novel adsorbents were characterized using thermogravimetric analysis (TGA), Zeta potential, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, XRD, EDX, FESEM, and BET surface area. Optimization studies were carried out utilizing RSM-CCD experimental design to estimate the optimum removal conditions for each adsorbent. The adsorption experimental data of both adsorbents were found to fit well with pseudo-second-order kinetics model, as well as with Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of a MTPB-DES-functionalized CNTs adsorbent was 23.4 mg/g.

  18. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.

    PubMed

    Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2015-11-01

    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Facile fabrication of CNTs@C@MoSe2@Se hybrids with amorphous structure for high performance anode in lithium-ion batteries.

    PubMed

    Jin, Rencheng; Cui, Yuming; Wang, Qingyao; Li, Guihua

    2017-12-15

    Amorphous MoSe 2 and Se anchored on amorphous carbon coated multiwalled carbon nanotubes (CNTs@C@MoSe 2 @Se) have been synthesized by a facile solvothermal strategy. The one dimensional CNTs@C@MoSe 2 @Se can effectively buffer the volume variation, prohibit the aggregation and facilitate electron and ion transport throughout the electrode. Furthermore, the combination of MoSe 2 and Se also provides buffer spaces for the volumetric change during cycling. Thus, the obtained CNTs@C@MoSe 2 @Se hybrids display the enhanced cycle stability and excellent high rate capacity. The reversible capacity of 1010mAhg -1 can be achieved after 100 cycles at the current density of 0.1Ag -1 . Even after 500 cycles, a reversible capacity of 508mAhg -1 is still retained at 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate themore » variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.« less