Sample records for nanotubes packed micro-column

  1. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    PubMed

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation.

    PubMed

    Tajes-Martínez, P; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2006-02-28

    A method has been developed for mercury speciation in water by using columns packed with Chlorella vulgaris immobilised on silica gel. The method involves the retention of CH(3)Hg(+) and Hg(2+) in micro-columns prepared by packing immobilised algae in polypropylene tubes, followed by selective and sequential elution with 0.03 and 1.5M HCl for CH(3)Hg(+) and Hg(2+), respectively. The adsorption capacity of the micro-algae for Hg(2+) and CH(3)Hg(+) has been evaluated using free and immobilised C. vulgaris. The efficiency uptake for both species at pH 3 was higher than 97%. Studies were carried out on the effect of retention and elution conditions for both species. Furthermore, the stability of mercury species retained on algae-silica gel micro-columns and lifetime of the columns were also investigated. Hg(2+) showed a higher stability than CH(3)Hg(+) at 0 degrees C (21 and 3 days, respectively) and a better lifetime than for the organic species. The developed method was applied to the analysis of spiked tap, sea and wastewater samples. Recovery studies on tap and filtered seawater provided results between 96+/-3 and 106+/-2 for Hg(2+) and from 98+/-5 to 107+/-5 for CH(3)Hg(+), for samples spiked with single species. For samples spiked with both CH(3)Hg(+) and Hg(2+), the average recoveries varied from 96+/-5 to 99+/-3 and from 103+/-6 to 115+/-5 for Hg(2+) and CH(3)Hg(+), respectively. However, the percentages of retention and elution on wastewater and unfiltered seawater were only adequate for the inorganic species.

  4. Cu2+-imprinted cross-linked chitosan resin as micro-column packing materials for online chemiluminescence determination of trace copper.

    PubMed

    Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha

    2011-01-01

    The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  6. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  7. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  8. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  9. Separation of natural product using columns packed with Fused-Core particles.

    PubMed

    Yang, Peilin; Litwinski, George R; Pursch, Matthias; McCabe, Terry; Kuppannan, Krishna

    2009-06-01

    Three HPLC columns packed with 3 microm, sub-2 microm, and 2.7 microm Fused-Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis Express C18 column packed with Fused-Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3 C18 column packed with 3 microm particles. Column lot-to-lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the Acquity BEH column packed with sub-2 microm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high-efficiency and high-speed separation to be performed using conventional HPLC instrumentation.

  10. Characterisation of RPLC columns packed with porous sub-2 microm particles.

    PubMed

    Petersson, Patrik; Euerby, Melvin R

    2007-08-01

    Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.

  11. In-column bonded phase polymerization for improved packing uniformity

    PubMed Central

    Huckabee, Alexis G.; Yerneni, Charu; Jacobson, Rachel E.; Alzate, Edwin J.; Chen, Tse-Hong; Wirth, Mary J.

    2017-01-01

    It is difficult to pack chromatographic particles having polymeric-bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom-transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 µm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column-to-column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles. PMID:28387037

  12. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  13. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2016-06-17

    250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.

    PubMed

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-06-07

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.

  15. Packing C60 in Boron Nitride Nanotubes

    NASA Astrophysics Data System (ADS)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  16. Application of multiwalled carbon nanotubes and its magnetite derivative for emulsified oil removal from produced water.

    PubMed

    Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I

    2018-05-10

    Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.

  17. A microfluidic chip with a staircase pH gradient generator, a packed column and a fraction collector for chromatofocusing of proteins.

    PubMed

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Han J G E

    2018-04-01

    A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro-column, pH gradient generation, and fraction collection in a single device. Using a sieve micro-valve, anion exchange particles were packed into a microchannel in order to realize a solid-phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro-column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and R-Phycoerythrin (R-PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development. © 2018 The Authors Electrophoresis Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mobility of multiwalled carbon nanotubes in porous media.

    PubMed

    Liu, Xueying; O'Carroll, Denis M; Petersen, Elijah J; Huang, Qingguo; Anderson, C Lindsay

    2009-11-01

    Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.

  19. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-02

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evaluation of columns packed with shell particles with compounds of pharmaceutical interest.

    PubMed

    Ruta, Joséphine; Zurlino, Daria; Grivel, Candice; Heinisch, Sabine; Veuthey, Jean-Luc; Guillarme, Davy

    2012-03-09

    The commercial C18 columns packed with sub-3 μm shell particles were tested and compared to a reference UHPLC column, in terms of kinetic performance as well as selectivity, retention capability, peak shape and loading capacity. For this purpose, a set of pharmaceutically relevant molecules was selected, including acidic, neutral and basic drugs. Regarding kinetic performance, h(opt) values for the shell particles were found between 1.7 and 2, while the UHPLC column provided a value of approximately 2.5. However, this impressive performance should be considered with caution, particularly for the construction of kinetic plots since h(opt) values were sometimes related to the column dimensions, depending on the provider (h(opt) comprised between 1.8 and 2.6 for longer columns of 150 mm packed with shell particles). Despite the non-porous inner core of the shell particles representing between 25 and 36% of the particle, we demonstrated that the decrease in retention was on the maximum equal to 15% for Ascentis column while Acquity and Poroshell were strictly equivalent in terms of retention. Concerning loading capacity, it remains comparable to that of fully porous sub-2 μm particles and always more pronounced with 0.1% formic acid vs. phosphate buffer. The loading capacity of the different columns was found to be better correlated to the pore volume or surface coverage than the shell thickness. Experimentally, the most pronounced overloading was observed with the Poroshell. Finally, the selectivity and peak shape were evaluated using a mixture of basic and acidic drugs. It appears that results were very similar between sub-3 μm shell particles and fully porous sub-2-μm particles for our mixture of compounds, showing the ability to transfer existing methods to shell particles, with only limited adjustments. This study confirms the potential of columns packed with shell particles and demonstrates the interest of such column technology with pharmaceutical compounds

  1. Adsorption of polypropylene from dilute solutions on a zeolite column packing.

    PubMed

    Macko, Tibor; Pasch, Harald; Denayer, Joeri F

    2005-01-01

    Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.

  2. Mass transfer resistance in narrow-bore columns packed with 1.7 microm particles in very high pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2010-07-30

    Surprisingly, the mass transfer kinetic properties of columns packed with superficially porous particles are markedly different from those of columns packed with fully porous particles. The performances of 2.1mmx150mm columns packed with a new type of sub-2microm particles, the superficially porous 1.7microm Kinetex-C(18), and with the classical 1.7microm BEH-C(18) fully porous particles were measured and are discussed. The sample was naphtho[2,3-a]pyrene; the use of different mobile phase compositions allowed a comparison between data measured with retention factors of k(') approximately 2 and k(') approximately 20. The minimum reduced height equivalent to a theoretical plate (HETP) of the two columns were similar, at h(min)=2.0. However, this minimum HETP was observed at a markedly shorter reduced linear velocity for the column packed with totally porous particles, between 5 and 7 for BEH, than for the one packed with shell particles, between 8 and 10 for Kinetex. This result is explained by the combination of (1) a 35% smaller B term for the Kinetex column than for the BEH column, due to the 37% lower porous volume of the former; (2) a larger reduced A term for the Kinetex column (1.6), showing a relatively poorly packed column with significant trans-column velocity biases than for the BEH column (ca. 1.0); and (3) a much lesser dependance of the efficiency on the mobile phase velocity at high velocities for the Kinetex than for the BEH column, when these columns are placed in the oven of the instrument under still-air conditions. The heat friction affects significantly more the efficiency of the BEH column than that of the Kinetex column. This unexpected result is accounted for by the three times smaller heat conductivity of the BEH bed (lambda(BEH) approximately 0.25 W/m/K) than that of the Kinetex bed (lambda(Kinetex) approximately 0.75W/m/K).

  3. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  4. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  5. Controlled irrigation of a structured packing as a method for increasing the efficiency of liquid mixture separation in the distillation column

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.

    2017-09-01

    The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.

  6. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy.

    PubMed

    Reising, Arved E; Schlabach, Sabine; Baranau, Vasili; Stoeckel, Daniela; Tallarek, Ulrich

    2017-09-01

    Column wall effects are well recognized as major limiting factor in achieving high separation efficiency in HPLC. This is especially important for modern analytical columns packed with small particles, where wall effects dominate the band broadening. Detailed knowledge about the packing microstructure of packed analytical columns has so far not been acquired. Here, we present the first three-dimensional reconstruction protocol for these columns utilizing focused ion-beam scanning electron microscopy (FIB-SEM) on a commercial 2.1mm inner diameter×50mm length narrow-bore analytical column packed with 1.7μm bridged-ethyl hybrid silica particles. Two sections from the packed bed are chosen for reconstruction by FIB-SEM: one from the bulk packing region of the column and one from its critical wall region. This allows quantification of structural differences between the wall region and the center of the bed due to effects induced by the hard, confining column wall. Consequences of these effects on local flow velocity in the column are analyzed with flow simulations utilizing the lattice-Boltzmann method. The reconstructions of the bed structures reveal significant structural differences in the wall region (extending radially over approximately 62 particle diameters) compared to the center of the column. It includes the local reduction of the external porosity by up to 10% and an increase of the mean particle diameter by up to 3%, resulting in a decrease of the local flow velocity by up to 23%. In addition, four (more ordered) layers of particles in the direct vicinity of the column wall induce local velocity fluctuations by up to a factor of three regarding the involved velocity amplitudes. These observations highlight the impact of radial variations in packing microstructure on band migration and column performance. This knowledge on morphological peculiarities of column wall effects helps guiding us towards further optimization of the packing process for analytical

  7. Practical comparison of LC columns packed with different superficially porous particles for the separation of small molecules and medium size natural products.

    PubMed

    Yang, Peilin; McCabe, Terry; Pursch, Matthias

    2011-11-01

    Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Βiocolloid and colloid transport through water-saturated columns packed with glass beads: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Syngouna, V. I.

    2013-12-01

    The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.

  9. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    PubMed

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi

    2016-08-01

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ˜30% and ˜300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  11. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer

    2016-08-22

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ∼30% andmore » ∼300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.« less

  12. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  13. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.

    PubMed

    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C

    2017-02-17

    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Kinetic performance of narrow-bore columns on a micro-system for high performance liquid chromatography.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2012-05-04

    The kinetic performance of 0.5 mm × 50 mm columns packed with 2.7 μm Halo-C(18) core-shell particles and 3 μm EP-120-C(18) fully porous particles fitted on an Eksigent LC-Express Ultra μHPLC system were measured. The instrument contribution to band broadening was obtained by directly connecting the injection valve and the detector cell with a short, narrow PEEKSIL tube. The connections between the column and the connecting tubes, the column endfittings and its frits contribute to band spreading and are responsible for a significant rear peak tailing, even for retained compounds, resulting in a significant loss of efficiency. Our results show that the μHPLC system could outperform the current VHPLC systems using 2.1mm I.D. columns packed with 1.7 μm particles if it were using 0.5mm I.D. columns packed with 1 μm particles, if it could operate at a few kbar pressure drop, and if the sum of the contributions of the instrument, column endfittings and the column frits to band dispersion were three times smaller than it is at present. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography.

    PubMed

    Zauner, Jordan; Lusk, Ryan; Koski, Steven; Poe, Donald P

    2012-11-30

    When a packed column is operated at temperatures and pressures near the critical point in supercritical fluid chromatography, the thermal environment in which it is placed has a significant impact on retention and efficiency. We measured the retention factors, plate heights, and related parameters for elution of a test mixture of alkylbenzenes with 5% methanol/95% carbon dioxide mobile phase on a 250 mm × 4.6 mm i.d. column packed with 5-micron Luna-C18 particles. Separations were performed at outlet pressures from 100 to 150 bar and a column oven temperature of 323K. For a bare column thermostated with convective air, significant efficiency losses were observed for outlet pressures equal to or less than 120 bar. These large efficiency losses are attributed to radial temperature gradients. Addition of foam insulation resulted in significant improvements in efficiency. Operating the column in still air using a commercially available column heater provided the best overall performance, with no measurable efficiency loss over the entire range of pressures studied. A reduced plate height of 1.88 was obtained at an optimum flow rate of 3.0 mL/min at 100 bar outlet pressure and with the temperature of the incoming mobile phase set approximately 2.3K above the temperature of the column oven. Retention time repeatability for all three thermal conditions was equal to or less than 0.5% RSD. These results demonstrate that it is possible to perform fast, efficient separations with excellent repeatability using SFC under near-critical conditions if the thermal environment is optimized to minimize the generation of radial temperature gradients. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  17. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column.

    PubMed

    Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N

    2016-07-01

    Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column.

  18. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  19. Application of a Fast Separation Method for Anti-diabetics in Pharmaceuticals Using Monolithic Column: Comparative Study With Silica Based C-18 Particle Packed Column.

    PubMed

    Hemdan, A; Abdel-Aziz, Omar

    2018-04-01

    Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.

  20. Synthesis micro-scale boron nitride nanotubes at low substrate temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajjad, Muhammad, E-mail: msajjadd@gmail.com; Makarov, Vladimir; Morell, Gerardo

    2016-07-15

    High temperature synthesis methods produce defects in 1D nanomaterials, which ultimately limit their applications. We report here the synthesis of micro-scale boron nitride nanotubes (BNNT) at low substrate temperature (300 {sup o}C) using a pulsed CO{sub 2} laser deposition technique in the presence of catalyst. The electron microscopic analyses have shown the nanotubes distributed randomly on the surface of the substrate. The average diameter (∼0.25 μm) of a nanotube, which is the highest reported value to date, is estimated by SEM data and confirmed by TEM measurements. These nanotubes are promising for high response deep-UV photo-luminescent devices. A detailed synthesismore » mechanism is presented and correlated with the experimental results.« less

  1. Demonstration of motionless Knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors.

    PubMed

    Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong

    2011-10-21

    This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.

  2. Determination of phenylenediamine isomers in hair dyes by coal cinders micro-column extraction and MEKC.

    PubMed

    Wu, Yiwei; Jiang, Feng; Chen, Lin; Zheng, Jing; Deng, Zhenli; Tao, Qing; Zhang, Jing; Han, Lijuan; Wei, Xiaoshu; Yu, Aimin; Zhang, Haili

    2011-06-01

    A new micellar electrokinetic chromatography (MEKC) method using beta-cyclodextrins (β-CDs) and 1-butyl-3-methylimidazolium hexafluorophosphates (ionic liquids) as additives was successfully developed for determination of para-, meta-, and ortho-phenylenediamines isomers (p-P, m-P, and o-P) in hair dyes. To improve the sensitivity of the MEKC-UV, a simple and cheap flow injection (FI) technique using a micro-column packed with coal cinders (the by-products from combustion in a boiler) as solid-phase extractant was also investigated. In the presence of 20 mmol L(-1) phosphates at pH 5.5, addition of 12 mmol L(-1) ionic liquids and 8 mmol L(-1) β-CDs greatly improved the separation efficiency. The three analytes could be quantitatively adsorbed by coal cinders, and desorbed readily with 0.15 mL of 0.01 mol L(-1) NaOH. Under the optimum conditions, an enrichment factor (EF) of 33.3 was obtained, and determination limits of p-P, m-P, and o-P were 1.97 × 10(-7), 0.99 × 10(-7), and 0.61 × 10(-7) mol L(-1), respectively. The adsorption capacities of the coal cinders micro-column for p-P, m-P, and o-P were all 1.20 mg g(-1). The presented procedure was successfully applied to the determination of p-P, m-P, and o-P in hair dyes with satisfactory results.

  3. Kinetic investigation of narrow-bore columns packed with prototype sub-2 μm superficially porous particles with various shell thickness.

    PubMed

    Gritti, Fabrice; Omamogho, Jesse; Guiochon, Georges

    2011-10-07

    The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Transport of viruses through saturated and unsaturated columns packed with sand

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2009-01-01

    Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.

  5. Finite Element Analysis of Particle Ionization within Carbon Nanotube Ion Micro Thruster

    DTIC Science & Technology

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. FINITE ELEMENT ...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FINITE ELEMENT ANALYSIS OF PARTICLE IONIZATION WITHIN CARBON NANOTUBE ION MICRO THRUSTER 5...simulation, carbon nanotube simulation, microsatellite, finite element analysis, electric field, particle tracing 15. NUMBER OF PAGES 55 16. PRICE

  6. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Systematic comparison of a new generation of columns packed with sub-2 μm superficially porous particles.

    PubMed

    Bobály, Balázs; Guillarme, Davy; Fekete, Szabolcs

    2014-02-01

    The aim of this study was to evaluate the possibilities/limitations of recent RP-LC columns packed with 1.6 μm superficially porous particles (Waters Cortecs) and to compare its potential to other existing sub-2 μm core-shell packings. The kinetic performance of Kinetex 1.3 μm, Kinetex 1.7 μm and Cortecs 1.6 μm stationary phases was assessed. It was found that the Kinetex 1.3 μm phase outperforms its counterparts for ultra-fast separations. Conversely, the Cortecs 1.6 μm packing seemed to be the best stationary phase for assays with longer analysis time in isocratic and gradient modes, considering small molecules and peptides as test probes. This exceptional behaviour was attributed to its favourable permeability and somewhat higher mechanical stability (ΔPmax of 1200 bar). The loading capacity of these three columns was also investigated with basic and neutral drugs analysed under acidic conditions. It appears that the loading capacities of Cortecs 1.6 μm and Kinetex 1.7 μm were very close, while it was reduced by 2-7-fold on the Kinetex 1.3 μm packing. However, this observation is dependent on the nature of the compound and certainly also on mobile phase conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymeric monolith column composited with multiwalled carbon nanotubes-β-cyclodextrin for the selective extraction of psoralen and isopsoralen.

    PubMed

    Ling, Xu; Zou, Li; Chen, Zilin

    2017-09-01

    A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Detection biomarkers of lung cancer using mini-GC-PID system integrated with micro GC column and micro pre-concentrator

    PubMed Central

    2014-01-01

    The survival rate of lung cancer can be significantly improved by monitoring biomarkers in exhaled air that indicate diseases in early stage, so it is very important to develop micro analytical systems which can offer a fast, on-site, real-time detecting biomarkers in exhaled air. In this paper, a mini-gas chromatography (GC)-photo-ionization detector (PID) system integrated with a micro GC column and a micro pre-concentrator was developed for forming an inexpensive, fast, and non-invasive diagnostic tool for lung cancer. This system has very strong concentrate ability owing to its integrated micro pre-concentrator, which make the detection of trace components in exhaled air very easy. In addition, the integrated micro GC column can separate complex mixtures, which overcome low resolution and poor anti-interference ability of other instruments. The results indicated that the mini-GC-PID system can effectively separate and detect the biomarkers at parts-per-billion (ppb) level. PMID:25339856

  10. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    PubMed

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  11. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  12. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    PubMed

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which

  13. Recent advances in micro-scale and nano-scale high-performance liquid-phase chromatography for proteome research.

    PubMed

    Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui

    2011-01-01

    High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.

  14. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis.

    PubMed

    Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C

    2016-10-01

    The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-24

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  16. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    PubMed Central

    2014-01-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure. PMID:24565201

  17. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  18. Consideration of grain packing in granular iron treatability studies

    NASA Astrophysics Data System (ADS)

    Firdous, R.; Devlin, J. F.

    2014-08-01

    Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and packing. Both of these factors are expected to influence available grain surface area, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore pack in preferential orientations that could affect solution access to the surface. Three packing variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) compared to packings with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between packing types. It is concluded that packing does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the packing of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible.

  19. Prevention and suppression of metal packing fires.

    PubMed

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  20. Repeatability of the efficiency of columns packed with sub-3μm core-shell particles: Part I. 2.6μm Kinetex-C(18) particles in 4.6mm and 2.1mm×100mm column formats.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2012-08-24

    The column-to-column repeatability of the mass transfer mechanism in columns packed with sub-3μm shell particles was investigated. The parameters of this mechanism were measured for twelve columns (six 2.1mm×100mm and six 4.6mm×100mm) packed with the same batch of 2.6μm Kinetex-C(18) particles (Phenomenex, CA, USA). For both series, the manufacturer provided columns at different positions in the efficiency distribution given by the quality test control. Three compounds were used, uracil, naphthalene and insulin. The reduced longitudinal diffusion term was measured with the peak parking (PP) method, the reduced solid-liquid mass transfer resistance term was given by a combination of the PP results and a model of effective diffusion in ternary composite materials (non-porous cores, concentric porous shell, and eluent matrix), validated previously. The overall eddy diffusion term was obtained by subtraction of these two HETP terms from the overall reduced HETP measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is only due to the random nature of the packing process. At the highest reduced velocity achieved, the relative standard deviations (RSDs) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 7% and 3% for the low molecular weight compounds and for insulin, respectively. For the 4.6mm I.D. columns, these RSDs were 15% and 5%, respectively. The larger RSDs for the 4.6mm I.D. columns is explained by the exceptionally low value of the eddy diffusion term. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Application of Nanofiber-packed SPE for Determination of Urinary 1-Hydroxypyrene Level Using HPLC.

    PubMed

    Ifegwu, Okechukwu Clinton; Anyakora, Chimezie; Chigome, Samuel; Torto, Nelson

    2014-01-01

    It is always desirable to achieve maximum sample clean-up, extraction, and pre-concentration with the minimum possible organic solvent. The miniaturization of sample preparation devices was successfully demonstrated by packing 10 mg of 11 electrospun polymer nanofibers into pipette tip micro column and mini disc cartridges for efficient pre-concentration of 1-hydroxypyrene in urine samples. 1-hydroxypyrene is an extensively studied biomarker of the largest class of chemical carcinogens. Excretory 1-hydroxypyrene was monitored with HPLC/fluorescence detector. Important parameters influencing the percentage recovery such as fiber diameter, fiber packing amount, eluent, fiber packing format, eluent volume, surface area, porosity, and breakthrough parameters were thoroughly studied and optimized. Under optimized condition, there was a near perfect linearity of response in the range of 1-1000 μg/L with a coefficient of determination (r (2)) between 0.9992 and 0.9999 and precision (% RSD) ≤7.64% (n = 6) for all the analysis (10, 25, and 50 μg/L). The Limit of detection (LOD) was between 0.022 and 0.15 μg/L. When compared to the batch studies, both disc packed nanofiber sorbents and pipette tip packed sorbents exhibited evident dominance based on their efficiencies. The experimental results showed comparable absolute recoveries for the mini disc packed fibers (84% for Nylon 6) and micro columns (80% for Nylon 6), although the disc displayed slightly higher recoveries possibly due to the exposure of the analyte to a larger reacting surface. The results also showed highly comparative extraction efficiencies between the nanofibers and conventional C-18 SPE sorbent. Nevertheless, miniaturized SPE devices simplified sample preparation, reducing back pressure, time of the analysis with acceptable reliability, selectivity, detection levels, and environmental friendliness, hence promoting green chemistry.

  2. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.

    PubMed

    Gong, Maojun; Bohn, Paul W; Sweedler, Jonathan V

    2009-03-01

    Incorporation of nanofluidic elements into microfluidic channels is one approach for adding filtration and partition functionality to planar microfluidic devices, as well as providing enhanced biomolecular separations. Here we introduce a strategy to pack microfluidic channels with silica nanoparticles and microbeads, thereby indirectly producing functional nanostructures; the method allows selected channels to be packed, here demonstrated so that a separation channel is packed while keeping an injection channel unpacked. A nanocapillary array membrane is integrated between two patterned microfluidic channels that cross each other in vertically separated layers. The membrane serves both as a frit for bead packing and as a fluid communication conduit between microfluidic channels. Centrifugal force-assisted sedimentation is then used to selectively pack the microfluidic channels using an aqueous silica bead suspension loaded into the appropriate inlet reservoirs. This packing approach may be used to simultaneously pack multiple channels with silica microbeads having different sizes and surface properties. The chip design and packing method introduced here are suitable for packing silica particles in sizes ranging from nanometers to micrometers and allow rapid (approximately 10 min) packing with high quality. The liquid/analyte transport characteristics of these packed micro/nanofluidic devices have potential utility in a wide range of applications, including electroosmotic pumping, liquid chromatographic separations, and electrochromatography.

  3. Simple determination of betaine, l-carnitine and choline in human urine using self-packed column and column-switching ion chromatography with nonsuppressed conductivity detection.

    PubMed

    Wei, Dan; Zhu, Yan; Guo, Ming

    2018-02-01

    A sequential online extraction, clean-up and separation system for the determination of betaine, l-carnitine and choline in human urine using column-switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self-packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean-up of betaine, l-carnitine and choline. The separation was achieved using self-packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60-100 μg mL -1 for betaine, 0.75-100 μg mL -1 for l-carnitine and 0.50-100 μg mL -1 for choline, with all correlation coefficients (R 2 ) >0.99 in urine. The limits of detection were 0.15 μg mL -1 for betaine, 0.20 μg mL -1 for l-carnitine and 0.09 μg mL -1 for choline. The intra- and inter-day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  5. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, T.; Sugura, K.; Enokida, Y.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less

  6. Investigation of the column performance of cadmium(II) biosorption by Cladophora crispata flocs in a packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Kutsal, T.; Caglar, A.

    1998-03-01

    In this study the biosorption of cadmium(II) ions to dried flocs of Cladophora crispata, a kind of green algae, was investigated in a packed bed column. The cadmium(II) removal performance of the column was investigated as a function of the cadmium(II)-bearing solution flow rate and the inlet cadmium(II) concentration. Removal and total removal percentages of cadmium(II) related to flow volume were determined by evaluating the breakthrough curves obtained at three different flow rates for two different constant inlet concentrations. At the lowest flow rate the effect of inlet cadmium(II) concentration on the column capacity was also investigated. Data confirmed thatmore » early saturation and lower cadmium(II) removals were observed at higher flow rates and at higher cadmium(II) concentrations. Column experiments also showed that maximum specific cadmium(II) uptake values of C. crispata flocs were as high as those of other biomass sorbents.« less

  7. Signal Enhancement in HPLC/Micro-Coil NMR Using Automated Column Trapping

    PubMed Central

    Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel

    2008-01-01

    A new HPLC-NMR system is described that performs analytical separation, pre-concentration, and NMR spectroscopy in rapid succession. The central component of our method is the online pre-concentration sequence that improves the match between post-column analyte peak volume and the micro-coil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3, and back-flashed to the NMR micro-coil probe with 90% acetonitrile-D3/10% D2O. In order to assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (±1.2)-fold. Furthermore, we observed that pre-concentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (±2.2)-fold was attained injecting 100 μL solution of 0.2 mM (~4 μg) ibuprofen. PMID:17037915

  8. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation

  9. Fabrication and characterization of microelectromechanical systems-based gas chromatography column with embedded micro-posts for separation of environmental carcinogens.

    PubMed

    Sun, Jianhai; Cui, Dafu; Chen, Xing; Zhang, Lulu; Cai, Haoyuan; Li, Hui

    2013-05-24

    In this paper, a micro gas chromatography (μGC) column with embedded micro-posts was developed for increasing overall surface area of the columns which is able to support more of the stationary phase and reducing the effective width of the column, leading to higher separation efficiency. The proposed columns have a higher sample capacity as the overall surface area is about 3 times larger than that of open columns with the same dimensions. In order to achieve an even flow velocity in the channels, the location of the micro-posts in the linear channels and the configuration of curved channels were optimized by numerical simulation. The results have indicated that the proposed column separated 5 environmental carcinogens in less than 50s, achieved a separation efficiency of about 9500plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Repeatability of the efficiency of columns packed with sub-3μm core-shell particles: Part III. 2.7μm Poroshell 120 EC-C18 particles in 4.6mm and 2.1mm × 100mm column formats.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2012-08-24

    As part of an investigation of the column-to-column repeatability of the efficiency of columns packed with sub-3μm shell particles, the parameters of the mass transfer kinetics of twelve columns packed with the same batch of 2.7μm Poroshell 120 EC-C(18) particles (Agilent Technologies, Little Fall, DE, USA) were sequentially measured, using columns provided by the manufacturers that were representative of the efficiency distribution given by the quality test control. The reduced longitudinal diffusion term (B) was measured using the peak parking (PP) method; the reduced solid-liquid mass transfer resistance term (C) was given by a combination of the PP results and the most accurate model of effective diffusion in ternary composite materials. The overall eddy diffusion term (A) was obtained by subtraction of these two HETP terms from the overall reduced HETP derived from the peak moments measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is a result of the random nature of the packing process and the eddy diffusion term resulting from the lack of homogeneity of the column bed. At the highest reduced velocity achieved for small analytes, the relative standard deviations (RSD) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 3 and 11% (with average values h(eddy)= 2.5 and 13.5) for naphthalene (k=3) and uracil (k=0), respectively. For the 4.6mm I.D. columns, these RSDs were 5 and 13%, respectively, with average values h(eddy)= 1.4 and 2.9. For insulin at reduced velocities as high as 160, the RSDs of the total reduced plate heights were 3 and 8% for the 2.1 and 4.6mm I.D. columns, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2012-10-05

    The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A unified classification of stationary phases for packed column supercritical fluid chromatography.

    PubMed

    West, C; Lesellier, E

    2008-05-16

    The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.

  13. Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

    2011-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

  14. Fast gradient screening of pharmaceuticals with 5 cm long, narrow bore reversed-phase columns packed with sub-3 μm core-shell and sub-2 μm totally porous particles.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno

    2011-04-15

    The performance of 5 cm long narrow-bore columns packed with 2.6-2.7 μm core-shell particles and a column packed with 1.7 μm totally porous particles was compared in very fast gradient separations of polar neutral active pharmaceutical compounds. Peak capacities as a function of flow-rate and gradient time were measured. Peak capacities around 160-170 could be achieved within 25 min with these 5 cm long columns. The highest peak capacity was obtained with the Kinetex column however it was found that as the flow-rate increases, the peak capacity of the new Poroshell-120 column is getting closer to that obtained with the Kinetex column. Considering the column permeability, peak capacity per unit time and per unit pressure was also calculated. In this comparison the advantage of sub-3 μm core-shell particles is more significant compared to sub-2 μm totally porous particles. Moreover it was found that the very similar sized (d(p)=2.7 μm) and structured (ρ=0.63) new Poroshell-120 and the earlier introduced Ascentis Express particles showed different efficiency. Results obtained showed that the 5 cm long narrow bore columns packed with sub-3 μm core-shell particles offer the chance of very fast and efficient gradient separations, thus these columns can be applied for fast screening measurements of routine pharmaceutical analysis such as cleaning validation. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Biocolloid transport in water saturated columns packed with sand

    NASA Astrophysics Data System (ADS)

    Syngouna, V. I.; Chrysikopoulos, C.

    2010-12-01

    Protection of groundwater supplies from microbial contamination necessitates a solid understanding of the factors controlling the migration and retention of pathogenic organisms (biocolloids) in the subsurface. The transport behavior of three waterborne pathogens (Escherichia coli, MS2, and ΦΧ174) was investigated using laboratory-scale columns packed with clean quartz sand. Various grain sizes and pore water velocities were examined. Though coliform bacteria and coliphages are used worldwide to indicate fecal pollution of groundwater, the various parameters controlling the transport of Escherichia coli MS2 and ΦΧ174 in the subsurface are not fully understood. In this study, the attachment behavior of Escherichia coli, MS2, and ΦΧ174 onto ultra-pure quartz sand were evaluated. The mass recoveries of the three biocolloids examined were found to be proportional to the sand size. The observed mass recoveries were in the order: Escherichia coli > ΦΧ174 > MS2. To assess the importance of biocolloid attachment, the single collector removal efficiency, and the collision efficiency were quantified using the classical colloid filtration theory. Our results indicate that the secondary energy minimum plays an important role in biocolloid deposition even for smaller biocolloid particles (e.g. viruses).

  16. Physical reconstruction of packed beds and their morphological analysis: core-shell packings as an example.

    PubMed

    Bruns, Stefan; Tallarek, Ulrich

    2011-04-08

    We report a fast, nondestructive, and quantitative approach to characterize the morphology of packed beds of fine particles by their three-dimensional reconstruction from confocal laser scanning microscopy images, exemplarily shown for a 100μm i.d. fused-silica capillary packed with 2.6μm-sized core-shell particles. The presented method is generally applicable to silica-based capillary columns, monolithic or particulate, and comprises column pretreatment, image acquisition, image processing, and statistical analysis of the image data. It defines a unique platform for fundamental comparisons of particulate and monolithic supports using the statistical measures derived from their reconstructions. Received morphological data are column cross-sectional porosity profiles and chord length distributions from the interparticle macropore space, which are a descriptor of local density and can be characterized by a simplified k-gamma distribution. This distribution function provides a parameter of location and a parameter of dispersion which can be correlated to individual chromatographic band broadening processes (i.e., to transchannel and short-range interchannel contributions to eddy dispersion, respectively). Together with the transcolumn porosity profile the presented approach allows to analyze and quantify the packing microstructure from pore to column scale and therefore holds great promise in a comparative study of packing conditions and particle properties, particularly for characterizing and minimizing the packing process-specific heterogeneities in the final bed structure. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Efficient control system for low-concentration inorganic gases from a process vent stream: application of surfactants in spray and packed columns.

    PubMed

    Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien

    2004-11-01

    Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of

  18. Repeatability of the efficiency of columns packed with sub-3μm core-shell particles: Part II. 2.7 μm Halo-ES-Peptide-C18 particles in 4.6mm and 2.1mm×100mm column formats.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2012-08-24

    The column-to-column repeatability of the mass transfer kinetics in columns packed with sub-3μm shell particles was investigated. The parameters of this kinetics were measured for twelve columns (six 2.1mm×100mm and six 4.6mm×100mm) packed with the same batch of 2.7μm Halo-ES-Peptide-C(18) particles (Advanced Material Technologies, Wilmington, DE, USA). For both series, the manufacturer provided columns at different positions in the efficiency distribution given by the quality test control. Three compounds were used, uracil, naphthalene and insulin. The reduced longitudinal diffusion term was measured with the peak parking (PP) method; the reduced solid-liquid mass transfer resistance term was given by a combination of the PP results and the most accurate model of effective diffusion in ternary composite materials (non-porous cores, concentric porous shell, and eluent matrix), validated previously. The overall eddy diffusion term was obtained by subtraction of these two HETP terms from the overall reduced HETP measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is mostly due to the random nature of the packing process and the associated eddy diffusion term. At the highest reduced velocity achieved, the relative standard deviations (RSDs) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 5 and 10% (with average values A(ν)=2.3 and 8.5) for naphthalene and uracil, respectively. For the 4.6mm I.D. columns, these RSDs were 3 and 5%, respectively, with average values A(ν)=1.5 and 2.7. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. [Separation/preconcentration of trace rare earth elements in Tricholoma giganteum by micro-column with nanometer A1203 and their determination by ICP-AES].

    PubMed

    Liu, Hong-gao; Wang, Yuan-zhong

    2010-01-01

    Using a micro-column packed with immobilized 1-phenyl-3-methyl-4-bonzoil-5-pyrazone(PMBP) on nanometer Al2O3 powder as the adsorption material, the adsorption and elution behaviors of rare earth ions (Sc3+, Y3+ and La3+) on the above material under dynamic conditions were studied with inductively coupled plasma-atomic emission spectrometry. The conditions for preconcentration of rare earth ions were optimized, and the results show that the studied ions can be adsorbed quantitatively on the above material at pH 4.5 and the analytes adsorbed on the column can be eluted with 0.5 mol x L(-1) HCl solution. The detection limits of the method for Sc, Y and La were 0.15, 0.18 and 0.34 microg x L(-1), respectively, and the relative standard deviations were 2.5%, 3.0% and 1.7%, respectively (n=12, c = 0.5 mg x L(-1)). The proposed method was applied to the determination of trace amount of Sc, Y and La in Tricholoma giganteum with satisfactory results.

  20. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.

    PubMed

    Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth

    2005-12-23

    The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.

  1. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  3. Efficiency for unretained solutes in packed column supercritical fluid chromatography. I. Theory for isothermal conditions and correction factors for carbon dioxide.

    PubMed

    Poe, Donald P

    2005-06-17

    A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.

  4. Boron isotope fractionation in liquid chromatography with boron-specific resins as column packing material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko

    1997-07-01

    Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less

  5. Micro-column plasma emission liquid chromatograph

    DOEpatents

    Gay, Don D.

    1984-01-01

    In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  6. Q Sepharose micro-column chromatography: A simple screening method for identifying beta thalassemia traits and hemoglobin E carriers.

    PubMed

    Wong, Peerapon; Sritippayawan, Suchila; Suwannakhon, Narutchala; Tapprom, Akamon; Deoisares, Rawisut; Sanguansermsri, Torpong

    2016-11-01

    For beta thalassemia control program in pregnancy, mass screening of the carrier state by determination of the hemoglobin (Hb) A 2 and Hb E proportions and mutation analysis is a preferred method for making prenatal diagnoses. Q Sepharose micro-column chromatography, developed for the determination of Hb A 2 and Hb E for screening purposes, was compared with high performance liquid chromatography (HPLC) to ascertain its relative accuracy and reliability. Results using Q Sepharose micro-column chromatography in 350 blood specimens, including 50 samples genetically proven to be beta thalassemia heterozygotes, were compared to HPLC for validation. An additional study was conducted to test a clinical application on a large-scale survey for beta thalassemia in 1581 pregnant women and their spouses. The mean (±SD) Hb A 2 proportions in the normal and genetically proven beta thalassemia heterozygotes were 2.70±0.40% and 6.30±1.23%, respectively, as determined by Q-Sepharose micro-column chromatography, and 2.65±0.31% and 5.37±0.96%, respectively, as determined by HPLC. The mean Hb E proportions in the Hb E heterozygotes were 23.25±4.13% and 24.72±3.5% as determined by Q Sepharose micro-column chromatography and HPLC, respectively. In the large-scale survey for beta thalassemia, 23 at risk couples were detected. Seven affected fetuses were identified by prenatal diagnosis. Q Sepharose micro-column chromatography was found to be reliable, reproducible and well-suited for large-scale surveys. Additionally, by being reusable and convenient, this simple and economical chromatography method may be an alternative means to screen for beta thalassemia and Hb E carriers in the mass population. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Semi-micro high-performance liquid chromatographic analysis of tiropramide in human plasma using column-switching.

    PubMed

    Baek, Soo Kyoung; Lee, Seung Seok; Park, Eun Jeon; Sohn, Dong Hwan; Lee, Hye Suk

    2003-02-05

    A rapid and sensitive column-switching semi-micro high-performance liquid chromatography method was developed for the direct analysis of tiropramide in human plasma. The plasma sample (100 microl) was directly injected onto Capcell Pak MF Ph-1 precolumn where deproteinization and analyte fractionation occurred. Tiropramide was then eluted into an enrichment column (Capcell Pak UG C(18)) using acetonitrile-potassium phosphate (pH 7.0, 50 mM) (12:88, v/v) and was analyzed on a semi-micro C(18) analytical column using acetonitrile-potassium phosphate (pH 7.0, 10 mM) (50:50, v/v). The method showed excellent sensitivity (limit of quantification 5 ng/ml), and good precision (C.V.

  8. Experimental and Numerical Investigation of Two Dimensional CO2 Adsorption/Desorption in Packed Sorption Beds under Non-Ideal Flows

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, H.; Knox, J. C.; Smith, J. E.; Croomes, Scott (Technical Monitor)

    2001-01-01

    The experimental results of CO2 adsorption and desorption in a packed column indicated that the concentration wave front at the center of the packed column differs from those which are close to the wall of column filled with adsorbent material even though the ratio of column diameter to the particle size is greater than 20. The comparison of the experimental results with one dimensional model of packed column shows that in order to simulate the average breakthrough in a packed column a two dimensional (radial and axial) model of packed column is needed. In this paper the mathematical model of a non-slip flow through a packed column with 2 inches in diameter and 18 inches in length filled with 5A zeolite pellets is presented. The comparison of experimental results of CO2 absorption and desorption for the mixed and central breakthrough of the packed column with numerical results is also presented.

  9. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    PubMed

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Direct coupling of packed column supercritical fluid chromatography to continuous corona discharge ion mobility spectrometry.

    PubMed

    Rahmanian, A; Ghaziaskar, H S; Khayamian, T

    2013-01-11

    In this study, packed column supercritical fluid chromatography (SFC) was directly coupled to a continuous corona discharge (CD) ion mobility spectrometer (IMS) with several modifications. The main advantage of the developed detector is its capability to introduce full column effluent up to 2000 mL min(-1) CO(2) gas directly into the IMS cell relative to 40 mL min(-1) CO(2) gas as a maximum tolerance, reported for the previous IMS detectors. This achievement was made possible because of using corona discharge instead of (63)Ni as an ionization source and locating the inlet and outlet of the CO(2) gas in the counter electrode of the CD in opposite direction. In addition, a heated interface was placed between back pressure regulator (BPR) and the IMS cell to heat the output of the BPR for introducing sample as the gas phase into the IMS cell. Furthermore, a make-up methanol flow was introduced between the column outlet and BPR to provide a more uniform flow through the BPR and also to prevent freezing and deposition of the analytes in the BPR. The performance of the SFC-CD-IMS was evaluated by analysis of testosterone, medroxyprogesterone, caffeine, and theophylline as test compounds and figures of merit for these compounds have been calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  12. Simultaneous biosorption of chromium(VI) and copper(II) on Rhizopus arrhizus in packed column reactor: Application of the competitive Freundlich model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sag, Y.; Atacoglu, I.; Kutsal, T.

    1999-12-01

    The simultaneous biosorption of Cr(VI) and Cu(II) on free Rhizopus arrhizus in a packed column operated in the continuous mode was investigated and compared to the single metal ion situation. The breakthrough curves were measured as a function of feed flow rate, feed pH, and different combinations of metal ion concentrations in the feed solutions. Column competitive biosorption data were evaluated in terms of the maximum (equilibrium) capacity in the column, the amount of metal loading on the R. arrhizus surface, the adsorption yield, and the total adsorption yield. In the single-ion situation the adsorption isotherms were developed for optimummore » conditions, and it was seen that the adsorption equilibrium data fit the noncompetitive Freundlich model. For the multicomponent adsorption equilibrium the competitive adsorption isotherms were also developed. The competitive Freundlich model for binary metal mixtures represented most the column adsorption equilibrium data of Cr(VI) and Cu(II) on R. arrhizus satisfactorily.« less

  13. Comparison between the loading capacities of columns packed with partially and totally porous fine particles. What is the effective surface area available for adsorption?

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2007-12-28

    The adsorption isotherms of phenol, caffeine, insulin, and lysozyme were measured on two C(18)-bonded silica columns. The first one was packed with classical totally porous particles (3 microm Luna(2)-C(18)from Phenomenex, Torrance, CA, USA), the second one with shell particles (2.7 microm Halo-C(18) from Advanced Materials Technology, Wilmington, DE, USA). The measurements were made at room temperature (T=295+/-1K), using mainly frontal analysis (FA) and also elution by characteristic points (FACP) when necessary. The adsorption energy distributions (AEDs) were estimated by the iterative numerical expectation-maximization (EM) procedure and served to justify the choice of the best adsorption isotherm model for each compound. The best isotherm parameters were derived from either the best fit of the experimental data to a multi-Langmuir isotherm model (MLRA) or from the AED results (equilibrium constants and saturation capacities), when the convergence of the EM program was achieved. The experiments show than the loading capacity of the Luna column is more than twice that of the Halo column for low-molecular-weight compounds. This result was expected; it is in good agreement with the values of the accessible surface area of these two materials, which were calculated from the pore size volume distributions. The pore size volume distributions are validated by the excellent agreement between the calculated and measured exclusion volumes of polystyrene standards by inverse size exclusion chromatography (ISEC). In contrast, the loading capacity ratio of the two columns is 1.5 or less with insulin and lysozyme. This is due to a significant exclusion of these two proteins from the internal pore volumes of the two packing materials. This result raises the problem of the determination of the effective surface area of the packing material, particularly in the case of proteins. This area is about 40 and 30% of the total surface area for insulin and for lysozyme, respectively

  14. Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoh, K.; Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka; Kubo, K.

    2015-03-15

    Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packedmore » columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)« less

  15. Fabrication and investigation of electrochromatographic columns with a simplex configuration.

    PubMed

    Liu, Qing; Yang, Lijun; Wang, Qiuquan; Zhang, Bo

    2014-07-04

    Duplex capillary columns with a packed and an open section are widely used in electrochromatography (CEC). The duplex column configuration leads to non-uniform voltage drop, electrical field distribution and separation performance. It also adds to the complexity in understanding and optimizing electrochromatographic process. In this study, we introduced a simplex column configuration based on single particle fritting technology. The new column configuration has an essentially uniform packed bed through the entire column length, with only 1mm length left unpacked serving as the optical detection window. The study shows that a simplex column has higher separation efficiency than a duplex column, especially at the high voltage range, due to the consistent distribution of electrical field over the column length. In comparison to the duplex column, the simplex column presented a lower flow rate at the same applied voltage, suggesting that an open section may support a higher speed than a packed section. In practice, the long and short ends of the simplex column could be used as independent CEC columns respectively. This "two-in-one" bi-functional column configuration provided extra flexibilities in selecting and optimizing electrochromatographic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of erythromycin in human plasma, using column liquid chromatography with a polymeric packing material, alkaline mobile phase and amperometric detection.

    PubMed

    Nilsson, L G; Walldorf, B; Paulsen, O

    1987-12-25

    A method based on column liquid chromatography was developed for determination of plasma concentrations of erythromycin. PRP-1, a polymeric type of packing material suitable for chromatography and amperometric detection at high pH, was used. The effect of pH on the column performance and on the electrochemical response was studied. A pH of ca. 10 was found to be optimal. After extraction with tert.-butyl methyl ether, plasma concentrations down to 0.2 mumol/l could be measured, using automated sample injection. Oleandomycin was used as internal standard. The method was used for determination of plasma concentrations in a pharmacokinetic study under steady-state conditions.

  17. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    PubMed

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  18. Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography.

    PubMed

    Wahab, M Farooq; Pohl, Christopher A; Lucy, Charles A

    2012-12-28

    The development of small particles in ion chromatography (IC) is a recent phenomenon. Very few studies are available on packing polymeric particles bearing ionizable functional groups. This study explores the colloidal and rheological properties that govern slurry packing to form high efficiency IC columns. The polymeric substrate used was non-porous 4.4 μm sulfonated ethylvinylbenzene–divinylbenzene (1.4 mequiv. SO(3)H/g resin) with 55% crosslink. We developed simple tests optical microscopy and sedimentation tests for predicting the quality of packed columns. The negatively charged particles (zeta potential: −52 mV in water) behave like colloids. The influence of counter-ion charge (Al(3+), Mg(2+), Na(+)) and ionic strength on column efficiency followed the Schulze–Hardy rule. Highly flocculating slurries give poorly packed columns with N ~ 900 whereas under non-agglomerating slurry conditions efficiencies up to N > 10,000 can be achieved. A non-agglomerating slurry also shows non-Newtonian behaviour, specifically shear thickening. Packing at lower flow rate (<1 mL/min) or higher temperature (>50 °C) reduces the shear thickening and produces higher efficiency columns. The packed sulfonated resin column is coated with 72 nm quaternary ammonium bearing latex (AS4A) and used in the separation of F(−), Cl(−), NO(2)(−), Br(−), and NO(3)(−) yielding a reduced plate height of 1.9 under optimum conditions.

  19. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soil

    PubMed Central

    Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.

    2003-01-01

    Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829

  20. Synthesis and Development of Porous Polymeric Column Packing and Microchip Detectors for GC Analysis of Extraterrestrial Atmospheres

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C.

    1999-01-01

    This report summarizes the last nine years research accomplishments under Cooperative Agreement NCC2-650 between NASA, Ames Research Center and SETI Institute. Four Major research tasks are conducted: 1. Gas chromatography column development. 2. Pyrosensor development. 3. Micro-machining gas chromatography instrument development. 4. Amino acid analysis and high molecular weight polyamino acid synthesis under prebiotic conditions. The following describes these results.

  1. [Airborne particles in a multi-wall carbon nanotube production plant: observation of particle emission and personal exposure 1: Measurement in the packing process].

    PubMed

    Takaya, Mitsutoshi; Serita, Fumio; Ono-Ogasawara, Mariko; Shinohara, Yasushi; Saito, Hiroyuki; Koda, Shigeki

    2010-01-01

    In order to assess the exposure risks of multiwall carbon nanotubes (MWCNT) for packing workers, we carried out real-time monitoring in the two types of packing facilities of MWCNT, and exposure measurements for the packing workers. In the real-time monitoring, a scanning mobility particle sizer (SMPS) and an optical particle counter (OPC) were used to measure nanoscale particles and sub-micron/micron scale particles, respectively. A personal sampler with PM 4.0 was used to measure the personal exposures in the packing facilities. One of the packing facilities is manually operated and the other is automated. The concentrations of airborne dust in both facilities were almost the same as each other at 0.24 mg/m(3) (total dust). However, the results of personal exposure measurements were quite different between the two facilities. The exposure concentrations of workers in the manually and automated operations were 2.39/0.39 (total/respirable) mg/m(3) and 0.29/0.08 (total/respirable) mg/m(3), respectively. From the time series study, submicron scale particles were released into the workplace air when the CNT products were put into temporary container bags from a hopper and manually packed into shipping bags. However, the task-related nanoscale particle release was not observed. The manual packing operation is one of the "hot spots" in MWCNT production facilities, and automation brings much improvement to reduce MWCNT exposure.

  2. Practical issues relating to soil column chromatography for sorption parameter determination.

    PubMed

    Bi, Erping; Schmidt, Torsten C; Haderlein, Stefan B

    2010-08-01

    Determination of sorption distribution coefficients (K(d)) of organic compounds by a dynamic soil column chromatography (SCC) method was developed and validated. Eurosoil 4, quartz, and alumina were chosen as exemplary packing materials. Heterocyclic aromatic compounds were selected in the validation of SCC. The prerequisites of SCC with regard to column dimension, packing procedure, and sample injection volume are discussed. Reproducible soil column packing was achieved by addition of a pre-column and an HPLC pump for subsequent compression of the packed material. Various methods to determine retention times from breakthrough curves are discussed and the use of the half mass method is recommended. To dilute soil with inert material can prevent column-clogging and help to complete experiments in a reasonable period of time. For the chosen probe compounds, quartz rather than alumina proved a suitable dilution material. Non-equilibrium issue can be overcome by conducting the experiments under different flowrates and/or performing numerical simulation. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Some results of hemosorption columns development and usage in Czechoslovakia.

    PubMed

    Kálal, J; Tlustáková, M

    Hemoperfusion columns packed with active charcoal and a synthetic resin have been manufactured in Czechoslovakia since 1983. In both cases the sorption packings are coated with a layer of poly(2-hydroxyethyl methacrylate). The columns are manufactured in two sizes: for adults (800 ml) and for children (400 ml). The manufacturer is OPS Kolín: the number of columns manufactured so far is 3400.

  4. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.

    PubMed

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-10

    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6mm C18 bonded silica-based monolithic column, a 150 mm x 4.6mm column packed with 2.7 microm porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6mm column packed with 3 microm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  5. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, Stephen R.

    1990-01-01

    A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.

  6. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, S.R.

    1990-10-30

    A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.

  7. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  8. The effects of intra-particle concentration gradient on consecutive adsorption-desorption of oryzanol from rice bran oil in packed-column

    NASA Astrophysics Data System (ADS)

    Susanti, Ari Diana; Sediawan, Wahyudi Budi; Wirawan, Sang Kompiang; Budhijanto

    2017-05-01

    Utilization of valuable trace components in agriculture by product such as rice bran oil is interesting to be explored. Among the valuables, oryzanol, a healthy nutrition for cardiovascular prevention, is the most promising one. Literature studies suggest that adsorption-desorption is a prospective method for oryzanol isolation. Design of commercial scale adsorption-desorption system for oryzanol needs a quantitative description of the phenomena involved. In this study, quantitative modeling of the consecutive adsorption-desorption in packed column has been proposed and verified through experimental data. The offered model takes into account the intra-particle concentration gradient in the adsorbent particle. In this model, the rate of mass transfer from the bulk of the liquid to the surface of the adsorbent particle or vice versa is expressed by film theory. The mass transfer of oryzanol from the liquid in the pore of the particle to the adjacent pore surface is assumed to be instantaneous, so solid-liquid equilibrium on the surface of the pores is always attained. For simplicity, the adsorption equilibrium model applied was coefficient distribution approach. The values of the parameters implicated in the model were obtained by curve fitting to the experimental data. It verified that the model proposed works well to quantitatively describe the consecutive adsorption-desorption of oryzanol from rice bran oil in packed column.

  9. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  10. The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation

    NASA Astrophysics Data System (ADS)

    Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed

    2017-07-01

    We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were

  11. Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy.

    PubMed

    Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn

    2016-12-13

    Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.

  12. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography

    PubMed Central

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063

  13. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  14. Shell and small particles; evaluation of new column technology.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin

    2009-01-15

    The performance of 5 cm long columns packed with shell particles was compared to totally porous sub-2 microm particles in gradient and isocratic elution separations of hormones (dienogest, finasteride, gestodene, levonorgestrel, estradiol, ethinylestradiol, noretistherone acetate, bicalutamide and tibolone). Peak capacities around 140-150 could be achieved in 25 min with the 5 cm long columns. The Ascentis Express column (packed with 2.7 microm shell particles) showed similar efficiency to sub-2 microm particles under gradient conditions. Applying isocratic separation, the column of 2.7 microm shell particles had a reduced plate height minimum of approximately h=1.6. It was much smaller than obtained with totally porous particles (h approximately = 2.8). The impedance time also proved more favorable with 2.7 microm shell particles than with totally porous particles. The influence of extra-column volume on column efficiency was investigated. The extra-column dispersion of the chromatographic system may cause a shift of the HETP curves.

  15. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface

    PubMed Central

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon

    2015-01-01

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284

  16. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface.

    PubMed

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon

    2015-10-29

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

  17. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    NASA Astrophysics Data System (ADS)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  18. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright

  20. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter-detector diode system.

    PubMed

    Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.

  1. Compressive Sampling Based Interior Reconstruction for Dynamic Carbon Nanotube Micro-CT

    PubMed Central

    Yu, Hengyong; Cao, Guohua; Burk, Laurel; Lee, Yueh; Lu, Jianping; Santago, Pete; Zhou, Otto; Wang, Ge

    2010-01-01

    In the computed tomography (CT) field, one recent invention is the so-called carbon nanotube (CNT) based field emission x-ray technology. On the other hand, compressive sampling (CS) based interior tomography is a new innovation. Combining the strengths of these two novel subjects, we apply the interior tomography technique to local mouse cardiac imaging using respiration and cardiac gating with a CNT based micro-CT scanner. The major features of our method are: (1) it does not need exact prior knowledge inside an ROI; and (2) two orthogonal scout projections are employed to regularize the reconstruction. Both numerical simulations and in vivo mouse studies are performed to demonstrate the feasibility of our methodology. PMID:19923686

  2. Application of NaClO-treated multiwalled carbon nanotubes as solid phase extraction sorbents for preconcentration of trace 2,4-dichlorophenoxyacetic acid in aqueous samples.

    PubMed

    Lu, Ping; Deng, Dayi; Ni, Xiaodan

    2012-09-01

    Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  4. Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets.

    PubMed

    Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-04-11

    Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. © 2012 American Chemical Society

  5. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  6. Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.H.; Shyu, C.T.

    1999-01-01

    Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less

  7. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  8. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  9. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  10. Novel micro-extraction by packed sorbent procedure for the liquid chromatographic analysis of antiepileptic drugs in human plasma and urine.

    PubMed

    Rani, Susheela; Malik, Ashok K; Singh, Baldev

    2012-02-01

    A method for the simultaneous determination of the antiepileptic drugs, phenobarbital (PHB), phenytoin (PTN), carbamazepine (CBZ), primidone (PRM) and oxcarbazepine (OXC) in human plasma and urine samples by using micro-extraction in a packed syringe as the sample preparation method connected with LC/UV (MEPS/LC/UV) is described. Micro-extraction in a packed syringe (MEPS) is a new miniaturized, solid-phase extraction technique that can be connected online to gas or liquid chromatography without any modifications. In MEPS approximately 1 mg of the solid packing material is inserted into a syringe (100-250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising, easy to use, fully automated, inexpensive and quick. The standard curves were obtained within the concentration range 1-500 ng/mL in both plasma and urine samples. The results showed high correlation coefficients (R(2) >0.988) for all of the analytes within the calibration range. The extraction recovery was found to be between 88.56 and 99.38%. The limit of quantification was found to be between 0.132 and 1.956 ng/mL. The precision (RSD) values of quality control samples (QC) had a maximum deviation of 4.9%. A comparison of the detection limits with similar methods indicates high sensitivity of the present method. The method is applied for the analysis of these drugs in real urine and plasma samples of epileptic patients. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  12. Modeling and control for micro and nano manipulation

    NASA Astrophysics Data System (ADS)

    Wejinya, Uchechukwu C.

    handling and deposition of micro and nano entities such as carbon nanotubes (CNT), DNA, and for droplet control. The novel microfluidic end effector system with force sensing can significantly improve the success rate for handling/depositing micro/nano entities in the case of carbon nanotubes between micro electrodes. The design, calibration, and experimental implementation of the novel microfluidic end effector is carried out in this research. The experimental results show the success rate for carbon nanotube(s) deposition between micro electrodes can reach close to 80%. Furthermore, carbon nanotubes are of particular interest because they are good candidates for many electronics and sensing applications. The interests in using carbon nanotubes to manufacture electronics and sensors have increased in recent years because of the increase need for making electronics smaller, and their excellent electrical and mechanical properties. These potentials can be achieved if CNTs with semiconducting and metallic band structure can be successfully deposited and separated. The use of dielectrophoresis (DEP) has been established as a course towards the efficient deposition and separation of metallic carbon nanotubes from semiconducting carbon nanotubes. For this reason, this research presents a new mathematical model for dielectrophoresis and electrorotation of carbon nanotubes. Simulation results are presented in this research to validate the developed model. The combination of both the micro robotic manipulation system and the atomic force microscopy (AFM) based nano-robotic system will provide a powerful tool for micro and nano manipulation. Additional applications of this research are endless considering the rapid development of micro and nano technologies.

  13. Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs

    NASA Astrophysics Data System (ADS)

    Chekuri, Chandra; Ene, Alina; Korula, Nitish

    We consider the unsplittable flow problem (UFP) and the closely related column-restricted packing integer programs (CPIPs). In UFP we are given an edge-capacitated graph G = (V,E) and k request pairs R 1, ..., R k , where each R i consists of a source-destination pair (s i ,t i ), a demand d i and a weight w i . The goal is to find a maximum weight subset of requests that can be routed unsplittably in G. Most previous work on UFP has focused on the no-bottleneck case in which the maximum demand of the requests is at most the smallest edge capacity. Inspired by the recent work of Bansal et al. [3] on UFP on a path without the above assumption, we consider UFP on paths as well as trees. We give a simple O(logn) approximation for UFP on trees when all weights are identical; this yields an O(log2 n) approximation for the weighted case. These are the first non-trivial approximations for UFP on trees. We develop an LP relaxation for UFP on paths that has an integrality gap of O(log2 n); previously there was no relaxation with o(n) gap. We also consider UFP in general graphs and CPIPs without the no-bottleneck assumption and obtain new and useful results.

  14. Biomass growth restriction in a packed bed reactor

    DOEpatents

    Griffith, William L.; Compere, Alicia L.

    1978-01-01

    When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.

  15. Column performance of carbon nanotube packed bed for methylene blue and orange red dye removal from waste water

    NASA Astrophysics Data System (ADS)

    Gill, G. K.; Mubarak, N. M.; Nizamuddin, S.; Al-Salim, H. S.; Sahu, J. N.

    2017-06-01

    Environmental issues have always been a major issue among human kind for the past decades. As the time passes by, the technology field has grown and has helped a lot in order to reduce these environmental issues. Industries such as metal plating facilities, mining operations and batteries production are a few examples that involves in the environmental issues. Carbon nanotube is proven to possess excellent adsorption capacity for the removal of methylene blue and orange red dyes. The effect of process parameters such as pH and contact time was investigated The results revealed that optimized conditions for the highest removal for methylene blue (MB) (97%) and orange red (94%) are at pH 10, CNTs dosage of 1 grams, and 15 minutes for each dyes removal respectively. The equilibrium adsorption data obtained was best fit to Freundlich model, while kinetic data can be characterized by the pseudo second-order rate kinetics.

  16. A two-phase flow model for submarine granular flows: With an application to collapse of deeply-submerged granular columns

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Hsien; Huang, Zhenhua

    2018-05-01

    The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.

  17. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  18. Leaching behaviour of azoxystrobin and metabolites in soil columns.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera

    2009-09-01

    Azoxystrobin [methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate], a strobilurin fungicide, is a broad-spectrum, systemic and soil-applied fungicide. Azoxystrobin has been registered for rice cultivation in India, but no information is available on its leaching behaviour in Indian soils. Therefore, leaching behaviour of azoxystrobin was studied in packed and intact soil columns under different irrigation regimes. Azoxystrobin did not leach out of the 300 mm long columns after 126 and 362 mm rainfall. After percolating water equivalent to 362 mm rainfall, azoxystrobin leached down to 10-15 cm (packed columns) and 15-20 cm (intact columns) depth. Azoxystrobin was not detected in the leachate from the packed column leached with 94.5 mL water every week (140 mm rainfall per month) during the 28 weeks of the study period. However, azoxystrobin acid, formed by azoxystrobin degradation, was detected in the leachate after 18 weeks. At the end of the study, azoxystrobin had leached down to 5-10 cm depth, and only 60% of initially applied azoxystrobin was recovered from the soil. The results indicate that azoxystrobin is fairly immobile in sandy loam soil, but azoxystrobin acid, a major metabolite of azoxystrobin, is quite mobile and may pose a threat of soil and groundwater contamination. Copyright 2009 Society of Chemical Industry.

  19. Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.

    PubMed

    Zhan, Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri; Nakanishi, Haruyuki

    2005-06-16

    It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.

  20. Sensitive electrochemical sensing platform for microRNAs detection based on shortened multi-walled carbon nanotubes with high-loaded thionin.

    PubMed

    Deng, Keqin; Liu, Xinyan; Li, Chunxiang; Huang, Haowen

    2018-05-31

    The loading capacity of thionin (Thi) on shortened multi-walled carbon nanotubes (S-MWCNTs) and acidified multi-walled carbon nanotubes (A-MWCNTs) was compared. Two DNA probe fragments were designed for hybridization with microRNA-21 (miR-21), the microRNAs (miRNAs) model analyte. DNA probe 1 (P1) was assembled on Au nanoparticles (AuNPs) modified electrode. MiR-21 was captured by the pre-immobilized P1. A signal nanoprobe was synthesized by loading large amount of Thi on S-MWCNTs with covalently bonded probe 2 (P2). Owing to the large effective surface area of MWCNTs, fast electron shuttle of MWCNTs, high-loaded Thi on S-MWCNTs, and the increased conductivity from AuNPs, after signal probe hybridized with miR-21, it gave rise to a magnified current response on electrode. The increased electrochemical current enabled us to quantitatively detect miR-21. Expensive bioreagents and labeled target/detection DNA or miRNAs were avoided in this strategy. The operation complexity and assay cost were also reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hybrid Sargassum-sand sorbent: a novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry.

    PubMed

    Vijayaraghavan, K; Joshi, U M

    2013-01-01

    Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.

  2. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  3. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    NASA Astrophysics Data System (ADS)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  4. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    PubMed

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  5. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  6. Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.

    2002-01-01

    In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were

  7. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-03

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Micro-Scale Mechanical Testing of Non-Woven Carbon Nanotube Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Magargee, J.; Morestin, F.; Cao, J.; Jones, J. S.

    2013-01-01

    Non-woven carbon nanotube (CNT) sheets and yarns were tested using a novel micro-scale mechanical testing system. CNT sheets were observed to delaminate during uniaxial testing using an adbesive gripping method, resulting from a higher proportion of load bearing in the outer sheets versus internal sheets and an apparently low interlaminar shear strength. In response to this, a new spool-grip method was used to alleviate non-uniform through-thickness stresses, circumvent premature delamination, and allow the sheet material to sustain a 72% increase in measured tensile strength. Furthermore, tension tests of CNT yarns showed that the yarn-structure was approximaiely 7 times stronger than the sheet structure, owing to a higher degree of CNT alignment in the test direction.

  9. [Examples for using capillary gas chromatography with wide bore columns in occupational health].

    PubMed

    Frank, H; Senf, L; Welsch, T

    1990-12-01

    Wide bore capillary columns (0.4-0.75 mm ID) can be easily and inexpensively installed in packed column GCs. The analytical advantages cause an expanding market for such capillaries and interconverting hardware kits. It is illustrated with some examples that often individual exposition levels can be determined exactly only by using capillary columns: ethylbenzene may be separated from the C8-isomers also in complex mixtures, the marker PBN for rubber smoke expositions can be determined with 30 min sampling time, the detection sensitivity of the FID is sufficient also for chlorinated pesticides and the analyses of high-boiling compounds profit by the high phase ratio of wide bore capillary columns. A single capillary column substitutes a variety of different packed columns, so saving time and money and protecting the analyst from failures and frustrating compromises.

  10. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  11. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE PAGES

    Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...

    2017-06-07

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  12. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Li, Tingwen; Musser, Jordan

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  13. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.

  14. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less

  15. New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands.

    PubMed

    Zhang, Liang; Lyu, Tao; Ramírez Vargas, Carlos Andrés; Arias, Carlos A; Carvalho, Pedro N; Brix, Hans

    2018-09-01

    Constructed wetlands (CWs) are an eco-friendly and cost-effective technology to remove organic micro-pollutants (OMPs) from wastewater. The support matrix is an important component in CWs as it has a primary role in the growth and development of plants and microbes. However, the roles of the support matrix in CWs in removing OMPs have not been systematically studied. Therefore, in this study, six common materials (sand, zeolite, blast iron slag, petcoke, polonite and crushed autoclaved aerated concrete (CAAC)) as support matrixes were firstly investigated by batch tests to explore their adsorption capacities to selected OMPs (ibuprofen, iohexol, tebuconazole and imazalil). Results showed that the adsorption capacities of the materials were low (at the level of μg/g) compared to well-known sorbents (at the level of mg/g), such as activated carbon and carbon nanotubes. Columns packed with the six materials, respectively, were then built up to study the effects of different materials on microbial community. In the medium-term study (66 days), the removal of four OMPs in all the columns increased by 2-58% from day 25 to day 66, and was mainly attributed to microbial degradation. Furthermore, Community-level physiological profiling (CLPP) analysis indicates that material presence shaped the microbial community metabolic function not only in the interstitial water but also in the biofilm. Overall, all the findings demonstrate that although the adsorption capacities of the common materials are low, they may be a driver to improve the removal of OMPs by altering microbial community function in CWs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone.

    PubMed

    Upan, Jantima; Reanpang, Preeyaporn; Chailapakul, Orawon; Jakmunee, Jaroon

    2016-01-01

    Flow injection amperometric (FI-Amp) sensor was developed for sensitive and selective determination of hydroquinone. A simple screen printed carbon electrode (SPCE) was modified with various nanomaterials for improvement of sensitivity on the determination of quinone. As a result, the appropriate sensitivity is obtained from the SPCE modified with carbon nanotube (CNT) which indicated that CNT contributed to the transfer of electron to quinone. The reproducibility (n=9) and repeatability (n=111) of SPCE-CNT were obtained at 4.4% and 3.6%RSD, respectively. The SPCE-CNT electrode and enzymatic column were incorporated to the FI-Amp system to determine hydroquinone. Laccase was immobilized on silica gel using a cross-linking method by glutaraldehyde modification and then packed in the column. The laccase column has high efficiency for catalytic oxidation of hydroquinone to quinone, which further detects by amperometric detection. Parameters affecting response of the proposed sensor, i.e., pH, ionic strength, and temperature have been optimized. The proposed system provided a wide linear range between 1 and 50 µM with detection limit of 0.1 µM. Satisfactory recoveries in the range of 91.2-103.8% were obtained for the analysis of water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  18. Evaluation of chromatographic columns packed with semi- and fully porous particles for benzimidazoles separation.

    PubMed

    Gonzalo-Lumbreras, Raquel; Sanz-Landaluze, Jon; Cámara, Carmen

    2015-07-01

    The behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow-bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed. First, the separation of benzimidazoles was optimized using a Kinetex C18 column; later, analytical performances of other columns using the above optimized conditions were compared and then individually re-optimized. Critical pairs resolution, analysis run time, column type and characteristics, and selectivity were considered for chromatographic columns comparison. Kinetex XB was selected because it provides the shortest analysis time and the best resolution of critical pairs. Using this column, the separation conditions were re-optimized using a factorial design. Separations obtained with the different columns tested can be applied to the analysis of specific benzimidazoles residues or other applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantification of MDMA and MDA in abusers' hair samples by semi-micro column HPLC with fluorescence detection.

    PubMed

    Nakamura, Shinichi; Tomita, Mamoru; Wada, Mitsuhiro; Chung, Heesun; Kuroda, Naotaka; Nakashima, Kenichiro

    2006-01-01

    A sensitive semi-micro column high-performance liquid chromatography with fluorescence detection method was developed for the determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), methamphetamine (MP) and amphetamine (AP) in human hair. 4-(4,5-Diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) and 1-methyl-3-phenylpropylamine were used as labeling reagent and internal standard, respectively. These drugs were extracted from hair into 5% trifluoroacetic acid in methanol, and fluorescent labeled with DIB-Cl. The separation of DIB-derivatives was achieved on a reversed-phase semi-micro ODS column with an acetonitrile-methanol-water (30:40:30, v/v/v%) mixture as a mobile phase. The limits of detection at a signal-to-noise ratio of 3 for MDMA, MDA, MP and AP were 0.25, 0.15, 0.25 and 0.19 ng/mg, respectively. Precision of intra- and inter-day assay as the relative standard deviation were in the range 1.5-6.8% (n = 5) and 2.7-4.7% (n = 5), respectively. The proposed method was highly sensitive and able to detect MDMA and its related compounds in small amounts of hair sample, and could be applied to quantification of six abusers' hair samples. Copyright 2006 John Wiley & Sons, Ltd.

  20. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-07-01

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  1. Development of a Carbon Nanotube-Based Micro-CT and its Applications in Preclinical Research

    NASA Astrophysics Data System (ADS)

    Burk, Laurel May

    Due to the dependence of researchers on mouse models for the study of human disease, diagnostic tools available in the clinic must be modified for use on these much smaller subjects. In addition to high spatial resolution, cardiac and lung imaging of mice presents extreme temporal challenges, and physiological gating methods must be developed in order to image these organs without motion blur. Commercially available micro-CT imaging devices are equipped with conventional thermionic x-ray sources and have a limited temporal response and are not ideal for in vivo small animal studies. Recent development of a field-emission x-ray source with carbon nanotube (CNT) cathode in our lab presented the opportunity to create a micro-CT device well-suited for in vivo lung and cardiac imaging of murine models for human disease. The goal of this thesis work was to present such a device, to develop and refine protocols which allow high resolution in vivo imaging of free-breathing mice, and to demonstrate the use of this new imaging tool for the study many different disease models. In Chapter 1, I provide background information about x-rays, CT imaging, and small animal micro-CT. In Chapter 2, CNT-based x-ray sources are explained, and details of a micro-focus x-ray tube specialized for micro-CT imaging are presented. In Chapter 3, the first and second generation CNT micro-CT devices are characterized, and successful respiratory- and cardiac-gated live animal imaging on normal, wild-type mice is achieved. In Chapter 4, respiratory-gated imaging of mouse disease models is demonstrated, limitations to the method are discussed, and a new contactless respiration sensor is presented which addresses many of these limitations. In Chapter 5, cardiac-gated imaging of disease models is demonstrated, including studies of aortic calcification, left ventricular hypertrophy, and myocardial infarction. In Chapter 6, several methods for image and system improvement are explored, and radiation

  2. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  3. Separation of carbon nanotubes into chirally enriched fractions

    DOEpatents

    Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  4. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOEpatents

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  5. Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, T.; Sepaniak, M.J.; Guiochon, G.

    1997-08-01

    The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less

  6. A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo

    PubMed Central

    Harvey, Jackson D.; Jena, Prakrit V.; Baker, Hanan A.; Zerze, Gül H.; Williams, Ryan M.; Galassi, Thomas V.; Roxbury, Daniel; Mittal, Jeetain

    2017-01-01

    MicroRNAs and other small oligonucleotides in biofluids are promising disease biomarkers, yet conventional assays require complex processing steps that are unsuitable for point-of-care testing or for implantable or wearable sensors. Single-walled carbon nanotubes are an ideal material for implantable sensors, owing to their emission in the near-infrared spectral region, photostability and exquisite sensitivity. Here, we report an engineered carbon-nanotube-based sensor capable of real-time optical quantification of hybridization events of microRNA and other oligonucleotides. The mechanism of the sensor arises from competitive effects between displacement of both oligonucleotide charge groups and water from the nanotube surface, which result in a solvatochromism-like response. The sensor, which allows for detection via single-molecule sensor elements and for multiplexing by using multiple nanotube chiralities, can monitor toehold-based strand-displacement events, which reverse the sensor response and regenerate the sensor complex. We also show that the sensor functions in whole urine and serum, and can non-invasively measure DNA and microRNA after implantation in live mice. PMID:28845337

  7. A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo.

    PubMed

    Harvey, Jackson D; Jena, Prakrit V; Baker, Hanan A; Zerze, Gül H; Williams, Ryan M; Galassi, Thomas V; Roxbury, Daniel; Mittal, Jeetain; Heller, Daniel A

    2017-01-01

    MicroRNAs and other small oligonucleotides in biofluids are promising disease biomarkers, yet conventional assays require complex processing steps that are unsuitable for point-of-care testing or for implantable or wearable sensors. Single-walled carbon nanotubes are an ideal material for implantable sensors, owing to their emission in the near-infrared spectral region, photostability and exquisite sensitivity. Here, we report an engineered carbon-nanotube-based sensor capable of real-time optical quantification of hybridization events of microRNA and other oligonucleotides. The mechanism of the sensor arises from competitive effects between displacement of both oligonucleotide charge groups and water from the nanotube surface, which result in a solvatochromism-like response. The sensor, which allows for detection via single-molecule sensor elements and for multiplexing by using multiple nanotube chiralities, can monitor toehold-based strand-displacement events, which reverse the sensor response and regenerate the sensor complex. We also show that the sensor functions in whole urine and serum, and can non-invasively measure DNA and microRNA after implantation in live mice.

  8. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    PubMed

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  9. Contexts for Column Addition and Subtraction

    ERIC Educational Resources Information Center

    Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen

    2011-01-01

    In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by…

  10. Calculation of Non-Bonded Forces Due to Sliding of Bundled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Bandorawalla, T.; Gates, T. S.

    2003-01-01

    An important consideration for load transfer in bundles of single-walled carbon nanotubes is the nonbonded (van der Waals) forces between the nanotubes and their effect on axial sliding of the nanotubes relative to each other. In this research, the non-bonded forces in a bundle of seven hexagonally packed (10,10) single-walled carbon nanotubes are represented as an axial force applied to the central nanotube. A simple model, based on momentum balance, is developed to describe the velocity response of the central nanotube to the applied force. The model is verified by comparing its velocity predictions with molecular dynamics simulations that were performed on the bundle with different force histories applied to the central nanotube. The model was found to quantitatively predict the nanotube velocities obtained from the molecular dynamics simulations. Both the model and the simulations predict a threshold force at which the nanotube releases from the bundle. This force converts to a shear yield strength of 10.5-11.0 MPa for (10,10) nanotubes in a bundle.

  11. EFFECT OF NITRATE-BASED BIOREMEDIATION ON CONTAMINANT DISTRIBUTION AND SEDIMENT TOXICITY-COLUMN STUDY

    EPA Science Inventory

    A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...

  12. The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo

    PubMed Central

    Ding, Xianglong; Zhou, Lei; Wang, Jingxu; Zhao, Qingxia; Lin, Xi; Gao, Yan; Li, Shaobing; Wu, Jingyi; Rong, Mingdeng; Guo, Zehong; Lai, Chunhua; Lu, Haibin; Jia, Fang

    2015-01-01

    In the present work, a hierarchical hybrid micro/nanostructured titanium surface was obtained by sandblasting with large grit and acid etching (SLA), and nanotubes of different diameters (30 nm, 50 nm, and 80 nm) were superimposed by anodization. The effect of each SLA-treated surface decorated with nanotubes (SLA + 30 nm, SLA + 50 nm, and SLA + 80 nm) on osteogenesis was studied in vitro and in vivo. The human MG63 osteosarcoma cell line was used for cytocompatibility evaluation, which showed that cell adhesion and proliferation were dramatically enhanced on SLA + 30 nm. In comparison with cells grown on the other tested surfaces, those grown on SLA + 80 nm showed an enhanced expression of osteogenesis-related genes. Cell spread was also enhanced on SLA + 80 nm. A canine model was used for in vivo evaluation of bone bonding. Histological examination demonstrated that new bone was formed more rapidly on SLA-treated surfaces with nanotubes (especially SLA + 80 nm) than on those without nanotubes. All of these results indicate that SLA + 80 nm is favorable for promoting the activity of osteoblasts and early bone bonding. PMID:26635472

  13. The rationale for the optimum efficiency of columns packed with new 1.9μm fully porous Titan-C18 particles-a detailed investigation of the intra-particle diffusivity.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-08-15

    In a previous report, it was reported that columns packed with fully porous 1.9μm Titan-C18 particles provided a minimum reduced plate height as small as 1.7 for the most retained compound (n-octanophenone) under RPLC conditions. These particles are characterized by a relatively narrow size distribution with a relative standard deviation (RSD) of only 10%. A column packed with classical 5μm Symmetry-C18 particles, used as a reference RPLC column, generated a minimum reduced plate height of 2.1 for the same retained compound. This work demonstrates that this was due to an unusually low intra-particle diffusivity across these particles, which leads to a small longitudinal diffusion coefficient along the column. The demonstration is based on the combination of accurate measurements of the height equivalent to a theoretical plate (HETP), inverse size exclusion chromatography (ISEC), peak parking (PP), and minor disturbance method (MDM) experiments. The experimental results show that the reduced eddy dispersion HETP term (A=0.8 for a reduced velocity of 5), the internal particle porosity (ϵp=0.35), and the enrichment of acetonitrile in the pore volume (75% acetonitrile in the bulk, 85% inside the mesoporous volume) are identical on both the Titan-C18 and Symmetry-C18 columns. The difference between the internal structures of these two brands of RPLC-C18 fully porous particles lies in the values of the internal obstruction factor γp, which is 0.42 for the Symmetry-C18 but only 0.26 for the Titan-C18 particles. This is in part related to the diffusion hindrance due to the small average pore size of the Titan-C18 particles, around 59Å versus 77Å for Symmetry-C18 particles. A simple model of constriction along diffusion paths having the shape of a truncated cone suggests that the width of the pore size distribution (RSD of 30% and 20% for Titan-C18 and Symmetry-C18 particles) is mostly responsible for the difference in their obstruction factors. Copyright © 2014

  14. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  15. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    USDA-ARS?s Scientific Manuscript database

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...

  16. Filling of high aspect ratio micro features of a microfluidic flow cytometer chip using micro injection moulding

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyang; Fang, Fengzhou; Gilchrist, Michael D.; Zhang, Nan

    2018-07-01

    Micro injection moulding has been demonstrated as one of the most efficient mass production technologies for manufacturing polymeric microfluidic devices, which have been widely used in life sciences, environmental and analytical fields and agro-food industries. However, the filling of micro features for typical microfluidic devices is complicated and not yet fully understood, which consequently restricts the chip development. In the present work, a microfluidic flow cytometer chip with essential high aspect ratio micro features was used as a typical model to study their filling process. Short-shot experiments and single factor experiments were performed to examine the filling progress of such features during the injection and packing stages of the micro injection moulding process. The influence of process parameters such as shot size, packing pressure, packing time and mould temperature were systematically monitored, characterised and correlated with 3D measurements and real response of the machine such as screw velocity and screw position. A combined melt flow and creep deformation model was proposed to explain the complex influence of process on replication. An approach of over-shot micro injection moulding was proposed and was shown to be effective at improving the replication quality of high aspect ratio micro features.

  17. Characteristics of carbon nanotubes based micro-bubble generator for thermal jet printing.

    PubMed

    Zhou, Wenli; Li, Yupeng; Sun, Weijun; Wang, Yunbo; Zhu, Chao

    2011-12-01

    We propose a conceptional thermal printhead with dual microbubble generators mounted parallel in each nozzle chamber, where multiwalled carbon nanotubes are adopted as heating elements with much higher energy efficiency than traditional approaches using noble metals or polysilicon. Tailing effect of droplet can be excluded by appropriate control of grouped bubble generations. Characteristics of the corresponding micro-fabricated microbubble generators were comprehensively studied before the formation of printhead. Electrical properties of the microheaters on glass substrate in air and performance of bubble generation underwater focusing on the relationships between input power, device resistance and bubble behavior were probed. Proof-of-concept bubble generations grouped to eliminate the tailing effect of droplet were performed indicating precise pattern with high resolution could be realized by this kind of printhead. Experimental results revealed guidance to the geometric design of the printhead as well as its fabrication margin and the electrical control of the microbubble generators.

  18. High resolution photolithography using arrays of polystyrene and SiO2 micro- and nano-sized spherical lenses

    NASA Astrophysics Data System (ADS)

    Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.

    2017-11-01

    Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.

  19. Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design

    NASA Astrophysics Data System (ADS)

    Ma, Zhipeng; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.

  20. Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.

    PubMed

    Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang

    2012-06-01

    This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software.

    PubMed

    Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre

    2015-04-10

    Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bonding Unidirectional Carbon Nanotube with Carbon for High Performance

    DTIC Science & Technology

    2015-06-24

    the longest time of 80 minutes had an aerogel -like density, with CNT packing density lower than even the as-grown CNT array. This highly porous nature...nanotube foams with ultralow densities. Unlike other routes for fabrication of CNT aerogels , foam and sponges, this processing method allows the fast

  3. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M.

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  4. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  5. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dali; Orler, Bruce; Tornga, Stephanie

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr andmore » reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability

  6. Ultra high-performance liquid chromatography of porphyrins in clinical materials: column and mobile phase selection and optimisation.

    PubMed

    Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L

    2012-06-01

    Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 µm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 µm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 µm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 µm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 µm average particle size materials for clinical sample analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Relative importance of column and adsorption parameters on the productivity in preparative liquid chromatography II: Investigation of separation systems with competitive Langmuir adsorption isotherms.

    PubMed

    Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny

    2014-06-20

    In this study we investigated how the maximum productivity for commonly used, realistic separation system with a competitive Langmuir adsorption isotherm is affected by changes in column length, packing particle size, mobile phase viscosity, maximum allowed column pressure, column efficiency, sample concentration/solubility, selectivity, monolayer saturation capacity and retention factor of the first eluting compound. The study was performed by generating 1000 random separation systems whose optimal injection volume was determined, i.e., the injection volume that gives the largest achievable productivity. The relative changes in largest achievable productivity when one of the parameters above changes was then studied for each system and the productivity changes for all systems were presented as distributions. We found that it is almost always beneficial to use shorter columns with high pressure drops over the column and that the selectivity should be greater than 2. However, the sample concentration and column efficiency have very limited effect on the maximum productivity. The effect of packing particle size depends on the flow rate limiting factor. If the pumps maximum flow rate is the limiting factor use smaller packing, but if the pressure of the system is the limiting factor use larger packing up to about 40μm. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.

    PubMed

    Esconjauregui, Santiago; D'Arsié, Lorenzo; Guo, Yuzheng; Yang, Junwei; Sugime, Hisashi; Caneva, Sabina; Cepek, Cinzia; Robertson, John

    2015-10-27

    We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers.

  9. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  10. Construction of uric acid biosensor based on biomimetic titanate nanotubes.

    PubMed

    Tao, Haisheng; Wang, Xuebin; Wang, Xizhang; Hu, Yemin; Ma, Yanwen; Lu, Yinong; Hu, Zheng

    2010-02-01

    A uric acid biosensor has been fabricated through the immobilization of uricase on glassy carbon electrode modified by biomimetic titanate nanotubes of high specific surface area synthesized by hydrothermal decomposition. The so-constructed biosensor presents a high affinity to uric acid with a small apparent Michaelis-Menten constant of only 0.66 mM. The biosensor exhibits fairly good electrochemical properties such as the high sensitivity of 184.3 microAcm(-2)mM(-1), the fast response of less than 2 s, as well as the wide linear range from 1 microM to 5 mM. These performances indicate that titanate nanotubes could provide a favorable microenvironment for uricase immobilization, stabilize its biological activity, and function as an efficient electron conducting tunnel to facilitate the electron transfer. This suggests an important potential of titanate nanotubes in uric acid biosensors.

  11. Quantification of micro stickies

    Treesearch

    Mahendra Doshi; Jeffrey Dyer; Salman Aziz; Kristine Jackson; Said M. Abubakr

    1997-01-01

    The objective of this project was to compare the different methods for the quantification of micro stickies. The hydrophobic materials investigated in this project for the collection of micro stickies were Microfoam* (polypropylene packing material), low density polyethylene film (LDPE), high density polyethylene (HDPE; a flat piece from a square plastic bottle), paper...

  12. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    PubMed

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  13. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2012-03-01

    The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms (Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.

  14. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2011-11-01

    The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms ( Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.

  15. Tuning jammed frictionless disk packings from isostatic to hyperstatic.

    PubMed

    Schreck, Carl F; O'Hern, Corey S; Silbert, Leonardo E

    2011-07-01

    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.

  16. Latching mechanism for deployable/re-stowable columns useful in satellite construction

    NASA Technical Reports Server (NTRS)

    Ahl, E. L., Jr. (Inventor)

    1986-01-01

    A column longeron latch assembly provides the securing mechanism for the deployable, telescoping column of a hoop/column antenna. The column is an open lattice structure with three longerons disposed 120 deg apart as the principle load bearing member. The column is deployed from a pair of eleven nested bays disposed on opposite sides of a center section under the influence of a motor-cable-pulley system. The longeron latch is a four bar linkage mechanism using the over-center principle for automatically locking the longeron sections into position during deployment. The latch is unlocked when the antenna is to be restowed. A spring pack disposed in the end of each longeron serves to absorb stress forces on the deployed column through the cam head piston and abutting latch from an adjacent longeron.

  17. Ideal versus real automated twin column recycling chromatography process.

    PubMed

    Gritti, Fabrice; Leal, Mike; McDonald, Thomas; Gilar, Martin

    2017-07-28

    The full baseline separation of two compounds (selectivity factors α<1.03) is either impractical (too long analysis times) or even impossible when using a single column of any length given the pressure limitations of current LC instruments. The maximum efficiency is that of an infinitely long column operated at infinitely small flow rates. It is determined by the maximum allowable system pressure, the column permeability (particle size), the viscosity of the eluent, and the intensity of the effective diffusivity of the analytes along the column. Alternatively, the twin-column recycling separation process (TCRSP) can overcome the efficiency limit of the single-column approach. In the TCRSP, the sample mixture may be transferred from one to a second (twin) column until its band has spread over one column length. Basic theory of chromatography is used to confirm that the speed-resolution performance of the TCRSP is intrinsically superior to that of the single-column process. This advantage is illustrated in this work by developing an automated TCRSP for the challenging separation of two polycyclic aromatic hydrocarbon (PAH) isomers (benzo[a]anthracene and chrysene) in the reversed-phase retention mode at pressure smaller than 5000psi. The columns used are the 3.0mm×150mm column packed with 3.5μm XBridge BEH-C 18 material (α=1.010) and the 3.0mm or 4.6mm×150mm columns packed with the same 3.5μm XSelect HSST 3 material (α=1.025). The isocratic mobile phase is an acetonitrile-water mixture (80/20, v/v). Remarkably, significant differences are observed between the predicted retention times and efficiencies of the ideal TCRSP (given by the number of cycles multiplied by the retention time and efficiency of one column) and those of the real TCRSP. The fundamental explanation lies in the pressure-dependent retention of these PAHs or in the change of their partial molar volume as they are transferred from the mobile to the stationary phase. A revisited retention and

  18. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    PubMed

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 &micro;m, 3 &micro;m) or larger (70 &micro;m, 53 &micro;m) than the clinker particles, or having a similar size (23 &micro;m). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  19. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC.

    PubMed

    Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang

    2009-06-01

    We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.

  20. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2013-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  1. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  2. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  3. Micro-apparatus for rapid determinations of protein solubilities

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Munson, Sibyl

    1991-01-01

    We have developed a column-based micro-technique for rapid determinations of protein solubilities. While retaining a large crystal surface area, the column dead volume has been reduced to equal to or less than 5 micro liters. The technique was tested with tetragonal lysozyme (pH 4.5, 0.1 M acetate, 3.0 percent NaCl, 5-25 C) and column volumes of about 60, 300, and 900 micro liters. Identical solubility data were obtained, indicating that equilibration was obtained even in the smallest columns. In addition, solubility data for Br- and I- salts of lysozyme (pH 4.5, 0.1 M acetate buffer, 0.5 M salt concentrations) were obtained. It appears that the technique can be further miniaturized. The limit in further reducing the crystalline column volume is determined by the minimum solution sample size needed to determine the protein concentration.

  4. Multifunctional Structural-energy Storage Nanocomposites for Ultra Lightweight Micro Autonomous Vehicles

    DTIC Science & Technology

    2013-02-01

    supplement the main power supply. Here we report on the use of flexible carbon nanotube (CNT)-based composites for multifunctional structural energy storage...TERMS Micro vehicle, Supercapacitor, Carbon Nanotubes , CNTs, Energy Storage, Multifunctional Materials 16. SECURITY CLASSIFICATION OF: 17...consists of a current collector, a porous electrode layer ( carbon nanotubes [CNTs], in this case) infiltrated with an electrolyte (i.e., a liquid

  5. Special Section on InterPACK 2017—Part 1

    DOE PAGES

    Mysore, Kaushik; Narumanchi, Sreekant; Dede, Ercan; ...

    2018-03-02

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  6. Special Section on InterPACK 2017—Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mysore, Kaushik; Narumanchi, Sreekant; Dede, Ercan

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  7. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries.

    PubMed

    Terán-Hilares, R; Reséndiz, A L; Martínez, R T; Silva, S S; Santos, J C

    2016-03-01

    A packed bed flow-through column reactor (PBFTCR) was used for pretreatment and subsequent enzymatic hydrolysis of sugarcane bagasse (SCB). Alkaline pretreatment was performed at 70 °C for 4h with fresh 0.3M NaOH solution or with liquor recycled from a previous pretreatment batch. Scheffersomyces stipitis NRRL-Y7124 was used for fermentation of sugars released after enzymatic hydrolysis (20 FPU g(-1) of dry SCB). The highest results for lignin removal were 61% and 52%, respectively, observed when using fresh NaOH or the first reuse of the liquor. About 50% of cellulosic and 57% of hemicellulosic fractions of pretreated SCBs were enzymatically hydrolyzed and the maximum ethanol production was 23.4 g L(-1) (ethanol yield of 0.4 gp gs(-1)), with near complete consumption of both pentoses and hexoses present in the hydrolysate during the fermentation. PBFTCR as a new alternative for SCB-biorefineries is presented, mainly considering its simple configuration and efficiency for operating with a high solid:liquid ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. On-Line 1D and 2D PLOT/LC-ESI-MS Using 10 μm i.d. Poly(styrene–divinylbenzene) Porous Layer Open Tubular (PLOT) Columns For Ultrasensitive Proteomic Analysis

    PubMed Central

    Luo, Quanzhou; Yue, Guihua; Valaskovic, Gary A; Gu, Ye; Wu, Shiaw-Lin; Karger, Barry L.

    2008-01-01

    Following on our recent work, on-line one dimensional (1D) and two dimensional (2D) PLOT/LC-ESI-MS platforms using 3.2 m × 10 μm i.d. poly(styrenedivinylbenzene) (PS-DVB) porous layer open tubular (PLOT) columns have been developed to provide robust, high performance and ultrasensitive proteomic analysis. Using a PicoClear tee, the dead volume connection between a 50 μm i.d. PS-DVB monolithic microSPE column and the PLOT column was minimized. The microSPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15 to 40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, ∼2.5 ng of protein in 2 μL solution, an amount corresponding to 20 SiHa cells, was subjected to on-line microSPE-PLOT/LC-ESIMS/MS analysis using a linear ion trap MS. 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate less than 1% . The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to ∼45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cm × 75 μm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only ∼5% of the injected sample amount. The resolving power of the microSPE/PLOT assembly was further extended by 2D chromatography via combination of the high-efficiency reversed phase PLOT column

  9. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    PubMed

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Scaffolds based on hyaluronan and carbon nanotubes gels.

    PubMed

    Arnal-Pastor, M; Tallà Ferrer, C; Herrero Herrero, M; Martínez-Gómez Aldaraví, A; Monleón Pradas, M; Vallés-Lluch, A

    2016-10-01

    Physico-chemical and mechanical properties of hyaluronic acid/carbon nanotubes nanohybrids have been correlated with the proportion of inorganic nanophase and the preparation procedure. The mass fraction of -COOH functionalized carbon nanotubes was varied from 0 to 0.05. Hyaluronic acid was crosslinked with divinyl sulfone to improve its stability in aqueous media and allow its handling as a hydrogel. A series of samples was dried by lyophilization to obtain porous scaffolds whereas another was room-dried allowing the collapse of the hybrid structures. The porosity of the former, together with the tighter packing of hyaluronic acid chains, results in a lower water absorption and lower mechanical properties in the swollen state, because of the easier water diffusion. The presence of even a small amount of carbon nanotubes (mass fraction of 0.05) limits even more the swelling of the matrix, owing probably to hybrid interactions. These nanohybrids do not seem to degrade significantly during 14 days in water or enzymatic medium. © The Author(s) 2016.

  11. Cadmium removal in a biosorption column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volesky, B.; Prasetyo, I.

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L.more » The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.« less

  12. Quantitative analysis of transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.

    PubMed

    Wang, Meng; Ford, Roseanne M

    2010-01-15

    A two-dimensional mathematical model was developed to simulate transport phenomena of chemotactic bacteria in a sand-packed column designed with structured physical heterogeneity in the presence of a localized chemical source. In contrast to mathematical models in previous research work, in which bacteria were typically treated as immobile colloids, this model incorporated a convective-like chemotaxis term to represent chemotactic migration. Consistency between experimental observation and model prediction supported the assertions that (1) dispersion-induced microbial transfer between adjacent conductive zones occurred at the interface and had little influence on bacterial transport in the bulk flow of the permeable layers and (2) the enhanced transverse bacterial migration in chemotactic experiments relative to nonchemotactic controls was mainly due to directed migration toward the chemical source zone. On the basis of parameter sensitivity analysis, chemotactic parameters determined in bulk aqueous fluid were adequate to predict the microbial transport in our intermediate-scale porous media system. Additionally, the analysis of adsorption coefficient values supported the observation of a previous study that microbial deposition to the surface of porous media might be decreased under the effect of chemoattractant gradients. By quantitatively describing bacterial transport and distribution in a heterogeneous system, this mathematical model serves to advance our understanding of chemotaxis and motility effects in granular media systems and provides insights for modeling microbial transport in in situ microbial processes.

  13. Reduction of hydraulic conductivity in column simulations of unconsolidated sediments by growth of in situ microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertetti, F.P.; Birnbaum, S.J.

    1992-01-01

    Laboratory experiments were employed to determine the effects of microbial growth upon the hydraulic conductivity (K) of unconsolidated sediments at Kelly Air Force Base, Texas. Indigenous microflora were isolated from sediment samples collected at sites contaminated with toxic organic compounds (e.g. dichlorobenzene) by plating on concentrated and dilute media. Plexiglas columns were packed with silica beads or Kelly AFB sediment and used to simulate ground water flow conditions. Grain sizes were selected to yield realistic K values (2.0 [times] 10[sup [minus]1] to 8.0 [times] 10[sup [minus]3] cm/sec) defined by field data from the contaminated sites. Both individual and mixed microbialmore » colonies, selected based on morphological characteristics individual and mixed microbial colonies, selected based on morphological characteristics deemed favorable for porosity obstruction, were injected into sterile, saturated columns. Growth was stimulated by adding sterile liquid nutrient media. Media flow rates were based upon field derived hydraulic conductivity values and water table gradients. Flow rates were controlled using a peristaltic pump. Growth of the microorganisms produced biomass which reduced the column hydraulic conductivity by up to 90% in 11 days. Reduction in K was accomplished via clogging of pore throats by cell attachment and accumulation on bead surfaces, and extracellular biofilm development. Sediment packed columns showed reduction in K values similar to that of bead packed columns of equivalent grain size. Porosity obstruction and corresponding reduction in K persisted in the columns even when subjected to hydraulic gradients significantly exceeding gradients measured in the field thereby demonstrating the robust nature of biological barrier to flow.« less

  14. The impact of column connection on band broadening in very high pressure liquid chromatography.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Guiochon, Georges

    2013-09-01

    A series of experiments was conducted to evaluate the degree of band broadening in very high pressure LC due to column connections. Different column manufacturers use slightly different designs for their column fittings. If the same column connections are repeatedly used to attach columns of different origins, different void volumes form between capillary tubes and column inlets. An Agilent Ultra Low Dispersion Kit (tubing id 75 μm) was installed on an Agilent Infinity 1290 ultra HPLC and used to connect successively an Agilent, a Phenomenex, and a Waters column. A series of uracil (unretained) samples were injected and eluted at a wide range of flow rates with a water/acetonitrile mixture as eluent. In order to determine the variance contribution from column connections as accurately as possible a nonretained probe compound was selected because the variance contribution from the column is the smallest for analytes, which have very low k values. Yet, this effect still has an impact on the resolution for moderately retained compounds (k > 2) for narrow-bore columns packed with fine particles, since variance contributions are additive for linear chromatographic systems. Each injection was replicated five times under the same experimental conditions. Then NanoViper column connections (tubing id 75 μm) were used and the same injections were made. This system was designed to minimize connection void volumes for any column. Band variances were calculated as the second central moment of elution peaks and used to assess the degree of band broadening due to the column connections. Band broadening may increase from 3.8 to 53.9% when conventional metal ferrules were used to join columns to connection sites. The results show that the variance contribution from improper connections can generate as much as 60.5% of the total variance observed. This demonstrates that column connections can play a larger role than the column packing with respect to band dispersion. © 2013 WILEY

  15. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    PubMed

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  16. Block Copolymers as Templates for Arrays of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Hunt, Brian

    2003-01-01

    A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.

  17. Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-01-31

    A rapid and simple validated experimental protocol is proposed for the accurate determination of the true intrinsic column efficiency and for that of the variance of the extra-column volume of the instrument used, the latter being obtained without requiring the removal of the chromatographic column from the HPLC system. This protocol was applied to 2.1mm×100mm columns packed with sub-3 (2.7μm Halo Peptide ES-C18) and sub-2μm (1.6μm prototype) core-shell particles. It was validated by observing the linear behavior of the plot of the apparent column plate height versus the reciprocal of (1+k')(2) for at least three homologous compounds, with a linear regression coefficient R(2) larger than 0.999. Irrespective of the contribution of the several, different instruments used to the total band broadening, the same column HETP value was obtained within 5%. This new protocol outperform the classical one in which the chromatographic column is replaced with a zero dead volume (ZDV) union connector to measure the extra-column volume variance, which is subtracted from the variance measured with the column to measure the intrinsic HETP. This protocol fails because it significantly underestimates the system volume variance. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Enhanced capabilities of separation in Sequential Injection Chromatography--fused-core particle column and its comparison with narrow-bore monolithic column.

    PubMed

    Chocholouš, Petr; Kosařová, Lucie; Satínský, Dalibor; Sklenářová, Hana; Solich, Petr

    2011-08-15

    In the Sequential Injection Chromatography (SIC) only monolithic columns for chromatographic separations have been used so far. This article presents the first use of fused-core particle packed column in an attempt to extend of the chromatographic capabilities of the SIC system. A new fused-core particle column (2.7 μm) Ascentis(®) Express C18 (Supelco™ Analytical) 30 mm × 4.6 mm brings high separation efficiency within flow rates and pressures comparable to monolithic column Chromolith(®) Performance RP-18e 100-3 (Merck(®)) 100 mm × 3 mm. Both columns matches the conditions of the commercially produced SIC system - SIChrom™ (8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with 4 mL reservoir - maximal work pressure 1000 PSI) (FIAlab(®), USA). The system was tested by the separation of four estrogens with similar structure and an internal standard - ethylparaben. The mobile phase composed of acetonitrile/water (40/60 (v/v)) was pumped isocratic at flow rate 0.48 mL min(-1). Spectrophotometric detection was performed at wavelength of 225 nm and injected volume of sample solutions was 10 μL. The chromatographic characteristics of both columns were compared. Obtained results and conclusions have shown that both fused-core particle column and longer narrow shaped monolithic column bring benefits into the SIC method. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Aligned carbon nanotubes patterned photolithographically by silver

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming; Mau, Albert H. W.

    2003-02-01

    Selective growth of aligned carbon nanotubes (CNTs) by pyrolysis of iron (II) phthalocyanine (FePc) on quartz substrate patterned photolithographically by metallic silver has been demonstrated. Micro/nanopattern of aligned CNTs can be achieved by using a photomask with features on a microscale. With convenient use of simple high-contract black and white films as a photomask, aligned nanotubes patterned with 20 μm resolution in large scale can be fabricated. This practical fabrication of aligned CNTs on patterned conducting substrate could be applied to various device applications of CNTs.

  20. Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles.

    PubMed

    Gritti, Fabrice; Bell, David S; Guiochon, Georges

    2014-08-15

    The mass transfer mechanism in four prototype columns (2.1 and 3.0×50mm, 2.1 and 3.0×100mm) packed with 1.9μm fully porous Titan-C18 particles was investigated by using two previously reported home-made protocols. The first one was used to measure the eddy dispersion HETP of these new columns, the second one to estimate their intrinsic (corrected for HPLC system contribution) HETPs. Titan particles are fully porous particles with a narrow particle size distribution (RSD of 9.2%). The mean Sauter diameter (dSauter=2.04μm) was determined from Coulter counter measurements on the raw silica material (before C18 derivatization) and in the absence of a dispersant agent (Triton X-100) in a 2% NaCl electrolyte solution. The results show that these RPLC Titan columns have intrinsic minimum reduced HETPs ranging from 1.7 to 1.9 and generate up to 290,000 plates per meter. The 3.0mm i.d. columns are more efficient than the 2.1mm i.d. ones and short columns are preferred to minimize efficiency losses due to frictional heating at high speeds. This work also revealed that (1) the lowest h values of the Titan columns are observed at low reduced velocities (νopt=5); (2) this is due to the unusually small diffusivity of analytes across the porous Titan-C18 particles; and (3) the Titan columns are not packed more uniformly than conventional columns packed with fully porous particles. Earlier and recent findings showing that the PSD has no direct physical impact on eddy dispersion and column efficiency are confirmed by these results. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase

    PubMed Central

    Norton, Dean; Shamsi, Shahab A.

    2009-01-01

    The preparation and characterization of a novel lithocholic acid (LCA)-based liquid crystalline (LC) stationary phase (SP) suitable for application in packed-column CEC and CEC coupled to MS is described. The extent of bonding reactions of LCA-SP was assessed using 1H-NMR, 13C-NMR and elemental analysis. This characterization is followed by application of the LCA-SP for separation of β-blockers, phenylethylamines (PEAs), polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Using the optimum mobile phase operating conditions (pH 3.0-4.5, 10 mM ammonium acetate, 85% v/v ACN), a comparison of the chromatographic ability of the aminopropyl silica phase vs. the LCA-bonded phase was conducted. The results showed improved selectivity for all test analytes using the latter phase. For example, the CEC-MS of β-blockers demonstrated that the LCA-bonded phase provides separation of six out of seven β-blockers, whereas the amino silica phase provides four peaks of several co-eluting β-blockers. For the CEC-MS analysis of PEAs, the LCA-bonded phase showed improved resolution and different selectivity as compared to the aminopropyl phase. An evaluation of the retention trends for PEAs on both phases suggested that the PEAs were retained based on varying degree of hydroxyl substitution on the aromatic ring. In addition, the MS characterization shows several PEAs fragment in the electrospray either by loss of an alkyl group and/or by loss of H2O. Finally, the LCA-bonded phase displayed significantly higher separation selectivity for PAHs and PCBs as compared to the amino silica phase. PMID:18425746

  2. Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-07-22

    A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Experimental and numerical investigations of effect of column length on retardation factor determination: a case study of cesium transport in crushed granite.

    PubMed

    Li, Ming-Hsu; Wang, Tsing-Hai; Teng, Shi-Ping

    2009-02-15

    This study investigated breakthrough curves (BTCs) from a series of column experiments, including different column lengths and flow rates, of a conservative tracer, tritium oxide (HTO), and a radionuclide, cesium, in crushed granite using a reactive transport model. Results of the short column, with length of 2cm, showed an underestimation of the retardation factor and the corresponding HTO BTCs cannot be successfully modeled even with overestimated fluid dispersivity. Column supporting elements, including filters and rings, on both ends of packed granite were shown to be able to induce additional dispersive mixing, thus significantly affecting BTCs of short columns while those of the long column, with length of 8cm, were less affected. By increasing flow rates from 1mL/min to 5mL/min, the contribution of structural dispersive mixing to the false tilting of short column BTCs still cannot be detached. To reduce the influence of structural dispersivity on BTCs, the equivalent pore volume of column supporting materials should be much smaller than that of packed porous medium. The total length of column supporting structures should be greatly shorter than that of porous medium column.

  4. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  5. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling

  6. Guest Editorial: Special Section on InterPACK 2017 - Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Mysore, Kaushik; Dede, Ercan

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  7. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  8. Development Of ABEC Column For Separation Of Tc-99 From Northstar Dissolved Target Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Bennett, Megan E.; Naik, Seema R.

    Batch and column breakthrough experiments were performed to determine isotherms and mass-transfer parameters for adsorption of Tc on aqueous biphasic extraction chromatographic (ABEC) sorbent in two solutions: 200 g/L Mo, 5.1 M K +, 1 M OH -, and 0.1 M NO 3 - (Solution A) and 200 g/L Mo, 9.3 M K +, 5 M OH -, and 0.1 M NO 3 - (Solution B). Good agreement was found between the isotherm values obtained by batch and column breakthrough studies for both Solutions A and B. Potassium-pertechnetate intra-particle diffusivity on ABEC resin was estimated by VERSE simulations, and goodmore » agreement was found among a series of column-breakthrough experiments at varying flow velocities, column sizes, and technetium concentrations. However, testing of 10 cc cartridges provided by NorthStar with Solutions A and B did not give satisfactory results, as significant Tc breakthrough was observed and ABEC cartridge performance varied widely among experiments. These different experimental results are believed to be due to inconsistent preparation of the ABEC resin prior to packing and/or inconsistent packing.« less

  9. Continuous, packed-bed, enzymatic bioreactor production and stability of feruloyl soy glycerides

    USDA-ARS?s Scientific Manuscript database

    The synthesis of feruloyl soy glycerides was demonstrated on a pilot-scale (1 metric ton/year) in a continuous, four-column series, packed-bed, enzymatic bioreactor (herinafter referred to as the bioreactor). Ethyl ferulate and soybean oil were combined and converted at 3.5 kg/d over Candida antarti...

  10. C(18) columns for the simultaneous determination of oxytetracycline and its related substances by reversed-phase high performance liquid chromatography and UV detection.

    PubMed

    Smyrniotakis, C G; Archontaki, Helen A

    2007-01-17

    Simultaneous determination of oxytetracycline, 4-epioxytetracycline, alpha-apooxytetracycline, tetracycline and beta-apooxytetracycline on C(18) columns has been accomplished using a high performance liquid chromatographic method with UV detection. Separation was achieved on a Hypersil BDS RP-C(18) column (250 mm x 4.6 mm) and on a Waters C(18) Symmetry column (150 mm x 3.9mm), 5 microm particle size each. These columns were equilibrated with mobile phases consisted of methanol-acetonitrile-0.1M phosphate buffer pH 8.0 (12.5:12.5:75, v/v/v) and (15:15:70, v/v/v), respectively. The flow rate was 1.0 ml/min and the total elution time was 15 and 5 min, respectively. Both methods were applied to oxytetracycline raw material, human and veterinary formulations, where the excipients did not interfere. External standard calibration curves were linear for 4-epioxytetracycline, oxytetracycline, alpha-apooxytetracycline, tetracycline and beta-apooxytetracycline in the concentration range of 0.27-200 microM, 0.05-200 microM, 0.03-200 microM, 0.35-200 microM and 0.20-200 microM on column A and 0.08-200 microM, 0.15-200 microM, 0.09-200 microM, 0.25-200 microM and 0.47-200 microM on column B, respectively. Day-to-day relative standard deviation of the determination for every component was less than 3%. Concerning the first column, limits of detection and quantification of the above compounds were in the concentration ranges of 10-106 nM and 30-352 nM, respectively, whereas on the second column these ranges became 27-144 nM and 81-475 nM, respectively. Recovery of the separated compounds was 95-105%.

  11. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip.

    PubMed

    Yin, Hongfeng; Killeen, Kevin; Brennen, Reid; Sobek, Dan; Werlich, Mark; van de Goor, Tom

    2005-01-15

    Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.

  12. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  13. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  14. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  15. High conductivity carbon nanotube wires from radial densification and ionic doping

    NASA Astrophysics Data System (ADS)

    Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.

    2010-11-01

    Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.

  16. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    NASA Astrophysics Data System (ADS)

    Savalani, M. M.; Ng, C. C.; Li, Q. H.; Man, H. C.

    2012-01-01

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  17. Epitaxial growth of ordered and disordered granular sphere packings

    NASA Astrophysics Data System (ADS)

    Panaitescu, Andreea; Kudrolli, Arshad

    2014-09-01

    We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.

  18. Epitaxial growth of ordered and disordered granular sphere packings.

    PubMed

    Panaitescu, Andreea; Kudrolli, Arshad

    2014-09-01

    We demonstrate that epitaxy can be used to obtain a wide range of ordered to disordered granular packings by simply changing the deposition flux. We show that a defect-free face-centered-cubic (fcc) monocrystal can be obtained by depositing athermal granular spheres randomly into a container with a templated surface in a gravitational field without direct manipulation. This packing corresponds to the maximum sphere packing fraction and is obtained when the substrate is templated corresponding to the (100) plane of a fcc crystal and the container side is an integer multiple of the sphere diameter. We find that the maximum sphere packing is obtained when the deposited grains come to rest, one at a time, without damaging the substrate. A transition to a disordered packing is observed when the flux is increased. Using micro x-ray computed tomography, we find that defects nucleate at the boundaries of the container in which the packing is grown as grains cooperatively come to rest above their local potential minimum. This leads to a transition from ordered to disordered loose packings that grow in the form of an inverted cone, with the apex located at the defect nucleation site. We capture the observed decrease in order using a minimal model in which a defect leads to growth of further defects in the neighboring sites in the layer above with a probability that increases with the deposition flux.

  19. High-efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable I. Experiments with 25 cm x 4.6 mm I.D., 5 microm ODS columns.

    PubMed

    Lestremau, François; Cooper, Andrew; Szucs, Roman; David, Frank; Sandra, Pat

    2006-03-24

    High plate numbers were obtained in conventional LC by coupling columns and by using temperature to reduce the viscosity of the mobile phase. At 80 degrees C up to eight columns of 25 cm x 4.6 mm I.D. packed with 5 microm ODS particles could be coupled generating 180,000 effective plates while the pressure drop was only 350bar. For routine work, a set of four columns is preferred. The analysis times on one column operated at 30 degrees C and 1 mL/min flow rate and on four columns at 80 degrees C and 2 mL/min flow rate are the same in isoeluotropic conditions while the resolution is doubled. Multicolumn systems were successfully applied in isocratic and gradient mode for the analysis of pharmaceutical and environmental samples.

  20. Radial particle-size segregation during packing of particulates into cylindrical containers

    USGS Publications Warehouse

    Ripple, C.D.; James, R.V.; Rubin, J.

    1973-01-01

    In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.

  1. Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles

    NASA Technical Reports Server (NTRS)

    Saether, E.; Pipes, R. B.; Frankland, S. J. V.

    2002-01-01

    Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

  2. Electrochemical characteristics of flexible micro supercapacitors with reduced graphene oxide-carbon nanotubes composite electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig

    2018-06-01

    In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.

  3. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml

  4. Accumulation of BSA in Packed-bed Microfluidics

    NASA Astrophysics Data System (ADS)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  5. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  6. Polymer/Carbon Nanotube Networks for Smart, Self-Repairing and Light-Weighted Nanocomposites

    DTIC Science & Technology

    2012-11-05

    was develop smart, strong, and light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by...light-weight polymer/carbon nanotube (CNT) composites which will sense tribologically induced damages and self-heal by inhibiting such degradation...one of support references for EPSRC instrument grant application for Micro Materials NanoTest Vantage Testing Suite with NTX4Controller. The grant

  7. Transport models for desorption from natural soils packed in flushed columns

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.

    1999-06-01

    This paper addresses an experimental and theoretical study of sorbed contaminant removal from a column (or reactor) by flushing. This removal may take place by either volatilization or rinsing, and nonlinear sorption is accounted for by employing a Freundlich relationship. A one-dimensional nonequilibrium transport model is proposed which describes the unsteady mass transfer between flushing medium and soil phases in the column, using a linear chemical transfer model. The moving boundary problem is transferred, and a perturbation method is employed to obtain an approximate solution of the governing equations for a small Merkel number Me (this dimensionless number comprises the product of fluid residence time and the mass transfer coefficient). The solution reveals the effect of the various parameters, such as the Freundlich parameter n, on the contaminant transport in fluid phase and decay in solid phase. Applying the model to various experimental data results in values for the overall mass transfer coefficients, which are useful for engineering computations. Furthermore, the model enables the prediction of the initial soil contamination level as well as the parameter n solely from the measured exit contaminant concentrations in the flushing fluid. A thorough comparison of this prediction with the measured soil concentration (prior to the experiments) yields good agreement.

  8. Mesoscale mechanics of twisting carbon nanotube yarns.

    PubMed

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2015-03-12

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  9. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.

    PubMed

    Wang, Meng; Ford, Roseanne M

    2009-08-01

    The significance of chemotaxis in directing bacterial migration toward contaminants in natural porous media was investigated under groundwater flow conditions. A laboratory-scale column, with a coarse-grained sand core surrounded by a fine-grained annulus, was used to simulate natural aquifers with strata of different hydraulic conductivities. A chemoattractant source was placed along the central axis of the column to model contaminants trapped in the heterogeneous subsurface. Chemotactic bacterial strains, Escherichia coli HCB1 and Pseudomonas putida F1, introduced into the column by a pulse injection, were found to alter their transport behaviors under the influence of the attractant chemical emanating from the central source. For E. coil HCB1, approximately 18% more of the total population relative to the control without attractant exited the column from the coarse sand layer due to the chemotactic effects of alpha-methylaspartate under an average fluid velocity of 5.1 m/d. Although P. putida F1 demonstrated no observable changes in migration pathways with the model contaminant acetate under the same flow rate, when the flow rate was reduced to 1.9 m/d, approximately 6-10% of the population relative to the control migrated from the fine sand layer toward attractant into the coarse sand layer. Microbial transport properties were further quantified by a mathematical model to examine the significance of bacterial motility and chemotaxis under different hydrodynamic conditions, which suggested important considerations for strain selection and practical operation of bioremediation schemes.

  10. The electrical conductance growth of a metallic granular packing

    NASA Astrophysics Data System (ADS)

    Jakšić, Zorica M.; Cvetković, Milica; Šćepanović, Julija R.; Lončarević, Ivana; Budinski-Petković, Ljuba; Vrhovac, Slobodan B.

    2017-06-01

    We report on measurements of the electrical conductivity on a two-dimensional packing of metallic disks when a stable current of 1 mA flows through the system. At low applied currents, the conductance σ is found to increase by a pattern σ( t) = σ ∞ - Δσ E α [ - ( t/ τ) α ], where E α denotes the Mittag-Leffler function of order α ∈ (0,1). By changing the inclination angle θ of the granular bed from horizontal, we have studied the impact of the effective gravitational acceleration g e ff = gsin θ on the relaxation features of the conductance σ( t). The characteristic timescale τ is found to grow when effective gravity g e ff decreases. By changing both the distance between the electrodes and the number of grains in the packing, we have shown that the long term resistance decay observed in the experiment is related to local micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow both creation and breakdown of micro-contacts between two disks, we present an approach to granular conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way, the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the interface switch stochastically between two possible states, "on" and "off", characterizing the conductivity of the micro-contact. We assume that the time intervals between the consecutive changes of state are governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described by an exact fractional kinetic equations.

  11. Enantioseparation of omeprazole--effect of different packing particle size on productivity.

    PubMed

    Enmark, Martin; Samuelsson, Jörgen; Forssén, Patrik; Fornstedt, Torgny

    2012-06-01

    Enantiomeric separation of omeprazole has been extensively studied regarding both product analysis and preparation using several different chiral stationary phases. In this study, the preparative chiral separation of omeprazole is optimized for productivity using three different columns packed with amylose tris (3,5-dimethyl phenyl carbamate) coated macroporous silica (5, 10 and 25 μm) with a maximum allowed pressure drop ranging from 50 to 400 bar. This pressure range both covers low pressure process systems (50-100 bar) and investigates the potential for allowing higher pressure limits in preparative applications in a future. The process optimization clearly show that the larger 25 μm packing material show higher productivity at low pressure drops whereas with increasing pressure drops the smaller packing materials have substantially higher productivity. Interestingly, at all pressure drops, the smaller packing material result in lower solvent consumption (L solvent/kg product); the higher the accepted pressure drop, the larger the gain in reduced solvent consumption. The experimental adsorption isotherms were not identical for the different packing material sizes; therefore all calculations were recalculated and reevaluated assuming identical adsorption isotherms (with the 10 μm isotherm as reference) which confirmed the trends regarding productivity and solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparison of corneal collagen cross-linking (PACK-CXL) and voriconazole treatments in experimental fungal keratitis.

    PubMed

    Özdemir, Hüseyin Baran; Kalkancı, Ayşe; Bilgihan, Kamil; Göçün, Pınar Uyar; Öğüt, Betül; Karakurt, Funda; Erdoğan, Merve

    2018-06-04

    To compare the antifungal efficacy of corneal collagen cross-linking with photoactivated riboflavin (PACK-CXL) and voriconazole in experimental Fusarium solani and Candida albicans keratitis models. Sixty-four corneas of 32 New Zealand rabbits were included and divided into two main groups. Intrastromal injection of Fusarium and Candida suspensions was performed, and it was observed that keratitis was formed on the third day. Both groups were randomly separated into the following four groups: control, PACK-CXL, voriconazole and PACK-CXL combined with voriconazole. PACK-CXL was applied using 0.25% riboflavin in an accelerated Dresden protocol (total ultraviolet A dose 5.4 J/cm²). Voriconazole was applied topically as 7x1/day with a dose of 1% (10 mg/ml). Corneal buttons were excised on the tenth day, and microbiological and pathological examinations were performed. The PACK-CXL and PACK-CXL combined with voriconazole groups each had 100 colony-forming unit (CFU/ml) of reproduced micro-organisms compared with 500 CFU/ml in the voriconazole group and 1500 CFU/ml in the control group (p < 0.001) in the Fusarium keratitis model. The PACK-CXL combined with voriconazole group had 100 CFU/ml, the PACK-CXL group had 150 CFU/ml, and the voriconazole group had 200 CFU/ml of reproduced micro-organisms compared with 4000 CFU/ml in the control group (p < 0.002) in the Candida keratitis model. (p < 0.001). Fewer hyphae and non-specific stromal changes were observed in the pathological cross sections examined in subgroups that used CXL. There was less fungus reproduction and a lower keratitis score for Fusarium solani and Candida albicans in the treatment groups compared to the control groups, especially in groups that used PACK-CXL. These results suggest that it is useful to combine PACK-CXL treatment with medical treatment in the fungal keratitis algorithm at the early stage of the disease. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John

  13. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  14. Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications

    PubMed Central

    Preti, Raffaella

    2016-01-01

    The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis. PMID:27143972

  15. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  16. Phenol Biodegradation by Free and Immobilized Candida tropicalis RETL-Crl on Coconut Husk and Loofah Packed in Biofilter Column

    NASA Astrophysics Data System (ADS)

    Shazryenna, D.; Ruzanna, R.; Jessica, M. S.; Piakong, M. T.

    2015-04-01

    Phenols and its derivatives are environmental pollutant commonly found in many industrial effluents. It is toxic in nature and causes various health hazards. However, they are poorly removed in conventional biological processes due to their toxicity. Immobilization of microbial cells has received increasing interest in the field of waste treatment and creates opportunities in a wide range of sectors including environmental pollution control. Live cells of phenol-degrading yeast, Candida tropicalis RETL-Crl, were immobilized on coconut husk and loofah by adsorption. The immobolized particle was packed into biofilter column which used for continuous treatment of a phenol with initial phenol concentration of 3mM. Both loofah and coconut husk have similar phenol biodegradation rate of 0.0188 gL-1h-1 within 15 hours to achieve a phenol removal efficiency of 100%. However loofah have lower biomass concentration of 4.22 gL-1 compared to biomass concentration on coconut husk, 4.39 gL-1. Coconut husk contain higher biomass concentration which makes it better support material than loofah. Fibrous matrices such as loofah and coconut husk provide adequate supporting surfaces for cell adsorption, due to their high specific surface area. Therefore, coconut husk and loofah being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from wastewater.

  17. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  18. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    , an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ˜35% and ˜65%, respectively, in tensile strength (˜0.8 GPa) and modulus (˜90 GPa) during tensile testing; an ˜20% improvement in electrical conductivity (˜80000 S m-1) was also reported. The mechanism of the microwave response of CNTs was discussed. Such a microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ˜30 mm2 s-1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ˜27 and ˜540 W m-1 K-1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing

  19. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    PubMed

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns.

    PubMed

    Zhang, Yue; Banks, Charles

    2006-02-01

    The biosorption of Cu, Pb, Zn and Ni from a mixed solution of the metals was investigated in continuous flow packed columns containing polyurethane immobilised biomass. The characteristics and biosorption properties of Sphagnum moss, the brown seaweed Ascophyllum nodosum, waste biomass from the preparation of sunflower oil, and whole plant maize were compared. All the biomass types showed a preference for the sequestration of Pb followed by Cu, with Ni and Zn having roughly equal affinity. With continuous metal loading to the column there was an initial binding of all metals and then a displacement of the lower affinity metals by those with a high affinity. This led to a chromatographic effect in the column with breakthrough concentrations for low-affinity metals higher than the concentration in the feed. A similar phenomenon was found on desorption using acidic solutions where low-affinity metals were desorbed preferentially. The results also indicated that despite competitive displacement of one metal species by another the biomass appeared to succeed in retaining some low-affinity metal species indicating that there may be selective sites present with different affinity characteristics. When using a multi-metal solution with Cu, Pb, Zn and Ni at equal 10 mgl(-1) concentrations as column influent, the total quantities of metal sequestered were: seaweed, 117.3 mg g(-1); sunflower waste, 33.2 mg g(-1); Sphagnum moss, 32.5 mg g(-1); and maize, 2.3 mg g(-1). The use of an acid base potentiometric titration showed a relationship between the number of acid functional groups and biosorption capacity, although this was not proportional for the biomass types studied. It can, however, be used in conjunction with a simple classification of metals into high and low-affinity bands to make a preliminary assessment of a biosorption system.

  1. Continuous production of butanol from starch-based packing peanuts.

    PubMed

    Ezeji, Thaddeus C; Groberg, Marisa; Qureshi, Nasib; Blaschek, Hans P

    2003-01-01

    Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starchbased packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h-1. This resulted in a productivity of 0.27 g/(L h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.

  2. Effect of packing method on the randomness of disc packings

    NASA Astrophysics Data System (ADS)

    Zhang, Z. P.; Yu, A. B.; Oakeshott, R. B. S.

    1996-06-01

    The randomness of disc packings, generated by random sequential adsorption (RSA), random packing under gravity (RPG) and Mason packing (MP) which gives a packing density close to that of the RSA packing, has been analysed, based on the Delaunay tessellation, and is evaluated at two levels, i.e. the randomness at individual subunit level which relates to the construction of a triangle from a given edge length distribution and the randomness at network level which relates to the connection between triangles from a given triangle frequency distribution. The Delaunay tessellation itself is also analysed and its almost perfect randomness at the two levels is demonstrated, which verifies the proposed approach and provides a random reference system for the present analysis. It is found that (i) the construction of a triangle subunit is not random for the RSA, MP and RPG packings, with the degree of randomness decreasing from the RSA to MP and then to RPG packing; (ii) the connection of triangular subunits in the network is almost perfectly random for the RSA packing, acceptable for the MP packing and not good for the RPG packing. Packing method is an important factor governing the randomness of disc packings.

  3. Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT

    DTIC Science & Technology

    2006-09-01

    packed uni- form CNTs that are spatially isolated from each other is to use a growth template. Highly ordered anodic aluminum oxide ( AAO ) template can...process for evaporating thick aluminum of high quality and good adhesion. 15. SUBJECT TERMS Anodic Aluminum Oxide Template, Carbon Nanotubes (CNTs...within the highly ordered nanopores of an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented

  4. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  5. Mini-column assay for rapid detection of malachite green in fish.

    PubMed

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The role of silica colloids on facilitated cesium transport through glass bead columns and modeling

    NASA Astrophysics Data System (ADS)

    Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.

    1998-05-01

    Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient

  7. Title: Experimental and analytical study of frictional anisotropy of nanotubes

    NASA Astrophysics Data System (ADS)

    Riedo, Elisa; Gao, Yang; Li, Tai-De; Chiu, Hsiang-Chih; Kim, Suenne; Klinke, Christian; Tosatti, Erio

    The frictional properties of Carbon and Boron Nitride nanotubes (NTs) are very important in a variety of applications, including composite materials, carbon fibers, and micro/nano-electromechanical systems. Atomic force microscopy (AFM) is a powerful tool to investigate with nanoscale resolution the frictional properties of individual NTs. Here, we report on an experimental study of the frictional properties of different types of supported nanotubes by AFM. We also propose a quantitative model to describe and then predict the frictional properties of nanotubes sliding on a substrate along (longitudinal friction) or perpendicular (transverse friction) their axis. This model provides a simple but general analytical relationship that well describes the acquired experimental data. As an example of potential applications, this experimental method combined with the proposed model can guide to design better NTs-ceramic composites, or to self-assemble the nanotubes on a surface in a given direction. M. Lucas et al., Nature Materials 8, 876-881 (2009).

  8. Cyclodextrins as a chiral mobile phase additive in nano-liquid chromatography: comparison of reversed-phase silica monolithic and particulate capillary columns.

    PubMed

    Rocco, Anna; Maruška, Audrius; Fanali, Salvatore

    2012-03-01

    Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R(s) = 1.80 for naproxen to R(s) = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R(s) value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R(s) = 0.89).

  9. Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catchpole, O.J.; Kamp, J.C. von; Grey, J.B.

    1997-10-01

    Continuous extraction of squalene from shark liver oil using supercritical carbon dioxide was carried out in both laboratory and pilot scale plant. The shark liver oil contained around 50% by weight squalene, which was recovered as the main extract stream. The other major components in the oil were triglycerides, which were recovered as raffinate, and pristane, which was recovered as a second extract stream. Separation performance was determined as a function of temperature; pressure; oil to carbon dioxide flow rate ratio, packed height and type of packing; and reflux ratio. The pressure, temperature, and feed oil concentration of squalene determinedmore » the maximum loading of oil in carbon dioxide. The oil to carbon dioxide ratio determined the squalene concentration in both the product stream and raffinate stream. The ratio of oil flow rate to the flow rate of squalene required to just saturate carbon dioxide was found to be a useful correlating parameter for the oil loadings and product compositions. Of the three packings investigated, wire wool gave the best separation efficiency and Raschig rings the worst efficiency. Mass transfer correlations from the literature were used to estimate the number of transfer units (NTU) from experimental data and literature correlations. NTU`s from the experimental data were comparable to predictions at a pilot scale but were underpredicted at the laboratory scale. The use of reflux at the pilot scale enabled the concentration of squalene in the product stream to be increased from 92% by mass to a maximum of 99% by mass at fractionation conditions of 250 bar and 333 K.« less

  10. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  11. Investigation of holdup and axial dispersion of liquid phase in a catalytic exchange column using radiotracer technique.

    PubMed

    Kumar, Rajesh; Pant, H J; Goswami, Sunil; Sharma, V K; Dash, A; Mishra, S; Bhanja, K; Mohan, Sadhana; Mahajani, S M

    2017-03-01

    Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (H T ) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pre-treatment of pyridine wastewater by new cathodic-anodic-electrolysis packing.

    PubMed

    Jin, Yang; Yue, Qinyan; Yang, Kunlun; Wu, Suqing; Li, Shengjie; Gao, Baoyu; Gao, Yuan

    2018-01-01

    A novel cathodic-anodic-electrolysis packing (CAEP) used in the treatment of pyridine wastewater was researched, which mainly consisted of 4,4'-diamino-2,2'-disulfonic acid (DSD acid) industrial iron sludge. The physical properties and morphology of the packing were studied. The CAEP was used in a column reactor during the pretreatment of pyridine wastewater. The influence of pH, hydraulic retention time (HRT), the air-liquid ratio (A/L) and the initial concentration of pyridine were investigated by measuring the removal of total organic carbon (TOC) and pyridine. The characterization results showed that the bulk density, grain density, water absorption percentage and specific surface area were 921kg/m 3 , 1086kg/m 3 , 25% and 29.89m 2 /g, respectively; the removal of TOC and pyridine could reach 50% and 58% at the optimal experimental conditions (pH=3, HRT=8hr, A/L=2). Notably, the surface of the packing was renewed constantly during the running of the filter, and the handling capacity was stable after running for three months. Copyright © 2017. Published by Elsevier B.V.

  13. Specific Yield--Column drainage and centrifuge moisture content

    USGS Publications Warehouse

    Johnson, A.I.; Prill, R.C.; Morris, D.A.

    1963-01-01

    The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the

  14. Young adult smokers' perceptions of plain packs, numbered packs and pack inserts in Turkey: a focus group study.

    PubMed

    Mucan, Burcu; Moodie, Crawford

    2017-11-09

    The Turkish Government's 'National Tobacco Control Program 2015-2018' included plans to introduce plain packaging and also a ban on brand names on cigarette packs, allowing only assigned numbers on packs. We explored perceptions of these proposed measures, and also pack inserts with cessation messages, another novel way of using the packaging to communicate with consumers. Eight focus groups were conducted with 47 young adult smokers in Manisa and Kutahya (Turkey) in December 2016. Participants were shown three straight-edged plain cigarette packs, as required in Australia, and then three bevelled-edged plain packs, as permitted in the UK. They were then shown plain packs with numbers rather than brand names, and finally three pack inserts with messages encouraging quitting or offering tips on how to do so. Participants were asked about their perceptions of each. Plain packs were considered unappealing and off-putting, although the bevelled-edged packs were viewed more favourably than the straight-edged packs. Numbered packs were thought by some to diminish the appeal created by the brand name and potentially decrease interest among never smokers and newer smokers. Pack inserts were thought to have less of an impact than the on-pack warnings, but could potentially help discourage initiation and encourage cessation. That bevelled-edged plain packs were perceived more positively than straight-edged plain packs is relevant to countries planning to introduce plain packaging. The study provides a first insight into smokers' perceptions of a ban on brand names, which was perceived to reduce appeal among young people. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Specific yield - laboratory experiments showing the effect of time on column drainage

    USGS Publications Warehouse

    Prill, Robert C.; Johnson, A.I.; Morris, Donald Arthur

    1965-01-01

    The increasing use of ground water from many major aquifers in the United States has required a more thorough understanding of gravity drainage, or specific yield. This report describes one phase of specific yield research by the U.S. Geological Survey's Hydrologic Laboratory in cooperation with the California Department of Water Resources. An earlier phase of the research concentrated on the final distribution of moisture retained after drainage of saturated columns of porous media. This report presents the phase that concentrated on the distribution of moisture retained in similar columns after drainage for various periods of time. Five columns, about 4 cm in diameter by 170 cm long, were packed with homogenous sand of very fine, medium, and coarse sizes, and one column was packed with alternating layers of coarse and medium sand. The very fine materials were more uniform in size range than were the medium materials. As the saturated columns drained, tensiometers installed throughout the length recorded changes in moisture tension. The relation of tension to moisture content, determined for each of the materials, was then used to convert the tension readings to moisture content. Data were then available on the distribution of retained moisture for different periods of drainage from 1 to 148 hours. Data also are presented on the final distribution of moisture content by weight and volume and on the degree of saturation. The final zone of capillary saturation was approximately 12 cm for coarse sand, 13 cm for medium sand, and 52 cm for very fine sand. The data showed these zones were 92 to 100 percent saturated. Most of the outflow from the columns occurred in the earlier hours of drainage--90 percent in 1 hour for the coarse materials, 50 percent for the medium, and 60 percent for the very fine. Although the largest percentage of the specific yield was reached during the early hours of .drainage, this study amply demonstrates that a very long time would be

  16. Bernal's road to random packing and the structure of liquids

    NASA Astrophysics Data System (ADS)

    Finney, John L.

    2013-11-01

    Until the 1960s, liquids were generally regarded as either dense gases or disordered solids, and theoretical attempts at understanding their structures and properties were largely based on those concepts. Bernal, himself a crystallographer, was unhappy with either approach, preferring to regard simple liquids as 'homogeneous, coherent and essentially irregular assemblages of molecules containing no crystalline regions'. He set about realizing this conceptual model through a detailed examination of the structures and properties of random packings of spheres. In order to test the relevance of the model to real liquids, ways had to be found to realize and characterize random packings. This was at a time when computing was slow and in its infancy, so he and his collaborators set about building models in the laboratory, and examining aspects of their structures in order to characterize them in ways which would enable comparison with the properties of real liquids. Some of the imaginative - often time consuming and frustrating - routes followed are described, as well the comparisons made with the properties of simple liquids. With the increase of the power of computers in the 1960s, computational approaches became increasingly exploited in random packing studies. This enabled the use of packing concepts, and the tools developed to characterize them, in understanding systems as diverse as metallic glasses, crystal-liquid interfaces, protein structures, enzyme-substrate interactions and the distribution of galaxies, as well as their exploitation in, for example, oil extraction, understanding chromatographic separation columns, and packed beds in industrial processes.

  17. Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.

    PubMed

    Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon

    2016-02-01

    The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.

  18. A micromachined carbon nanotube film cantilever-based energy cell

    NASA Astrophysics Data System (ADS)

    Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long

    2012-08-01

    This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm-2 when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems.

  19. Construction and Passive Q-Switching of a Ring-Cavity Erbium-Doped Fiber Laser Using Carbon Nanotubes as a Saturable Absorber

    NASA Astrophysics Data System (ADS)

    Scott, Austin Murphy

    The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single-walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 +/- 0.11 micros and 2.74 +/- 0.14 micros, with repetition rates of 25.36 +/- 0.53 kHz and 37.77 +/- 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 +/- 1.08 micros and 3.58 +/- 0.12 micros, with repetition rates of 25.13 +/- 0.63 kHz and 26.46 +/- 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 +/- 0.007 micros duration and 142.8 +/- 1 kHz repetition rate.

  20. A built-in sensor with carbon nanotubes coated by Ag clusters for deformation monitoring of glass fibre/epoxy composites

    NASA Astrophysics Data System (ADS)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.; Lloret Pertegás, S.; Schledjewski, R.; Kovar, M.

    2018-03-01

    A multiwalled carbon nanotube network embedded in a polyurethane membrane was integrated into a glass fibre reinforced epoxy composite by means of vacuum infusion to become a part of the composite and has been serving for a strain self-sensing functionality. Besides the pristine nanotubes also nanotubes with Ag nanoparticles attached to their surfaces were used to increase strain sensing. Moreover, the design of the carbon nanotube/polyurethane sensor allowed formation of network micro-sized cracks which increased its reversible electrical resistance resulted in an enhancement of strain sensing. The resistance sensitivity, quantified by a gauge factor, increased more than hundredfold in case of a pre-strained sensor with Ag decorated nanotubes in comparison with the sensor with pristine nanotubes.

  1. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.

    PubMed

    Boncel, Slawomir; Pattinson, Sebastian W; Geiser, Valérie; Shaffer, Milo S P; Koziol, Krzysztof K K

    2014-01-01

    The catalytic chemical vapour deposition (c-CVD) technique was applied in the synthesis of vertically aligned arrays of nitrogen-doped carbon nanotubes (N-CNTs). A mixture of toluene (main carbon source), pyrazine (1,4-diazine, nitrogen source) and ferrocene (catalyst precursor) was used as the injection feedstock. To optimize conditions for growing the most dense and aligned N-CNT arrays, we investigated the influence of key parameters, i.e., growth temperature (660, 760 and 860 °C), composition of the feedstock and time of growth, on morphology and properties of N-CNTs. The presence of nitrogen species in the hot zone of the quartz reactor decreased the growth rate of N-CNTs down to about one twentieth compared to the growth rate of multi-wall CNTs (MWCNTs). As revealed by electron microscopy studies (SEM, TEM), the individual N-CNTs (half as thick as MWCNTs) grown under the optimal conditions were characterized by a superior straightness of the outer walls, which translated into a high alignment of dense nanotube arrays, i.e., 5 × 10(8) nanotubes per mm(2) (100 times more than for MWCNTs grown in the absence of nitrogen precursor). In turn, the internal crystallographic order of the N-CNTs was found to be of a 'bamboo'-like or 'membrane'-like (multi-compartmental structure) morphology. The nitrogen content in the nanotube products, which ranged from 0.0 to 3.0 wt %, was controlled through the concentration of pyrazine in the feedstock. Moreover, as revealed by Raman/FT-IR spectroscopy, the incorporation of nitrogen atoms into the nanotube walls was found to be proportional to the number of deviations from the sp(2)-hybridisation of graphene C-atoms. As studied by XRD, the temperature and the [pyrazine]/[ferrocene] ratio in the feedstock affected the composition of the catalyst particles, and hence changed the growth mechanism of individual N-CNTs into a 'mixed base-and-tip' (primarily of the base-type) type as compared to the purely 'base'-type for undoped

  2. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Šmatko, Vasilij; Campo, Eva M.; Pavlova, Ewa; Omastová, Mária

    2015-02-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators.

  3. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2013-10-15

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of themore » surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.« less

  5. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  6. Applying high-throughput methods to develop a purification process for a highly glycosylated protein.

    PubMed

    Sanaie, Nooshafarin; Cecchini, Douglas; Pieracci, John

    2012-10-01

    Micro-scale chromatography formats are becoming more routinely used in purification process development because of their ability to rapidly screen large number of process conditions at a time with minimal material. Given the usual constraints that exist on development timelines and resources, these systems can provide a means to maximize process knowledge and process robustness compared to traditional packed column formats. In this work, a high-throughput, 96-well filter plate format was used in the development of the cation exchange and hydrophobic interaction chromatography steps of a purification process designed to alter the glycoform distribution of a small protein. The significant input parameters affecting process performance were rapidly identified for both steps and preliminary operating conditions were identified. These ranges were verified in a packed chromatography column in order to assess the ability of the 96-well plate to predict packed column performance. In both steps, the 96-well plate format consistently led to underestimated glycoform-enrichment levels and to overestimated product recovery rates compared to the column-based approach. These studies demonstrate that the plate format can be used as a screening tool to narrow the operating ranges prior to further optimization on packed chromatography columns. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Yu, Dingshan; Goh, Kunli; Wang, Hong; Wei, Li; Jiang, Wenchao; Zhang, Qiang; Dai, Liming; Chen, Yuan

    2014-07-01

    Micro-supercapacitors are promising energy storage devices that can complement or even replace batteries in miniaturized portable electronics and microelectromechanical systems. Their main limitation, however, is the low volumetric energy density when compared with batteries. Here, we describe a hierarchically structured carbon microfibre made of an interconnected network of aligned single-walled carbon nanotubes with interposed nitrogen-doped reduced graphene oxide sheets. The nanomaterials form mesoporous structures of large specific surface area (396 m2 g-1) and high electrical conductivity (102 S cm-1). We develop a scalable method to continuously produce the fibres using a silica capillary column functioning as a hydrothermal microreactor. The resultant fibres show a specific volumetric capacity as high as 305 F cm-3 in sulphuric acid (measured at 73.5 mA cm-3 in a three-electrode cell) or 300 F cm-3 in polyvinyl alcohol (PVA)/H3PO4 electrolyte (measured at 26.7 mA cm-3 in a two-electrode cell). A full micro-supercapacitor with PVA/H3PO4 gel electrolyte, free from binder, current collector and separator, has a volumetric energy density of ~6.3 mWh cm-3 (a value comparable to that of 4 V-500 µAh thin-film lithium batteries) while maintaining a power density more than two orders of magnitude higher than that of batteries, as well as a long cycle life. To demonstrate that our fibre-based, all-solid-state micro-supercapacitors can be easily integrated into miniaturized flexible devices, we use them to power an ultraviolet photodetector and a light-emitting diode.

  8. Carbon Nanotube Electrodes for Effective Interfacing with Retinal Tissue

    PubMed Central

    Shoval, Asaf; Adams, Christopher; David-Pur, Moshe; Shein, Mark; Hanein, Yael; Sernagor, Evelyne

    2009-01-01

    We have investigated the use of carbon nanotube coated microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60, 30 μm diameter electrodes at spacing of 200 μm. These electrodes were coated via chemical vapor deposition of carbon nanotubes, resulting in conducting, three dimensional surfaces with a high interfacial area. These attributes are important both for the quality of the cell-surface coupling as well as for electro-chemical interfacing efficiency. The entire chip was packaged to fit a commercial multielectrode recording and stimulation system. Electrical recordings of spontaneous spikes from whole-mount neonatal mouse retinas were consistently obtained minutes after retinas were placed over the electrodes, exhibiting typical bursting and propagating waves. Most importantly, the signals obtained with carbon nanotube electrodes have exceptionally high signal to noise ratio, reaching values as high as 75. Moreover, spikes are marked by a conspicuous gradual increase in amplitude recorded over a period of minutes to hours, suggesting improvement in cell-electrode coupling. This phenomenon is not observed in conventional commercial electrodes. Electrical stimulation using carbon nanotube electrodes was also achieved. We attribute the superior performances of the carbon nanotube electrodes to their three dimensional nature and the strong neuro-carbon nanotube affinity. The results presented here show the great potential of carbon nanotube electrodes for retinal interfacing applications. Specifically, our results demonstrate a route to achieve a reduction of the electrode down to few micrometers in order to achieve high efficacy local stimulation needed in retinal prosthetic devices. PMID:19430595

  9. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  10. Carbon Nanotubes Growth on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  11. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  12. Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  13. MicroSPE-nanoLC-ESI-MS/MS Using 10-μm-i.d. Silica-Based Monolithic Columns for Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Quanzhou; Page, Jason S.; Tang, Keqi

    2007-01-01

    Silica-based monolithic narrow bore capillary columns (25 cm x 10 µm i.d.) with an integrated nanoESI emitter has been developed to provide high quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray performance to be obtained at flow rates of ~10 nL/min. In an initial application we identified 5510 unique peptides covering 1443 distinct Shewanella oneidensis proteins from a 300 ng tryptic digest sample in a single 4-h LC-MS/MS analysis using a linear ion trap MS (LTQ). We found the use of an integrated monolithic ESI emitter provided enhancedmore » resistance to clogging and good run-to-run reproducibility.« less

  14. Packing of muscles in the rabbit shank influences three-dimensional architecture of M. soleus.

    PubMed

    Wick, Carolin; Böl, Markus; Müller, Florian; Blickhan, Reinhard; Siebert, Tobias

    2018-07-01

    Isolated and packed muscles (e.g. in the calf) exhibit different three-dimensional muscle shapes. In packed muscles, cross-sections are more angular compared to the more elliptical ones in isolated muscles. As far as we know, it has not been examined yet, whether the shape of the muscle in its packed condition influences its internal arrangement of muscle fascicles and accordingly the contraction behavior in comparison to the isolated condition. To evaluate the impact of muscle packing, we examined the three-dimensional muscle architecture of isolated and packed rabbit M. soleus for different ankle angles (65°, 75°, 85°, 90°, and 95°) using manual digitization (MicroScribe ® MLX). In general, significantly increased values of pennation angle and fascicle curvature were found in packed compared to isolated M. soleus (except for fascicle curvature at 90° ankle angle). On average, fascicle length of isolated muscles exceeded fascicle lengths of packed muscles by 2.6%. Reduction of pennation angle in the packed condition had only marginal influence on force generation (about 1% of maximum isometric force) in longitudinal direction (along the line of action) although an increase of transversal force component (perpendicular to the line of action) of about 26% is expected. Results of this study provide initial evidence that muscle packing limits maximum muscle performance observed in isolated M. soleus. Besides an enhanced understanding of the impact of muscle packing on architectural parameters, the outcomes of this study are essential for realistic three-dimensional muscle modeling and model validation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    PubMed

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri

    2016-03-15

    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.

    PubMed

    Che, Yuchi; Wang, Chuan; Liu, Jia; Liu, Bilu; Lin, Xue; Parker, Jason; Beasley, Cara; Wong, H-S Philip; Zhou, Chongwu

    2012-08-28

    The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.

  17. Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres.

    PubMed

    Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang

    2014-12-15

    Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches

    NASA Astrophysics Data System (ADS)

    Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.

    2013-10-01

    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.

  19. Hemifield columns co-opt ocular dominance column structure in human achiasma.

    PubMed

    Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S

    2018-01-01

    In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    NASA Astrophysics Data System (ADS)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  1. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structure-Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing.

    PubMed

    Headrick, Robert J; Tsentalovich, Dmitri E; Berdegué, Julián; Bengio, Elie Amram; Liberman, Lucy; Kleinerman, Olga; Lucas, Matthew S; Talmon, Yeshayahu; Pasquali, Matteo

    2018-03-01

    At the microscopic scale, carbon nanotubes (CNTs) combine impressive tensile strength and electrical conductivity; however, their macroscopic counterparts have not met expectations. The reasons are variously attributed to inherent CNT sample properties (diameter and helicity polydispersity, high defect density, insufficient length) and manufacturing shortcomings (inadequate ordering and packing), which can lead to poor transmission of stress and current. To efficiently investigate the disparity between microscopic and macroscopic properties, a new method is introduced for processing microgram quantities of CNTs into highly oriented and well-packed fibers. CNTs are dissolved into chlorosulfonic acid and processed into aligned films; each film can be peeled and twisted into multiple discrete fibers. Fibers fabricated by this method and solution-spinning are directly compared to determine the impact of alignment, twist, packing density, and length. Surprisingly, these discrete fibers can be twice as strong as their solution-spun counterparts despite a lower degree of alignment. Strength appears to be more sensitive to internal twist and packing density, while fiber conductivity is essentially equivalent among the two sets of samples. Importantly, this rapid fiber manufacturing method uses three orders of magnitude less material than solution spinning, expanding the experimental parameter space and enabling the exploration of unique CNT sources. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2007-01-01

    Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue. (c) 2007 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  4. Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2008-01-01

    An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a third component of micro-sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.

  5. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuhong

    localized transverse compression at low loads (muN to mN) and small displacements (nm to a few mum). Force, strain, stiffness, and electrical resistance were monitored simultaneously during compression experiments. The results showed that CNT/CF possess a high sensing capability between force and resistance. Hysteresis in both force-displacement and resistance-displacement curves was observed with CNT/CF, but was more evident as maximum strain increased and did not depend on strain rate. Force was higher and resistance was lower during compression as compared to decompression. A model is proposed to explain hysteresis where van der Waals forces between deformed and entangled nanotubes hinder decompression of some of the compressed tubes that are in contact with each other. This study provides a new understanding of the mechanical and electrical behavior of CNT/CF that will facilitate usage as stress and strain sensors in both stand-alone and composite materials applications. A novel method for in situ observation of nano-micro scale CNT/CF mechanical behavior by SEM has been developed in this study. The results indicated that deformation of vertical aligned CNT (VACNT) forest followed a column-like bending mechanism under localized radial (axial) compression. No fracture was observed even at very high compression strain on a VACNT forest. In order to fully understand CNT forest properties, the viscous creep behavior of VACNT arrays grown on flat Si substrate has also been characterized using a nanoindentation method. Resulting creep response was observed to consist of a short transient stage and a steady state stage in which the rate of displacement was constant. The strain rate sensitivity depended on the density of the nanotube arrays, but it was independent of the ramping (compression) rate of the indenter.

  6. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.

    PubMed

    Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-01-15

    Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon

  7. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  8. Transport of Escherichia coli in 25 m quartz sand columns

    NASA Astrophysics Data System (ADS)

    Lutterodt, G.; Foppen, J. W. A.; Maksoud, A.; Uhlenbrook, S.

    2011-01-01

    To help improve the prediction of bacteria travel distances in aquifers laboratory experiments were conducted to measure the distant dependent sticking efficiencies of two low attaching Escherichia coli strains (UCFL-94 and UCFL-131). The experimental set up consisted of a 25 m long helical column with a diameter of 3.2 cm packed with 99.1% pure-quartz sand saturated with a solution of magnesium sulfate and calcium chloride. Bacteria mass breakthrough at sampling distances ranging from 6 to 25.65 m were observed to quantify bacteria attachment over total transport distances ( αL) and sticking efficiencies at large intra-column segments ( αi) (> 5 m). Fractions of cells retained ( Fi) in a column segment as a function of αi were fitted with a power-law distribution from which the minimum sticking efficiency defined as the sticking efficiency of 0.001% bacteria fraction of the total input mass retained that results in a 5 log removal were extrapolated. Low values of αL in the order 10 - 4 and 10 - 3 were obtained for UCFL-94 and UCFL-131 respectively, while αi-values ranged between 10 - 6 to 10 - 3 for UCFL-94 and 10 - 5 to 10 - 4 for UCFL-131. In addition, both αL and αi reduced with increasing transport distance, and high coefficients of determination (0.99) were obtained for power-law distributions of αi for the two strains. Minimum sticking efficiencies extrapolated were 10 - 7 and 10 - 8 for UCFL-94 and UCFL-131, respectively. Fractions of cells exiting the column were 0.19 and 0.87 for UCFL-94 and UCL-131, respectively. We concluded that environmentally realistic sticking efficiency values in the order of 10 - 4 and 10 - 3 and much lower sticking efficiencies in the order 10 - 5 are measurable in the laboratory, Also power-law distributions in sticking efficiencies commonly observed for limited intra-column distances (< 2 m) are applicable at large transport distances(> 6 m) in columns packed with quartz grains. High fractions of bacteria populations

  9. Laser-directed 3D assembly of carbon nanotubes using two-photon polymerization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiong, Wei; Jiang, Li Jia; Zhou, Yunshen; Li, Dawei; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng

    2017-02-01

    Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).

  10. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    USDA-ARS?s Scientific Manuscript database

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  11. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-03-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.

  12. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  13. Hollow Fibers Structured Packings in Olefin/Paraffin Distillation: Apparatus Scale-Up and Long-Term Stability

    DOE PAGES

    Yang, Dali; Le, Loan; Martinez, Ronald; ...

    2013-06-21

    Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanningmore » electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.« less

  14. Aging effect on Zn retention on a calcareous soil: column experiments and synchrotron X-ray micro-spectroscopic investigation.

    PubMed

    Sayen, Stéphanie; Guillon, Emmanuel

    2014-07-15

    In this study, a combination of column experiments and micro-analytical techniques exploiting synchrotron generated X-rays was used to assess the effect of aging time on Zn retention and mobility in the specific case of calcareous soils (high pH value, ≈ 8). The samples were subjected to aging for 2, 6, 17, and 63 days. Freshly added Zn mainly existed as an exchangeable form, and this metal fraction decreased over time due to Zn redistribution to stronger binding sites. Thus, after aging for 63 days, 45% of Zn is remobilized from exchangeable sites to stronger binding sites. μ-XRF maps were used to find correlations among elements in the sample, and μ-XANES spectra were recorded to precise Zn speciation. These analyses evidenced an increasing partitioning of Zn from organic matter to iron oxy(hydr)oxides over time. The occurrence of hydrozincite is evidenced in all samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Impact of the column hardware volume on resolution in very high pressure liquid chromatography non-invasive investigations.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-11-13

    The impact of the column hardware volume (≃ 1.7 μL) on the optimum reduced plate heights of a series of short 2.1 mm × 50 mm columns (hold-up volume ≃ 80-90 μL) packed with 1.8 μm HSS-T3, 1.7 μm BEH-C18, 1.7 μm CSH-C18, 1.6 μm CORTECS-C18+, and 1.7 μm BEH-C4 particles was investigated. A rapid and non-invasive method based on the reduction of the system dispersion (to only 0.15 μL(2)) of an I-class Acquity system and on the corrected plate heights (for system dispersion) of five weakly retained n-alkanophenones in RPLC was proposed. Evidence for sample dispersion through the column hardware volume was also revealed from the experimental plot of the peak capacities for smooth linear gradients versus the corrected efficiency of a weakly retained alkanophenone (isocratic runs). The plot is built for a constant gradient steepness irrespective of the applied flow rates (0.01-0.30 mL/min) and column lengths (2, 3, 5, and 10 cm). The volume variance caused by column endfittings and frits was estimated in between 0.1 and 0.7 μL(2) depending on the applied flow rate. After correction for system and hardware dispersion, the minimum reduced plate heights of short (5 cm) and narrow-bore (2.1mm i.d.) beds packed with sub-2 μm fully and superficially porous particles were found close to 1.5 and 0.7, respectively, instead of the classical h values of 2.0 and 1.4 for the whole column assembly. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Carbon coated titanium dioxide nanotubes: synthesis, characterization and potential application as sorbents in dispersive micro solid phase extraction.

    PubMed

    García-Valverde, M T; Lucena, R; Galán-Cano, F; Cárdenas, S; Valcárcel, M

    2014-05-23

    In this article, carbon coated titanium dioxide nanotubes (c-TNTs) have been synthesized. The synthesis of the bare TNTs (b-TNTs) using anatase as precursor and their coating with a caramel layer have been performed by simple and cheap hydrothermal processes. The final conversion of the caramel layer in a carbon coating has been accomplished by a thermal treatment (600°C) in an inert (Ar) atmosphere. The c-TNTs have been characterized by different techniques including transmission microscopy, infrared spectroscopy, X-ray powder diffraction, thermogravimetry and Brunauer, Emmett and Teller (BET) adsorption isotherms. The extraction performance of the c-TNTs under a microextraction format has been evaluated and compared with that provided by b-TNTs and multiwalled carbon nanotubes (MWCNTs) using naproxen and ketoprofen as model analytes. c-TNTs provided better results than the other nanoparticles, especially at low acidic pH values. In addition, c-TNTs presented a better dispersibility than MWCNTs, which is very interesting for their use in dispersive micro-solid phase extraction. Finally, a microextraction format, adapted to low sample volumes, has been proposed and applied for the determination of naproxen and ketoprofen in saliva and urine samples by liquid chromatography with UV detection. The results indicate that this approach is promising for the analysis of biological samples. In fact, the recoveries were in the range between 96% and 119% while the precision, expressed as relative standard deviation, was better than 8.5% and 26.3% for urine and saliva, respectively. The detection limits were in the range 34.1-40.8μg/L for saliva samples and 81.1-110μg/L for urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization.

    PubMed

    Haddad, R; Cosnier, S; Maaref, A; Holzinger, M

    2009-12-01

    Single-walled carbon nanotubes were functionalized with biotin using either electropolymerization or formation of pi-stacking interactions for the construction of biosensors. Thanks to the high affinity of the avidin-biotin interactions, a biotinylated glucose oxidase (B-GOX) as a biomolecule model was immobilized on the biotinylated nanotubes. The influence of the biosensor configuration on their amperometric performances was investigated by changing the amount of nanotubes and the numbers of avidin/B-GOX layers. By increasing the amount of nanotube and avidin/B-GOX layers, both sensor setups show a perfect linear increase of immobilized enzymes reflecting a high reproducibility of our systems. The highest sensitivities (up to 5.2 mA M(-1) cm(-2)) and maximum current densities (up to 55 microA cm(-2)) were obtained using nanotube deposits modified by electrochemical coatings. In contrast, non-covalently functionalized biotin-nanotubes show a better permeability for the enzymatically generated hydrogen peroxide.

  18. Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column.

    PubMed

    Jiang, Xiaogang; Feng, Shun; Tian, Ruijun; Han, Guanghui; Jiang, Xinning; Ye, Mingliang; Zou, Hanfa

    2007-02-01

    An approach was developed to automate sample introduction for nanoflow LC-MS/MS (microLC-MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 microm id x 2 cm SCX trap column and a 75 microm id x 12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two-dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC-7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current microLC-MS/MS system. This system represented a promising platform for routine proteome analysis.

  19. Recent trends in ultra-fast HPLC: new generation superficially porous silica columns.

    PubMed

    Ali, Imran; Al-Othman, Zeid A; Nagae, Norikaju; Gaitonde, Vinay D; Dutta, Kamlesh K

    2012-12-01

    New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8), C(18), RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2)/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrodynamic chromatography of macromolecules using polymer monolithic columns.

    PubMed

    Edam, Rob; Eeltink, Sebastiaan; Vanhoutte, Dominique J D; Kok, Wim Th; Schoenmakers, Peter J

    2011-12-02

    The selectivity window of size-based separations of macromolecules was tailored by tuning the macropore size of polymer monolithic columns. Monolithic materials with pore sizes ranging between 75 nm and 1.2 μm were prepared in situ in large I.D. columns. The dominant separation mechanism was hydrodynamic chromatography in the flow-through pores. The calibration curves for synthetic polymers matched with the elution behavior by HDC separations in packed columns with 'analyte-to-pore' aspect ratios (λ) up to 0.2. For large-macropore monoliths, a deviation in retention behavior was observed for small polystyrene polymers (M(r)<20 kDa), which may be explained by a combined HDC-SEC mechanism for λ<0.02. The availability of monoliths with very narrow pore sizes allowed investigation of separations at high λ values. For high-molecular weight polymers (M(r)>300,000 Da) confined in narrow channels, the separation strongly depended on flow rate. Flow-rate dependent elution behavior was evaluated by calculation of Deborah numbers and confirmed to be outside the scope of classic shear deformation or slalom chromatography. Shear-induced forces acting on the periphery of coiled polymers in solution may be responsible for flow-rate dependent elution. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Gas chromatographic determination of fumigant residues in stored grains, using isooctane partitioning and dual column packings.

    PubMed

    Daft, J L

    1983-03-01

    A gas chromatographic (GC) procedure for determining fumigants in grains was developed. Fumigants were leached from grain samples with the official AOAC method using acetone-water (5 + 1). They were then partitioned from the leachate with isooctane, yielding a dry, stable extract that was analyzed by GC. Fortified sample recoveries ranged from 90 to 100%. Two GC columns were used, 20% OV-101 and 20% OV-225/20% OV-17 (2 + 1). These columns gave dissimilar retention profiles and baseline resolution for the 7 fumigants investigated: chloroform, ethylene dichloride, carbon tetrachloride, trichloroethylene, chloropicrin, ethylene dibromide, and tetrachloroethylene. Further tests showed that grain samples could be screened for fumigant residues by direct injection of the acetone-water leachates obtained using the AOAC method.

  2. Integrated protein analysis platform based on column switch recycling size exclusion chromatography, microenzymatic reactor and microRPLC-ESI-MS/MS.

    PubMed

    Yuan, Huiming; Zhou, Yuan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2009-10-30

    An integrated platform with the combination of proteins and peptides separation was established via the unit of on-line proteins digestion, by which proteins were in sequence separated by column switch recycling size exclusion chromatography (csrSEC), on-line digested by an immobilized trypsin microreactor, trapped and desalted by two parallel C8 precolumns, separated by microRPLC with the linear gradient of organic modifier concentration, and identified by ESI-MS/MS. A 6-protein mixture, with Mr ranging from 10 kDa to 80 kDa, was used to evaluate the performance of the integrated platform, and all proteins were identified with sequence coverage over 5.67%. Our experimental results demonstrate that such an integrated platform is of advantages such as good time compatibility, high peak capacity, and facile automation, which might be a promising approach for proteome study.

  3. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    NASA Astrophysics Data System (ADS)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and

  4. Exogenous factors contributing to column bed heterogeneity: Part 1: Consequences of 'air' injections in liquid chromatography.

    PubMed

    Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew

    2015-08-07

    It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column. Copyright © 2015. Published by Elsevier B.V.

  5. An efficient method to prepare magnetic hydroxyapatite-functionalized multi-walled carbon nanotubes nanocomposite for bone defects.

    PubMed

    Afroze, J D; Abden, M J; Islam, M A

    2018-05-01

    Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification

  7. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces.

    PubMed

    Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S

    2018-01-01

    The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.

  8. Development of sensitive determination method for fungicides from environmental water samples with Titanate nanotube array micro-solid phase extraction prior to high performance liquid chromatography.

    PubMed

    Huang, Yunrui; Zhou, Qingxiang; Xie, Guohong

    2013-01-01

    Fungicides have been widely used throughout the world, and the resulted pollution has absorbed great attention in recent years. Present study described an effective measurement technique for fungicides including thiram, metalaxyl, diethofencarb, myclobutanil and tebuconazole in environmental water samples. A micro-solid phase extraction (μSPE) was developed utilizing ordered TiO(2) nanotube array for determination of target fungicides prior to a high performance liquid chromatography (HPLC). The experimental results indicated that TiO(2) nanotube arrays demonstrated excellent merits on the preconcentration of fungicides, and excellent linear relationship between peak area and the concentration of fungicides was obtained in the range of 0.1-50 μg L(-1). The detection limits for the targeted fungicides were in the range of 0.016-0.086 μg L(-1) (S/N=3). Four real environmental water samples were used to validate the applicability of the proposed method, and good spiked recoveries in the range of 73.9-114% were achieved. A comparison of present method with conventional solid phase extraction was made and the results exhibited that proposed method resulted in better recoveries. The results demonstrated that this μ-SPE technique was a viable alternative for the analysis of fungicides in complex samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Moisture condensation behavior of hierarchically carbon nanotube-grafted carbon nanofibers.

    PubMed

    Park, Kyu-Min; Lee, Byoung-Sun; Youk, Ji Ho; Lee, Jinyong; Yu, Woong-Reol

    2013-11-13

    Hierarchical micro/nanosurfaces with nanoscale roughness on microscale uneven substrates have been the subject of much recent research interest because of phenomena such as superhydrophobicity. However, an understanding of the effect of the difference in the scale of the hierarchical entities, i.e., nanoscale roughness on microscale uneven substrates as opposed to nanoscale roughness on (a larger) nanoscale uneven surface, is still lacking. In this study, we investigated the effect of the difference in scale between the nano- and microscale features. We fabricated carbon nanotube-grafted carbon nanofibers (CNFs) by dispersing a catalyst precursor in poly (acrylonitrile) (PAN) solution, electrospinning the PAN/catalyst precursor solution, carbonization of electrospun PAN nanofibers, and direct growth of carbon nanotubes (CNTs) on the CNFs. We investigated the relationships between the catalyst concentrations, the size of catalyst nanoparticles on CNFs, and the sizes of CNFs and CNTs. Interestingly, the hydrophobic behavior of micro/nano and nano/nano hierarchical surfaces with water droplets was similar; however a significant difference in the water condensation behavior was observed. Water condensed into smaller droplets on the nano/nano hierarchical surface, causing it to dry much faster.

  10. Carbon nanotubes/fluorinated polymers nanocomposite thin films for electrical contacts lubrication

    NASA Astrophysics Data System (ADS)

    Benedetto, A.; Viel, P.; Noël, S.; Izard, N.; Chenevier, P.; Palacin, S.

    2007-09-01

    The need to operate in extreme environmental conditions (ultra high vacuum, high temperatures, aerospatial environment, …) and the miniaturization toward micro electromechanical systems is demanding new materials in the field of low-level electrical contacts lubrication. Dry and chemically immobilized lubrication is expected to be an alternative to the traditional wet lubricants oils. With the goal to conciliate electrical conductivity and lubricant properties we designed nanocomposite thin films composed of a 2D carbon nanotubes network embedded in an organic matrix. The nanotubes networks were deposited on gold surfaces modified by electrochemical cathodic grafting of poly(acrylonitrile). The same substrate served for covalently bonding the low-friction organic matrix. Three different matrixes were tested: a perfluorinated oligomer chemically grafted and two different polyfluorinated acrylates electrochemically grafted. The nanocomposite thin films have been characterized by ATR FT-IR, XPS and Raman spectroscopy. We measured the effects of the different matrixes and the nanotubes addition on the tribological properties and on the contact resistances of the films.

  11. Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆

    PubMed Central

    Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité

    2008-01-01

    Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497

  12. Virus movement in soil columns flooded with secondary sewage effluent.

    PubMed Central

    Lance, J C; Gerba, C P; Melnick, J L

    1976-01-01

    Secondary sewage effluent containing about 3 X 10(4) plaque-forming units of polio virus type 1 (LSc) per ml was passed through columns 250 cm in length packed with calcareous sand from an area in the Salt River bed used for ground-water recharge of secondary sewage effluent. Viruses were not detected in 1-ml samples extracted from the columns below the 160-cm level. However, viruses were detected in 5 of 43 100-ml samples of the column drainage water. Most of the viruses were adsorbed in the top 5 cm of soil. Virus removal was not affected by the infiltration rate, which varied between 15 and 55 cm/day. Flooding a column continuosly for 27 days with the sewage water virus mixture did not saturate the top few centimeters of soil with viruses and did not seem to affect virus movement. Flooding with deionized water caused virus desorption from the soil and increased their movement through the columns. Adding CaCl2 to the deionized water prevented most of the virus desorption. Adding a pulse of deionized water followed by sewage water started a virus front moving through the columns, but the viruses were readsorbed and none was detected in outflow samples. Drying the soil for 1 day between applying the virus and flooding with deionized water greatly reduced desorption, and drying for 5 days prevented desorption. Large reductions (99.99% or more) of virus would be expected after passage of secondary sewage effluent through 250 cm of the calcareous sand similar to that used in our laboratory columns unless heavy rains fell within 1 day after the application of sewage stopped. Such virus movement could be minimized by the proper management of flooding and drying cycles. PMID:185960

  13. Inorganic nanotubes.

    PubMed

    Tenne, Reshef; Rao, C N R

    2004-10-15

    Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.

  14. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    PubMed Central

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-01-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms. PMID:26984256

  15. Determination of organic peroxides by liquid chromatography with on-line post-column ultraviolet irradiation and peroxyoxalate chemiluminescence detection.

    PubMed

    Wada, Mitsuhiro; Inoue, Keiyu; Thara, Ayuko; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka

    2003-02-14

    A HPLC method was developed for the simultaneous determination of organic peroxides and hydrogen peroxide with peroxyoxalate chemiluminescence (PO-CL) detection following on-line UV irradiation. Organic peroxides [i.e., benzoyl peroxide (BP), tert.-butyl hydroperoxide (BHP), tert.-butyl perbenzoate (BPB), cumene hydroperoxide (CHP)] were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined by PO-CL detection. The conditions for UV irradiation and PO-CL detection were optimized by a flow injection analysis (FIA) system. Generation of hydrogen peroxide from peroxides with on-line UV irradiation also was confirmed by the FIA system by incorporating an enzyme column reactor immobilized with catalase. The separation of four organic peroxides and hydrogen peroxide by HPLC was accomplished isocratically on an ODS column within 30 min. The detection limits (signal-to-noise ratio=3) were 1.1 microM for hydrogen peroxide, 6.8 microM for BP, 31.3 microM for BHP, 7.5 microM for BPB and 1.3 microM for CHP. The proposed method was applied to the determination of BP in wheat flour.

  16. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns

    DOE PAGES

    Hiremath, Nitilaksha; Lu, Xinyi; Evora, Maria Cecilia; ...

    2016-07-29

    Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 ormore » 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. As a result, denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.« less

  18. Effect of solvent/polymer infiltration and irradiation on microstructure and tensile properties of carbon nanotube yarns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiremath, Nitilaksha; Lu, Xinyi; Evora, Maria Cecilia

    Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 ormore » 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. As a result, denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.« less

  19. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    PubMed

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  20. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  1. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    NASA Astrophysics Data System (ADS)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  2. Nanoscale thermocapillarity enabled purification for horizontally aligned arrays of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Sung Hun; Dunham, Simon; Xie, Xu; Rogers, John A.

    2015-09-01

    Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermos-capillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. Especially for the purpose of selective joule heating over only metallic nanotubes, two representative platforms are proposed and confirmed. One is achieved by selective joule heating associated with thin film transistors with partial gate structure. The other is based on a simple, scalable, large-area scheme through microwave irradiation by using micro-strip dipole antennas of low work-function metals. In this study, based on purified semiconducting SWNTs, we demonstrated field effect transistors with mobility (> 1,000 cm2/Vsec) and on/off switching ratio (~10,000) with current outputs in the milliamp range. Furthermore, as one demonstration of the effectiveness over large area-scalability and simplicity, implementing the micro-wave based purification, on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  3. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    NASA Astrophysics Data System (ADS)

    Yoriya, Sorachon

    delivery were investigated. The titania nanotube arrays showed a significant platelet adhesion and activation, a higher viability, and a greater capability in blood clotting compared to a smooth Ti surface. In drug delivery application, the drug elution kinetics, behavior and diffusion of drug molecules were most profoundly affected by the nanotube architectures such as the pore packing density and the gap or separation between the tubes, the nanotube length, and especially the nanotube pore diameter. (Abstract shortened by UMI.)

  4. Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications.

    PubMed

    Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar

    2018-01-01

    Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk ( P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT.

  5. Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications

    PubMed Central

    Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar

    2018-01-01

    Background: Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. Methods: The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. Results: An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk (P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. Conclusions: High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT. PMID:29535924

  6. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  7. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  8. Application of liquid-liquid interactions with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Randy Kai-Wei

    This study covers three important research topics related to the application of liquid-liquid interaction with single-walled carbon nanotubes (SWNTs). The first topic describes the removal of SWNT bundles from liquid suspensions of nanotubes. The key to this work includes the use of liquid-liquid interfaces to trap the SWNT bundles due to the free energy change of the system during the process. SWNTs pack into crystalline ropes that form bundles due to strong van der Waals attraction. Bundling diminishes mechanical and electronic properties because it could interrupt the electronic structure of the nanotubes. Also, the electronic devices based on as-grown nanotubes, which contains a mixture of individual nanotubes and nanotube bundles, make the electrical response unpredictable. We developed a new simple process to remove bundles by liquid-liquid interaction. SWNTs bundles are trapped at the interface because bundles stabilize the emulsions. Eliminating the use of ultracentrifugation to remove SWNT bundles enables large-scale production with reduced production costs and time savings. The second topic presented the swelling effect of the surfactant layer surrounding SWNTs with nonpolar solvents. Solvatochromic shifts in the absorbance and fluorescence spectra are observed when surfactant-stabilized aqueous SWNT suspensions are mixed with immiscible organic solvents. When aqueous surfactant-suspended SWNTs are mixed with certain solvents, the spectra closely match the peaks for SWNTs dispersed in only that solvent. These spectral changes suggest the hydrophobic region of the micelle surrounding SWNTs swells with the organic solvent when mixed. The solvatochromic shifts of the aqueous SWNT suspensions are reversible once the solvent evaporates. However, some surfactant-solvent systems show permanent changes to the fluorescence emission intensity after exposure to the organic solvent. The intensity of some large diameter SWNT (n, m) types increase by more than 175

  9. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  10. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  11. Advantages of core-shell particle columns in Sequential Injection Chromatography for determination of phenolic acids.

    PubMed

    Chocholouš, Petr; Vacková, Jana; Srámková, Ivana; Satínský, Dalibor; Solich, Petr

    2013-01-15

    Currently, for Sequential Injection Chromatography (SIC), only reversed phase C18 columns have been used for chromatographic separations. This article presents the first use of three different stationary phases: three core-shell particle-packed reversed phase columns in flow systems. The aim of this work was to extend the chromatographic capabilities of the SIC system. Despite the particle-packed columns reaching system pressures of ≤ 610 PSI, their conditions matched those of a commercially produced and optimised SIC system (SIChrom™ (FIAlab(®), USA)) with a 8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with a 4 mL reservoir and maximum system pressure of ≤ 1000 PSI. The selectivity of each of the tested columns, Ascentis(®) Express RP-Amide, Ascentis(®) Express Phenyl-Hexyl and Ascentis(®) Express C18 (30 mm × 4.6mm, core-shell particle size 2.7 μm), was compared by their ability to separate seven phenolic acids that are secondary metabolite substances widely distributed in plants. The separations of all of the components were performed by isocratic elution using binary mobile phases composed of acetonitrile and 0.065% phosphoric acid at pH 2.4 (a specific ratio was used for each column) at a flow-rate of 0.60 mL/min. The volume of the mobile phase was 3.8 mL for each separation. The injection volume of the sample was 10 μL for each separation. The UV detection wavelengths were set to 250, 280 and 325 nm. The RP-Amide column provided the highest chromatographic resolution and allowed for complete baseline separation of protocatechuic, syringic, vanillic, ferulic, sinapinic, p-coumaric and o-coumaric acids. The Phenyl-Hexyl and C18 columns were unable to completely separate the tested mixture, syringic and vanillic acid and ferulic and sinapinic acids could not be separated from one another. The analytical parameters were a LOD of 0.3 mg L(-1), a LOQ of 1.0 mg L(-1), a calibration range of 1.0-50.0 (100.0) mg L(-1

  12. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, R P.; Wang, Joseph; Block, I

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25more » and 6 nA/{micro}M, respectively.« less

  13. Derringer desirability and kinetic plot LC-column comparison approach for MS-compatible lipopeptide analysis.

    PubMed

    D'Hondt, Matthias; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Wynendaele, Evelien; De Spiegeleer, Bart

    2014-06-01

    Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B 1 , caspofungin, daptomycin and gramicidin A 1 ), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D -value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ ( P max / P exp ) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.

  14. Nanotube Sensors

    NASA Technical Reports Server (NTRS)

    McEuen, Paul L.

    2002-01-01

    Under this project, we explored the feasibility of utilizing carbon nanotubes in sensing applications. The grant primarily supported a graduate student, who worked on a number of aspects of the electrical properties of carbon nanotubes in collaboration with other researchers in my group. The two major research accomplishments are described below. The first accomplishment is the demonstration that solution carbon nanotube transistors functioned well in an electrolyte environment. This was important for two reasons. First, it allowed us to explore the ultimate limits of nanotube electronic performance by using the electrolyte as a highly effective gate, with a dielectric constant of approximately 80 and an effective insulator thickness of approximately 1 nm. Second, it showed that nanotubes function well under biologically relevant conditions (salty water) and therefore offer great promise as biological sensors. The second accomplishment was the demonstration that a voltage pulse applied to an AFM tip could be used to electrically cut carbon nanotubes. We also showed that a carefully applied pulse could also 'nick' a nanotube, creating a tunnel barrier without completely breaking the tube. Nicking was employed to make, for example, a quantum dot within a nanotube.

  15. Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size

    USDA-ARS?s Scientific Manuscript database

    Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...

  16. Transport Behavior of Functionalized Multi-Wall Carbon Nanotubes in Water-Saturated Quartz Sand as a Function of Tube Length

    PubMed Central

    Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W.; Pennell, Kurt D.

    2012-01-01

    A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02–1.3 μm (short), 0.2–7.5 μm (medium), and 0.2–21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40–50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT

  17. Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length.

    PubMed

    Wang, Yonggang; Kim, Jae-Hong; Baek, Jong-Beom; Miller, Gary W; Pennell, Kurt D

    2012-09-15

    A series of one-dimensional column experiments was conducted to examine the effects of tube length on the transport and deposition of 4-ethoxybenzoic acid functionalized multi-wall carbon nanotubes (MWCNTs) in water-saturated porous media. Aqueous MWCNTs suspensions were prepared to yield three distributions of tube lengths; 0.02-1.3 μm (short), 0.2-7.5 μm (medium), and 0.2-21.4 μm (long). Results of the column studies showed that MWCNT retention increased with increasing tube length. Nevertheless, more than 76% of the MWCNT mass delivered to the columns was detected in effluent samples under all experimental conditions, indicating that the functionalized MWCNTs were readily transported through 40-50 mesh Ottawa sand. Examination of MWCNT length distributions in the effluent samples revealed that nanotubes with lengths greater than 8 μm were preferentially deposited. In addition, measured retention profiles exhibited the greatest MWCNT deposition near the column inlet, which was most pronounced for the long MWCNTs, and decreased sharply with travel distance. Scanning electron microscope (SEM) images showed that MWCNTs were deposited on sand surfaces over the entire column length, while larger MWCNT bundles were retained at grain intersections and near the column inlet. A mathematical model based on clean bed filtration theory (CBFT) was unable to accurately simulate the measured retention profile data, even after varying the weighting function and incorporating a nonuniform attachment rate coefficient expression. Modification of the mathematical model to account for physical straining greatly improved predictions of MWCNT retention, yielding straining rate coefficients that were four orders-of-magnitude greater than corresponding attachment rate coefficients. Taken in concert, these experimental and modeling results demonstrate the potential importance of, and need to consider, particle straining and tube length distribution when describing MWCNT transport in

  18. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    NASA Astrophysics Data System (ADS)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  19. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.

    PubMed

    Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S

    2012-01-17

    stabilize the diazonium ion near the nanotube surface. Such Coulombic and surfactant packing effects offer promise toward employing surfactants to controllably functionalize carbon nanotubes. © 2011 American Chemical Society

  20. A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps.

    PubMed

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.

  1. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

    PubMed

    Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S

    2010-03-01

    Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.

  3. Reliability of simulated robustness testing in fast liquid chromatography, using state-of-the-art column technology, instrumentation and modelling software.

    PubMed

    Kormány, Róbert; Fekete, Jenő; Guillarme, Davy; Fekete, Szabolcs

    2014-02-01

    The goal of this study was to evaluate the accuracy of simulated robustness testing using commercial modelling software (DryLab) and state-of-the-art stationary phases. For this purpose, a mixture of amlodipine and its seven related impurities was analyzed on short narrow bore columns (50×2.1mm, packed with sub-2μm particles) providing short analysis times. The performance of commercial modelling software for robustness testing was systematically compared to experimental measurements and DoE based predictions. We have demonstrated that the reliability of predictions was good, since the predicted retention times and resolutions were in good agreement with the experimental ones at the edges of the design space. In average, the retention time relative errors were <1.0%, while the predicted critical resolution errors were comprised between 6.9 and 17.2%. Because the simulated robustness testing requires significantly less experimental work than the DoE based predictions, we think that robustness could now be investigated in the early stage of method development. Moreover, the column interchangeability, which is also an important part of robustness testing, was investigated considering five different C8 and C18 columns packed with sub-2μm particles. Again, thanks to modelling software, we proved that the separation was feasible on all columns within the same analysis time (less than 4min), by proper adjustments of variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    PubMed

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity

  5. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  6. Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis.

    PubMed

    Sarsan, Ayşe; Akkaya, Nuray; Ozgen, Merih; Yildiz, Necmettin; Atalay, Nilgun Simsir; Ardic, Fusun

    2012-01-01

    The objective of this study is to compare the efficacy of mature mud pack and hot pack therapies on patients with knee osteoarthritis. This study was designed as a prospective, randomized-controlled, and single-blinded clinical trial. Twenty-seven patients with clinical and radiologic evidence of knee osteoarthritis were randomly assigned into two groups and were treated with mature mud packs (n 15) or hot packs (n=12). Patients were evaluated for pain [based on the visual analog scale (VAS)], function (WOMAC, 6 min walking distance), quality of life [Short Form-36 (SF-36)], and serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and insulin-like growth factor-1 (IGF-1) at baseline, post-treatment, and 3 and 6~months after treatment. The mud pack group shows a significant improvement in VAS, pain, stifness, and physical function domains of WOMAC. The difference between groups of pain and physical activity domains is significant at post-treatment in favor of mud pack. For a 6 min walking distance, mud pack shows significant improvement, and the difference is significant between groups in favor of mud pack at post-treatment and 3 and 6 months after treatment. Mud pack shows significant improvement in the pain subscale of SF-36 at the third month continuing until the sixth month after the treatment. Significant improvements are found for the social function, vitality/energy, physical role disability, and general health subscales of SF-36 in favor of the mud pack compared with the hot pack group at post-treatment. A significant increase is detected for IGF-1 in the mud pack group 3 months after treatment compared with the baseline, and the difference is significant between groups 3 months after the treatment. Mud pack is a favorable option compared with hotpack for pain relief and for the improvement of functional conditions in treating patients with knee osteoarthritis.

  7. Mitigation of solvent interference using a short packed column prior to ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Mossaddegh, Mehdi

    2017-05-15

    This paper introduces a novel approach to overcome the solvent interference in corona discharge-ion mobility spectrometry (CD-IMS) based on the time-resolved signals of the solvent and the analyte. To that end, a short Teflon tube was filled with a low amount of squalene or OV-1, which was prepared and located between the injection port and the entrance of the CD-IMS cell. Through this procedure, a sufficient delay (~5s) was obtained between the introduction of the solvent and the analyte into the reaction region of IMS. This resulted in removing the proton by solvent molecules, as well as increasing the effective collision during the analyte ionization, thereby providing an analysis with more sensitivity, accuracy, and precision. To show the column efficiency, ethion and diazinon (organophosphorus pesticides) were selected as the test compounds and their solutions were analyzed by the proposed method. The amount of sorbent, carrier gas flow rate, and the sorbent temperature affecting the sorbent efficiency were optimized by employing the response surface methodology and the central composite design. The proposed method was exhaustively validated in terms of sensitivity, linearity, and repeatability. In particular, the feasibility of direct injection was successfully verified by the satisfactory results, as compared with those achieved without the prior column. The methodology used in this study is very simple and inexpensive, which can overcome the solvent interference when a solution is directly injected into the CD-IMS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Highly Conductive Flexible Multi-Walled Carbon Nanotube Sheet Films for Transparent Touch Screen

    NASA Astrophysics Data System (ADS)

    Jung, Daewoong; Lee, Kyung Hwan; Kim, Donghyun; Burk, Dorothea; Overzet, Lawrence J.; Lee, Gil Sik

    2013-03-01

    Highly conductive and transparent thin films were prepared using highly purified multi-walled carbon nanotube (MWCNT) sheets. The electrical properties of the MWCNT sheet were remarkably improved by an acid treatment, resulting in densely packed MWCNTs. The morphology of the sheets reveals that continuous electrical pathways were formed by the acid treatment, greatly improving the sheet resistance all the while maintaining an excellent optical transmittance. These results encourage the use of these MWCNT sheets with low sheet resistance (450 Ω/sq) and high optical transmittance (90%) as a potential candidate for flexible display applications.

  9. Filtering Water by Use of Ultrasonically Vibrated Nanotubes

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan

    2009-01-01

    Devices that could be characterized as acoustically driven molecular sieves have been proposed for filtering water to remove all biological contaminants and all molecules larger than water molecules. Originally intended for purifying wastewater for reuse aboard spacecraft, these devices could also be attractive for use on Earth in numerous settings in which there are requirements to obtain potable, medical-grade, or otherwise pure water from contaminated water supplies. These devices could also serve as efficient means of removing some or all water from chemical products . for example, they might be useful as adjuncts or substitutes for stills in the removal of water from alcohols and alcoholic beverages. These devices may be constructed using various materials, such as ceramics, metallics, or polymers, depending on end-use requirements. A representative device of this type (see figure) would include a polymeric disk, about 1 mm in diameter and between 1 and 40 microns thick, within which would be embedded single-wall carbon nanotubes aligned along the thickness axis. The polymeric disk would be part of a unitary polymeric ring assembly. An acoustic transducer in the form of a piezoelectric-film-and-electrode subassembly - typically 9 microns thick and made of poly(vinylidene fluoride) coated with copper 150 nm thick -. would be affixed to the outside of the outer polymeric ring by means of an electrically nonconductive epoxy. The nanotubes would be chosen to have diameters between about 8 and about 13.5 A because water molecules could fit into the nanotubes, but larger molecules could not. Water to be purified would be placed in contact with one face (typically, the upper face) of the filter disk. The surface tension of water is low enough that water molecules should enter and travel along the nanotubes, and computational simulations of molecular dynamics and experimental measurements have shown that the water molecules inside the nanotubes in this size range can

  10. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2microm particles and Design Space computer modeling.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin

    2009-11-06

    Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.

  11. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; McCluskey, Richard; Hunter, Robert L.

    2004-01-01

    Nanomaterials are part of an industrial revolution to develop lightweight but strong materials for a variety of purposes. Single-wall carbon nanotubes are an important member of this class of materials. They structurally resemble rolled-up graphite sheets, usually with one end capped; individually they are about 1 nm in diameter and several microns long, but they often pack tightly together to form rods or ropes of microscopic sizes. Carbon nanotubes possess unique electrical, mechanical, and thermal properties and have many potential applications in the electronics, computer, and aerospace industries. Unprocessed nanotubes are very light and could become airborne and potentially reach the lungs. Because the toxicity of nanotubes in the lung is not known, their pulmonary toxicity was investigated. The three products studied were made by different methods and contained different types and amounts of residual catalytic metals. Mice were intratracheally instilled with 0, 0.1, or 0.5 mg of carbon nanotubes, a carbon black negative control, or a quartz positive control and euthanized 7 d or 90 d after the single treatment for histopathological study of the lungs. All nanotube products induced dose-dependent epithelioid granulomas and, in some cases, interstitial inflammation in the animals of the 7-d groups. These lesions persisted and were more pronounced in the 90-d groups; the lungs of some animals also revealed peribronchial inflammation and necrosis that had extended into the alveolar septa. The lungs of mice treated with carbon black were normal, whereas those treated with high-dose quartz revealed mild to moderate inflammation. These results show that, for the test conditions described here and on an equal-weight basis, if carbon nanotubes reach the lungs, they are much more toxic than carbon black and can be more toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.

  12. The zooplankton food web under East Antarctic pack ice - A stable isotope study

    NASA Astrophysics Data System (ADS)

    Jia, Zhongnan; Swadling, Kerrie M.; Meiners, Klaus M.; Kawaguchi, So; Virtue, Patti

    2016-09-01

    Understanding how sea ice serves zooplankton species during the food-limited season is crucial information to evaluate the potential responses of pelagic food webs to changes in sea-ice conditions in the Southern Ocean. Stable isotope analyses (13C/12C and 15N/14N) were used to compare the dietary preferences and trophic relationships of major zooplankton species under pack ice during two winter-spring transitions (2007 and 2012). During sampling, furcilia of Euphausia superba demonstrated dietary plasticity between years, herbivory when feeding on sea-ice biota, and with a more heterotrophic diet when feeding from both the sea ice and the water column. Carbon isotope signatures suggested that the pteropod Limacina helicina, small copepods Oithona spp., ostracods and amphipods relied heavily on sea-ice biota. Post larval E. superba and omnivorous krill Thysanoessa macrura consumed both water column and ice biota, but further investigations are needed to estimate the contribution from each source. Large copepods and chaetognaths overwintered on a water column-based diet. Our study suggests that warm and permeable sea ice is more likely to provide food for zooplankton species under the ice than the colder ice.

  13. Electron-transfer-initiated benzoin- and Stetter-like reactions in packed-bed reactors for process intensification.

    PubMed

    Zaghi, Anna; Ragno, Daniele; Di Carmine, Graziano; De Risi, Carmela; Bortolini, Olga; Giovannini, Pier Paolo; Fantin, Giancarlo; Massi, Alessandro

    2016-01-01

    A convenient heterogeneous continuous-flow procedure for the polarity reversal of aromatic α-diketones is presented. Propaedeutic batch experiments have been initially performed to select the optimal supported base capable to initiate the two electron-transfer process from the carbamoyl anion of the N , N -dimethylformamide (DMF) solvent to the α-diketone and generate the corresponding enediolate active species. After having identified the 2- tert -butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine on polystyrene (PS-BEMP) as the suitable base, packed-bed microreactors (pressure-resistant stainless-steel columns) have been fabricated and operated to accomplish the chemoselective synthesis of aroylated α-hydroxy ketones and 2-benzoyl-1,4-diones (benzoin- and Stetter-like products, respectively) with a good level of efficiency and with a long-term stability of the packing material (up to five days).

  14. Electron-transfer-initiated benzoin- and Stetter-like reactions in packed-bed reactors for process intensification

    PubMed Central

    Zaghi, Anna; Ragno, Daniele; Di Carmine, Graziano; De Risi, Carmela; Bortolini, Olga; Giovannini, Pier Paolo; Fantin, Giancarlo

    2016-01-01

    A convenient heterogeneous continuous-flow procedure for the polarity reversal of aromatic α-diketones is presented. Propaedeutic batch experiments have been initially performed to select the optimal supported base capable to initiate the two electron-transfer process from the carbamoyl anion of the N,N-dimethylformamide (DMF) solvent to the α-diketone and generate the corresponding enediolate active species. After having identified the 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine on polystyrene (PS-BEMP) as the suitable base, packed-bed microreactors (pressure-resistant stainless-steel columns) have been fabricated and operated to accomplish the chemoselective synthesis of aroylated α-hydroxy ketones and 2-benzoyl-1,4-diones (benzoin- and Stetter-like products, respectively) with a good level of efficiency and with a long-term stability of the packing material (up to five days). PMID:28144342

  15. Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage.

    PubMed

    Ma, Yuan; Ma, Yanjiao; Bresser, Dominic; Ji, Yuanchun; Geiger, Dorin; Kaiser, Ute; Streb, Carsten; Varzi, Alberto; Passerini, Stefano

    2018-06-27

    Transition metal sulfides are appealing electrode materials for lithium and sodium batteries owing to their high theoretical capacity. However, they are commonly characterized by rather poor cycling stability and low rate capability. Herein, we investigate CoS 2 , serving as a model compound. We synthesized a porous CoS 2 /C micro-polyhedron composite entangled in a carbon-nanotube-based network (CoS 2 -C/CNT), starting from zeolitic imidazolate frameworks-67 as a single precursor. Following an efficient two-step synthesis strategy, the obtained CoS 2 nanoparticles are uniformly embedded in porous carbonaceous micro-polyhedrons, interwoven with CNTs to ensure high electronic conductivity. The CoS 2 -C/CNT nanocomposite provides excellent bifunctional energy storage performance, delivering 1030 mAh g -1 after 120 cycles and 403 mAh g -1 after 200 cycles (at 100 mA g -1 ) as electrode for lithium-ion (LIBs) and sodium-ion batteries (SIBs), respectively. In addition to these high capacities, the electrodes show outstanding rate capability and excellent long-term cycling stability with a capacity retention of 80% after 500 cycles for LIBs and 90% after 200 cycles for SIBs. In situ X-ray diffraction reveals a significant contribution of the partially graphitized carbon to the lithium and at least in part also for the sodium storage and the report of a two-step conversion reaction mechanism of CoS 2 , eventually forming metallic Co and Li 2 S/Na 2 S. Particularly the lithium storage capability at elevated (dis-)charge rates, however, appears to be substantially pseudocapacitive, thus benefiting from the highly porous nature of the nanocomposite.

  16. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71.

    PubMed

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu

    2016-10-15

    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Endometrial histology following 1 year of a continuous daily regimen of levonorgestrel 90 micro g/ethinyl estradiol 20 micro g.

    PubMed

    Johnson, Julia V; Grubb, Gary S; Constantine, Ginger D

    2007-01-01

    The objective of this study was to evaluate the effect of a continuous daily regimen of levonorgestrel (LNG) 90 micro g/ethinyl estradiol (EE) 20 micro g on endometrial histology. This was a substudy of a large phase 3 trial conducted in six sites in North America. Healthy and sexually active women aged between 18 and 49 years took LNG 90 micro g/EE 20 micro g daily for 1 year. Results from endometrial biopsies performed at pretreatment baseline and those after at least 6 months of treatment were compared. Of the 146 participants, 93 had a baseline biopsy and completed at least six pill packs. Before treatment, 56 subjects (60%) had an endometrial biopsy with findings classified as "weakly proliferative or proliferative." During the last on-therapy visit, 48 subjects (52%) had an endometrium categorized as "other," which included primarily an inactive or benign endometrium (n=42). No hyperplasia or malignancy was observed during the study. The results of a 1-year continuous regimen of LNG 90 micro g/EE 20 micro g were shown to have a good endometrial safety profile.

  18. Evaluation and routine application of the novel restricted-access precolumn packing material Alkyl-Diol Silica: coupled-column high-performance liquid chromatographic analysis of the photoreactive drug 8-methoxypsoralen in plasma.

    PubMed

    Vielhauer, S; Rudolphi, A; Boos, K S; Seidel, D

    1995-04-21

    A fully automated coupled-column HPLC method for on-line sample processing and determination of the photoreactive drug 8-methoxypsoralen (8-MOP) in plasma has been developed. The method is based on the novel internal-surface reversed-phase precolumn packing materials Alkyl-Diol Silica (ADS). This new family of restricted-access materials has a hydrophilic, electroneutral outer particle surface and a hydrophobic internal pore surface. The supports tolerate the direct and repetitive injection of proteinaceous fluids such as plasma and allow a classical C18-, C8- or C4-reversed-phase partitioning at the internal (pore) surface. The total protein load, i.e. the lifetime of the precolumn used in this study (C8-Alkyl-Diol Silica, 25 microns, 25 x 4 mm I.D.), exceeds more than 100 ml of plasma. 8-MOP was detected by its native fluorescence (excitation 312 nm, emission 540 nm). Validation of the method revealed a quantitative and matrix-independent recovery (99.5-101.3% measured at five concentrations between 21.3 and 625.2 ng of 8-MOP per milliliter of plasma), linearity over a wide range of 8-MOP concentrations (1.2-3070 ng of 8-MOP/ml, r = 0.999), low limits of detection (0.39 ng of 8-MOP/ml) and quantitation (0.79 ng of 8-MOP/ml) and a high between-run (C.V. 1.47%, n = 10) and within-run (C.V. 1.33%, n = 10) reproducibility. This paper introduces coupled-column HPLC as a suitable method for on-site analysis of drug plasma profiles (bedside-monitoring).

  19. Effect of post-fermentation and packing stages on the volatile composition of Spanish-style green table olives.

    PubMed

    Sánchez, Antonio Higinio; López-López, Antonio; Cortés-Delgado, Amparo; Beato, Víctor Manuel; Medina, Eduardo; de Castro, Antonio; Montaño, Alfredo

    2018-01-15

    The volatile profile of Spanish-style green table olives after fermentation and the changes in volatile compounds that occurred as a result of the post-fermentation and subsequent packing stage were explored by solid phase micro-extraction (SPME) and gas chromatography coupled to mass spectrometry (GC-MS). Three olive cultivars (Manzanilla, Gordal, and Hojiblanca) were processed and olive samples were taken at three different times throughout the elaboration: after fermentation, after post-fermentation, and after packing. A total of 132 volatile compounds were identified, including 10 phenols, 25 alcohols, 11 acids, 39 esters, 8 hydrocarbons, 14 carbonyl compounds, 17 terpenes, and 6 other compounds. A varying number of compounds from each chemical family underwent significant changes because of the post-fermentation and packing stages. Among them, some typical reaction products of lipid oxidation (e.g. (E)-2-decenal and (E,E)-2,4-decadienal) increased with the post-fermentation in Manzanilla cultivar, and also as a result of packing in all three cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Stage-frit: A straightforward sub-2 μm nano-liquid chromatography column fabrication for proteomic analysis.

    PubMed

    Hsieh, Ming-Yueh; Hsiao, He-Hsuan

    2015-07-30

    In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Packing in protein cores

    NASA Astrophysics Data System (ADS)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  2. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-04-11

    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in

  3. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    PubMed

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  4. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.

    PubMed

    Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo

    2007-09-14

    Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.

  5. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow-fiber micro-solid-phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design.

    PubMed

    Naddaf, Ezzat; Ebrahimi, Mahmoud; Es'haghi, Zarrin; Bamoharram, Fatemeh Farrash

    2015-07-01

    A sensitive technique to determinate naproxen in hair samples was developed using hollow-fiber micro-solid-phase combined with fluorescence spectrophotometry. The incorporation of multi-walled carbon nanotubes modified with a Keggin polyoxometalate into a silica matrix prepared by the sol-gel method was reported. In this research, the Keggin carbon nanotubes /silica composite was used in the pores and lumen of a hollow fiber as the hollow-fiber micro-solid-phase extraction device. The device was used for the microextraction of the analyte from hair and water samples under the optimized conditions. An orthogonal array experimental design with an OA24 (4(6) ) matrix was employed to optimize the conditions. The effect of six factors influencing the extraction efficiency was investigated: pH, salt, volume of donor and desorption phase, extraction and desorption time. The effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance was employed for estimating the main significant factors and their contributions in the extraction. Calibration curve plot displayed linearity over a range of 0.2-10 ng/mL with detection limits of 0.072 and 0.08 ng/mL for hair and aqueous samples, respectively. The relative recoveries in the hair and aqueous matrices ranged from 103-95%. The relative standard deviation for fiber-to-fiber repeatability was 3.9%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.

    2002-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.

  7. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    DTIC Science & Technology

    2015-05-12

    hierarchical structures comprising nitrogen- doped reduced GO (rGO) and acid- oxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber...structures comprising nitrogen- doped reduced GO (rGO) and acidoxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber micro... doped into Co/SiO2 catalysts to change their chirality selectivity. Further, enrichment of (9,8) nanotubes was carried out by extraction using fluorene

  8. A Microfluidic Device for Preparing Next Generation DNA Sequencing Libraries and for Automating Other Laboratory Protocols That Require One or More Column Chromatography Steps

    PubMed Central

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273

  9. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and that...

  10. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and that...

  11. Tube and column agglutination technology for autocontrol testing.

    PubMed

    Courtney, J E; Vincent, J L; Indrikovs, A J

    2001-01-01

    The incidence of positive autocontrol test results with column agglutination technology is a concern. This study investigates the incidence and significance of positive autocontrols in the ID Micro Typing System (gel) and the Gamma ReACT (ReACT). The study encompassed a total of 1021 randomly selected samples from patients and 95 samples from donors collected during 1 month. The autocontrol testing was carried out according to the manufacturer's instructions for the column agglutination tests. The tube method was carried out using low-ionic-strength solution (LISS). The direct antiglobulin test (DAT) was performed using the tube method, and further investigated with elution studies if warranted. Seventy-nine patient's samples (7.74%) had a positive autocontrol: the gel test, 72 (91.13%); ReACT, 21 (26.58%); and the tube method, 27 (34.18%). Of the 79 positive autocontrols, 44 samples had a negative DAT. Of the samples with positive DAT results, only one possessed a clinically significant antibody, anti-D. Moreover, the same sample also tested positive in all three methods. Column agglutination techniques have increased sensitivity for a positive autocontrol beyond the conventional tube method. However, ReACT and gel tests differ significantly in their frequency of positives. Investigation of the significance of a positive autocontrol in column agglutination technology when the conventional tube method is also positive is suggested.

  12. Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns.

    PubMed

    Mirza, Babur S; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E

    2016-03-01

    Trichloroethene (TCE) in groundwater is a major health concern and biostimulation/bioaugmentation-based strategies have been evaluated to achieve complete reductive dechlorination with varying success. Different carbon sources were hypothesized to stimulate different extents of TCE reductive dechlorination. Ecological conditions that developed different dechlorination stages were investigated by quantitating Dehalococcoides 16S rRNA (Dhc) and reductive dehalogenase gene abundance, and by describing biogeochemical properties of laboratory columns in response to this biostimulation. Eight large columns (183 cm × 15.2 cm), packed with aquifer material from Hill AFB, Utah, that were continuously fed TCE for 7.5 years. Duplicate columns were biostimulated with whey or one of two different Newman Zone® emulsified oil formulations containing either nonionic surfactant (EOLN) or standard surfactant (EOL). Two columns were non-stimulated controls. Complete (whey amended), partial (EOLN amended), limited (EOL), and non-TCE dehalogenating systems (controls) developed over the course of the study. Bioaugmentation of half of the columns with Bachman Road culture 3 years prior to dismantling did not influence the extent of TCE dehalogenation. Multivariate analysis clustered samples by biostimulation treatments and extent of TCE dehalogenation. Dhc, tceA, and bvcA gene concentrations did not show a consistent relationship with TCE dehalogenation but the vcrA gene was more abundant in completely dehalogenating, whey-treated columns. The whey columns developed strongly reducing conditions producing Fe(II), sulfide, and methane. Biostimulation with different carbon and energy sources can support high concentrations of diverse Dhc, but carbon addition has a major influence on biogeochemical processes effecting the extent of TCE dehalogenation.

  13. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    PubMed

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  14. American Spirit Pack Descriptors and Perceptions of Harm: A Crowdsourced Comparison of Modified Packs.

    PubMed

    Pearson, Jennifer L; Richardson, Amanda; Feirman, Shari P; Villanti, Andrea C; Cantrell, Jennifer; Cohn, Amy; Tacelosky, Michael; Kirchner, Thomas R

    2016-08-01

    In 2015, the Food and Drug Administration issued warnings to three tobacco manufacturers who label their cigarettes as "additive-free" and/or "natural" on the grounds that they make unauthorized reduced risk claims. The goal of this study was to examine US adults' perceptions of three American Spirit (AS) pack descriptors ("Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown Tobacco") to assess if they communicate reduced risk. In September 2012, three cross-sectional surveys were posted on Amazon Mechanical Turk. Adult participants evaluated the relative harm of a Marlboro Red pack versus three different AS packs with the descriptors "Made with Organic Tobacco," "100% Additive-Free," or "100% US Grown Tobacco" (Survey 1; n = 461); a Marlboro Red pack versus these AS packs modified to exclude descriptors (Survey 2; n = 857); and unmodified versus modified AS pack images (Survey 3; n = 1001). The majority of Survey 1 participants rated the unmodified AS packs as less harmful than the Marlboro Red pack; 35.4%-58.8% of Survey 2 participants also rated the modified (no claims) packs as less harmful than Marlboro Red. In these surveys, prior use of AS cigarettes was associated with reduced perceptions of risk (adjusted odds ratio [AOR] 1.59-2.40). "Made with Organic Tobacco" and "100% Additive-Free" were associated with reduced perceptions of risk when comparing the modified versus the unmodified AS packs (Survey 3). Data suggest that these AS pack descriptors communicate reduced harm messages to consumers. Findings have implications for regulatory actions related to product labeling and packaging. These findings provide additional evidence that the "Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown" descriptors, as well as other aspects of the AS pack design, communicate reduced harm to non-, current, and former smokers. Additionally, they provide support for the importance of FDA's 2015 warning to Santa Fe Natural Tobacco Company on

  15. Theory of Transport of Long Polymer Molecules through Carbon Nanotube Channels

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Srivastava, Deepak

    2003-01-01

    A theory of transport of long chain polymer molecules through carbon nanotube (CNT) channels is developed using Fokker-Planck equation and direct molecular dynamics (MD) simulations. The mean transport or translocation time tau is found to depend on the chemical potential energy, entropy and diffusion coefficient. A power law dependence tau approx. N(sup 2)is found where N is number of monomers in a molecule. For 10(exp 5)-unit long polyethylene molecules, tau is estimated to be approx. 1micro-s. The diffusion coefficient of long polymer molecules inside CNTs, like that of short ones, are found to be few orders of magnitude larger than in ordinary silicate based zeolite systems.

  16. Extending the limits of operating pressure of narrow-bore column liquid chromatography instrumentation.

    PubMed

    Pauw, Ruben De; Degreef, Bart; Ritchie, Harald; Eeltink, Sebastiaan; Desmet, Gert; Broeckhoven, Ken

    2014-06-20

    The increase of the operating pressure in Liquid Chromatography, has been one of the crucial steps toward faster and more efficient separations. In the present contribution, it was investigated if the pressure limits for narrow-bore columns (2.1mm ID) could be increased beyond those of commercially available (1300bar) instrumentation without performance loss. Whereas previous studies applying pressures higher than 2000bar were limited to the use of columns with a diameter smaller or equal to 1mm, it is a difficult feat to expand this to 2.1mm ID given that viscous-heating effects increase according to the fifth power of the column radius. A prototype LC set-up was realized, allowing to operate at pressures up to 2600bar (260MPa) for large separation volumes (>5mL). The performance of an in-house-built injector was compared at 800bar to commercially available injectors, yielding equal performance but twice the maximum pressure rating. The performance of (coupled) custom columns packed with fully porous and superficially porous particles were assessed at ultra-high-pressure conditions. Increasing the inlet pressure from 800 to 2400bar and scaling the column length proportionally (from 150mm to 450mm), resulted in the theoretically expected linear increase in plate count from 20,000 to 59,000. A maximum plate number of 81,000 was realized using a 600mm long (coupled) column at 2600bar. Viscous-heating effects were diminished by insulating coupled columns and applying an intermediate-cooling strategy in a forced-air oven. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparison of monolithic and microparticulate columns for reversed-phase liquid chromatography of tryptic digests of industrial enzymes in cleaning products.

    PubMed

    Beneito-Cambra, M; Herrero-Martínez, J M; Ramis-Ramos, G; Lindner, W; Lämmerhofer, M

    2011-10-14

    Enzymes of several classes used in the formulations of cleaning products were characterized by trypsin digestion followed by HPLC with UV detection. A polymeric monolithic column (ProSwift) was used to optimize the separation of both the intact enzymes and their tryptic digests. This column was adequate for the quality control of raw industrial enzyme concentrates. Then, monolithic and microparticulate columns were compared for peptide analysis. Under optimized conditions, the analysis of tryptic digests of enzymes of different classes commonly used in the formulation of cleaning products was carried out. Number of peaks, peak capacity and global resolution were obtained in order to evaluate the chromatographic performance of each column. Particulate shell-core C18 columns (Kinetex, 2.6 μm) showed the best performance, followed by a silica monolithic column (Chromolith RP-18e) and the conventional C18 packings (Gemini, 5 μm or 3 μm). A polymeric monolithic column (ProSwift) gave the worst performances. The proposed method was satisfactorily applied to the characterization of the enzymes present in spiked detergent bases and commercial cleaners. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil

    USDA-ARS?s Scientific Manuscript database

    Saturated soil column experiments were conducted to investigate the transport, retention, and release behavior of a low concentration (1 mg L-1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNTs) in a natural soil under various solution chemistries. Breakthrough curves (BTCs) for M...

  19. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  20. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    PubMed

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  1. Bioelectrocatalytic application of titania nanotube array for molecule detection.

    PubMed

    Xie, Yibing; Zhou, Limin; Huang, Haitao

    2007-06-15

    A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 x 10(-4)mM. A biosensor based on the glucose oxidase-titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (-0.4V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6s and a detection limit of 2.0 x 10(-3)mM. The corresponding detection sensitivity was 45.5 microA mM(-1)cm(-2). A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.

  2. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  3. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  4. Heteroporphyrin nanotubes and composites

    DOEpatents

    Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA; Wang, Zhongchun [Albuquerque, NM

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  5. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of

  6. PCR detection of psychrophilic Clostridium spp. causing 'blown pack' spoilage of vacuum-packed chilled meats.

    PubMed

    Broda, D M; Boerema, J A; Bell, R G

    2003-01-01

    To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of

  7. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  8. Microfabricated thermal modulator for comprehensive two-dimensional micro gas chromatography: design, thermal modeling, and preliminary testing.

    PubMed

    Kim, Sung-Jin; Reidy, Shaelah M; Block, Bruce P; Wise, Kensall D; Zellers, Edward T; Kurabayashi, Katsuo

    2010-07-07

    In comprehensive two-dimensional gas chromatography (GC x GC), a modulator is placed at the juncture between two separation columns to focus and re-inject eluting mixture components, thereby enhancing the resolution and the selectivity of analytes. As part of an effort to develop a microGC x microGC prototype, in this report we present the design, fabrication, thermal operation, and initial testing of a two-stage microscale thermal modulator (microTM). The microTM contains two sequential serpentine Pyrex-on-Si microchannels (stages) that cryogenically trap analytes eluting from the first-dimension column and thermally inject them into the second-dimension column in a rapid, programmable manner. For each modulation cycle (typically 5 s for cooling with refrigeration work of 200 J and 100 ms for heating at 10 W), the microTM is kept approximately at -50 degrees C by a solid-state thermoelectric cooling unit placed within a few tens of micrometres of the device, and heated to 250 degrees C at 2800 degrees C s(-1) by integrated resistive microheaters and then cooled back to -50 degrees C at 250 degrees C s(-1). Thermal crosstalk between the two stages is less than 9%. A lumped heat transfer model is used to analyze the device design with respect to the rates of heating and cooling, power dissipation, and inter-stage thermal crosstalk as a function of Pyrex-membrane thickness, air-gap depth, and stage separation distance. Experimental results are in agreement with trends predicted by the model. Preliminary tests using a conventional capillary column interfaced to the microTM demonstrate the capability for enhanced sensitivity and resolution as well as the modulation of a mixture of alkanes.

  9. A silicone column for GC analysis of polar and nonpolar chemicals

    NASA Technical Reports Server (NTRS)

    Shen, T. C.

    1991-01-01

    The investigation of the Saturnian System is being proposed jointly by NASA and the European Space Agency (ESA). The mission is scheduled for a launch in 1996. The mission provides an opportunity for close observation and exploration of Saturn's atmosphere, the complex Saturnian System of satellites and rings, Titan (Saturn's planet-sized moon), and Saturn's magnetosphere. The mission gives special attention to Titan which is blanketed by a thick, opaque atmosphere. An atmospheric probe will be deposited into the Titan Atmosphere for in situ measurement during a slow, three hour descent to the surface. The results from this analysis may provide the information which is important to the research of chemical evolution, and the origin of life. An analytical system was developed as a part of the Titan Aerosol Gas Experiment (TAGEX), a proposed experiment for the Cassini Mission. This system will use two highly sensitive detectors, the Metastable Ionization Detector (MID) and the Ion Mobility Spectrometer (IMS). Unfortunately, when commercial columns are utilized with these highly sensitive detectors, volatile components continuously bleed from the column and interfere with the detector. In addition, light columns must be able to separate polar and nonpolar organic chemicals within 10-15 minutes under isothermal conditions for the Titan Mission. Therefore, a highly crosslinked silicone polymeric packed column was developed which is able to efficiently separate amines, alcohols, and hydrocarbons with retention times less that 15 minutes at 100 C isothermal condition.

  10. Kinetics of pack aluminization of nickel

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.

    1978-01-01

    The kinetics of pack aluminization of unalloyed nickel in packs of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and pack composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the packs was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of pack aluminization are controlled jointly by gas diffusion in the pack and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of pack aluminization.

  11. Nanotube phonon waveguide

    DOEpatents

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  12. Production and Characterization of Carbon Nanotubes and Nanotube-Based Composites

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Arepalli, Sivaram; Holmes, William; Gorelik, Olga; Files, Brad; Scott, Carl; Santos, Beatrice; Mayeaux, Brian; Victor, Joe

    1999-01-01

    The Nobel Prize winning discovery of the Buckuball (C60) in 1985 at Rice University by a group including Dr. Richard Smalley led to the whole new class of carbon allotropes including fullerenes and nanotubes. Especially interesting from many viewpoints are single-walled carbon nanotubes, which structurally are like a single graphitic sheet wrapped around a cylinder and capped at the ends. This cylinders have diameter as small as 0.5 - 2 nm (1/100,000th the diameter of a human hair) and are as long as 0.1 - 1 mm. Nanotubes are really individual molecules and believed to be defect-free, leading to high tensile strength despite their low density. Additionally, these fibers exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times higher than steel at one-sixth the weight, and high strain to failure. Thus it is believed that developments in the field of nanotechnology will lead to stronger and lighter composite materials for next generation spacecraft. Lack of a bulk method of production is the primary reason nanotubes are not used widely today. Toward this goal JSC nanotube team is exploring three distinct production techniques: laser ablation, arc discharge and chemical vapor deposition (CVD, in collaboration with Rice University). In laser ablation technique high-power laser impinges on the piece of carbon containing small amount of catalyst, and nanotubes self-assemble from the resulting carbon vapor. In arc generator similar vapor is created in arc discharge between carbon electrodes with catalyst. In CVD method nanotubes grow at much lower temperature on small catalyst particles from carbon-containing feedstock gas (methane or carbon monoxide). As of now, laser ablation produces cleanest material, but mass yield is rather small. Arc discharge produces grams of material, but purity is low. CVD technique is still in baby steps, but preliminary results look promising, as well as perspective of scaling the process

  13. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinhua; Zhou, Huaijuan; Qian, Shi

    Close-packed TiO{sub 2} nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO{sub 2} systems can effectively kill Staphylococcus aureus and Escherichia coli in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO{sub 2}, which makes bacteria steadily lose electrons until death. This work provides insights for the better understandingmore » and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.« less

  14. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-11-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  15. Two-column sequential injection chromatography--new approach for fast and effective analysis and its comparison with gradient elution chromatography.

    PubMed

    Chocholous, Petr; Satínský, Dalibor; Sklenárová, Hana; Solich, Petr

    2010-05-23

    This work presents novel approach in low-pressure chromatography flow systems--two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab, USA) with two commercially available monolithic columns the "first column" Chromolith Flash RP-18e (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.) and the "second column" Chromolith RP-18e (10 mm x 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min(-1) (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min(-1) (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 microL of filtered supernatant was injected on each column (2 x 10 microL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 microg m

  16. Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis.

    PubMed

    Berger, Torsten W; Muras, Alexander

    Release of stored sulfur may delay the recovery of soil pH from Acid Rain. It is hypothesized that analyzing the micro-spatial heterogeneity of soil columns downhill of a beech stem enables predictions of soil recovery as a function of historic acid loads and time. We demonstrated in a very simplified approach, how these two different factors may be untangled from each other using synthetic data. Thereafter, we evaluated the stated hypothesis based upon chemical soil data with increasing distance from the stem of beech trees. It is predicted that the top soil will recover from acid deposition, as already recorded in the infiltration zone of stemflow near the base of the stem. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed.

  17. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.

    PubMed

    Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-22

    In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high

  18. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  19. Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.

    PubMed

    Sugime, Hisashi; Esconjauregui, Santiago; D'Arsié, Lorenzo; Yang, Junwei; Makaryan, Taron; Robertson, John

    2014-09-10

    We evaluate the growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests. They are synthesized by chemical vapor deposition at 450 °C using a conductive Ti/Cu support and Co-Mo catalyst system. We find that Mo stabilizes Co particles preventing lift off during the initial growth stage, thus promoting the growth of ultrahigh mass density nanotube forests by the base growth mechanism. The morphology of the forest gradually changes with growth time, mostly because of a structural change of the catalyst particles. After 100 min growth, toward the bottom of the forest, the area density decreases from ∼ 3-6 × 10(11) cm(-2) to ∼ 5 × 10(10) cm(-2) and the mass density decreases from 1.6 to 0.38 g cm(-3). We also observe part of catalyst particles detached and embedded within nanotubes. The progressive detachment of catalyst particles results in the depletion of the catalyst metals on the substrate surfaces. This is one of the crucial reasons for growth termination and may apply to other catalyst systems where the same features are observed. Using the packed forest morphology, we demonstrate patterned forest growth with a pitch of ∼ 300 nm and a line width of ∼ 150 nm. This is one of the smallest patterning of the carbon nanotube forests to date.

  20. Career Action Pack.

    ERIC Educational Resources Information Center

    Blum, Robert E.; Raymond, Carolyn D.

    One of five McDonald's Action Packs, these instructional materials for ninth and tenth graders (and more able sixth and seventh graders) have incorporated ideas around three career development goals--subject relevance, career awareness, and self-awareness. The action pack contains six units--three units each in the subject areas of language arts…

  1. Particle packing from an earth science viewpoint

    NASA Astrophysics Data System (ADS)

    Rogers, C. D. F.; Dijkstra, T. A.; Smalley, I. J.

    1994-04-01

    Particle packings are relevant to many aspects of the Earth sciences, and there is a long history of the study of packings from an Earth science viewpoint. Packings have also been studied in connection with other subjects and disciplines. Allen (1982) produced a major review which provides a solid base for Earth science related studies. This review complements Allen's work and in particular focuses on advances in the study of random packings over the last ten years. Transitions from packing to packing may be as important as the packings themselves, and possibly easier to model. This paper places emphasis on certain neglected works, in particular Morrow and Graves (1969) and the packing transition envelope, Kahn (1956) and the measurement of packing parameters, Griffiths (1962) on packings in one-dimension, and Getis and Boots (1978) on packings in two dimensions. Certain packing problems are relevant to current areas of study including structure collapse in loess (hydroconsolidation), flowslides in very sensitive soils, wind erosion, jewel quality in opals and the structure and functions of sand dunes. The region where interparticle forces become active (particles < 200 μm) is considered and the implications for packing are examined.

  2. Systematic evaluation of commercially available ultra-high performance liquid chromatography columns for drug metabolite profiling: optimization of chromatographic peak capacity.

    PubMed

    Dubbelman, Anne-Charlotte; Cuyckens, Filip; Dillen, Lieve; Gross, Gerhard; Hankemeier, Thomas; Vreeken, Rob J

    2014-12-29

    The present study investigated the practical use of modern ultra-high performance liquid chromatography (UHPLC) separation techniques for drug metabolite profiling, aiming to develop a widely applicable, high-throughput, easy-to-use chromatographic method, with a high chromatographic resolution to accommodate simultaneous qualitative and quantitative analysis of small-molecule drugs and metabolites in biological matrices. To this end, first the UHPLC system volume and variance were evaluated. Then, a mixture of 17 drugs and various metabolites (molecular mass of 151-749Da, logP of -1.04 to 6.7), was injected on six sub-2μm particle columns. Five newest generation core shell technology columns were compared and tested against one column packed with porous particles. Two aqueous (pH 2.7 and 6.8) and two organic mobile phases were evaluated, first with the same flow and temperature and subsequently at each column's individual limit of temperature and pressure. The results demonstrated that pre-column dead volume had negligible influence on the peak capacity and shape. In contrast, a decrease in post-column volume of 57% resulted in a substantial (47%) increase in median peak capacity and significantly improved peak shape. When the various combinations of stationary and mobile phases were used at the same flow rate (0.5mL/min) and temperature (45°C), limited differences were observed between the median peak capacities, with a maximum of 26%. At higher flow though (up to 0.9mL/min), a maximum difference of almost 40% in median peak capacity was found between columns. The finally selected combination of solid-core particle column and mobile phase composition was chosen for its selectivity, peak capacity, wide applicability and peak shape. The developed method was applied to rat hepatocyte samples incubated with the drug buspirone and demonstrated to provide a similar chromatographic resolution, but a 6 times higher signal-to-noise ratio than a more traditional UHPLC

  3. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageev, O. A., E-mail: ageev@sfedu.ru; Bykov, Al. V.; Kolomiitsev, A. S.

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is withinmore » the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.« less

  4. Fully Dynamic Bin Packing

    NASA Astrophysics Data System (ADS)

    Ivković, Zoran; Lloyd, Errol L.

    Classic bin packing seeks to pack a given set of items of possibly varying sizes into a minimum number of identical sized bins. A number of approximation algorithms have been proposed for this NP-hard problem for both the on-line and off-line cases. In this chapter we discuss fully dynamic bin packing, where items may arrive (Insert) and depart (Delete) dynamically. In accordance with standard practice for fully dynamic algorithms, it is assumed that the packing may be arbitrarily rearranged to accommodate arriving and departing items. The goal is to maintain an approximately optimal solution of provably high quality in a total amount of time comparable to that used by an off-line algorithm delivering a solution of the same quality.

  5. Sleeping distance in wild wolf packs

    USGS Publications Warehouse

    Knick, S.T.; Mech, L.D.

    1980-01-01

    Sleeping distances were observed among members of 13 wild wolf (Canis lupus) packs and 11 pairs in northeastern Minnesota to determine if the distances correlated with pack size and composition. The study utilized aerial radio-tracking and observation during winter. Pack size and number of adults per pack were inversely related to pack average sleeping distance and variability. No correlation between sleeping distance and microclimate was observed. Possible relationships between social bonding and our results are discussed.

  6. Electrocauterization and no packing may be comparable with nasal packing for postoperative hemorrhage after endoscopic sinus surgery.

    PubMed

    Kim, Dong-Kyu; Rhee, Chae Seo; Kim, Jeong-Whun

    2016-05-01

    Nasal packing is commonly performed after functional endoscopic sinus surgery (FESS). However, nasal packing is associated with higher cost (owing to the cost of packing materials), patient discomfort, delayed wound healing, and concern about toxic shock syndrome. Some surgeons have been performing FESS without packing, but there are few studies that show its safety. The purpose of this study was to evaluate the safety of electrocauterization and no packing. A total of 490 patients who underwent bilateral FESS for chronic rhinosinusitis were included in this retrospective study, 242 in the nasal packing group and 248 in the electrocauterization and no-packing group. Electrocauterization was performed by using a suction coagulator. Rates of immediate (first 24 hours after surgery) and delayed postoperative bleeding were compared. Patient characteristics, including concomitant disease and medication history, and Lund-Mackay computed tomography score were also assessed Results: There were no significant differences in age; sex; Lund-Mackay score; use of anticoagulant drugs; or prevalence of hypertension, diabetes, or asthma between the two groups. In the electrocauterization and no-packing group, there were fewer patients with allergic rhinitis and more smokers. Primary bleeding did not occur in the nasal packing group, but 11 patients (4.4%) had delayed bleeding. Primary bleeding occurred in four patients (1.7%) in the electrocauterization and no-packing group, and five patients (2.1%) had delayed bleeding. There were no significant differences in primary (p = 0.058) and secondary bleeding (p = 0.142) between the two groups. All bleeding was minor and easily controlled. Multivariate logistic regression analysis ruled out significant correlation between no packing and postoperative bleeding. This study provided evidence that, in terms of postoperative hemorrhage, the safety of the electrocauterization and no-packing technique after FESS was comparable with that of

  7. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in which...

  8. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in which...

  9. Flexible and Accessible Automated Operation of Miniature Chromatography Columns on a Liquid Handling Station.

    PubMed

    Konstantinidis, Spyridon; Goh, Hai-Yuan; Martin Bufájer, José M; de Galbert, Paul; Parau, Maria; Velayudhan, Ajoy

    2018-03-01

    The High Throughput (HT) investigation of chromatographic separations is an important element of downstream bioprocess development due to the importance of chromatography as a technique for achieving stringent regulatory requirements on product purity. Various HT formats for chromatography exist, but the miniature column approach has characteristics resembling large scale packed bed column chromatography the most. The operation of such columns on robotic stations can be automated, but this is not always a straightforward procedure; the robotic manipulations are highly dependent on the settings of each experiment and the standard commands of the supporting software may not provide readily the required flexibility and accessibility for "plug and play" functionality. These can limit the potential of this technique in laboratories engaging on HT activities. In this work, we present an application which aims to overcome this challenge by providing end-users with a flexible operation of the miniature column technique on an automated liquid handler. The application includes a script which is written on Freedom EVOware, and is supplemented by custom compiled executables. Here, the manipulations carried out by the application are described in detail and its functionality is demonstrated through typical experiments based on bind and elute miniature column chromatography. The application is shown to allow for the unsupervised "on-the-fly" programming of the robotic station and to ultimately make the technique accessible to non-automation experts. This application is therefore well suited to simplifying development activities based on the robotic deployment of the miniature column chromatography technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Working Toward Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Gorelik, Olga; Hadjiev, Victor G.; Scott, Carl D.; Files, Bradley S.

    2001-01-01

    One of the most attractive applications of single-wall carbon nanotubes (SWNT) is found in the area of structural materials. Nanotubes have a unique combination of high strength, modulus, and elongation to failure, and therefore have potential to significantly enhance the mechanical properties of today's composites. This is especially attractive for the aerospace industry looking for any chance to save weight. This is why NASA has chosen to tackle this difficult application of SWNT. Nanotube properties differ significantly from that of conventional carbon fibers, and a whole new set of problems, including adhesion and dispersion in the adhesive polymer matrix, must be resolved in order to engineer superior composite materials. From recent work on a variety of applications it is obvious that the wide range of research in nanotubes will lead to advances in physics, chemistry, and engineering. However, the possibility of ultralightweight structures is what causes dreamers to really get excited. One of the important issues in composite engineering is aspect ratio of the fibers, since it affects load transfer in composites. Nanotube length was a gray area for years, since they are formed in bundles, making it impossible to monitor individual nanotube length. Even though bundles are observed to be tens and hundreds of microns long, they can be built of relatively short tubes weakly bound by Van der Waals forces. Nanotube length can be affected by subsequent purification and ultrasound processing, which has been necessary in order to disperse nanotubes and introduce them into a polymer matrix. Some calculations show that nanotubes with 10(exp 5) aspect ratio may be necessary to achieve good load transfer. We show here that nanotubes produced in our laser system are as much as tens of microns long and get cut into lengths of hundreds of nanometers during ultrasound processing. Nanotube length was measured by AFM on pristine nanotube specimens as well, as after sonication

  11. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  12. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2014-08-26

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  13. Biodegradation of toluene vapor in coir based upflow packed bed reactor by Trichoderma asperellum isolate.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-03-01

    In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.

  14. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§ 51...

  15. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    PubMed Central

    Hemasa, Ayman L.; Maher, William A.; Ghanem, Ashraf

    2017-01-01

    Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns. PMID:28718832

  16. Nasal packing and stenting

    PubMed Central

    Weber, Rainer K.

    2011-01-01

    Nasal packs are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal packs and stents. In endoscopic surgery, nasal packs should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal packs, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue. PMID:22073095

  17. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  18. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  19. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-12-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem-- Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  20. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil.

    PubMed

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-01-18

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  1. Separation of cannabinoids on three different mixed-mode columns containing carbon/nanodiamond/amine-polymer superficially porous particles.

    PubMed

    Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R

    2015-09-01

    Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Semi-industrial experimental study on bauxite separation using a cell-column integration process

    NASA Astrophysics Data System (ADS)

    Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  3. Micro-reactors for characterization of nanostructure-based sensors.

    PubMed

    Savu, R; Silveira, J V; Flacker, A; Vaz, A R; Joanni, E; Pinto, A C; Gobbi, A L; Santos, T E A; Rotondaro, A L P; Moshkalev, S A

    2012-05-01

    Fabrication and testing of micro-reactors for the characterization of nanosensors is presented in this work. The reactors have a small volume (100 μl) and are equipped with gas input/output channels. They were machined from a single piece of kovar in order to avoid leaks in the system due to additional welding. The contact pins were electrically insulated from the body of the reactor using a borosilicate sealing glass and the reactor was hermetically sealed using a lid and an elastomeric o-ring. One of the advantages of the reactor lies in its simple assembly and ease of use with any vacuum/gas system, allowing the connection of more than one device. Moreover, the lid can be modified in order to fit a window for in situ optical characterization. In order to prove its versatility, carbon nanotube-based sensors were tested using this micro-reactor. The devices were fabricated by depositing carbon nanotubes over 1 μm thick gold electrodes patterned onto Si/SiO(2) substrates. The sensors were tested using oxygen and nitrogen atmospheres, in the pressure range between 10(-5) and 10(-1) mbar. The small chamber volume allowed the measurement of fast sensor characteristic times, with the sensors showing good sensitivity towards gas and pressure as well as high reproducibility.

  4. Micro-reactors for characterization of nanostructure-based sensors

    NASA Astrophysics Data System (ADS)

    Savu, R.; Silveira, J. V.; Flacker, A.; Vaz, A. R.; Joanni, E.; Pinto, A. C.; Gobbi, A. L.; Santos, T. E. A.; Rotondaro, A. L. P.; Moshkalev, S. A.

    2012-05-01

    Fabrication and testing of micro-reactors for the characterization of nanosensors is presented in this work. The reactors have a small volume (100 μl) and are equipped with gas input/output channels. They were machined from a single piece of kovar in order to avoid leaks in the system due to additional welding. The contact pins were electrically insulated from the body of the reactor using a borosilicate sealing glass and the reactor was hermetically sealed using a lid and an elastomeric o-ring. One of the advantages of the reactor lies in its simple assembly and ease of use with any vacuum/gas system, allowing the connection of more than one device. Moreover, the lid can be modified in order to fit a window for in situ optical characterization. In order to prove its versatility, carbon nanotube-based sensors were tested using this micro-reactor. The devices were fabricated by depositing carbon nanotubes over 1 μm thick gold electrodes patterned onto Si/SiO2 substrates. The sensors were tested using oxygen and nitrogen atmospheres, in the pressure range between 10-5 and 10-1 mbar. The small chamber volume allowed the measurement of fast sensor characteristic times, with the sensors showing good sensitivity towards gas and pressure as well as high reproducibility.

  5. TLC Pack Unpacked

    ERIC Educational Resources Information Center

    Oberhofer, Margret; Colpaert, Jozef

    2015-01-01

    TLC Pack stands for Teaching Languages to Caregivers and is a course designed to support migrants working or hoping to work in the caregiving sector. The TLC Pack resources range from A2 to B2 level of the Common European Framework of Reference for Languages (CEFR), and will be made available online in the six project languages: Dutch, English,…

  6. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales

  7. Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2018-01-01

    In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.

  8. Adsorption experiment of toxic micro-pollutants derived from automobiles using red soil.

    PubMed

    Kawai, Takahiro; Ichiki, Atsushi; Sawada, Yasunori

    2015-01-01

    In some countries, non-point source pollution derived from a city's economic activities tends to be a barrier to the improvement of water quality. Roadway runoff is known to contain toxic micro-pollutants such as polycyclic aromatic hydrocarbons (PAHs). Conversely, red soil is known to adsorb some organic matter. In this study, artificial roadway runoff water containing toxic micro-pollutants was made using roadway dust collected from a highway, and used for both batch-type tests and soil column tests with red soil in order to understand adsorption ability of the red soil on such toxic micro-pollutants, especially PAHs. In the batch-type tests, PAHs could be removed by approximately 40% when the contact time was 90 minutes. In the soil column tests, PAHs were removed by more than 80% while suspended solids were removed by more than 90%. Notably, PAHs with a high molecular weight were removed more readily in the tests than PAHs with a low molecular weight.

  9. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  10. Modeling Stone Columns.

    PubMed

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  11. Modeling Stone Columns

    PubMed Central

    2017-01-01

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the “unit cell”, longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns. PMID:28773146

  12. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method.

    PubMed

    Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen

    2010-01-01

    A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.

  13. Adhesive loose packings of small dry particles.

    PubMed

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A

    2015-08-28

    We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes the correlation between bulk and contact spheres. Our theoretical and numerical results predict: (i) an equation of state for adhesive loose packings that appear as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram and (ii) the existence of an asymptotic adhesive loose packing point at a coordination number Z = 2 and a packing fraction ϕ = 1/2(3). Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing (RLP), which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  14. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode.

    PubMed

    Li, Yu-Ping; Cao, Hong-Bin; Zhang, Yi

    2007-01-01

    Hemoglobin (Hb) was immobilized on carbon nanotube (CNT) electrode to catalyze the dehalogenation of haloacetic acids (HAAs). FTIR and UV measurements were performed to investigate the activity-keep of Hb after immobilization on CNT. The electrocatalytic behaviors of the Hb-loaded electrode for the dehalogenation of HAAs were studied by cyclic voltammmetry and constant-potential electrolysis technique. An Hb-loaded packed-bed flow reactor was also constructed for bioelectrocatalytic dehalogenation of HAAs. The results showed that Hb retained its nature, the essential features of its native secondary structure, and its biocatalytic activity after immobilization on CNT. Chloroacetic acids and bromoacetic acids could be dehalogenated completely with Hb catalysis through a stepwise dehalogenation process at -0.400V (vs. saturated calomel electrode (SCE)) and -0.200V (vs. SCE), respectively. The removal of 10.5mM trichloroacetic acid and dichloroacetic acid is ca. 97% and 63%, respectively, with electrolysis for 300min at -0.400V (vs. SCE) using the Hb-loaded packed-bed flow reactor, and almost 100% of tribromoacetic acid and dibromoacetic acid was removed with electrolysis for 40min at -0.200V (vs. SCE). The average current efficiency of Hb-catalytic dehalogenation almost reaches 100%.

  15. Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation

    NASA Astrophysics Data System (ADS)

    Barrocas, B.; Nunes, C. D.; Carvalho, M. L.; Monteiro, O. C.

    2016-11-01

    In this work, titanate nanotubes were modified with silver nanoparticles to produce new nanocomposite materials with enhanced photocatalytic activity for phenol removal. The TNTs were produced using a hydrothermal approach and, after being submitted to an Ag+ exchange process, metallic Ag nanoparticles were obtained over the nanotubes surface. The prepared materials were structural, morphological and optical characterized by X-ray powder diffraction, micro X-ray fluorescence, transmission electron microscopy, diffused reflectance spectroscopy and X-ray photoelectron spectroscopy. The characterization results indicate that Ag+ was immobilized not only in the nanotubes external surface but mainly in the TiO6 interlayers space. The application of this new nanocomposite material on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as a probe was studied. The photocatalytic activity of the sensitized materials for phenol degradation was afterwards evaluated. The results show that the nanocomposite sample is the best catalyst, achieving 98.0% photodegradation efficiency of a 0.2 mM phenol solution within 20 min under UV-vis radiation. The reusability of the prepared samples as photocatalysts was evaluated in four successive degradation assays, using fresh phenol solutions. The sensitized sample demonstrated excellent catalytic reusability ability, without loss of photochemical stability. The structural and morphological characterization during these experiments revealed no modifications on the nanotubes morphology but a continuous increase on the Ag nanoparticles, in number and size, with the irradiation time. A mechanism for this continuous growth of the Ag nanoparticles, together with the phenol catalytic photodegradation, over the nanotubes surface, is proposed and discussed.

  16. The effect of graphitic target density on carbon nanotube synthesis by pulsed laser ablation method

    NASA Astrophysics Data System (ADS)

    Kazeimzadeh, Fatemeh; Malekfar, Rasoul; Houshiar, Mahboubeh

    2018-01-01

    Carbon nanotube (CNT) was synthesized by pulsed laser ablation (PLA) of a graphitic target in vacuum chamber filled by argon gas. The effect of different condition of target preparation on the amount and quality of carbon nanotube generation was investigated. The graphite powder with 2 at% micrometer nickel (Ni) powder was mixed and packed in to a mold using a hydraulic press device at a pressure of 1000 kg/cm3. The obtained pellet which contained the mixture powder provided the carbon source for CNTs formation in PLA method. Two pellets with the pressure time of 15 and 200 min was prepared. It has been shown that the time which graphitic target is under pressure is an effective parameter that can increase the amount of produced CNTs. Field emission scanning electron microscopy (FESEM) images show that if the density of graphitic target is increased by raising up the pressure time, CNTs can grow even under the condition in which usually no nanotube can be formed. It can be due to the elimination of the distances between the graphite and catalyst grains that causes the catalysis performance improvement. The experiment was performed for nanometer cobalt ferrite (CoFe2O4) together with Ni catalyst particles too. The diameter of synthesized CNPs was larger in the case of pure nickel that is related to the size of catalysts. Moreover, it was also observed that the production rate of the nanotubes increased for high density targets. This shows that the results are independent of the type of catalyst.

  17. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2015-12-01

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  18. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. 5 Reasons to Pack Your Lunch

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español 5 Reasons to Pack Your Lunch KidsHealth / For Teens / 5 Reasons to Pack Your Lunch Print 5 Reasons to Pack Your Lunch Most schools are ...

  20. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  1. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to

  2. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal

  3. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter

    1997-12-01

    In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.

  4. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  5. Pack Density Limitations of Hybrid Parachutes

    NASA Technical Reports Server (NTRS)

    Zwicker, Matthew L.; Sinclair, Robert J.

    2013-01-01

    The development and testing of the Orion crew capsule parachute system has provided a unique opportunity to study dense parachute packing techniques and limits, in order to establish a new baseline for future programs. The density of parachute packs has a significant influence on vibration loads, retention system stresses, and parachute mortar performance. Material compositions and pack densities of existing designs for space capsule recovery were compared, using the pack density of the Apollo main parachutes as the current baseline. The composition of parachutes has changed since Apollo, incorporating new materials such as Kevlar , Vectran , Teflon and Spectra . These materials have different specific densities than Nylon, so the densities of hybrid parachute packs cannot be directly compared to Nylon parachutes for determination of feasibility or volume allocation. Six parachute packs were evaluated in terms of weighted average solid density in order to achieve a non-dimensional comparison of packing density. Means of mitigating damage due to packing pressure and mortar firing were examined in light of the Capsule Parachute Assembly System (CPAS) and Apollo experience. Parachute design improvements including incorporation of modern materials and manufacturing processes serves to make CPAS the new knowledge base on which future spacecraft parachute systems will be built.

  6. High frequency nanotube oscillator

    DOEpatents

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  7. Strain and Temperature Sensing Properties of Multiwalled Carbon Nanotube Yarn Composites

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gates, Thomas S.; Jefferson, Gail D.

    2008-01-01

    Strain and temperature response of Multiwalled Carbon Nanotube (MWCNT/CNT) yarns on a stainless steel test beam has been studied. The carbon nanotube yarns are spun from a multiwalled carbon nanotube forest grown on a silicon substrate to a 4-ply yarn with a diameter of about 15-20 microns. Four of the 4-ply CNT yarns are arranged in a Wheatstone bridge configuration on the stainless steel test beam using a thin layer of polyurethane resin that insulates and protects the yarns from the test beam. Strain sensitivities of the CNT yarn sensors range from 1.39 to 1.75 mV/V/1000 microstrain at room temperature, and temperature sensitivity of the CNT yarn bridge is 91 microA/degC. Resistance of the yarns range from 215 to 270 ohms for CNT yarn length of approximately 5 mm. Processes used in attaching the CNT yarns on the test beam and experimental procedures used for the measurements are described. Conventional metallic foil strain gages are attached to the test beam to compare with the CNT sensors. The study demonstrates multifunctional capability of the sensor for strain and temperature measurements and shows its applicability where engineering strain is less than 3%.

  8. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  9. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    PubMed

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  10. Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2017-01-24

    Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.

  11. Recent advances in design and fabrication of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  12. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  13. On the kinetics of pack aluminization

    NASA Technical Reports Server (NTRS)

    Gupta, B. K.; Sarkhel, A. K.; Seigle, L. L.

    1975-01-01

    A theory of pack aluminization has been formulated by combining gaseous and solid-state diffusion rates. This theory relates the surface composition of the coating and therefore, in principle, the phase morphology and the growth rate of the coating, to pack operating parameters such as pack aluminum density, type of activator, temperature and others. Experimental data on the aluminization of unalloyed nickel in pure aluminum packs obtained to date are in good agreement with the predictions of the theory.

  14. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    PubMed

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  15. Deterioration of organic packing materials commonly used in air biofiltration: effect of VOC-packing interactions.

    PubMed

    Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Quijano, Guillermo

    2014-05-01

    The abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene. Likewise, the exposure to toluene increased the packing material biodegradability by 26% in wood bark, 20% in compost and 17% in Macadamia nutshells. Finally, scanning electron microscopy analysis confirmed the deterioration in the structure of the packing materials evaluated due to the exposure to toluene, Macadamia nutshells being the material with the highest resistance to volatile organic compound attack. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The preparation, cytocompatibility and antimicrobial property of micro/nano structural titanium loading alginate and antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Zhong, Mou; Sun, Yuhua; Chen, Junhong; Feng, Bo

    2018-03-01

    Titanium with hybrid microporous/nanotubes (TMNT) structure on its surface was fabricated by acid etching and subsequently anodization at different voltages. Bovine lactoferricin, a kind of antimicrobial peptide, and sodium alginate (NaAlg) were loaded onto titanium surface through layer by layer assembly. The drug release, cytocompatibility and antimicrobial property against S.aureus and E.coil were studied by release experiment, osteoblast and bacterial cultures. Results indicated that samples with nanotubes of bigger diameter carried more drugs and had better biocompatibility, and drug-loaded samples acquired better biocompatibility compared with drug-free samples. Furthermore, the drug-loaded samples exhibited good initial antimicrobial property, but weak long-term antimicrobial property. Therefore, drug-loaded titanium with micro/nano structure, especially, of big diameter nanotubes, could be a promise material for medical implants, such as internal/external fixation devices.

  17. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  18. Fabrication de structures tridimensionnelles de nanocomposites polymeres charges de nanotubes de carbone a simple paroi

    NASA Astrophysics Data System (ADS)

    Laberge Lebel, Louis

    There is currently a worldwide effort for advances in micro and nanotechnologies due to their high potential for technological applications in fields such as microelectromechanical systems (MEMS), organic electronics and structural microstructures for aerospace. In these applications, carbon nanotube/polymer nanocomposites represent interesting material options compared to conventional resins for their enhanced mechanical and electrical properties. However, several significant scientific and technological challenges must first be overcome in order to rapidly and cost-effectively fabricate nanocomposite-based microdevices. Fabrication techniques have emerged for fabricating one- of two-dimensional (1D/2D) nanocomposite structures but few techniques are available for three-dimensional (3D) nanocomposite structures. The overall objective of this thesis is the development of a manufacturing technique allowing the fabrication of 3D structures of single-walled carbon nanotube (C-SWNT)/polymer nanocomposite. This thesis reports the development of a direct-write fabrication technique that greatly extends the fabrication space for 3D carbon nanotube/polymer nanocomposite structures. The UV-assisted direct-write (UV-DW) technique employs the robotically-controlled micro-extrusion of a nanocomposite filament combined with a UV exposure that follows the extrusion point. Upon curing, the increased rigidity of the extruded filament enables the creation of multi-directional shapes along the trajectory of the extrusion point. The C-SWNT material is produced by laser ablation of a graphite target and purified using a nitric acid reflux. The as-grown and purified material is characterized under transmission electron microscopy and Raman spectroscopy. The purification procedure successfully graphed carboxylic groups on the surface of the C-SWNTs, shown by X-ray photoelectron spectroscopies. An incorporation procedure in the polymer is developed involving a non

  19. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  20. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  1. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  2. Carbon nanotube filters.

    PubMed

    Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  3. Development of the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.

    2012-01-01

    Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.

  4. Temperature dependent Raman investigation of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dilawar Sharma, Nita; Singh, Jasveer; Vijay, Aditi

    2018-04-01

    We report anomalous observations in our investigations of the temperature dependent Raman spectroscopic measurement of multiwall carbon nanotubes. The Micro-Raman spectra were recorded with the laser source having 514.5 nm wavelength and within the temperature range of 80-440 K. The major Raman bands, the G and D band, are observed at 1584 and 1348 cm-1, respectively, at ambient. The absence of the radial breathing mode confirms the multiwall nature of carbon nanotubes. It has been observed that with an increase in the temperature above 120 K, there is a shift in Raman bands towards the higher wave-number region. However, a drop in the G and D bands is observed from 80 to 120 K which was not observed for the second order band. Thereafter, all Raman modes exhibited mode hardening up to about 320 K followed by mild softening of the phonon modes. Linear temperature coefficients were found to have higher contribution to mode hardening as compared to higher order terms. Total anharmonicity estimation shows a predominant effect of the quasi-harmonic term as compared to the true anharmonic term.

  5. Optimal performance of single-column chromatography and simulated moving bed processes for the separation of optical isomers

    NASA Astrophysics Data System (ADS)

    Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad

    2013-06-01

    Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.

  6. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Packing requirements. 51.310 Section 51.310... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND.... (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and...

  7. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation.

    PubMed

    Cukrowska, Ewa M; Govender, Koovila; Viljoen, Morris

    2004-07-01

    New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit. Copyright 2004 Elsevier Ltd.

  8. Experimental and Numerical Investigation of Adsorption/Desorption in Packed Sorption Beds Under Ideal and Non-Ideal Flows

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, H.; Knox, J. C.; Smith, James E.

    1999-01-01

    The importance of the wall effect on packed beds in the adsorption and desorption of carbon dioxide, nitrogen, and water on molecular sieve 5A of 0.127 cm in radius is examined experimentally and with one-dimensional computer simulations. Experimental results are presented for a 22.5-cm long by 4.5-cm diameter cylindrical column with concentration measurements taken at various radial locations. The set of partial differential equations are solved using finite differences and Newman's method. Comparison of test data with the axial-dispersed, non-isothermal, linear driving force model suggests that a two-dimensional model (submitted to Separation Science and Technology) is required for accurate simulation of the average column breakthrough concentration. Additional comparisons of test data with the model provided information on the interactive effects of carrier gas coadsorption with CO2, as well as CO2-H2O interactions.

  9. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments

    NASA Astrophysics Data System (ADS)

    Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.

    2011-07-01

    A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.

  10. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.

    PubMed

    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt

    2012-01-01

    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  11. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  12. An on-line coupling of nanofibrous extraction with column-switching high performance liquid chromatography - A case study on the determination of bisphenol A in environmental water samples.

    PubMed

    Háková, Martina; Chocholoušová Havlíková, Lucie; Chvojka, Jiří; Solich, Petr; Šatínský, Dalibor

    2018-02-01

    Polyamide 6 nanofiber polymers were used as modern sorbents for on-line solid phase extraction (SPE) coupled with liquid chromatography. The on-line SPE system was tested for the determination of bisphenol A in river water samples. Polyamide nanofibers were prepared using needleless electrospinning, inserted into a mini-column cartridge (5 × 4.6mm) and coupled with HPLC. The effect of column packing and the amount of polyamide 6 on extraction efficiency was tested and the packing process was optimized. The proposed method was performed using a 50-µL sample injection followed by an on-line nanofibrous extraction procedure. The influence of the washing mobile phase on the retention of bisphenol A during the extraction procedure was evaluated. Ascentis ® Express C18 (10cm × 4.6mm) core-shell column was used as an analytical column. Fluorescence detection wavelengths (λ ex = 225nm and λ em = 320nm) were used for identification and quantification of Bisphenol A in river waters. The linearity was tested in the range from 2 to 500µgL -1 (using nine calibration points). The limits of detection and quantification were 0.6 and 2µgL -1 , respectively. The developed method was successfully used for the determination of bisphenol A in various samples of river waters in the Czech Republic (The Ohře, Labe, Nisa, Úpa, and Opava Rivers). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Purification of carbon nanotubes via selective heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Wilson, William L.; Jin, Sung Hun

    The present invention provides methods for purifying a layer of carbon nanotubes comprising providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.

  14. Inkjet Printing of Carbon Nanotubes

    PubMed Central

    Tortorich, Ryan P.; Choi, Jin-Woo

    2013-01-01

    In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology. PMID:28348344

  15. Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC.

    PubMed

    Jin, Lixia; Gao, Weiliang; Yang, Huayun; Lin, Chunmian; Liu, Weiping

    2011-10-01

    The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.

  16. Quasistatic packings of droplets in flat microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan

    2016-02-01

    As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.

  17. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes.

    PubMed

    Velzeboer, I; Kwadijk, C J A F; Koelmans, A A

    2014-05-06

    The presence of microplastic and carbon-based nanoparticles in the environment may have implications for the fate and effects of traditional hydrophobic chemicals. Here we present parameters for the sorption of 17 CB congeners to 10-180 μm sized polyethylene (micro-PE), 70 nm polystyrene (nano-PS), multiwalled carbon nanotubes (MWCNT), fullerene (C60), and a natural sediment in the environmentally relevant 10(-5)-10(-1) μg L(-1) concentration range. Effects of salinity and sediment organic matter fouling were assessed by measuring the isotherms in fresh- and seawater, with and without sediment present. Sorption to the "bulk" sorbents sediment organic matter (OM) and micro-PE occurred through linear hydrophobic partitioning with OM and micro-PE having similar sorption affinity. Sorption to MWCNT and nano-PS was nonlinear. PCB sorption to MWCNT and C60 was 3-4 orders of magnitude stronger than to OM and micro-PE. Sorption to nano-PS was 1-2 orders of magnitude stronger than to micro-PE, which was attributed to the higher aromaticity and surface-volume ratio of nano-PS. Organic matter effects varied among sorbents, with the largest OM fouling effect observed for the high surface sorbents MWCNT and nano-PS. Salinity decreased sorption for sediment and MWCNT but increased sorption for the polymers nano-PS and micro-PE. The exceptionally strong sorption of (planar) PCBs to C60, MWCNT, and nano-PS may imply increased hazards upon membrane transfer of these particles.

  18. Prediction of soil organic carbon partition coefficients by soil column liquid chromatography.

    PubMed

    Guo, Rongbo; Liang, Xinmiao; Chen, Jiping; Wu, Wenzhong; Zhang, Qing; Martens, Dieter; Kettrup, Antonius

    2004-04-30

    To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (KOC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (KOW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for KOC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (ksoil) and KOC measured by batch equilibrium method were studied. Good correlations were achieved between ksoil and KOC for three types of soils with different properties. All the square of the correlation coefficients (R2) of the linear regression between log ksoil and log KOC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of KOC from KOW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (kCN) was comparatively evaluated for the three types of soils. The results show that the prediction of KOC from kCN and KOW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the KOC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict KOC largely depends on the properties of soil concerned.

  19. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  20. Paediatric oncology information pack for general practitioners

    PubMed Central

    James, J A; Harris, D J; Mott, M G; Oakhill, A

    1988-01-01

    An information pack covering important aspects of paediatric oncology has been developed for general practitioners. Sixty general practitioners who received the information pack found that it helped them in managing children with neoplastic disease and their families. The pack has also improved communications between the oncology unit and general practitioners. Similar packs could be produced by paediatricians working in other specialties. PMID:3122972