Science.gov

Sample records for naphthoquinones

  1. A new naphthoquinone from Ceiba pentandra.

    PubMed

    Kishore, P Hari; Reddy, M Vijaya Bhaskar; Gunasekar, D; Caux, Cristelle; Bodo, Bernard

    2003-09-01

    A new naphthoquinone, 2,7-dihydroxy-8-formyl-5-isopropyl-3-methyl-1,4-naphthoquinone (1) together with a known naphthoquinone, 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthoquinone (2), has been isolated from the heartwood of Ceiba pentandra. The structures of 1 and 2 have been elucidated by extensive 1D and 2D NMR experiments. PMID:12931857

  2. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF NAPHTHALENE OXIDE, 1,2-NAPHTHOQUINONE, AND 1,4-NAPHTHOQUINONE

    EPA Science Inventory

    Naphthalene is an important industrial chemical, which has recently been shown to cause tumors of the respiratory tract in rodents. It is thought that one or more reactive metabolites of naphthalene, namely, naphthalene-1,2-oxide (NPO), 1,2-naphthoquinone (1,2-NPQ), and 1,4-na...

  3. Further evidence that naphthoquinone inhibits Toxoplasma gondii growth in vitro.

    PubMed

    da Silva, Luciana Lemos Rangel; Portes, Juliana de Araujo; de Araújo, Marlon Heggdorne; Silva, Jéssica Lays Sant'ana; Rennó, Magdalena Nascimento; Netto, Chaquip Daher; da Silva, Alcides José Monteiro; Costa, Paulo Roberto Ribeiro; De Souza, Wanderley; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2015-12-01

    Toxoplasmosis is a widely disseminated disease caused by Toxoplasma gondii, an intracellular protozoan parasite. Standard treatment causes many side effects, such as depletion of bone marrow cells, skin rashes and gastrointestinal implications. Therefore, it is necessary to find chemotherapeutic alternatives for the treatment of this disease. It was shown that a naphthoquinone derivative compound is active against T. gondii, RH strain, with an IC50 around 2.5 μM. Here, three different naphthoquinone derivative compounds with activity against leukemia cells and breast carcinoma cell were tested against T. gondii (RH strain) infected LLC-MK2 cell line. All the compounds were able to inhibit parasite growth in vitro, but one of them showed an IC50 activity below 1 μM after 48 h of treatment. The compounds showed low toxicity to the host cell. In addition, these compounds were able to induce tachyzoite-bradyzoite conversion confirmed by morphological changes, Dolichus biflorus lectin cyst wall labeling and characterization of amylopectin granules in the parasites by electron microscopy analysis using the Thierry technique. Furthermore, the compounds induced alterations on the ultrastructure of the parasite. Taken together, our results point to the naphthoquinone derivative (LQB 151) as a potential compound for the development of new drugs for the treatment of toxoplasmosis. PMID:26335616

  4. Synthesis and MEK1 inhibitory activities of imido-substituted 2-chloro-1,4-naphthoquinones.

    PubMed

    Bakare, Oladapo; Ashendel, Curtis L; Peng, Hairuo; Zalkow, Leon H; Burgess, Edward M

    2003-07-17

    Mitogen activated protein kinases are of interest as research tools and as therapeutic target for certain physiological disorders. In this study, we found 2-chloro-3-(N-succinimidyl)-1,4-naphthoquinone 6 to be a selective inhibitor of MEK1 with an IC(50) of 0.38 microM. An open-chain homologue, 10, showed selective cytotoxicity against renal cancer in the NCI in vitro tumor screening. Structure-activity relationship study of eight compounds showed the cyclic imido-substituted chloro-1,4-naphthoquinone as more potent and selective MEK1 inhibitors than the open chain homologues. The imido-substituted chloro-1,4-naphthoquinones were synthesized in a straightforward fashion by refluxing 2-amino-3-chloro-1,4-naphthoquinone with the appropriate acid chloride or diacyl dichloride. PMID:12818679

  5. A new and efficient procedure for the synthesis of hexahydropyrimidine-fused 1,4-naphthoquinones

    PubMed Central

    Reis, Marcelo Isidoro P; Campos, Vincius R; Resende, Jackson A L C; Silva, Fernando C

    2015-01-01

    Summary A new and efficient method for the synthesis of hexahydropyrimidine-fused 1,4-naphthoquinones in one step with high yields from the reaction of lawsone with 1,3,5-triazinanes was developed. PMID:26425181

  6. Two new dimeric naphthoquinones with neuraminidase inhibitory activity from Lithospermum erythrorhizon.

    PubMed

    Yang, Yanqin; Zhao, Dapeng; Yuan, Kailong; Zhou, Guojun; Wang, Yu; Xiao, Yanmeng; Wang, Chenxu; Xu, Jingwei; Yang, Wei

    2015-01-01

    The crude methanol extract of roots of Lithospermum erythrorhizon was subjected to successive chromatographic fractionation which afforded two new dimeric naphthoquinone derivatives shikometabolin E (2) and shikometabolin F (3) as well as one known compound shikometabolin A (1). The structures of compounds 1-3 were elucidated by using UV, MS, 1D and 2D NMR spectroscopic analysis. The two new dimeric naphthoquinone derivatives showed significant neuraminidase inhibitory activities. PMID:25190151

  7. Modulation of Basophils' Degranulation and Allergy-Related Enzymes by Monomeric and Dimeric Naphthoquinones

    PubMed Central

    Pinho, Brígida R.; Sousa, Carla; Valentão, Patrícia; Oliveira, Jorge M. A.; Andrade, Paula B.

    2014-01-01

    Allergic disorders are characterized by an abnormal immune response towards non-infectious substances, being associated with life quality reduction and potential life-threatening reactions. The increasing prevalence of allergic disorders demands for new and effective anti-allergic treatments. Here we test the anti-allergic potential of monomeric (juglone, menadione, naphthazarin, plumbagin) and dimeric (diospyrin and diosquinone) naphthoquinones. Inhibition of RBL-2H3 rat basophils' degranulation by naphthoquinones was assessed using two complementary stimuli: IgE/antigen and calcium ionophore A23187. Additionally, we tested for the inhibition of leukotrienes production in IgE/antigen-stimulated cells, and studied hyaluronidase and lipoxidase inhibition by naphthoquinones in cell-free assays. Naphthazarin (0.1 µM) decreased degranulation induced by IgE/antigen but not A23187, suggesting a mechanism upstream of the calcium increase, unlike diospyrin (10 µM) that reduced degranulation in A23187-stimulated cells. Naphthoquinones were weak hyaluronidase inhibitors, but all inhibited soybean lipoxidase with the most lipophilic diospyrin, diosquinone and menadione being the most potent, thus suggesting a mechanism of competition with natural lipophilic substrates. Menadione was the only naphthoquinone reducing leukotriene C4 production, with a maximal effect at 5 µM. This work expands the current knowledge on the biological properties of naphthoquinones, highlighting naphthazarin, diospyrin and menadione as potential lead compounds for structural modification in the process of improving and developing novel anti-allergic drugs. PMID:24587235

  8. MEASUREMENT OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF NAPHTHALENE-1,2-OXIDE, 1,2-NAPHTHOQUINONE AND 1,4-NAPHTHOQUINONE AFTER ADMINISTRATION OF NAPHTHALENE TO F344 RATS

    EPA Science Inventory

    Naphthalene-1,2-oxide (NPO), 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) are the major metabolites of naphthalene that are thought to be responsible for the cytotoxicity and genotoxicity of this chemical. We measured cysteinyl adducts of these metabolites in ...

  9. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin.

    PubMed Central

    Fujii, N; Yamashita, Y; Arima, Y; Nagashima, M; Nakano, H

    1992-01-01

    Plumbagin and shikonin, plant metabolites which have naphthoquinone structures, induced mammalian topoisomerase II-mediated DNA cleavage in vitro. Treatment of a reaction mixture containing these naphthoquinones and topoisomerase II at an elevated temperature (65 degrees C) resulted in a great reduction in DNA cleavage, suggesting that the mechanism of the topoisomerase II-mediated DNA cleavage induced by these naphthoquinones is through formation of a cleavable complex, as seen with antitumor agents such as 4'-(9-acridinylamino)methanesulfon-m-anisidide and demethylepipodophyllotoxin ethylidene-beta-glucoside. Lawson and lapacol, which are structurally related plant metabolites with naphthoquinone moieties, could not induce topoisomerase II-mediated DNA cleavage. Plumbagin and shikonin induced a similar DNA cleavage pattern with topoisomerase II which was different from the cleavage patterns induced with other known topoisomerase II-active drugs. A DNA-unwinding assay with T4 DNA ligase showed that shikonin, lawson, and lapacol did not intercalate into DNA, while plumbagin and 2-methyl-1,4-naphthoquinone intercalate into DNA, but to a lower degree than 4'-(9-acridinylamino)methanesulfon-m-anisidide does. Images PMID:1336338

  10. Synthesis and evaluation of Hsp90 inhibitors that contain the 1,4-naphthoquinone scaffold

    PubMed Central

    Hadden, M. Kyle; Hill, Stephanie A.; Davenport, Jason; Matts, Robert L.; Blagg, Brian S. J.

    2009-01-01

    High-throughput screening of a library of diverse molecules has identified the 1,4-naphthoquinone scaffold as a new class of Hsp90 inhibitors. The synthesis and evaluation of a rationally–designed series of analogues containing the naphthoquinone core scaffold has provided key structure–activity relationships for these compounds. The most active inhibitors exhibited potent in vitro activity with low micromolar IC50 values in anti-proliferation and Her2 degradation assays. In addition, 3g, 12, and 13a induced the degradation of oncogenic Hsp90 client proteins, a hallmark of Hsp90 inhibition. The identification of these naphthoquinones as Hsp90 inhibitors provides a new scaffold upon which improved Hsp90 inhibitors can be developed. PMID:19101151

  11. ?-Lapachone: a naphthoquinone with promising antischistosomal properties in mice.

    PubMed

    Aires, Andr de Lima; Ximenes, Eullia Camelo Pessoa Azevedo; Barbosa, Vanessa Xavier; Ges, Alexandre Jos da Silva; Souza, Valdnia Maria Oliveira; Albuquerque, Mnica Camelo Pessa de Azevedo

    2014-02-15

    The activity of ?-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione, ?-lap) against different stages of Schistosoma mansoni was investigated in mice. Mice infected with 50 cercariae (BH strain) were intraperitoneally treated at a dose of 50 mg/kg for 5 consecutive days, starting on the 1st, 14th, 28th and 45th days after infection, to evaluate the effect of ?-lap on skin schistosomula, lung schistosomula, young worms (before oviposition) and adult worms (after oviposition), respectively. All animals were euthanized 60 days after infection. ?-Lap significantly reduced (p<0.001) the number of worms in 29.78%, 37.2%, 24.2% and 40.22% when administered during the phases of skin schistosomula, lung schistosomula, young worms and adult worms, respectively. Significant reduction was also achieved in terms of female burden. In all groups, there was significant reduction in the number of eggs and granulomas in the hepatic tissue. When the intervention was performed during the phase of adult worms, ?-lap reduced the size of hepatic granulomas and changed the oogram pattern, lowering the percentage of immature eggs and increasing the percentage of mature and dead eggs. Our data indicate that ?-lap has moderate antischistosomal properties. Its molecule may also be used as a prototype for synthesis of new naphthoquinone derivatives with potential schistosomicidal properties. Further studies with different formulations containing ?-lap are needed to clearly establish the best dose and route of administration and its mechanism of action against schistosomes. PMID:24090700

  12. Synthesis of Vitamin K and Related Naphthoquinones via Demethoxycarbonylative Annulations and a Retro-Wittig Rearrangement.

    PubMed

    Mal, Dipakranjan; Ghosh, Ketaki; Jana, Supriti

    2015-12-01

    Anionic annulations of 3-nucleofugal phthalides with ?-alkyl(aryl)acrylates involving a demethoxycarbonylation provide a succinct synthesis of vitamin K and related naphthoquinones. Also reported is a new cascade reaction stemming from a Cope-retro-Wittig rearrangement. This cascade leads to direct formation of 1-hydroxy-4-prenyloxynaphthalene-2-carboxylates from the corresponding ?-prenyl acrylate acceptors. PMID:26572315

  13. NAD-dependent dehydrogenase bioelectrocatalysis: the ability of a naphthoquinone redox polymer to regenerate NAD.

    PubMed

    Abdellaoui, Sofiene; Milton, Ross D; Quah, Timothy; Minteer, Shelley D

    2016-01-01

    Electron mediation between NAD-dependent enzymes using quinone moieties typically requires the use of a diaphorase as an intermediary enzyme. The ability for a naphthoquinone redox polymer to independently oxidize enzymatically-generated NADH is demonstrated for application to glucose/O2 enzymatic fuel cells. PMID:26618758

  14. Antiproliferative activities and SAR studies of substituted anthraquinones and 1,4-naphthoquinones.

    PubMed

    Bhasin, Deepak; Etter, Jonathan P; Chettiar, Somsundaram N; Mok, May; Li, Pui-Kai

    2013-12-15

    STAT3 is constitutively active in a large variety of cancers. The search for STAT3 inhibitors led to the discoveries of LLLs 3 and 12, which are substituted anthraquinones. LLL12 is an extremely potent compound that exhibits high levels of antiproliferative activity. Herein the synthesis and evaluation of compounds containing either an anthraquinone or 1,4-naphthoquinone moiety are reported. Analogs were evaluated in several cancer cell lines. Interestingly, it was found that the anthraquinones did not follow the same trends as the 1,4-naphthoquinones in regards to potency. LLL12, which contains a sulfonamide at position 1, was found to be the most potent of the anthraquinones. In contrast, the methyl ketone and methyl ester derivatives (LLLs 3.1 and 5.1) were found to be the most potent of the 1,4-naphthoquinones. Selected 1,4-naphthoquinones were also evaluated in the STAT3 fluorescence polarization assay in order to evaluate their abilities to bind to the STAT3 SH2 domain. They were found to have similar affinities, and their activities suggest that STAT3 is one of their molecular targets. PMID:24176397

  15. Spectral and structural characterization of 2-(fluorophenylamino)- and 2-(nitrophenylamino)-1,4-naphthoquinone derivatives

    NASA Astrophysics Data System (ADS)

    Leyva, Elisa; Schmidtke Sobeck, Sarah J.; Loredo-Carrillo, Silvia E.; Magaldi-Lara, Diego A.

    2014-06-01

    Naphthoquinone amino derivatives exhibit interesting physicochemical properties and are of interest for potential medicinal purposes. The preparation of novel 2-(nitrophenylamino)-1,4-naphthoquinones derivatives was achieved by reaction of nitroanilines with 1,4-naphthoquinone with a catalytic amount of FeCl3 or by direct nitration of 2-(phenylamino)-1,4-naphthoquinone (PAN). Structural and photophysical properties of a series of NO2PANs and FPANs derivatives are examined using computational and spectroscopic methods. Absorbance and emission spectra are measured in a range of solvent environments to examine the impact of solvent-solute interactions. Additionally quantum calculations are used to evaluate the electronic nature of the spectral transitions and compare structures of the different PAN derivatives. The lowest energy electronic transitions have charge transfer character, and show the most sensitivity to solvent and substituents. Higher energy ?-?* transitions are relatively insensitive to both factors. Computational predictions are in good agreement with the experimental spectra, and provide molecular-level insight variations amongst the different aniline-substituents.

  16. Extension of Lifespan in C. elegans by Naphthoquinones That Act through Stress Hormesis Mechanisms

    PubMed Central

    Wilson, Mark A.; Yu, Quian-Sheng; Wood, William H.; Zhang, Yongqing; Becker, Kevin G.; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta; Wolkow, Catherine A.

    2011-01-01

    Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans capncollar (CNC) transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway. PMID:21765926

  17. Naphthoquinone spiroketal with allelochemical activity from the new endophytic fungus Edenia gomezpompae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided isolation from the culture of Edenia gomezpompae, a new endophytic fungus isolated from the leaves of Callicarpa acuminata (Verbenaceae) from the ecological reserve El Eden, Quintana Roo, Mexico, led to the isolation of four naphthoquinone spiroketals, including three new compounds. ...

  18. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots.

    PubMed

    Babula, Petr; Vaverkova, Veronika; Poborilova, Zuzana; Ballova, Ludmila; Masarik, Michal; Provaznik, Ivo

    2014-11-01

    Juglone, 5-hydroxy-1,4-naphthoquinone, is the plant secondary metabolite with allelopathic properties, which was isolated especially from the plant species belonging to family Juglandaceae A. Rich. ex Kunth (walnut family). The mechanism of phytotoxic action of juglone was investigated on lettuce seedlings Lactuca sativa L. var. capitata L. cv. Merkurion by determining its effect at different levels. We have found that juglone inhibits mitosis (mitotic index 8.5 ± 0.6% for control versus 2.2 ± 0.9% for 250 μM juglone), changes mitotic phase index with accumulation of the cells in prophase (56.5 ± 2.6% for control versus 85.3 ± 5.0% for 250 μM juglone), and decreases meristematic activity in lettuce root tips (51.07 ± 3.62% for control versus 5.27 ± 2.29% for 250 μM juglone). In addition, juglone induced creation of reactive oxygen species and changed levels of reactive nitrogen species. Amount of malondialdehyde, a product of lipid peroxidation, increased from 24.0 ± 4.0 ng g(-1) FW for control to 55.5 ± 5.4 ng g(-1) FW for 250 μM juglone. We observed also changes in cellular structure, especially changes in the morphology of endoplasmic reticulum. Reactive oxygen species induced damage of plasma membrane. All these changes resulted in the disruption of the mitochondrial membrane potential, increase in free intracellular calcium ions, and DNA fragmentation and programmed cell death that was revealed by two methods, TUNEL test and DNA electrophoresis. The portion of TUNEL-positive cells increase from 0.96 ± 0.5% for control to 7.66 ± 1.5% for 250 μM juglone. Results of the study indicate complex mechanism of phytotoxic effect of juglone in lettuce root tips and may indicate mechanism of allelopathic activity of this compound. PMID:25240266

  19. Quantification of naphthoquinone mercapturic acids in urine as biomarkers of naphthalene exposure.

    PubMed

    Klotz, Katrin; Angerer, Jürgen

    2016-02-15

    Naphthalene shows carcinogenic properties in animal experiments. As the substance is ubiquitary present in the environment and has a possibly high exposure at industrial workplaces, the determination of naphthalene metabolites in humans is of environmental-medical as well as occupational-medical importance. Here, biomarkers of 1,2- and 1,4-naphthoquinone, as possibly carcinogenic metabolites in the naphthalene metabolism, are of outstanding significance. We developed and validated a liquid chromatography-tandem mass-spectrometric (LC-MS/MS) method for the simultaneous determination of the naphthoquinone mercapturic acids of 1,2- and 1,4-naphthoquinone in human urine samples as a sum of naphthoquinone- and dihydroxynaphthalene-mercapturic acid. Except for enzymatic hydrolysis and acidification, no further sample preparation is necessary. For sample clean-up, a column switching procedure is applied. The mercapturic acids are extracted from the urinary matrix on a restricted access material (RAM RP 18) and separated on a reversed phase column (Synergi Polar RP C18). The metabolites were quantified by tandem mass spectrometry using labelled D5-1,4-NQMA as internal standard. The limits of detection are 3μg/l for 1,2-NQMA and 1μg/l for 1,4-NQMA. Intraday- and interday precision for pooled urine (spiked with 10μg/l and 30μg/l of the analytes) ranges from 5.9 to 15.1% for 1,2-NQMA and from 2.0 to 10.8% for 1,4-NQMA. The developed method is suited for the sensitive and specific determination of the mercapturic acids of naphthoquinones in human urine. A good precision and low limits of detection were achieved. Application of those new biomarkers in biomonitoring studies may give deeper insights into the mechanisms of the human naphthalene metabolism. PMID:26812176

  20. The Study of Naphthoquinones and Their Complexes with DNA by Using Raman Spectroscopy and Surface Enhanced Raman Spectroscopy: New Insight into Interactions of DNA with Plant Secondary Metabolites

    PubMed Central

    Vrana, Oldrich; Adam, Vojtech

    2014-01-01

    Naphthoquinones represent the group of plant secondary metabolites with cytotoxic properties based on their ability to generate reactive oxygen species and interfere with the processes of cell respiration. Due to this fact, the possible cytotoxic mechanisms on cellular and subcellular levels are investigated intensively. There are many targets of cytotoxic action on the cellular level; however, DNA is a critical target of many cytotoxic compounds. Due to the cytotoxic properties of naphthoquinones, it is necessary to study the processes of naphthoquinones, DNA interactions (1,4-naphthoquinone, binapthoquinone, juglone, lawsone, plumbagin), especially by using modern analytical techniques. In our work, the Raman spectroscopy was used to determine the possible binding sites of the naphthoquinones on the DNA and to characterize the bond of naphthoquinone to DNA. Experimental data reveals the relationships between the perturbations of structure-sensitive Raman bands and the types of the naphthoquinones involved. The modification of DNA by the studied naphthoquinones leads to the nonspecific interaction, which causes the transition of B-DNA into A-DNA conformation. The change of the B-conformation of DNA for all measured DNA modified by naphthoquinones except plumbagin is obvious. PMID:25045679

  1. Thiourea-catalyzed Diels–Alder reaction of a naphthoquinone monoketal dienophile

    PubMed Central

    Kramer, Carsten S

    2013-01-01

    Summary A variety of organocatalysts were screened for the catalysis of the naphthoquinone monoketal Diels–Alder reaction. In this study we found that Schreiner's thiourea catalyst 10 and Jacobson's thiourea catalyst 12 facilitate the cycloaddition of the sterically hindered naphthoquinone monoketal dienophile 3 with diene 4. The use of thiourea catalysis allowed for the first time the highly selective synthesis of the exo-product 2a in up to 63% yield. In this reaction a new quaternary center was built. The so formed cycloaddition product 2a represents the ABC tricycle of beticolin 0 (1) and is also a valuable model substrate for the total synthesis of related natural products. PMID:23946836

  2. Synthetic 1,4-Pyran Naphthoquinones Are Potent Inhibitors of Dengue Virus Replication

    PubMed Central

    da Costa, Emmerson C. B.; Amorim, Raquel; da Silva, Fernando C.; Rocha, David R.; Papa, Michelle P.; de Arruda, Luciana B.; Mohana-Borges, Ronaldo; Ferreira, Vitor F.; Tanuri, Amilcar

    2013-01-01

    Dengue virus infection is a serious public health problem in endemic areas of the world where 2.5 billion people live. Clinical manifestations of the Dengue infection range from a mild fever to fatal cases of hemorrhagic fever. Although being the most rapidly spreading mosquito-borne viral infection in the world, until now no strategies are available for effective prevention or control of Dengue infection. In this scenario, the development of compounds that specifically inhibit viral replication with minimal effects to the human hosts will have a substantial effect in minimizing the symptoms of the disease and help to prevent viral transmission in the affected population. The aim of this study was to screen compounds with potential activity against dengue virus from a library of synthetic naphthoquinones. Several 1,2- and 1,4-pyran naphthoquinones were synthesized by a three-component reaction of lawsone, aldehyde (formaldehyde or arylaldehydes) and different dienophiles adequately substituted. These compounds were tested for the ability to inhibit the ATPase activity of the viral NS3 enzyme in in vitro assays and the replication of dengue virus in cultured cells. We have identified two 1,4-pyran naphthoquinones, which inhibited dengue virus replication in mammal cells by 99.0% and three others that reduced the dengue virus ATPase activity of NS3 by two-fold in in vitro assays. PMID:24376541

  3. Naphthoquinone derivative PPE8 induces endoplasmic reticulum stress in p53 null H1299 cells.

    PubMed

    Lien, Jin-Cherng; Huang, Chien-Chun; Lu, Te-Jung; Tseng, Chih-Hsiang; Sung, Ping-Jyun; Lee, Hong-Zin; Bao, Bo-Ying; Kuo, Yueh-Hsiung; Lu, Te-Ling

    2015-01-01

    Endoplasmic reticulum (ER) plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1), senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78) dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1) as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment. PMID:25685256

  4. Naphthoquinone Derivative PPE8 Induces Endoplasmic Reticulum Stress in p53 Null H1299 Cells

    PubMed Central

    Lien, Jin-Cherng; Lu, Te-Jung; Tseng, Chih-Hsiang; Sung, Ping-Jyun; Lee, Hong-Zin; Kuo, Yueh-Hsiung; Lu, Te-Ling

    2015-01-01

    Endoplasmic reticulum (ER) plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1), senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78) dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1) as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment. PMID:25685256

  5. Anomalous Appearance of ?[C(2)=C(3)] Frequencies in IR Spectra of 1,4-Naphthoquinone Hydroxy Derivatives

    NASA Astrophysics Data System (ADS)

    Glazunov, V. P.; Berdyshev, D. V.

    2014-09-01

    Absorption bands in the carbonyl range 1750-1500 cm-1 of the IR spectrum of 2,3-dihydroxy-1,4-naphthoquinone and some of its derivatives were assigned based on calculations of normal mode frequencies using the B3LYP/cc-pVTZ method for isolated molecules and the polarized continuum model taking into account the influence of weakly and moderately polar solvents (CCl4, CDCl3, and CH2Cl2). It was shown that the frequency of the quinone C(2)=C(3) stretching vibration for 2,3-OH- and 2,5,8-OH-1,4-naphthoquinones (2-OH-naphthazarins) was 50-60 cm-1 higher than that of the carbonyl stretching vibration. The frequency difference reached 100 cm-1 for 2,3,5,8-OH-1,4-naphthoquinones (2,3-OH-naphthazarins).

  6. Synthesis and Biological Evaluation of 1,4-Naphthoquinones and Quinoline-5,8-diones as Antimalarial and Schistosomicidal Agents

    PubMed Central

    Lanfranchi, Don Antoine; Cesar-Rodo, Elena; Bertrand, Benoît; Huang, Hsin-Hung; Day, Latasha; Johann, Laure; Elhabiri, Mourad; Becker, Katja; Williams, David L.

    2012-01-01

    Improving the solubility of polysubstituted 1,4-naphthoquinone derivatives was achieved by introducing nitrogen in two different positions of the naphthoquinone core, at C-5 and at C-8 of menadione through a two-step, straightforward synthesis based on the regioselective hetero-Diels-Alder reaction. The antimalarial and the antischistosomal activities of these polysubstituted aza-1,4-naphthoquinone derivatives were evaluated and led to the selection of distinct compounds for antimalarial versus antischistosomal action. The AgII-assisted oxidative radical decarboxylation of the phenyl acetic acids using AgNO3 and ammonium peroxodisulfate was modified to generate the 3-picolinyl-menadione with improved pharmacokinetic parameters, high antimalarial effects and capacity to inhibit the formation of β-hematin. PMID:22777178

  7. Studies of C-terminal naphthoquinone dipeptides as 20S proteasome inhibitors.

    PubMed

    Scotti, Alessandra; Trapella, Claudio; Ferretti, Valeria; Gallerani, Eleonora; Gavioli, Riccardo; Marastoni, Mauro

    2016-06-01

    The ubiquitin proteasome pathway is crucial in regulating many processes in the cell. Modulation of proteasome activities has emerged as a powerful strategy for potential therapies against much important pathologies. In particular, specific inhibitors may represent a useful tool for the treatment of tumors. Here, we report studies of a new series of peptide-based analogues bearing a naphthoquinone pharmacophoric unit at the C-terminal position. Some derivatives showed inhibition in the µM range of the post-acidic-like and chymotrypsin-like active sites of the proteasome. PMID:25942361

  8. 1,4-Naphthoquinone Cations as Antiplasmodial Agents: Hydroxy-, Acyloxy-, and Alkoxy-Substituted Analogues

    PubMed Central

    2012-01-01

    Cations of hydroxy-substituted 1,4-naphthoquinones were synthesized and evaluated as antiplasmodial agents against Plasmodium falciparum. The atovaquone analogues were found to be inactive as antagonists of parasite growth, which was attributed to ionization of the acidic hydroxyl moiety. Upon modification to an alkoxy substituent, the antiplasmodial activity was restored in the sub-100 nM range. Optimal inhibitors were found to possess IC50 values of 17.449.5 nM against heteroresistant P. falciparum W2. PMID:24936235

  9. Insight into naphthoquinone metabolism: beta-glucosidase-catalysed hydrolysis of hydrojuglone beta-D-glucopyranoside.

    PubMed Central

    Duroux, L; Delmotte, F M; Lancelin, J M; Kravis, G; Jay-Allemand, C

    1998-01-01

    In plants, the naphthoquinone juglone is known to be involved in pathogenic defence mechanisms, but it may also take part in plant developmental processes. This naphthoquinone can accumulate in a glycosylated form, namely hydrojuglone beta-d-glucopyranoside. The structural configuration of this compound was shown to be 1, 5-dihydroxy-4-naphthalenyl-beta-d-glucopyranoside by means of MS, NMR and nuclear Overhauser effect spectroscopy analyses. A hydrojuglone beta-d-glucopyranoside beta-glucosidase (EC 3.2.1.21) was purified to homogeneity from Juglans regia L. The enzyme catalysed the release of juglone from hydrojuglone beta-d-glucopyranoside with high specificity and showed Michaelis-Menten kinetics with Km=0.62 mM and Vmax=14.5 microkat/mg of protein. This enzyme also showed a higher activity towards beta-d-fucosyl than beta-d-glucosyl bonds. The purified enzyme had an apparent Mr of 64000 by SDS/PAGE and a pI 8.9 by isoelectrofocusing PAGE. The purified enzyme was inhibited by several bivalent cations, such as Cu2+, Fe2+, Hg2+, and by d-glucono-1,5-lactone, showing non-competitive inhibition of the mixed type. PMID:9657966

  10. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana

    PubMed Central

    Eilenberg, Haviva; Pnini-Cohen, Smadar; Rahamim, Yocheved; Sionov, Edward; Segal, Esther; Carmeli, Shmuel; Zilberstein, Aviah

    2010-01-01

    Nepenthes spp. are carnivorous plants that have developed insect capturing traps, evolved by specific modification of the leaf tips, and are able to utilize insect degradation products as nutritional precursors. A chitin-induced antifungal ability, based on the production and secretion to the trap liquid of droserone and 5-O-methyldroserone, is described here. Such specific secretion uniquely occurred when chitin injection was used as the eliciting agent and probably reflects a certain kind of defence mechanism that has been evolved for protecting the carnivory-based provision of nutritional precursors. The pitcher liquid containing droserone and 5-O-methyldroserone at 3:1 or 4:1 molar ratio, as well as the purified naphthoquinones, exerted an antifungal effect on a wide range of plant and human fungal pathogens. When tested against Candida and Aspergillus spp., the concentrations required for achieving inhibitory and fungicidal effects were significantly lower than those causing cytotoxicity in cells of the human embryonic kidney cell line, 293T. These naturally secreted 1,4-naphthoquinone derivatives, that are assumed to act via semiquinone enhancement of free radical production, may offer a new lead to develop alternative antifungal drugs with reduced selectable pressure for potentially evolved resistance. PMID:20018905

  11. Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones

    PubMed Central

    Skouloubris, Stphane; Djaout, Kamel; Lamarre, Isabelle; Lambry, Jean-Christophe; Anger, Karine; Briffotaux, Julien; Liebl, Ursula; de Reuse, Hilde; Myllykallio, Hannu

    2015-01-01

    ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2?-deoxythymidine-5?-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation. PMID:26040760

  12. Application of MEKC and monolithic CEC for the analysis of bioactive naphthoquinones in Eleutherine americana.

    PubMed

    Ganzera, Markus; Nischang, Ivo; Siegl, Christian; Senzenberger, Birgit; Svec, Frantisek; Stuppner, Hermann

    2009-11-01

    Two microscale separation techniques for the analysis of bioactive naphthoquinones in Eleutherine americana were developed and validated. By MEKC four compounds (eleuthoside B, isoeleutherin, eleutherol and eleutherinoside A) could be determined in plant extracts using an aqueous electrolyte solution composed of 25 mM sodium tetraborate, 50 mM sodium cholate and 20% THF. CEC on a polymeric methacrylate-based monolith with strong cationic properties showed promising results, as it additionally enabled the separation of two enantiomers, eleutherin and isoeleutherin. The mobile phase for CEC experiments comprised 3 mM ammonium formate in a mixture of ACN and water. At an applied voltage of -25 kV, all five markers were baseline separated in less than 12 min. Both methods were successfully validated for linearity (MEKC: R(2) > or = 0.999; CEC: R(2) > or = 0.997), sensitivity (MEKC: LOD = 4-5 microg/mL; CEC: LOD=2-8 microg/mL), accuracy (MEKC: 96.5-102.7% recovery; CEC: 97.1-103.5% recovery) and precision (MEKC: sigma(rel) < or = 2.43%; CEC: sigma(rel) < or = 2.21%). The quantitative analysis of naphthoquinone derivatives in several E. americana samples showed that both methods are suitable for practical applications, because the results were well comparable to those obtained by established techniques such as HPLC. PMID:19862752

  13. Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera.

    PubMed

    Ruckli, Regina; Hesse, Katharina; Glauser, Gaetan; Rusterholz, Hans-Peter; Baur, Bruno

    2014-04-01

    Exploring the effects of allelopathic plant chemicals on the growth of native vegetation is essential to understand their ecological roles and importance in exotic plant invasion. Naphthoquinones have been identified as potential growth inhibitors produced by Impatiens glandulifera, an exotic annual plant that recently invaded temperate forests in Europe. However, naphthoquinone release and inhibitory potential have not been examined. We quantified the naphthoquinone content in cotyledons, leaves, stems, and roots from plants of different ages of both the invasive I. glandulifera and native Impatiens noli-tangere as well as in soil extracts and rainwater rinsed from leaves of either plant species by using ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS). We identified the compound 2-methoxy-1,4-naphthoquinone (2-MNQ) exclusively in plant organs of I. glandulifera, in resin bags buried into the soil of patches invaded by I. glandulifera, and in rainwater rinsed from its leaves. This indicates that 2-MNQ is released from the roots of I. glandulifera and leached from its leaves by rain. Specific bioassays using aqueous shoot and root extracts revealed a strong inhibitory effect on the germination of two native forest herbs and on the mycelium growth of three ectomycorrhiza fungi. These findings suggest that the release of 2-MNQ may contribute to the invasion success of I. glandulifera and support the novel weapons hypothesis. PMID:24722883

  14. Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?

    PubMed Central

    Pinho, Brgida R.; Sousa, Carla; Valento, Patrcia; Andrade, Paula B.

    2011-01-01

    The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone), plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO) production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS). Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC25 of 1.090.24 M was found, with 38.256.50% (p<0.001) NO reduction at 1.5 M. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-?) and interleukin 6 (IL-6). Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction. PMID:21887376

  15. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid.

    PubMed

    Lichtenstein, Bruce R; Bialas, Chris; Cerda, Jos F; Fry, Bryan A; Dutton, P Leslie; Moser, Christopher C

    2015-11-01

    The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal-tetrapyrrole cofactors, creating a 100??s photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates. PMID:26366882

  16. QSAR on antiproliferative naphthoquinones based on a conformation-independent approach.

    PubMed

    Duchowicz, Pablo R; Bennardi, Daniel O; Bacelo, Daniel E; Bonifazi, Evelyn L; Rios-Luci, Carla; Padrón, José M; Burton, Gerardo; Misico, Rosana I

    2014-04-22

    The antiproliferative activities of a series of 36 naphthoquinone derivatives were subjected to a Quantitative Structure-Activity Relationships (QSAR) study. For this purpose a panel of four human cancer cell lines was used, namely HBL-100 (breast), HeLa (cervix), SW-1573 (non-small cell lung) and WiDr (colon). A conformation-independent representation of the chemical structure was established in order to avoid leading with the scarce experimental information on X-ray crystal structure of the drug interaction. The 1179 theoretical descriptors derived with E-Dragon and Recon software were simultaneously analyzed through linear regression models based on the Replacement Method variable subset selection technique. The established models were validated and tested through the use of external test sets of compounds, the Leave-One-Out Cross Validation method, Y-Randomization and Applicability Domain analysis. PMID:24631897

  17. A Structure-Activity Relationship Study of Naphthoquinone Derivatives as Antitubercular Agents Using Molecular Modeling Techniques.

    PubMed

    Sharma, Mukesh C

    2015-12-01

    Tuberculosis (TB) is one of the major causes of death worldwide. Mycobacterium tuberculosis, the leading causative agent of TB, is responsible for the morbidity and mortality of a large population worldwide. In view of above and as a part of our effort to develop new and potent anti-TB agents, a series of substituted naphthoquinone derivatives were subjected to molecular modeling using various feature selection methods. The statistically significant best 2D-QSAR model having correlation coefficient [Formula: see text] and cross-validated squared correlation coefficient [Formula: see text] with external predictive ability of [Formula: see text] was developed by SA-PLS, and group-based QSAR model having [Formula: see text] and [Formula: see text] with [Formula: see text] was developed by SA-PLS. Further analysis using three-dimensional QSAR technique identifies a suitable model obtained by SA-partial least square method leading to antitubercular activity prediction. k-nearest neighbor molecular field analysis was used to construct the best 3D-QSAR model using SA-PLS method, showing good correlative and predictive capabilities in terms of [Formula: see text] and [Formula: see text]. The pharmacophore analysis results obtained from this study show that the distance between the aromatic/hydrophobic and the naphthoquinone moiety sites to the aliphatic and acceptor groups should be connected with almost the same distance for significant antitubercular activity. The information rendered by QSAR models may lead to a better understanding of structural requirements of antitubercular activity and also can help in the design of novel potent antitubercular activity. PMID:26159131

  18. Naphthalene and Naphthoquinone: Distributions and Human Exposure in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Lu, R.; Wu, J.; Turco, R.; Winer, A. M.; Atkinson, R.; Paulson, S.; Arey, J.; Lurmann, F.

    2003-12-01

    Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons (PAHs). Naphthalene is found primarily in the gas-phase and has been detected in both outdoor and indoor samples. Evaporation from naphthalene-containing products (including gasoline), and during refining operations, are important sources of naphthalene in air. Naphthalene is also emitted during the combustion of fossil fuels and wood, and is a component of vehicle exhaust. Exposure to high concentrations of naphthalene can damage or destroy red blood cells, causing hemolytic anemia. If inhaled over a long period of time, naphthalene may cause kidney and liver damage, skin allergy and dermatitis, cataracts and retinal damage, as well as attack the central nervous system. Naphthalene has been found to cause cancer as a result of inhalation in animal tests. Naphthoquinones are photooxidation products of naphthalene and the potential health effects of exposure to these quinones are a current focus of research. We are developing and applying models that can be used to assess human exposure to naphthalene and its photooxidation products in major air basins such as California South Coast Air Basin (SoCAB). The work utilizes the Surface Meteorology and Ozone Generation (SMOG) airshed model, and the REgional Human EXposure (REHEX) model, including an analysis of individual exposure. We will present and discuss simulations of basin-wide distributions of, and human exposures to, naphthalene and naphthoquinone, with emphasis on the uncertainties in these estimates of atmospheric concentrations and human exposure. Regional modeling of pollutant sources and exposures can lead to cost-effective and optimally health-protective emission control strategies.

  19. Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

    PubMed Central

    Mazet, Muriel; Perozzo, Remo; Bergamini, Christian; Prati, Federica; Fato, Romana; Lenaz, Giorgio; Capranico, Giovanni; Brun, Reto; Bakker, Barbara M.; Michels, Paul A. M.; Scapozza, Leonardo; Bolognesi, Maria Laura; Cavalli, Andrea

    2013-01-01

    Background and Methodology Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. Principal Findings A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. Conclusions and Significance Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands. PMID:23350008

  20. Cytotoxicity Mechanism of Two Naphthoquinones (Menadione and Plumbagin) in Saccharomyces cerevisiae

    PubMed Central

    Castro, Frederico Augusto Vieira; Mariani, Diana; Panek, Anita Dolly; Eleutherio, Elis Cristina Araújo; Pereira, Marcos Dias

    2008-01-01

    Background Quinones are compounds extensively used in studies of oxidative stress due to their role in plants as chemicals for defense. These compounds are of great interest for pharmacologists and scientists, in general, because several cancer chemotherapeutic agents contain the quinone nucleus. However, due to differences in structures and diverse pharmacological effects, the exact toxicity mechanisms exerted by quinones are far from elucidatation. Methodology/Principal Findings Using Saccharomyces cerevisiae, we evaluated the main mechanisms of toxicity of two naphthoquinones, menadione and plumbagin, by determining tolerance and oxidative stress biomarkers such as GSH and GSSG, lipid peroxidation levels, as well as aconitase activity. The importance of glutathione transferases (GST) in quinone detoxification was also addressed. The GSSG/GSH ratio showed that menadione seemed to exert its toxicity mainly through the generation of ROS while plumbagin acted as an electrophile reacting with GSH. However, the results showed that, even by different pathways, both drugs were capable of generating oxidative stress through their toxic effects. Our results showed that the control strain, BY4741, and the glutathione transferase deficient strains (gtt1Δ and gtt2Δ) were sensitive to both compounds. With respect to the role of GST isoforms in cellular protection against quinone toxicity, we observed that the Gtt2 deficient strain was unable to overcome lipid peroxidation, even after a plumbagin pre-treatment, indicating that this treatment did not improve tolerance when compared with the wild type strain. Cross-tolerance experiments confirmed distinct cytotoxicity mechanisms for these naphthoquinones since only a pre-treatment with menadione was able to induce acquisition of tolerance against stress with plumbagin. Conclusions/Significance These results suggest different responses to menadione and plumbagin which could be due to the fact that these compounds use different mechanisms to exert their toxicity. In addition, the Gtt2 isoform seemed to act as a general protective factor involved in quinone detoxification. PMID:19098979

  1. OCTAN-1-OL/WATER PARTITION COEFFICIENTS OF P-BENZO- AND P-NAPHTHOQUINONES CORRECTED FOR PH EFFECT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pH of the aqueous phase on the octan-1-ol / water partition coefficients (kow) of quinones was demontrated. The kow of a series of p-benzo- and p-naphthoquinones were determined using a mildly buffered aqueous phase (1 mM Hepes, pH 7.0) to correct for the pH effects on the lipophilicit...

  2. The sensitizing capacity of naturally occurring quinones. Experimental studies in guinea pigs. I. Naphthoquinones and related compounds.

    PubMed

    Schulz, K H; Garbe, I; Hausen, B M; Simatupang, M H

    1977-03-25

    Experimental studies on the sensitization capacity of naturally occurring naphthoquinones derived from plants and woods have been carried out with 6 compounds. With 4 of these substances (desoxylapachol, menadione, lapachenole andmacassar quinone) guinea pigs could be sensitized. Desoxylapachol, sensitizer from teak wood, and lapachenole, sensitizer from perobawood proved to be the most effective ones. Experiments with macassar quinone (oxidation product of a naphthalene constituent of macassar ebony) still demonstrate that even ortho-naphthoquinones are capable to induce contact allergy. Allergic cross reactions could be obtained with 9 out of 14 different napthoquinones. In animals sensitized with desoxylapachol menadione and lapachol showed the strongest eliciting effect. Furthermore the study demonstrated that the sensitizing effect of naphthoquinones depends on the length and position of the side chain attached to the quinoid ring as well as on the substitution of the carbon atom adjacent to the side chain bearing C-atom. With compounds substituted at this C-atom (e.g. position 3 of lapachol or didimethylallylnaphthoquinone) sensitization could not be obtained. PMID:857737

  3. The toxicity of menadione (2-methyl-1,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells.

    PubMed

    Brown, P C; Dulik, D M; Jones, T W

    1991-02-15

    Menadione (2-methyl-1,4-naphthoquinone) was used as a model compound to test the hypothesis that thioether conjugates of quinones can be toxic to tissues associated with their elimination through a mechanism involving oxidative stress. Unlike menadione, the glutathione (2-methyl-3-(glutathion-S-yl)-1,4-naphthoquinone; MGNQ) and N-acetyl-L-cysteine (2-methyl-3-(N-acetylcysteine-S-yl)-1,4-naphthoquinone; M(NAC)NQ) thioether conjugates were not able to arylate protein thiols but were still able to redox cycle with cytochrome c reductase/NADH and rat kidney microsomes and mitochondria. Interestingly, menadione and M(NAC)NQ were equally toxic to isolated rat renal epithelial cells (IREC) while MGNQ was nontoxic. The toxicity of both menadione and M(NAC)NQ was preceded by a rapid depletion of soluble thiols and was associated with a depletion of soluble thiols and was associated with a depletion of protein thiols. Treatment of IREC with the glutathione reductase inhibitor, 1,3-bis(2-chloroethyl)-1-nitrosourea, potentiated the thiol depletion and toxicity observed with menadione and M(NAC)NQ indicating the involvement of oxidative stress in this model of renal cell toxicity. The lack of MGNQ toxicity can be attributed to an intramolecular cyclization reaction which destroys the quinone nucleus and therefore eliminates its ability to redox cycle. These findings have important implications with regard to our understanding of the toxic potential of quinone thioether conjugates and of quinone toxicity in general. PMID:1990978

  4. Biarylmethane and Fused Heterocyclic Arene Synthesis via in Situ Generated o- and/or p-Naphthoquinone Methides.

    PubMed

    Sawama, Yoshinari; Kawajiri, Takahiro; Asai, Shota; Yasukawa, Naoki; Shishido, Yuko; Monguchi, Yasunari; Sajiki, Hironao

    2015-06-01

    o- and/or p-naphthoquinone methides (NQMs) can be selectively prepared by the ring opening of 1-(siloxymethyl)-1,4-epoxy-1,4-dihydronaphthalene derivatives based on a substituent effect at the 4 position of the substrates. The 4-alkyl- or silyl-substituted 1-(siloxymethyl)-1,4-epoxy-1,4-dihydronaphthalene was transformed to o-NQM (1-naphthoquinone-2-methide), which underwent Friedel-Crafts 1,4-addition of the α,β-unsaturated carbonyl moiety to provide the 2-benzyl-1-naphthol as the biarylmethane and [4 + 2]-cycloaddition with a dienophile to give the fused heterocyclic arene. Meanwhile, the 4-unsubstituted 1-(siloxymethyl)-1,4-epoxy-1,4-dihydronaphthalene could be converted to the corresponding 4-benzyl-1-naphthol by the Friedel-Crafts 1,6-addition of p-NQM (1-naphthoquinone-4-methide) generated by the site-selective ring opening of the 1,4-epoxy moiety. Furthermore, the 4-(siloxymethyl)-(1,4-bis(siloxymethyl))-1,4-epoxy-1,4-dihydronaphthalene was transformed into a 2,4-bisbenzyl-1-naphthol or pentacyclic derivative via both the o- and p-NQM intermediates. PMID:25938963

  5. Production and secretion of naphthoquinones is mediated by the MFS transporter MFS1 in the entomopathogenic fungus Ophiocordyceps sp. BCC1869.

    PubMed

    Khaokhajorn, Pratoomporn; Samipak, Sompid; Nithithanasilp, Sutichai; Tanticharoen, Morakot; Amnuaykanjanasin, Alongkorn

    2015-10-01

    Naphthoquinones are deep red polyketide pigments produced by the ant-pathogenic fungus Ophiocordyceps sp. BCC1869. In culture, biosynthesis of these naphthoquinones remains at a low level during the first 20 days and reaches its maximum production level at approximately 50 days. The MFS transporter gene MFS1 was previously identified in Ophiocordyceps sp. BCC1869 from a subtractive EST library between the fungus grown under naphthoquinone-inductive and naphthoquinone-repressive conditions. We cloned and sequenced this transporter gene, which has an open reading frame of 1505 bp and three introns (48, 52, and 58 bp). Phylogenetic analysis showed this MFS transporter was tightly clustered with fungal riboflavin transporters. Functional analysis of this gene was performed by overexpression of MFS1 under the control of a strong, constitutive promoter. We successfully transformed the fungus with this overexpression plasmid using PEG-protoplast transformation, which generated nine transformants per µg of plasmid. RT-PCR indicated that the MFS1 expression level in the overexpressing strains increased 3- to 10-fold compared to the wild type. HPLC analysis of crude extracts of mutants and wild type demonstrated that four naphthoquinone derivatives, erythrostominone, epierythrostominol, deoxyerythrostominone, and deoxyerythrostominol, were the major naphthoquinones produced and excreted in staggering quantities (20- to 2300-fold) in 7-day old liquid cultures by the mutant C7, compared to the wild type. High resolution electrospray ionization mass spectrometry verified mass spectra of these purified metabolites. Three other naphthoquinone derivatives, whose structures have not been identified, were also detected in high amount in the mutant liquid cultures. PMID:26193948

  6. Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.

    PubMed

    Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

    2015-03-01

    Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. PMID:25481490

  7. A Rare Class of New Dimeric Naphthoquinones from Diospyros lotus have Multidrug Reversal and Antiproliferative Effects.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Siddiqui, Bina S; Molnár, Joseph; Csonka, Ákos; Ahmad, Bashir; Szabó, Diana; Farooq, Umar; Khan, Ajmal

    2015-01-01

    Three new dimeric naphthoquinones, 5,4'-dihydroxy-1'-methoxy-6,6'-dimethyl-7,3'-binaphthyl-1,4,5',8'-tetraone (1), 5',8'-dihydroxy-5-methoxy-6,6'-dimethyl-7,3'-binaphthyl-1,4,1',4'-tetraone (2) and 8,5',8'-trihydroxy-6,6'-dimethyl-7,3'-binaphthyl-1,4,1',4'-tetraone (3), were isolated from the roots of Diospyros lotus. Their structures were elucidated by spectroscopic techniques, including 1D and 2D NMR, such as HSQC, HMBS, NOESY, and J-resolved. Compounds 1-3 were evaluated for their effects on the reversion of multidrug resistance (MDR) mediated by P-glycoprotein through use of the rhodamine-123 exclusion screening test on human ABCB1 gene transfected L5178Y mouse T-cell lymphoma. Compounds 1-3 were also assessed for their antiproliferative and cytotoxic effects on L5178 and L5178Y mouse T-cell lymphoma lines. Both 1 and 2 exhibited promising antiproliferative and MDR-reversing effects in a dose-dependent manner. The effects of the tested compounds on the activity of doxorubicin were observed to vary from slight antagonism to antagonism. PMID:26732580

  8. Methylations of tryptophan-modified naphthoquinone affect its inhibitory potential toward A? aggregation.

    PubMed

    Scherzer-Attali, Roni; Convertino, Marino; Pellarin, Riccardo; Gazit, Ehud; Segal, Daniel; Caflisch, Amedeo

    2013-02-14

    Aggregation of amyloid beta (A?) is the hallmark of Alzheimer's disease (AD). Small molecules inhibiting A? can be valuable therapeutics for AD. We have previously reported that 1,4-naphthoquinon-2-yl-l-tryptophan (NQTrp), reduces aggregation and oligomerization of A? in vitro and in vivo. In silico analysis further showed that certain functional groups of NQTrp, not in the aromatic rings, are also involved in binding and inhibiting A?. To better understand the exact mode of action and identify the groups crucial for NQTrp inhibitory activity, we conducted structure-activity analysis. Four derivatives of NQTrp were studied in silico: a D-isomer, two single-methylated and one double-methylated derivative. In silico results showed that the NQTrp groups involved in hydrogen bonds are the anilinic NH (i.e., the NH linker between the quinone and tryptophan moieties), the quinonic carbonyls, and the carboxylic acid. These predictions were supported by in vitro results. Our results should aid in designing improved small-molecule inhibitors of A? aggregation for treating AD. PMID:23259849

  9. Proteomics Analyses of Bacillus subtilis after Treatment with Plumbagin, a Plant-Derived Naphthoquinone

    PubMed Central

    Reddy, Panga Jaipal; Ray, Sandipan; Sathe, Gajanan J.; Prasad, T.S. Keshava; Rapole, Srikanth; Panda, Dulal

    2015-01-01

    Abstract Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ≥2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine. PMID:25562197

  10. A Rare Class of New Dimeric Naphthoquinones from Diospyros lotus have Multidrug Reversal and Antiproliferative Effects

    PubMed Central

    Rauf, Abdur; Uddin, Ghias; Siddiqui, Bina S.; Molnár, Joseph; Csonka, Ákos; Ahmad, Bashir; Szabó, Diana; Farooq, Umar; Khan, Ajmal

    2015-01-01

    Three new dimeric naphthoquinones, 5,4′-dihydroxy-1′-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,5′,8′-tetraone (1), 5′,8′-dihydroxy-5-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (2) and 8,5′,8′-trihydroxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (3), were isolated from the roots of Diospyros lotus. Their structures were elucidated by spectroscopic techniques, including 1D and 2D NMR, such as HSQC, HMBS, NOESY, and J-resolved. Compounds 1–3 were evaluated for their effects on the reversion of multidrug resistance (MDR) mediated by P-glycoprotein through use of the rhodamine-123 exclusion screening test on human ABCB1 gene transfected L5178Y mouse T-cell lymphoma. Compounds 1–3 were also assessed for their antiproliferative and cytotoxic effects on L5178 and L5178Y mouse T-cell lymphoma lines. Both 1 and 2 exhibited promising antiproliferative and MDR-reversing effects in a dose-dependent manner. The effects of the tested compounds on the activity of doxorubicin were observed to vary from slight antagonism to antagonism. PMID:26732580

  11. DT-diaphorase-catalyzed two-electron reduction of various p-benzoquinone- and 1,4-naphthoquinone epoxides

    SciTech Connect

    Brunmark, A.; Cadenas, E.; Segura-Aguilar, J.; Lind, C.; Ernster, L. )

    1988-01-01

    The oxidation of various quinones by H{sub 2}O{sub 2} results in quinone epoxide formation. The yield of epoxidation is inversely related to the degree of methyl substitution of the quinone and seems not to be dependent on the redox potential of the quinones studied. The following order of H{sub 2}O{sub 2}-mediated epoxidation of quinones was found: p-benzoquinone greater than or equal to 1,4-naphthoquinone greater than 2-methyl-p-benzoquinone greater than 2,6-dimethyl-p-benzoquinone greater than or equal to 2-methyl-1,4-naphthoquinone greater than 2,3-dimethyl-1,4-naphthoquinone. DT-Diaphorase reduces several quinone epoxides at different rates. The rate of quinone epoxide reduction cannot be related to either the redox potential of the quinone epoxide (as reflected by the half-wave potential calculated from the corresponding hydrodynamic voltamograms) or the degree of substitution of the quinone epoxide. It appears, however, that a quinone epoxide redox potential more negative than -0.5 to -0.6 volts settles a threshold for the electron transfer reaction. This does not exclude that specificity requirements, i.e. the formation of the quinone epoxide substrate-enzyme complex may chiefly determine the rate of reduction of quinone epoxides by DT-diaphorase. DT-diaphorase-catalyzed two-electron transfer to quinone epoxides--resulting in epoxide ring opening--yields 2-OH-p-benzohydroquinone or 2-OH-1,4-naphthohydroquinone products. These hydroxy-derivatives show a higher rate of autoxidation than do the parent hydroquinones lacking the OH substituent.

  12. A Novel Ferrocenyl Naphthoquinone Fused Crown Ether as a Multisensor for Water Determination in Acetonitrile and Selective Cation Binding.

    PubMed

    Dagdevren, Metin; Yilmaz, Ismail; Yucel, Baris; Emirik, Mustafa

    2015-09-24

    A multisensor which is based on a novel multifunctional triad molecule, ferrocenyl naphthoquinone fused crown ether (Fc-cnq) bearing ferrocene, quinone, and crown ether functional groups together, was synthesized and characterized in this study. Sensing performance of a trace amount of water and the selective cation binding capabilities of this multisensor were carried out by the electrochemical, spectroelectrochemical, and spectrophotometric titration techniques in acetonitrile (CH3CN). It was shown that the potential separation (E((Fc))1/2 - E((2))1/2) between the second reduction of naphthoquinone and the oxidation processes of ferrocene in the triad molecule Fc-cnq was proportional to the amount of water due to the hydrogen-bonding interactions between water and the doubly reduced species (Fc-cnq(2-)). This property enabled Fc-cnq to detect the trace amount of water in CH3CN. The half-wave potential (E((Fc))1/2) of the ferrocene in Fc-cnq was used as an internal reference potential, and it defined the accuracy of the detection. In addition, by using the UV-vis spectrophotometric titration technique in CH3CN, it was also shown that the Fc-cnq multisensor could bind Ba(2+) and Ca(2+) cations selectively. We proposed that the intramolecular charge-transfer (CT) transition which occurred between the donor ferrocene and the acceptor naphthoquinone was the principle mechanism for the selective binding property of this multisensor. Quantum chemical calculations were also performed to investigate optical and electronic properties of the Fc-cnq molecule. PMID:26352463

  13. The anti-sickling drug lawsone (2-OH-1,4-naphthoquinone) protects sickled cells against membrane damage.

    PubMed

    Clarke, D T; Jones, G R; Martin, M M

    1986-09-14

    The ability of an anti-sickling drug lawsone, 2-OH-1,4-naphthoquinone, and two related compounds to inhibit the haematoporphyrin-sensitised photohaemolysis of normal and sickle cell erythrocytes has been investigated. The compounds appear to protect the erythrocyte membranes by reaction with transient oxidative species. Differential effects between normal and sickle cells are shown and these are attributed to the different membrane composition of irreversibly sickled erythrocytes. This report describes a possible basis for the decreased formation of irreversibly sickled cells in the presence of lawsone. PMID:3767985

  14. Nitric Oxide Effect on Naphthoquinone Toxicity in Endothelial Cells: Role of Bioenergetic Dysfunction and PARP Activation

    PubMed Central

    Broniowska, Katarzyna A.; Diers, Anne R.; Corbett, John A.; Hogg, Neil

    2014-01-01

    When produced at physiological levels reactive oxygen species (ROS) can act as signaling molecules to regulate normal vascular function. Produced under pathological conditions, ROS can contribute to oxidative damage of cellular components (e.g., DNA and proteins) and trigger cell death. Moreover, the reaction of superoxide with nitric oxide (NO) produces the strong oxidant peroxynitrite and decreases NO bioavailability, both of which may contribute to activation of cell death pathways. The effects of ROS generated from the 1,4-naphthoquinones alone and in combination with NO on the activation status of poly(ADP-ribose) polymerase (PARP) and cell viability were examined. Treatment with redox cycling quinones activates PARP, and this stimulatory effect is attenuated in the presence of NO. Mitochondria play a central role in cell death signaling pathways and are a target of oxidants. We show that simultaneous exposure of endothelial cells to NO and ROS results in mitochondrial dysfunction, ATP and NAD+ depletion, and cell death. Alone, NO and ROS have only minor effects on cellular bioenergetics. Further, PARP inhibition does not attenuate reduced cell viability or mitochondrial dysfunction. These results show that concomitant exposure to NO and ROS impairs energy metabolism and triggers PARP-independent cell death. While superoxide-mediated PARP activation is attenuated in the presence of NO, PARP inhibition does not modify the loss of mitochondrial function or adenine and pyridine nucleotide pools and subsequent bioenergetic dysfunction. These findings suggest that the mechanisms by which ROS and NO induce endothelial cell death is closely linked to maintenance of mitochondrial function and not overactivation of PARP. PMID:23718265

  15. Naphthoquinone based chemosensor 2-(2‧-aminomethylpyridine)-3-chloro-1,4-naphthoquinone for metal ions: Single crystal X-ray structure, experimental and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Ware, Anuja P.; Patil, Amit; Khomane, Sonali; Weyhermüller, Thomas; Pingale, Subhash S.; Salunke-Gawali, Sunita

    2015-08-01

    Naphthoquinone based redox active chemosensor 1; 2-(2‧-aminomethylpyridine)-3-chloro-1,4-naphthoquinone ligand has been synthesized and characterized. Chemosensor 1 crystallizes in monoclinic space group P21/n. Molecules showed intramolecular N-H⋯O and N-H⋯N, intermolecular N-H⋯O, C-H⋯O and slipped π-π stacking interactions. Chemosensor 1 showed orange colored solution in methanol and specifically detects Cu2+ ions by deprotonation of N-H. The deprotonation of amino N-H can also be achieved by mild base viz. triethylamine and chemosensor 1 can be used to detect several metal ions for example Ni2+, Mn2+ etc. that could observed by naked eye. Color changes observed were monitored by UV-visible and fluorescence spectra. Chemosensor 1 could provide either bidentate or tridentate coordination sites to metal ions. Redox nature of chemosensor 1 was evaluated by cyclic voltammetry studies. Electronic transition wavelengths of chemosensor 1 ligand have been evaluated in methanol, water and triethylamine by TD-DFT studies and comparative studies were performed with experimental results.

  16. Substituted 3?acyl?2?phenylamino?1,4?naphthoquinonesintercalate into DNA and cause genotoxicity through the increasedgeneration of reactive oxygen species culminating in cell death.

    PubMed

    Farias, Mirelle Sifroni; Pich, Claus Trger; Kviecinski, Maicon Roberto; Bucker, Ndia Cristina Falco; Felipe, Karina Bettega; Da Silva, Fabiana Ourique; Gnther, Tnia Mara Fisher; Correia, Joo Francisco; Ros, David; Benites, Julio; Valderrama, Jaime A; Calderon, Pedro Buc; Pedrosa, Rozangela Curi

    2014-07-01

    Naphthoquinones interact with biological systems by generating reactive oxygen species (ROS) that can damage cancer cells. The cytotoxicity and the antitumor activity of 3?acyl?2?phenylamino?1,4?naphthoquinones (DPB1?DPB9) were evaluated in the MCF7 human breast cancer cell line and in male Ehrlich tumor?bearing Balb/c mice. DPB4 was the most cytotoxic derivative against MCF7 cells (EC50 15M) and DPB6 was the least cytotoxic one (EC50 56M). The 1,4?naphthoquinone derivatives were able to cause DNA damage and promote DNA fragmentation as shown by the plasmid DNA cleavage assay (FII form). In addition, 1,4?naphthoquinone derivatives possibly interacted with DNA as intercalating agents, which was demonstrated by the changes caused in the fluorescence of the DNA?ethidium bromide complexes. Cell death of MCF7 cells induced by 3?acyl?2?phenylamino?1,4?naphthoquinones was mostly due to apoptosis. The DNA fragmentation and subsequent apoptosis may be correlated to the redox potential of the 1,4?naphthoquinone derivatives that, once present in the cell nucleus, led to the increased generation of ROS. Finally, certain 1,4?naphthoquinone derivatives and particularly DPB4 significantly inhibited the growth of Ehrlich ascites tumors in mice (73%). PMID:24756411

  17. 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent.

    PubMed

    Milackova, Ivana; Prnova, Marta Soltesova; Majekova, Magdalena; Sotnikova, Ruzena; Stasko, Michal; Kovacikova, Lucia; Banerjee, Sreeparna; Veverka, Miroslav; Stefek, Milan

    2015-02-01

    The ability of flavonoids to affect multiple key pathways of glucose toxicity, as well as to attenuate inflammation has been well documented. In this study, the inhibition of rat lens aldose reductase by 3,7-di-hydroxy-2-[4-(2-chloro-1,4-naphthoquinone-3-yloxy)-3-hydroxy-phenyl]-5-hydroxy-chromen-4-one (compound 1), was studied in greater detail in comparison with the parent quercetin (compound 2). The inhibition activity of 1, characterized by IC50 in low micromolar range, surpassed that of 2. Selectivity in relation to the closely related rat kidney aldehyde reductase was evaluated. At organ level in isolated rat lenses incubated in the presence of high glucose, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner, which indicated that 1 was readily taken up by the eye lens cells and interfered with cytosolic aldose reductase. In addition, compound 1 provided macroscopic protection of colonic mucosa in experimental colitis in rats. At pharmacologically active concentrations, compound 1 and one of its potential metabolite 2-chloro-3-hydroxy-[1,4]-naphthoquinone (compound 3) did not affect osmotic fragility of red blood cells. PMID:24666303

  18. A Small Library of Synthetic Di-Substituted 1, 4-Naphthoquinones Induces ROS-Mediated Cell Death in Murine Fibroblasts

    PubMed Central

    Ramirez, Oscar; Motta-Mena, Laura B.; Cordova, Amanda; Garza, Kristine M.

    2014-01-01

    Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dtz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents. PMID:25197824

  19. Electron donor-acceptor interaction of 3,4-dimethylaniline with 2,3-dicyano-1,4-naphthoquinone

    NASA Astrophysics Data System (ADS)

    Neelgund, Gururaj M.; Magadum, Subash R.; Budni, M. L.

    2011-01-01

    The electron donor-acceptor (EDA) interaction between 2,3-dicyano-1,4-naphthoquinone (DCNQ) and 3,4-dimethylaniline (3,4-DMA) is studied in chloroform, dichloromethane and 1:1 (v/v) mixture of chloroform and dichloromethane. The rate of formation of the product was measured as a function of time using UV-vis spectrophotometer. The formation constant ( K) and molar extinction coefficient ( ?) values for the formation of EDA complex were evaluated in the temperature range of 20-35 C. The pseudo-first-order rate constant ( k1) and the second-order rate constant ( k2) for the disappearance of EDA complex and for the formation of product were evaluated. The activation parameters (? H#, ? S# and ? G#) of the reaction were determined by temperature dependence of rate constants using the Arrhenius plots. The effect of relative permittivity of the medium on the reaction is discussed. The observed results indicate that formation of final product proceeds through initial formation of EDA complex as an intermediate. The product of the reaction was purified by column chromatography method and identified as 3-( N-3,4-dimethyl-phenylamino)-2-cyano-1,4-naphthoquinone by elemental analysis, IR and NMR spectroscopy. On the basis of kinetic, analytical and spectroscopic results, a plausible mechanism for the formation of EDA complex and its transformation into product is proposed.

  20. Naphthoquinone-mediated inhibition of lysine acetyltransferase KAT3B/p300, basis for non-toxic inhibitor synthesis.

    PubMed

    Vasudevarao, Mohankrishna Dalvoy; Mizar, Pushpak; Kumari, Sujata; Mandal, Somnath; Siddhanta, Soumik; Swamy, Mahadeva M M; Kaypee, Stephanie; Kodihalli, Ravindra C; Banerjee, Amrita; Naryana, Chandrabhas; Dasgupta, Dipak; Kundu, Tapas K

    2014-03-14

    Hydroxynaphthoquinone-based inhibitors of the lysine acetyltransferase KAT3B (p300), such as plumbagin, are relatively toxic. Here, we report that free thiol reactivity and redox cycling properties greatly contribute to the toxicity of plumbagin. A reactive 3rd position in the naphthoquinone derivatives is essential for thiol reactivity and enhances redox cycling. Using this clue, we synthesized PTK1, harboring a methyl substitution at the 3rd position of plumbagin. This molecule loses its thiol reactivity completely and its redox cycling ability to a lesser extent. Mechanistically, non-competitive, reversible binding of the inhibitor to the lysine acetyltransferase (KAT) domain of p300 is largely responsible for the acetyltransferase inhibition. Remarkably, the modified inhibitor PTK1 was a nearly non-toxic inhibitor of p300. The present report elucidates the mechanism of acetyltransferase activity inhibition by 1,4-naphthoquinones, which involves redox cycling and nucleophilic adduct formation, and it suggests possible routes of synthesis of the non-toxic inhibitor. PMID:24469461

  1. Naphthoquinone-mediated Inhibition of Lysine Acetyltransferase KAT3B/p300, Basis for Non-toxic Inhibitor Synthesis*

    PubMed Central

    Vasudevarao, Mohankrishna Dalvoy; Mizar, Pushpak; Kumari, Sujata; Mandal, Somnath; Siddhanta, Soumik; Swamy, Mahadeva MM; Kaypee, Stephanie; Kodihalli, Ravindra C; Banerjee, Amrita; Naryana, Chandrabhas; Dasgupta, Dipak; Kundu, Tapas K.

    2014-01-01

    Hydroxynaphthoquinone-based inhibitors of the lysine acetyltransferase KAT3B (p300), such as plumbagin, are relatively toxic. Here, we report that free thiol reactivity and redox cycling properties greatly contribute to the toxicity of plumbagin. A reactive 3rd position in the naphthoquinone derivatives is essential for thiol reactivity and enhances redox cycling. Using this clue, we synthesized PTK1, harboring a methyl substitution at the 3rd position of plumbagin. This molecule loses its thiol reactivity completely and its redox cycling ability to a lesser extent. Mechanistically, non-competitive, reversible binding of the inhibitor to the lysine acetyltransferase (KAT) domain of p300 is largely responsible for the acetyltransferase inhibition. Remarkably, the modified inhibitor PTK1 was a nearly non-toxic inhibitor of p300. The present report elucidates the mechanism of acetyltransferase activity inhibition by 1,4-naphthoquinones, which involves redox cycling and nucleophilic adduct formation, and it suggests possible routes of synthesis of the non-toxic inhibitor. PMID:24469461

  2. Effect of ascorbate on the DT-diaphorase-mediated redox cycling of 2-methyl-1,4-naphthoquinone.

    PubMed

    Jarabak, R; Jarabak, J

    1995-04-20

    Following the two-electron reduction of 2-methyl-1,4-naphthoquinone by rat liver DT-diaphorase (also called NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2), the hydroquinone product is slowly autoxidized to the quinone in buffered solutions at pH 7.0. The autoxidation, which generates the superoxide radical (O2-.) and other reactive oxygen species, is the rate-limiting step in the oxidation-reduction (redox) cycling of the quinone. The addition of ascorbate to these reaction mixtures increases the rate of redox cycling. Two mechanisms are proposed to explain this increase: (1) ascorbate reduces the quinone in a one-electron reduction and (2) if Fe(3+)-EDTA is present, ascorbate reduces the metal chelate in a one-electron reduction. Both mechanisms produce O2-. which initiates the free radical chain reaction that results in autoxidation of the hydroquinone. Although ascorbate may be a physiologically important antioxidant under some conditions, the studies reported here show that ascorbate is a prooxidant in the redox cycling of 2-methyl-1,4-naphthoquinone and, as such, could increase the potential toxicity of this quinone. PMID:7733672

  3. Spectrophotometric determination of aminomethylbenzoic acid using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Li, Quan-Min; Yang, Zhan-Jun

    2007-03-01

    A new method has been established for the determination of aminomethylbenzoic acid using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. This method is based on the formation of a pink compound from the reaction of aminomethylbenzoic acid and sodium 1,2-naphthoquinone-4-sulfonate. The nucleophilic substitution reaction proceeds quantitatively in pH 12.0 buffer solution. The stoichiometric ratio of the reaction, maximum absorption wavelength and the value of ?430 were 1:1, 430 nm, and 2.87 10 3 L mol -1 cm -1, respectively. Beer's law was obeyed in the range of 0.80-80 mg/L of aminomethylbenzoic acid. The data have been filled to a linear regression equation A = 0.03183 + 0.01658 C (mg/L), with a correlation coefficient of 0.9996. The detection limit is 0.11 mg/L, R.S.D. is 0.54%, and average recovery is over 99.6%. This paper further improves the determination of aminomethylbenzoic acid compared to the previous methods. The kinetic property and reaction mechanism have also been discussed. This proposed method has been successfully applied to the determination of aminomethylbenzoic acid in injection of aminomethylbenzoic acid with satisfactory results.

  4. Flow Injection Analysis Coupled with Carbon Electrodes as the Tool for Analysis of Naphthoquinones with Respect to Their Content and Functions in Biological Samples

    PubMed Central

    Babula, Petr; Huska, Dalibor; Hanustiak, Pavel; Baloun, Jiri; Krizkova, Sona; Adam, Vojtech; Hubalek, Jaromir; Havel, Ladislav; Zemlicka, Milan; Horna, Ales; Beklova, Miroslava; Kizek, Rene

    2006-01-01

    Naphthoquinones are one of the groups of secondary metabolites widespread in nature, where they mostly appear as chromatic pigments. They embody broad-range of biological actions from phytotoxic to fungicidal. An anticancer effect of naphthoquinones stimulates an interest in determination and characterization of single derivatives of 1,2- and 1,4-quinones in biological samples. The main aim of this work was to suggest a technique suitable to determine lawsone, juglone and/or plumbagin in biological samples and to study of their influence on BY-2 tobacco cells. The BY-2 tobacco cells were cultivated in the presence of the naphthoquinones of interest (500 ?g.l-1) for 24 h and then the morphological changes were observed. We found out that naphthoquinones triggered the programmed cell death at BY-2 cells, which can be confirmed by the apoptotic bodies in nucleus. After that we suggested and optimized different electrochemical techniques such differential pulse voltammetry (DPV) coupled with hanging mercury drop (HMDE) and carbon paste electrode, micro flow device coupled with carbon screen printed electrodes and flow injection analysis coupled with Coulochem III detector to determine them. The detection limits of naphthoquinones of interest were expressed as 3S/N and varied from units to hundreds of ng per millilitres according to methods used. Moreover, we utilized DPV coupled with HMDE and micro flow device to determine content of juglone in leaves Persian walnut (Juglans regia). We determined that the leaves contained juglone tenths of g per 100 g of fresh weight. The results obtained show the convincing possibilities of using of these methods in analysis of plant secondary metabolites.

  5. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A sub 1 acceptor site of the photosystem I reaction center

    SciTech Connect

    Biggins, J. )

    1990-08-07

    Selected substituted 1,4-benzoquinones, 1,4-naphthoquinones, and 9,10-anthraquinones were investigated as possible replacement quinones in spinach photosystem I (PSI) preparations that had been depleted of endogenous phylloquinone by extraction with hexane/methanol. As a criterion for successful biochemical reconstitution, the restoration of electron transfer was determined by measuring P-430 turnover at room temperature from flash-induced absorbance transients. Restoration of complete electron transfer between A{sub 0}{sup {minus}} and P-430 (terminal iron-sulfur centers, F{sub A}F{sub B}) was demonstrated by using phylloquinone, 2-methyl-3-decyl-1,4-naphthoquinone, 2-methyl-3-(isoprenyl){sub 2}-1,4-naphthoquinone, and 2-methyl-3-(isoprenyl){sub 4}-1,4-naphthoquinone. All other quinones tested did not restore P-430 turnover but acted as electron acceptors and oxidized A{sub 0}{sup {minus}}. It is concluded that the specificity of the replacement quinone for interaction with the primary acceptor, A{sub 0}{sup {minus}}, is low but additional structural constraints are required for the quinone occupying the A{sub 1} site to donate to the iron-sulfur center, F{sub x}. It is suggested that the 3-phytyl side chain of phylloquinone and the 3-alkyl tails of the three naphthoquinones that restored P-430 turnover may be required for interaction with a hydrophobic domain of the A{sub 1} site in the PSI core to promote electron transfer to F{sub x} and then to F{sub A}F{sub B}.

  6. Anti-proliferative actions of 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone in vascular smooth muscle cells

    SciTech Connect

    Lee, Jung-Jin; Institute of Drug Research and Development, Chungnam National University, Daejeon 305-764 ; Zhang, Wei-Yun; Yi, Hyoseok; Kim, Yohan; Kim, In-Su; Shen, Gui-Nan; Song, Gyu-Yong; Myung, Chang-Seon; Institute of Drug Research and Development, Chungnam National University, Daejeon 305-764

    2011-07-22

    Highlights: {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced VSMC proliferation in a dose-dependent manner with no apparent cytotoxicity. {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced phosphorylation of Erk1/2 and PLC{gamma}1. {yields} 2-Decylamino-DMNQ arrested a G{sub 0}/G{sub 1} cell cycle progression in association with pRb phosphorylation and PCNA expression. {yields} Both U0126, an Erk inhibitor, and U73122, a PLC{gamma} inhibitor, arrested a G{sub 0}/G{sub 1} phase of the cell cycle. -- Abstract: Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferation and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-R{beta} or Akt, it did inhibit the phosphorylation of Erk1/2 and PLC{gamma}1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G{sub 0}/G{sub 1} phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLC{gamma} inhibitor, increased the proportion of cells in the G{sub 0}/G{sub 1} phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G{sub 0}/G{sub 1} phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.

  7. Surface Enhanced Raman Spectroscopic investigations of 2-bromo-3-methylamino-1,4-naphthoquinone on silver nanoparticles.

    PubMed

    Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

    2014-11-01

    Surface Enhanced Raman Spectroscopic technique has been employed to investigate the orientation of 2-bromo-3-methylamino-1,4-naphthoquinone (BMANQ) on silver nanoparticles. Silver nanoparticles have been prepared by solution combustion method with citric acid as fuel. Silver nanoparticles were characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Scanning Electron Microscopy (SEM). XRD and morphological results confirmed the nanocrystalline nature of the prepared silver nanoparticles. The observed intense CO stretching, CBr stretching and NH2 vibration suggests that the BMANQ molecule may be adsorbed in a 'stand-on' orientation to the silver surface. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy show that charge transfer occurs within the molecule. PMID:25468439

  8. Griseusins F and G, spiro-naphthoquinones from a tin mine tailings-derived alkalophilic Nocardiopsis species.

    PubMed

    Ding, Zhang-Gui; Zhao, Jiang-Yuan; Li, Ming-Gang; Huang, Rong; Li, Qing-Ming; Cui, Xiao-Long; Zhu, Hua-Jie; Wen, Meng-Liang

    2012-11-26

    Griseusins F (1) and G (2), two 2a-hydro-8a-(2-oxopropyl)-substituted spiro-naphthoquinones with a previously undescribed C23 polyketide skeleton, were isolated from a Yunnan tin mine tailings-derived alkalophilic actinomycete, Nocardiopsis sp. YIM DT266. Their complete structure assignments with the absolute stereochemistry were elucidated by spectroscopic data, X-ray crystal diffraction, calculation of optical rotation, and CD spectroscopic analysis. Compounds 1 and 2 exhibited strong cytotoxicity (IC50 0.37-0.82 μM) and antibacterial activity (MIC 0.80-1.65 μg/mL) against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) in vitro. PMID:23095059

  9. Surface Enhanced Raman Spectroscopic investigations of 2-bromo-3-methylamino-1,4-naphthoquinone on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Geetha, K.; Umadevi, M.; Sathe, G. V.; Vanelle, P.; Terme, T.; Khoumeri, O.

    2015-02-01

    Surface Enhanced Raman Spectroscopic technique has been employed to investigate the orientation of 2-bromo-3-methylamino-1,4-naphthoquinone (BMANQ) on silver nanoparticles. Silver nanoparticles have been prepared by solution combustion method with citric acid as fuel. Silver nanoparticles were characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Scanning Electron Microscopy (SEM). XRD and morphological results confirmed the nanocrystalline nature of the prepared silver nanoparticles. The observed intense Cdbnd O stretching, Csbnd Br stretching and NH2 vibration suggests that the BMANQ molecule may be adsorbed in a 'stand-on' orientation to the silver surface. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy show that charge transfer occurs within the molecule.

  10. 2-methylthio-1,4-naphthoquinone, a unique sulfur-containing quinone from a thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus

    SciTech Connect

    Ishii, M.; Kawasumi, T.; Igarashi, Y.; Kodama, T.; Minoda, Y.

    1987-06-01

    A quinone was extracted and purified from the cells of an extremely thermophilic hydrogen bacterium, Hydrogenobacter thermophilus TK-6. Its chemical structure was determined as 2-methylthio-3-VI,VII-tetrahydromultiprenyl/sup 7/-1,4-naphthoquinone by elemental analysis, /sup 1/H nuclear magnetic resonance spectroscopy, mass spectroscopy, and infrared spectroscopy of the quinone and by gas-liquid chromatography and gas chromatography-mass spectroscopy analysis of the ozonolysis products of the quinone. It was shown that the other five strains of H. thermophilus have the same quinone system. The authors named the quinone with the 2-methylthio-1,4-naphthoquinone nucleus methionaquinone. The abbreviation of MTK is recommended for this class of quinone.

  11. DNA damage and inhibition of akt pathway in mcf-7 cells and ehrlich tumor in mice treated with 1,4-naphthoquinones in combination with ascorbate.

    PubMed

    Ourique, Fabiana; Kviecinski, Maicon R; Felipe, Karina B; Correia, Joo Francisco Gomes; Farias, Mirelle S; Castro, Luiza S E P W; Grinevicius, Valdelcia M A S; Valderrama, Jaime; Rios, David; Benites, Julio; Calderon, Pedro Buc; Pedrosa, Rozangela Curi

    2015-01-01

    The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, ?H2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells. PMID:25793019

  12. DNA Damage and Inhibition of Akt Pathway in MCF-7 Cells and Ehrlich Tumor in Mice Treated with 1,4-Naphthoquinones in Combination with Ascorbate

    PubMed Central

    Ourique, Fabiana; Kviecinski, Maicon R.; Felipe, Karina B.; Correia, Joo Francisco Gomes; Farias, Mirelle S.; Castro, Luiza S. E. P. W.; Grinevicius, Valdelcia M. A. S.; Valderrama, Jaime; Rios, David; Benites, Julio; Buc Calderon, Pedro; Pedrosa, Rozangela Curi

    2015-01-01

    The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, ?H2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells. PMID:25793019

  13. Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.

    PubMed

    Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

    2006-09-14

    The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium. PMID:16765109

  14. Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide

    NASA Astrophysics Data System (ADS)

    Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

    2015-01-01

    A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

  15. Spectrophotometric determination of ampicillin sodium in pharmaceutical products using sodium 1,2-naphthoquinone-4-sulfonic as the chromogentic reagent

    NASA Astrophysics Data System (ADS)

    Xu, Lixiao; Wang, Huaiyou; Xiao, Yan

    2004-11-01

    Spectrophotometric determination of ampicillin sodium is described. The ampicillin sodium reacts with sodium 1,2-naphthoquinone-4-sulfonic in pH 9.00 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 463 nm, ?463=1.1410 4. The absorbance of ampicillin sodium from 2.0-80 ?g ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=40.24 A-2.603, with a linear regression correlation coefficient is 0.9997, the detection limit is 1.5 ?g ml -1, recovery is from 97.23 to 104.5%. Effects of pH, surfactant, organic solvents, and foreign ions on the determination of ampicillin sodium have been examined. This method is rapid and simple, and can be used for the determination of ampicillin sodium in the injection solution of ampicillin sodium. The results obtained by this method agreed with those by the official method (HPLC).

  16. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  17. Direct detection of a triplet vinylnitrene, 1,4-naphthoquinone-2-ylnitrene, in solution and cryogenic matrices.

    PubMed

    Sarkar, Sujan K; Sawai, Asako; Kanahara, Kousei; Wentrup, Curt; Abe, Manabu; Gudmundsdottir, Anna D

    2015-04-01

    The photolysis of 2-azido-1,4-naphthoquinone (1) in argon matrices at 8 K results in the corresponding triplet vinylnitrene (3)2, which was detected directly by IR spectroscopy. Vinylnitrene (3)2 is stable in argon matrices but forms 2-cyanoindane-1,3-dione (3) upon further irradiation. Similarly, the irradiation of azide 1 in 2-methyltetrahydrofuran (MTHF) matrices at 5 K resulted in the ESR spectrum of vinylnitrene (3)2, which is stable up to at least 100 K. The zero-field splitting parameters for nitrene (3)2, D/hc = 0.7292 cm(-1) and E/hc = 0.0048 cm(-1), verify that it has significant 1,3-biradical character. Vinylnitrene (3)2 (?max ? 460 nm, ? = 22 ?s) is also observed directly in solution at ambient temperature with laser flash photolysis of 1. Density functional theory (DFT) calculations support the characterization of vinylnitrene (3)2 and the proposed mechanism for its formation. Because vinylnitrene (3)2 is relatively stable, it has potential use as a building-block for high-spin assemblies. PMID:25760227

  18. Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model.

    PubMed

    Müller, Joachim; Aguado-Martínez, Adriana; Manser, Vera; Wong, Ho Ning; Haynes, Richard K; Hemphill, Andrew

    2016-01-01

    The three anti-malarial drugs artemiside, artemisone, and mefloquine, and the naphthoquinone buparvaquone known to be active against theileriosis in cattle and Leishmania infections in rodents, were assessed for activity against Neospora caninum infection. All four compounds inhibited the proliferation of N. caninum tachyzoites in vitro with IC50 in the sub-micromolar range, but artemisone and buparvaquone were most effective (IC50 = 3 and 4.9 nM, respectively). However, in a neosporosis mouse model for cerebral infection comprising Balb/c mice experimentally infected with the virulent isolate Nc-Spain7, the three anti-malarial compounds failed to exhibit any activity, since treatment did not reduce the parasite burden in brains and lungs compared to untreated controls. Thus, these compounds were not further evaluated in pregnant mice. On the other hand, buparvaquone, shown earlier to be effective in reducing the parasite load in the lungs in an acute neosporosis disease model, was further assessed in the pregnant mouse model. Buparvaquone efficiently inhibited vertical transmission in Balb/c mice experimentally infected at day 7 of pregnancy, reduced clinical signs in the pups, but had no effect on cerebral infection in the dams. This demonstrates proof-of-concept that drug repurposing may lead to the discovery of an effective compound against neosporosis that can protect offspring from vertical transmission and disease. PMID:26883424

  19. Indoleamine 2,3-Dioxygenase Is the Anticancer Target for a Novel Series of Potent Naphthoquinone-Based Inhibitors

    PubMed Central

    Kumar, Sanjeev; Malachowski, William P.; DuHadaway, James B.; LaLonde, Judith M.; Carroll, Patrick J.; Jaller, Daniel; Metz, Richard; Prendergast, George C.; Muller, Alexander J.

    2014-01-01

    Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression. While small molecule inhibitors of IDO exist, there remains a dearth of high-potency compounds offering in vivo efficacy and clinical translational potential. In this study, we address this gap by defining a new class of naphthoquinone-based IDO inhibitors exemplified by the natural product menadione, which is shown in mouse tumor models to have similar antitumor activity to previously characterized IDO inhibitors. Genetic validation that IDO is the critical in vivo target is demonstrated using IDO-null mice. Elaboration of menadione to a pyranonaphthoquinone has yielded low nanomolar potency inhibitors, including new compounds which are the most potent reported to date (Ki = 6170 nM). Synthetic accessibility of this class will facilitate preclinical chemicalgenetic studies as well as further optimization of pharmacological parameters for clinical translation. PMID:18318466

  20. Spectrophotometric determination of dapsone in pharmaceutical products using sodium 1,2-naphthoquinone-4-sulfonic as the chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Wang, Huai You; Xu, Li Xiao; Xiao, Yan; Han, Juan

    2004-10-01

    Spectrophotometric determination of dapsone is described. The dapsone reacts with sodium 1,2-naphthoquinone-4-sulfonic in pH 6.98 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 525 nm, ɛ525=3.68×10 4 l mol -1 cm -1. The absorbance of dapsone from 0.40 to 10 μg ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=0.2334 A+0.01288, with a linear regression correlation coefficient of 0.9998, the detection limit is 0.24 μg ml -1, and recovery is from 99.2 to 102.4%. Effects of pH, surfactant, organic solvents, foreign ions, and standing time on the determination of dapsone have been examined. This method is simple and can be used for the determination of dapsone in injection solution of dapsone. The results obtained by this method agreed with those by the official method (dead-stop titration method [The Chinese Pharmacopoeia, Pharmacopoeia Commission, Ministry of Health, vol. 2, fifth ed., PRC Chemical Industry Press, Beijing, 2000, p.720]).

  1. Determination of lapachol in the presence of other naphthoquinones using 3MPA-CdTe quantum dots fluorescent probe

    NASA Astrophysics Data System (ADS)

    Aucélio, Ricardo Q.; Peréz-Cordovés, Ana I.; Xavier Lima, Juliano L.; Ferreira, Aurélio Baird B.; Esteva Guas, Ana M.; da Silva, Andrea R.

    3MPA-CdTe QDs in aqueous dispersion was used as a fluorescent probe for the determination of lapachol, a natural naphthoquinone found in plants of the Bignoniaceae family genus Tabebuia. Working QDs dispersions (4.5 × 10-8 mol L-1 of QDs) was prepared in aqueous media containing Tris-HCl buffer pH 7.4 and methanol (10% in volume). The excitation was made at 380 nm with signal measurement at 540 nm. To establish a relationship between fluorescence (corrected to inner filter effect) and concentration of lapachol, a Stern-Volmer model was used. The linear range obtained was from 1.0 × 10-5 to 1.0 × 10-4 mol L-1. The limit of detection (xb - 3 sb) was 8.0 × 10-6 mol L-1. The 3MPA-CdTe QDs probe was tested in the determination of lapachol in urine, previously cleansed in an acrylic polymer. The average recovery was satisfactory.

  2. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea

    SciTech Connect

    Kikuno, Shota; Taguchi, Keiko; Iwamoto, Noriko; Yamano, Shigeru; Cho, Arthur K.; Froines, John R.; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-01-15

    1,2-Naphthoquinone (1,2-NQ) has recently been identified as an environmental quinone in diesel exhaust particles (DEP) and atmospheric PM{sub 2.5}. We have found that this quinone is capable of causing a concentration-dependent contraction of tracheal smooth muscle in guinea pigs with EC{sub 5} value of 18.7 {mu}M. The contraction required extracellular calcium and was suppressed by L-type calcium channel blockers nifedipine and diltiazem. It was found that 1,2-NQ activated phospholipase A2 (PLA2)/lipoxygenase (LO)/vanilloid receptor (VR1) signaling. Additionally, 1,2-NQ was capable of transactivating protein tyrosine kinases (PTKs) such as epidermal growth factor receptor (EGFR) in guinea pig trachea, suggesting that phosphorylation of PTKs contributes to 1,2-NQ-induced tracheal contraction. Consistent with this notion, this action was blocked by the PTKs inhibitor genistein and the EGFR antagonist PD153035, indicating that contraction was, at least in part, attributable to PTKs phosphorylation that activates VR1, resulting in increased intracellular calcium content in the smooth muscle cells.

  3. Spectrophotometric determination of procaine hydrochloride in pharmaceutical products using 1,2-naphthoquinone-4-sulfonic acid as the chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Xu, Li Xiao; Shen, Yun Xiu; Wang, Huai You; Jiang, Ji Gang; Xiao, Yan

    2003-11-01

    Spectrophotometric determination of procaine hydrochloride is described. The procaine hydrochloride reacts with 1,2-naphthoquinone-4-sulfonic acid in pH 3.60 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 484 nm, ? 484=5.2210 3.The absorbance for procaine hydrochloride from 0.30 to 100 ?g ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=19.23A-0.03, with a linear regression correlative coefficient is 0.9996, the detection limit is 0.28 ?g ml -1; recovery is from 98.0 to 105.2%. Effects of pH, surfactant, organic solvent, foreign ions, and standing time on the determination of procaine hydrochloride have been examined. This method is rapid and simple, and can be used for the determination of procaine hydrochloride in injection solution of procaine hydrochloride. The results obtained by this method agreed with those by the official method (dead-stop titration).

  4. Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases and their platinum(II) complexes.

    PubMed

    Neves, Amanda P; Pereira, Michelle X G; Peterson, Erica J; Kipping, Ralph; Vargas, Maria D; Silva-Jr, Floriano P; Carneiro, J Walkimar M; Farrell, Nicholas P

    2013-02-01

    Several chlorido and amino Pt(2+) complexes of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases HL exhibiting moderate to high cytotoxicity against cancer cell lines were studied in order to investigate their modes of DNA binding, in vitro DNA strand breaks, mechanism of topoisomerase (Topo I) inhibition and cellular accumulation. DNA model base studies have shown that complex 1a [Pt(HL1)Cl(2)] was capable of binding covalently to 9-ethylguanine (9-EtG) and 5'-GMP. (1)H NMR and mass spectrometry studies have shown that both chlorides were substituted by 9-EtG ligands, whereas 5'-GMP was able to replace only one chlorido ligand, due to steric hindrance. The chlorido Pt(2+) complexes [Pt(HL)Cl(2)] highly accumulate in prostate (PC-3) and melanoma (MDA-MB-435) cell lines, being able to induce DNA strand breaks in vitro and inhibit Topo I by a catalytic mode. On the other hand, the free 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinones HL and the amino Pt(2+) complexes [Pt(L(-))(NH(3))(2)]NO(3) neither cause DNA strand breakage nor exhibit strong DNA interaction, nevertheless the latter were also found to be catalytic inhibitors of Topo I at 100μM. Thus, coordination of the Mannich bases HL to the "PtCl(2)" fragment substantially affects the chemical and biophysical properties of the pro-ligands, leading to an improvement of their DNA binding properties and generating compounds that cleave DNA and catalytically inhibit Topo I. Finally, the high cytotoxicity exhibited by the free (uncomplexed) 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinones might be associated with their decomposition in solution, which is not observed for the Pt(2+) complexes. PMID:23186648

  5. Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture.

    PubMed

    Raj, Gopan; Kurup, Rajani; Hussain, Abdul Azeez; Baby, Sabulal

    2011-11-01

    Prey capture and digestion in Nepenthes spp. through their leaf-evolved biological traps involve a sequence of exciting events. Sugar-rich nectar, aroma chemicals, narcotic alkaloid secretions, slippery wax crystals, and other biochemicals take part in attracting, capturing, and digesting preys in Nepenthes pitchers. Here we report the distribution of three potent naphthoquinones in Nepenthes khasiana and their roles in prey capture. Plumbagin was first detected in N. khasiana, and its content (root: 1.33 ± 0.02%, dry wt.) was the highest found in any natural source. Chitin induction enhanced plumbagin levels in N. khasiana (root: 2.17 ± 0.02%, dry wt.). Potted N. khasiana plants with limited growth of roots and aerial parts, showed higher levels of plumbagin accumulation (root: 1.92 ± 0.02%; root, chitin induction: 3.30 ± 0.21%, dry wt.) compared with field plants. Plumbagin, a known toxin, insect ecdysis inhibitor, and antimicrobial, was also found embedded in the waxy layers at the top prey capture region of N. khasiana pitchers. Chitin induction, mimicking prey capture, produced droserone and 5-O-methyl droserone in N. khasiana pitcher fluid. Both these naphthoquinone derivatives provide antimicrobial protection to the pitcher fluid from visiting preys. A two-way barrier was found between plumbagin and its two derivatives. Plumbagin was never detected in the pitcher fluid whereas both its derivatives were only found in the pitcher fluid on chitin induction or prey capture. The three naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone, act as molecular triggers in prey capture and digestion in the carnivorous plant, N. khasiana. PMID:21862483

  6. Potential of 2-Hydroxy-3-Phenylsulfanylmethyl-[1,4]-Naphthoquinones against Leishmania (L.) infantum: Biological Activity and Structure-Activity Relationships

    PubMed Central

    Schmidt, Thomas J.; Borborema, Samanta E. T.; Ferreira, Vitor F.; Rocha, David R.; Tempone, Andre G.

    2014-01-01

    Naphtoquinones have been used as promising scaffolds for drug design studies against protozoan parasites. Considering the highly toxic and limited therapeutic arsenal, the global negligence with tropical diseases and the elevated prevalence of co-morbidities especially in developing countries, the parasitic diseases caused by various Leishmania species (leishmaniasis) became a significant public health threat in 98 countries. The aim of this work was the evaluation of antileishmanial in vitro potential of thirty-six 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones obtained by a three component reaction of lawsone, the appropriate aldehyde and thiols adequately substituted, exploiting the in situ generation of o-quinonemethides (o-QM) via the Knoevenagel condensation. The antileishmanial activity of the naphthoquinone derivatives was evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum and their cytotoxicity was verified in mammalian cells. Among the thirty-six compounds, twenty-seven were effective against promastigotes, with IC50 values ranging from 8 to 189 M; fourteen compounds eliminated the intracellular amastigotes, with IC50 values ranging from 12 to 65 M. The compounds containing the phenyl groups at R1 and R2 and with the fluorine substituent at the phenyl ring at R2, rendered the most promising activity, demonstrating a selectivity index higher than 15 against amastigotes. A QSAR (quantitative structure activity relationship) analysis yielded insights into general structural requirements for activity of most compounds in the series. Considering the in vitro antileishmanial potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones and their structure-activity relationships, novel lead candidates could be exploited in future drug design studies for leishmaniasis. PMID:25171058

  7. Tabebuia avellanedae naphthoquinones: activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis

    PubMed Central

    Pereira, Eliezer Menezes; Machado, Thelma de Barros; Leal, Ivana Correa Ramos; Jesus, Desyre Murta; Damaso, Clarissa Rosa de Almeida; Pinto, Antonio Ventura; Giambiagi-deMarval, Marcia; Kuster, Ricardo Machado; dos Santos, Ktia Regina Netto

    2006-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococcus infections are a worldwide concern. Currently, these isolates have also shown resistance to vancomycin, the last therapy used in these cases. It has been observed that quinones and other related compounds exhibit antibacterial activity. This study evaluated the antibacterial activity, toxicity and in vivo dermal irritability of lapachol extracted from Tabebuia avellanedae and derivatives against methicillin-resistant staphylococcal isolates. In addition, its mechanism of action was also analyzed. Methods The compounds ?-lapachone, 3-hydroxy ? N lapachone and ?-lapachone were tested to determine the MIC values against methicillin-resistant S. aureus, S. epidermidis and S. haemolyticus strains, being the two last ones hetero-resistant to vancomycin. Experiments of protein synthesis analysis to investigate the naphthoquinones action were assessed. In vitro toxicity to eukaryotic BSC-40 African Green Monkey Kidney cell cultures and in vivo primary dermal irritability in healthy rabbits were also performed. Results The compounds tested showed antibacterial activity (MICs of 8, 4/8 and 64/128 ?g/mL to ?-lapachone, 3-hydroxy ? N lapachone and ?-lapachone, respectively), but no bactericidal activity was observed (MBC > 512 ?g/mL for all compounds). Although it has been observed toxic effect in eukaryotic cells, the compounds were shown to be atoxic when applied as topic preparations in healthy rabbits. No inhibition of proteins synthesis was observed. Conclusion Our results suggest that quinones could be used in topic preparations against wound infections caused by staphylococci, after major investigation of the pharmacological properties of the compounds. Studies about the use of these compounds on tumoral cells could be carried on, due to their effect in eukaryotic cells metabolism. PMID:16553949

  8. Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues

    PubMed Central

    2013-01-01

    Background Naphthoquinones (NQs) are privileged structures in medicinal chemistry due to the biological effects associated with the induction of oxidative stress. The present study evaluated the activities of sixteen NQs derivatives on Trypanosoma cruzi. Results Fourteen NQs displayed higher activity against bloodstream trypomastigotes of T. cruzi than benznidazole. Further assays with NQ1, NQ8, NQ9 and NQ12 showed inhibition of the proliferation of axenic epimastigotes and intracelulluar amastigotes interiorized in macrophages and in heart muscle cells. NQ8 was the most active NQ against both proliferative forms of T. cruzi. In epimastigotes the four NQs induced mitochondrial swelling, vacuolization, and flagellar blebbing. The treatment with NQs also induced the appearance of large endoplasmic reticulum profiles surrounding different cellular structures and of myelin-like membranous contours, morphological characteristics of an autophagic process. At IC50 concentration, NQ8 totally disrupted the ??m of about 20% of the parasites, suggesting the induction of a sub-population with metabolically inactive mitochondria. On the other hand, NQ1, NQ9 or NQ12 led only to a discrete decrease of TMRE + labeling at IC50 values. NQ8 led also to an increase in the percentage of parasites labeled with DHE, indicative of ROS production, possibly the cause of the observed mitochondrial swelling. The other three NQs behaved similarly to untreated controls. Conclusions NQ1, NQ8, NQ9 and NQ12 induce an autophagic phenotype in T. cruzi epimastigoted, as already observed with others NQs. The absence of oxidative stress in NQ1-, NQ9- and NQ12-treated parasites could be due to the existence of more than one mechanism of action involved in their trypanocidal activity, leaving ROS generation suppressed by the detoxification system of the parasite. The strong redox effect of NQ8 could be associated to the presence of the acetyl group in its structure facilitating quinone reduction, as previously demonstrated by electrochemical analysis. Further experiments using biochemical and molecular approaches are needed to better characterize ROS participation in the mechanism of action of these NQs. PMID:24004461

  9. An assessment of the genotoxicity of 2-hydroxy-1,4-naphthoquinone, the natural dye ingredient of Henna.

    PubMed

    Kirkland, David; Marzin, Daniel

    2003-06-01

    2-Hydroxy-1,4-naphthoquinone (HNQ; Lawsone; CAS 83-72-7) is the principal natural dye ingredient contained in the leaves of Henna (Lawsonia inermis). Published genotoxicity studies on HNQ suggested it was a weak bacterial mutagen for Salmonella typhimurium strain TA98 or was more clearly mutagenic for strain TA 2637, both in the presence of metabolic activation. HNQ was unable to induce sex-linked recessive lethal mutations in Drosophila melanogaster. However, a small increase in micronucleus frequency was reported in the bone marrow of mice at a single mid-range dose level, 24h after intraperitoneal injection. In view of the wide use of Henna hair dyes it was deemed necessary to conduct a thorough investigation, under Good Laboratory Practice conditions, of the genotoxicity of HNQ. HNQ was non-mutagenic in bacterial (Ames test) or mammalian (V79 hprt) assays. It was borderline positive in a mouse lymphoma tk mutation assay and a chromosome aberration test (CHO cells), results that may reflect a similar clastogenic mechanism. Negative in vivo genotoxicity results were noted in the rat hepatocyte in vivo/in vitro UDS test, in peripheral lymphocytes (chromosome aberrations) of rats receiving repeated oral doses of HNQ at the MTD for 28 days, and in mouse and hamster bone marrow chromosome aberration tests. However small, but statistically significant increases in the incidence of bone marrow micronuclei were observed in two out of five tests at 72 h after dosing, but not at 24 or 48 h. There was evidence of haematotoxicity at 72 h, which may have been enhanced by the vehicle (DMSO) used in the positive tests. As erythropoiesis and administration of haematotoxic agents are known to induce small increases in the frequency of bone marrow micronuclei, typically at delayed sampling times, the data suggest that the positive 72 h response produced by HNQ is consistent with stimulation of haematopoiesis subsequent to haematological toxicity of HNQ, and not due to a DNA-reactive mechanism. Overall, the weight of evidence suggests that Henna and HNQ pose no genotoxic risk to the consumer. PMID:12787822

  10. The effect of Na+ and K+ doping on the properties of sol-gel deposited 2-hydroxy-1,4-naphthoquinone thin films

    NASA Astrophysics Data System (ADS)

    Al-Omari, Mahmoud; Sel, Kivanc; Mueller, Anja; Mellinger, Axel; Kaya, Tolga

    2013-05-01

    We describe the use of 2-hydroxy-1,4-naphthoquinone (HNQ) thin films as a potential water vapor and electrolyte sensing material towards the goal of non-invasive relative humidity and sweat detection. We have successfully made HNQ sol-gel thin films and studied the effects of sodium and potassium ions on their optical and electrical characteristics. Ultraviolet-visible absorbance and Fourier transform infrared spectroscopy measurements along with scanning electron microscopy demonstrated that we were able to dope HNQ thin films with Na+ and K+ ions, which are the main electrolyte contents in sweat. While the conductivity of thin films increased by at least an order of magnitude, energy band gaps decreased by doping HNQ with Na+ and K+ ions. Relative humidity test results showed that HNQ-based thin-films can be used as a sensing material for water vapor. Room temperature current-voltage measurements were also performed to determine the surface conductivity.

  11. On-line continuous sampling dynamic microwave-assisted extraction coupled with high performance liquid chromatographic separation for the determination of lignans in Wuweizi and naphthoquinones in Zicao.

    PubMed

    Gao, Shiqian; You, Jingyan; Wang, Ying; Zhang, Rui; Zhang, Hanqi

    2012-03-01

    The on-line continuous sampling dynamic microwave-assisted extraction (on-line CSDMAE) coupled with high-performance liquid chromatographic separation and determination of the lignans in Wuweizi and naphthoquinones in Zicao was developed. The extraction, separation and determination of target analytes were simultaneously carried out. The experimental parameters, including type of extraction solvent, microwave extraction power, solvent flow rate, amount of sample and particle size of the sample, were evaluated by the univariate method and orthogonal screening. The detection limits for schisandrin A, schisantherin A, deoxyschizandrin, shikonin and β,β'-dimethylacrylshikonin are 0.86, 0.90, 0.27, 0.42 and 0.92 μg mL⁻¹, respectively. Compared with the conventional extraction methods, such as off-line continuous microwave-assisted extraction, ultrasound-assisted extraction and Soxhlet extraction, the proposed method is quicker and more effective. PMID:22321410

  12. Synthesis and characterization of n-alkylamino derivatives of vitamin K3: Molecular structure of 2-propylamino-3-methyl-1,4-naphthoquinone and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Chadar, Dattatray; Camilles, Maria; Patil, Rishikesh; Khan, Ayesha; Weyhermüller, Thomas; Salunke-Gawali, Sunita

    2015-04-01

    We would like to introduce eight analogues of n-alkylamino derivatives of vitamin K3 (2-methyl-1,4-naphthoquinone) viz, 2-(n-alkylamino)-3-methyl-1,4-naphthoquinone (where n-alkyl is methyl; LM-1, ethyl; LM-2, propyl; LM-3, butyl; LM-4, pentyl; LM-5, hexyl; LM-6, heptyl; LM-7, octyl; LM-8). All the above analogues have been successfully synthesized from vitamin K3 and characterized using different analytical techniques. Furthermore, in order to understand the mechanistic aspects of formation of LM-1 to LM-8 compounds, we could propose the mechanism. The FT-IR analysis of LM-1 to LM-8 indicate the presence of characteristic band of Nsbnd H group ∼3287-3364 cm-1, the variation was attributed to extensive intramolecular hydrogen bonding interaction. The molecular structure of LM-3 compound has been confirmed by single crystal X-ray diffraction analysis. LM-3 compound crystallises in triclinic space group P1. There were four independent molecules in asymmetric unit cell and their molecular interactions observed via Nsbnd H⋯O, Csbnd H⋯O and π-π stacking of quinonoid rings. Pharmacological potential of all compounds has been evaluated in terms of their antibacterial activities against Pseudomonas aeruginosa and Staphylococcus aureus. All the compounds were active against both the strains while LM-2 was found to be more effective with a minimum inhibition concentration of 0.3125 μg/mL and 0.156 μg/mL respectively.

  13. Hydroxylated Dimeric Naphthoquinones Increase the Generation of Reactive Oxygen Species, Induce Apoptosis of Acute Myeloid Leukemia Cells and Are Not Substrates of the Multidrug Resistance Proteins ABCB1 and ABCG2.

    PubMed

    Lapidus, Rena G; Carter-Cooper, Brandon A; Sadowska, Mariola; Choi, Eun Yong; Wonodi, Omasiri; Muvarak, Nidal; Natarajan, Karthika; Pidugu, Lakshmi S; Jaiswal, Anil; Toth, Eric A; Rassool, Feyruz V; Etemadi, Arash; Sausville, Edward A; Baer, Maria R; Emadi, Ashkan

    2016-01-01

    Selective targeting of the oxidative state, which is a tightly balanced fundamental cellular property, is an attractive strategy for developing novel anti-leukemic chemotherapeutics with potential applications in the treatment of acute myeloid leukemia (AML), a molecularly heterogeneous disease. Dimeric naphthoquinones (BiQs) with the ability to undergo redox cycling and to generate reactive oxygen species (ROS) in cancer cells are a novel class of compounds with unique characteristics that make them excellent candidates to be tested against AML cells. We evaluated the effect of two BiQ analogues and one monomeric naphthoquinone in AML cell lines and primary cells from patients. All compounds possess one halogen and one hydroxyl group on the quinone cores. Dimeric, but not monomeric, naphthoquinones demonstrated significant anti-AML activity in the cell lines and primary cells from patients with favorable therapeutic index compared to normal hematopoietic cells. BiQ-1 effectively inhibited clonogenicity and induced apoptosis as measured by Western blotting and Annexin V staining and mitochondrial membrane depolarization by flow cytometry. BiQ-1 significantly enhances intracellular ROS levels in AML cells and upregulates expression of key anti-oxidant protein, Nrf2. Notably, systemic exposure to BiQ-1 was well tolerated in mice. In conclusion, we propose that BiQ-induced therapeutic augmentation of ROS in AML cells with dysregulation of antioxidants kill leukemic cells while normal cells remain relatively intact. Further studies are warranted to better understand this class of potential chemotherapeutics. PMID:26797621

  14. Near-UV photolysis of 2-methyl-1,4-naphthoquinone-DNA duplexes: characterization of reversible and stable interstrand cross-links between quinone and adenine moieties.

    PubMed

    Bergeron, Franois; Klarskov, Klaus; Hunting, Darel J; Wagner, J Richard

    2007-05-01

    Near-UV photolysis of 2-methyl-1,4-naphthoquinone (MQ, menadione) tethered DNA induces initial charge transfer followed by either transport of the damage to G or the formation of interstrand cross-links between MQ and DNA bases. In this work, the products responsible for interstrand cross-links have been characterized by mass spectrometry, NMR, and comparison with model compounds. Three major products were formed in the photolysis of MQ-DNA duplexes. Two of the products (isomers) have a cross-link between C2 of a 2,3-saturated MQ moiety and N6 of a dAdo moiety. These products readily convert back to MQ and dAdo upon heating in neutral solution, and thus, they lead to reversible cross-links in MQ-DNA duplexes. The third product has a cross-link between C3 of a 2,3-unsaturated MQ moiety and N6 of an dAdo moiety. This product was stable in neutral solution. The formation of MQ to A cross-links in DNA may be explained by the coupling of MQ radicals that arise from the protonation of MQ radical anions, together with adenin-N6-yl radicals that arise from the deprotonation of A radical cations. PMID:17397192

  15. Validated spectrophotometric method for the determination, spectroscopic characterization and thermal structural analysis of duloxetine with 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2012-03-01

    A novel, selective, sensitive and simple spectrophotometric method was developed and validated for the determination of the antidepressant duloxetine hydrochloride in pharmaceutical preparation. The method was based on the reaction of duloxetine hydrochloride with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media to yield orange colored product. The formation of this complex was also confirmed by UV-visible, FTIR, 1H NMR, Mass spectra techniques and thermal analysis. This method was validated for various parameters according to ICH guidelines. Beer's law is obeyed in a range of 5.0-60 μg/mL at the maximum absorption wavelength of 480 nm. The detection limit is 0.99 μg/mL and the recovery rate is in a range of 98.10-99.57%. The proposed methods was validated and applied to the determination of duloxetine hydrochloride in pharmaceutical preparation. The results were statistically analyzed and compared to those of a reference UV spectrophotometric method.

  16. A Novel Color Change Mechanism for Breast Cancer Biomarker Detection: Naphthoquinones as Specific Ligands of Human Arylamine N-Acetyltransferase 1

    PubMed Central

    Varney, Amy; Thinnes, Cyrille C.; Quevedo, Camilo E.; Seden, Peter T.; Thompson, Sam; Rodrigues-Lima, Fernando; Dairou, Julien; Dupret, Jean-Marie; Russell, Angela J.; Sim, Edith

    2013-01-01

    Human arylamine N-acetyltransferase 1 (hNAT1) has become an attractive potential biomarker for estrogen-receptor-positive breast cancers. We describe here the mechanism of action of a selective non-covalent colorimetric biosensor for the recognition of hNAT1 and its murine homologue, mNat2, over their respective isoenzymes, leading to new opportunities in diagnosis. On interaction with the enzyme, the naphthoquinone probe undergoes an instantaneous and striking visible color change from red to blue. Spectroscopic, chemical, molecular modelling and biochemical studies reported here show that the color change is mediated by selective recognition between the conjugate base of the sulfonamide group within the probe and the conjugate acid of the arginine residue within the active site of both hNAT1 and mNat2. This represents a new mechanism for selective biomarker sensing and may be exploited as a general approach to the specific detection of biomarkers in disease. PMID:23940600

  17. Selective Spectrophotometric and Spectrofluorometric Methods for the Determination of Amantadine Hydrochloride in Capsules and Plasma via Derivatization with 1,2-Naphthoquinone-4-sulphonate

    PubMed Central

    Mahmoud, Ashraf M.; Khalil, Nasr Y.; Darwish, Ibrahim A.; Aboul-Fadl, Tarek

    2009-01-01

    New selective and sensitive spectrophotometric and spectrofluorometric methods have been developed and validated for the determination of amantadine hydrochloride (AMD) in capsules and plasma. The methods were based on the condensation of AMD with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product. The spectrophotometric method involved the measurement of the colored product at 460 ?nm. The spectrofluorometric method involved the reduction of the product with potassium borohydride, and the subsequent measurement of the formed fluorescent reduced AMD-NQS product at 382 ?nm after excitation at 293 ?nm. The variables that affected the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.99720.9974) and low LOD (1.39 and 0.013??g?mL?1) were obtained in the ranges of 580 and 0.0510? ?g?mL?1 for the spectrophotometric and spectrofluorometric methods, respectively. The precisions of the methods were satisfactory; RSD ?2.04%. Both methods were successfully applied to the determination of AMD in capsules. As its higher sensitivity, the spectrofluorometric method was applied to the determination of AMD in plasma; the recovery was 96.3101.2 0.574.2%. The results obtained by the proposed methods were comparable with those obtained by the official method PMID:20140080

  18. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma.

    PubMed

    Gong, Ke; Li, Wenhua

    2011-12-15

    Although shikonin, a naphthoquinone derivative, has showed anti-cancer activity, its precise molecular anti-tumor mechanism remains to be elucidated. In this study, we investigated the effects of shikonin on human hepatocellular carcinoma (HCC) in vitro and in vivo. Our results showed that shikonin induced apoptosis of Huh7 and BEL7402 but not nontumorigenic cells. ROS generation was detected, and ROS scavengers completely inhibited shikonin-induced apoptosis, indicating that ROS play an essential role. Although the JNK activity was significantly elevated after shikonin treatment, JNK was not linked to apoptosis. However, downregulation of Akt and RIP1/NF-?B activity was found to be involved in shikonin-induced apoptosis. Ectopic expression of Akt or RIP1 partly abrogated the effects of shikonin, and Akt inhibitor and RIP1 inhibitor synergistically induced apoptosis in conjunction with shikonin treatment. ROS scavengers blocked shikonin-induced inactivation of Akt and RIP1/NF-?B, but Akt or RIP1/NF-?B did not regulate ROS generation, suggesting that Akt and RIP1/NF-?B signals are downstream of ROS generation. In addition, the results of xenograft experiments in mice were consistent with in vitro studies. Taken together, our data show that shikonin, which may be a promising agent in the treatment of liver cancer, induced apoptosis in HCC cells through the ROS/Akt and RIP1/NF-?B pathways. PMID:22011623

  19. Nanosecond molecular dynamics simulations of Cdc25B and its complex with a 1,4-naphthoquinone inhibitor: implications for rational inhibitor design.

    PubMed

    Ko, Sungmin; Lee, Woojin; Lee, Sangyoub; Park, Hwangseo

    2008-08-01

    Cdc25 phosphatases have been considered as attractive drug targets for anticancer therapies due to the correlation of their overexpression with a wide variety of cancers. To gain insight into designing new potent inhibitors, we investigate the dynamic properties of Cdc25B and its complex with a 1,4-naphtoquinone inhibitor NSC 95397 by means of molecular dynamics simulations in aqueous solution. It is shown from the calculated dynamic properties that the malleability of the residues 530-532 residing at the start of C-terminal region around the active site should be responsible for the catalytic action of Cdc25B. However, binding of the inhibitor in the active site leads to a substantial decrease in the motional amplitude of the flexible residues, due to the hydrophobic interactions with the side chain of Met531. The simulation results also indicate that at least four hydrogen bonds are involved in the enzyme-inhibitor complex. Among them, the hydrogen bond between the side chain carboxylate group of Glu478 and one of the hydroxyl groups of the inhibitor is found to be the most significant binding force stabilizing the inhibitor in the active site. This result supports the previous experimental implication that the possession of a single hydroxyl group is sufficient for the inhibitory activity of 1,4-naphthoquinone inhibitors. PMID:18359256

  20. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells.

    PubMed

    Sun, Wen; Bao, Jiaolin; Lin, Wei; Gao, Hongwei; Zhao, Wenwen; Zhang, Qingwen; Leung, Chung-Hang; Ma, Dik-Lung; Lu, Jinjian; Chen, Xiuping

    2016-03-01

    Redox signaling plays a fundamental role in maintaining cell physiological activities. A deregulation of this balance through oxidative stress or nitrosative stress has been implicated in cancer. Here, we reported that 2-methoxy-6-acetyl-7-methyl juglone (MAM), a natural naphthoquinone isolated from Polygonum cuspidatum Sieb. et Zucc, caused hydrogen peroxide (H2O2) dependent activation of JNK and induced the expression of inducible nitric oxide synthase (iNOS), thereby leading to nitric oxide (NO) generation in multiple cancer cells. Nitrosative stress induced necroptosis in A549 lung cancer cells, but resulted in caspase-dependent intrinsic apoptosis in B16-F10 melanoma and MCF7 breast cancer cells. In addition, a decrease in GSH/GSSG levels accompanied with increased ROS production was observed. Reversal of ROS generation and cell death in GSH pretreated cells indicated the involvement of GSH depletion in MAM mediated cytotoxicity. In summary, a natural product MAM induced NO-dependent multiple forms of cell death in cancer cells mediated by H2O2-dependent JNK activation in cancer cells. GSH depletion might play an initial role in MAM-induced cytotoxicity. PMID:26802903

  1. Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action.

    PubMed

    Spoerlein-Guettler, Cornelia; Mahal, Katharina; Schobert, Rainer; Biersack, Bernhard

    2014-09-01

    A series of ferrocene and (arene)ruthenium(II) complexes attached to the naturally occurring anticancer naphthoquinones plumbagin and juglone was tested for efficacy against various cancer cell lines and for alterations in the mode of action. The plumbagin ferrocene and (p-cymene)Ru(II) conjugates 1c and 2a overcame the multi-drug drug resistance of KB-V1/Vbl cervix carcinoma cells and showed IC50 (72 h) values around 1 ?M in growth inhibition assays using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT). They were further investigated for their influence on the cell cycle of KB-V1/Vbl and HCT-116 colon carcinoma cells, on the generation of reactive oxygen species (ROS) by the latter cell line, for their substrate character for the P-glycoprotein drug eflux pump via the calcein-AM efflux assays, and for DNA affinity by the electrophoretic mobility shift assay (EMSA). The derivatives 1c and 2a increased the number of dead cancer cells (sub-G0/G1 fraction) in a dose- and time-dependent manner. ROS levels were significantly increased upon treatment with 1c and 2a. These compounds also showed a greater affinity to linear DNA than plumbagin. While plumbagin did not affect calcein-AM transport by P-glycoprotein the derivatives 1c and 2a exhibited a 50% or 80% inhibition of the P-glycoprotein-mediated calcein-AM efflux relative to the clinically established sensitizer verapamil. PMID:24907976

  2. Spectrophotometric study for the reaction between fluvoxamine and 1,2-naphthoquinone-4-sulphonate: Kinetic, mechanism and use for determination of fluvoxamine in its dosage forms

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Abdine, Heba H.; Amer, Sawsan M.; Al-Rayes, Lama I.

    2009-05-01

    Spectrophotometric study was carried out, for the first time, to investigate the reaction between the antidepressant fluvoxamine (FXM) and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 9), an orange-colored product exhibiting maximum absorption peak ( λmax) at 470 nm was produced. The kinetics of the reaction was investigated and its activation energy was found to be 2.65 kcal mol -1. Because of this low activation energy, the reaction proceeded easily. The stoichiometry of the reaction was determined and the reaction mechanism was postulated. This color-developing reaction was successfully employed in the development of simple and rapid spectrophotometric method for determination of FXM in its pharmaceutical dosage forms. Under the optimized reaction conditions, Beer's law correlating the absorbance ( A) with FXM concentration ( C) was obeyed in the range of 0.6-8 μg ml -1. The regression equation for the calibration data was A = 0.0086 + 0.1348 C, with good correlation coefficient (0.9996). The molar absorptivity ( ɛ) was 5.9 × 10 4 l mol -1 cm -1. The limits of detection and quantification were 0.2 and 0.6 μg ml -1, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of FXM in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.47 ± 0.96%. The results obtained by the proposed method were comparable with those obtained by the official method. The proposed method is superior to all the previously reported spectrophotometric methods for determination of FXM in terms of its simplicity and sensitivity. The method is practical and valuable for its routine application in quality control laboratories for analysis of FXM.

  3. Synthesis and evaluation of 1,4-naphthoquinone ether derivatives as SmTGR inhibitors and new anti-schistosomal drugs.

    PubMed

    Johann, Laure; Belorgey, Didier; Huang, Hsin-Hung; Day, Latasha; Chess, Matthieu; Becker, Katja; Williams, David L; Davioud-Charvet, Elisabeth

    2015-08-01

    Investigations regarding the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives revealed 3-phenoxymethyl menadiones as a novel anti-schistosomal chemical series. These newly synthesized compounds (1-7) and their difluoromethylmenadione counterparts (8, 9) were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR), which has been identified as a potential target for anti-schistosomal drugs. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. glutathione reductase (hGR) and selenium-dependent human thioredoxin reductase (hTrxR), to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively compared to hGR and hTrxR enzymes, in particular those bearing an ?-fluorophenol methyl ether moiety, which improves anti-schistosomal action. Furthermore, the (substituted phenoxy)methyl menadione derivative (7) displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox cycling of SmTGR, and potent anti-schistosomal action in worms cultured ex vivo. In contrast, the difluoromethylmenadione analog 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in worms cultured ex vivo. Despite ex vivo activity, none of the compounds tested was active in vivo, suggesting that the limited bioavailability may compromise compound activity. Therefore, future studies will be directed toward improving pharmacokinetic properties and bioavailability. PMID:26111549

  4. Kinetics of jack bean urease inhibition by 2,3-dichloro-1,4-naphthoquinone. Elucidation of the mechanism: redox cycling and sulfhydryl arylation.

    PubMed

    Zaborska, Wies?awa; Kot, Miros?awa; Bala, Agnieszka

    2009-10-01

    The inhibition of jack bean urease by 2,3-dichloro-1,4-naphthoquinone (DCNQ) was studied at ambient temperature in 20 mM phosphate buffer, pH 7.8. The process was investigated by incubation procedure in the absence of substrate. It was found that DCNQ acted as a time- and concentration-dependent inactivator of urease. The time course of the reaction displayed a biphasic mode. Each phase followed a pseudo-first-order kinetics, however the inactivation rate at the first phase was significantly faster than at the next one. The biphasity indicated the complex mechanism of DCNQ action on urease. Quinones action on proteins has been elucidated as at least two processes: direct arylation of essential protein thiols and/or indirect oxidation of essential thiols by reactive oxygen species (ROS) realising during quinone reduction to semiquinones. The next evidence of the studied mechanism was provided by the reactivation experiment that showed the participation of reversible and irreversible processes in the inactivation. The application of dithiothreitol (DTT) into DCNQ blocked-urease solution resulted in an effective enzyme activity regain which quickly returned to 70 +/- 10%. The irreversible inactivation of urease was attributed to DCNQ arylation of thiol residues in the protein. On the other hand, it was assumed that the reversible inactivation was a result of the action of ROS such as H(2)O(2). Presence of H(2)O(2) in the incubation system was proved by an experiment with the use of catalase. The enzyme by the elimination of H(2)O(2) decreased DCNQ inactivating influence on urease. The comparison of participation of the fast and slow phase in the inactivation with the percentage of the process reversibility was assumed that the fast period was a result of the arylation mechanism while the slow phase was related to the oxidative influence of H(2)O(2). PMID:19621983

  5. Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones

    PubMed Central

    de Castro, Solange L.; Batista, Denise G. J.; Batista, Marcos M.; Batista, Wanderson; Daliry, Anissa; de Souza, Elen M.; Menna-Barreto, Rubem F. S.; Oliveira, Gabriel M.; Salomo, Kelly; Silva, Cristiane F.; Silva, Patricia B.; Soeiro, Maria de Nazar C.

    2011-01-01

    Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi. PMID:22091400

  6. Early postnatal, but not late, exposure to chemical ambient pollutant 1,2-naphthoquinone increases susceptibility to pulmonary allergic inflammation at adulthood.

    PubMed

    Santos, Karen T; Florenzano, Juliana; Rodrigues, Leandro; Fvaro, Rodolfo R; Ventura, Fernanda F; Ribeiro, Marcela G; Teixeira, Simone A; Ferreira, Heloisa H A; Brain, Susan D; Damazo, Amlcar S; Zorn, Telma M; Cmara, Niels O; Muscar, Marcelo N; Peron, Jean Pierre; Costa, Soraia K

    2014-08-01

    High diesel exhaust particle levels are associated with increased health effects; however, knowledge on the impact of its chemical contaminant 1,2-naphthoquinone (1,2-NQ) is limited. We investigated whether postnatal and adult exposures to 1,2-NQ influence allergic reaction and the roles of innate and adaptive immunity. Male neonate (6 days) and adult (56 days) C57Bl/6 mice were exposed to 1,2-NQ (100 nM; 15 min) for 3 days, and on day 59, they were sensitized and later challenged with ovalbumin (OVA). Airway hyper-responsiveness (AHR) and production of cytokines, immunoglobulin E (IgE) and leukotriene B4 (LTB4) were measured in the airways. Postnatal exposure to 1,2-NQ activated dendritic cells in splenocytes by increasing expressing cell surface molecules (e.g., CD11c). Co-exposure to OVA effectively polarized T helper (Th) type 2 (Th2) by secreting Th2-mediated cytokines. Re-stimulation with unspecific stimuli (PMA and ionomycin) generated a mixed Th1 (CD4(+)/IFN-?(+)) and Th17 (CD4(+)/IL-17(+)) phenotype in comparison with the vehicle-matched group. Postnatal exposure to 1,2-NQ did not induce eosinophilia in the airways at adulthood, although it evoked neutrophilia and exacerbated OVA-induced eosinophilia, Th2 cytokines, IgE and LTB4 production without affecting AHR and mast cell degranulation. At adulthood, 1,2-NQ exposure evoked neutrophilia and increased Th1/Th2 cytokine levels, but failed to affect OVA-induced eosinophilia. In conclusion, postnatal exposure to 1,2-NQ increases the susceptibility to antigen-induced asthma. The mechanism appears to be dependent on increased expression of co-stimulatory molecules, which leads to cell presentation amplification, Th2 polarization and enhanced LTB4, humoral response and Th1/Th2 cytokines. These findings may be useful for future investigations on treatments focused on pulmonary illnesses observed in children living in heavy polluted areas. PMID:24554396

  7. Oxygen uptake upon photolysis of 1,4-benzoquinones and 1,4-naphthoquinones in air-saturated aqueous solution in the presence of formate, amines, ascorbic acid, and alcohols.

    PubMed

    Grner, Helmut

    2007-04-19

    The effects of oxygen in the photoreduction of 1,4-benzoquinone (BQ), 1,4-naphthoquinone (NQ), and a series of derivatives were studied in aqueous solution in the presence of acetonitrile and formate, aliphatic amines, e.g., EDTA or triethylamine, ascorbic acid, and alcohols, e.g., methanol or 2-propanol. The quinone triplet state is quenched, whereby the semiquinone and donor radicals are formed which react subsequently with oxygen. The overall reaction is oxidation of the donors and conversion of oxygen via the hydroperoxyl/superoxide radical into hydrogen peroxide. The quantum yield (Phi-O2) of this oxygen uptake changes in 2-propanol-water (1:10) from <0.01 for BQ to Phi-O2 = 0.5-0.8 for NQ. Generally Phi-O2 increases with increasing donor concentration. The specific properties of quinone structure, the radical equilibria and reactivity, and the concentration dependences are discussed. PMID:17388578

  8. Charge transfer interaction of 4-acetamidophenol (paracetamol) with 2,3-dichloro-1,4-naphthoquinone: A study in aqueous ethanol medium by UV-vis spectroscopic and DFT methods

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Tiwary, Amit S.; Mukherjee, Asok K.

    2008-12-01

    4-Acetamidophenol (paracetamol) is shown to form charge transfer complex with 2,3-dichloro1,4-naphthoquinone in aqueous ethanol media exhibiting the unusual 2:1 (paracetamol:quinone) stoichiometry. The complexation enthalpy and entropy have been estimated from the formation constant ( K) determined spectrophotometrically at five different temperatures. In aqueous ethanol mixtures of varying composition K increases with increasing dielectric constant of the medium. This has been rationalized by calculating the electronic charge distribution in paracetamol molecule and its conjugate base at the DFT/B3LYP/6-31++G(d,p) level. The theoretically calculated vertical ionization potential of paracetamol also agrees with reported experimental value.

  9. Antimalarial naphthoquinones from Nepenthes thorelii.

    PubMed

    Likhitwitayawuid, K; Kaewamatawong, R; Ruangrungsi, N; Krungkrai, J

    1998-04-01

    Roots of Nepenthes thorelii yielded plumbagin, 2-methylnaphthazarin, octadecyl caffeate, isoshinanolone, and droserone. In addition, seven derivatives were prepared from plumbagin. Each of these natural and semisynthetic compounds was evaluated for in vitro antimalarial potential. PMID:9581522

  10. Chargetransfer reaction of 2,3-dichloro-1,4-naphthoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib

    PubMed Central

    Alzoman, Nourah Z.; Alshehri, Jamilah M.; Darwish, Ibrahim A.; Khalil, Nasr Y.; Abdel-Rahman, Hamdy M.

    2014-01-01

    The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through chargetransfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07נ102l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4500?g/ml. The assay limits of detection and quantitation were 2.06 and 6.23?g/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:25685046

  11. In Vitro Activity of 2-methoxy-1,4-naphthoquinone and Stigmasta-7,22-diene-3β-ol from Impatiens balsamina L. against Multiple Antibiotic-Resistant Helicobacter pylori

    PubMed Central

    Wang, Yuan-Chuen; Li, Wan-Yu; Wu, Deng-Chyang; Wang, Jeh-Jeng; Wu, Cheng-Hsun; Liao, Jyun-Ji; Lin, Cheng-Kun

    2011-01-01

    Infection with Helicobacter pylori is strongly associated with gastric cancer and gastric adenocarcinoma. WHO classified H. pylori as a group 1 carcinogen in 1994. Impatiens balsamina L. has been used as indigenous medicine in Asia for the treatment of rheumatism, fractures and fingernail inflammation. In this study, we isolated anti-H. pylori compounds from this plant and investigated their anti- and bactericidal activity. Compounds of 2-methoxy-1,4-naphthoquinone (MeONQ) and stigmasta-7,22-diene-3β-ol (spinasterol) were isolated from the pods and roots/stems/leaves of I. balsamina L., respectively. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for MeONQ were in the ranges of 0.156–0.625 and 0.313–0.625 μg mL−1, respectively, and in the ranges of 20–80 μg mL−1 both of MICs and MBCs for spinasterol against antibiotic (clarithromycin, metronidazole and levofloxacin) resistant H. pylori. Notably, the activity of MeONQ was equivalent to that of amoxicillin (AMX). The bactericidal H. pylori action of MeONQ was dose-dependent. Furthermore, the activity of MeONQ was not influenced by the environmental pH values (4–8) and demonstrated good thermal (121°C for 15 min) stability. MeONQ abounds in the I. balsamina L. pod at the level of 4.39% (w/w db). In conclusion, MeONQ exhibits strong potential to be developed as a candidate agent for the eradication of H. pylori infection. PMID:19773391

  12. Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model.

    PubMed

    Hafeez, Bilal Bin; Zhong, Weixiong; Fischer, Joseph W; Mustafa, Ala; Shi, Xudong; Meske, Louise; Hong, Hao; Cai, Weibo; Havighurst, Thomas; Kim, Kyungmann; Verma, Ajit K

    2013-06-01

    We present here first time that Plumbagin (PL), a medicinal plant-derived 1,4-naphthoquinone, inhibits the growth and metastasis of human prostate cancer (PCa) cells in an orthotopic xenograft mouse model. In this study, human PCa PC-3M-luciferase cells (2 10(6)) were injected into the prostate of athymic nude mice. Three days post cell implantation, mice were treated with PL (2 mg/kg body wt. i.p. five days in a week) for 8 weeks. Growth and metastasis of PC-3M-luciferase cells was examined weekly by bioluminescence imaging of live mice. PL-treatment significantly (p = 0.0008) inhibited the growth of orthotopic xenograft tumors. Results demonstrated a significant inhibition of metastasis into liver (p = 0.037), but inhibition of metastasis into the lungs (p = 0.60) and lymph nodes (p = 0.27) was not observed to be significant. These results were further confirmed by histopathology of these organs. Results of histopathology demonstrated a significant inhibition of metastasis into lymph nodes (p = 0.034) and lungs (p = 0.028), and a trend to significance in liver (p = 0.075). None of the mice in the PL-treatment group showed PCa metastasis into the liver, but these mice had small metastasis foci into the lymph nodes and lungs. However, control mice had large metastatic foci into the lymph nodes, lungs, and liver. PL-caused inhibition of the growth and metastasis of PC-3M cells accompanies inhibition of the expression of: 1) PKC?, pStat3Tyr705, and pStat3Ser727, 2) Stat3 downstream target genes (survivin and Bcl(xL)), 3) proliferative markers Ki-67 and PCNA, 4) metastatic marker MMP9, MMP2, and uPA, and 5) angiogenesis markers CD31 and VEGF. Taken together, these results suggest that PL inhibits tumor growth and metastasis of human PCa PC3-M-luciferase cells, which could be used as a therapeutic agent for the prevention and treatment of human PCa. PMID:23273564

  13. In Vitro Induction of Erythrocyte Phosphatidylserine Translocation by the Natural Naphthoquinone Shikonin

    PubMed Central

    Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

    2014-01-01

    Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

  14. In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin.

    PubMed

    Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

    2014-05-01

    Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

  15. Synthesis and Biological Evaluation of Naphthoquinone Analogs as a Novel Class of Proteasome Inhibitors

    PubMed Central

    Lawrence, Harshani R.; Kazi, Aslamuzzaman; Luo, Yunting; Kendig, Robert; Ge, Yiyu; Jain, Sanjula; Daniel, Kenyon; Santiago, Daniel; Guida, Wayne C.; Sebti, Sad M.

    2012-01-01

    Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the ?5 and ?6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the ?6 subunit. PMID:20621484

  16. Potent and specific bactericidal effect of juglone (5-hydroxy-1,4-naphthoquinone) on the fire blight pathogen Erwinia amylovora.

    PubMed

    Fischer, Thilo Christopher; Gosch, Christian; Mirbeth, Beate; Gselmann, Markus; Thallmair, Veronika; Stich, Karl

    2012-12-12

    A screening of plant quinones for inhibiting effects on the bacterial fire blight pathogen Erwinia amylovora was performed. The most active compound, juglone from walnuts, has a potent and specific bactericidal effect on E. amylovora and minimal inhibitory concentrations of only 2.5-10 ?M, with stronger effects at lower, but still physiological, pH values. In vitro tests with juglone and inoculated flowers of apple (Malus domestica) showed an efficacy of 67% in preventing infection. In two years of field tests juglone had variable degrees of efficacy ranging from 40 to 82%, seemingly due to environmental conditions. A phytotoxic reaction to juglone, which is known for its allelopathic effect on plants, was restricted to browning of petals; later fruit russeting was not observed. Juglone is a promising candidate for the development of a new environmentally friendly plant protectant to replace the antibiotic streptomycin currently used in fire blight control. PMID:23163769

  17. Biopolymeric film containing bioactive naphthoquinone (shikonin) in combined therapy of inflammatory destructive lesions in the buccal mucosa.

    PubMed

    Zagorodnyaya, E B; Oskol'skii, G I; Basharov, A Ya; Lushnikova, E L; Nepomnyashchikh, L M; Zagorodnii, A S

    2013-12-01

    Clinical morphological efficiency of local application of a new biopolymeric film was studied. The film was based on methylcellulose derivatives and contained shikonin (preparation of plant origin) and its esters isolated from Lithospermum erythrorhizon L. cell culture. Combined therapy of 30 patients (34-72 years) with erosive ulcerative lichen planus and leukoplakia of the buccal mucosa was carried out. Local application of the new drug led to more rapid pain relief, epithelialization of the inflammatory destructive foci in the buccal mucosa, and reduced the intensity of morphological signs of lesions in the studied patient population. PMID:24319756

  18. Antigenotoxic, anti-photogenotoxic and antioxidant activities of natural naphthoquinone shikonin and acetylshikonin and Arnebia euchroma callus extracts evaluated by the umu-test and EPR method.

    PubMed

    Skrzypczak, Agata; Przystupa, Natalia; Zgadzaj, Anna; Parzonko, Andrzej; Syk?owska-Baranek, Katarzyna; Paradowska, Katarzyna; Na??cz-Jawecki, Grzegorz

    2015-12-25

    The aim of this study was to evaluate the antigenotoxic and antioxidant potential of shikonin (SH), acetylshikonin (ACS) and Arnebia euchroma callus extract (EXT). The antigenotoxic activity was investigated by the umu-test as the inhibition of the SOS system induction caused by genotoxic chemical agents - 4-nitroquinoline oxide and 2-aminoanthracene. Moreover the ability of SH, ACS and EXT to prevent photogenotoxicity triggered by chlorpromazine under UVA irradiation was measured. The cytotoxicity of EXT toward V79 Chinese hamster cell line was additionally assessed. Shikonin and acetylshikonin had no effect on 4-NQO induced genotoxicity whereas EXT demonstrated an unclear effect. The protection against 2AA induced genotoxicity was observed for all tested substances. The highest protection was demonstrated for EXT with inhibition of 66%. SH and ACS reduced 2AA genotoxicity with inhibition of about 60%. Under UVA the strongest and dose-dependent activity was observed for EXT. Acetylshikonin was a weak anti-photogenotoxin whereas shikonin had no clear effect. EXT was highly cytotoxic toward the V79 cell line - the cells' morphology was affected seriously and apoptosis was impacted. The antioxidant activity of SH, ACS and EXT was studied by means of electron paramagnetic resonance spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. All three samples exhibited radical scavenging properties. PMID:26434532

  19. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells

    PubMed Central

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  20. Reversed-phase HPLC determination of chlorophyll a' and naphthoquinones in photosystem I of red algae: existence of two menaquinone-4 molecules in photosystem I of Cyanidium caldarium.

    PubMed

    Yoshida, Emi; Nakamura, Akimasa; Watanabe, Tadashi

    2003-07-01

    Chlorophyll (Chl) a', the C13(2)-epimer of Chl a, is one of the two Chl molecules constituting the primary electron donor (P700) of photosystem (PS) I of a thermophilic cyanobacterium Synechococcus elongatus. To examine whether PS I of other oxygenic photosynthetic organisms in general contain one Chl a' molecule in P700, the pigment composition of thylakoid membranes and PS I preparations isolated from red algae Porphyridium purpureum and Cyanidium caldarium was examined by reversed-phase HPLC with particular attention to Chl a' and phylloquinone (PhQ), the secondary electron acceptor of PS I. The two red algae contained one Chl a' molecule at the core part of PS I. In PS I of C. caldarium, two menaquinone-4 (MQ-4) molecules were detected in place of PhQ used by higher plants and cyanobacteria. The 1:2:1 stoichiometry among Chl a', PhQ (MQ-4) and P700 in PS I of the red algae indicates that one Chl a' molecule universally exists in PS I of oxygenic photosynthetic organisms, and two MQ-4 molecules are associated with PS I of C. caldarium. PMID:12880082

  1. Ramentaceone, a Naphthoquinone Derived from Drosera sp., Induces Apoptosis by Suppressing PI3K/Akt Signaling in Breast Cancer Cells.

    PubMed

    Kawiak, Anna; Lojkowska, Ewa

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in processes critical for breast cancer progression and its upregulation confers increased resistance of cancer cells to chemotherapy and radiation. The present study aimed at determining the activity of ramentaceone, a constituent of species in the plant genera Drosera, toward breast cancer cells and defining the involvement of PI3K/Akt inhibition in ramentaceone-mediated cell death induction. The results showed that ramentaceone exhibited high antiproliferative activity toward breast cancer cells, in particular HER2-overexpressing breast cancer cells. The mode of cell death induced by ramentaceone was through apoptosis as determined by cytometric analysis of caspase activity and Annexin V staining. Apoptosis induction was found to be mediated by inhibition of PI3K/Akt signaling and through targeting its downstream anti-apoptotic effectors. Ramentaceone inhibited PI3-kinase activity, reduced the expression of the PI3K protein and inhibited the phosphorylation of the Akt protein in breast cancer cells. The expression of the anti-apoptotic Bcl-2 protein was decreased and the levels of the pro-apoptotic proteins, Bax and Bak, were elevated. Moreover, inhibition of PI3K and silencing of Akt expression increased the sensitivity of cells to ramentaceone-induced apoptosis. In conclusion, our results indicate that ramentaceone induces apoptosis in breast cancer cells through PI3K/Akt signaling inhibition. These findings suggest further investigation of ramentaceone as a potential therapeutic agent in breast cancer therapy, in particular HER2-positive breast cancer. PMID:26840401

  2. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress.

    PubMed

    Shinkai, Yasuhiro; Abiko, Yumi; Ida, Tomoaki; Miura, Takashi; Kakehashi, Hidenao; Ishii, Isao; Nishida, Motohiro; Sawa, Tomohiro; Akaike, Takaaki; Kumagai, Yoshito

    2015-05-18

    Sulfhydration by a hydrogen sulfide anion and electrophile thiolation by reactive sulfur species (RSS) such as persulfides/polysulfides (e.g., R-S-SH/R-S-Sn-H(R)) are unique reactions in electrophilic signaling. Using 1,2-dihydroxynaphthalene-4-thioacetate (1,2-NQH2-SAc) as a precursor to 1,2-dihydroxynaphthalene-4-thiol (1,2-NQH2-SH) and a generator of reactive oxygen species (ROS), we demonstrate that protein thiols can be modified by a reactive sulfenic acid to form disulfide adducts that undergo rapid cleavage in the presence of glutathione (GSH). As expected, 1,2-NQH2-SAc is rapidly hydrolyzed and partially oxidized to yield 1,2-NQ-SH, resulting in a redox cycling reaction that produces ROS through a chemical disproportionation reaction. The sulfenic acid forms of 1,2-NQ-SH and 1,2-NQH2-SH were detected by derivatization experiments with dimedone. 1,2-NQH2-SOH modified Keap1 at Cys171 to produce a Keap1-S-S-1,2-NQH2 adduct. Subsequent exposure of A431 cells to 1,2-NQ or 1,2-NQH2-SAc caused an extensive chemical modification of cellular proteins in both cases. Protein adduction by 1,2-NQ through a thio ether (C-S-C) bond slowly declined through a GSH-dependent S-transarylation reaction, whereas that originating from 1,2-NQH2-SAc through a disulfide (C-S-S-C) bond was rapidly restored to the free protein thiol in the cells. Under these conditions, 1,2-NQH2-SAc activated Nrf2 and upregulated its target genes, which were enhanced by pretreatment with buthionine sulfoximine (BSO), to deplete cellular GSH. Pretreatment of catalase conjugated with poly(ethylene glycol) suppressed Nrf2 activation by 1,2-NQH2-SAc. These results suggest that RSS-mediated reversible electrophilic signaling takes place through sulfenic acids formation under oxidative stress. PMID:25807370

  3. DIFFERENTIATING MECHANISMS OF REACTIVE CHEMICAL TOXICITY IN ISOLATED TROUT HEPATOCYTES

    EPA Science Inventory

    The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoquinone (DMONQ), 2-methyl 1,4-naphthoquinone (MNQ ),1,4-naphthoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. Mor...

  4. DISCRIMINATING REDOX CYCLING AND ARYLATION PATHWAYS OF REACTIVE CHEMICAL TOXICITY IN TROUT HEPATOCYTES

    EPA Science Inventory

    The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoquinone (DMONQ), 2-methyl-1,4-naphthoquinone (MNQ), 1,4-naphthoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. Mor...

  5. Spectrophotometric and spectrofluorimetric studies on the selective sensing of fluoride ions by Co(II) and Ni(II) complexes of naphthoquinone derivative possessing enhanced H-bonding property

    NASA Astrophysics Data System (ADS)

    Madhupriya, Selvaraj; Elango, Kuppanagounder P.

    2012-11-01

    A novel colorimetric chemosensor based on aminonaphthoquinone (L) bearing an N-H receptor unit directly attached to quinone signaling unit has been designed, synthesized and demonstrated. The ligand showed a highly selective colorimetric response to fluoride ions based on H-bond formation with the receptor unit. The binding constants of the L and its square planar [Co(L)Cl2]3H2O and [Ni(L)Cl2]4H2O complexes, computed using fluorescent enhancement data, were found to be 0.6, 1.5 and 0.9 108 M-1, respectively, indicating enhancement of H-bond donor ability of the receptor unit, as a result of complexation with metal ions, towards fluoride ion sensing. Also, these sensors had high selectivity for fluoride ion detection over other common anions, such as Cl-, Br-, I-, AcO-, NO3-, H2PO4- and CN- in acetonitrile.

  6. ACTIVITY OF QUINONES ON COLLETOTRICHUM SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antifungal activity of 1,4-naphthoquinones, 1,2-naphthoquinones, 1,4-benzoquinones, anthraquinones, and other miscellaneous compounds from our natural products collection were tested by bioautography. Quinones demonstrated good to moderate antifungal activity against Colletotrichum spp. Collet...

  7. Complexes of Lapachol and Lawsone with Lanthanides.

    PubMed

    Genovese, Salvatore; Taddeo, Vito Alessandro; Epifano, Francesco; Fiorito, Serena

    2015-11-01

    Naturally occurring 2-hydroxy-1,4-naphthoquinones are well known to form readily stable complexes with transition metals. In this short communication we describe for the first time the synthesis and preliminary data about structural characterization of complexes between two naturally widespread 2-hydroxy-1,4-naphthoquinones, namely lapachol (1) and lawsone (2), with selected lanthanides like lanthanum, gadolinium, and ytterbium. When tested as cytotoxic compounds, such complexes exhibited an activity that was either higher or equal to that of the parent naphthoquinone. PMID:26749803

  8. Molecular Modeling of the Compounds with Nonlinear Optical Properties

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatiana V.; Cardelino, Beatriz H.; Clark, Ronald D.

    1998-01-01

    The molecular polarizability characteristics for a large series of naphthoquinone and quinoline derivatives have been calculated. The dependence of calculated hyperpolarizability on the positions and the number of donor and acceptor substituents is discussed.

  9. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  10. Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents.

    PubMed

    Zhou, Jing; Duan, Lei; Chen, Huaming; Ren, Xiaomei; Zhang, Zhang; Zhou, Fengtao; Liu, Jinsong; Pei, Duanqing; Ding, Ke

    2009-09-01

    2-Piperazinyl naphthoquinones (2) and 2-piperidinyl naphthoquinones (3) were designed and synthesized as new cytotoxic and apoptosis inducing agents by utilizing the anti-parasite drug atovaquone as lead compound. Several compounds displayed significantly improved cytotoxic activities against a panel of cancer cell lines than that of atovaquone. These compounds also induced apoptosis through activating pro-apoptotic caspases 9 and 3. PMID:19632833

  11. In vitro Activation of heme oxygenase-2 by menadione and its analogs

    PubMed Central

    2014-01-01

    Background Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structureactivity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Methods Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and ?2, respectively, as well as recombinant, human heme oxygenase-2. Results Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and ?3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, ?-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. Conclusions These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties. PMID:24533775

  12. Cataractogenicity and bioactivation of naphthalene derivatives in lens culture and in vivo

    SciTech Connect

    Lubek, B.M.; Kubow, S.; Basu, P.K.; Wells, P.G. )

    1989-01-01

    The cataractogenicity of naphthalene derivatives was investigated in a lens culture system that included the lens with an intact capsule and epithelium. The in vivo cataractogenicity of naphthalene, 1000 or 2000 mg/kg ip, also was evaluated in New Zealand white and Chinchilla pigmented rabbits. A dose-related brunescence was observed in lenses incubated with 1,4-naphthoquinone in concentrations from 31.6 to 316 microM. With 316 microM naphthoquinone, lenses were totally opaque within 24 hr. No lenticular opacities were observed with 1-naphthol or 2-naphthol in incubations lasting up to 96 hr. The bioactivation of naphthalene derivatives to reactive free radical intermediates by lenses in organ culture was investigated by electron spin resonance spectrometry (ESR) using the spin trap alpha-phenyl-N-t-butylnitrone (PBN). Lenses were incubated with 316 microM naphthoquinone and 100 mM PBN for 0.25, 4 or 7 hr. A spin trapped radical product with unresolved peaks was observed with 0.25 and 7 hr incubation. No radicals were detected in the 4 hr incubation, nor in control cultures lacking either the lens, naphthoquinone or PBN. In the in vivo studies, naphthalene was cataractogenic in both albino and pigmented rabbits. The in vitro results indicate that naphthoquinone can be bioactivated by rabbit lens to a reactive free radical intermediate, which may contribute to cataractogenicity.

  13. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stod?lkov, Eva; Csa?ov, Ivana; Kola?k, Miroslav; Chud?kov, Milada; Novk, Petr; Man, Petr; Kuzma, Marek; Pavl?, Barbora; ?ern, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  14. Biologically active metabolites produced by the basidiomycete Quambalaria cyanescens.

    PubMed

    Stod?lkov, Eva; Csa?ov, Ivana; Kola?k, Miroslav; Chud?kov, Milada; Novk, Petr; Man, Petr; Kuzma, Marek; Pavl?, Barbora; ?ern, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  15. Degradation of juglone by Pleurotus sajor-caju.

    PubMed

    Curreli, Nicoletta; Rescigno, Antonio; Rinaldi, Augusto; Pisu, Brunella; Sollai, Francesca; Sanjust, Enrico

    2004-08-01

    The toxic naphthoquinone juglone (5-hydroxy-1,4-naphthoquinone) is efficiently degraded by the ligninolytic fungus Pleurotus sajor-caju, as demonstrated by the total bleaching within 9 d of a conventional liquid culture medium supplemented with 0.6 mM juglone. The oxidative degradation involves the production of hydrogen peroxide arising from both enzymic and non-enzymic oxidation reactions, promoted by the fungus. Juglone is not directly attacked by the oxidative enzymes of the ligninolytic machinery of P. sajor-caju, such as laccase, manganese peroxidase and arylalcohol oxidase. On the other hand, this naphthoquinone is a good substrate for a reductase, which triggers an auto-oxidative process producing reactive oxygen species and leading to juglone degradation. The degradation process continues to completion by means of a direct, presumably non-catalysed reaction with hydrogen peroxide. PMID:15449596

  16. Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77K.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2015-06-01

    Electron transfer processes in cyanobacterial photosystem I particles from Synechocystis sp. PCC 6803 with a high potential naphthoquinone (2,3-dichloro-1,4-naphthoquinone) incorporated into the A1 binding site have been studied at 298 and 77K using time-resolved visible and infrared difference spectroscopy. The high potential naphthoquinone inhibits electron transfer past A1, and biphasic P700(+)A1(-) radical pair recombination is observed. The two phases are assigned to P700(+)A1B(-) and P700(+)A1A(-) recombination. Analyses of the transient absorption changes indicate that the ratio of A- and B-branch electron transfer is 95:5 at 77 K and 77:23 at 298 K. PMID:25962848

  17. Quinones and coumarins from Ajania salicifolia and their radical scavenging and cytotoxic activity.

    PubMed

    Wu, Hong-Ru; Zhang, Wei; Pang, Xiao-Yan; Gong, Yuan; Obulqasim, Xian Muxinuer U; Li, Hong-Fang; Zhu, Ying

    2015-12-01

    1,4-Naphthoquinone (1) and a new coumarin (3) were isolated from Ajania salicifolia, together with two known compounds (2, 4). The structures and stereochemistry of new compounds were elucidated using spectroscopic methods. Two compounds exhibited potent ABTS cation radical scavenging activities with IC50 values ranging 7.97-8.44?M. Two quinones (1, 2) exhibited moderate cytotoxic activity against the human cancer cell lines (Hela, HepG2, and K562) with IC50 values of 11.24-35.15?M in vitro. This is the first report of naphthoquinone in the genus Ajania. PMID:26666298

  18. Design and synthesis of propellane derivatives and oxa-bowls via ring-rearrangement metathesis as a key step

    PubMed Central

    Gunta, Rama

    2015-01-01

    Summary Various intricate propellane derivatives and oxa-bowls have been synthesized via a ring-rearrangement metathesis (RRM) as a key step starting from readily accessible starting materials such as p-benzoquinone, 1,4-naphthoquinone and 1,4-anthraquinone. PMID:26664592

  19. Microbial transformations of natural antitumor agents: oxidation of lapachol by Penicillium notatum.

    PubMed Central

    Otten, S; Rosazza, J P

    1978-01-01

    The naphthoquinone lapachol (1) is readily metabolized by several fungi and streptomycetes. Preparative-scale fermentations with Penicillium notatum (UI 1602) provided a major polar metabolite (4), which was isolated and identified as an intermediate of the Hooker oxidation. The metabolite was synthesized by reacting lapachol with hydrogen peroxide under alkaline conditions. PMID:637549

  20. Microbial transformations of natural antitumor agents: conversion of lapachol to dehydro-alpha-lapachone by Curvularia lunata.

    PubMed Central

    Otten, S; Rosazza, J P

    1979-01-01

    Microbial transformation of lapachol, a naturally occurring naphthoquinone, was carried out by Curvularia lunata (NRRL 2178). The fungus brings about oxidative cyclization of the substrate to dehydro-alpha-lapachone, which was isolated and characterized by nuclear magnetic resonance and mass spectral analyses; its structure was verified by chemical synthesis. The metabolite is a naturally occurring chromene possessing antibacterial and antitumor activities. PMID:574750

  1. DEFICIENCY IN PHYLLOQUINONE (VITAMIN K1) METHYLATION AFFECTS PRENYL QUINONE DISTRIBUTION PHOTOSYSTEM I ABUNDANCE AND ANTHOCYANIN ACCUMULATION IN THE ARABIDOPSIS AtmenG MUTANT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phylloquinone (vitamin K1) is synthesized in cyanobacteria and in chloroplasts of higher plants where it serves as electron carrier of photosystem I. The last step of phylloquinone synthesis in cyanobacteria is the methylation of 2-phytyl-1,4-naphthoquinone by the menG gene product. The gene encodin...

  2. Vitamin K

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin K was identified in the early 1930s when it was shown to be essential for normal blood coagulation. Phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone) found in green plants is the major source of the vitamin. Large amounts of menaquinones with lengthy side chains are also synthesized in...

  3. An efficient synthesis of novel fused cycloheptatrienes through Mn(II)-mediated formal intermolecular [2 + 2 + 2 + 1] cycloaddition.

    PubMed

    Shu, Wen-Ming; Ma, Jun-Rui; Yang, Yan; Wu, An-Xin

    2014-03-01

    A new method for manganous acetate tetrahydrate mediated formal intermolecular [2 + 2 + 2 + 1] cycloaddition was developed for the synthesis of fused cycloheptatriene derivatives from N-(acylmethyl)pyridinium iodides and naphthoquinone. This method provides an innovative route for the efficient and convenient construction of fused seven-membered carbocycles from simple starting materials. PMID:24564369

  4. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  5. Comparative study of three Plumbago L. species (Plumbaginaceae) by microscopy, UPLCUV and HPTLC analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a comparative study of anatomy of leaves, stems and roots of three species of Plumbago, namely P. auriculata Lam., P. indica L. and P. zeylanica L. by light microscopy. The paper also provides qualitative and quantitative analysis of the naphthoquinone, plumbagin, a major constit...

  6. Chemistry of 5,8-dihydroxy-[1,4]-naphtoquinone, a key chromophore in aged cellulosics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5,8-Dihydroxy-[1,4]-naphthoquinone (DHNQ) is one of the key chromophores found in aged cellulosics. Cellulose aging and yellowing as well as bleaching of cellulosic materials are key processes in the pulp and paper industries and have considerable economic importance: the knowledge of the general re...

  7. Synthetic lapachol derivatives relax guinea-pig ileum by blockade of the voltage-gated calcium channels.

    PubMed

    Cavalcante, Fabiana de A; Monteiro, Fabio de S; Martins, Italo Rossi R; Barbosa, Ticiano P; Camara, Celso de A; Pinto, Angelo C; Vargas, Maria D; da Silva, Bagnlia A

    2010-01-01

    The present study was designed to further evaluate a possible spasmolytic activity of synthetic lapachol derivatives, norlapachol, alpha-norlapachone, beta-norlapachone and hydro-hydroxy-norlapachol (HH-norlapachol), on guinea-pig ileum. In guinea-pig ileum, except for norlapachol, all naphthoquinones inhibited the phasic contractions induced by carbachol or histamine. Even when the ileum was pre-contracted with KCl, carbachol or histamine, all naphthoquinones induced relaxation, suggesting that these naphthoquinones could be acting on the voltage-gated calcium channels (Ca(V)). As the tonic component this contraction is maintained mainly by the opening of the Ca(V), we hypothesized that these naphthoquinones might be acting on these channels. This hypothesis was confirmed by the observation that norlapachol (pD'2 = 4.99), alpha-norlapachone (pD'2 = 4.49), beta-norlapachone (pD'2 = 6.33), and HH-norlapachol (pD'2 = 4.53) antagonized the contractions induced by CaCl2 in depolarizing medium nominally without Ca2+. As beta-norlapachone was the most potent we decided to continue the study of its action mechanism. The fact that this naphthoquinone has inhibited the tonic contractions induced by S-(-)-Bay K8644 [EC50 = (1.6 +/- 0.30) x 10(-5) M] suggests that the Ca2+ channel involved belongs to the type L (Ca(V)1.2). In addition, in the functional level, the spasmolytic effect of beta-norlapachone does not involve participation of free radicals, since its curve of relaxation was unchanged in the presence of glutathione, an antioxidant agent. PMID:21138067

  8. Separation and identification of 1,2,4-trihydroxynaphthalene-1-O-glucoside in Impatiens glandulifera Royle.

    PubMed

    T?ska, Jan; Vrchotov, Nad?da; Skora, Jan; Moos, Martin

    2013-01-01

    Methanolic extract from lyophilized roots of Impatiens glandulifera Royle was analyzed by high performance liquid chromatography using DAD and FLD detection and this revealed one dominant highly fluorescent very unstable substance. The stability of this derivative is strongly dependent on the plant material drying procedure and extraction procedure used. The structure of the substance was established as 1,2,4-trihydroxynaphthalene-1-O-glucoside (THNG) according LC-MS and NMR measurements. When lyophilized plant material was extracted with methanol an almost four times higher amount of THNG was found in the extract, compared to the amount of 2-hydroxy-1,4-naphthoquinone obtained, while in the case of the same lyophilized plant material extracted with water there was no THNG in the extract. The main compounds in this case was 2-hydroxy-1,4-naphthoquinone. In the plant material dried at the laboratory temperature and extracted by methanol there are only traces of THNG. PMID:23867652

  9. Acetyl- and butyryl-cholinesterase inhibitory activities of mansorins and mansonones.

    PubMed

    Changwong, Nisa; Sabphon, Chalisa; Ingkaninan, Kornkanok; Sawasdee, Pattara

    2012-03-01

    Cholinesterase (ChE) inhibitory activities of three coumarins (mansorins A-C) and five naphthoquinones (mansonone C, E, G and H) were evaluated to determine the relationships between the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory effects and the core structures of these compounds. Among the tested compounds, mansonone E exhibited the highest ChE inhibitory activities, with IC₅₀ values in the low micromolar levels. In addition to revealing the ChE inhibitory activities of naphthoquinones for the first time, the results also revealed structure-activity relationship information that could be useful for further modification. Furthermore, the study also supports the hypothesis that mansonones are the active component in Thespesia populnea, a plant that previously has been shown to enhance memory activity in an in vivo study. PMID:21780212

  10. Bioactive Constituents of Brazilian Red Propolis

    PubMed Central

    Trusheva, Boryana; Popova, Milena; Bankova, Vassya; Simova, Svetlana; Marcucci, Maria Cristina; Miorin, Patricia Laguna; da Rocha Pasin, Flavia; Tsvetkova, Iva

    2006-01-01

    In a new propolis type, red Brazilian propolis, 14 compounds were identified (six of them new for propolis), among them simple phenolics, triterepenoids, isoflavonoids, prenylated benzophenones and a naphthoquinone epoxide (isolated for the first time from a natural source). Three of the major components demonstrated significant antimicrobial activity, and two (obtained as inseparable mixture) possessed radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:16786055

  11. Enantioselective synthesis of 4H-pyranonaphthoquinones via sequential squaramide and silver catalysis.

    PubMed

    Kaya, Uğur; Chauhan, Pankaj; Hack, Daniel; Deckers, Kristina; Puttreddy, Rakesh; Rissanen, Kari; Enders, Dieter

    2016-01-28

    An enantioselective one-pot Michael addition/hydroalkoxylation reaction between 2-hydroxy-1,4-naphthoquinones and alkyne-tethered nitroalkenes catalyzed by a cinchona-derived squaramide and a silver(i) salt has been developed. The sequential protocol provides a direct access to 4H-pyranonaphthoquinones in moderate to very good yields and good to excellent enantioselectivities at a very low catalyst loading (0.5 mol%) of the squaramide. PMID:26660230

  12. A new rapid multicomponent domino heteroannulation of heterocyclic ketene aminals: solvent-free regioselective synthesis of functionalized benzo[g]imidazo[1,2-a]quinolinediones.

    PubMed

    Wen, Li-Rong; Sun, Qi-Chang; Zhang, Hai-Liang; Li, Ming

    2013-02-01

    A highly efficient and straightforward three-component cascade reaction was developed to synthesize benzo[g]imidazo[1,2-a]quinolinedione derivatives from heterocyclic ketene aminals (HKAs), aldehydes, and 2-hydroxy-1,4-naphthoquinone (HNQ) via Et(3)N-catalyzed tandem [3 + 2 + 1] annulation under solvent-free conditions. The reactions were very mild, convenient and highly regioselective to form new fused tetracyclic target molecules. PMID:23224037

  13. Synthesis and properties of quinone derivatives

    NASA Astrophysics Data System (ADS)

    Sun, Douli

    Part I. Synthesis and properties of naphthoquinone-derived 2-amino-1,2,3-triazoles. A unique 2-amino-1,2,3-triazole system was formed by the reaction of a azide and a organophosphine. This reaction system was not reported before. The reaction properties of this system were investigated. 6 new compounds were synthesized. Among them, 34 structures were ascertained by X-ray analysis. The interesting structures, intense photoluminescence and strong UV absorption show the broad potential application of this series of compounds. Part II. Synthesis and properties of quinone-dithiols as precursors of organic conductors. Based on the previous work in our group, aimed at the exploration of new organic conductors and even superconductors, the research focused on the study of synthesis and properties of quinone dithiols in two directions: (1) Naphthoquinone dithioethers and dithiolene metal complexes (2) Benzoquinone-dithiole derivatives. In the first part, naphthoquinone thioethers and dithioethers of phenyl, benzyl and p-methoxyl-benzyl and metal naphthoquinone dithiolene complexes, lbrack Ni(nqdt)sb2rbracksp{2-}lbrack(n-butyl) sb4Nsp{+}rbracksb{2+},\\ lbrack Ni(nqdt)sb2rbracksp{1-}(n-butyl)sb4Nsp{+} and lbrack Pd(nqdt)sb2rbracksp{2-}lbrack(n-butyl)sb4Nsp{+}rbrack sb2, were synthesized and 9 structures of them were studied by X-ray diffraction. A unique 2-amino-1,2,3-triazole system was discovered unexpectedly during the research. In the second part, the synthesis of benzoquinone-derived 1,3-dithiole-2-ones and-thiones were explored. Along the synthetic pathway, 12 compounds were obtained and 10 structures of them were confirmed by X-ray analysis for the first time. All of the compounds above were characterized by chemical analysis, IR, NMR and MS.

  14. Use of quinones in brain-tumor therapy: preliminary results of preclinical laboratory investigations

    SciTech Connect

    Berger, M.S.; Talcott, R.E.; Rosenblum, M.L.; Silva, M.; AliOsman, F.; Smith, M.T.

    1985-01-01

    Failure of current chemotherapeutic agents of effectively treat human brain tumors has prompted the search for alternative regimens based on the inherent metabolic pathways of target cells. One way to accomplish this goal would be to design drugs in an inactive form, which upon entry into the cell would be transformed to a toxic metabolite by a naturally occurring pathway. One such pathway may be the reductive activation of naphthoquinones with one or two side chains capable of alkylation, such as 2,3-dibromomethyl-1,4-naphthoquinone (DBNQ). This reductive activation can be catalyzed by the flavoprotein DT-diaphorase (NAD(P)H:quinone oxidoreductase). The authors have found that both rat 9L and some human brain-tumor cell lines contain very high levels of this enzyme and that halogenated dimethyl naphthoquinones, such as DBNQ, are highly toxic to these cells in vitro. Moreover, they have found that the cytotoxic effects of DBNQ on human tumor and murine bone marrow stem cells can be prevented or lessened by pretreatment of the cells with dicoumarol, a potent inhibitor of DT-diaphorase. Since dicoumarol does not cross the blood-brain barrier, the potential exists for human brain tumors to be destroyed with halogenated dimethylquinones and for peripheral host toxicity to be prevented by coadministration of dicoumarol.

  15. A new approach to evaluating the extent of Michael adduct formation to PAH quinones: tetramethylammonium hydroxide (TMAH) thermochemolysis with GC/MS.

    PubMed

    Briggs, Mary K; Desavis, Emmanuel; Mazzer, Paula A; Sunoj, R B; Hatcher, Susan A; Hadad, Christopher M; Hatcher, Patrick G

    2003-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are converted to cytotoxic and carcinogenic metabolites, quinones, by detoxifying enzyme systems in animals. PAH metabolites such as the quinones can form Michael adducts with biological macromolecules containing reactive nucleophiles, making detection of exposure to PAHs difficult using conventional techniques. A technique has been developed for detecting exposure to PAHs. Tetramethylammonium hydroxide (TMAH) thermochemolysis coupled with GC/MS is proposed as an assay method for PAH quinones that have formed Michael adducts with biological molecules. Three PAH quinones (1,4-naphthoquinone, 1,2-naphthoquinone, and 1,4-anthraquinone) and 1,4-benzoquinone were reacted with cysteine, and the TMAH thermochemolysis method was used to assay for both thiol and amine adduction between the quinones and the cysteine. Additional studies with 1,4-naphthoquinone adducts to glutathione and bovine serum albumin showed the same thiol and amine TMAH thermochemolysis products with larger peptides as was observed with cysteine adducts. The TMAH GC/MS method clearly shows great promise for detecting PAH quinones, produced by enzymatic conversion of PAHs in biological systems, that have been converted to respective Michael adducts. PMID:14615976

  16. The Tumor-Selective Cytotoxic Agent β-Lapachone is a Potent Inhibitor of IDO1

    PubMed Central

    Flick, Hollie E.; LaLonde, Judith M.; Malachowski, William P.; Muller, Alexander J.

    2013-01-01

    β-lapachone is a naturally occurring 1,2-naphthoquinone-based compound that has been advanced into clinical trials based on its tumor-selective cytotoxic properties. Previously, we focused on the related 1,4-naphthoquinone pharmacophore as a basic core structure for developing a series of potent indoleamine 2,3-dioxygenase 1 (IDO1) enzyme inhibitors. In this study, we identified IDO1 inhibitory activity as a previously unrecognized attribute of the clinical candidate β-lapachone. Enzyme kinetics-based analysis of β-lapachone indicated an uncompetitive mode of inhibition, while computational modeling predicted binding within the IDO1 active site consistent with other naphthoquinone derivatives. Inhibition of IDO1 has previously been shown to breach the pathogenic tolerization that constrains the immune system from being able to mount an effective anti-tumor response. Thus, the finding that β-lapachone has IDO1 inhibitory activity adds a new dimension to its potential utility as an anti-cancer agent distinct from its cytotoxic properties, and suggests that a synergistic benefit can be achieved from its combined cytotoxic and immunologic effects. PMID:24023520

  17. Development of a test system for screening toxic substances: a comparison using organic substances

    SciTech Connect

    Thomas, C.L.

    1985-01-01

    The purpose of this research was to develop a test system for screening toxic substances by predicting their aquatic ecosystem effects. The system studied was a static, one liter microcosm with a diverse species assemblage. The microcosm was composed of biotic inoculum, chemically defined medium and sediment. The biotic inoculum contained primary producers, grazers, carnivores and decomposers. Three different types of sediment were studied: sand, clay, and clay plus sand. Four organic chemicals: phenol, triethylene glycol (TEG), quinoline and naphthoquinone were evaluated with this test system. The toxicities of TEG, quinoline and naphthoquinone were compared for each sediment type. Toxicity was evaluated in terms of the chemical's effects on primary productivity and heterotrophic activity though other effects are also noted. Naphthoquinone concentration exhibited no correlation between ecosystem property values and therefore, could not be ranked. Phenol exhibited the greatest toxicity to net production immediately after the toxicant addition. Quinoline was most toxic to net production over the longer time scale. TEG exhibited the least toxicity to net production, however, TEG exhibited higher toxicity to heterotrophic activity than either quinoline or phenol. Although the type of sediment used in the microcosms did not change the relative toxicities of the chemicals, the microcosms with clay sediment always were observed to exhibit lower net production and higher variability.

  18. Characterization of Model Peptide Adducts with Reactive Metabolites of Naphthalene by Mass Spectrometry

    PubMed Central

    Pham, Nathalie T.; Jewell, William T.; Morin, Dexter; Jones, A. Daniel; Buckpitt, Alan R.

    2012-01-01

    Naphthalene is a volatile polycyclic aromatic hydrocarbon generated during combustion and is a ubiquitous chemical in the environment. Short term exposures of rodents to air concentrations less than the current OSHA standard yielded necrotic lesions in the airways and nasal epithelium of the mouse, and in the nasal epithelium of the rat. The cytotoxic effects of naphthalene have been correlated with the formation of covalent protein adducts after the generation of reactive metabolites, but there is little information about the specific sites of adduction or on the amino acid targets of these metabolites. To better understand the chemical species produced when naphthalene metabolites react with proteins and peptides, we studied the formation and structure of the resulting adducts from the incubation of model peptides with naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-naphthoquinone using high resolution mass spectrometry. Identification of the binding sites, relative rates of depletion of the unadducted peptide, and selectivity of binding to amino acid residues were determined. Adduction occurred on the cysteine, lysine, and histidine residues, and on the N-terminus. Monoadduct formation occurred in 39 of the 48 reactions. In reactions with the naphthoquinones, diadducts were observed, and in one case, a triadduct was detected. The results from this model peptide study will assist in data interpretation from ongoing work to detect peptide adducts in vivo as markers of biologic effect. PMID:22870282

  19. Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies

    PubMed Central

    de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme AM; de Melo, Isadora MM; da Silva, Eufrnio N; Krettli, Antoniana Ursine

    2014-01-01

    Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study. PMID:25099332

  20. Computational Optimization of Bioanalytical Parameters for the Evaluation of the Toxicity of the Phytomarker 1,4 Napthoquinone and its Metabolite 1,2,4-trihydroxynapththalene

    PubMed Central

    Gopal, Velmani; AL Rashid, Mohammad Harun; Majumder, Sayani; Maiti, Partha Pratim; Mandal, Subhash C

    2015-01-01

    Objectives: Lawsone (1,4 naphthoquinone) is a non redox cycling compound that can be catalyzed by DT diaphorase (DTD) into 1,2,4-trihydroxynaphthalene (THN), which can generate reactive oxygen species by auto oxidation. The purpose of this study was to evaluate the toxicity of the phytomarker 1,4 naphthoquinone and its metabolite THN by using the molecular docking program AutoDock 4. Methods: The 3D structure of ligands such as hydrogen peroxide (H2O2), nitric oxide synthase (NOS), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) were drawn using hyperchem drawing tools and minimizing the energy of all pdb files with the help of hyperchem by MM+ followed by a semi-empirical (PM3) method. The docking process was studied with ligand molecules to identify suitable dockings at protein binding sites through annealing and genetic simulation algorithms. The program auto dock tools (ADT) was released as an extension suite to the python molecular viewer used to prepare proteins and ligands. Grids centered on active sites were obtained with spacings of 54 55 56, and a grid spacing of 0.503 was calculated. Comparisons of Global and Local Search Methods in Drug Docking were adopted to determine parameters; a maximum number of 250,000 energy evaluations, a maximum number of generations of 27,000, and mutation and crossover rates of 0.02 and 0.8 were used. The number of docking runs was set to 10. Results: Lawsone and THN can be considered to efficiently bind with NOS, CAT, GSH, GR, G6PDH and NADPH, which has been confirmed through hydrogen bond affinity with the respective amino acids. Conclusion: Naphthoquinone derivatives of lawsone, which can be metabolized into THN by a catalyst DTD, were examined. Lawsone and THN were found to be identically potent molecules for their affinities for selected proteins. PMID:26120483

  1. Development and validation of the first assay method coupling liquid chromatography with chemiluminescence for the simultaneous determination of menadione and its thioether conjugates in rat plasma.

    PubMed

    Elgawish, Mohamed Saleh; Shimomai, Chikako; Kishikawa, Naoya; Ohyama, Kaname; Wada, Mitsuhiro; Kuroda, Naotaka

    2013-09-16

    Menadione (2-methyl-1,4-naphthoquinone, MQ), a component of multivitamin drugs with antihemorrhagic, antineoplastic, and antimalarial activity, is frequently used to investigate quinone-induced cytotoxicity. The formation of MQ conjugates with glutathione (GSH) by Michael addition and subsequent biotransformation to yield N-acetyl-l-cysteine conjugates is believed to be an important detoxification process. However, the resulting conjugates, 2-methyl-3-(glutathione-S-yl)-1,4-naphthoquinone (MQ-GS) and 2-methyl-3-(N-acetyl-l-cysteine-S-yl)-1,4-naphthoquinone (MQ-NAC), retain the ability to redox cycle and to arylate cellular nucleophiles. Although the nephrotoxicity and hepatotoxicity of MQ-thiol conjugates have been reported in vitro, methods for their determination in vivo have yet to be published. Herein, a highly sensitive, simple, and selective HPLC-chemiluminescence (HPLC-CL) coupled method is reported, allowing for the first time the simultaneous determination of MQ, MQ-GS, and MQ-NAC in rat plasma after MQ administration. Our method exploits the unique redox characteristics of MQ, MQ-GS, and MQ-NAC to react with dithiothreitol (DTT) to liberate reactive oxygen species (ROS) which are detected by a CL assay using luminol as a CL probe. To verify the proposed mechanism, MQ-GS and MQ-NAC were synthetically prepared. Specimen preparation involved solid-phase extraction on an Oasis HLB cartridge followed by isocratic elution on an ODS column. No interference from endogenous substances was detected. Linearity was observed in the range of 5-120 nM for MQ-GS and MQ-NAC and 10-240 nM for MQ, with detection limits (S/N of 3) of 1.4, 0.8, and 128 fmol for MQ-GS, MQ-NAC, and MQ, respectively. The application of our method reported here is the first to extensively study the stability and reversibility of thiol-quinones. PMID:23905771

  2. Measurement of Protein Tyrosine Phosphatase Activity in Single Cells by Capillary Electrophoresis

    PubMed Central

    Phillips, Ryan M.; Bair, Eric; Lawrence, David S.; Sims, Christopher E.; Allbritton, Nancy L.

    2013-01-01

    A fluorescent peptide substrate was used to measure dephosphorylation by protein tyrosine phosphatases (PTP) in cell lysates, and single cells and to investigate the effect of environmental toxins on PTP activity in these systems. Dephosphorylation of the substrate by PTPN1 and PTPN2 obeyed Michaelis-Menten kinetics, with KM values of 770 250 nM and 290 54 nM, respectively. Dose-response curves and IC50 values were determined for the inhibition of these two enzymes by the environmental toxins Zn2+ and 1,2-naphthoquinone, as well as pervanadate. In A431 cell lysates, the reporter was a poor substrate for peptidases (degradation rate of 100 8.2 fmol min?1 mg?1) but an excellent substrate for phosphatases (dephosphorylation rate of 1.4 0.3 nmol min?1 mg?1). Zn2+, 1,2-naphthoquinone and pervanadate inhibited dephosphorylation of the reporter in cell lysates with IC50 values of 470 nM, 35 ?M, and 100 nM, respectively. Dephosphorylation of the reporter following loading into living single cells occurred at rates of at least 2 pmol min?1 mg?1. When single cells were exposed to 1,2-naphthoquinone (50 ?M), Zn2+ (100 ?M), and pervandate (1 mM), dephosphorylation was inhibited with median values and first and third quartile values of 41 (Q1 = 0%, Q3 = 96%), 50 (Q1 = 46%, Q3 = 74%), and 53% (Q1 = 36%, Q3 = 77%), respectively, demonstrating both the impact of these toxic exposures on cell signaling and the heterogeneity of response between cells. This approach will provide a valuable tool for the study of PTP dynamics, particularly in small, heterogeneous populations such as human biopsy specimens. PMID:23682679

  3. Oxidative protein modification as predigestive mechanism of the carnivorous plant Dionaea muscipula: an hypothesis based on in vitro experiments.

    PubMed

    Galek, H; Osswald, W F; Elstner, E F

    1990-01-01

    Aqueous leaf extracts from Dionaea muscipula contain quinones such as the naphthoquinone plumbagin that couple to different NADH-dependent diaphorases, producing superoxide and hydrogen peroxide upon autoxidation. Upon preincubation of Dionaea extracts with certain diaphorases and NADH in the presence of serumalbumin (SA), subsequent tryptic digestion of SA is facilitated. Since the secretroy glands of Droseracea contain proteases and possibly other degradative enzymes it is suggested that the presence of oxygen-activating redox cofactors in the extracts function as extracellular predigestive oxidants which render membrane-bound proteins of the prey (insects) more susceptible to proteolytic attacks. PMID:2292436

  4. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    PubMed Central

    Saifuddin, Mohammad; Ali, Rashid; Sreevani, Gaddamedi

    2015-01-01

    Summary A simple synthetic strategy to C 2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA) reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies. PMID:26425191

  5. Nanometric layers for direct, signal-on, selective, and sensitive electrochemical detection of oligonucleotides hybridization.

    PubMed

    March, Grgory; Nol, Vincent; Piro, Benot; Reisberg, Steeve; Pham, Minh-Chau

    2008-11-26

    We report a signal-on, reagentless electrochemical DNA biosensor, based on an electroactive self-assembled naphthoquinone derivative (JUG(thio)) monolayer. This system achieves highly sensitive (approximately 300 pM) and selective signal-on detection. Before hybridization, the single strand can interact with JUG(thio) and slow down the redox reaction. When the complementary target is added, the formation of the double helix eliminates the single strand/JUG(thio) interactions and the JUG(thio) redox rate, and hence the current increase. PMID:18973298

  6. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    SciTech Connect

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-04-24

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  7. Tigloylshikonin, a new minor Shikonin derivative, from the roots and the commercial root extract of lithospermum erythrorhizon.

    PubMed

    Ito, Yusai; Onobori, Kenichi; Yamazaki, Takeshi; Kawamura, Yoko

    2011-01-01

    Tigloylshikonin, a new shikonin derivative esterified with tiglic acid ((E)-2-methylbut-2-enoic acid), was isolated as a minor pigment from a food colorant "Shikon color," a commercial root extract from Lithospermum erythrorhizon SIEBOLD et ZUCCARINI. The structure of tigloylshikonin was elucidated using (1)H, (13)C, the difference nuclear Overhauser effect (NOE), and 2D NMR techniques. Its stereochemistry was determined by chiral-phase HPLC analysis. Tigloylshikonin was also found in the roots of L. erythrorhizon, which indicated that this new shikonin derivative is a typical component of naphthoquinone pigments in the roots of L. erythrorhizon. PMID:21212559

  8. Organocatalyzed benzannulation for the construction of diverse anthraquinones and tetracenediones.

    PubMed

    Somai Magar, Krishna Bahadur; Xia, Likai; Lee, Yong Rok

    2015-05-21

    An efficient one-pot synthesis of anthraquinones and tetracenediones was achieved via L-proline catalyzed [4+2] cycloaddition of in situ generated azadiene from ?,?-unsaturated aldehydes and 1,4-naphthoquinones or 1,4-anthracenedione in good to excellent yield. This protocol constitutes an unprecedented tandem benzannulation that allows one-pot construction of diverse anthraquinones and tetracenediones in the presence of organocatalysts. This methodology was applied successfully to the synthesis of naturally occurring molecules and photochemically interesting phenanthrenequinone derivatives. PMID:25858160

  9. Synthesis of benzo[f]isoindole-4,9-diones.

    PubMed

    Claessens, Sven; Jacobs, Jan; Van Aeken, Sam; Tehrani, Kourosch Abbaspour; De Kimpe, Norbert

    2008-10-01

    A synthesis of benzo[f]isoindole-4,9-diones 1 is presented starting from the reaction of 2,3-bis(bromomethyl)-1,4-dimethoxynaphthalene 15 with primary amines affording 2,3-bis(aminomethyl)-1,4-dimethoxynaphthalenes 14, which could be converted by CAN-mediated oxidation in one step to benzo[f]isoindole-4,9-diones 1. An alternative synthesis of benzo[f]isoindole-4,9-diones 1 starts from 2,3-bis(bromomethyl)-1,4-naphthoquinone 9 via 2,3-dihydrobenzo[f]isoindoles 10 which spontaneously oxidize. PMID:18774861

  10. Evaluation of some organic compounds on bloodstream forms of Trypanosoma cruzi.

    PubMed

    Silva, J S; Ferrioli-Filho, F; Kanesiro, M M; Ferreira, V F; Santos, S C; Pinto, C N; Fonseca, J L; Mizrahy, H E; Gilbert, B; Pinto, M C

    1992-01-01

    Accidental transmission of Chagas' disease to man by blood transfusion is a serious problem in Latin-America. This paper describes the testing of several synthetic, semi-synthetic, and natural compounds for their activity against blood trypomastigotes in vitro at 4 degrees C. The compounds embody several types of chemical structures: benzoquinone, naphthoquinone, anthracenequinone, phenanthrenequinone, imidazole, piperazine, quinoline, xanthene, and simple benzenic and naphthalenic derivatives. Some of them are for the first time tested against Trypanosoma cruzi. The toxic effect of these compounds on this parasite was done by two quite distinct sets of experiments. In one set, the compounds were added to infected blood as ethanolic solution. In this situation the most active one was a furan-1,2-naphthoquinone, in the same range as gentian violet, a new fact to be considered in the assessment of structure-activity relationships in this class of compounds. In other set, we tentatively evaluated the biological activity of water insoluble compounds by adding them in a pure form without solvent into infected blood. In this way some appear to be very active and it was postulated that the effectiveness of such compounds must result from interactions between them and specific blood components. PMID:1343643

  11. Synthesis of echinamines A and B, the first aminated hydroxynaphthazarins produced by the sea urchin Scaphechinus mirabilis and its analogues.

    PubMed

    Pokhilo, Nataly D; Shuvalova, Maria I; Lebedko, Maxim V; Sopelnyak, Galina I; Yakubovskaya, Alla Ya; Mischenko, Natalia P; Fedoreyev, Sergey A; Anufriev, Victor Ph

    2006-08-01

    The first total synthesis of two marine aminated hydroxynaphthazarins, echinamines A (3-amino-7-ethyl-2,5,6,8-tetrahydroxy-1,4-naphthoquinone) and B (2-amino-7-ethyl-3,5,6,8-tetrahydroxy-1,4-naphthoquinone), produced by the sea urchin Scaphechinus mirabilis is described. This was achieved from 1,2,4-triacetoxybenzene (13) through a sequence involving double Fries rearrangement of 13, reduction of 3,5-diacetyl-1,2,4-trihydroxybenzene (14), methylation of 3,5-diethyl-1,2,4-trihydroxybenzene (15), simultaneous double acylation of 3,5-diethyl-1,2,4-trimethoxybenzene (16) with a dichloromaleic anhydride-ethyl radical elimination process, methylation of 6,7-dichloro-3-ethyl-2-hydroxynaphthazarin (17), nucleophilic substitution of a chlorine atom by the methoxy group in 6,7-dichloro-3-ethyl-2-methoxynaphthazarin (18), introduction of an amino group via direct substitution of a chlorine atom in 7-chloro-3-ethyl-2,6-dimethoxy- (11) and 7-chloro-2-ethyl-3,6-dimethoxynaphthazarins (12) by an azido group, and functional group deprotection. The synthesis of amino analogues of spinazarin and spinochrome D is also described. PMID:16933861

  12. Microbial electricity generation of diversified carbonaceous electrodes under variable mediators.

    PubMed

    Park, In Ho; In Ho, Park; Gnana Kumar, G; Kim, A R; Kim, Pil; Suk Nahm, Kee

    2011-02-01

    To evaluate a suitable electrode material for the efficient green energy generation of a bio-fuel cell, carbonaceous based carbon cloth, carbon paper, and carbon felt electrodes were investigated under different mediators. The larger surface area, low resistance, and open network of interwoven fibers of the carbon felt electrode facilitated higher electron transfer from the microbial organisms to the electrode surface than that of other carbonaceous electrodes. Carbon paper electrode exhibited lower fuel cell performances due to its lower roughness and high tortuous nature. The green power generation experiments were also carried out under different mediators such as 2-hydroxy-l,4-naphthoquinone and thionin. The electrons mitigation and power generation was augmented by 2-hydroxy-l,4-naphthoquinone than thionin due to its high solubility, stability, and minimal adsorption characteristic to the electrodes. By the combined efforts of extended electrons generation and transportation, bio-fuel cell performances were extended and endorsed its doable applications in bio-fuel cells. PMID:20655812

  13. Synergistic TRAIL sensitizers from Barleria alluaudii and Diospyros maritima#

    PubMed Central

    Whitson, Emily L.; Sun, Han; Thomas, Cheryl L.; Henrich, Curtis J.; Sayers, Thomas J.; McMahon, James B.; Griesinger, Christian; McKee, Tawnya C.

    2012-01-01

    Barleria alluaudii and Diospyros maritima were both investigated as part of an ongoing search for synergistic TRAIL (tumor necrosis factor-?-related apoptosis-inducing ligand) sensitizers. As a result of this study, two naphthoquinone epoxides, 2,3-epoxy-2,3-dihydrolapachol (1) and 2,3-epoxy-2,3-dihydro-8-hydroxylapachol (2), both not previously isolated from natural sources, and the known 2-methyl anthraquinone (3) were identified from B. alluaudii. Time-dependent density functional theory (TD-DFT) calculations of electronic circular dichroism (ECD) spectra were utilized to establish the absolute configuration of 1 and 2. Additionally, five known naphthoquinone derivatives, maritinone (4), elliptinone (5), plumbagin (6), (+)-cis-isoshinanolone (7), and ethylidene-6,6?-biplumbagin (8) were isolated from D. maritima. Compounds 1, 2, and 46 showed varying levels of synergy with TRAIL. Maritinone (4) and elliptinone (5) showed the highest synergistic effect, with more than a three-fold increase in activity observed with TRAIL than with compound alone. PMID:22313254

  14. Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases.

    PubMed

    Kim, Ji Young; Jeong, Hyung Jae; Park, Ji-Young; Kim, Young Min; Park, Su-Jin; Cho, Jung Keun; Park, Ki Hun; Ryu, Young Bae; Lee, Woo Song

    2012-03-01

    Sialidases are enzymes that catalyze the hydrolysis of sialic acid residues from various glycoconjugates, which are widely found in a number of viral and microbial pathogens. In this study, we investigated the biological evaluation of isolated six shikonins (1-6) and three shikonofurans (7-9) from Lithospermum erythrorhizon. The nine isolated compounds 1-9 showed strong and selective inhibition of glycosyl hydrolase (GH) 33 and -34 sialidases activities. In GH33 bacterial-sialidase inhibition assay, the inhibitory activities against GH33 siadliase of all shikonofuran derivatives (7-9) were greater than shikonin derivatives (1-6). Shikonofuran E (8) exhibited the most potent inhibitory activity toward GH33 sialidases (IC(50)=0.24μM). Moreover, our detailed kinetic analysis of these species unveiled that they are all competitive and simple reversible slow-binding inhibitors. Otherwise, they showed different inhibitory capacities and kinetic modes to GH34 viral-sialidase activity. All the naphthoquinone derivatives (1-6) were of almost equal efficiency with IC(50) value of 40μM and shikonofurans (7-9) did not show the significant inhibitory effect to GH34 sialidase. Kinetic analyses indicated that naphthoquinones acted via a noncompetitive mechanism. PMID:22300884

  15. Biosynthesis of Fusarubins Accounts for Pigmentation of Fusarium fujikuroi Perithecia

    PubMed Central

    Studt, Lena; Wiemann, Philipp; Kleigrewe, Karin

    2012-01-01

    Fusarium fujikuroi produces a variety of secondary metabolites, of which polyketides form the most diverse group. Among these are the highly pigmented naphthoquinones, which have been shown to possess different functional properties for the fungus. A group of naphthoquinones, polyketides related to fusarubin, were identified in Fusarium spp. more than 60 years ago, but neither the genes responsible for their formation nor their biological function has been discovered to date. In addition, although it is known that the sexual fruiting bodies in which the progeny of the fungus develops are darkly colored by a polyketide synthase (PKS)-derived pigment, the structure of this pigment has never been elucidated. Here we present data that link the fusarubin-type polyketides to a defined gene cluster, which we designate fsr, and demonstrate that the fusarubins are the pigments responsible for the coloration of the perithecia. We studied their regulation and the function of the single genes within the cluster by a combination of gene replacements and overexpression of the PKS-encoding gene, and we present a model for the biosynthetic pathway of the fusarubins based on these data. PMID:22492438

  16. Improved understanding of bimolecular reactions in deceptively simple homogeneous media: From laboratory experiments to Lagrangian quantification

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Qian, Jiazhong; Papelis, Charalambos; Sun, Pengtao; Yu, Zhongbo

    2014-02-01

    Medium heterogeneity affects reaction kinetics by controlling the mixing of reactant particles, but the linkage between medium properties and reaction kinetics is difficult to build, even for simple, relatively homogeneous media. This study aims to explore the dynamics of bimolecular reactions, aniline + 1,2-naphthoquinone-4-sulfonic acid ? 1,2-naphthoquinone-4-aminobenzene, in relatively homogeneous flow cells. Laboratory experiments were conducted to monitor the transport of both conservative and reactive tracers through columns packed with silica sand of specific diameters. The measured tracer breakthrough curves exhibit subdiffusive behavior with a late-time tail becoming more pronounced with decreasing sand size, probably due to the segregated flow regions formed more easily in columns packed with smaller size sand. Numerical analysis using a novel Lagrangian model shows that subdiffusion has a twofold effect on bimolecular reactions. While subdiffusion enhances the power-law growth rate of product mass by prolonging the exposure of reactant particles in the depletion zone, the global reaction rate is constrained because subdiffusion constrains the mobility of reactant particles. Reactive kinetics in deceptively simple homogeneous media is therefore controlled by subdiffusion, which is sensitive to the dimensions of packed sand.

  17. [Preparation and application of the quinonyl chloromethylation polystyrene in biological treatment of wastewater].

    PubMed

    Zhang, Hua-Yu; Xu, Qing; Niu, Chun-Mei; Wang, Ya-Jun; Hou, Zheng-Hao; Li, Shao-Ying; Chen, Yan-Ming; Lian, Jing; Wu, Shi-Bin; Guo, Jian-Bo

    2014-05-01

    The technology of non-water-soluble mediator anaerobic biological catalysis has attracted more and more attention in the field of environment technology. In this study, five kinds of quinonly compounds were grafted on the chloromethylation polystyrene macromolecular carrier by Friedel-Crafts reaction. Reaction factors of temperature and molar ratio for the 1,4-naphthoquinone grafting carrier were optimized, and the optimal temperature was 78 degreesC while the optimal molar ratio of 1, 4-naphthoquinone and chloromethylation polystyrene was 2: 1. Fourier infrared spectrum analysis confirmed that the quinone groups were successfully grafted on the macromolecular backbone chloromethylation polystyrene. Catalysis using the five kinds of quinonly materials as non-water-soluble redox mediators enhanced the biological denitrification rate and the decoloration of azo dyes, meanwhile these materials showed good reusability in the biodegradation of azo dye. This study developed a new method for the preparation of quinonly materials and revealed a new field in the technology of mediator catalysis. PMID:25055675

  18. Novel naphtho[2,1-d]oxazole-4,5-diones as NQO1 substrates with improved aqueous solubility: Design, synthesis, and in vivo antitumor evaluation.

    PubMed

    Li, Xiang; Bian, Jinlei; Wang, Nan; Qian, Xue; Gu, Jing; Mu, Tong; Fan, Jun; Yang, Xiuwen; Li, Shangzhen; Yang, Tingting; Sun, Haopeng; You, Qidong; Zhang, Xiaojin

    2016-03-01

    A new series of ortho-naphthoquinone analogs of ?-lapachone were designed, synthesized and evaluated. The biological results indicated that most of our compounds were efficient substrates for NQO1. The new scaffold with water-soluble side chain resulted in greater solubility under acidic condition compared to ?-lapachone. Thus avoiding the use of hydroxylpropyl ?-cyclodextrin which would finally cause the rapid drug clearance from the blood and dose-limiting toxicity in the form of hemolytic anemia. The most soluble and promising compound in this series was 2-((4-benzylpiperazin-1-yl)methyl)naphtho[2,1-d]oxazole-4,5-dione (3k), which inhibited cancer cell (NQO1-rich A549 cell line) growth at IC50 values of 4.61.0?molL(-1). Furthermore, compound 3k had in vivo antitumor activity in an A549 tumor xenografts mouse model comparable to the activity obtained with ?-lapachone. The results indicated that these ortho-naphthoquinones could serve as promising leads for further optimization as novel substrates for NQO1. PMID:26803578

  19. Spectrophotometric kinetic and determination of quinones and barbiturates

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.; Zahran, A. A.

    2001-10-01

    The kinetics of 1,3-dimethylbarbituric acid with some quinones, namely 1,4-benzoquinone, 1,4-naphthoquinone and p-chloranil in 50% methyl alcohol-water mixture have been investigated spectrophotometrically at 30-50C. The reaction follows overall second-order kinetics, first order each in reactant. From the dependence of the rate constants on temperature, activation parameters have been calculated. A plot of ? H# versus ? S# for the reaction gave a good straight line with an isokinetic temperature of 387.66 K. The rate of reaction increases with increasing dielectric constant of the medium. Based on this reaction, a spectrophotometric determination method of quinones is described. Beer's law was obeyed within the concentration range 2.7-61.5 ?g ml -1 quinone. The method was applied for determination of barbituric, thiobarbituric and 1,3-dimethylbarbituric acids with 1,4-naphthoquinone within a concentration range of 3.2-39.5 ?g ml -1 barbiturate. The reaction mechanism and reactivity have been discussed.

  20. SOM assembly of hydroxynaphthoquinone and its oxime: Polymorphic X-ray structures and EPR studies

    NASA Astrophysics Data System (ADS)

    Todkary, Ashwini V.; Dalvi, Rupali; Salunke-Gawali, Sunita; Linares, Jorge; Varret, Franois; Marrot, Jrme; Yakhmi, Jatinder V.; Bhadbhade, Mohan; Srinivas, D.; Gejji, Shridhar P.; Rane, Sandhya Y.

    2006-01-01

    Investigation on solvent-induced polymorphism in X-ray structures of 2-hydroxy-1,4-naphthoquinone (Lawsone) 1, is carried out. In protic methanol, 1 crystallizes in monoclinic space group P21/c (1a) comprising of 2D hydrogen bonded network via cyclic dimers. In aprotic solvent such as acetone on the other hand, 1 exhibits orthorhombic space group Pna 21 (1b) and emerges with 1D catemeric chain. Solvent-induced topological isomerism of cyclic dimers and helical catemeric chains arising from (i) bifurcated intra- and inter molecular hydrogen bondings viz. Osbnd H ⋯Odbnd C interactions between C(2) hydroxyl and C(1), C(4) carbonyls, (ii) Csbnd H ⋯O interactions viz. C(3)sbnd H ⋯O(1)C(1) have been discussed. A signal for radical in 1 at g = 2.0058 is signatured by EPR spectrum and it's oxime derivative viz. 2-hydroxy-4-naphthoquinone-1-oxime 2, in solid state shows biradical and monoradical formation with aggregation of dimer and monomer due to non-covalent hydrogen bonds. Zero field split parameters for 2 are estimated to be D = 215 G, Ex = 13 G, Ey = 47 G at 298 K. A half field signal at 77 K indicates triplet ground state. Frozen glass EPR of 2 resolves as regioregular dimeric-monomeric species showing hyperfine interactions with 1-oximino nitrogen in dimer Abar(14N) = 15.5 G].

  1. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  2. Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M.

    2014-03-01

    Vapour and particle-associated concentrations of 15 polycyclic aromatic hydrocarbons (PAH) and 11 PAH quinones have been measured in winter and summer campaigns at the rural site, Weybourne in eastern England. Concentrations of individual PAH are relatively smaller than average concentrations measured previously at urban sites in the UK. The concentrations of PAH of the air masses originating from southern England and mainland UK are significantly larger than those from Eastern Europe and the North Atlantic, while quinone to parent PAH ratios show an inverse behaviour, being highest in the more aged North Atlantic polar air masses. While concentrations of 1,2-naphthoquinone decline from winter to summer, those of 1,4-naphthoquinone and anthraquinone increase suggesting a photochemical formation pathway. A comparison of congener concentration profiles measured at Weybourne with those from an urban source area (Birmingham) reveals differential losses at the rural site, especially evident in fluoranthene : pyrene ratios and consistent with the known rates of vapour phase reactions of 3 and 4 ring compounds with hydroxyl radical. The ratios of quinones to their parent PAH at Weybourne are greater than those in the urban source area indicating either more rapid loss processes for PAH, or formation of quinones during advection of the air mass, or probably both.

  3. Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M.

    2013-10-01

    Vapour and particle-associated concentrations of 15 polycyclic aromatic hydrocarbons (PAH) and 11 PAH quinones have been measured in winter and summer campaigns at the rural site, Weybourne in eastern England. Concentrations of individual PAH are 20-140 times smaller than average concentrations at an English urban site. The concentrations of PAH are greatest in air masses originating from southern England relative to those from Scandinavia and the North Atlantic, while quinone to parent PAH ratios show an inverse behaviour, being highest in the more aged North Atlantic polar air masses. While concentration of 1,2-naphthoquinone decline from summer to winter, those of 1,4-naphthoquinone and anthraquinone increase suggesting a photochemical formation pathway. A comparison of congener concentration profiles measured at Weybourne with those from an urban source area (Birmingham) reveals differential losses at the rural site, especially evident in fluoranthene: pyrene ratios and consistent with the known rates of vapour phase reactions of 3 and 4 ring compounds with hydroxyl radical. The ratios of quinones to their parent PAH at Weybourne are greater than those in the urban source area indicating either more rapid loss processes for PAH, or formation of quinones during advection of the air mass, or probably both.

  4. Pigment cell differentiation in sea urchin blastula-derived primary cell cultures.

    PubMed

    Ageenko, Natalya V; Kiselev, Konstantin V; Dmitrenok, Pavel S; Odintsova, Nelly A

    2014-07-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  5. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.

    PubMed

    Zhou, Chong-Wen; Kislov, Vadim V; Mebel, Alexander M

    2012-02-16

    Potential energy surfaces (PESs) of the reactions of 1- and 2-naphthyl radicals with molecular oxygen have been investigated at the G3(MP2,CC)//B3LYP/6-311G** level of theory. Both reactions are shown to be initiated by barrierless addition of O(2) to the respective radical sites of C(10)H(7). The end-on O(2) addition leading to 1- and 2-naphthylperoxy radicals exothermic by 45-46 kcal/mol is found to be more preferable thermodynamically than the side-on addition. At the subsequent reaction step, the chemically activated 1- and 2-C(10)H(7)OO adducts can eliminate an oxygen atom leading to the formation of 1- and 2-naphthoxy radical products, respectively, which in turn can undergo unimolecular decomposition producing indenyl radical + CO via the barriers of 57.8 and 48.3 kcal/mol and with total reaction endothermicities of 14.5 and 10.2 kcal/mol, respectively. Alternatively, the initial reaction adducts can feature an oxygen atom insertion into the attacked C(6) ring leading to bicyclic intermediates a10 and a10' (from 1-naphthyl + O(2)) or b10 and b10' (from 2-naphthyl + O(2)) composed from two fused six-member C(6) and seven-member C(6)O rings. Next, a10 and a10' are predicted to decompose to C(9)H(7) (indenyl) + CO(2), 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H, and 1-C(9)H(7)O (1-benzopyranyl) + CO, whereas b10 and b10' would dissociate to C(9)H(7) (indenyl) + CO(2), 2-C(9)H(7)O (2-benzopyranyl) + CO, and 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H. On the basis of this, the 1-naphthyl + O(2) reaction is concluded to form the following products (with the overall reaction energies given in parentheses): 1-naphthoxy + O (-15.5 kcal/mol), indenyl + CO(2) (-123.9 kcal/mol), 1-benzopyranyl + CO (-97.2 kcal/mol), and 1,2-naphthoquinone + H (-63.5 kcal/mol). The 2-naphthyl + O(2) reaction is predicted to produce 2-naphthoxy + O (-10.9 kcal/mol), indenyl + CO(2) (-123.7 kcal/mol), 2-benzopyranyl + CO (-90.7 kcal/mol), and 1,2-naphthoquinone + H (-63.2 kcal/mol). Simplified kinetic calculations using transition-state theory computed rate constants at the high-pressure limit indicate that the C(10)H(7)O + O product channels are favored at high temperatures, while the irreversible oxygen atom insertion first leading to the a10 and a10' or b10 and b10' intermediates and then to their various decomposition products is preferable at lower temperatures. Among the decomposition products, indenyl + CO(2) are always most favorable at lower temperatures, but the others, 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H (from a10 and b10'), 1-C(9)H(7)O (1-benzopyranyl) + CO (from a10'), and 2-C(10)H(7)O (2-benzopyranyl) + O (from b10 and minor from b10'), may notably contribute or even become major products at higher temperatures. PMID:22239650

  6. A mechanistic examination of redox cycling activity in carbonaceous particulate matter

    NASA Astrophysics Data System (ADS)

    McWhinney, Robert David

    Mechanistic aspects of carbonaceous aerosol toxicity were examined with respect to the ability of particles to catalyse reactive oxygen species-generating redox cycling reactions. To investigate the role of secondary organic material, we examined two systems. In the first, two-stroke engine exhaust particles were found to increase their ability to catalyse redox cycling in the presence of a reducing agent, dithiothreitol (DTT), when the exhaust was exposed to ozone. This occurred through deposition of redox-active secondary organic aerosol (SOA) onto the particle that was ten times more redox active per microgram than the primary engine particle. In the second system, naphthalene SOA formed highly redox active particles. Activity was strongly correlated to the amount of the 1,4- and 1,2-naphthoquinone measured in the particle phase. However, these species and the newly quantified naphthalene oxidation product 5-hydroxy-1,4-naphthoquinone accounted for only 30% of the observed DTT decay from the particles. Gas-particle partitioning coefficients suggest 1,4- and 1,2- naphthoquinone are not strong contributors to ambient particle redox activity at 25 C. However, a large number of redox active species are unidentified. Some of these may be highly oxidised products of sufficiently low vapour pressure to be atmospherically relevant. DTT activity of diesel particles was found to be high per unit mass. The activity was found to be associated with the insoluble fraction as filtration of the particles nearly eliminated DTT decay. Neither methanol nor dichloromethane extracts of diesel particles exhibited redox activity, indicating that the redox active species are associated with the black carbon portion of the particles. Examination of particle concentration techniques found that use of water condensation to grow and concentrate particles introduced a large organic artefact to the particles. Experiments with concentrated inorganic particles suggest that the source of this artefact is from irreversible uptake of water-soluble volatile organic compounds. Overall, carbonaceous redox active species can be thought of as a continuum from small, water-soluble species to redox active functionalities on elemental carbon backbones. In addition to clearly defined, quantifiable species, future research may need to consider examining broader chemical classes or redox-active chemical functionalities to overcome the inherent complexity of these constituents.

  7. Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds.

    PubMed

    Edenharder, R; Tang, X

    1997-01-01

    When 56 flavonoids, 32 coumarins, five naphthoquinones, 12 anthraquinones and five structurally-related compounds were tested for their antimutagenic potencies with respect to mutagenicities induced by 2-nitrofluorene (2-NF), 3-nitrofluoranthene (3-NFA) and 1-nitropyrene (1-NP) in Salmonella typhimurium TA98 distinct structure-activity relationships were detected. First, the tetracyclic nitroarenes 3-NFA and 1-NP were in general more effectively antagonized by potent antimutagenic flavonoids and coumarins than the tricyclic 2-NF, while there were only minor differences with quinones. Secondly, antimutagenicity of natural compounds of plant origin correlated with the aglyconic nature 10 of a total of 15 glycosides were inactive, four flavonoid glycosides exerted antimutagenicity but to a distinctly lower degree than the corresponding aglycones. Thirdly, within flavonoids, coumarins and anthraquinones positive correlations were found between antimutagenic potency and the polarity of a molecule with the existence of an optimum of activity within flavonols and anthraquinones. However, polarity seemed to be unimportant within the chalcone and naphthoquinone series. Among flavonoids, the parent compounds flavone and flavanone were inactive, but all flavones and many flavonoids with phenolic hydroxyl groups exerted antimutagenicity. Antimutagenic potency reached a maximum with the presence of four hydroxyl functions-luteolin, kaempferol-though the position of hydroxyls was also a determinant of antimutagenic potency. Methylation of phenolic hydroxyl groups, however, always reduced antimutagenicity. A carbonyl group at carbon 4 was essential for antimutagenicity: two catechins and anthocyanidins each were inactive. On the other hand, ring C of the flavane nucleus was not essential for antimutagenicity: chalcones and dihydrochalcones were potent antimutagens. Among coumarins, the parent compound showed antimutagenicity against 1-NP and 3-NFA, although dihydrocoumarin, methylcoumarins and compounds with bulky substituents were inactive. Otherwise, antimutagenic activity depended on the presence of polar hydroxyl, amino or carboxyl groups at carbons 3, 4 or 7 but was diminished by interactions of hydroxyl groups vicinal to carbon 7. Again, antimutagenic potencies were reduced by alkylation or acetylation. Among furanocoumarins xanthotoxin exerted strong and bergapten moderate antimutagenicity, while psoralen (except against 3-NFA), isopimpinellin and the furanochromanones visnagin and khellin were inactive. Among anthraquinones, the principles delineated here were valid again, resulting in potent antimutagenicity of most phenolic compounds and inactivity of anthraquinone itself. Among compounds structurally related to anthraquinones, anthrone, acridone and xanthone exerted antimutagenicity, anthrone being the most potent one, while thioxanthone and 9-fluorenone were inactive. All naphthoquinones were potent antimutagens irrespective of the presence of methyl or hydroxyl functions. Plumbagin, 2-methyl-5-hydroxynaphthoquinone, however, showed exceptional antimutagenicity. PMID:9207898

  8. Onosma L.: A review of phytochemistry and ethnopharmacology

    PubMed Central

    Kumar, Neeraj; Kumar, Rajnish; Kishore, Kamal

    2013-01-01

    The genus Onosma L. (Boraginaceae) includes about 150 species distributed world-wide in which only about 75 plants has been described for its morphology and less than 10 plants for their chemical constituents and clinical potential. The phytochemical reports of this genus revels that it comprise mainly aliphatic ketones, lipids, naphthazarins, alkaloids, phenolic compounds, naphthoquinones, flavones while most important are shikonins and onosmins. The plants are traditionally used as laxative, anthelmintic and for alexipharmic effects. The plants are also equally use in eye, blood diseases, bronchitis, abdominal pain, stangury, thirst, itch, lecoderma, fever, wounds, burns, piles and urinary calculi. The flowers of various plants are prescribed as stimulants, cardiotonic, in body swelling while leaves are used as purgative and in cutaneous eruptions. The roots are used for coloring food stuffs, oils and dying wool and in medicinal preparations. This review emphasizes the distribution, morphology, phytochemical constituents, ethnopharmacology, which may help in future research. PMID:24347922

  9. Chemical Composition of the Essential Oil of the Boreal Relict of Pyrola rotundifolia L. from Northern Kazakhstan.

    PubMed

    Kirillov, Vitaliy; Stikhareva, Tamara; Atazhanova, Gayane; Serafimovich, Mariya; Mukanov, Bolat; Adekenov, Sergazy; Mukasheva, Fariza; Yrymgali, Madi

    2015-01-01

    In Kazakhstan Pyrola rotundifolia L. is the plant-relict in the flora of insular pine forests of the region of low hillocks and declivities in Kazakhstan - a group of insular pine forests of Kokshetau, Bayanaul and Karkaralinsk. In this study, the essential oils from dried aerial parts of P. rotundifolia, collected in natural habitats of the State National Natural Park "Burabay" (Akmola oblast, Northern Kazakhstan), were extracted by hydrodistillation and analyzed by gas chromatography - mass spectrometry. The yield of the essential oil amounted to 0.057 % in relation to the mass of the air-dry raw material. The major components in dried plant oil were 2,6-dimethyl-1,4-naphthoquinone (12.99-93.49%) and dibutyl phthalate (4.42-40.48%), depending on the growth conditions. PMID:26369596

  10. Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Yu, Jinxing; Xu, Na

    2010-04-01

    Recent years increasing attention has been given to molecular glass resist materials. In this paper, maleopimaric acid, cycloaddition reaction product of rosin with maleic anhydride, was reacted with hydroxylamine and then further esterified with 2-diazo-1-naphthoquinone-4-sulfonyl chloride to give N-hydroxy maleopimarimide sulfonate. The carboxylic acid group of the compound was then protected by the reaction of this compound with vinyl ethyl ether or dihydropyran. Thus obtained compounds were amorphous. When irradiated with i-line light, the 2,1,4-DNQ group undergo photolysis not only to give off nitrogen gas but also generate sulfonic acid which can result in the decomposition of the acid labile group. So, a novel chemically amplified positive i-line molecular glass photoresists can be formed by the compound and other acidolytic molecular glass compounds. The lithographic performance of the resist materials is evaluated.

  11. Photoreactive polymer brushes for high-density patterned surface derivatization using a Diels-Alder photoclick reaction.

    PubMed

    Arumugam, Selvanathan; Orski, Sara V; Locklin, Jason; Popik, Vladimir V

    2012-01-11

    Reactive polymer brushes grown on silicon oxide surfaces were derivatized with photoreactive 3-(hydroxymethyl)naphthalene-2-ol (NQMP) moieties. Upon 300 or 350 nm irradiation, NQMP efficiently produces o-naphthoquinone methide (oNQM), which in turn undergoes very rapid Diels-Alder addition to vinyl ether groups attached to a substrate, resulting in the covalent immobilization of the latter. Any unreacted oNQM groups rapidly add water to regenerate NQMP. High-resolution surface patterning is achieved by irradiating NQMP-derivatized surfaces using photolithographic methods. The Diels-Alder photoclick reaction is orthogonal to azide-alkyne click chemistry, enabling sequential photoclick/azide-click derivatizations to generate complex surface functionalities. PMID:22191601

  12. Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide

    SciTech Connect

    Coutsikos, P.; Magoulas, K.; Tassios, D.

    1997-05-01

    Equilibrium solubilities of p-quinone (1,4-benzoquinone) and 9,10-anthraquinone at 35 C and 45 C in supercritical carbon dioxide over a pressure range of about (85--300) bar have been measured using a supercritical fluid extractor coupled with a high-pressure liquid chromatography apparatus. The solubility results, along with those reported in the literature for 1,4-naphthoquinone, are correlated with a modified Peng-Robinson equation of state. The ability of a supercritical fluid to separate a multicomponent mixture is unique, since it utilizes the salient features of both distillation and liquid extraction. The solubility of a solute in a supercritical fluid is the most important thermophysical property that has to be determined and modeled for an efficient design of any extraction based on supercritical solvents.

  13. Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential

    SciTech Connect

    Fernandes, Andreia S.; Konstantinov, Alexander A.; Teixeira, Miguel; Pereira, Manuela M. . E-mail: mpereira@itqb.unl.pt

    2005-05-06

    Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K{sup +}-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.

  14. Combination of a novel electrode material and artificial mediators to enhance power generation in an MFC.

    PubMed

    Taskan, Ergin; Ozkaya, Bestamin; Hasar, Halil

    2015-01-01

    This study focuses on two main aspects: developing a novel cost-effective electrode material and power production from domestic wastewater using three different mediators. Methylene blue (MB), neutral red (NR) and 2-hydroxy-1,4-naphthoquinone (HNQ) were selected as electrode mediators with different concentrations. A tin-coated copper mesh electrode was tested as anode electrode. Maximum power density of the microbial fuel cell (MFC) with 300 ?M MB was 636 mW/m. Optimal mediator concentrations with respect to the achieved maximum power output for MB, NR and HNQ were 300 ?M, 200 ?M and 50 ?M, respectively. The results demonstrate that tin-coated copper mesh showed a higher biocompatibility and electrical conductivity. PMID:25714629

  15. Pharmacological properties of shikonin - a review of literature since 2002.

    PubMed

    Andújar, Isabel; Ríos, José Luis; Giner, Rosa María; Recio, María Carmen

    2013-12-01

    The naphthoquinone shikonin is the main active principle of Zicao, a traditional Chinese herbal medicine made from the dried root of Lithospermum erythrorhizon. Studies carried out over the past 30 years have provided a scientific basis for the use of Zicao which has been long employed in folk medicine to treat a variety of inflammatory and infectious diseases. In particular, shikonin has been shown to possess many diverse properties, including antioxidant, anti-inflammatory, antithrombotic, antimicrobial, and wound healing effects. The fact that shikonin shows so many beneficial properties has increased the interest in this molecule dramatically, especially in the past few years. The aim of this review is to provide an update of the new data published on shikonin, whose wide spectrum of pharmacological effects as well as pharmacokinetic properties and toxicity make it a highly interesting target molecule. PMID:24155261

  16. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Chung, Chang Hwa; Moon, BoKyung; Ha, Tae Youl

    2012-09-12

    Lithospermum erythrorhizon, which has traditionally been used as a vegetable and to make the liquor Jindo Hongju, contains several naphthoquinone pigments, including shikonin. This study aimed to evaluate the antiobesity effects of Lithospermum erythrorhizon ethanol extract (LE) and elucidate the underlying mechanism. C57BL/6J mice were fed a normal or high-fat diet with or without LE supplementation for 8 weeks. LE reduced high-fat diet-induced increases in body weight, white adipose tissue mass, serum triglyceride and total cholesterol levels, and hepatic lipid levels while decreasing lipogenic and adipogenic gene expression. Furthermore, acetylshikonin suppressed adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factor expression in 3T3-L1 cells. These findings suggest that Lithospermum erythrorhizon prevents obesity by inhibiting adipogenesis through downregulation of genes involved in the adipogenesis pathway and may be a useful dietary supplement for the prevention of obesity. PMID:22900585

  17. Mechanism of charge transfer in the molecular DPQ complex studied by time-resolved fluorescence spectroscopy

    SciTech Connect

    Borovkov, V.V.; Evstigneeva, R.P.; Struganova, I.A. ); Kamalov, V.F.; Toleutaev, B.N. )

    1991-08-22

    Recent results of the X-ray analysis and femtosecond spectroscopy of photosynthetic bacteria reaction centers have contributed very much to the understanding of the primary events in photosynthesis. The pathways of charge separation in the dimethylaniline-mesoporphyrin II-naphthoquinone triad DPQ and its Zn complex were established. The rate constants of electron transfer from P and ZnP to Q were measured to be k = 1.5 {times} 10{sup 9} s{sup {minus}1} and k > 5 {times} 10{sup 10} s{sup {minus}1}, respectively, from the results of picosecond fluorescence spectroscopy. The transformation of the DPQ and DZnPQ triads to the reduced form by NaBH{sub 4} treatment results in blocking of the electron-transfer channel from both P and ZnP to Q. The role of structural and conformational changes of triads in the electron-transfer process is discussed.

  18. Synthesis, Photochemical Properties, and Cytotoxicities of 2H-Naphtho[1,2-b]pyran and Its Photodimers.

    PubMed

    Ota, Motohiro; Sasamori, Takahiro; Tokitoh, Norihiro; Onodera, Takefumi; Mizushina, Yoshiyuki; Kuramochi, Kouji; Tsubaki, Kazunori

    2015-06-01

    A 2H-naphtho[1,2-b]pyran, prepared by dimerization of 2-bromo-3-methyl-1,4-naphthoquinone and O-methylation, readily undergoes solid-state [2 + 2] photodimerization to give a photodimer in excellent yield and with excellent selectivity. Retro [2 + 2] cycloaddition can be achieved by irradiation of a solution of the photodimer in chloroform. Interestingly, the 2H-naphtho[1,2-b]pyran dimerizes with a skeletal rearrangement to afford 2,5-dihydro-1-benzoxepin dimers upon irradiation in methanol or via irradiation with hexamethylditin. Furthermore, treatment of the resulting dimers with triethylamine regenerates the 2H-naphtho[1,2-b]pyran monomer. Significant differences in the color, fluorescence, and cytotoxic properties of the monomer and dimers were observed. PMID:25927340

  19. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  20. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G. ); Sims, R.C. . Dept. of Civil and Environmental Engineering)

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  1. Antioxidant and immunomodulatory constituents of henna leaves.

    PubMed

    Mikhaeil, Botros R; Badria, Farid A; Maatooq, Galal T; Amer, Mohamed M A

    2004-01-01

    The immunomodulatory bioassay-guided fractionation of the methanolic extract of henna (Lawsonia inermis L.; syn. Lawsonia alba L.) leaves resulted in the isolation of seven compounds; three have been isolated for the first time from the genus, namely p-coumaric acid, 2-methoxy-3-methyl-1,4-naphthoquinone and apiin, along with the previously isolated compounds: lawsone, apigenin, luteolin, and cosmosiin. Structural elucidation of the isolated compounds was based upon their physical, chemical as well as spectroscopic characters. Their immuomodulatory profile was studied using an in vitro immunoassay, the lymphocyte transformation assay. The ABTS [2,2'-azino-bis (3-ethyl benzthiazoline-6-sulfonic acid)], free radical scavenging assay depicted that all isolated compounds exhibited antioxidant activity comparable to that of ascorbic acid. PMID:15813363

  2. Radiolytic generation of organic radical anions isolated in argon matrix

    SciTech Connect

    Gebicki, J.; Michl, J.

    1988-11-03

    Isolated radical anions of 1,3,5,7-cyclooctatetraene, 1,4-benzoquinone, 1,4-naphthoquinone, and tetracyanoethylene have been generated in argon matrices by X-ray radiolysis in the presence of amine hole traps and characterized by UV-vis absorption spectroscopy. Careful removal of water enhances the degree of conversion to the anion in the steady state, but even under the best of circumstances, the conversion is far from complete. Naphthalene, anthracene, and acenaphthylene were not converted to their radical anions to a detectable degree. It thus appears that only substrates with relatively high electron affinity can produce a significant amount of radical anions under these conditions. All observed radical anions were readily bleached back to the neutral parent with UV-vis light.

  3. REGIOSELECTIVE MULTICOMPONENT DOMINO REACTIONS PROVIDING RAPID AND EFFICIENT ROUTES TO FUSED ACRIDINES.

    PubMed

    Zhang, Jin-Peng; Fan, Wei; Ding, Jie; Jiang, Bo; Tu, Shu-Jiang; Li, Guigen

    2013-12-17

    Regioselective three-component reactions of aromatic aldehydes with indazol-5-amine and 2-hydroxy-1,4-naphthoquinone in HOAc under microwave irradiation have been developed. In this one-pot reaction, a series of new pyrazole-fused benzo[h]acridine derivatives with 1,2-diketone unit were synthesized with high chemical yields. The resulting pyrazole-fused acridines were employed to further react with aldehydes and ammonium acetate to give polycyclic oxazole-fused pyrazolo[3,4-j]acridines. The present green synthesis shows several advantages including operational simplicity and fast reaction rates, which makes it a useful and attractive process of library generation for drug discovery. PMID:25364095

  4. Photoinduced spin-polarized radical ion pair formation in a fixed-distance photosynthetic model system at 5 K

    SciTech Connect

    Wasielewski, M.R.; Gaines, G.L. III; O'Neil, M.P.; Svec, W.A.; Niemczyk, M.P. )

    1990-05-23

    Photoinduced, multistep charge separation in bacterial reaction centers proceeds from the lowest excited singlet state of the dimeric bacteriochlorophyll electron donor in two steps, to yield a weakly interacting dimer cation-quinone anion radical pair, P{sup +}-Q{sup {minus}}, separated by 28 {angstrom}. Recently, we developed criteria for achieving high quantum yield charge separation in porphyrin-based-donor-acceptor systems at cryogenic temperatures. Using this information as a predictive model, we synthesized compound 1, TAPD-ZP-NQ, which consists of a zinc porphyrin primary electron donor, ZP, positioned between a naphthoquinone electron acceptor, NQ, and an N,N,N,N-tetraalkyl-p-phenylenediamine secondary electron donor, TADP.

  5. Inhibition of the HIF1?-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II).

    PubMed

    Jayatunga, Madura K P; Thompson, Sam; McKee, Tawnya C; Chan, Mun Chiang; Reece, Kelie M; Hardy, Adam P; Sekirnik, Rok; Seden, Peter T; Cook, Kristina M; McMahon, James B; Figg, William D; Schofield, Christopher J; Hamilton, Andrew D

    2015-04-13

    Protein-protein interactions between the hypoxia inducible factor (HIF) and the transcriptional coactivators p300/CBP are potential cancer targets due to their role in the hypoxic response. A natural product based screen led to the identification of indandione and benzoquinone derivatives that reduce the tight interaction between a HIF-1? fragment and the CH1 domain of p300. The indandione derivatives were shown to fragment to give ninhydrin, which was identified as the active species. Both the naphthoquinones and ninhydrin were observed to induce Zn(II) ejection from p300 and the catalytic domain of the histone demethylase KDM4A. Together with previous reports on the effects of related compounds on HIF-1? and other systems, the results suggest that care should be taken in interpreting biological results obtained with highly electrophilic/thiol modifying compounds. PMID:25023609

  6. Melanogenesis inhibition of ?-lapachone, a natural product from Tabebuia avellanedae, with effective in vivo lightening potency.

    PubMed

    Kim, Jin Hee; Lee, Se Mi; Myung, Cheol Hwan; Lee, Kyung Rhim; Hyun, Seung Min; Lee, Ji Eun; Park, Young Sun; Jeon, Se Rim; Park, Jong Il; Chang, Sung Eun; Hwang, Jae Sung

    2015-04-01

    ?-Lapachone is an ortho naphthoquinone obtained from the bark of the lapacho tree (Tabebuia avellanedae), which has been used medicinally for centuries. The purpose of this study was to investigate the effects of ?-lapachone on inhibitory mechanism of melanogenesis. ?-Lapachone inhibited melanin synthesis and tyrosinase activity at 0.8 ?M in melan-a cells. Also, ?-lapachone reduced the expression of tyrosinase and tyrosinase-related protein-1 at transcriptional and translational levels. The decreased expression of tyrosinase and tyrosinase-related protein-1 might result from the reduced microphthalmia-associated transcription factor (MITF) level which regulates major melanogenic proteins. The reduced level of MITF was associated with delayed ERK activation by ?-lapachone. Furthermore, ?-lapachone reduced melanogenesis in the human 3D skin tissue culture; besides, it dramatically inhibited body pigmentation of zebrafish and decreased melanin content and tyrosinase activity. These results show that ?-lapachone may be useful as a potential depigmentation agent for various hyperpigmentation disorders. PMID:25663088

  7. Flow-injection determination of amine contaminants in cyclamate samples based on temperature for controlling selectivity.

    PubMed

    Saurina, Javier; Hlabangana, Leah; Garcia-Milla, Daniel; Hernandez-Cassou, Santiago

    2004-05-01

    This paper describes a flow-injection (FI) method for the simultaneous determination of aniline and cyclohexylamine impurities in cyclamate products. The method consists of the derivatization of amines with 1,2-naphthoquinone-4-sulfonate under selective and non-selective conditions. Here, the selectivity is achieved by working at 20 degree C, at which only aniline reacts, whilst higher temperatures (80 degree C) lead to a non-selective reaction of the two analytes. The FI manifold is composed of two flow cells for the spectrophotometric detection of derivatives at 480 nm. Experimental conditions have been optimized by factorial design and multicriteria making approach. Quantification is accomplished by differential analysis of the analyte contributions in the double peaks generated when the sample reaches cell 1 and cell 2. Results obtained with the proposed method are in satisfactory agreement with those provided by the standard method for the analysis of cyclamate samples. PMID:15116242

  8. Characterization of wines through the biogenic amine contents using chromatographic techniques and chemometric data analysis.

    PubMed

    García-Villar, Natividad; Hernandez-Cassou, Santiago; Saurina, Javier

    2007-09-01

    This paper describes a new method for wine characterization based on the analysis of the biogenic amine composition and the chromatographic profiles using chemometric methods such as principal component analysis and partial least-squares regression. Amine contents have been determined by liquid chromatography with a precolumn derivatization with 1,2-naphthoquinone-4-sulfonate. The corresponding chromatographic data have been advantageously exploited for extracting relevant information regarding some wine features such as elaboration procedure, vintage, or origin region. Results indicate that amines might be used as descriptors of the certain enological practices. Besides, younger wines can be reasonably distinguished from aged ones on the basis of the amine contents. The wine characterization through the analysis of raw chromatographic profiles is proven to be also effective, and patterns dealing with aging processes have also been encountered. PMID:17676870

  9. New method for spectrophotometric determination of quinones and barbituric acid through their reaction. A kinetic study

    NASA Astrophysics Data System (ADS)

    Medien, H. A. A.

    1996-11-01

    A new and sensitive spectrophotometric method is described for the determination of p-benzoquinone, p-chloranil and 1.4-naphthoquinone. The method is based on the reaction between quinones and barbituric acid, by which a color is developed with maximum absorption between 485 and 555 nm in 50% methyl alcohol-water mixture. The absorption of the product obeys Beer's law within the concentration range 0.025-05 mM of orginal quinone. The kinetics of the reaction between p-benzoquinone and barbituric acid was studied in a range of methyl alcohol-water mixtures. The reaction follows overall second order kinetics, first order in each of the reactants. The rate increases with increasing dielectric constant. The method was applied for determination of barbituric acid with p-benzoquinone in the concentration range of 0.025-0.345 mM. Other barbiturates do not interfere.

  10. Antibacterial activity of plumbagin derivative-rich Plumbago indica root extracts and chemical stability.

    PubMed

    Kaewbumrung, Sermwut; Panichayupakaranant, Pharkphoom

    2014-01-01

    The extraction studies and a one-step purification of the crude extract of Plumbago indica using silica-gel vacuum chromatography provided a plumbagin derivative-rich P. indica root extract (PPE). The PPE was standardised to contain total plumbagin derivatives not less than 13% w/w. Antibacterial activities of the standardised PPE and three naphthoquinones, plumbagin, elliptinone and 3,3'-biplumbagin, against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis were evaluated by using the microdilution assay. The bactericidal activities of the PPE against these bacteria were much stronger than those of elliptinone and 3,3'-biplumbagin and almost equal to those of plumbagin. Stability of the PPE was determined under various conditions through a period of four months. The PPE was stable over a period of four months when stored as a dried powder but only in a well-closed container protected from light under 4 2C. PMID:24483166

  11. 1'-Butyl-2-methyl-1',2,2',3,4,9-hexa-hydro-spiro-[benzo[f]isoindole-1,3'-indole]-2',4,9-trione.

    PubMed

    Jagadeesan, G; Sethusankar, K; Bhaskar, G; Perumal, P T

    2012-07-01

    In the title compound, C(24)H(22)N(2)O(3), the indoline and pyrrole-fused naphtho-quinone units are both essentially planar [r.m.s. deviations = 0.042?(3) and 0.133?(3)?, respectively]. The pyrrole ring adopts a C-envelope conformation. The dihedral angle between the mean planes of the two five-membered rings is 89.94?(9). The O atoms deviate from the mean planes of the pyrrolidine and naphthalene rings by 0.0311?(2), 0.2570?(2) and 0.1669?(2)?. In the crystal, C-H?O inter-actions generate dimers with R(2) (2)(16) and R(2) (2)(18) graph-set motifs. The carbonyl O atom is involved in bifurcated hydrogen bonding. C-H?? inter-actions also occur. PMID:22798815

  12. A facile synthesis, anti-inflammatory and analgesic activity of isoxazolyl-2,3-dihydrospiro[benzo[f]isoindole-1,3'-indoline]-2',4,9-triones.

    PubMed

    Rajanarendar, E; Ramakrishna, S; Govardhan Reddy, K; Nagaraju, D; Reddy, Y N

    2013-07-01

    A new series of isoxazolyl-2,3-dihydrospiro[benzo[f]isoindole-1,3'-indoline]-2',4,9-triones (14) were synthesized by reaction of 4-amino-3-methyl-5-styrylisoxazole 10 with chloroacetic acid followed by a three component reaction with substituted isatins 12 and 1,4-naphthoquinone 13 using Ceric ammonium nitrate (CAN) catalyst under aerial oxidation condition. Structures of these compounds were established on the basis of IR, (1)H NMR, (13)C NMR and mass spectral data. The title compounds 14a-j were evaluated for their anti-inflammatory and analgesic activity. Compounds 14d, 14e and 14f exhibited potent anti-inflammatory and analgesic activity as that of standard drugs. PMID:23673015

  13. 1?-Butyl-2-methyl-1?,2,2?,3,4,9-hexahydrospiro[benzo[f]isoindole-1,3?-indole]-2?,4,9-trione

    PubMed Central

    Jagadeesan, G.; Sethusankar, K.; Bhaskar, G.; Perumal, P. T.

    2012-01-01

    In the title compound, C24H22N2O3, the indoline and pyrrole-fused naphthoquinone units are both essentially planar [r.m.s. deviations = 0.042?(3) and 0.133?(3)?, respectively]. The pyrrole ring adopts a C-envelope conformation. The dihedral angle between the mean planes of the two five-membered rings is 89.94?(9). The O atoms deviate from the mean planes of the pyrrolidine and naphthalene rings by 0.0311?(2), 0.2570?(2) and 0.1669?(2)?. In the crystal, CH?O interactions generate dimers with R 2 2(16) and R 2 2(18) graph-set motifs. The carbonyl O atom is involved in bifurcated hydrogen bonding. CH?? interactions also occur. PMID:22798815

  14. Spectrophotometric determination of copper in alloys using naphthazarin.

    PubMed

    Chaisuksant, R; Palkawong-Na-Ayuthaya, W; Grudpan, K

    2000-12-01

    Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone; Naph) is proposed as a chromogenic reagent for the spectrophotometric determination of copper(II). The polynuclear complex has a mole ratio of Cu:Naph=4:6 in a 50% v/v ethanol/water medium containing 0.1 M ammonium acetate and 1.5% (w/v) sodium dodecyl sulfate. The copper-naphthazarin complex shows an absorption maximum at 330 nm with a molar absorptivity of 1.84x10(4) l mol(-1) cm(-1). Beer's law is obeyed up to 4.5 ppm of copper(II). The method was applied for copper determination in alloy samples with satisfactory results. PMID:18968145

  15. Substitution of Redox Chemicals for Radiation in Phytochrome-Mediated Photomorphogenesis1

    PubMed Central

    Klein, Richard M.; Edsall, Pamela C.

    1966-01-01

    The reducing agents, potassium ferrocyanide, ?-mercaptoethylamine, cysteine, reduced DPN, ferrous sulfate, methyl viologen and ascorbic acid caused the expansion in darkness of disks of primary leaf tissue cut from dark-grown bean plants. The reducing agents interacted synergistically with low irradiances of red radiation and additively with high irradiance of red light. Exposure of disks treated with reducing agents to far red light repressed disk expansion and the decay in sensitivity to far red radiation showed the same time relations as sequential exposure to red and far red radiation. The oxidizing agents, 1,4-naphthoquinone, ferric sulfate, hydrogen peroxide, t-butyl hydroperoxide, cystine, and potassium ferricyanide repressed the expansion of leaf disks initiated by exposure to red radiation. The oxidizing agents interacted synergistically with low irradiances of far red light and additively with irradiances of far red light. PMID:16656360

  16. Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern

    NASA Astrophysics Data System (ADS)

    Bose, Adity; Dey, Debarati; Basu, Samita

    2008-04-01

    The magnetic field effect (MFE) in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ), with one of the DNA bases, thymine (THN), and its corresponding nucleoside, thymidine (THDN), in acetonitrile (ACN) and sodium dodecylsulfate (SDS) micelles. It has been observed that THN undergoes electron transfer (ET) and hydrogen (H) abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN), and its nucleoside, 2'-deoxyadenosine (ADS), undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction.

  17. Cross-dehydrogenative coupling of ?-C(sp(3))-H of ethers/alkanes with C(sp(2))-H of heteroarenes under metal-free conditions.

    PubMed

    Ambala, Srinivas; Thatikonda, Thanusha; Sharma, Shweta; Munagala, Gurunadham; Yempalla, Kushalava Reddy; Vishwakarma, Ram A; Singh, Parvinder Pal

    2015-12-14

    Here we have developed an effective metal-free dehydrogenative coupling method wherein ?-oxyalkyl and alkyl radicals were generated from various ethers and alkanes to undergo coupling with a variety of electron-deficient heteroarenes such as un/substituted iso-quinolones, quinolines, pyridines, pyrazines and pyrimidines. The persulfate-acetone-water system was optimized for the dehydrogenative coupling with cyclic ethers which gave moderate to excellent yields of ?-oxyalkyl containing heteroarenes. We have also optimized the conditions for coupling with cyclic alkanes and alicyclic ethers and demonstrated by conducting the reactions with a variety of electron-deficient heteroarenes. Further, the present method is also applicable to electron deficient arenes like naphthoquinones and moreover, it didn't require any external acid. PMID:26419479

  18. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD ; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  19. [Tobacco--once a medicinal plant. Does it contain substances with medicinal properties?].

    PubMed

    Budzianowski, Jaromir

    2013-01-01

    Tobacco and its use was discovered by Christopher Columbus in parallel with the discovery of America. Soon after, tobacco became a known medicinal plant in Europe. Its harmful effects were gradually discovered, especially those of tobacco smoke, and now it is considered a toxic plant. Tobacco leaf has a monograph in German "Hagers Enzyklopdie derArzneistoffe und Drogen", which describes its old, already not valid, medicinal use and clearly shows the toxic effects. Epidemiological studies indicate about 50% lower incidence of Parkinson's disease in smokers than in non-smokers. In turn, studies of the brains of smokers using positron emission tomography showed significantly decreased level of monoamine oxidase B--an enzyme which degrades dopamine--the neurotransmitter which the significant insufficiency of about 80-85%, is responsible for the symptoms of Parkinson's disease. From the tobacco leaves there were isolated MAO-B inhibitors--naphthoquinone--2,3,6-trimethyl-1,4-naphthoquinone and diterpenoid -trans,trans-farnesol, which occur also in tobacco smoke. In the last decade many papers have appeared on the neuroprotective activity of nicotine, the best known component of tobacco. through the effect of this compound on specific nicotinic cholinergic receptors (nAChRs), which interacts with nigrostriatal dopaminergic system as well as the possibility of using nicotine for the treatment of Parkinson's disease and other neurodegenerative diseases. Moreover, tobacco was also found to contain inhibitors of neuronal nitric oxide synthase (nNOS). Tobacco cannot be considered a medicinal plant, but some compounds occurring in that plant may find therapeutic use. PMID:24501813

  20. Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments

    PubMed Central

    2010-01-01

    We have screened the Library of Pharmacologically Active Compounds (LOPAC) and the National Institutes of Health (NIH) Small Molecule Repository (SMR) libraries in a horseradish peroxidasephenol red (HRP-PR) H2O2 detection assay to identify redox cycling compounds (RCCs) capable of generating H2O2 in buffers containing dithiothreitol (DTT). Two RCCs were identified in the LOPAC set, the ortho-naphthoquinone ?-lapachone and the para-naphthoquinone NSC 95397. Thirty-seven (0.02%) concentration-dependent RCCs were identified from 195,826 compounds in the NIH SMR library; 3 singleton structures, 9 ortho-quinones, 2 para-quinones, 4 pyrimidotriazinediones, 15 arylsulfonamides, 2 nitrothiophene-2-carboxylates, and 2 tolyl hydrazides. Sixty percent of the ortho-quinones and 80% of the pyrimidotriazinediones in the library were confirmed as RCCs. In contrast, only 3.9% of the para-quinones were confirmed as RCCs. Fifteen of the 251 arylsulfonamides in the library were confirmed as RCCs, and since we screened 17,868 compounds with a sulfonamide functional group we conclude that the redox cycling activity of the arylsulfonamide RCCs is due to peripheral reactive enone, aromatic, or heterocyclic functions. Cross-target queries of the University of Pittsburgh Drug Discovery Institute (UPDDI) and PubChem databases revealed that the RCCs exhibited promiscuous bioactivity profiles and have populated both screening databases with significantly higher numbers of active flags than non-RCCs. RCCs were promiscuously active against protein targets known to be susceptible to oxidation, but were also active in cell growth inhibition assays, and against other targets thought to be insensitive to oxidation. Profiling compound libraries or the hits from screening campaigns in the HRP-PR H2O2 detection assay significantly reduce the timelines and resources required to identify and eliminate promiscuous nuisance RCCs from the candidates for lead optimization. PMID:20070233

  1. Direct charge recombination from D +Q AQ B- to DQ AQ B in bacterial reaction centers from Rhodobacter sphaeroides containing low potential quinone in the Q A site

    NASA Astrophysics Data System (ADS)

    Labahn, A.; Bruce, J. M.; Okamura, M. Y.; Feher, G.

    1995-08-01

    In native RCs from Rb. sphaeroides the recombination D +Q AQ B- ? DQ AQ B proceeds via an indirect path involving the intermediate state D +Q A-Q B. To observe the direct recombination rate, kBD, the energy difference between the D +Q A-Q B and D +Q AQ B- states has to be increased. This had been accomplished in mutant RCs (DN(L213)) by lowering the energy of the D +Q AQ B- state [A. Labahn, M.L. Paddock, P.H. McPherson, M.Y. Okamura and G. Feher, J. Phys. Chem. 98 (1994) 3417] or, as presented in this work, by arising the energy of the D +Q A-Q B state through substitution of Q 10 by the low potential quinones: (2,3,5-trimethyl-1,4-naphthoquinone, 2,3,6,7-tetramethyl-1,4-naphthoquinone, 2-chloro-9,10-anthraquinone) while retaining the native Q 10 in the Q B site. The recombination rates kBD in these hybrid RCs were fitted with the Marcus theory giving a reorganization energy, ?BD = 1.1 0.1 eV and an electronic matrix element V( r) = (1.2 0.5) 10 -8 eV. The larger value of ?BD compared to ?AD (1.1 versus 0.6 eV) is consistent with the more polar environment of Q B- and is believed to be the main contributor to the large observed ratio of kAD/ kBD ? 100.

  2. Time-resolved visible and infrared difference spectroscopy for the study of photosystem I with different quinones incorporated into the A1 binding site.

    PubMed

    Makita, Hiroki; Zhao, Nan; Hastings, Gary

    2015-03-01

    Room (298 K) and low (77K) temperature time-resolved visible and infrared difference spectroscopy has been used to study photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), menadione (2-methyl-1,4-naphthoquinone) and plastoquinone 9 (2,3-dimethyl-5-prenyl-l,4-benzoquinone), incorporated into the A1 binding site. Concentrated samples in short path-length (~5 ?m) sample cells are typically used in FTIR experiments. Measurements were undertaken using standard "dilute" samples at 298 K, and concentrated (~5) samples at both 298 and 77K. No concentration induced alterations in the flash-induced absorption changes were observed. Concentrated samples in short path-length cells form a transparent film at 77K, and could therefore be studied spectroscopically at 77K without addition of a cryoprotectant. At 298 K, for photosystem I with plastoquinone 9/menadione/phylloquinone incorporated, P700+FA/B- radical pair recombination is characterized by a time constant of 3/14/80 ms, and forward electron transfer from A1A- to Fx by a time constant of 211/3.1/0.309 ?s, respectively. At 77K, for concentrated photosystem I with menadione/phylloquinone incorporated, P700+A1- radical pair recombination is characterized by a time constant of 240/340 ?s, with this process occurring in 58/39% of the PSI particles, respectively. The origin of these differences is discussed. Marcus electron transfer theory in combination with kinetic modeling is used to simulate the observed electron transfer time constants at 298 K. This simulation allows an estimate of the redox potential for the different quinones in the A1 binding site. PMID:25534606

  3. Molecular modeling and docking studies of O-succinylbenzoate synthase of M. tuberculosis--a potential target for antituberculosis drug design.

    PubMed

    Pulaganti, Madhusudana; Banaganapalli, Babajan; Mulakayala, Chaitanya; Chitta, Suresh Kumar; C M, Anuradha

    2014-02-01

    Menaquinone is a lipid-soluble naphthoquinone that is essential for various pivotal functions of bacteria. Naphthoquinone is synthesized from chorismate of the shikimate pathway in microorganisms. Due to its absence in humans and animals, menaquinone biosynthesis has been an attractive target for development of antibiotics against a number of important microbial pathogens, such as Mycobacterium tuberculosis (Mtb). In shikimate pathway, O-succinylbenzoate synthase (OSBS) plays a major role and is one of the major potential drug targets. For Mtb-OSBS, a systematic study was conducted to get an insight about Mtb-OSBS enzyme and the corresponding inhibitors using in silico methods. The 3-D model of Mtb-OSBS was built using structure coordinates of Thermobifida fusca. O-succinylbenzoate synthase, the model, was further refined. The active site amino acids have been identified by comparing the template sequence with the Mtb-OSBS sequence. We identified that Lys(108), Asn(140), Asp(138), Lys(110), Glu(189), Ser(236), Asp(188), Arg(27), Tyr(52), and Ser(237) are highly conserved, and these may play a vital role as active residues, similar to that in template protein. As per the competitive binding of substrate (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC)), we screened the SHCHC through AutoDock 4.0. The SHCHC molecule was further modified structurally and optimized through PRODRG server. Docking of the 12 lead molecules for best interactions with Mtb-OSBS has given an insight that all the lead molecules have shown interactions with active site amino acids of Mtb-OSBS. MD simulation analysis report has shown the stable conformation annotations of Mtb-OSBS. These hypothetical studies create another way to develop more potential drugs against the deadly mycobacterium. PMID:24203275

  4. Effect of Simultaneous Administration of Dihydroxyacetone on the Diffusion of Lawsone Through Various In Vitro Skin Models.

    PubMed

    Munt, Daniel J; Grana, Anne; Hulce, Martin; Fusaro, Ramon M; Dash, Alekha K

    2015-12-01

    Unprotected sunlight exposure is a risk factor for a variety of cutaneous cancers. Topically used dihydroxyacetone (DHA) creates, via Maillard reaction, chemically fixed keratin sunscreen in the stratum corneum with significant protection against UVA/Soret radiation. When used in conjunction with naphthoquinones a naphthoquinone-modified DHA Maillard reaction is produced that provides protection across the UVB/UVA/Soret spectra lasting up to 1 week, resisting sweating and contact removal. The aim of this study was to examine a simplified version of this formulation for effect on UV transmission and to determine if penetration levels merit toxicity concerns. Permeability was demonstrated for freshly prepared DHA (30 mg/mL) and lawsone (0.035 mg/mL) alone and in combination using a side-by-side diffusion apparatus at 37°C over 48 h across shed snake skin and dermatomed pig skin. These samples were then examined for effectiveness and safety. Concentrations were determined by HPLC and UPLC monitored from 250-500 nm. Lawsone flux significantly decreased across pig skin (20.8 (± 4.8) and 0.09 (± 0.1) mg/cm(2) h without and with DHA, respectively) but did not change across shed snake skin in the presence of DHA. Significantly reduced lawsone concentration was noted in donor chambers of combined solutions. Damage was not observed in any skins. Darker coloration with greater UV absorbance was observed in skins exposed to the combined solution versus individual solutions. This study confirmed that combined DHA and lawsone provided effective blocking of ultraviolet light through products bound in keratinized tissue. DHA permeation levels in pig skin suggest further in vitro and in vivo study is required to determine the safety of this system. PMID:25986597

  5. Cytotoxic Compounds from Juglans sinensis Dode Display Anti-Proliferative Activity by Inducing Apoptosis in Human Cancer Cells.

    PubMed

    Lee, Yoo Jin; Cui, Jun; Lee, Jun; Han, Ah-Reum; Lee, Eun Byul; Jang, Ho Hee; Seo, Eun Kyoung

    2016-01-01

    Phytochemical investigation of the bark of Juglans sinensis Dode (Juglandaceae) led to the isolation of two active compounds, 8-hydroxy-2-methoxy-1,4-naphthoquinone (1) and 5-hydroxy-2-methoxy-1,4-naphthoquinone (2), together with 15 known compounds 3-17. All compounds were isolated from this plant for the first time. The structures of 1 and 2 were elucidated by spectroscopic data analysis, including 1D and 2D NMR experiments. Compounds 1-17 were tested for their cytotoxicity against the A549 human lung cancer cell line; compounds 1 and 2 exhibited significant cytotoxicity and additionally had potent cytotoxicity against six human cancer cell lines, MCF7 (breast cancer), SNU423 (liver cancer), SH-SY5Y (neuroblastoma), HeLa (cervical cancer), HCT116 (colorectal cancer), and A549 (lung cancer). In particular, breast, colon, and lung cancer cells were more sensitive to the treatment using compound 1. In addition, compounds 1 and 2 showed strong cytotoxic activity towards human breast cancer cells MCF7, HS578T, and T47D, but not towards MCF10A normal-like breast cells. They also inhibited the colony formation of MCF7, A549, and HCT116 cells in a dose-dependent manner. Flow cytometry analysis revealed that the percentage of apoptotic cells significantly increased in MCF7 cells upon the treatment with compounds 1 and 2. The mechanism of cell death caused by compounds 1 and 2 may be attributed to the upregulation of Bax and downregulation of Bcl2. These findings suggest that compounds 1 and 2 may be regarded as potential therapeutic agents against cancer. PMID:26805799

  6. Synthesis of new chlorin?e6 trimethyl and protoporphyrin?IX dimethyl ester derivatives and their photophysical and electrochemical characterizations.

    PubMed

    Menezes, Jos C J M D S; Faustino, M Amparo F; de Oliveira, Kleber T; Uliana, Marciana P; Ferreira, Vitor F; Hackbarth, Steffen; Rder, Beate; Teixeira Tasso, Thiago; Furuyama, Taniyuki; Kobayashi, Nagao; Silva, Artur M S; Neves, M Graa P M S; Cavaleiro, Jos A S

    2014-10-13

    In view of increasing demands for efficient photosensitizers for photodynamic therapy (PDT), we herein report the synthesis and photophysical characterizations of new chlorin?e6 trimethyl ester and protoporphyrin?IX dimethyl ester dyads as free bases and Zn(II) complexes. The synthesis of these molecules linked at the ?-pyrrolic positions to pyrano[3,2-c]coumarin, pyrano[3,2-c]quinolinone, and pyrano[3,2-c]naphthoquinone moieties was performed by using the domino Knoevenagel hetero Diels-Alder reaction. The ?-methylenechromanes, ?-methylenequinoline, and ortho-quinone methides were generated in situ from a Knoevenagel reaction of 4-hydroxycoumarin, 4-hydroxy-6-methylcoumarin, 4-hydroxy-N-methylquinolinone, and 2-hydroxy-1,4-naphthoquinone, respectively, with paraformaldehyde in dioxane. All the dyads as free bases and as Zn(II) complexes were obtained in high yields. All new compounds were fully characterized by 1D and 2D NMR techniques, UV/Vis spectroscopy, and HRMS. Their photophysical properties were evaluated by measuring the fluorescence quantum yield, the singlet oxygen quantum yield by luminescence detection, and also the triplet lifetimes were correlated by flash photolysis and intersystem crossing (ISC) rates. The fluorescence lifetimes were measured by a time-correlated single photon count (TCSPC) method, fluorescence decay associated spectra (FDAS), and anisotropy measurements. Magnetic circular dichroism (MCD) and circular dichroism (CD) spectra were recorded for one Zn(II) complex in order to obtain information, respectively, on the electronic and conformational states, and interpretation of these spectra was enhanced by molecular orbital (MO) calculations. Electrochemical studies of the Zn(II) complexes were also carried out to gain insights into their behavior for such applications. PMID:25171181

  7. Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells.

    PubMed

    Cimmino, Alessio; Mathieu, Véronique; Evidente, Marco; Ferderin, Marlène; Moreno Y Banuls, Laetitia; Masi, Marco; De Carvalho, Annelise; Kiss, Robert; Evidente, Antonio

    2016-03-01

    Impatiens glandulifera has been imported from Himalaya in Europe and is considered as an invasive alien plant whose spreading arouses increasing interest among scientific literature. Via anti-cancer bioguiding, two new glucosylated steroids, named glanduliferins A and B, were isolated from the dried stem of I. glandulifera plants, together with the well-known α-spinasterol and 2-methoxy-1,4-naphthoquinone, which are also isolated from roots and leaves. They were characterized as 17-(2-hydroxy-2-pentamethylcyclopropyl-ethyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(4-O-acetyl)-α-d-glucopyranoside and 17-(4-ethyl-1,5-dimethyl-hex-2-enyl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopents[a]phenathren-3-O-(6-O-acetyl)-β-D-glucopyranoside using various NMR and HRESIMS techniques and chemical methods. In vitro determination of the growth inhibitory activity of the four isolated compounds using the MTT colorimetric assay revealed mean IC50 growth inhibitory value of ~30μM for glanduliferin A while glanduliferin B and α-spinasterol were poorly active till 100μM. 2-methoxy-1,4-naphthoquinone revealed to be active in the single micromolar digit range as previously described. Quantitative videomicroscopy analyses of the effects of glanduliferins A and B suggested cytostatic rather than cytotoxic activity in U373 glioblastoma (GBM) cells. PMID:26732071

  8. Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells

    PubMed Central

    Pan, Shu-Ting; Qin, Yiru; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Zhou, Shu-Feng; Qiu, Jia-Xuan

    2015-01-01

    Tongue squamous cell carcinoma (TSCC) is the most common malignancy in oral and maxillofacial tumors with highly metastatic characteristics. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone; PLB), a natural naphthoquinone derived from the roots of Plumbaginaceae plants, exhibits various bioactivities, including anticancer effects. However, the potential molecular targets and underlying mechanisms of PLB in the treatment of TSCC remain elusive. This study employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic approach to investigate the molecular interactome of PLB in human TSCC cell line SCC25 and elucidate the molecular mechanisms. The proteomic data indicated that PLB inhibited cell proliferation, activated death receptor-mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT) and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC) and l-glutathione (GSH) abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC. PMID:26491260

  9. Environmental fate and toxicology of carbaryl.

    PubMed

    Gunasekara, Amrith S; Rubin, Andrew L; Goh, Kean S; Spurlock, Frank C; Tjeerdema, Ronald S

    2008-01-01

    Carbaryl is an agricultural and garden insecticide that controls a broad spectrum of insects. Although moderately water soluble, it neither vaporizes nor volatilizes readily. However, upon spray application the insecticide is susceptible to drift. It is unstable under alkaline conditions, thus easily hydrolyzed. Carbaryl has been detected in water at ppb concentrations but degradation is relatively rapid, with 1-naphthol identified as the major degradation product. Indirect and direct photolysis of carbaryl produces different naphthoquinones as well as some hydroxyl substituted naphthoquinones. Sorption of the insecticide to soil is kinetically rapid. However, although both the mineral and organic fractions contribute, because of its moderate water solubility it is only minimally sorbed. Also, sorption to soil minerals strongly depends on the presence of specific exchangeable cations and increases with organic matter aromaticity and age. Soil microbes (bacteria and fungi) are capable of degrading carbaryl; the process is more rapid in anoxic than aerobic systems and with increased temperature and moisture. Carbaryl presents a significant problem to pregnant dogs and their offspring, but some have questioned the applicability of these data to humans. In addition, for toxicokinetic and/or physiological reasons, it has been argued that dogs are more sensitive than humans to carbaryl-induced reproductive or developmental toxicity. However, these arguments are based on either older pharmacokinetic studies or on speculation about possible reproductive differences between dogs on the one hand and rats and humans on the other. In view of the wider evidence from both human epidemiological and laboratory animal studies, the question of the possible developmental and reproductive toxicity of carbaryl should be considered open and requiring further study. PMID:19025094

  10. Effect of venotropic drugs on the respiratory activity of isolated mitochondria and in endothelial cells.

    PubMed

    Janssens, D; Delaive, E; Houbion, A; Eliaers, F; Remacle, J; Michiels, C

    2000-08-01

    Several drugs used in the treatment of chronic peripheral ischaemic and venous diseases, i.e. aescine, Cyclo 3, Ginkor Fort, hydroxyethylrutosides, naftidrofuryl, naphthoquinone and procyanidolic oligomers, were tested on the mitochondrial respiratory activity. The results show that all these drugs protected human endothelial cells against the hypoxia-induced decrease in ATP content. In addition, they all induced a concentration-dependent increase in respiratory control ratio (RCR) of liver mitochondria pre-incubated with the drugs for 60 min. The drugs were divided into two groups according to their effects. The first group (A), comprising aescine, Ginkor Fort, naftidrofuryl and naphthoquinone, increased RCR by decreasing state 4 respiration rate. The second group of drugs (B), comprising hydroxyethylrutosides, procyanidolic oligomers and Cyclo 3, increased RCR by increasing state 3 respiration rate. The drugs of group A were able to prevent the inhibition of complexes I and III respectively by amytal and antimycin A while the first two drugs of group B increased adenine nucleotide translocase activity. Cyclo 3 inhibited the carbonylcyanide m-chlorophenyl hydrazone (mCCP)-induced uncoupling of mitochondrial respiration. None of these seven drugs could protect complexes IV and V, respectively, from inhibition by cyanide and oligomycin. When tested on endothelial cells the drugs of group A, in contrast to group B, prevented the decrease in ATP content induced by amytal or antimycin A. The present results suggest that the protective effects on mitochondrial respiration activity by these venotropic drugs may explain their protective effect on the cellular ATP content in ischaemic conditions and some of their beneficial therapeutic effect in chronic vascular diseases. PMID:10928952

  11. Effect of venotropic drugs on the respiratory activity of isolated mitochondria and in endothelial cells

    PubMed Central

    Janssens, Dominique; Delaive, Edouard; Houbion, Andre; Eliaers, Franois; Remacle, Jos; Michiels, Carine

    2000-01-01

    Several drugs used in the treatment of chronic peripheral ischaemic and venous diseases, i.e. aescine, Cyclo 3, Ginkor Fort, hydroxyethylrutosides, naftidrofuryl, naphthoquinone and procyanidolic oligomers, were tested on the mitochondrial respiratory activity. The results show that all these drugs protected human endothelial cells against the hypoxia-induced decrease in ATP content. In addition, they all induced a concentration-dependent increase in respiratory control ratio (RCR) of liver mitochondria pre-incubated with the drugs for 60?min. The drugs were divided into two groups according to their effects. The first group (A), comprising aescine, Ginkor Fort, naftidrofuryl and naphthoquinone, increased RCR by decreasing state 4 respiration rate. The second group of drugs (B), comprising hydroxyethylrutosides, procyanidolic oligomers and Cyclo 3, increased RCR by increasing state 3 respiration rate. The drugs of group A were able to prevent the inhibition of complexes I and III respectively by amytal and antimycin A while the first two drugs of group B increased adenine nucleotide translocase activity. Cyclo 3 inhibited the carbonylcyanide m-chlorophenyl hydrazone (mCCP)-induced uncoupling of mitochondrial respiration. None of these seven drugs could protect complexes IV and V, respectively, from inhibition by cyanide and oligomycin. When tested on endothelial cells the drugs of group A, in contrast to group B, prevented the decrease in ATP content induced by amytal or antimycin A. The present results suggest that the protective effects on mitochondrial respiration activity by these venotropic drugs may explain their protective effect on the cellular ATP content in ischaemic conditions and some of their beneficial therapeutic effect in chronic vascular diseases. PMID:10928952

  12. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity - Assessing the importance of quinones and atmospheric aging

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Wang, Ying; El-Afifi, Rawan; Fang, Ting; Rowland, Janessa; Russell, Armistead G.; Weber, Rodney J.

    2015-11-01

    In this paper, we present a technique to identify the redox-active components of fine organic aerosols by fractionating humic-like substances (HULIS). We applied this technique to a dithiothreitol (DTT) assay - a measure of the capability of PM to generate reactive oxygen species (ROS), and assessed the contribution of quinones to the DTT activity of ambient water-soluble PM. Filter samples from the Southeastern Center for Air Pollution & Epidemiology (SCAPE) were extracted in water and then passed-through a C-18 column to isolate the HULIS fraction by retention on the column. The HULIS was then eluted with a sequence of solvents of increasing polarity, i.e., hexane, dichloromethane (DCM) and then methanol. Each of these eluted fractions was analyzed for DTT activity. The methanol fraction was found to possess most of the DTT activity (>70%), while the hexane fraction had the least activity (<5%), suggesting that the ROS-active compounds of ambient water-soluble PM2.5 HULIS are mostly polar in nature. A number of quinones thought to contribute to ambient PM DTT activity were also tested. 1,4 Naphthoquinone (1,4 NQ), 1,2 Naphthoquinone (1,2 NQ), 9,10 Phenanthrenequinone (PQ), and 5-hydroxy-1,4 NQ were analyzed by the same protocol. The hexane fraction of two quinones (PQ, and 1,4 NQ) was the most-DTT active, while methanol was the least, confirming that PQ, 1,4 NQ, and 1,2 NQ (which could not be recovered from the column) do not contribute significantly to the water-soluble DTT activity of ambient PM2.5. However, an oxygenated derivative of 1,4 NQ, (5-hydroxy-1,4 NQ), which is also intrinsically more DTT-active than 1,4 NQ, was mostly (>60%) eluted in methanol. The results demonstrate the importance of atmospheric aging (oxidation) of organic aerosols in enhancing the ROS activity of ambient PM.

  13. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells

    PubMed Central

    Pan, Shu-Ting; Qin, Yiru; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone; PLB), a naturally occurring naphthoquinone isolated from the roots of Plumbaginaceae plants, has been reported to possess anticancer activities in both in vitro and in vivo studies, but the effect of PLB on tongue squamous cell carcinoma (TSCC) is not fully understood. This study aimed to investigate the effects of PLB on cell cycle distribution, apoptosis, and autophagy, and the underlying mechanisms in the human TSCC cell line SCC25. The results have revealed that PLB exerted potent inducing effects on cell cycle arrest, apoptosis, and autophagy in SCC25 cells. PLB arrested SCC25 cells at the G2/M phase in a concentration- and time-dependent manner with a decrease in the expression level of cell division cycle protein 2 homolog (Cdc2) and cyclin B1 and increase in the expression level of p21 Waf1/Cip1, p27 Kip1, and p53 in SCC25 cells. PLB markedly induced apoptosis and autophagy in SCC25 cells. PLB decreased the expression of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) while increasing the expression level of the pro-apoptotic protein Bcl-2-associated X protein (Bax) in SCC25 cells. Furthermore, PLB inhibited phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), glycogen synthase kinase 3? (GSK3?), and p38 mitogen-activated protein kinase (p38 MAPK) pathways as indicated by the alteration in the ratio of phosphorylation level over total protein expression level, contributing to the autophagy inducing effect. In addition, we found that wortmannin (a PI3K inhibitor) and SB202190 (a selective inhibitor of p38 MAPK) strikingly enhanced PLB-induced autophagy in SCC25 cells, suggesting the involvement of PI3K- and p38 MAPK-mediated signaling pathways. Moreover, PLB induced intracellular reactive oxygen species (ROS) generation and this effect was attenuated by l-glutathione (GSH) and n-acetyl-l-cysteine (NAC). Taken together, these results indicate that PLB promotes cellular apoptosis and autophagy in TSCC cells involving p38 MAPK- and PI3K/Akt/mTOR-mediated pathways with contribution from the GSK3? and ROS-mediated pathways. PMID:25834400

  14. Cytotoxic constituents from the stems of Diospyros maritima.

    PubMed

    Kuo, Y H; Chang, C I; Li, S Y; Chou, C J; Chen, C F; Kuo, Y H; Lee, K H

    1997-08-01

    One novel coumaric acid ester of lupeol, dioslupecin A (1), three naphthoquinones, 8'-hydroxyisodiospyrin (2), isodiospyrin (3), and plumbagin (4), three triterpenes, lupeol, lupenone and taraxerone, and four sterols, beta-sitosterol, stigmasterol, stigmast-4-en-3-one and ergosta-4,6,8(14),22-tetraen-3-one were isolated from the n-hexane extract of the stems of Diospyros maritima Blume. The structural determination of 1 was based on 1D and 2D NMR spectra (including 1H-1H COSY, 1H-13C COSY, and HMBC). All compounds were evaluated for in vitro cytotoxicity in 4 cancer cell lines. Compound 2 showed similar cytotoxicity against hepatoma (HEPA-3B, ED50 = 1.72 micrograms/ml), nasopharynx carcinoma (KB, ED50 = 1.85 micrograms/ml), colon carcinoma (COLO-205, ED50 = 2.24 micrograms/ml) and cervical carcinoma (HELA, ED50 = 1.92 micrograms/ml). Compounds 3 and 4 exhibited strong cytotoxicity against HEPA-3B, KB, COLO-205 and HELA (ED50 = 0.25, 1.81, 0.13 and 0.27 micrograms/ml for 3; ED50 = 0.87, 3.27, 0.56 and 0.35 micrograms/ml for 4, respectively. PMID:9270382

  15. AhR sensing of bacterial pigments regulates antibacterial defence.

    PubMed

    Moura-Alves, Pedro; Fa, Kellen; Houthuys, Erica; Dorhoi, Anca; Kreuchwig, Annika; Furkert, Jens; Barison, Nicola; Diehl, Anne; Munder, Antje; Constant, Patricia; Skrahina, Tatsiana; Guhlich-Bornhof, Ute; Klemm, Marion; Koehler, Anne-Britta; Bandermann, Silke; Goosmann, Christian; Mollenkopf, Hans-Joachim; Hurwitz, Robert; Brinkmann, Volker; Fillatreau, Simon; Daffe, Mamadou; Tmmler, Burkhard; Kolbe, Michael; Oschkinat, Hartmut; Krause, Gerd; Kaufmann, Stefan H E

    2014-08-28

    The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns. PMID:25119038

  16. Synthesis, Photochemical and Photoinduced Antibacterial Activity Studies of meso-Tetra(pyren-1-yl)porphyrin and its Ni, Cu and Zn Complexes

    PubMed Central

    Zoltan, Tamara; Vargas, Franklin; Rivas, Carlos; Lpez, Vernica; Perez, Jhackelym; Biasutto, Antonio

    2010-01-01

    The synthesis of the meso-tetra(pyren-1-yl)porphyrin (1) was successfully accomplished by means of the pyrrole condensation with pyrene-1-carb-aldehyde in acidic media. Its metallization was carried out in an almost quantitative yield to obtain the corresponding complexes of Ni(II) (2), Cu(II) (3) and Zn (4). Their photophysical properties such as fluorescence quantum yield and energy transfer to oxygen for an efficient generation of singlet oxygen were determined. Their photophysical and photochemical properties were compared with those of other similar porphyrin derivatives such as tetraphenylporphyrin and tetranaphthylporphyrin. Photochemical studies on their effectiveness as photosensitizer were carried out by means of the photoinduced oxidation of aromatic alcohols like ?-naphthol to naphthoquinone. The antibacterial photoactivity assay for compounds 14 was testeted against Escherichia coli (ATCC 8739) and its proliferation and viability were measured by chemiluminescence. An efficient inactivation of E. coli was observed. This was more efficient for compounds 2 and 3, following the direct relationship to high generation of singlet oxygen by these compounds. PMID:21179316

  17. A portable optical human sweat sensor

    NASA Astrophysics Data System (ADS)

    Al-omari, Mahmoud; Liu, Gengchen; Mueller, Anja; Mock, Adam; Ghosh, Ruby N.; Smith, Kyle; Kaya, Tolga

    2014-11-01

    We describe the use of HNQ (2-hydroxy-1,4-naphthoquinone or Lawsone) as a potential sweat sensor material to detect the hydration levels of human beings. We have conducted optical measurements using both artificial and human sweat to validate our approach. We have determined that the dominant compound that affects HNQ absorbance in artificial sweat is sodium. The presence of lactate decreases the reactivity of HNQ while urea promotes more interactions of sodium and potassium ions with HNQ. The interactions between the hydroxyl group of HNQ and the artificial sweat components (salts, lactic acid, and urea) were investigated comprehensively. We have also proposed and developed a portable diode laser absorption sensor system that converts the absorbance at a particular wavelength range (at 455 ± 5 nm, where HNQ has an absorbance peak) into light intensity measurements via a photocell. The absorbance intensity values obtained from our portable sensor system agrees within 10.4% with measurements from a laboratory based ultraviolet-visible spectrometer. Findings of this research will provide significant information for researchers who are focusing on real-time, in-situ hydration level detection.

  18. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans.

    PubMed

    Lee, Sung Ae; Choi, Youngjin; Jung, Seunho; Kim, Sunghyun

    2002-09-01

    An electrochemical system consisted of Gluconobacter oxydans as a microorganism and 2-hydroxy-1,4-naphthoquinone (HNQ) as a mediator has been setup to examine the effect of initial carbon sources on the detection of glucose. Catalytic current due to the oxidation of glucose was observed only when both G. oxydans and HNQ were present. From amperometric measurements, it was found that the sensitivity strongly depended on the initial carbon sources. The sensitivity was highest for the cells cultured in a fructose-containing medium and decreased in the order, mannitol > sucrose > glucose > galactose > glycerol. The difference in sensitivity was explained by considering the current rising pattern at an initial stage of a microbial fuel cell constructed with the same components. The rising time, not the fuel cell efficiency, could directly be related to the sensitivity order. A sensor where G. oxydans was confined at the vicinity of the electrode by the semipermeable membrane was constructed. A linear response over a millimolar range of glucose concentration was observed with a cell grown in galactose-containing medium. This work demonstrates that the initial carbon source play an important role on glucose sensoring and should be considered in a real application. PMID:12160615

  19. Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-01

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

  20. Medium-dependent interactions of quinones with cytosine and cytidine: a laser flash photolysis study with magnetic field effect.

    PubMed

    Bose, Adity; Basu, Samita

    2009-03-01

    Laser flash photolysis and an external magnetic field have been used for the study of the interaction of two quinone molecules, namely, 9,10-anthraquinone (AQ) and 2-methyl 1,4-naphthoquinone (or menadione, MQ) with a DNA base, cytosine (C) and its nucleoside cytidine (dC) in two media, a homogeneous one composed of acetonitrile/water (ACN/H(2)O, 9:1, v/v) and a SDS micellar heterogeneous one. We have applied an external magnetic field for the proper identification of the transients formed during the interactions in micellar media. Cytosine exhibits electron transfer (ET) followed by hydrogen abstraction (HA) while dC reveals a reduced ET compared to C, with both quinones in organic homogeneous medium (ACN/H(2)O). Due to a higher electron affinity, AQ supports more faciler ET than MQ with dC in ACN/H(2)O but observations in SDS have been just the reverse. In SDS, ET from dC is completely quenched and a dominant HA is all that could be discerned. This work reveals two main findings: first, a drop in ET on addition of a ribose unit to C, which has been attributed to a role of keto-enol tautomerism in inducing ET from electron-rich nucleus and second, the effect of medium in controlling reaction mechanism by favoring HA with AQ although it is intrinsically more prone towards ET. PMID:19121557

  1. Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae) - future perspectives and ethnopharmacological relevance.

    PubMed

    Egan, Paul A; van der Kooy, Frank

    2013-10-01

    Species of the carnivorous genus Drosera L. have long been a source of valuable natural products. The various phytochemicals characteristic of these species, particularly 1,4-naphthoquinones and flavonoids, have contributed to the diverse utilization of sundews in traditional medicine systems worldwide. A growing number of studies have sought to investigate the comparative phytochemistry of Drosera species for improved sources of pharmaceutically important compounds. The outcomes of these studies are here collated, with emergent trends discussed in detail. Important factors which affect production of secondary metabolites in plants are critically examined, such as environmental influences and in vitro culture, and recommendations subsequently presented based on this. Explicitly, the current review aims to i) present an updated, comprehensive listing of the phytochemical constituents of the genus (including quantitative data where available), ii) summarize important factors which may influence the production of phytopharmaceuticals in plants, and iii) recommend guidelines for future research based on the above, including improved standardization and quality control. We have also included a section discussing future perspectives of research on Drosera spp. based on three different research lines i) the potential to produce much needed lead compounds for treatment of tuberculosis, ii) the potential role of anthocyanins in nitrogen transport, and iii) research into 'Natural Deep Eutectic' solvents produced by Drosera spp. in the droplets or 'dew' employed to capture insect prey. PMID:24130022

  2. Discovery and Development of Natural Product-derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach⊥†

    PubMed Central

    Lee, Kuo-Hsiung

    2010-01-01

    Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogs, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analog synthesis, as well as structure-activity relationship and mechanism of action studies. Current clinical trials agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in Phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called “maturation inhibitors”. In addition, an etoposide analog, GL-331, progressed to anticancer Phase II clinical trials, and the curcumin analog JC-9 is in Phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trials candidates will also be discussed. PMID:20187635

  3. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes.

    PubMed Central

    Roberg, K.; Ollinger, K.

    1998-01-01

    Exposing neonatal rat heart myocytes to the redox cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) for 15 to 45 minutes led to a time-dependent release of cathepsin D from many secondary lysosomes to the cytosol, as analyzed by morphometry. Cathepsin D was detected electron microscopically using a pre-embedding immunostaining technique that utilizes antibodies conjugated to ultra-small (0.8-nm) gold particles and subsequent silver enhancement. The exposure to naphthazarin also caused a decrease in both the pH and the ATP level of the cells within the same time frame. Lipid peroxidation was, however, not detected. Pretreatment of the cultures with alpha-tocopherol succinate prevented cathepsin D relocation, as shown by immunofluorescence. After exposure to naphthazarin, cells were washed, and normal culture conditions were re-established for 18 hours. Many cells then showed apoptotic morphology (ie, cellular shrinkage and chromatin condensation) as analyzed by Giemsa staining. Also, 41% of the cells stained positive with the TUNEL technique, and DNA fragmentation was detected by separation of intact and fragmented DNA. Apoptosis was significantly decreased in cultures pretreated with alpha-tocopherol succinate. Images Figure 1 Figure 3 PMID:9588882

  4. Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases

    NASA Astrophysics Data System (ADS)

    Delgado-Saborit, Juana Maria; Alam, Mohammed S.; Godri Pollitt, Krystal J.; Stark, Christopher; Harrison, Roy M.

    2013-10-01

    Polycyclic aromatic hydrocarbons (PAH) are often measured in studies of atmospheric chemistry or health effects of air pollution, due to their known human carcinogenicity. In recent years, PAH quinone derivatives have also become a focus of interest, primarily because they can contribute to oxidative stress. This work reports concentrations of 17 PAH and 15 quinones measured in air samples collected at a trafficked roadside. Data are presented for four compounds not previously reported in ambient air: 2-methyl-1,4-naphthoquinone, 2,6-di-tert-butyl-1,4-benzoquinone, methyl-1,4-benzoquinone and 2,3-dimethylanthraquinone, and a large vapour phase component is measured, not analysed in most earlier studies. Analyses are reported also for SRM 1649a and 1649b, including many compounds (8 for SRM 1649a and 12 for SRM 1649b) for which concentrations have not previously been reported. This work assesses the vapour/particle phase distribution of PAHs and quinones in relation to their molecular weight, vapour pressure, polarity and Henry's Law constant, finding that both molecular weight and vapour pressure (which are correlated) are good predictors of the partitioning.

  5. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes.

    PubMed

    Di Monte, D; Ross, D; Bellomo, G; Eklw, L; Orrenius, S

    1984-12-01

    The effects of menadione (2-methyl-1,4-naphthoquinone) metabolism on intracellular soluble and protein-bound thiols were investigated in freshly isolated rat hepatocytes. Menadione was found to cause a dose-dependent decrease in intracellular glutathione (GSH) level by three different mechanisms: (a) Oxidation of GSH to glutathione disulfide (GSSG) accounted for 75% of the total GSH loss; (b) About 15% of the cellular GSH reacted directly with menadione to produce a GSH-menadione conjugate which, once formed, was excreted by the cells into the medium; (c) A small amount of GSH (approximately 10%) was recovered by reductive treatment of cell protein with NaBH4, indicating that GSH-protein mixed disulfides were also formed as a result of menadione metabolism. Incubation of hepatocytes with high concentrations of menadione (greater than 200 microM) also induced a marked decrease in protein sulfhydryl groups; this was due to arylation as well as oxidation. Binding of menadione represented, however, a relatively small fraction of the total loss of cellular sulfhydryl groups, since it was possible to recover about 80% of the protein thiols by reductive treatments which did not affect protein binding. This suggests that the loss of protein sulfhydryl groups, like that of GSH, was mainly a result of oxidative processes occurring within the cell during the metabolism of menadione. PMID:6097182

  6. Combined experimental and simulation studies suggest a revised mode of action of the anti-Alzheimer disease drug NQ-Trp.

    PubMed

    Berthoumieu, Olivia; Nguyen, Phuong H; Castillo-Frias, Maria P Del; Ferre, Sabrina; Tarus, Bogdan; Nasica-Labouze, Jessica; Noël, Sabrina; Saurel, Olivier; Rampon, Claire; Doig, Andrew J; Derreumaux, Philippe; Faller, Peter

    2015-09-01

    Inhibition of the aggregation of the monomeric peptide β-amyloid (Aβ) into oligomers is a widely studied therapeutic approach in Alzheimer's disease (AD). Many small molecules have been reported to work in this way, including 1,4-naphthoquinon-2-yl-L-tryptophan (NQ-Trp). NQ-Trp has been reported to inhibit aggregation, to rescue cells from Aβ toxicity, and showed complete phenotypic recovery in an in vivo AD model. In this work we investigated its molecular mechanism by using a combined approach of experimental and theoretical studies, and obtained converging results. NQ-Trp is a relatively weak inhibitor and the fluorescence data obtained by employing the fluorophore widely used to monitor aggregation into fibrils can be misinterpreted due to the inner filter effect. Simulations and NMR experiments showed that NQ-Trp has no specific "binding site"-type interaction with mono- and dimeric Aβ, which could explain its low inhibitory efficiency. This suggests that the reported anti-AD activity of NQ-Trp-type molecules in in vivo models has to involve another mechanism. This study has revealed the potential pitfalls in the development of aggregation inhibitors for amyloidogenic peptides, which are of general interest for all the molecules studied in the context of inhibiting the formation of toxic aggregates. PMID:26179053

  7. Biological evaluation of hydroxynaphthoquinones as anti-malarials

    PubMed Central

    2013-01-01

    Background The hydroxynaphthoquinones have been extensively investigated over the past 50years for their anti-malarial activity. One member of this class, atovaquone, is combined with proguanil in Malarone, an important drug for the treatment and prevention of malaria. Methods Anti-malarial activity was assessed in vitro for a series of 3-alkyl-2-hydroxy-1,4-naphthoquinones (N1-N5) evaluating the parasitaemia after 48hours of incubation. Potential cytotoxicity in HEK293T cells was assessed using the MTT assay. Changes in mitochondrial membrane potential of Plasmodium were measured using the fluorescent dye Mitrotracker Red CMXROS. Results Four compounds demonstrated IC50s in the mid-micromolar range, and the most active compound, N3, had an IC50 of 443 nM. N3 disrupted mitochondrial membrane potential, and after 1hour presented an IC50??mit of 16?M. In an in vitro cytotoxicity assay using HEK 293T cells N3 demonstrated no cytotoxicity at concentrations up to 16?M. Conclusions N3 was a potent inhibitor of mitochondrial electron transport, had nanomolar activity against cultured Plasmodium falciparum and showed minimal cytotoxicity. N3 may serve as a starting point for the design of new hydroxynaphthoquinone anti-malarials. PMID:23841934

  8. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2014-08-15

    Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases. PMID:24953531

  9. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy

    SciTech Connect

    Burda, C.; Green, T.C.; Link, S.; El-Sayed, M.A.

    1999-03-18

    The formation and decay of the optical hole (bleach) for 4 nm CdSe nanoparticles (NPs) with adsorbed electron acceptors (1,4-benzoquinone and 1,2-naphthoquinone) and the rise and decay of the reduced electron acceptors formed after interfacial electron transfer from the CdSe NPs were investigated by femtosecond laser spectroscopy. The ultrashort (200--400 fs) rise times of the bleach at the band-gap energy of the CdSe NP as well as of the acceptor radical anion are found to increase with increasing the excitation energy. This suggests that the electron transfer from the CdSe NP to the quinone electron acceptor occurs after thermalization of the excited hot electrons. The decay times of the transient absorption for the electron acceptor radical anions are found to be comparable to that of the CdSe NP bleach recovery time (3 ps). This suggests that the surface quinones shuttle the electron from the conduction band to the valence band of the excited NP. The authors contrast this behavior with the excited-state dynamics of the recently investigated CdS-MV{sup 2+} system in which the electron acceptor does not shuttle the accepted electron back to the hole in CdS.

  10. New spectrofluorimetric method for determination of cephalosporins in pharmaceutical formulations.

    PubMed

    Elbashir, Abdalla A; Ahmed, Shazalia M Ali; Aboul-Enein, Hassan Y

    2012-05-01

    Simple, accurate and sensitive spectrofluorimetric method has been proposed for the determination of three cephalosporins, namely; cefixime (cefi), cephalexine (ceph), cefotaxime sodium (cefo) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1, 2-naphthoquinone-4-sulfonic (NQS) in alkaline medium, at pH values of 12.0 for cefi and 13.0 for ceph and cefo to give highly fluorescent derivatives extracted with chloroform and subsequently measured at 600,580 and 580 nm after excitation at 520,455 and 490 nm for cefi, ceph and cefo respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 10-35 ng/mL, 10-60 ng/mL and 20-45 ng/mL for cefi,ceph and cefo, respectively. The detection limits were 2.02 ng/mL, 2.09 ng/mL and 2.30 ng/mL for cefi, ceph and cefo, respectively, with a linear regression correlation coefficient of 0.9987, 0.9995 and 0.9991 and recoveries in range from 98.5-107.04, 95.17-101.00 and 95.00-109.55% for cefi, ceph and cefo, respectively. This method is simple and can be applied for the determination of cefi, ceph and cefo in pharmaceutical formulations in quality control laboratories. PMID:22160361

  11. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway.

    PubMed

    Liang, Dejie; Sun, Yong; Shen, Yongbin; Li, Fengyang; Song, Xiaojing; Zhou, Ershun; Zhao, Fuyi; Liu, Zhicheng; Fu, Yunhe; Guo, Mengyao; Zhang, Naisheng; Yang, Zhengtao; Cao, Yongguo

    2013-08-01

    Shikonin, an analog of naphthoquinone pigments isolated from the root of Lithospermum erythrorhyzon, was recently reported to exert beneficial anti-inflammatory effects both in vivo and in vitro. The present study aimed to investigate the potential therapeutic effect of shikonin in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Dexamethasone was used as a positive control to evaluate the anti-inflammatory effect of shikonin in the study. Pretreatment with shikonin (intraperitoneal injection) significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and markedly attenuated myeloperoxidase activity. Furthermore, shikonin significantly reduced the concentrations of TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid induced by LPS. Compared with the LPS group, lung histopathologic changes were less pronounced in the shikonin-pretreated mice. Additionally, Western blotting results showed that shikonin efficiently decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα. These results suggest that shikonin exerts anti-inflammatory properties in LPS-mediated ALI, possibly through inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Shikonin may be a potential agent for the prophylaxis of ALI. PMID:23651796

  12. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity.

    PubMed

    Wang, Zhenhua; Liu, Ting; Gan, Lu; Wang, Ting; Yuan, Xuan; Zhang, Bo; Chen, Hanying; Zheng, Qiusheng

    2010-09-25

    The aim of our study was to investigate the neuroprotective properties of shikonin, a naphthoquinone pigment isolated from the roots of the traditional Chinese herb Lithospermum erythrorhizon. In the present study, mice were divided randomly into sham, model, shikonin and edaravone-treated groups. Shikonin (50, 25, and 12.5mg/kg, i.g.) or maize oil was administered three times before ischemia and once at 2h after the onset of ischemia. Mice were anesthetized with chloral hydrate and subjected to middle cerebral artery 2h of occlusion and then 22h of reperfusion. Different antioxidant assays were employed in order to evaluate the antioxidant activities of shikonin in vitro. Neurological deficit, infarct size, histopathology changes and oxidative stress markers were evaluated after 22h of reperfusion. In comparison with the model group, treatment with shikonin significantly decreased neurological deficit scores, infarct size, the levels of malondialdehyde(MDA), carbonyl and reactive oxygen species, and attenuated neuronal damage, up-regulated superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) activities and reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio. Taken together, these results suggested that the neuroprotective effects of shikonin against cerebral ischemia/reperfusion injury may be attributed to its antioxidant effects. PMID:20599918

  13. Apoptosis induced by β,β-dimethylacrylshikonin is associated with Bcl-2 and NF-κB in human breast carcinoma MCF-7 cells.

    PubMed

    Xiong, Yao; Ma, Xiu-Ying; Zhang, Ziran; Shao, Zhen-Jun; Zhang, Yuan-Yuan; Zhou, Li-Ming

    2013-12-01

    β,β-dimethylacrylshikonin (DA) is a natural naphthoquinone derivative compound of Lithospermum erythrorhizon with various biological activities. The present study aimed to investigate the inhibitory effects and underlying mechanisms of DA in human breast carcinoma MCF-7 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DA inhibited the proliferation of MCF-7 cells in a dose- and time-dependent manner. The half maximal inhibitory concentration of DA with regard to the proliferation of MCF-7 cells was 0.050±0.016 mM. The characteristics of cell apoptosis, including cell shrinkage, nuclear pyknosis and chromatin condensation, were all observed in DA-treated cells. DA decreased the expression levels of Bcl-2 and increased the expression of Bax and caspase-3 compared with those in the control. DA inhibited the activity of the nuclear factor (NF)-κB pathway, by downregulating the expression of the p65 subunit, and inhibited the Iκb phosphorylation. DA inhibits the proliferation of MCF-7 cells in vitro by inducing apoptosis through the downregulation of Bcl-2, upregulation of Bax and partial inactivation of the NF-κB pathway. PMID:24260077

  14. Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in BALB/c mice.

    PubMed

    Andújar, Isabel; Ríos, José Luis; Giner, Rosa María; Miguel Cerdá, José; Recio, María Del Carmen

    2012-01-01

    The naphthoquinone shikonin, a major component of the root of Lithospermum erythrorhizon, now is studied as an anti-inflammatory agent in the treatment of ulcerative colitis (UC). Acute UC was induced in Balb/C mice by oral administration of 5% dextran sodium sulfate (DSS). The disease activity index was evaluated, and a histologic study was carried out. Orally administered shikonin reduces induced UC in a dose-dependent manner, preventing the shortening of the colorectum and decreasing weight loss by 5% while improving the appearance of feces and preventing bloody stools. The disease activity index score was much lower in shikonin-treated mice than in the colitic group, as well as the myeloperoxidase activity. The expression of cyclooxygenase-2 was reduced by 75%, activation of NF-κB was reduced by 44%, and that of pSTAT-3 by 47%, as well as TNF-α, IL-1β, and IL-6 production. Similar results were obtained in primary macrophages culture. This is the first report of shikonin's ability to attenuate acute UC induced by DSS. Shikonin acts by blocking the activation of two major targets: NF-κB and STAT-3, and thus constitutes a promising potential therapeutic agent for the management of the inflammatory bowel disease. PMID:23346196

  15. Shikonin inhibits adipogenic differentiation via regulation of mir-34a-FKBP1B.

    PubMed

    Jang, Young Jin; Jung, Chang Hwa; Ahn, Jiyun; Gwon, So Young; Ha, Tae Youl

    2015-11-27

    Shikonin is a naturally occurring naphthoquinone pigment and a major constituent present in Lithospermum erythrorhizon. Since microRNAs (miRNAs) are one of the key post-transcriptional regulators of adipogenesis, their manipulation represents a potential new strategy to inhibit adipogenesis. Our aim was to investigate shikonin-dependent inhibition of adipogenesis with an emphasis on miRNA-related processes. Mir-34a increased during induced adipogenesis, and this was suppressed in the presence of shikonin. mRNA expression of FKBP1B, a suggested target of mir-34a according to bioinformatics studies, decreased during adipogenesis, but was recovered by shikonin treatment, which reversely correlated with mir-34a expression. A mir-34a inhibitor suppressed MDI-induced adipogenesis by blocking PPARγ and C/EBPα expression, while suppression of mir-34a recovered MDI-induced down-regulation of FKBP1B expression. A mir-34a mimic decreased FKBP1B mRNA expression in 3T3-L1 preadipocytes. We also observed that mir-34a bound directly to the 3'-untranslated region of FKBP1B. Finally, FKBP1B overexpression attenuated MDI-induced adipogenesis, PPARγ, and C/EBPα expression. These results suggest that mir-34a regulates adipogenesis by targeting FKBP1B expression. Our findings reveal that shikonin prevents adipogenesis by blocking the mir-34a-FKBP1B pathway which represents a promising potential target for preventing obesity. PMID:26471303

  16. The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Lee, Young-Seob; Lee, Dae-Young; Kim, Yeon Bok; Lee, Sang-Won; Cha, Seon-Woo; Park, Hong-Woo; Kim, Geum-Soog; Kwon, Dong-Yeul; Lee, Min-Ho; Han, Sin-Hee

    2015-01-01

    Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N'-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds. PMID:26265924

  17. The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Lee, Young-Seob; Lee, Dae-Young; Kim, Yeon Bok; Lee, Sang-Won; Cha, Seon-Woo; Park, Hong-Woo; Kim, Geum-Soog; Kwon, Dong-Yeul; Lee, Min-Ho; Han, Sin-Hee

    2015-01-01

    Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N′-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds. PMID:26265924

  18. Inhibitory effects of β,β-dimethylacrylshikonin on hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Wu, Yi-ying; Wan, Li-hong; Zheng, Xiao-wei; Shao, Zhen-jun; Chen, Jian; Chen, Xia-jing; Liu, Li-tao; Kuang, Wen-juan; Tan, Xian-shu; Zhou, Li-ming

    2012-05-01

    β,β-Dimethylacrylshikonin is one of the most abundant naphthoquinones in the root extracts of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), which have been reported to have antitumor effects. This study evaluated the antiproliferative activity of β,β-dimethylacrylshikonin on human hepatocellular carcinoma (HCC) cells both in vitro and in vivo. In vitro, the MTT assay showed that β,β-dimethylacrylshikonin inhibited the proliferation of SMMC-7721 cells in both dose- and time-dependent manners with its 50% inhibitory concentration (IC(50) ) at 48 h being 15.01 ± 0.76 µg/mL. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) and Hoechst staining detected the characteristics of cell apoptosis in β,β-dimethylacrylshikonin-treated cells and the apoptotic rates of treated groups were increased in a dose-dependent manner. Flow cytometric analysis revealed that β,β-dimethylacrylshikonin could block the cell cycle arrest at G2 phase. Furthermore, β,β-dimethylacrylshikonin down-regulated the mRNA and protein expression of Bcl-2 but up-regulated that of Bax. The cleaved caspase-3 protein was also detected in treated cells. The experiment in vivo showed that β,β-dimethylacrylshikonin significantly suppressed the growth of H(22) transplantable hepatoma, and induced the activation of caspase-3 determined by immunohistochemistry. The results indicate that β,β-dimethylacrylshikonin has significant antitumor effects on hepatocellular carcinoma both in vitro and in vivo. PMID:22109831

  19. Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity

    PubMed Central

    Cho, Seok-Cheol; Choi, Bu Young

    2015-01-01

    Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-κB signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-α (TNF-α)-induced NF-κB reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-κB activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer. PMID:26336582

  20. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK

    PubMed Central

    HAO, ZHENFENG; QIAN, JING; YANG, JISHI

    2015-01-01

    The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031

  1. Integration of Different "-omics" Technologies Identifies Inhibition of the IGF1R-Akt-mTOR Signaling Cascade Involved in the Cytotoxic Effect of Shikonin against Leukemia Cells.

    PubMed

    Wiench, Benjamin; Chen, Yet-Ran; Paulsen, Malte; Hamm, Rebecca; Schröder, Sven; Yang, Ning-Sun; Efferth, Thomas

    2013-01-01

    Hematological malignancies frequently have a poor prognosis and often remain incurable. Drug resistance, severe side effects, and relapse are major problems of currently used drugs, and new candidate compounds are required for improvement of therapy success. The naphthoquinone shikonin derived from the Chinese medicinal herb, Lithospermum erythrorhizon, is a promising candidate for the next generation of chemotherapy. The basal cellular mechanism of shikonin is the direct targeting of mitochondria. Cytotoxicity screenings showed that the compound is particularly effective against leukemia cells suggesting an additional cellular mechanism. mRNA and miRNA microarrays were used to analyze changes in gene expression in leukemia cells after shikonin treatment and combined with stable-isotope dimethyl labeling for quantitative proteomics. The integration of bioinformatics and the three "-omics" assays showed that the PI3K-Akt-mTOR pathway was affected by shikonin. Deregulations of this pathway are frequently associated with cancerogenesis, especially in a wide range of hematological malignancies. The effect on the PI3K-Akt-mTOR axis was validated by demonstrating a decreased phosphorylation of Akt and a direct inhibition of the IGF1R kinase activity after shikonin treatment. Our results indicate that inhibiting the IGF1R-Akt-mTOR signaling cascade is a new cellular mechanism of shikonin strengthening its potential for the treatment of hematological malignancies. PMID:23861714

  2. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  3. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression.

    PubMed

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1-2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5-10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  4. Homogeneous purification and characterization of LePGT1--a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon.

    PubMed

    Ohara, Kazuaki; Mito, Koji; Yazaki, Kazufumi

    2013-06-01

    Membrane-bound type prenyltransferases for aromatic substrates play crucial roles in the biosynthesis of various natural compounds. Lithospermum erythrorhizon p-hydroxybenzoate: geranyltransferase (LePGT1), which contains multiple transmembrane α-helices, is involved in the biosynthesis of a red naphthoquinone pigment, shikonin. Taking LePGT1 as a model membrane-bound aromatic substrate prenyltransferase, we utilized a baculovirus-Sf9 expression system to generate a high yield LePGT1 polypeptide, reaching ~ 1000-fold higher expression level compared with a yeast expression system. Efficient solubilization procedures and biochemical purification methods were developed to extract LePGT1 from the membrane fraction of Sf9 cells. As a result, 80 μg of LePGT1 was purified from 150 mL culture to almost homogeneity as judged by SDS/PAGE. Using purified LePGT1, enzymatic characterization, e.g. substrate specificity, divalent cation requirement and kinetic analysis, was done. In addition, inhibition experiments revealed that aromatic compounds having two phenolic hydroxyl groups effectively inhibited LePGT1 enzyme activity, suggesting a novel recognition mechanism for aromatic substrates. As the first example of solubilization and purification of this membrane-bound protein family, the methods established in this study will provide valuable information for the precise biochemical characterization of aromatic prenyltransferases as well as for crystallographic analysis of this novel enzyme family. PMID:23490165

  5. Comparative study on enantiomeric excess of main akannin/shikonin derivatives isolated from the roots of three endemic Boraginaceae plants in China.

    PubMed

    Zhou, Wen; Jiang, Hu Da Gu La; Peng, Ying; Li, Shao Shun

    2011-10-01

    This work systematically investigated the enantiomeric excess (e.e.) of main components isolated from the roots of three endemic Boraginaceae plants distributed extensively in China, named Arnebia euchroma (Royle) Johnst (A.e.), Lithospermum erythrorhizon Sieb. et Zucc. (L.e.) and Onosma confertum W. W. Smith (O.c.), and the optical purity of their hydrolysis products separately, by means of three different approaches. The influence of HCl on the e.e. values of the major constituents was also studied. Analysis of the absolute configurations and e.e. values of all the derivatives acquired was performed by CD and chiral-HPLC respectively. The results of the main constituents demonstrated that A.e. mainly yields S-form naphthoquinone derivatives, while the R-form is predominant in the derivatives of L.e. and O.c. The optical purity of alkannin and shikonin and their derivatives was not influenced by acid treatment in the course of separation and hydrolysis. Additionally, it was found that 100% e.e. of shikinon could be acquired from a specific shikinon ester derivative, β,β-dimethylacrylshikonin occurring in the roots of O.c., as did 100% e.e. of alkannin from β,β-dimethylacrylalkannin contained in the roots of A.e. PMID:21308700

  6. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro

    PubMed Central

    QU, DAN; CHEN, YU; XU, XIAO-MAN; ZHANG, MENG; ZHANG, YI; LI, SHENG-QI

    2015-01-01

    Shikonin (SK), a naturally occurring naphthoquinone, exhibits antitumor activity. However, its precise mechanisms of action are unknown. In the present study, the effects of SK on NCI-H460 human lung cancer cells were investigated. It was found that SK reduced cell viability and induced apoptosis in the NCI-H460 cells. Additionally, SK inhibited extracellular signal-regulated kinase (ERK) activity, which indicates that inhibition of the ERK pathway is probably one of the mechanisms by which SK induced NCI-H460 cell apoptosis. The expression of Cbl-b was significantly increased by treatment with SK for 4 h, and gradually increased to a maximal level at 24 h; the time taken for the upregulation of Cbl-b protein was in accordance to that required for the downregulation of phospho (p)-ERK protein. The Cbl inhibitor Ps341 reversed the SK-induced downregulation of p-ERK and apoptosis of NCI-H460 cells. These results indicate that Cbl-b potentiates the apoptotic action of SK by inhibiting the ERK pathway in lung cancer cells. PMID:25780420

  7. Shikonin shortens the circadian period: possible involvement of Top2 inhibition.

    PubMed

    Ogawa, Yoshikatsu; Kawano, Yasuhiro; Yamazaki, Yoshimitsu; Onishi, Yoshiaki

    2014-01-01

    The naphthoquinone pigment, shikonin, is a natural product derived from Lithospermum erythrorhizon and an active component of a Chinese traditional herbal therapeutic. We identified shikonin as a candidate for shortening the circadian period using real-time reporter gene assays based on NIH3T3-derived stable reporter cells. Period length that became shortened in cells incubated with shikonin or etoposide reverted to that of control cells after continued incubation without these compounds. These findings indicated that shikonin and etoposide shorten the circadian period reversibly and through similar mechanisms. Topoisomerase II (Top2)-specific decatenation assays confirmed that shikonin, liker etoposide, is a Top2 inhibitor. Shikonin was incorporated into the nucleus and Top2 was located in the Bmal1 promoter, suggesting the relationship between Bmal1 transcription and Top2 inhibition. Top2a siRNA also shortened period length, suggesting that Top2 is involved in this process. Promoter assays showed that Top2a siRNA, etoposide and shikonin reduce Bmal1 promoter activity. These findings indicated that Top2 is involved in Bmal1 transcription and influences the circadian period, and that shikonin is a novel contributor to the control of period length in mammalian cells. PMID:24321095

  8. Extracellular signal-regulated kinase, receptor interacting protein, and reactive oxygen species regulate shikonin-induced autophagy in human hepatocellular carcinoma.

    PubMed

    Gong, Ke; Zhang, Zhenxing; Chen, Yicheng; Shu, Hong-Bing; Li, Wenhua

    2014-09-01

    Shikonin, a naphthoquinone derived from the Chinese medicinal plant Lithospermum erythrorhizon, shows potential to be a cancer chemotherapeutic agent. Our previous data demonstrate that high doses (about 6 μM) of shikonin induce apoptosis in human hepatocellular carcinoma (HCC) cells. Here, we discovered that a low dose of shikonin (2.5 μM) and a short treatment time (12h) induced autophagy, as evidenced by the upregulation of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, the formation of acidic autophagic vacuoles (AVOs), and the punctate fluorescence pattern of GFP-LC3 protein. Next, we investigated the mechanism and found reactive oxygen species accumulation after shikonin treatment. The reactive oxygen species scavengers NAC and Tiron completely blocked autophagy. We further found activation of ERK by generation of reactive oxygen species and inhibition of RIP pathway, which are at least partially connected to shikonin-induced autophagy. Moreover, experiments in vivo revealed similar results: shikonin caused the accumulation of reactive oxygen species and phospho-ERK and thus induced autophagy in a tumor xenograft model. These findings suggest that shikonin is an inducer of autophagy and may be a promising clinical antitumor drug. PMID:24886888

  9. [Paramagnetic calcium melanins].

    PubMed

    Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K

    2013-01-01

    Treatment of catechol, pyrogallol, DOPA, dopamine, norepinephrine, and natural polyhydroxy-1,4-naphthoquinone echinochrome by aqueous solution of potassium superoxide (KO2) in the presence of CaCl2 leads to the formation of water-insoluble dark pigments with stable paramagnetic properties ("calcium melanins"). In control experiments in the same procedure without Ca2+, the pigments were not formed. EPR spectra of the calcium melanins had little difference from each other and from known melanins in shape, line width, and the g factor about 2,004. Addition of EDTA water solution to dried paramagnetic pigments leads to their fast dissolving and disappearing of EPR signal. Formation of similar polymers is also observed during autoxidation of o-diphenols in Ca(2+)-containing alkaline buffer solution, however, this process takes a few days instead of few seconds in the presence of KO2. Thus, calcium (and other divalent cation M2+) can consider as a key structural element in formation of M(2+)-catecholate paramagnetic Polymer. We assume the existence of two types of paramagnetic centers in melanin-like polymer: M(2+)-stabilized o-semiquinone radical or bi-radical complex containing o-semiquinone and superoxide anion radicals, stabilized by M2+. PMID:23650854

  10. Exploration of industrially important pigments from soil fungi.

    PubMed

    Akilandeswari, P; Pradeep, B V

    2016-02-01

    The worldwide interest of the current era is to increase tendency towards the use of natural substances instead of synthetic ones. So, alternative and effective environment friendly sustainable technologies are highly needed. Due to a broad range of biological activities, fungi are considered as a significant source of pigments. Among the fungal species in the soil, the genera of Aspergillus, Fusarium, Penicillium, Paecilomyces, and Trichoderma are dominant. The pigments commonly produced by fungi belong to aromatic polyketide groups such as melanins, quinones, flavins, ankaflavin, anthraquinone, and naphthoquinone. The use of fungal pigments has benefits which comprise easy and fast growth in the cheap culture medium and different color shades being independent of weather conditions and would be useful in various industrial applications. In relation to the toxic effects of the synthetic dyes, the natural dyes are easily degradable since they cause no detrimental effects. Thus, the study of pigments produced by soil fungi has tremendous use in medical, textile coloring, food coloring, and cosmetics. PMID:26701360

  11. Effect of biogenic photochromic electron acceptors on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Lobanov, A. V.; Klimenko, I. V.; Nevrova, O. V.; Zhuravleva, T. S.

    2014-05-01

    It is shown that the photophysical properties of chlorophyll a (Chl) depend on the nature and relative amounts of 2-methyl-1,4-naphthoquinone (MNQ) and nicotinamide adenine dinucleotide phosphate (NADP). Photoinduced charge separation occurs in aqueous ethanol solutions of Chl (1 10-5 M) and NADP (5 10-6-5 10-4 M), resulting in the dynamic quenching of Chl fluorescence. Coordination interaction between Chl and NADP is established at an NADP concentration of ?5 10-4 M. The nonlinear Stern-Volmer dependence in this range is due to the input from static quenching. It is shown that the quenching of Chl fluorescence in an MNQ solution at Chl and MNQ concentrations of 1 10-5 M and 6.7 10-5-1 10-4 M, respectively, is described by a linear dependence in the Stern-Volmer coordinates; no complex formation is observed for Chl and MNQ under these conditions, and electron transfer is of the dynamic type. Static or mixed-type energy transfer from MNQ to Chl dominates at elevated MNQ concentrations.

  12. Un nouveau film conducteur poly(aminoquinone) pour le stockage de l'nergie

    NASA Astrophysics Data System (ADS)

    Piro, B.; Pham, M. C.; Bazzaoui, E. A.; Lacroix, J.-C.; Lacaze, P.-C.; Novak, P.; Hass, O.

    1998-06-01

    The electrooxidation of 5-amino-1,4-naphthoquinone (ANQ) in acetonitrile leads to conducting (10-1 S.cm-1) functionalized polymer films of polyaniline- type bearing one quinone group per ANQ moiety, electroactive in organic or aqueous solvents. The polymer exchanges cations during the redox process of quinones and is therefore interesting for lithium ions batteries devices. The measured specific charge is particularly hight with about 290 Ah/kg. L'oxydation lectrochimique du 5-amino-1,4-naphtoquinone (ANQ) dans l'actonitrile conduit la formation de films conducteurs (10-1 S.cm-1) fonctionnaliss de structure type polyaniline portant une fonction quinone par motif ANQ, qui sont lectroactifs en milieu aqueux comme en milieu organique. Le polymre change des cations au cours du processus rdox des quinones et est ainsi intressant pour les applications dans les accumulateurs au lithium. La charge spcifique mesure de ce polymre est particulirement leve avec environ 290 Ah/kg.

  13. Stimulation of Suicidal Erythrocyte Death by Naphthazarin.

    PubMed

    Aljanadi, Omar; Alzoubi, Kousi; Bissinger, Rosi; Lang, Florian

    2015-12-01

    The 1,4-naphthoquinone derivative naphthazarin may trigger apoptosis and is thus considered for the treatment of malignancy. On the other hand, naphthazarin decreases neurotoxicity. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by cell membrane scrambling with translocation of phosphatidylserine to the erythrocyte surface. Signalling leading to triggering of eryptosis include increase in cytosolic Ca(2+) -activity ([Ca(2+) ]i ), ceramide and oxidative stress. The present study explored whether naphthazarin impacts on eryptosis and, if so, to unravel underlying mechanisms. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine abundance at the erythrocyte surface from FITC-annexin-V-binding, [Ca(2+) ]i from Fluo3 fluorescence, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence and ceramide abundance at the erythrocyte surface from binding of fluorescent antibodies in flow cytometry. As a result, a 24-hr exposure of human erythrocytes to naphthazarin (10 μm) significantly decreased erythrocyte forward scatter, significantly increased the percentage of annexin-V-binding cells, significantly increased ceramide abundance at the erythrocyte surface and significantly increased ROS. The effect of naphthazarin on annexin-V-binding was not significantly blunted by removal of extracellular Ca(2+) . In conclusion, naphthazarin stimulates eryptosis, an effect at least in part due to oxidative stress and enhanced ceramide abundance at the erythrocyte surface. PMID:26013059

  14. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells.

    PubMed

    Khaw, Aik Kia; Sameni, Safoura; Venkatesan, Shriram; Kalthur, Guruprasad; Hande, M Prakash

    2015-11-01

    Natural plant products may possess much potential in palliative therapy and supportive strategies of current cancer treatments with lesser cytotoxicity to normal cells compared to conventional chemotherapy. In the current study, anti-cancer properties of plumbagin, a plant-derived naphthoquinone, on brain cancer cells were determined. Plumbagin treatment resulted in the induction of DNA damage, cell cycle arrest and apoptosis, followed by suppression of the colony forming ability of the brain tumour cells. These effects were substantiated by upregulation of PTEN, TNFRSF1A and downregulation of E2F1 genes, along with a drop in MDM2, cyclin B1, survivin and BCL2 protein expression. Plumbagin induced elevated levels of caspase-3/7 activity as well. For the first time, we show here that plumbagin inhibits telomerase in brain tumour cells and results in telomere shortening following chronic long-term treatment. This observation implies considerable cytotoxicity of plumbagin towards cancer cells with higher telomerase activity. Collectively, our findings suggest plumbagin as a potential chemotherapeutic phytochemical in brain tumour treatment modalities. PMID:26520377

  15. Detection of relative [Na+] and [K+] levels in sweat with optical measurements

    NASA Astrophysics Data System (ADS)

    Al-omari, Mahmoud; Sel, Kivanc; Mueller, Anja; Edwards, Jeffery; Kaya, Tolga

    2014-05-01

    We describe the use of 2-hydroxy-1,4-naphthoquinone (HNQ, Lawsone) as a potential sweat electrolyte measurement marker. We use ultraviolet-visible absorbance measurements to determine the absorbance energy in a particular wavelength range (400 nm-500 nm). This novel approach allows us to eliminate the importance of the exact wavelength of the absorbance peak but find the integral of the range of interest. Although we numerically calculate the absorbance energy, it is imperative to use photodiodes to measure the intensity of the transmitted light that is fabricated particularly for the range of interest for future device implementations. We explored various mixing ratios of water and acetone to find the optimum solvent that would give the most sensitive and accurate relative electrolyte sensing. The pH value was also modified to see the effect on the absorbance energy and intensity. A representative group of subjects were used to collect sweat from the dehydration and hyperhydration cases. The results are convincing that HNQ solutions can be used as a wearable, continuous sweat sensor.

  16. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    PubMed

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light. PMID:24060426

  17. Nitrosative and oxidative stress induced heme oxygenase-1 accumulation in rat mesangial cells.

    PubMed

    Sandau, K; Pfeilschifter, J; Brne, B

    1998-01-19

    The formation of nitric oxide (NO.) and superoxide (O2-) promotes rat mesangial cell death. Apoptotic death is characterized by DNA fragmentation, caspase-3 activation and concomitant poly(ADPribose) polymerase cleavage, as well as accumulation of the tumor suppressor protein p53. In close association with apoptotic parameters we noticed upregulation of heme oxygenase by the NO donor S-nitrosoglutathione (GSNO) and the redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in a time- and concentration-dependent manner. In response to the NO. donor, heme oxygenase-1 expression was more easily obtained than initiation of apoptosis. Radical (NO./O2-) cogeneration abrogated DNA fragmentation, suppressed caspase activation and lowered p53 accumulation, thereby promoting cell survival of mesangial cells. In contrast, heme oxygenase-1 expression remained elevated under conditions of GSNO/DMNQ coadministration. Conclusively, heme oxygenase-1 is a stress marker for both nitrosative and oxidative stress. Accumulation of heme oxygenase-1 is found under conditions of both, apoptotic cell death and cell survival, thereby questioning a specific cytoprotective role of heme oxygenase-1 under conditions of NO. and/or O2- formation in rat mesangial cells. PMID:9544795

  18. Identification of ?-Lapachone Analogs as Novel MALT1 Inhibitors To Treat an Aggressive Subtype of Diffuse Large B-Cell Lymphoma.

    PubMed

    Lim, Sang Min; Jeong, Yujeong; Lee, Suhyun; Im, Honggu; Tae, Hyun Seop; Kim, Byung Gyu; Park, Hee Dong; Park, Jonghoon; Hong, Sungwoo

    2015-11-12

    The treatment of activated B cell-like DLBCL (ABC-DLBCL) is one of the urgent unmet medical needs because it is the most resistant DLBCL subtype to current therapies eagerly awaiting effective therapeutic strategies. Recently, the paracaspase MALT1 has emerged as a promising therapeutic target for the treatment of ABC-DLBCL. Herein, we report a new class of MALT1 inhibitors developed by high-throughput screening and structure-based drug design. The original hit, 4-amino-1,2-naphthoquinone series inhibited MALT1 activity but suffered from poor cellular activity. The extensive pharmacophore search led to the discovery of structurally similar ?-lapachone that is a direct inhibitor of MALT1 and possesses favorable physicochemical properties. Molecular simulation studies suggested the possibility of the formation of a covalent bond between MALT1 and ?-lapachone, which was corroborated by experimental wash-out studies. Inspired by this, we explored the structure-activity relationships by incorporating electron-withdrawing substituents at C8 position of ?-lapachone. These MALT1 inhibitors exhibited potent antiproliferative activity to OCI-LY3 cell line and inhibited the cleavage of CYLD mediated MALT1. PMID:26496175

  19. Cytotoxic and antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406.

    PubMed

    Song, Yongxiang; Huang, Hongbo; Chen, Yuchan; Ding, Jie; Zhang, Yun; Sun, Aijun; Zhang, Weimin; Ju, Jianhua

    2013-12-27

    Four new sesquiterpenoid naphthoquinones, marfuraquinocins A-D (1-4), and two new geranylated phenazines, phenaziterpenes A (5) and B (6), were isolated from the fermentation broth of Streptomyces niveus SCSIO 3406, which originated from a South China Sea sediment sample obtained from a depth of 3536 m. The structures of 1-6 were elucidated on the basis of extensive MS and one-dimensional and two-dimensional NMR spectroscopic analyses. In a panel of cytotoxicity and antibacterial assays, 1 and 3 were found to inhibit a NCI-H460 cancer cell line with IC50 values of 3.7 and 4.4 ?M, respectively. Compounds 1, 3, and 4 exhibited antibacterial activities against Staphylococcus aureus ATCC 29213 with equivalent MIC values of 8.0 ?g/mL; compounds 3 and 4 each showed antibacterial activity against methicillin-resistant Staphylococcus epidermidis (MRSE) shhs-E1 with MIC values of 8.0 ?g/mL. PMID:24251399

  20. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frbortov, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbc, Jan; Novk, Ondrej; Bilyeu, Kristin D; English, James T; Frbort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  1. [Formula: see text]-catalyzed formal [3 + 2] cycloaddition for diverse naphtho[1,2-b]furan-3-carboxamides and their biological evaluation.

    PubMed

    Xia, Likai; Idhayadhulla, Akber; Lee, Yong Rok

    2016-02-01

    Diverse naphtho[1,2-b]furan-3-carboxamide derivatives 12a-12q were synthesized in high yield via the novel [Formula: see text]-catalyzed formal [3[Formula: see text]2] cycloaddition of 1,4-naphthoquinones with [Formula: see text]-ketoamides as the key step. This methodology offers several advantages, such as environmentally benign character, the use of a mild catalyst, high yields, and ease of handling. The synthesized compounds were screened for their tyrosinase inhibitory, antioxidant, and antibacterial activities. The results showed that compound 12c exhibited excellent tyrosinase inhibitory activity with an [Formula: see text] of [Formula: see text], which is comparable to that of kojic acid ([Formula: see text]). Compounds 12a, 12b, and 12i displayed moderate antioxidant activities in a DPPH assay. Compound 12m showed good activity against S. aureus ([Formula: see text]), and compound 12p was found to be active against E. coli ([Formula: see text]). PMID:26260267

  2. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    PubMed

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed. PMID:25656244

  3. Evaluation of the effectiveness of an ointment based on Alkannins/Shikonins on second intention wound healing in the dog.

    PubMed

    Karayannopoulou, Maria; Tsioli, Vassiliki; Loukopoulos, Panayiotis; Anagnostou, Tilemahos L; Giannakas, Nikolaos; Savvas, Ioannis; Papazoglou, Lysimachos G; Kaldrymidou, Eleni

    2011-01-01

    The enantiomeric naphthoquinones alkannins and shikonins (A/S) have been established as potent wound healing agents. The purpose of this study was to evaluate the effectiveness of an A/S based ointment for humans on second intention wound healing in the dog, as compared to wound flushing with Lactated Ringer's solution (LRS). Ten mixed breed dogs, aged 2 to 5 y, were used. One 2.5 × 2.5 cm full-thickness skin defect was created on the lateral aspect of each arm for subjective evaluation, laser-Doppler flowmetry (LDF), and planimetry. Additionally, 3 matching 2 × 2 cm wounds were created on opposite sides of the dorsal midline for histologic evaluation. Wounds were treated once daily with the A/S based ointment on the right side and by flushing with LRS on the left until healed (about 20 d). During the healing process, tissue perfusion (mean LDF value) was found to be significantly higher on the side treated with the A/S based ointment compared with the LRS-treated side. Histologically, angiogenesis (on days 4 and 11), collagen production score (on days 4, 11, and 20), and epithelial thickness score (on day 11) were significantly higher in the wounds treated with the A/S based ointment. Wound size, as evaluated by planimetry, decreased significantly from day 0 to day 20 on both sides, but no significant differences were found between the A/S based ointment and LRS-treated wounds. PMID:21461194

  4. Diversity of ABBA Prenyltransferases in Marine Streptomyces sp. CNQ-509: Promiscuous Enzymes for the Biosynthesis of Mixed Terpenoid Compounds

    PubMed Central

    Leipoldt, Franziska; Zeyhle, Philipp; Kulik, Andreas; Kalinowski, Jörn; Heide, Lutz; Kaysser, Leonard

    2015-01-01

    Terpenoids are arguably the largest and most diverse family of natural products, featuring prominently in e.g. signalling, self-defence, UV-protection and electron transfer. Prenyltransferases are essential players in terpenoid and hybrid isoprenoid biosynthesis that install isoprene units on target molecules and thereby often modulate their bioactivity. In our search for new prenyltransferase biocatalysts we focused on the marine-derived Streptomyces sp. CNQ-509, a particularly rich source of meroterpenoid chemistry. Sequencing and analysis of the genome of Streptomyces sp. CNQ-509 revealed seven putative phenol/phenazine-specific ABBA prenyltransferases, and one putative indole-specific ABBA prenyltransferase. To elucidate the substrate specificity of the ABBA prenyltransferases and to learn about their role in secondary metabolism, CnqP1 –CnqP8 were produced in Escherichia coli and incubated with various aromatic and isoprenoid substrates. Five of the eight prenyltransferases displayed enzymatic activity. The efficient conversion of dihydroxynaphthalene derivatives by CnqP3 (encoded by AA958_24325) and the co-location of AA958_24325 with genes characteristic for the biosynthesis of THN (tetrahydroxynaphthalene)-derived natural products indicates that the enzyme is involved in the formation of debromomarinone or other naphthoquinone-derived meroterpenoids. Moreover, CnqP3 showed high flexibility towards a range of aromatic and isoprenoid substrates and thus represents an interesting new tool for biocatalytic applications. PMID:26659564

  5. Electro-Fenton and photoelectro-Fenton degradations of the drug beta-blocker propranolol using a Pt anode: identification and evolution of oxidation products.

    PubMed

    Isarain-Chávez, Eloy; Cabot, Pere Lluís; Centellas, Francesc; Rodríguez, Rosa María; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-01-30

    The beta-blocker propranolol hydrochloride has been degraded by electrochemical advanced oxidation processes like electro-Fenton (EF) and photoelectro-Fenton (PEF) using a single cell with a Pt anode and an air diffusion cathode (ADE) for H(2)O(2) electrogeneration and a combined system containing the above Pt/ADE pair coupled in parallel to a Pt/carbon-felt (CF) cell. Organics are mainly oxidized with hydroxyl radical (OH) formed from Fenton's reaction between added Fe(2+) and electrogenerated H(2)O(2). The PEF treatment in Pt/ADE-Pt/CF system yields almost total mineralization because OH production is enhanced by Fe(2+) regeneration from Fe(3+) reduction at the CF cathode and Fe(III) complexes with generated carboxylic acids are rapidly photodecarboxylated under UVA irradiation. Lower mineralization degree is found for PEF in Pt/ADE cell due to the little influence of UVA light on Fe(2+) regeneration. The homologous EF processes are much less potent as a result of the persistence of Fe(III)-carboxylate complexes. Aromatic intermediates such as 1-naphthol, 1,4-naphthoquinone and phthalic acid and generated carboxylic acids such as pyruvic, glycolic, malonic, maleic, oxamic, oxalic and formic are identified. While chloride ion remains stable, NH(4)(+) and NO(3)(-) ions are released to the medium. A reaction sequence for propranolol hydrochloride mineralization is proposed. PMID:21056539

  6. Resistance of Rhizobium strains to phygon, spergon, and thiram.

    PubMed Central

    Odeyemi, O; Alexander, M

    1977-01-01

    Strains of Rhizobium meliloti, Rhizobium sp. nodulating cowpeas, and R. phaseoli derived from cultures susceptible to tetramethylthiuram disulfide (thiram), 2,3-dichloro-1,4-naphthoquinone (phygon), and 2,3,5,6-tetrachloro-p-benzoquinone (spergon), respectively, grew in the presence of high concentrations of the fungicides and converted them to products not toxic to the sensitive rhizobia. The results of chemical assays demonstrated that the pesticides were destroyed by the resistant bacteria but not by the susceptible parent rhizobia. Resting cells of thiram-metabolizing R. meliloti formed large quantities of dimethyldithiocarbamate, dimethylamine, and CS2 from the pesticide. The products were characterized by gas and thin-layer chromatography, colorimetric reactions, and ultraviolet spectrometry. Dimethylamine and CS2 were formed spontaneously from dimethyldithiocarbamate, but the yield was higher in the presence of R. meliloti. The phygon-resistant bacterium converted the fungicide to five metabolites and thereby rendered the chemical nontoxic to a test fungus. The resistant strain of R. phaseoli generated at least one organic product and released about one-third of the chlorine during its detoxication of spergon. PMID:869529

  7. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

    2002-01-01

    Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

  8. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process

    PubMed Central

    Cristina Desoti, Vânia; Lazarin-Bidóia, Danielle; Martins Ribeiro, Fabianne; Cardoso Martins, Solange; da Silva Rodrigues, Jean Henrique; Ueda-Nakamura, Tania; Vataru Nakamura, Celso; Farias Ximenes, Valdecir; de Oliveira Silva, Sueli

    2015-01-01

    Chagas’ disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas’ disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death. PMID:26641473

  9. Dissimilar effects of ?-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa.

    PubMed

    Zabka, Aneta; Trzaskoma, Pawe?; Maszewski, Janusz

    2013-12-01

    Two anticancer drugs, ?-lapachone (?-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18h treatment with 100?M ?-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of ?-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with ?-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of ?-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the ?-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on ?-lap- and HU-induced ?-phoshorylation of H2AX histones and the protective activity of HU against ?-lap suggest that their genotoxic activities are largely dissimilar. ?-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation. PMID:24184448

  10. Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.

    PubMed

    Ma, Wei-Dong; Zou, Yong-Peng; Wang, Peng; Yao, Xiao-Hui; Sun, Yao; Duan, Ming-Hui; Fu, Yu-Jie; Yu, Bo

    2014-08-01

    Chimaphilin, 2,7-dimethyl-1,4-naphthoquinone, is extracted from pyrola [Passiflora incarnata Fisch.]. In this study, the anticancer activity and underlying mechanisms of chimaphilin toward human breast cancer MCF-7 cells are firstly investigated. Chimaphilin could inhibit the viability of MCF-7 cells in a concentration-dependent manner, and the IC50 value was 43.30?M for 24h. Chimaphilin markedly induced apoptosis through the investigation of characteristic apoptotic morphological changes, nuclear DNA fragmentation, annexin V-FITC/propidium iodide (PI) double staining. Flow cytometry assay revealed that chimaphilin triggered a significant generation of ROS and disruption of mitochondrial membrane potential. Additionally, western blotting assay showed that chimaphilin suppressed Bcl-2 level and enhanced Bad level, then activated caspase-9 and caspase-3, and further activated the poly ADP-ribose polymerase (PARP), finally induced cell apoptosis involving the mitochondrial pathway. Furthermore, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment test testified that chimaphilin could increase the generation of ROS, then induce cell apoptosis. In general, the present results demonstrated that chimaphilin induced apoptosis in human breast cancer MCF-7 cells via a ROS-mediated mitochondrial pathway. PMID:24793375

  11. Mitochondrial p53 phosphorylation induces Bak-mediated and caspase-independent cell death

    PubMed Central

    Luo, Na; Nie, Chunlai; Zhao, Xinyu; Yuan, Zhu; Liu, Xinyu; Wei, Yuquan

    2015-01-01

    Chemoresistance in cancer has previously been attributed to gene mutations or deficiency. Caspase mutations or Bax deficiency can lead to resistance to cancer drugs. We recently demonstrated that Bak initiates a caspase/Bax-independent cell death pathway. We show that Plumbagin (PL) (5-hydroxy-2-methyl-1,4-napthoquinone), a medicinal plant-derived naphthoquinone that is known to have anti-tumor activity in a variety of models, induces caspase-independent cell death in HCT116 Bax knockout (KO) or MCF-7 Bax knockdown (KD) cells that express wild-type (WT) Bak. The re-expression of Bax in HCT116 Bax KO cells fails to enhance the PL-induced cell death. Additionally, Bak knockdown by shRNA efficiently attenuates PL-induced cell death. These results suggest that PL-induced cell death depends primarily on Bak, not Bax, in these cells. Further experimentation demonstrated that p53 Ser15 phosphorylation and mitochondrial translocation mediated Bak activation and subsequent cell death. Knockdown of p53 or a p53 Ser15 mutant significantly inhibited p53 mitochondrial translocation and cell death. Furthermore, we found that Akt mediated p53 phosphorylation and the subsequent mitochondrial accumulation. Taken together, our data elaborate the role of Bak in caspase/Bax-independent cell death and suggest that PL may be an effective agent for overcoming chemoresistance in cancer cells with dysfunctional caspases. PMID:25980443

  12. The first naphthosemiquinone complex of K+ with vitamin K3 analog: Experiment and density functional theory

    NASA Astrophysics Data System (ADS)

    Kathawate, Laxmi; Gejji, Shridhar P.; Yeole, Sachin D.; Verma, Prakash L.; Puranik, Vedavati G.; Salunke-Gawali, Sunita

    2015-05-01

    Synthesis and characterization of potassium complex of 2-hydroxy-3-methyl-1,4-naphthoquinone (phthiocol), the vitamin K3 analog, has been carried out using FT-IR, UV-Vis, 1H and 13C NMR, EPR, cyclic voltammetry and single crystal X-ray diffraction experiments combined with the density functional theory. It has been observed that naphthosemiquinone binds to two K+ ions extending the polymeric chain through bridging oxygens O(2) and O(3). The crystal network possesses hydrogen bonding interactions from coordinated water molecules showing water channels along the c-axis. 13C NMR spectra revealed that the complexation of phthiocol with potassium ion engenders deshielding of C(2) signals, which appear at δ = ∼14.6 ppm whereas those of C(3) exhibit up-field signals near δ ∼ 6.9 ppm. These inferences are supported by the M06-2x based density functional theory. Electrochemical experiments further suggest that reduction of naphthosemiquinone results in only a cathodic peak from catechol. A triplet state arising from interactions between neighboring phthiocol anion lead to a half field signal at g = 4.1 in the polycrystalline X-band EPR spectra at 133 K.

  13. Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-?B/NFATc1 Signaling

    PubMed Central

    Tomomura, Mineko; Suzuki, Ryuichiro; Shirataki, Yoshiaki; Sakagami, Hiroshi; Tamura, Nobuaki; Tomomura, Akito

    2015-01-01

    Rhinacanthin C is a naphthoquinone ester with anti-inflammatory activity, found in Rhinacanthus nasutus (L) Kurz (Acanthaceae). We found that rhinacanthin C inhibited osteoclast differentiation stimulated by the receptor activator of nuclear factor-?B ligand (RANKL) in mouse bone marrow macrophage cultures, although the precise molecular mechanisms underlying this phenomenon are unclear. In this study, we investigated the inhibitory mechanisms of rhinacanthin C in osteoclastogenesis. Rhinacanthin C suppressed RANKL-induced nuclear factor of activated T cells c1 (NFATc1) expression. Phosphorylation of ERK, JNK, and NF-?B, but not p38, was inhibited by rhinacanthin C, which also inhibited RANKL-stimulated TRAF6-TAK1 complex formation. Thus, the anti-osteoclastogenic effect of rhinacanthin C is mediated by a cascade of inhibition of RANKL-induced TRAF6-TAK1 association followed by activation of MAPKs/NF-?B; this leads to suppression of c-Fos and NFATc1, which regulate transcription of genes associated with osteoclast differentiation. In vivo, rhinacanthin C also reduced RANKL-induced osteoclast formation and bone resorption in mouse calvaria. Rhinacanthin C also suppressed LPS-stimulated osteoclastogenesis and bone resorption in vitro and in vivo. Rhinacanthin C may provide a novel therapy for abnormal bone lysis that occurs during inflammatory bone resorption. PMID:26083531

  14. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria.

    PubMed Central

    Archibald, F S; Fridovich, I

    1981-01-01

    A previous study of the aerotolerant bacterium Lactobacillus plantarum, which lacks superoxide dismutase (SOD), demonstrated that it possesses a novel substitute for this defensive enzyme. Thus, L. plantarum contains 20 to 25 mM Mn(II),m in a dialyzable form, which is able to scavenge O2- apparently as effectively as do the micromolar levels of SOD present in most other organisms. This report describes a survey of the lactic acid bacteria. The substitution of millimolar levels of Mn(II) for micromolar levels of SOD is a common occurrence in this group of microorganisms, which contained either SOD or high levels of Mn(II), but not both. Two strains were found which had neither high levels of Mn(II) nor SOD, and they were, as was expected, very oxygen intolerant. Lactic acid bacteria containing SOD grew better aerobically than anaerobically, whereas the organisms containing Mn(II) in place of SOD showed aerobic growth which was best, at best, equal to anaerobic growth. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) increases the rate of O2- production in these organisms. Lactobacillus strains containing high intracellular Mn(II) were more resistant to the oxygen-dependent toxicity of plumbagin than were strains containing lower levels of Mn(II). The results support the conclusion that a high internal level of Mn(II) provides these organisms with an important defence against endogenous O2-. PMID:6263860

  15. Synthesis of 2,3-dihydronaphtho[2,3-d][1,3]thiazole-4,9-diones and 2,3-dihydroanthra[2,3-d][1,3]thiazole-4,11-diones and novel ring contraction and fusion reaction of 3H-spiro[1,3-thiazole-2,1'-cyclohexanes] into 2,3,4,5-tetrahydro-1H-carbazole-6,11-diones

    PubMed Central

    Konstantinova, Lidia S; Lysov, Kirill A; Souvorova, Ljudmila I

    2013-01-01

    Summary Treatment of N-substituted 2-(methylamino)naphthoquinones 3 and -anthracene-1,4-diones 4 with S2Cl2 and DABCO in chlorobenzene gave the corresponding 2,3-dihydronaphtho[2,3-d][1,3]thiazole-4,9-diones 1 and 2,3-dihydroanthra[2,3-d][1,3]thiazole-4,11-diones 2 by triethylamine addition, in high to moderate yields. The DABCO replacement for N-ethyldiisopropylamine in the reaction of anthracene-1,4-diones 4 led unexpectedly to the corresponding 2-thioxo-2,3-dihydroanthra[2,3-d][1,3]thiazole-4,11-diones 10. The reaction of 3H-spiro[1,3-thiazole-2,1'-cyclohexanes] 1d, 2d with Et3N in chlorobenzene under reflux yielded 2,3,4,5-tetrahydro-1H-carbazole-6,11-diones 15, 16, i.e., ring contraction and fusion products. A plausible mechanism was proposed for the formation of the products. PMID:23616798

  16. High-performance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure.

    PubMed

    García-Villar, Natividad; Saurina, Javier; Hernández-Cassou, Santiago

    2006-08-01

    A novel and sensitive HPLC method for determining biogenic amines in wine samples is described. It involves pre-column labeling of the analytes with 1,2-naphthoquinone-4-sulfonate (NQS) and liquid-liquid extraction of derivatives with chloroform for analyte preconcentration and sample clean-up. A linear gradient elution consisting of a mixture of 2% of acetic acid aqueous solution and methanol is used to separate the amine derivatives in a C18 column. The eluted compounds are detected spectrophotometrically at 270 nm. The optimization of both derivatization and separation conditions is accomplished by means of factorial and central composite designs and multicriteria decision functions. The analytical parameters of the method are established using red wine samples. Detection limits range from 0.006 to 0.315 mg L(-1). The run-to-run repeatabilities of retention times and peak areas are around 0.6 and 5.6%, respectively. Recoveries ranging from 91.9 to 105% prove the accuracy of the method for determining histamine, putrescine, cadaverine, tryptamine, phenylethylamine and serotonin in red wines. The proposed method has been applied to the analysis of commercial wines from different Spanish regions. PMID:17723577

  17. Determination of histamine in wines with an on-line pre-column flow derivatization system coupled to high performance liquid chromatography.

    PubMed

    García-Villar, Natividad; Saurina, Javier; Hernández-Cassou, Santiago

    2005-09-01

    A new rapid and sensitive high performance liquid chromatography (HPLC) method for determining histamine in red wine samples, based on continuous flow derivatization with 1,2-naphthoquinone-4-sulfonate (NQS), is proposed. In this system, samples are derivatized on-line in a three-channel flow manifold for reagent, buffer and sample. The reaction takes place in a PTFE coil heated at 80 degrees C and with a residence time of 2.9 min. The reaction mixture is injected directly into the chromatographic system, where the histamine derivative is separated from other aminated compounds present in the wine matrix in less than ten minutes. The HPLC procedure involves a C18 column, a binary gradient of 2% acetic acid-methanol as a mobile phase, and UV detection at 305 nm. Analytical parameters of the method are evaluated using red wine samples. The linear range is up to 66.7 mg L(-1) (r = 0.9999), the precision (RSD) is 3%, the detection limit is 0.22 mg L(-1), and the average histamine recovery is 101.5% +/- 6.7%. Commercial red wines from different Spanish regions are analyzed with the proposed method. PMID:16096675

  18. Biotechnological approaches to the production of shikonins: a critical review with recent updates.

    PubMed

    Malik, Sonia; Bhushan, Shashi; Sharma, Madhu; Ahuja, Paramvir Singh

    2016-04-01

    Shikonins are commercially important secondary compounds, known for array of biological activities such as antimicrobial, insecticidal, antitumor, antioxidants, etc. These compounds are usually colored and therefore have application in food, textiles and cosmetics. Shikonin and its derivatives, which are commercially most important of the naphthoquinone pigments, are distributed among members of the family Boraginaceae. These include different species of Lithospermum, Arnebia, Alkanna, Anchusa, Echium and Onosma. The growing demand for plant-based natural products has made this group of compounds one of the enthralling targets for their in vitro production. The aim of this review is to highlight the recent progress in production of shikonins by various biotechnological means. Different methods of increasing the levels of shikonins in plant cells such as selection of cell lines, optimization of culture conditions, elicitation, in situ product removal, genetic transformation and metabolic engineering are discussed. The experience of different researchers working worldwide on this aspect is also considered. Further, to meet market demand, the needs for continuous and reliable production systems, as well as future prospects, are included. PMID:25319455

  19. [Development and application of electroanalytical methods in biomedical fields].

    PubMed

    Kusu, Fumiyo

    2015-01-01

    To summarize our electroanalytical research in the biomedical field over the past 43 years, this review describes studies on specular reflection measurement, redox potential determination, amperometric acid sensing, HPLC with electrochemical detection, and potential oscillation across a liquid membrane. The specular reflection method was used for clarifying the adsorption of neurotransmitters and their related drugs onto a gold electrode and the interaction between dental alloys and compound iodine glycerin. A voltammetric screening test using a redox potential for the antioxidative effect of flavonoids was proposed. Amperometric acid sensing based on the measurement of the reduction prepeak current of 2-methyl-1,4-naphthoquinone (VK3) or 3,5-di-tert-buty1-1,2-benzoquinone (DBBQ) was applied to determine acid values of fats and oils, titrable acidity of coffee, and enzyme activity of lipase, free fatty acids (FFAs) in serum, short-chain fatty acids in feces, etc. The electrode reactions of phenothiazines, catechins, and cholesterol were applied to biomedical analysis using HPLC with electrochemical detection. A three-channel electrochemical detection system was utilized for the sensitive determination of redox compounds in Chinese herbal medicines. The behavior of barbituric acid derivatives was examined based on potential oscillation measurements. PMID:25759051

  20. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts

    PubMed Central

    Guo, Juan; Zhou, Yongjin J.; Hillwig, Matthew L.; Shen, Ye; Yang, Lei; Wang, Yajun; Zhang, Xianan; Liu, Wujun; Peters, Reuben J.; Chen, Xiaoya; Zhao, Zongbao K.; Huang, Luqi

    2013-01-01

    Cytochrome P450 enzymes (CYPs) play major roles in generating highly functionalized terpenoids, but identifying the exact biotransformation step(s) catalyzed by plant CYP in terpenoid biosynthesis is extremely challenging. Tanshinones are abietane-type norditerpenoid naphthoquinones that are the main lipophilic bioactive components of the Chinese medicinal herb danshen (Salvia miltiorrhiza). Whereas the diterpene synthases responsible for the conversion of (E,E,E)-geranylgeranyl diphosphate into the abietane miltiradiene, a potential precursor to tanshinones, have been recently described, molecular characterization of further transformation of miltiradiene remains unavailable. Here we report stable-isotope labeling results that demonstrate the intermediacy of miltiradiene in tanshinone biosynthesis. We further use a next-generation sequencing approach to identify six candidate CYP genes being coregulated with the diterpene synthase genes in both the rhizome and danshen hairy roots, and demonstrate that one of these, CYP76AH1, catalyzes a unique four-electron oxidation cascade on miltiradiene to produce ferruginol both in vitro and in vivo. We then build upon the previous establishment of miltiradiene production in Saccharomyces cerevisiae, with incorporation of CYP76AH1 and phyto-CYP reductase genes leading to heterologous production of ferruginol at 10.5 mg/L. As ferruginol has been found in many plants including danshen, the results and the approaches that were described here provide a solid foundation to further elucidate the biosynthesis of tanshinones and related diterpenoids. Moreover, these results should facilitate the construction of microbial cell factories for the production of phytoterpenoids. PMID:23812755

  1. Mechanistic and structural basis for inhibition of thymidylate synthase ThyX

    PubMed Central

    Basta, Tamara; Boum, Yap; Briffotaux, Julien; Becker, Hubert F.; Lamarre-Jouenne, Isabelle; Lambry, Jean-Christophe; Skouloubris, Stephane; Liebl, Ursula; Graille, Marc; van Tilbeurgh, Herman; Myllykallio, Hannu

    2012-01-01

    Nature has established two mechanistically and structurally unrelated families of thymidylate synthases that produce de novo thymidylate or dTMP, an essential DNA precursor. Representatives of the alternative flavin-dependent thymidylate synthase family, ThyX, are found in a large number of microbial genomes, but are absent in humans. We have exploited the nucleotide binding pocket of ThyX proteins to identify non-substrate-based tight-binding ThyX inhibitors that inhibited growth of genetically modified Escherichia coli cells dependent on thyX in a manner mimicking a genetic knockout of thymidylate synthase. We also solved the crystal structure of a viral ThyX bound to 2-hydroxy-3-(4-methoxybenzyl)-1,4-naphthoquinone at a resolution of 2.6 . This inhibitor was found to bind within the conserved active site of the tetrameric ThyX enzyme, at the interface of two monomers, partially overlapping with the dUMP binding pocket. Our studies provide new chemical tools for investigating the ThyX reaction mechanism and establish a novel mechanistic and structural basis for inhibition of thymidylate synthesis. As essential ThyX proteins are found e.g. in Mycobacterium tuberculosis and Helicobacter pylori, our studies have also potential to pave the way towards the development of new anti-microbial compounds. PMID:23155486

  2. Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release.

    PubMed

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-21

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin ?v?3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 ?g mL(-1), while the IC50 for chemotherapy and photothermal therapy alone is 147.8 ?g mL(-1) and 36.2 ?g mL(-1), respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy. PMID:25608113

  3. Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2

    PubMed Central

    Lai, Li; Liu, Junchen; Zhai, Dong; Lin, Qingxiang; He, Lijun; Dong, Yanmin; Zhang, Jing; Lu, Binbin; Chen, Yihua; Yi, Zhengfang; Liu, Mingyao

    2012-01-01

    BACKGROUND AND PURPOSE Angiogenesis-based therapy is an effective anti-tumour strategy and previous reports have shown some beneficial effects of a naturally occurring bioactive compound plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone). Here, we sought to determine the biological effects of plumbagin on signalling mechanisms during tumour angiogenesis. EXPERIMENTAL APPROACH The effects of plumbagin were evaluated in various in vitro assays which utilised human umbilical vein endothelial cells (HUVEC) proliferation, migration and tube formation. Plumbagin was also evaluated in vivo using chicken embryo chorioallantoic membrane (CAM) and mouse corneal micropocket models., Human colon carcinoma and prostate cancer xenograft mouse models were used to evaluate the effects of plumbagin on angiogenesis. Immunofluorescence, GST pull-down and Western blotting were employed to explore the underlying mechanisms of VEGF receptor (VEGFR)2-mediated Ras signalling pathways. KEY RESULTS Plumbagin not only inhibited endothelial cell proliferation, migration and tube formation but also suppressed chicken chorioallantoic membrane neovascularzation and VEGF-induced mouse corneal angiogenesis. Moreover, plumbagin suppressed tumour angiogenesis and tumour growth in human colon carcinoma and prostate cancer xenograft mouse models. At a molecular level, plumbagin blocked the Ras/Rac/cofilin and Ras/MEK signalling pathways mediated by VEGFR2 in HUVECs. CONCLUSIONS AND IMPLICATIONS Plumbagin inhibited tumour angiogenesis and tumour growth by interference with the VEGFR2-mediated Ras signalling pathway in endothelial cells. Our findings demonstrate a molecular basis for the effects of plumbagin and suggest that this compound might have therapeutic ant-tumour effects. PMID:21658027

  4. Effect of nitrogen source on end products of naphthalene degradation

    SciTech Connect

    Aranha, H.G.; Brown, L.R.

    1981-07-01

    Soil cultures, enrichment cultures, and pure culture isolates produced substantial quantities of salicylic acid from naphthalene in a mineral salts medium containing NH/sub 4/Cl as the nitrogen source. However, when KNO/sub 3/ was substituted for NH/sub 4/Cl, these same cultures failed to accumulate detectable quantities of salicylic acid but did not turn the medium yellow. When an isolate identified as a Pseudomonas species was used, viable cell numbers were much greater in the medium containing KNO/sub 3/ but up to 94% of the naphthalene was utilized in both media. The differences between nitrogen sources could not be accounted for by pH alone since results obtained using buffered media were similar. Growth with NH/sub 4/NO/sub 3/ displayed a pattern similar to that obtained when NH/sub 4/Cl was used. The yellow coloration in the medium containing KNO/sub 3/ was apparently due to more than one compound, none of which were 1,2-naphthoquinone or acidic in nature, as suggested by other investigators. Further attempts to identify the yellow compounds by high-pressure liquid chromatography, infrared analysis, and gas chromatography-mass spectrometry have been unsuccessful thus far.

  5. Evaluation of the effectiveness of an ointment based on Alkannins/Shikonins on second intention wound healing in the dog

    PubMed Central

    Karayannopoulou, Maria; Tsioli, Vassiliki; Loukopoulos, Panayiotis; Anagnostou, Tilemahos L.; Giannakas, Nikolaos; Savvas, Ioannis; Papazoglou, Lysimachos G.; Kaldrymidou, Eleni

    2011-01-01

    The enantiomeric naphthoquinones alkannins and shikonins (A/S) have been established as potent wound healing agents. The purpose of this study was to evaluate the effectiveness of an A/S based ointment for humans on second intention wound healing in the dog, as compared to wound flushing with Lactated Ringer’s solution (LRS). Ten mixed breed dogs, aged 2 to 5 y, were used. One 2.5 × 2.5 cm full-thickness skin defect was created on the lateral aspect of each arm for subjective evaluation, laser-Doppler flowmetry (LDF), and planimetry. Additionally, 3 matching 2 × 2 cm wounds were created on opposite sides of the dorsal midline for histologic evaluation. Wounds were treated once daily with the A/S based ointment on the right side and by flushing with LRS on the left until healed (about 20 d). During the healing process, tissue perfusion (mean LDF value) was found to be significantly higher on the side treated with the A/S based ointment compared with the LRS-treated side. Histologically, angiogenesis (on days 4 and 11), collagen production score (on days 4, 11, and 20), and epithelial thickness score (on day 11) were significantly higher in the wounds treated with the A/S based ointment. Wound size, as evaluated by planimetry, decreased significantly from day 0 to day 20 on both sides, but no significant differences were found between the A/S based ointment and LRS-treated wounds. PMID:21461194

  6. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed. PMID:26444488

  7. Physicochemical characteristics, oxidative capacities and cytotoxicities of sulfate-coated, 1,4-NQ-coated and ozone-aged black carbon particles

    NASA Astrophysics Data System (ADS)

    Li, Qian; Shang, Jing; Liu, Jia; Xu, Weiwei; Feng, Xiang; Li, Rui; Zhu, Tong

    2015-02-01

    Black carbon (BC) particles play important roles in climate change, visibility impairment, atmospheric reaction process, and health effect. The aging processes of BC alter not only atmospheric composition, but also the physicochemical characteristics of BC itself, thus impacting the environment and health effects. Here, three types of BC including sulfate-coated, 1,4-naphthoquinone (1,4-NQ)-coated, and O3-aged BC are presented. The morphologies, structures, extraction components, the amount of water-soluble organic carbon (WSOC) and free radical intensities of the three types of BC particles are examined by transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), ultraviolet-visible spectrophotometry, total organic carbon detector and electron paramagnetic resonance, respectively. Dithiothreitol (DTT) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assays are utilized to assess the changes in oxidative capacity and cytotoxicity towards murine alveolar macrophage cells. The orders of DTT activities and cytotoxicities of the particles are both arranged as follows: BC/1,4-NQ > BC/O3 > BC > BC/sulfate, mainly because 1,4-NQ owned high oxidative potential and cytotoxicity, while sulfate did not exhibit oxidative capacity and cytotoxicity. The insoluble components of particles contribute most of the total DTT activity, whereas either water or methanol extract is minor contributor. DTT activity was positively correlated with both WSOC content and free radical intensity, with the correlation between DTT activity and WSOC content was stronger than that between DTT activity and free radical intensity.

  8. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.

    PubMed

    Rhoads, Allison; Beyenal, Haluk; Lewandowski, Zbigniew

    2005-06-15

    We have operated a microbial fuel cell in which glucose was oxidized by Klebsiella pneumoniae in the anodic compartment, and biomineralized manganese oxides, deposited by Leptothrix discophora, were electrochemically reduced in the cathodic compartment. In the anodic compartment, to facilitate the electron transfer from glucose to the graphite electrode, we added a redox mediator, 2-hydroxy-1,4-naphthoquinone. We did not add any redox mediator to the cathodic compartment because the biomineralized manganese oxides were deposited on the surface of a graphite electrode and were reduced directly by electrons from the electrode. We have demonstrated that biomineralized manganese oxides are superiorto oxygen when used as cathodic reactants in microbial fuel cells. The current density delivered by using biomineralized manganese oxides as the cathodic reactant was almost 2 orders of magnitude higher than that delivered using oxygen. Several fuel cells were operated for 500 h, reaching anodic potentials of -441.5 +/- 31 mVscE and cathodic potentials of +384.5 +/- 64 mVscE. When the electrodes were connected by a 50 Ohms resistor, the fuel cell delivered the peak power density of 126.7 +/- 31.5 mW/m2. PMID:16047807

  9. Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells.

    PubMed

    Rahimi, Mehdi; Youn, Hyun-Yi; McCanna, David J; Sivak, Jacob G; Mikkelsen, Susan R

    2013-05-01

    The application of cyclic biamperometry to viability and cytotoxicity assessments of human corneal epithelial cells has been investigated. Electrochemical measurements have been compared in PBS containing 5.0 mM glucose and minimal essential growth medium. Three different lipophilic mediators including dichlorophenol indophenol, 2-methyl-1,4-naphthoquinone (also called menadione or vitamin K3) and N,N,N',N'-tetramethyl-p-phenylenediamine have been evaluated for shuttling electrons across the cell membrane to the external medium. Transfer of these electrons to ferricyanide in the extra cellular medium results in the accumulation of ferrocyanide. The amount of ferrocyanide is then determined using cyclic biamperometry and is related to the extent of cell metabolic activity and therefore cell viability. To illustrate cytotoxicity assessment of chemicals, hydrogen peroxide, benzalkonium chloride and sodium dodecyl sulfate have been chosen as sample toxins, the cytotoxicities of which have been evaluated and compared to values reported in the literature. Similar values have been reported using colorimetric assays; however, the simplicity of this electrochemical assay can, in principle, open the way to miniaturization onto lab-on-chip devices and its incorporation into tiered-testing approaches for cytotoxicity assessment. PMID:23443523

  10. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air.

    PubMed

    Santos, Aldenor G; Regis, Ana Carla D; da Rocha, Gisele O; Bezerra, Marcos de A; de Jesus, Robson M; de Andrade, Jailson B

    2016-02-26

    The method allowed simultaneous characterization of PAHs, nitro-PAHs and quinones in atmospheric particulate matter. This method employs a miniaturized micro-extraction step that uses 500μL of an acetonitrile-dichloromethane mix and instrumental analysis by means of a high-resolution GC-MS. The method was validated using the SRM1649b NIST standard reference material as well as deuterated internal standards. The results are in good agreement with the certified values and show recoveries between 75% and 145%. Limit of detection (LOD) values for PAHs were found to be between 0.5pg (benzo[a]pyrene) to 2.1pg (dibenzo[a,h]anthracene), for nitro-PAHs ranged between 3.2pg (1-nitrobenzo[e]pyrene) and 22.2pg (3-nitrophenanthrene), and for quinones ranged between 11.5pg (1,4-naphthoquinone) and 458pg (9,10-phenanthraquinone). The validated method was applied to real PM10 samples collected on quartz fiber filters. Concentrations in the PM10 samples ranged from 0.06 to 15ngm(-3) for PAHs, from

  11. A solid device based on doped hybrid composites for controlling the dosage of the biocide N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine in industrial formulations.

    PubMed

    Argente-Garca, A; Muoz-Ortuo, M; Molins-Legua, C; Moliner-Martnez, Y; Campns-Falc, P

    2016-01-15

    A colorimetric composite device is proposed to determine the widely used biocide N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (ADP).This sensing device is based on a film of 1,2-Naphthoquinone-4-sulfonate (NQS) embedded into polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). Semiquantitative analysis can be performed by visual inspection. Digitalized image or diffuse reflectance (DR) measurements can be carried out for quantitative analysis. Satisfactory detection limit (0.018%, w/v) and relative standard deviations <12% were achieved. The proposed device has been applied for the determination of ADP in detergent industrial formulations with recovery values between 80% and 112%. The method has been successfully validated, showing its high potential to control and monitor this compound because the device is easy to prepare and use, robust, portable, stable over time and cost effective. This device allows a green, simple and rapid approach for the analysis of samples without pretreatment and does not require highly trained personnel. These advantages give the proposed kit good prospects for implementation in several industries. PMID:26592589

  12. A mutant of Escherichia coli fumarate reductase decoupled from electron transport.

    PubMed Central

    Weiner, J H; Cammack, R; Cole, S T; Condon, C; Honor, N; Lemire, B D; Shaw, G

    1986-01-01

    The terminal electron-transfer enzyme fumarate reductase of Escherichia coli is a complex iron-sulfur flavoenzyme composed of four nonidentical subunits organized into two domains: FrdA and -B (a membrane-extrinsic catalytic domain) and FrdC and -D (a transmembrane anchor domain). We have identified a mutation within the membrane-intrinsic domain that alters the electron transfer properties of the iron-sulfur and flavin redox centers of the catalytic domain. Functional electron flow from the quinone analog 2,3-dimethyl-1,4-naphthoquinone or from the electron transport chain is impaired. However, the mutant enzyme can be reduced normally by single-electron donors such as the dye benzyl viologen. The mutant phenotype results from a single A----G transition changing His-82, within the second transmembrane alpha-helix of the FrdC anchor sequence, to an arginine. The mutation, physically located within the anchor domain, is manifested by altered catalytic properties, indicating that the intrinsic and extrinsic domains are conformationally connected. These results confirm the important role of the anchor subunits in functional electron transport and have implications for communication between intrinsic and extrinsic domains of membrane proteins. Images PMID:3008149

  13. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells.

    PubMed

    Kozics, Katarna; Klusov, Veronika; Sran?kov, Annamria; Mu?aji, Pavol; Slame?ov, Darina; Hunkov, Lubica; Kusznierewicz, Barbara; Horvthov, Eva

    2013-12-01

    Salvia officinalis (SO) and Thymus vulgaris (TV) are medicinal plants well known for their curative powers. However, the molecular mechanisms responsible for these abilities of sage and thyme have not been fully understood yet. In this study we investigated the composition and the quantitative estimation of plant extracts, the protective effects of plant extracts against hydrogen peroxide- and 2,3-dimethoxy-1,4-naphthoquinone-induced DNA damage, and levels of enzymatic and non-enzymatic antioxidants (superoxide dismutase, glutathione peroxidase, glutathione) in human HepG2 cells. To measure antioxidative activity of plant extracts we used three assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The results showed that the oxidant-induced DNA lesions were significantly reduced in cells pre-treated with the plant extracts studied. The observed DNA-protective activity could be explained by both elevation of GPx activity in cells pre-treated with SO and TV and antioxidant activity of SO and TV. PMID:23870948

  14. Combined chemoassay and mass spectrometric approach to study the reactive potential of electrophiles towards deoxynucleosides as model for DNA.

    PubMed

    Schmied-Tobies, Maria I H; Paschke, Heidrun; Reemtsma, Thorsten

    2016-05-01

    The modification of DNA by adduct formation is a potential molecular initiating event of genotoxicity. A chemoassay was established to study adduct formation of electrophiles with deoxynucleosides. Liquid chromatography-mass spectrometry was used to determine the reactivity of the model electrophiles para-benzoquinone, hydroquinone, and 1,4-naphthoquinone with deoxynucleoside (deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT)) to detect formation of adducts via constant neutral loss scan of deoxyribose (116 Da), and to elucidate adduct structures using high resolution mass spectrometry. Of the four deoxynucleosides dG was most susceptible, followed by dC and para-benzoquinone was the most reactive electrophile. With this approach five dG and four dC adducts were detected, formed by Michael addition and subsequent condensation. Also oxidation occurred with reactive oxygen species (ROS). Three of the adducts formed by benzoquinone have not been reported before. This chemoassay combined with mass spectrometry offers a way (a) to screen a large number of chemicals for their genotoxic potential, (b) to determine novel adducts that may be searched for in in vitro and in vivo studies and thus (c) to better understand the reaction of electrophiles with nucleobases. PMID:26945242

  15. Menadione-induced DNA fragmentation without 8-oxo-2'-deoxyguanosine formation in isolated rat hepatocytes.

    PubMed

    Fischer-Nielsen, A; Corcoran, G B; Poulsen, H E; Kamendulis, L M; Loft, S

    1995-05-17

    Menadione (2-methyl-1,4-naphthoquinone) induces oxidative stress in cells causing perturbations in the cytoplasm as well as nicking of DNA. The mechanisms by which DNA damage occurs are still unclear, but a widely discussed issue is whether menadione-generated reactive oxygen species (ROS) directly damage DNA. In the present study, we measured the effect of menadione on formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), an index of oxidative DNA base modifications, and on DNA fragmentation. Isolated hepatocytes from phenobarbital-pretreated rats were exposed to menadione, 25-400 microM, for 15, 90 or 180 min with or without prior depletion of reduced glutathione (GSH) by diethyl maleate. Menadione caused profound GSH depletion and internucleosomal DNA fragmentation, which was demonstrated by a prominent fragmentation ladder on agarose gel electrophoresis. We found no oxidative modification of DNA in terms of increased 8-oxodG formation. In contrast, the positive control of sunlamp light increased 8-oxodG 5-fold in rat hepatocytes. We conclude that oxidative modification of DNA bases is unlikely to be important in menadione-induced DNA damage. PMID:7763290

  16. Polycyclic aromatic hydrocarbon quinones may be either substrates for or irreversible inhibitors of the human placental NAD-linked 15-hydroxyprostaglandin dehydrogenase.

    PubMed

    Jarabak, J

    1992-01-01

    Under aerobic conditions, 9,10-phenanthrenequinone and 5,6-chyrsenequinone undergo oxidation-reduction cycling in the presence of NADH and the NAD-linked 15-hydroxyprostaglandin dehydrogenase. This results in the formation of potentially hazardous semiquinones, the superoxide anion, and H2O2. Superoxide dismutase inhibits this cycling by destroying the free radical chain propagator, the superoxide anion. Four other polycyclic aromatic hydrocarbon quinones are not substrates of the enzyme and they cause it to undergo a time-dependent inactivation. This presumably results from alkylation of the enzyme. Glutathione fully protects the enzyme against inactivation by 1,2-naphthoquinone but is only partially effective against 7,8-benzo[a]pyrenequinone. These results suggest that in tissues which contain the NAD-linked 15-hydroxyprostaglandin dehydrogenase some polycyclic aromatic hydrocarbon quinones might produce deleterious effects by undergoing redox cycling. Others might cause such effects by irreversibly inhibiting the enzyme which catalyzes the first step in prostaglandin catabolism. PMID:1309294

  17. Studies on three reductases which have polycyclic aromatic hydrocarbon quinones as substrates.

    PubMed

    Jarabak, J; Harvey, R G

    1993-06-01

    Unlike rodent tissues, the major quinone reductase in centrifuged homogenates of human liver and placenta is a carbonyl reductase rather than a DT-diaphorase. When reduction of polycyclic aromatic hydrocarbons is compared, there are differences between the human placental carbonyl reductase, rat liver DT-diaphorase, and Clostridium DT-diaphorase. In a buffer containing 1% albumin and 10 microM quinone, 9,10-phenanthrenequinone is reduced most rapidly by the carbonyl reductase, 2-methyl-1,4-naphthoquinone is reduced most rapidly by the rat enzyme, and 3,6-pyrenequinone is reduced most rapidly by the Clostridium enzyme. In the presence of O2, redox cycling occurs with all of the quinones that are enzyme substrates, but the rate of cycling does not necessarily correlate with that of quinone reduction. Since glutathionyl adducts of certain quinones can undergo redox cycling mediated by the human carbonyl reductase or rat DT-diaphorase, it is unlikely that the conjugation of one of these quinones with glutathione is sufficient to protect against quinone-mediated oxidative stress in cells which contain either of these enzymes. The observation that superoxide dismutase and a dismutase "mimic," 3-carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl, inhibit the redox cycling of 9,10-phenanthrenequinone suggests a mechanism whereby cells could be protected against oxidative stress caused by certain quinones. PMID:7685581

  18. Interaction of chlorinated phenolics and quinones with the mitochondrial respiration: a comparison of the o- and p-chlorinated quinones and hydroquinones

    SciTech Connect

    Pritsos, C.A.; Pointon, M.; Pardini, R.S.

    1987-05-01

    Interest in the environmental toxicology of chlorinated catechols and their analogous quinones was prompted by their acute toxicity towards fish and other aquatic organisms. Chlorophenols, such as pentachlorophenol, as well as tetrachlorocatechol have been suggested to uncouple mitochondrial oxidative phosphorylation while chloranil and tetrachloro-o-benzoquinone have been shown to inhibit liver mitochondrial respiration, which may be related to their cytotoxicity. Another chlorinated quinone fungicide, 2,3 dichloro-1,4-naphthoquinone (CNQ) has been studied and shown to both uncouple oxidative phosphorylation and inhibit respiration in liver and heart mitochondria. CNQ was shown to undergo redox cycling with mitochondria, with a concomitant production of toxic oxygen species including superoxide and hydrogen peroxide. These reactive oxygen species were associated with the generation of mitochondrial oxidative stress, and were related to the toxic action of CNQ. Based upon these previous findings, the authors examined the interaction of both the ortho and para isomers of tetrachloro-benzoquinone and their corresponding hydroquinones with mitochondria in order to prove their mechanism of actions and compare the reactions of the various isomers.

  19. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. PMID:26212258

  20. [Partially hydrogenated aryl-1,2/1,4-anthraquinone derivatives, 5-lipoxygenase inhibitors with arotinoid structure].

    PubMed

    Wurm, G; Probst, R; Schwandt, S

    2001-07-01

    The combination of 5-LOX inhibition and retinoid activity in one molecule could be an interesting pharmacological tool to influence psoriasis. Thus we synthesized compounds with arotinoid structure by anellation of the 5-LOX inhibitors 1 and 2 with 1,1,4,4-tetramethylcyclohexane. A key step was the CuCl-MeCN-O2 oxidation of tetrahydroanthracenol 13 to the corresponding 1,2-anthraquinone 14 which could be converted to the analogous 2-hydroxy-1,4-anthraquinone 19 by Thiele-Winter reaction followed by oxidation. The halogenated quinones 9 and 21 were arylated with 2,6-di-tertbutylphenol and demethylated or hydrolyzed to the target compounds 3 and 4 which were tested in comparison with the non-anellated 5-LOX inhibitors 1 and 2 for LOX inhibition in activated human granulocytes and for antioxidative activity by the method of Popov with the chemiluminometer Photochem. The results are discussed in relation to the corresponding logP values. The 1,2-quinones 1 and 3 are more potent 5-LOX inhibitors than their 1,4-analogues 2 and 4, the tetrahydroanthraquinon derivatives 3 and 4 are less potent than the naphthoquinones 1 and 2. All compounds are devoid of any activity in cell differentiation as compared to retinoic acid as indicated by the NBT test with HL-60 leukemia cells. PMID:11487969

  1. Quantification of para-phenylenediamine and heavy metals in henna dye.

    PubMed

    Kang, Ik-Joon; Lee, Mu-Hyoung

    2006-07-01

    Henna (Lawsonia inermis, family Lythraceae) is a shrub cultivated in India, Sri Lanka and North Africa and contains the active dye lawsone (2-hydroxy-1,4-naphthoquinone). Henna dye is obtained from the dried leaves, which are powdered and mixed with oil or water and are used to prepare hair and body dyes. Temporary henna tattoos are readily available worldwide, last on the skin for several weeks and offer a self-limited, convenient alternative to a permanent tattoo. The addition of para-phenylenediamine (PPD), which is widely recognised as a sensitizer, increases the risk of allergic contact dermatitis from henna tattoo mixtures, and a number of cases have been reported. We examined 15 henna samples available in Korea for the presence of PPD and heavy metals such as nickel, cobalt, chromium, lead and mercury using high-performance liquid chromatography (HPLC), atomic absorption spectroscopy (AAS), mercury analyser and inductively coupled plasma emission spectroscopy. PPD, nickel and cobalt were detected in 3, 11 and 4 samples, respectively. PMID:16842550

  2. Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells.

    PubMed

    Pozharitskaya, Olga N; Shikov, Alexander N; Makarova, Marina N; Ivanova, Svetlana A; Kosman, Vera M; Makarov, Valery G; Bazgier, Václav; Berka, Karel; Otyepka, Michal; Ulrichová, Jitka

    2013-12-01

    This study was undertaken to evaluate possible antiallergic effects of an extract of pigments from green sea urchin (Strongylocentrotus droebachiensis) shells. Effects were studied on animal models - guinea pig ileum contraction, rabbit eyes allergic conjunctivitis, and rabbit local skin irritation. The extract significantly reduced, in a dose-dependent manner, the histamine-induced contractions of the isolated guinea pig ileum with ID50 =1.2 µg/mL (in equivalents of spinochrome B), had an inhibitory effect on the model of ocular allergic inflammation surpassing the reference drug olopatadine, and did not show any irritating effect in rabbits. The extract predominantly contained polyhydroxy-1,4-naphthoquinone which would be responsible for the pharmacological activity. The active compounds of the extract were evaluated in silico with molecular docking. Molecular docking into H1R receptor structures obtained from molecular dynamic simulations showed that all spinochrome derivatives bind to the receptor active site, but spinochrome monomers fit better to it. The results of the present study suggest possibilities for the development of new agents for treating allergic diseases on the base of pigments from sea urchins shells. PMID:24288292

  3. Lateral extension of π conjugation along the bay regions of bisanthene through a Diels-Alder cycloaddition reaction.

    PubMed

    Li, Jinling; Jiao, Chongjun; Huang, Kuo-Wei; Wu, Jishan

    2011-12-16

    Diels-Alder cycloaddition reactions at the bay regions of bisanthene (1) with dienophiles such as 1,4-naphthoquinone have been investigated. The products were submitted to nucleophilic addition followed by reductive aromatization reactions to afford the laterally extended bisanthene derivatives 2 and 3. Attempted synthesis of a larger expanded bisanthene 4 revealed an unexpected hydrogenation reaction at the last reductive aromatization step. Unusual Michael addition was observed on quinone 14, which was obtained by Diels-Alder reaction between 1 and 1,4-anthraquinone. Compounds 1-3 exhibited near-infrared (NIR) absorption and emission with high-to-moderate fluorescent quantum yields. Their structures and absorption spectra were studied by density function theory and non-planar twisted structures were calculated for 2 and 3. All compounds showed amphoteric redox behavior with multiple oxidation/reduction waves. Oxidative titration with SbCl(5) gave stable radical cations, and the process was followed by UV/Vis/NIR spectroscopic measurements. Their photostability was measured and correlated to their different geometries and electronic structures. PMID:22083876

  4. Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Akao, Tetsuyuki; Ishiyama, Munetaka; Ezoe, Kimitoshi; Matsumoto, Kiyoshi

    2008-09-01

    A colorimetric method to assay cell proliferation of microorganisms in 96-well microtiter plates using water-soluble tetrazolium salts and electron mediators was developed. Combinations of 6 kinds of water-soluble tetrazolium salts and 27 kinds of electron mediators that considered the metabolic efficiency of microorganisms and the influence with medium components were investigated. 2-Methyl-1,4-naphthoquinone (NQ) was reduced most effectively by various species of microorganisms, and a combination of WST-8 as a water-soluble tetrazolium salt with 2-methyl-1,4-NQ repressed the increase in background due to medium components. In the presence of 2-methyl-1,4-NQ, WST-8 was reduced by microbial cells to formazan, which exhibited maximum absorbance at 460 nm. The proposed tetrazolium method could be applied to measure proliferations of various microbial cells including 3 kinds of yeast, 9 kinds of Gram-positive bacteria, and 10 kinds of Gram-negative bacteria. Linear relationships between the absorbance and viable microbial cell density were obtained in all microorganisms, suggesting that the absorbance change reflected the microbial cell proliferation. PMID:18586343

  5. Development of a functional assay to detect inhibitors of Plasmodium falciparum glutathione reductase utilizing liquid chromatography-mass spectrometry.

    PubMed

    Burkard, Lexi; Scheuermann, Alexis; Simithy, Johayra; Calderón, Angela I

    2016-04-01

    Plasmodium falciparum (Pf) like most other organisms, has a sophisticated antioxidant system, part of which includes glutathione reductase (GR). GR works by recycling toxic glutathione disulfide to glutathione, thereby reducing reactive oxygen species and making a form of glutathione (GSH) the parasite can use. Inhibition of this enzyme in Pf impedes parasite growth. In addition, it has been confirmed that PfGR is not identical to human GR. Thus, PfGR is an excellent target for antimalarial drug development. A functional assay utilizing liquid chromatography-mass spectrometry was developed to specifically identify and evaluate inhibitors of PfGR. Using recombinant PfGR enzyme and 1,4-naphthoquinone (1) as a reference compound and 4-nitrobenzothiadiazole (2) and methylene blue (3) as additional compounds, we quantified the concentration of GSH produced compared with a control to determine the inhibitory effect of these compounds. Our results coincide with that presented in literature: compounds 1-3 inhibit PfGR with IC50 values of 2.71, 8.38, and 19.23 µm, respectively. Good precision for this assay was exhibited by low values of intraday and interday coefficient of variation (3.1 and 2.4%, respectively). Thus, this assay can be used to screen for other potential inhibitors of PfGR quickly and accurately. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26257195

  6. Structural studies of the Trypanosoma cruzi Old Yellow Enzyme: insights into enzyme dynamics and specificity.

    PubMed

    Murakami, Mrio T; Rodrigues, Nathalia C; Gava, Lisandra M; Honorato, Rodrigo V; Canduri, Fernanda; Barbosa, Leandro R S; Oliva, Glaucius; Borges, Jlio C

    2013-12-31

    The flavoprotein old yellow enzyme of Trypanosoma cruzi (TcOYE) is an oxidoreductase that uses NAD(P)H as cofactor. This enzyme is clinically relevant due to its role in the action mechanism of some trypanocidal drugs used in the treatment of Chagas' disease by producing reactive oxygen species. In this work, the recombinant enzyme TcOYE was produced and collectively, X-ray crystallography, small angle X-ray scattering, analytical ultracentrifugation and molecular dynamics provided a detailed description of its structure, specificity and hydrodynamic behavior. The crystallographic structure at 1.27 showed a classical (?/?)8 fold with the FMN prosthetic group buried at the positively-charged active-site cleft. In solution, TcOYE behaved as a globular monomer, but it exhibited a molecular envelope larger than that observed in the crystal structure, suggesting intrinsic protein flexibility. Moreover, the binding mode of ?-lapachone, a trypanocidal agent, and other naphthoquinones was investigated by molecular docking and dynamics suggesting that their binding to TcOYE are stabilized mainly by interactions with the isoalloxazine ring from FMN and residues from the active-site pocket. PMID:24056191

  7. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine.

    PubMed

    Xue, Zhonghua; Yin, Bo; Wang, Hui; Li, Mengqian; Rao, Honghong; Liu, Xiuhui; Zhou, Xinbin; Lu, Xiaoquan

    2016-03-01

    Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies. PMID:26902537

  8. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine

    NASA Astrophysics Data System (ADS)

    Xue, Zhonghua; Yin, Bo; Wang, Hui; Li, Mengqian; Rao, Honghong; Liu, Xiuhui; Zhou, Xinbin; Lu, Xiaoquan

    2016-03-01

    Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies. Electronic supplementary information (ESI) available: Raman characterization of GO, SEM images of GO and NQS/GO modified GCE with and without addition of sarcosine. The proposed reaction scheme of amines with NQS, electrochemical parameters of redox probe on different electrodes and at NQS/GO GCE with addition of different amount sarcosine. The solution colors of NQS/GO with sarcosine at different pH values and the competition experiments. See DOI: 10.1039/c6nr00005c

  9. Development of redox-switchable resorcin[4]arene cavitands.

    PubMed

    Pochorovski, Igor; Diederich, Franois

    2014-07-15

    CONSPECTUS: Within the framework of miniaturization of electromechanical devices, the development of a redox-switchable molecular gripper as a tool for nanorobotics is appealing both from an academic and from a practical perspective. Such a tool should be able to controllably grab a molecular cargo, translocate it over considerable distances and time scales, and release it. Resorcin[4]arene cavitands seem to be an ideal platform for the development of molecular grippers due to their ability to adopt two spatially well-defined conformations: an expanded kite and a contracted vase. Furthermore, they possess "legs" for functionalization and attachment to metal surfaces. While changes in temperature, pH, and metal-ion concentration were known to induce conformational switching, redox-switchable cavitands remained a challenge. In this Account, we describe our efforts toward the development of a new class of resorcin[4]arene cavitands that are redox-switchable. First, we introduced the naphthoquinone moiety as a redox-active wall component and showed that cavitands containing four quinone walls strongly prefer the open kite conformation in both the quinone and hydroquinone redox states, while cavitands that contain two quinone and two quinoxaline walls can adopt both the vase and the kite conformations depending on solvent but not on redox state. Next, in order to introduce a driving force for the conformational switching process in diquinone cavitands, we designed cavitands with hydrogen bond acceptor groups on the quinoxaline walls. These acceptors were sought to establish hydrogen bonds with the hydroquinone groups in the reduced redox state, thereby stabilizing the vase form. Oxidation to the quinone state would remove these interactions, switching the cavitand back to the kite form. Cavitands equipped with different hydrogen bond acceptor groups were synthesized and evaluated. We found that carboxamide moieties are best suited to assist redox-induced switching of conformational and binding properties. With the goal of further increasing association constants and reducing guest-exchange rates via steric congestion, we exchanged the naphthoquinone with the triptycene-quinone moiety. The congesting influence of the triptycene-quinone moiety on the binding properties was quantified both in the presence and in the absence of additional hydrogen bond interactions that stabilize the vase form. X-ray crystallographic studies provided insights into the solid-state structures of the cavitands in different solvents and redox states. A significant enhancement of association constants and reduction in guest release rates was observed in the reduced redox state compared with the top-open system, yielding redox-switchable cavitand baskets. These studies represent a step towards the development of redox-switchable molecular grippers on metal surfaces. Future challenges will consist in the development of cavitands that will no longer rely on an external proton source for the switching process, allowing redox-switching to be performed in purely aprotic media. Finally, suitable leg functionalization would enable the grippers to be interfaced with metal surfaces. PMID:24814219

  10. Biopesticides from plants: Calceolaria integrifolia s.l.

    PubMed

    Cspedes, Carlos L; Salazar, Juan R; Ariza-Castolo, Armando; Yamaguchi, Lydia; Avila, Jos G; Aqueveque, Pedro; Kubo, Isao; Alarcn, Julio

    2014-07-01

    The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 ?g/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 g/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maxim

  11. Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone

    NASA Astrophysics Data System (ADS)

    Pal, Sanjima; Jadhav, Mahesh; Weyhermüller, Thomas; Patil, Yogesh; Nethaji, M.; Kasabe, Umesh; Kathawate, Laxmi; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2013-10-01

    Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, {n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P21 space group, while L-6 in P21/c space group. Molecules of L-4 and L-8 from polymeric chains through Csbnd H⋯O and Nsbnd H⋯O close contacts. L-6 is a dimer formed by Nsbnd H⋯O interaction. Slipped π-π stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = L-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity.

  12. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.

    PubMed

    Borrowman, Cuyler K; Zhou, Shouming; Burrow, Timothy E; Abbatt, Jonathan P D

    2016-01-01

    In the 1980s long-lived radical species were identified in cigarette tar. Since then, environmentally persistent free radicals (EPFRs) have been observed in ambient particulate matter, and have been generated in particulate matter generated from internal combustion engines. For the first time, we measure in situ the formation and decay of EPFRs through the heterogeneous reaction of ozone and several polycyclic aromatic compounds (PAC). Solid anthracene (ANT), pyrene (PY), benzo[a]pyrene (BAP), benzo[ghi]perylene (BGHIP), 1,4-naphthoquinone (1,4NQ), and 9,10-anthraquinone (AQ) were reacted with gas-phase ozone in a flow system placed in the active cavity of an electron paramagnetic resonance (EPR) spectrometer, and the formation of radicals was measured on the timescale of tens of minutes at ambient levels of ozone down to 30 ppb. For most substrates the net radical production is initially rapid, slows at intermediate times, and is followed by a slow decay. For oxidized solid BAP, radical signal persists for many days in the absence of ozone. To evaluate the effect of substrate phase, the solid PAHs were also dissolved in squalane, an organic oil inert to ozone, which yielded a much higher maximum radical concentration and faster radical decay when exposed to ozone. With higher mobility, reactants were apparently able to more easily diffuse and react with each other, yielding the higher radical concentrations. The EPR spectra exhibit three radicals types, two of which have been assigned to semiquinone species and one to a PAH-derived, carbon-centered radical. Although our system uses levels of PAC not typically found in the environment it is worth noting that the amounts of radical formed, on the order of 10(18) radicals per g, are comparable to those observed in ambient particulate matter. PMID:26603953

  13. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress.

    PubMed

    Wages, Phillip A; Lavrich, Katelyn S; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O; Samet, James M

    2015-12-21

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 ?M 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 ?M induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  14. Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum.

    PubMed

    Stickles, Allison M; de Almeida, Mariana Justino; Morrisey, Joanne M; Sheridan, Kayla A; Forquer, Isaac P; Nilsen, Aaron; Winter, Rolf W; Burrows, Jeremy N; Fidock, David A; Vaidya, Akhil B; Riscoe, Michael K

    2015-04-01

    The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs. PMID:25605352

  15. Shikonin causes cell-cycle arrest and induces apoptosis by regulating the EGFR-NF-?B signalling pathway in human epidermoid carcinoma A431 cells.

    PubMed

    Tian, Rong; Li, You; Gao, Mei

    2015-01-01

    Shikonin, a naphthoquinone pigment isolated from the Chinese herbal Zicao, has been shown to exhibit antioxidant and anticancer effects. In the present study, we investigated the antiproliferative and pro-apoptotic effects of shikonin on A431 cells and explored the underlying molecular mechanisms. In the present study, our results showed that shikonin significantly inhibited the growth of A431 cells in a concentration- and time-dependent manner, and caused cell cycle arrest by upregulation of p21 and p27, and downregulation of cyclins and cyclin-dependent kinases. In addition, shikonin evidently induced apoptosis due to decreasing Bcl-2 expression, increasing Bax expression, activating caspase and inactivating NF-?B, while pretreatment with a pan-caspase inhibitor Z-Asp-CH2-DCB abrogated shikonin-induced apoptosis. Moreover, EGF could significantly increase the NF-?B DNA-binding activity and reversed the shikonin-induced inactivation of NF-?B. As anticipated AG1478 (EGFR inhibitor) and Bay11-7082 (NF-?B inhibitor) blocked EGF-reversed the inactivation of NF-?B induced by shikonin. Our data also showed that EGF could evidently reverse the shikonin-induced decreases in cell viability and increases in apoptosis. Then, the NF-?B inhibitors such as Bay11-7082, SN50, Helenalin and the EGFR inhibitor AG1478 and its downstream inhibitor such as PI3K inhibitor LY294002 and STAT3 inhibitor Stattic dramatically blocked EGF-reversed decreases in cell viability and increases in apoptosis induced by shikonin. Collectively, our findings indicated that shikonin inhibited cell growth and caused cell cycle arrest of the A431 cells through the regulation of apoptosis. Moreover, these effects were mediated at least partially by suppressing the activation of the EGFR-NF-?B signaling pathways. PMID:25720435

  16. Laser flash photolysis and magnetic field effect studies on the interaction of uracil and its derivatives with menadione and 9,10-anthraquinone.

    PubMed

    Bose, Adity; Basu, Samita

    2008-11-27

    Laser flash photolysis and an external magnetic field have been used to study the interaction of two quinone molecules, namely, 9,10-anthraquinone (AQ) and 2-methyl-1,4-naphthoquinone, commonly known as menadione (MQ), with the RNA base uracil (U) and two of its derivatives, 1,3-dimethyluracil (dmU) and uridine (dU). We have conducted our studies in homogeneous organic and heterogeneous micellar media in order to investigate the effect of media on the molecules and any change in reactivity on account of substitution. In organic homogeneous medium, both the quinones have behaved similarly with the bases. Here U has undergone both electron transfer (ET) and hydrogen (H) transfer, while dU and dmU have failed to exhibit any ET. Failure to support ET has been attributed to keto-enol tautomerism, which has been found to have a significant role in determining the occurrence of ET from these pyrimidine bases. However, in SDS micelles some variations regarding the reactivity of these molecules have been discerned. The variations are 2-fold. Here ET from U has been found to get completely eclipsed by a dominant H abstraction with both the quinones, and AQ reveals a difference in the extent of H abstraction with the bases in SDS. With U and dU, the prevailing H abstraction with AQ has succeeded in formation of only AQH(*), while dmU has produced both AQH(*) and AQH(2), the latter being formed by two successive H abstraction. Explanations of this intriguing behavior with U and its derivatives with quinone molecules have been the main concern in this work. PMID:18975876

  17. Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase.

    PubMed

    Rao, P V; Krishna, C M; Zigler, J S

    1992-01-01

    zeta-Crystallin is a major protein in the lens of certain mammals. In guinea pigs it comprises 10% of the total lens protein, and it has been shown that a mutation in the zeta-crystallin gene is associated with autosomal dominant congenital cataract. As with several other lens crystallins of limited phylogenetic distribution, zeta-crystallin has been characterized as an "enzyme/crystallin" based on its ability to reduce catalytically the electron acceptor 2,6-dichlorophenolindophenol. We report here that certain naturally occurring quinones are good substrates for the enzymatic activity of zeta-crystallin. Among the various quinones tested, the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone were the best substrates whereas menadione, ubiquinone, 9,10-anthraquinone, vitamins K1 and K2 were inactive as substrates. This quinone reductase activity was NADPH specific and exhibited typical Michaelis-Menten kinetics. Activity was sensitive to heat and sulfhydryl reagents but was very stable on freezing. Dicumarol (Ki = 1.3 x 10(-5) M) and nitrofurantoin (Ki = 1.4 x 10(-5) M) inhibited the activity competitively with respect to the electron acceptor, quinone. NADPH protected the enzyme against inactivation caused by heat, N-ethylmaleimide, or H2O2. Electron paramagnetic resonance spectroscopy of the reaction products showed formation of a semiquinone radical. The enzyme activity was associated with O2 consumption, generation of O2- and H2O2, and reduction of ferricytochrome c. These properties indicate that the enzyme acts through a one-electron transfer process. The substrate specificity, reaction characteristics, and physicochemical properties of zeta-crystallin demonstrate that it is an active NADPH:quinone oxidoreductase distinct from quinone reductases described previously. PMID:1370456

  18. Mutagenicity of 80 chemicals in Escherichia coli tester strains IC203, deficient in OxyR, and its oxyR(+) parent WP2 uvrA/pKM101: detection of 31 oxidative mutagens.

    PubMed

    Martnez, A; Urios, A; Blanco, M

    2000-04-13

    Strain IC203, deficient in OxyR, and its oxyR(+) parent WP2 uvrA/pKM101 (denoted IC188) are the basis of a new bacterial reversion assay, the WP2 Mutoxitest, which has been used in the evaluation of 80 chemicals for oxidative mutagenicity. The following 31 oxidative mutagens were recognized by their greater mutagenic response in IC203 than in IC188: (1) peroxides: hydrogen peroxide (HP), t-butyl hydroperoxide (BOOH) and cumene hydroperoxide (COOH); (2) benzoquinones (BQ): 2-methyl-1,4-BQ, 2,6-dimethyl-1,4-BQ and 2,3, 5,6-tetramethyl-1,4-BQ; (3) naphthoquinones (NQ): 1,4-NQ, 2-methyl-1, 4-NQ and 2-hydroxy-1,4-NQ; (4) phenol derivatives: catechol, hydroquinone, pyrogallol, 1,2,4-benzenetriol, t-butylhydroquinone, gallic acid and 4-aminophenol; (5) catecholamines: DL- and L-dopa, DL- and L-epinephrine, dopamine and L-norepinephrine; (6) thiols: L-cysteine methyl ester, L-cysteine ethyl ester, L-penicillamine and dithiothreitol; (7) diverse: 3,4-dihydroxyphenylacetic acid, hypoxanthine and xanthine, both in the presence of xanthine oxidase, L-ascorbic acid plus copper (II) and phenazine methosulfate. Among these oxidative mutagens, 25 were found to be uniquely positive in IC203. With the exception of BOOH and COOH, mutagenesis by all oxidative mutagens was inhibited by catalase present in rat liver S9, indicating that it is mediated by HP generation, probably in autoxidation reactions. These catalase-sensitive oxidative mutagens were poor inducers of mutations derived from 8-oxoguanine lesions, whereas such mutations were efficiently induced by organic hydroperoxides. The results support the usefulness of incorporating IC203 in the bacterial battery for testing of chemicals. The well-characterized oxidative mutagens available with the use of the WP2 Mutoxitest may serve as a reference in studies on the genotoxicity of oxidative stress. PMID:10771270

  19. Plumbagin shows anticancer activity in human osteosarcoma (MG-63) cells via the inhibition of S-Phase checkpoints and down-regulation of c-myc

    PubMed Central

    Yan, Chao-Hua; Li, Feng; Ma, Yuan-Chen

    2015-01-01

    Objective: Plumbagin, a naphthoquinone constituent of Plumbago zeylanica L. (Plumbaginaceae), has been extensively studied for its pharmacological activities and reported to show a good anti-cancer activity in different human cancer cell lines. It is known to exhibit proapoptotic, antiangiogenic and antimetastatic effects in cancer cells. Plumbagin is also known to inhibit NF-?B, JNK (Hsu), PKC?, and STAT-3. However, the anti-proliferatory activity and their core molecular mechanisms have been poorly determined. Methods: Human osteosarcoma (MG-63) cells were exposed to plumbagin and the anti-proliferative activity was evaluated by MTT assay. The mechanism of action for the growth inhibitory activity of plumbagin on MG-63 cells was evaluated using flow cytometry for cell cycle distribution, and western blot for assessment of accumulation and phosphorylation of potential target proteins. Furthermore, morphology of MG-63 cells was assessed after treatment with Plumbagin. Results: Plumbagin has significantly induced growth inhibition against osteosarcoma MG-63 cells, primarily by S-phase cell cycle arrest which is confirmed by the down regulation of cyclin A and CDK2 protein levels determined by western blot analysis. It was also found that plumbagin has triggered the DNA damage in MG-63 cells, subsequently initiating the arrest in S-phase, which is evident by the up-regulation of phosphorylated p53 and histone. Furthermore, plumbagin resulted in the down-regulation of c-myc protein expression in the MG-63 cells. Conclusion: Plumbagin has triggered DNA damage and had induced S-phase arrest in MG-63 cells, suggesting it to be a potential compound in treatment against malignant human osteosarcoma. PMID:26550431

  20. The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in "Dehalobacter restrictus".

    PubMed Central

    Schumacher, W; Holliger, C

    1996-01-01

    In the anaerobic respiration chain of "Dehalobacter restrictus," dihydrogen functioned as the electron donor and tetrachloroethene (PCE) functioned as the electron acceptor. The hydrogenase faced the periplasm, and the PCE reductase faced the cytoplasmic side of the membrane. Both activities were associated with the cytoplasmic membrane. UV spectroscopy showed that membrane-bound menaquinone (MQ) was reduced by oxidation of H2 and reoxidized by reduction of PCE, indicating that MQ functions as an electron mediator. Fast proton liberation (t1/2 = 6 +/- 2 s) during electron transport from H2 to PCE and to trichloroethene (TCE) after addition of either PCE or TCE to H2-saturated cells resulted in an extrapolated H+/e- ratio of 1.25 +/- 0.2. This ratio indicated that besides the formation of protons upon oxidation of H2, vectorial translocation of protons from the inside to the outside could also occur. Proton liberation was inhibited by carbonylcyanide m-chlorophenylhydrazone (CCCP), 2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO), and CuCl2. Fast proton liberation with an H+/e- ratio of 0.65 +/- 0.1 was obtained after addition of the MQ analog 2,3-dimethyl-1,4-naphthoquinone (DMN) as an oxidant pulse. This acidification was also inhibited by CCCP, HOQNO, and CuCl2. Oxidation of reduced DMN by PCE was not associated with fast acidification. The results with DMN indicate that the consumption and release of protons associated with redox reactions of MQ during electron transfer from H2 to PCE both occurred at the cytoplasmic side of the membrane. The PCE reductase was photoreversibly inactivated by 1-iodopropane, indicating that a corrinoid was involved in the PCE reduction. PMID:8636034

  1. Posttranslational Regulation of Human DNA Polymerase ?*

    PubMed Central

    McIntyre, Justyna; McLenigan, Mary P.; Frank, Ekaterina G.; Dai, Xiaoxia; Yang, Wei; Wang, Yinsheng; Woodgate, Roger

    2015-01-01

    Human DNA polymerases (pols) ? and ? are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both pol? and pol? can be monoubiquitinated in vivo. Pol? has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated pol? revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Pol? monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, pol? becomes transiently polyubiquitinated via Lys11- and Lys48-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to pol? occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys11 and Lys48 rather than oxidative damage per se. PMID:26370087

  2. Plumbagin, Vitamin K3 Analogue, Suppresses STAT3 Activation Pathway through Induction of Protein Tyrosine Phosphatase, SHP-1: Potential Role in Chemosensitization

    PubMed Central

    Sandur, Santosh K.; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B.

    2009-01-01

    The activation of STAT3 has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), an analogue of Vitamin K and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and IL-6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, JAK1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1; and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and VEGF, activated caspase-3, induced PARP cleavage, and increased the sub-G1 population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through induction of SHP-1 and this may mediate sensitization of STAT3 overexpressing cancers to chemotherapeutic agents. PMID:20068065

  3. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress

    PubMed Central

    Schneider, Lonnie; Giordano, Samantha; Zelickson, Blake R.; Johnson, Michelle; Benavides, Gloria; Ouyang, Xiaosen; Fineberg, Naomi; Darley-Usmar, Victor M.; Zhang, Jianhua

    2011-01-01

    Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors, however the mechanisms remain unclear. We hypothesized that since the regulation of glycolysis and oxidative phosphorylation are modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis, 2-deoxy-D-glucose (2-DG). Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by reactive lipid species 4-hydroxynonenal (HNE) or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon differentiation of neuroblastoma cells to a neuron-like phenotype. PMID:21945098

  4. Buparvaquone is active against Neospora caninum in vitro and in experimentally infected mice

    PubMed Central

    Müller, Joachim; Aguado-Martinez, Adriana; Manser, Vera; Balmer, Vreni; Winzer, Pablo; Ritler, Dominic; Hostettler, Isabel; Arranz-Solís, David; Ortega-Mora, Luis; Hemphill, Andrew

    2015-01-01

    The naphthoquinone buparvaquone is currently the only drug used against theileriosis. Here, the effects of buparvaquone were investigated in vitro and in an experimental mouse model for Neospora caninum infection. In 4-day proliferation assays, buparvaquone efficiently inhibited N. caninum tachyzoite replication (IC50 = 4.9 nM; IC100 = 100 nM). However, in the long term tachyzoites adapted and resumed proliferation in the presence of 100 nM buparvaquone after 20 days of cultivation. Parasiticidal activity was noted after 9 days of culture in 0.5 µM or 6 days in 1 µM buparvaquone. TEM of N. caninum infected fibroblasts treated with 1 µM buparvaquone showed that the drug acted rather slowly, and ultrastructural changes were evident only after 3–5 days of treatment, including severe alterations in the parasite cytoplasm, changes in the composition of the parasitophorous vacuole matrix and a diminished integrity of the vacuole membrane. Treatment of N. caninum infected mice with buparvaquone (100 mg/kg) either by intraperitoneal injection or gavage prevented neosporosis symptoms in 4 out of 6 mice in the intraperitoneally treated group, and in 6 out of 7 mice in the group receiving oral treatment. In the corresponding controls, all 6 mice injected intraperitoneally with corn oil alone died of acute neosporosis, and 4 out of 6 mice died in the orally treated control group. Assessment of infection intensities in the treatment groups showed that, compared to the drug treated groups, the controls showed a significantly higher parasite load in the lungs while cerebral parasite load was higher in the buparvaquone-treated groups. Thus, although buparvaquone did not eliminate the parasites infecting the CNS, the drug represents an interesting lead with the potential to eliminate, or at least diminish, fetal infection during pregnancy. PMID:25941626

  5. Development of Enantioselective Synthetic Routes to ()-Kinamycin F and ()-Lomaiviticin Aglycon

    PubMed Central

    Woo, Christina M.; Gholap, Shivajirao L.; Lu, Liang; Kaneko, Miho; Li, Zhenwu; Ravikumar, P. C.; Herzon, Seth B.

    2012-01-01

    The development of enantioselective synthetic routes to ()-kinamycin F (9) and ()-lomaiviticin aglycon (6) is described. The diazotetrahydrobenzo[b]fluorene (diazofluorene) functional group of the targets was prepared by fluoride-mediated coupling of a ?-trimethylsilylmethyl-?,?-unsaturated ketone (38) with an oxidized naphthoquinone (19), palladium-catalyzed cyclization (39?37), and diazo transfer (37?53). The D-ring precursors 60 and 68 were prepared from m-cresol and 3-ethylphenol, respectively. Coupling of the ?-trimethylsilylmethyl-?,?-unsaturated ketone 60 with the juglone derivative 61, cyclization, and diazo transfer, provided the advanced diazofluorene 63, which was elaborated to ()-kinamycin F (9) in three steps. The diazofluorene 87 was converted to the C2-symmetric lomaiviticin aglycon precursor 91 by enoxysilane formation and oxidative dimerization with manganese tris(hexafluoroacetylacetonate) (94, 26%). The stereochemical outcome is attributed to the steric bias engendered by the mesityl acetal of 87 and contact ion pairing of the intermediates. The coupling product 91 was deprotected (tert-butylhydrogen peroxide, trifluoroacetic aciddichloromethane) to form the chain isomer of lomaiviticin aglycon 98, which cyclizes to ()-lomaiviticin aglycon (6, 3941% overall). The scope of the fluoride-mediated coupling process is delineated (nine products, average yield = 72%, Table 2); a related enoxysilane quinonylation reaction is also described (10 products, average yield = 77%, Table 1). We establish that dimeric diazofluorenes undergo hydrodediazotization 3-fold faster then related monomeric diazofluorenes (Table 6). The simple diazofluorene 103 is a potent inhibitor of ovarian cancer stem cells (IC50 = 500 nM). PMID:23030272

  6. Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1.

    PubMed

    Louie, T M; Mohn, W W

    1999-01-01

    Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1, 4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism. PMID:9864310

  7. Evidence for a Chemiosmotic Model of Dehalorespiration in Desulfomonile tiedjei DCB-1

    PubMed Central

    Louie, Tai Man; Mohn, William W.

    1999-01-01

    Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1,4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism. PMID:9864310

  8. Phospholipid Furan Fatty Acids and Ubiquinone-8: Lipid Biomarkers That May Protect Dehalococcoides Strains from Free Radicals

    PubMed Central

    White, David C.; Geyer, Roland; Peacock, Aaron D.; Hedrick, David B.; Koenigsberg, Stephen S.; Sung, Youlboong; He, Jianzhong; Lffler, Frank E.

    2005-01-01

    Dehalococcoides species have a highly restricted lifestyle and are only known to derive energy from reductive dehalogenation reactions. The lipid fraction of two Dehalococcoides isolates, strains BAV1 and FL2, and a tetrachloroethene-to-ethene-dechlorinating Dehalococcoides-containing consortium were analyzed for neutral lipids and phospholipid fatty acids. Unusual phospholipid modifications, including the replacement of unsaturated fatty acids with furan fatty acids, were detected in both Dehalococcoides isolates and the mixed culture. The following three furan fatty acids are reported as present in bacterial phospholipids for the first time: 9-(5-pentyl-2-furyl)-nonanoate (Fu18:2?6), 9-(5-butyl-2-furyl)-nonanoate (Fu17:2?5), and 8-(5-pentyl-2-furyl)-octanoate (Fu17:2?6). The neutral lipids of the Dehalococcoides cultures contained unusually large amounts of benzoquinones (i.e., ubiquinones [UQ]), which is unusual for anaerobes. In particular, the UQ-8 content of Dehalococcoides was 5- to 20-fold greater than that generated in aerobically grown Escherichia coli cultures relative to the phospholipid fatty acid content. Naphthoquinone isoprenologues (MK), which are often found in anaerobically grown bacteria and archaea, were also detected. Dehalococcoides shows a difference in isoprenologue pattern between UQ-8 and MK-5 that is atypical of other bacteria capable of producing both quinone types. The difference in UQ-8 and MK-5 isoprenologue patterns strongly suggests a special function for UQ in Dehalococcoides, and Dehalococcoides may utilize structural modifications in its lipid armamentarium to protect against free radicals that are generated in the process of reductive dechlorination. PMID:16332831

  9. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer.

    PubMed

    Munagala, Radha; Aqil, Farrukh; Jeyabalan, Jeyaprakash; Gupta, Ramesh C

    2015-01-28

    Human papilloma virus (HPV) is the well-established etiological factor of cervical cancer. E6 and E7 oncoproteins expressed by HPV are known to inactivate tumor suppressor proteins p53 and pRb, respectively. Tanshinone IIA (Tan IIA) is a diterpenoid naphthoquinone found in the traditional Chinese medicine Danshen (Salvia sp.). Tan IIA has been shown to possess anti-tumor activity against several cancer types. In this study we show that Tan IIA potently inhibited proliferation of the human cervical cancer CaSki, SiHa, HeLa and C33a cells. Mechanistically in HPV positive CaSki cells, Tan IIA was found to (i) downregulate expression of HPV E6 and E7 genes and modulate associated proteins E6AP and E2F1, (ii) cause S phase cell cycle arrest, (iii) induce accumulation of p53 and alter expression of p53-dependent targets, (iv) modulate pRb and related proteins, and (v) cause p53-mediated apoptosis by moderating Bcl2, Bax, caspase-3, and PARP cleavage expressions. In vivo, Tan IIA resulted in over 66% reduction in tumor volume of cervical cancer xenograft in athymic nude mice. Tan IIA treated tumor tissues had lower expression of proliferation marker PCNA and changes in apoptosis targets were in agreement with in vitro studies, further confirming reduced proliferation and involvement of multiple targets behind anti-cancer effects. This is the first demonstration of Tan IIA to possess significant anti-viral activity by repressing HPV oncogenes leading to inhibition of cervical cancer. Together, our data suggest that Tan IIA can be exploited as a potent therapeutic agent for the prevention and treatment of cervical and other HPV-related cancers. PMID:25304375

  10. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents.

    PubMed

    Wink, Michael; Ashour, Mohamed L; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  11. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  12. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition

    SciTech Connect

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio . E-mail: n-shimamoto@kph.bunri-u.ac.jp

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as {alpha}-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  13. Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol

    SciTech Connect

    Maeda, Masayo; Murakami, Manabu; Takegami, Tsutomu; Ota, Takahide

    2008-06-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] is a vitamin K antagonist with antitumor activity. The effect of lapachol on the experimental metastasis of murine B16BL6 melanoma cells was examined. A single oral administration of a high toxic dose of lapachol (80-100 mg/kg) 6 h before iv injection of tumor cells drastically promoted metastasis. This promotion of metastasis was also observed in T-cell-deficient mice and NK-suppressed mice. In vitro treatment of B16BL6 cells with lapachol promoted metastasis only slightly, indicating that lapachol promotes metastasis primarily by affecting host factors other than T cells and NK cells. A single oral administration of warfarin, the most commonly used vitamin K antagonist, 6 h before iv injection of tumor cells also drastically promoted the metastasis of B16BL6 cells. The promotion of metastasis by lapachol and warfarin was almost completely suppressed by preadministration of vitamin K3, indicating that the promotion of metastasis by lapachol was derived from vitamin K antagonism. Six hours after oral administration of lapachol or warfarin, the protein C level was reduced maximally, without elongation of prothrombin time. These observations suggest that a high toxic dose of lapachol promotes metastasis by inducing a hypercoagulable state as a result of vitamin K-dependent pathway inhibition. On the other hand, serial oral administration of low non-toxic doses of lapachol (5-20 mg/kg) weakly but significantly suppressed metastasis by an unknown mechanism, suggesting the possible use of lapachol as an anti-metastatic agent.

  14. Shikonin causes cell-cycle arrest and induces apoptosis by regulating the EGFR–NF-κB signalling pathway in human epidermoid carcinoma A431 cells

    PubMed Central

    Tian, Rong; Li, You; Gao, Mei

    2015-01-01

    Shikonin, a naphthoquinone pigment isolated from the Chinese herbal Zicao, has been shown to exhibit antioxidant and anticancer effects. In the present study, we investigated the antiproliferative and pro-apoptotic effects of shikonin on A431 cells and explored the underlying molecular mechanisms. In the present study, our results showed that shikonin significantly inhibited the growth of A431 cells in a concentration- and time-dependent manner, and caused cell cycle arrest by upregulation of p21 and p27, and downregulation of cyclins and cyclin-dependent kinases. In addition, shikonin evidently induced apoptosis due to decreasing Bcl-2 expression, increasing Bax expression, activating caspase and inactivating NF-κB, while pretreatment with a pan-caspase inhibitor Z-Asp-CH2-DCB abrogated shikonin-induced apoptosis. Moreover, EGF could significantly increase the NF-κB DNA-binding activity and reversed the shikonin-induced inactivation of NF-κB. As anticipated AG1478 (EGFR inhibitor) and Bay11-7082 (NF-κB inhibitor) blocked EGF-reversed the inactivation of NF-κB induced by shikonin. Our data also showed that EGF could evidently reverse the shikonin-induced decreases in cell viability and increases in apoptosis. Then, the NF-κB inhibitors such as Bay11-7082, SN50, Helenalin and the EGFR inhibitor AG1478 and its downstream inhibitor such as PI3K inhibitor LY294002 and STAT3 inhibitor Stattic dramatically blocked EGF-reversed decreases in cell viability and increases in apoptosis induced by shikonin. Collectively, our findings indicated that shikonin inhibited cell growth and caused cell cycle arrest of the A431 cells through the regulation of apoptosis. Moreover, these effects were mediated at least partially by suppressing the activation of the EGFR–NF-κB signaling pathways. PMID:25720435

  15. Evaluation of radical scavenging properties of shikonin

    PubMed Central

    Yoshida, Lucia S.; Kohri, Shunji; Tsunawaki, Shohko; Kakegawa, Tomohito; Taniguchi, Taizo; Takano-Ohmuro, Hiromi; Fujii, Hirotada

    2014-01-01

    With the aim of developing effective anti-inflammatory drugs, we have been investigating the biochemical effects of shikonin of “Shikon” roots, which is a naphthoquinone with anti-inflammatory and antioxidative properties. Shikonin scavenged reactive oxygen species like hydroxyl radical, superoxide anion (O2•−) and singlet oxygen in previous studies, but its reactivity with reactive oxygen species is not completely understood, and comparison with standard antioxidants is lacking. This study aimed elucidation of the reactivity of shikonin with nitric oxide radical and reactive oxygen species such as alkyl-oxy radical and O2•−. By using electron paramagnetic resonance spectrometry, shikonin was found unable of reacting with nitric oxide radical in a competition assay with oxyhemoglobin. However, shikonin scavenged alkyl-oxy radical from 2,2'-azobis(2-aminopropane) dihydrochloride with oxygen radical absorbance capacity, ORAC of 0.25 relative to Trolox, and showed a strong O2•−-scavenging ability (42-fold of Trolox; estimated reaction rate constant: 1.7 × 105 M−1s−1) in electron paramagnetic resonance assays with CYPMPO as spin trap. Concerning another source of O2•−, the phagocyte NADPH oxidase (Nox2), shikonin inhibited the Nox2 activity by impairing catalysis when added before enzyme activation (IC50: 1.1 µM; NADPH oxidation assay). However, shikonin did not affect the preactivated Nox2 activity, although having potential to scavenge produced O2•−. In conclusion, shikonin scavenged O2•− and alkyl-oxy radical, but not nitric oxide radical. PMID:25320455

  16. The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells.

    PubMed

    Piao, Jin-Lan; Cui, Zheng-Guo; Furusawa, Yukihiro; Ahmed, Kanwal; Rehman, Mati Ur; Tabuchi, Yoshiaki; Kadowaki, Makoto; Kondo, Takashi

    2013-09-25

    Shikonin (SHK), a natural naphthoquinone derived from the Chinese medical herb Lithospermum erythrorhizon, induces both apoptosis and necroptosis in several cancer cell lines. However, the detailed molecular mechanisms involved in the initiation of cell death are still unclear. In the present study, caspase-dependent apoptosis was induced by SHK treatment at 1μM after 6h in U937 cells, with increase in DNA fragmentation, generation of intracellular reactive oxygen species (ROS), fraction of cells with low mitochondrial membrane potential (MMP), and in the expression of BH3 only proteins Noxa and tBid. Interestingly, caspase-independent cell death was also detected with SHK treatment at 10μM, observed as increase in SYTOX® Green staining and release of lactate dehydrogenase (LDH). Necrostatin-1 (Nec-1) completely inhibited the SHK-induced leakage of LDH and SYTOX® Green staining. Cell permeable exogenous glutathione (GSH) completely inhibited 1μM SHK-induced apoptosis and converted 10μM SHK-induced necroptosis to apoptosis. Gene expression profiling revealed that 353 genes were found to be significantly regulated by 1μM and 85 genes by 10μM of SHK treatment, respectively. Among these genes, the transcription factor 3 (ATF3) and DNA-damage-inducible transcript 3 (DDIT3) were highly expressed at 1μM of SHK treatment, while tumor necrosis factor (TNF) expression mainly increased at 10μM treatment. These findings provide novel information for the molecular mechanism of SHK-induced apoptosis and necroptosis. PMID:23811387

  17. Naphthalene--an environmental and occupational toxicant.

    PubMed

    Preuss, Ralf; Angerer, Jürgen; Drexler, Hans

    2003-10-01

    For many years naphthalene had been considered as a non-carcinogenic polycyclic aromatic hydrocarbon (PAH). Airborne naphthalene concentrations have always been observed to be below the limit values of various national committees, such as the threshold limit value (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH) and the MAK of the Deutsche Forschungsgemeinschaft (DFG) (10 ppm). Since 2000, when the US National Toxicology Program revealed clear evidence of the carcinogenic activity of naphthalene in rats, international agencies [the International Agency for Research on Cancer (IARC), the US Environmental Protection Agency (US EPA), DFG] have reclassified naphthalene as a potential human carcinogen, and the European Union (EU) is currently preparing a new risk assessment report. It is presently unknown how to protect humans from health risks resulting from occupational and environmental naphthalene exposure. Knowledge about the external and internal exposure of humans serves as the key determinant in a comprehensive risk assessment. We review here ambient monitoring studies concerning the external naphthalene exposure that results from ubiquitous environmental sources (indoor and outdoor air, water, soil, food) and from a variety of critical workplaces (coking plants, creosote impregnation, distillation of coal tar and naphthalene, manufacture of refractories, graphite electrodes, aluminium and mothballs). Based on results of ambient monitoring studies published so far, a new hygiene-based exposure limit of 1.5 mg naphthalene per cubic metre of air (0.3 ppm) is proposed. Furthermore, results from biological monitoring studies are summarised in this article. The internal burden was almost exclusively determined by means of the urinary metabolites 1-naphthol and 2-naphthol, but it is currently not possible for one to evaluate a biological tolerance level (BAT) or a biological exposure index (BEI). Based on the toxicokinetics and metabolism of naphthalene, the central question on its carcinogenicity is briefly sketched. Naphthoquinones play an important role in this context. Their adducts with macromolecules may be the parameters of choice for the estimation of effects to human health. PMID:12920524

  18. Deuterium-Labeled Phylloquinone Has Tissue-Specific Conversion to Menaquinone-4 among Fischer 344 Male Rats12

    PubMed Central

    Al Rajabi, Ala; Booth, Sarah L.; Peterson, James W.; Choi, Sang Woon; Suttie, John W.; Shea, M. Kyla; Miao, Benchun; Grusak, Michael A.; Fu, Xueyan

    2012-01-01

    Phylloquinone (PK) is converted into menaquinone-4 (MK-4) via side chain removal-addition. Stable isotope use is an effective approach to identify the tissue location of this conversion, which is currently unknown. Following a 14-d PK-deficient diet, male Fischer 344 rats (8 mo; n = 15) were fed 1.6 mg deuterium-labeled PK (L-PK) per kg diet for 0 (control), 1 d (PK-1d), and 7 d (PK-7d). Both L-PK and deuterium-labeled MK-4 (L-MK-4) were detected in tissues in PK-1d and PK-7d, although the results varied. Whereas some tissues had an overall increase in MK-4 in response to L-PK, total brain, testes, and fat MK-4 concentrations did not. In contrast, L-MK-4 concentrations increased in all 3 tissues. The deuterium label was found only on the L-MK-4 naphthoquinone ring, confirming the need for side chain removal for the formation of MK-4. Labeled menadione (MD) was detected in urine and serum in PK-1d and PK-7d, confirming its role as an intermediate. A Caco-2 cell monolayer model was used to study the role of the enterocytes in the conversion process. Neither MK-4 nor MD was detected in Caco-2 cells treated with PK. However, when Caco-2 cells were treated with MD, MK-4 was formed. Similarly, MK-4 was formed in response to MD-treated 293T kidney cells, but not HuH7 liver cells. These data demonstrate that MK-4 is the predominant form of vitamin K in multiple tissues, but there appears to be a tissue-specific regulation for the conversion of PK to MK-4. PMID:22437559

  19. An efficient one-pot reaction for selective fluorimetric determination of cefpodoxime and its prodrug.

    PubMed

    Mohamed, Niveen A; Abdel-Wadood, Hanaa M; Ahmed, Sameh

    2011-09-30

    Cefpodoxime proxetil (CFP), an oral third-generation cephalosporin, is a prodrug that is de-esterified in vivo to its active metabolite, cefpodoxime acid (CFA). Therefore, this study aimed to develop a facile and efficient one-pot reaction for selective and sensitive determination of CFA and its prodrug (CFP). The method was based on single-step reaction between CFP or CFA and 1,2-naphthoquinone-4-sulfonate (NQS) as a selective derivatizing reagent in alkaline medium without heating, extraction or reduction steps as usual for NQS derivatization reactions. The fluorescence of the formed NQS-derivative was monitored directly at emission wavelength of 440 nm after excitation at 330 nm. The method can easily be implemented in plating facilities by operators and/or incorporated in on-line derivatization reaction. The correlation coefficients of 0.9991 and 0.9984 were obtained in the concentration ranges of 50-2000 ng mL(-1) for CFA and CFP, respectively. The detection limits were 9.17 and 9.48 ng mL(-1) for CFA and CFP, respectively. The method was validated in accordance with the requirements of ICH guidelines and shown to be suitable for their efficient and sensitive determinations. The developed method was successfully applied for selective determination of CFP in pure form and in pharmaceutical dosage forms as well as CFA in human urine after single dose of CFP without prior need for separation. The method is valuable for quality control laboratories for monitoring of CFP and its active metabolite CFA. PMID:21872067

  20. Effective Antibiofilm Polyketides against Staphylococcus aureus from the Pyranonaphthoquinone Biosynthetic Pathways of Streptomyces Species.

    PubMed

    Oja, Terhi; San Martin Galindo, Paola; Taguchi, Takaaki; Manner, Suvi; Vuorela, Pia M; Ichinose, Koji; Mets-Ketel, Mikko; Fallarero, Adyary

    2015-10-01

    Streptomyces bacteria are renowned for their ability to produce bioactive secondary metabolites. Recently, synthetic biology has enabled the production of intermediates and shunt products, which may have altered biological activities compared to the end products of the pathways. Here, we have evaluated the potential of recently isolated alnumycins and other closely related pyranonaphthoquinone (PNQ) polyketides against Staphylococcus aureus biofilms. The antimicrobial potency of the compounds against planktonic cells and biofilms was determined by redox dye-based viability staining, and the antibiofilm efficacy of the compounds was confirmed by viable counting. A novel antistaphylococcal polyketide, alnumycin D, was identified. Unexpectedly, the C-ribosylated pathway shunt product alnumycin D was more active against planktonic and biofilm cells than the pathway end product alnumycin A, where a ribose unit has been converted into a dioxane moiety. The evaluation of the antibiofilm potential of other alnumycins revealed that the presence of the ribose moiety in pyranose form is essential for high activity against preformed biofilms. Furthermore, the antibiofilm potential of other closely related PNQ polyketides was examined. Based on their previously reported activity against planktonic S. aureus cells, granaticin B, kalafungin, and medermycin were also selected for testing, and among them, granaticin B was found to be the most potent against preformed biofilms. The most active antibiofilm PNQs, alnumycin D and granaticin B, share several structural features that may be important for their antibiofilm activity. They are uncharged, glycosylated, and also contain a similar oxygenation pattern of the lateral naphthoquinone ring. These findings highlight the potential of antibiotic biosynthetic pathways as a source of effective antibiofilm compounds. PMID:26195520

  1. Characterization of a chemically reactive propranolol metabolite that binds to microsomal proteins of rat liver.

    PubMed

    Narimatsu, S; Watanabe, T; Masubuchi, Y; Horie, T; Kumagai, Y; Cho, A K; Imaoka, S; Funae, Y; Ishikawa, T; Suzuki, T

    1995-01-01

    We have characterized a chemically reactive propranolol (PL) metabolite which binds to proteins in rat liver microsomes. During incubation with rat liver microsomes (1 mg of protein) fortified with an NADPH-generating system, 4-hydroxypropranolol (4-OH-PL) quickly disappeared from the reaction medium, but none of the possible metabolite peaks was detected under the high-performance liquid chromatographic conditions used. The consumption of 4-OH-PL depended on microsomes and NADPH. The reaction was not affected by inhibitors of cytochrome P450 or FAD monooxygenase, but was markedly diminished in the presence of cytosol and ascorbic acid. The effect of cytosol was inhibited by potassium cyanide but not by sodium benzoate or dimethyl sulfoxide, and was also not affected by heating at 60 degrees C for 30 min, suggesting that superoxide (SO) ion was involved in the reaction and that it was blocked by superoxide dismutase (SOD) present in the cytosol. Cu,Zn-SOD, purified from cytosol, effectively mimicked the suppressive effect of cytosol. Incubation of 4-OH-PL in an SO-generating system of xanthine and xanthine oxidase generated 1,4-naphthoquinone (1,4-NQ), which was identified by TLC, HPLC, and GC/MS. 1,4-NQ was also formed in microsomal incubates containing NADPH and small amounts of microsomes (below 0.1 mg of protein). These results indicate that 4-OH-PL is converted by SO, or some reactive oxygen species derived from it, to 1,4-NQ which binds to proteins and is one of the reactive metabolites of PL. PMID:7548755

  2. Temperature-dependent quinone cytotoxicity in platelets involves arylation.

    PubMed

    Kang, Young-Ah; Bae, Ok-Nam; Lee, Moo-Yeol; Chung, Seung-Min; Lee, Joo-Young; Chung, Jin-Ho

    2002-09-27

    Menadione (MEN), a representative quinone compound, produces cytotoxicity in many cells by arylation with protein thiols and oxidative stress due to redox cycling. Previously it was demonstrated that protein arylation appears to be a primary mechanism for MEN-induced toxicity in platelets. To test the hypothesis that temperature conditions may be important in MEN-induced cytotoxicity in noncancer cells, platelets were incubated with menadione at 25, 37, or 42 degrees C. As temperature was increased, MEN significantly enhanced lactate dehydrogenase (LDH) leakage. MEN-induced depletion of protein thiol levels also increased as temperature was elevated. To investigate the mechanism of temperature-dependent MEN cytotoxicity, MEN-induced platelet toxicity was compared to two other quinone substances. Benzoquinone (BQ), which acts via arylation, produced cytotoxic effects similar to those of MEN. Dimethoxy-1,4-naphthoquinone (DMNQ), which exerts toxicity via oxidative radical generation, failed to produce cytotoxicity at all three temperatures. While MEN and DMNQ enhanced O(2) consumption in a temperature-dependent manner, BQ did not affect this parameter. MEN, which possesses an electrophilic 3-position, was found to react with thiols to form a thioether linkage, a direct indicator of arylation. In the case of MEN uptake kinetics, the amount of cellular uptake was not different at various temperatures, but concentration of MEN in extracellular medium decreased temperature dependently. This might be due to increased arylation capacity binding to cellular proteins as temperature rises. These data suggest that MEN-induced platelet cytotoxicity involves arylation that is temperature related. PMID:12227957

  3. Potential of herbs in skin protection from ultraviolet radiation.

    PubMed

    Korać, Radava R; Khambholja, Kapil M

    2011-07-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A "sclerojuglonic" compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  4. Phytochemical screening and anti-inflammatory activity of Cnidoscolus quercifolius (Euphorbiaceae) in mice

    PubMed Central

    de Arajo Gomes, Leandra Macedo; de Andrade, Thayne Mayra; Silva, Juliane Cabral; de Lima, Julianeli Tolentino; Quintans-Junior, Lucindo Jos; da Silva Almeida, Jackson Roberto Guedes

    2014-01-01

    Background: Cnidoscolus quercifolius is a species popularly known as favela and faveleira, and belonging to the Caatinga biome (semi-arid vegetation, Brazil), where is used in folk medicine as an anti-inflammatory. Objective: The aim was to evaluate the anti-inflammatory effect of the ethanolic extract from barks (Cqb-EtOH) and leaves (Cql-EtOH) of C. quercifolius in mice using experimental models of inflammation. Materials and Methods: The preliminary phytochemical analysis of the ethanolic extract was performed. The activity was evaluated by paw edema induced by carrageenan and leukocytes migration to the peritoneal cavity induced by carrageenan methods. Results: A preliminary analysis of Cqb-EtOH revealed that it contained coumarins, flavonoids, monoterpenes/diterpenes and naphthoquinones, while the Cql-EtOH showed positive reaction to coumarins, anthracene derivatives, flavonoids, lignans and triterpenes/steroids. Cqb-EtOH and Cql-EtOH (100, 200 and 400 mg/kg) inhibited significantly (P < 0.01) the increase in the edema volume after administration of carrageenan. In the peritonitis test, acute pretreatment with Cqb-EtOH and Cql-EtOH (100, 200 and 400 mg/kg) inhibited the leukocyte migration. Conclusions: It can be concluded that extracts from the barks and leaves of C. quercifolius have anti-inflammatory activity, which supports the popular use of this plant to treat inflammation. Thus, extracts has significant anti-inflammatory properties, which are related probably to inhibition of release of mediators of the inflammatory process. PMID:25276074

  5. Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli.

    PubMed

    Sauriasari, Rani; Wang, Da-Hong; Takemura, Yoko; Tsutsui, Ken; Masuoka, Noriyoshi; Sano, Kuniaki; Horita, Masako; Wang, Bing-Ling; Ogino, Keiki

    2007-06-01

    Lawsone is an active naphthoquinone derivative isolated from henna (Lawsonia inermis L.), a widely used hair dye. Previous study on the toxicity of lawsone remains unclear since the involvement of oxidative stress and the kind of ROS (reactive oxygen species) involved have not been fully resolved yet. This present study reports the cytotoxic effects of lawsone and henna. We carried out CAT assay (a zone of inhibition test of bacterial growth and colony-forming efficiency test of transformant Escherichia coli strains that express mammalian catalase gene derived from normal catalase mice (Cs(a)) and catalase-deficient mutant mice (Cs(b))), Ames mutagenicity assay and H(2)O(2) generation assay. Lawsone generated H(2)O(2) slightly in phosphate buffer system and was not mutagenic in Ames assay using TA 98, TA 100 and TA 102, both in the absence and presence of metabolic activation. Lawsone exposure inhibited the growth of both Cs(a) and Cs(b) strains in a dose-dependent manner. Mean zone diameter for Cs(a) was 9.75+/-0.96 mm and 12.75+/-1.5 mm for Cs(b). Natural henna leaves did not show toxic effects, whereas two out of four samples of marketed henna products were shown toxicity effects. Catalase abolished zone of inhibition (ZOI) of marketed henna products, eliminated ZOI of lawsone in a dose-dependent manner and low concentration of exogenous MnSOD and Cu/ZnSOD eliminated the toxicity. Histidine and DTPA, the metal chelator; BHA and low concentration of capsaicin, the inducer of NADH-quinone reductase, effectively protected Cs(a) and Cs(b) against lawsone in this study. We suggest that lawsone cytotoxicity is probably mediated, at least in part, by the release of O(2)(-), H(2)O(2) and OH(-). PMID:17442476

  6. Evaluation of radical scavenging properties of shikonin.

    PubMed

    Yoshida, Lucia S; Kohri, Shunji; Tsunawaki, Shohko; Kakegawa, Tomohito; Taniguchi, Taizo; Takano-Ohmuro, Hiromi; Fujii, Hirotada

    2014-09-01

    With the aim of developing effective anti-inflammatory drugs, we have been investigating the biochemical effects of shikonin of "Shikon" roots, which is a naphthoquinone with anti-inflammatory and antioxidative properties. Shikonin scavenged reactive oxygen species like hydroxyl radical, superoxide anion (O2 (•-)) and singlet oxygen in previous studies, but its reactivity with reactive oxygen species is not completely understood, and comparison with standard antioxidants is lacking. This study aimed elucidation of the reactivity of shikonin with nitric oxide radical and reactive oxygen species such as alkyl-oxy radical and O2 (•-). By using electron paramagnetic resonance spectrometry, shikonin was found unable of reacting with nitric oxide radical in a competition assay with oxyhemoglobin. However, shikonin scavenged alkyl-oxy radical from 2,2'-azobis(2-aminopropane) dihydrochloride with oxygen radical absorbance capacity, ORAC of 0.25 relative to Trolox, and showed a strong O2 (•-)-scavenging ability (42-fold of Trolox; estimated reaction rate constant: 1.7 × 10(5) M(-1)s(-1)) in electron paramagnetic resonance assays with CYPMPO as spin trap. Concerning another source of O2 (•-), the phagocyte NADPH oxidase (Nox2), shikonin inhibited the Nox2 activity by impairing catalysis when added before enzyme activation (IC50: 1.1 µM; NADPH oxidation assay). However, shikonin did not affect the preactivated Nox2 activity, although having potential to scavenge produced O2 (•-). In conclusion, shikonin scavenged O2 (•-) and alkyl-oxy radical, but not nitric oxide radical. PMID:25320455

  7. Dinuclear cobalt(II) and cobalt(III) complexes of bis-bidentate napthoquinone ligands.

    PubMed

    Mulyana, Yanyan; Alley, Kerwyn G; Davies, Kristian M; Abrahams, Brendan F; Moubaraki, Boujemaa; Murray, Keith S; Boskovic, Colette

    2014-02-14

    The combination of bridging bis-bidentate redox-active ligands derived from 3,3-bis-2-hydroxy-1,4-naphthoquinone (bhnqH2), ancillary ligands based on tris(2-pyridylmethyl)amine (tpa) and cobalt salts has afforded a new family of dinuclear cobalt complexes. Compounds of the complexes [Co2(bhnq)(tpa)2](2+) (1), [Co2(bhnq)(Metpa)2](2+) (2), [Co2(bhnq)(Me2tpa)2](2+) (3) [Co2(bhnq)(Me3tpa)2](2+) (4), [Co2(bhnq)(tpa)2](4+) (5), [Co2(bhMenaph)(tpa)2](2+) (6) and [Co2(bhPronaph)(tpa)2](2+) (7) (Mentpa involves n = 0, 1, 2 and 3 methyl groups at the 6-position of the tpa pyridine rings; bhMenaphH4 = bis-3,4-dihydroxy-4-methoxynaphthalene-1-one; bhPronaphH4 = bis-3,4-dihydroxy-4-(2-oxopropyl)naphthalen-1(4H)-one) have been characterised by single crystal X-ray diffraction. While complexes 1-4 possess divalent cobalt centres, trivalent cobalt is evident in complexes 5-7. The bis-bidentate redox-active bridging ligand remains in the diamagnetic quinone bhnq(2-) redox state in complexes 1-5. Metal-catalysed reaction with methoxide or acetone enolate ions gives rise to the derivatised bridging ligands present in 6 and 7. The electronic properties of compounds of 1-7 have been explored in the solid state by infrared spectroscopy and variable temperature magnetic measurements and in solution by electronic absorption spectroscopy and cyclic voltammetry. PMID:24306162

  8. Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey

    SciTech Connect

    Buckpitt, Alan; Morin, Dexter; Murphy, Shannon; Edwards, Patricia; Van Winkle, Laura

    2013-07-15

    Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent K{sub m}, V{sub max}, and catalytic efficiency (V{sub max}/K{sub m}) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar K{sub m} and V{sub max} appeared to metabolize naphthalene. The rank order of V{sub max} (rat olfactory epithelium > mouse olfactory epithelium > murine airways ≫ rat airways) correlated well with tissue susceptibility to naphthalene. The V{sub max} in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. - Highlights: • Naphthalene is metabolized with high catalytic efficiency in susceptible tissue. • Naphthalene is metabolized at low catalytic efficiency in non-susceptible tissue. • Respiratory tissues of the non human primate metabolize naphthalene slowly.

  9. Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells.

    PubMed Central

    Duncan, Roger F; Peterson, Hazel; Hagedorn, Curt H; Sevanian, Alex

    2003-01-01

    Dysregulated cell growth can be caused by increased activity of protein synthesis eukaryotic initiation factor (eIF) 4E. Dysregulated cell growth is also characteristic of atherosclerosis. It is postulated that exposure of vascular cells, such as endothelial cells, smooth muscle cells and monocytes/macrophages, to oxidants, such as oxidized low-density lipoprotein (oxLDL), leads to the elaboration of growth factors and cytokines, which in turn results in smooth muscle cell hyperproliferation. To investigate whether activation of eIF4E might play a role in this hyperproliferative response, vascular cells were treated with oxLDL, oxidized lipid components of oxLDL and several model oxidants, including H(2)O(2) and dimethyl naphthoquinone. Exposure to each of these compounds led to a dose- and time-dependent increase in eIF4E phosphorylation in all three types of vascular cells, correlated with a modest increase in overall translation rate. No changes in eIF4EBP, eIF2 or eIF4B modification state were observed. Increased eIF4E phosphorylation was paralleled by increased presence of eIF4E in high-molecular-mass protein complexes characteristic of its most active form. Anti-oxidants at concentrations typically employed to block oxidant-induced cell signalling likewise promoted eIF4E phosphorylation. The results of this study indicate that increased eIF4E activity may contribute to the pathophysiological events in early atherogenesis by increasing the expression of translationally inefficient mRNAs encoding growth-promoting proteins. PMID:12215171

  10. Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor

    PubMed Central

    Scherzer-Attali, Roni; Pellarin, Riccardo; Convertino, Marino; Frydman-Marom, Anat; Egoz-Matia, Nirit; Peled, Sivan; Levy-Sakin, Michal; Shalev, Deborah E.; Caflisch, Amedeo; Gazit, Ehud; Segal, Daniel

    2010-01-01

    The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease. PMID:20559435

  11. Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice.

    PubMed

    Carratt, S A; Morin, D; Buckpitt, A R; Edwards, P C; Van Winkle, L S

    2016-03-30

    Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure. PMID:26840748

  12. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II

    SciTech Connect

    Kawiak, Anna; Piosik, Jacek; Stasilojc, Grzegorz; Gwizdek-Wisniewska, Anna; Marczak, Lukasz; Stobiecki, Maciej; Lojkowska, Ewa

    2007-09-15

    Reactive oxygen species (ROS) have been recognized as key molecules, which can selectively modify proteins and therefore regulate cellular signalling including apoptosis. Plumbagin, a naphthoquinone exhibiting antitumor activity, is known to generate ROS and has been found to inhibit the activity of topoisomerase II (Topo II) through the stabilization of the Topo II-DNA cleavable complex. The objective of this research was to clarify the role of ROS and Topo II inhibition in the induction of apoptosis mediated by plumbagin. As determined by the comet assay, plumbagin induced DNA cleavage in HL-60 cells, whereas in a cell line with reduced Topo II activity-HL-60/MX2, the level of DNA damage was significantly decreased. The onset of DNA strand break formation in HL-60 cells was delayed in comparison with the generation of intracellular ROS. In HL-60/MX2 cells, ROS were generated at a similar rate, whereas a significant reduction in the level of DNA damage was detected. The pretreatment of cells with N-acetylcysteine (NAC) attenuated plumbagin-induced DNA damage, pointing out to the involvement of ROS generation in cleavable complex formation. These results suggest that plumbagin-induced ROS does not directly damage DNA but requires the involvement of Topo II. Furthermore, experiments carried out using light spectroscopy indicated no direct interactions between plumbagin and DNA. The induction of apoptosis was significantly delayed in HL-60/MX2 cells indicating the involvement of Topo II inhibition in plumbagin-mediated apoptosis. Thus, these findings strongly suggest ROS-mediated inhibition of Topo II as an important mechanism contributing to the apoptosis-inducing properties of plumbagin.

  13. Synthesis and evaluation of the cytotoxic activity of 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles in myeloid and lymphoid leukemia cell lines.

    PubMed

    Cardoso, Mariana F C; Rodrigues, Patrcia C; Oliveira, Maria Eduarda I M; Gama, Ivson L; da Silva, Illana M C B; Santos, Isabela O; Rocha, David R; Pinho, Rosa T; Ferreira, Vitor F; de Souza, Maria Ceclia B V; da Silva, Fernando de C; Silva-Jr, Floriano Paes

    2014-09-12

    Leukemia is the most common blood cancer, and its development starts at diverse points, leading to distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-resistant cases. Naphthoquinones (NQ) are considered privileged structures in medicinal chemistry due to their plethora of biological activities, including antimicrobial and anticancer effects. Nitrogen-containing heterocycles such as 1,2,3-1H-triazoles have been identified as general scaffolds for generating glycosidase inhibitors. In the present study, the NQ and 1,2,3-1H-triazole cores have been combined to chemically synthesize 18 new 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles (1,2-FNQT). Their cytotoxicities were evaluated against four different leukemia cell lines, including MOLT-4 and CEM (lymphoid cell lines) and K562 and KG1 (myeloid cell lines), as well as normal human peripheral blood mononucleated cells (PBMCs). The new 1,2-FNQT series showed high cytotoxic potential against all leukemia cell lines tested, and some compounds (12o and 12p) showed even better results than the classical therapeutic compounds such as doxorubicin or cisplatin. Others compounds, such as 12b, are promising because of their high selectivity against lymphoblastic leukemia and their low activity against normal hematopoietic cells. The cells of lymphoid origin (MOLT and CEM) were generally more sensitive than the myeloid cell lines to this series of compounds, and most of the compounds that showed the highest cytotoxicity were similarly active against both cell lines. PMID:25064348

  14. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells

    PubMed Central

    Zhao, Qiaoli; Assimopoulou, Andreana N.; Klauck, Sabine M.; Damianakos, Harilaos; Chinou, Ioanna; Kretschmer, Nadine; Rios, José-Luis; Papageorgiou, Vassilios P.; Bauer, Rudolf; Efferth, Thomas

    2015-01-01

    Leukemia remains life-threatening despite remarkable advances in chemotherapy. The poor prognosis and drug resistance are challenging treatment. Novel drugs are urgently needed. Shikonin, a natural naphthoquinone, has been previously shown by us to be particularly effective towards various leukemia cell lines compared to solid tumors. However, the underlying mechanisms are still poorly understood. Here, we investigated shikonin and 14 derivatives on U937 leukemia cells. Four derivatives (isobutyrylshikonin, 2-methylbutyrylshikonin, isovalerylshikonin and β,β-dimethylacrylshikonin) were more active than shikonin. AnnexinV-PI analysis revealed that shikonins induced apoptosis. Cell cycle G1/S check point regulation and the transcription factor c-MYC, which plays a vital role in cell cycle regulation and proliferation, were identified as the most commonly down-regulated mechanisms upon treatment with shikonins in mRNA microarray hybridizations. Western blotting and DNA-binding assays confirmed the inhibition of c-MYC expression and transcriptional activity by shikonins. Reduction of c-MYC expression was closely associated with deregulated ERK, JNK MAPK and AKT activity, indicating their involvement in shikonin-triggered c-MYC inactivation. Molecular docking studies revealed that shikonin and its derivatives bind to the same DNA-binding domain of c-MYC as the known c-MYC inhibitors 10058-F4 and 10074-G5. This finding indicates that shikonins bind to c-MYC. The effect of shikonin on U937 cells was confirmed in other leukemia cell lines (Jurkat, Molt4, CCRF-CEM, and multidrug-resistant CEM/ADR5000), where shikonin also inhibited c-MYC expression and influenced phosphorylation of AKT, ERK1/2, and SAPK/JNK. In summary, inhibition of c-MYC and related pathways represents a novel mechanism of shikonin and its derivatives to explain their anti-leukemic activity. PMID:26472107

  15. Decolorization of azo dyes by Geobacter metallireducens.

    TOXLINE Toxicology Bibliographic Information

    Liu G; Zhou J; Chen C; Wang J; Jin R; Lv H

    2013-09-01

    Geobacter metallireducens was found to be capable of decolorizing several azo dyes with different structures to various extents. Pyruvate, ethanol, acetate, propionate, and benzoate could support 66.3 ± 2.6-93.7 ± 2.1 % decolorization of 0.1 mM acid red 27 (AR27) in 40 h. The dependence of the specific decolorization rate on AR27 concentration (25 to 800 μM) followed Michaelis-Menten kinetics (K m = 186.9 ± 1.4 μΜ, V max = 0.65 ± 0.02 μmol mg protein(-1) h(-1)). Enhanced AR27 decolorization was observed with the increase of cell concentrations ranging from 7.5 to 45 mgL(-1). AR27 decolorization by G. metallireducens was retarded by the presence of goethite, which competed electrons with AR27 and was reduced to Fe(II). The addition of low concentrations of humic acid (1-100 mgL(-1)) or 2-hydroxy-1,4-naphthoquinone (0.5-50 μM) could improve the decolorization performance of G. metallireducens. High-performance liquid chromatography analysis suggested reductive pathway to be responsible for decolorization. This was the first study on azo dye decolorization by Geobacter strain and might improve our understanding of natural attenuation and bioremediation of environments polluted by azo dyes.

  16. Decolorization of azo dyes by Geobacter metallireducens.

    PubMed

    Liu, Guangfei; Zhou, Jiti; Chen, Congcong; Wang, Jing; Jin, Ruofei; Lv, Hong

    2013-09-01

    Geobacter metallireducens was found to be capable of decolorizing several azo dyes with different structures to various extents. Pyruvate, ethanol, acetate, propionate, and benzoate could support 66.3 ± 2.6-93.7 ± 2.1 % decolorization of 0.1 mM acid red 27 (AR27) in 40 h. The dependence of the specific decolorization rate on AR27 concentration (25 to 800 μM) followed Michaelis-Menten kinetics (K m = 186.9 ± 1.4 μΜ, V max = 0.65 ± 0.02 μmol mg protein(-1) h(-1)). Enhanced AR27 decolorization was observed with the increase of cell concentrations ranging from 7.5 to 45 mgL(-1). AR27 decolorization by G. metallireducens was retarded by the presence of goethite, which competed electrons with AR27 and was reduced to Fe(II). The addition of low concentrations of humic acid (1-100 mgL(-1)) or 2-hydroxy-1,4-naphthoquinone (0.5-50 μM) could improve the decolorization performance of G. metallireducens. High-performance liquid chromatography analysis suggested reductive pathway to be responsible for decolorization. This was the first study on azo dye decolorization by Geobacter strain and might improve our understanding of natural attenuation and bioremediation of environments polluted by azo dyes. PMID:23132348

  17. Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells

    NASA Astrophysics Data System (ADS)

    Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.

  18. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    SciTech Connect

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle model simulates more accurately than the ADRE.

  19. Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants.

    PubMed

    Gonzlez-Coloma, Azucena; Reina, Matas; Senz, Claudia; Lacret, Rodney; Ruiz-Mesia, Lastenia; Arn, Vicente J; Sanz, Jess; Martnez-Daz, Rafael A

    2012-04-01

    Extracts (34) from eight plant species of the Peruvian Amazonia currently used in traditional Peruvian medicine, mostly as antileishmanial remedies and also as painkiller, antiseptic, antipyretic, anti-inflamatory, antiflu, astringent, diuretic, antipoison, anticancerous, antiparasitic, insecticidal, or healing agents, have been tested for their antileishmanial, antitrypanosomal, and cytotoxic activity. Plant species were selected based on interviews conducted with residents of rural areas. The different plant parts were dried, powdered, and extracted by maceration with different solvents (hexane, chloroform, and 70% ethanol-water). These extracts were tested on promastigote forms of Leishmania infantum strain PB75, epimastigote forms of Trypanosoma cruzi strain Y, and the mammalian CHO cell line. Parasite viability and nonspecific cytotoxicity were analyzed by a modified MTT colorimetric assay method. The isolation and identification of pure compounds from selected extracts were performed by column chromatography, gas chromatography mass spectrometry (GC-MS; mixtures), spectroscopic techniques [MS, infrared (IR), ultraviolet (UV)], and mono and two-dimensional (1)H and (13)C nuclear magnetic resonance (NMR; COSY, HSQC, NOESY) experiments. Chondodendron tomentosum bark and Cedrela odorata were the most active extracts against Leishmania, while C. odorata and Aristoloquia pilosa were the most active against Trypanosoma, followed by Tabebuia serratifolia, Tradescantia zebrina, and Zamia ulei. Six compounds and two mixtures were isolated from Z. ulei [cycasin (1)], T. serratifolia {mixtures 1-2, and naphthoquinones 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione (2) and 2-(1-hydroxyethyl)-4H,9H-naphtho[2,3-b]furan-4,9-dione (3)}, and C. tomentosum [chondrocurine (4); (S,S')-12-O-methyl(+)-curine (5); and cycleanine (6)]. Four compounds and the two mixtures exhibited significant activity. PMID:21922239

  20. Isolation and characterization of photosynthetic reaction centers from Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides

    SciTech Connect

    Worland, S.T.

    1984-09-01

    Reaction centers were isolated by affinity chromatography on equine cytochrome C. Peripheral proteins were removed with 0.05% LDAO. Absorption and EPR spectra and bleaching assays indicate that the reaction centers retained their electron donors and acceptors in the native environment. Three reaction center polypeptides were isolated and submitted for amino-terminal sequence determination. By comparing these sequences to those deduced from DNA, it was established that the M and L subunits are post-translationally modified to remove the aminoterminal Met, whereas the H subunit is not. Inhibition of O/sub 2/ evolution in photosystem II particles from spinach by naphthoquinone derivatives show O/sub 2/ inhibition by bromomethyl and acetoxymethyl derivatives but not with hydroxymethyl derivatives. Inhibition by acetoxymethyl derivatives in irreversible and dependent on illumination suggesting that reduction of the quinone is necessary. Therefore acetoxymethyl derivatives may be useful as suicide reagents for labelling quinone binding sites. Procedures were developed to extract one or both of the quinones present in reaction centers and preserve the integrity of the co-factor binding sites. The H and M subunits were cleaned using furmic acid. Both fragments were isolated from the H subunit, while the larger fragment was isolated from the M subunit. Electrophoretic mobilities of the isolated fragments agrees well with the expected molecular weights. The L subunit was digested with Staphylococcus areus vs protease. The pattern obtained was consistant with the potential sites of cleavage, but it was not possible to assign cleavage sites unambiguously. 112 references, 37 figures, 2 tables.

  1. Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soils.

    PubMed

    Bandowe, Benjamin A Musa; Wilcke, Wolfgang

    2010-01-01

    Although polycyclic aromatic hydrocarbons (PAHs) have been extensively studied, the knowledge of their oxygen-containing derivatives and metabolites (OPAHs) in soils is limited. We modified and tested an existing analytical protocol involving pressurized liquid extraction of soil followed by fractionation of target compounds into PAHs and OPAHs on a silica gel column and gas chromatography/ mass spectrometry-based separation and quantification. Polycyclic aromatic hydrocarbons and carbonyl-OPAHs were quantified directly after separation on silica gel columns, and hydroxyl/carboxyl-OPAHs were quantified after silylation with N,O-bis(trimethylsilyl)trifluoroacetamide. Recoveries between 78 and 97% (relative standard deviation [RSD], 5-12%) were obtained for six carbonyl-OPAHs, whereas 1,2-acenaphthenequinone and 1,4-naphthoquinone showed lower recoveries of 34 and 44% (RSD, 19 and 28%, respectively). Five hydroxyl/carboxyl-OPAHs had recoveries between 36 and 70% (RSD, 13-46%), six others had between 2 and 7% (RSD, 8-25%), and nine were lost in sample preparation. Limits of detection ranged from 0.1 to 1.6 ng g(-1) for OPAHs and from 0.01 to 0.56 ng g(-1) for PAHs. The protocol was applied to soils from a former gasworks site, Berlin, an urban soil from Mainz, both in Germany, and a forest soil from near Manaus, Brazil. The sums of 34 PAH concentrations were 107,000, 3505, and 21 ng g(-1); those of seven carbonyl-OPAHs were 15,690, 170, and 7 ng g(-1); and those of 11 hydroxyl/carboxyl-OPAHs 518, 36, and 16 ng g(-1) for Berlin, Mainz, and Manaus soils, respectively. Several OPAHs were present at concentrations higher than or equal to their parent PAHs, demonstrating the importance of OPAH measurement for the assessment of PAH-related environmental risks. PMID:20830923

  2. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B.

    PubMed

    Verma, Neelam; Mittal, Minakshi; Verma, Raman Kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  3. The Lipids of Pneumocystis carinii

    PubMed Central

    Kaneshiro, Edna S.

    1998-01-01

    Information about a number of Pneumocystis carinii lipids obtained by the analyses of organisms isolated and purified from infected lungs of corticosteroid-immunosuppressed rats has been reported in recent years. Of the common opportunistic protists associated with AIDS (Cryptosporidium, Toxoplasma, and the microsporidia), more is currently known about the lipids of P. carinii than the others. Lipids that are synthesized by the organism but not by humans are attractive targets for drug development. Thus, the elucidation of Δ7C-24-alykylated sterol and cis-9,10-epoxystearic acid biosyntheses in P. carinii is currently being examined in detail, since these have been identified as P. carinii-specific lipids. The development of low-toxicity drugs that prevent sterol C-24 alkylation and the specific inhibition of the lipoxygenase that forms cis-9,10-epoxystearic acid might prove fruitful. Although humans can synthesize coenzyme Q10, the anti-P. carinii activity and low toxicity of ubiquinone analogs such as atovaquone suggest that the electron transport chain in the pathogen may differ importantly from that in the host. Although resistance to atovaquone has been observed, development of other naphthoquinone drugs would provide a broader armamentarium of drugs to treat patients with P. carinii pneumonia. Studies of bronchoalveolar lavage fluid and of infected lungs have demonstrated that the infection causes a number of chemical abnormalities. Bronchoalveolar lavage fluid obtained after the removal of lung cellular material and the organisms has been shown to contain larger amounts of surfactant proteins and smaller amounts of phospholipids than do comparable samples from P. carinii-free lungs. Increased phospholipase activity, inhibition of surfactant secretion by type II cells, and uptake and catabolism of lipids by the pathogen may explain this phenomenon related to P. carinii pneumonia. Although not yet thoroughly examined, initial studies on the uptake and metabolism of lipids by P. carinii suggest that the organism relies heavily on exogenous lipid nutrients. PMID:9457427

  4. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth

    PubMed Central

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithfer, Axel

    2013-01-01

    Background and Aims Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Methods Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasmaoptical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. Key Results The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. Conclusions The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients. PMID:23264234

  5. Potential of herbs in skin protection from ultraviolet radiation

    PubMed Central

    Korać, Radava R.; Khambholja, Kapil M.

    2011-01-01

    Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

  6. Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5,6,7,8-tetrahydronaphthalene derivatives.

    PubMed

    Gamal-Eldeen, Amira M; Hamdy, Nehal A; Abdel-Aziz, Hatem A; El-Hussieny, Enas A; Fakhr, Issa M I

    2014-04-22

    2-Acetyl tetralin (1) reacted with N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford theenaminone 3. The reaction of 3 with piperidine and morpholine afforded the trans enaminone 5a,b,respectively. Compound 3 was treated with primary aromatic amines to give secondary enaminones 6a-e. The enaminone 3 reacted with acetylglycine and hippuric acid to yield pyranones 10a, b, respectively. The reaction of enaminone 3 with 1,4-benzoquinone and 1,4-naphthoquinone gave benzofuranyl tetralin derivatives 14a,b, respectively. Also, when 3 reacted with 5-amino-3-phenyl-1H-pyrazole 15a and 5-amino-1,2,3-triazole 15b, it afforded the new pyrazolo[1,5-a]pyrimidine 17a and 1,2,3-triazolo[1,5-a]pyrimidine 17b, respectively. While the reaction of 3 with pyrimidines 18a, b resulted in the formation of pyrido[2,3-d]pyrimidine derivatives 20a, b, respectively. Investigations of the cytotoxic effect of those compounds against different human cell lines indicated that some compounds showed high selective cytotoxicity against colon cancer HCT-116 cells. Some of these compounds led to DNA damaging and fragmentation that was associated with the induction of apoptosis via mitochondrial pathway. This pathway is initiated by the impairment of mitochondrial transmembrane potential (??m) and in response to that the mitochondria released cytochrome c increased, that in turn activated caspase-9 and caspase-3 and induced apoptosis. Compounds 17b and 20b were promising anti-cancer agents that induced intrinsic apoptosis pathway in colon cancer cells. PMID:24657569

  7. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  8. Molecular structures and biological evaluation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone derivatives as potent antifungal agents

    NASA Astrophysics Data System (ADS)

    Pawar, Omkar; Patekar, Ashwini; Khan, Ayesha; Kathawate, Laxmi; Haram, Santosh; Markad, Ganesh; Puranik, Vedavati; Salunke-Gawali, Sunita

    2014-02-01

    Derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy, LC-MS and single crystal X-ray diffraction studies. Antifungal activity of L-1 to L-4 has been evaluated against Candida tropicalis, Candida albicans and Cladosporium herbarum. The intramolecular hydrogen bonding affects the N-H vibrational frequency in L-2 (3273 cm-1). The single crystal X-ray structure reveal that L-1 and L-3 crystallizes in triclinic P-1, whereas L-2 crystallizes in orthorhombic Pca21 space group. An extensive intra and intermolecular hydrogen bonding interactions were observed in L-1 to L-3 which leads to molecular association. Intramolecular N-H⋯O hydrogen bonding were observed in L-1 to L-3. Moreover π-π stacking interactions were observed between the quinonoid rings of L-1 and L-3, however no such interactions were observed in L-2. An electrochemical study showed molecular association of L-1 to L-4 in DMSO solution. Compounds L-1 to L-4 were found to be potent antifungal agents against all the three strains, especially against C. tropicalis. Amongst these promising antifungal candidates, L-1 showed better activity compared to the clinically administered antifungal drug Amphotericin B and Nitrofurantoin with MIC = 1.25 μg ml-1 and MIC = 0.025 μg ml-1 respectively against C. albicans. Structure and activity relationship (SAR) study suggest a Log P value of ˜2.0 and the cyclic voltammetry studies reveals additional chemical processes for L-1, which exhibits maximum activity against all fungal strains.

  9. 2-Methoxystypandrone represses RANKL-mediated osteoclastogenesis by down-regulating formation of TRAF6–TAK1 signalling complexes

    PubMed Central

    Chiou, WF; Liao, JF; Huang, CY; Chen, CC

    2010-01-01

    BACKGROUND AND PURPOSE 2-Methoxystypandrone (2-MS) is a naphthoquinone isolated from Polygonum cuspidatum, a Chinese herb used to treat bone diseases. Here we have determined whether 2-MS antagonised osteoclast development and bone resorption. EXPERIMENTAL APPROACH RAW264.7 cells were treated with receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) to induce differentiation into osteoclasts. RT-PCR and Western blot were used to analyse osteoclast-associated gene expression and signalling pathways. KEY RESULTS The number of multinuclear osteoclasts, actin rings and resorption pit formation were markedly inhibited by 2-MS, targeting osteoclast differentiation at an early stage and without significant cytotoxicity. The anti-resorption effect of 2-MS was accompanied by decreasing dendritic cell-specific transmembrane protein and matrix metalloproteinase-9 (MMP-9) mRNA expression. RANKL-increased MMP-9 gelatinolytic activity was also attenuated by concurrent, but not by subsequent addition of 2-MS. 2-MS markedly inhibited not only the RANKL-triggered nuclear translocations of NF-κB, c-Fos and nuclear factor of activated T cells c1 (NFATc1), but also the subsequent NFATc1 induction. Degradation of IκB and phosphorylation of mitogen-activated protein kinases were also suppressed. RANKL facilitated the formation of singaling complexes of tumour necrosis factor receptor-associated factor 6 and transforming growth factor β-activated kinase 1 (TRAF6–TAK1), important for osteoclastogenesis and formation of such signalling complexes was prevented by 2-MS. CONCLUSIONS AND IMPLICATIONS The anti-osteoclastogenic effects of 2-MS could reflect the block of RANKL-induced association of TRAF6–TAK1 complexes with consequent decrease of IκB-mediated NF-κB and mitogen-activated protein kinases-mediated c-Fos activation pathways and suppression of NFATc1 and other gene expression, essential for bone resorption. PMID:20735418

  10. Electron and hydrogen atom transfer mechanisms for the photoreduction of o-quinones. Visible light induced photoreactions of. beta. -lapachone with amines, alcohols, and amino alcohols

    SciTech Connect

    Xiaohong Ci; Whitten, D.G. ); Silveira da Silva, R.; Nicodem, D. )

    1989-02-15

    {beta}-Lapachone (1), a substituted o-naphthoquinone absorbing into the visible ({lambda}{sub max} = 424 nm in benzene), is cleanly and efficiently reduced to the corresponding semiquinone radical upon photolysis in degassed solutions with alcohols, amines, and {beta}-amino alcohols. The course and products of these photoreactions have been followed by NMR, ESR, fluorescence, and absorption spectroscopy. For all three types of reductant the overall reaction involves 2e{sup {minus}} oxidation of the donor, and the quantum efficiencies show a dependence upon quinone concentration indicative of the role of a second dark reduction of 1 by products of the primary photolysis. For amines and amino alcohols the reaction is initiated by single electron transfer quenching of triplet 1. For triethylamine the mechanism is indicated to be a sequence of two electron transfer-proton transfer steps culminating in two semiquinone radicals and the enamine Et{sub 2}NCH{double bond}CH{sub 2}. For amino alcohols a C-C cleavage concurrent with deprotonation of the alcohol (oxidative photofragmentation) occurs, in competition with reverse electron transfer, following the quenching step. For both amines and amino alcohols, limiting efficiencies of reaction approach 2 (for QH{sup {sm bullet}} formation). In contrast, both 2-propanol and benzyl alcohol are oxidized by excited states of 1 with much lower efficiency. The probable mechanism for photooxidation of the alcohols involves a H atom abstraction quenching of the excited state followed by an electron transfer-proton transfer sequence in which a ground-state 1 is reduced. Lower limiting efficiencies for photoreduction of 1 by the alcohols are attributed to inefficiencies of net H-atom transfer in the quenching step. 54 refs., 3 figs., 9 tabs.

  11. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.

    PubMed

    Morton, Seth Michael; Jensen, Lasse

    2011-10-01

    A frequency-dependent quantum mechanics/molecular mechanics method for the calculation of response properties of molecules adsorbed on metal nanoparticles is presented. This discrete interaction model/quantum mechanics (DIM/QM) method represents the nanoparticle atomistically, thus accounting for the local environment of the nanoparticle surface on the optical properties of the adsorbed molecule. Using the DIM/QM method, we investigate the coupling between the absorption of a silver nanoparticle and of a substituted naphthoquinone. This system is chosen since it shows strong coupling due to a molecular absorption peak that overlaps with the plasmon excitation in the metal nanoparticle. We show that there is a strong dependence not only on the distance of the molecule from the metal nanoparticle but also on its orientation relative to the nanoparticle. We find that when the transition dipole moment of an excitation is oriented towards the nanoparticle there is a significant increase in the molecular absorption as a result of coupling to the metal nanoparticle. In contrast, we find that the molecular absorption is decreased when the transition dipole moment is oriented parallel to the metal nanoparticle. The coupling between the molecule and the metal nanoparticle is found to be surprisingly long range and important on a length scale comparable to the size of the metal nanoparticle. A simple analytical model that describes the molecule and the metal nanoparticle as two interacting point objects is found to be in excellent agreement with the full DIM/QM calculations over the entire range studied. The results presented here are important for understanding plasmon-exciton hybridization, plasmon enhanced photochemistry, and single-molecule surface-enhanced Raman scattering. PMID:21992278

  12. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption

    NASA Astrophysics Data System (ADS)

    Morton, Seth Michael; Jensen, Lasse

    2011-10-01

    A frequency-dependent quantum mechanics/molecular mechanics method for the calculation of response properties of molecules adsorbed on metal nanoparticles is presented. This discrete interaction model/quantum mechanics (DIM/QM) method represents the nanoparticle atomistically, thus accounting for the local environment of the nanoparticle surface on the optical properties of the adsorbed molecule. Using the DIM/QM method, we investigate the coupling between the absorption of a silver nanoparticle and of a substituted naphthoquinone. This system is chosen since it shows strong coupling due to a molecular absorption peak that overlaps with the plasmon excitation in the metal nanoparticle. We show that there is a strong dependence not only on the distance of the molecule from the metal nanoparticle but also on its orientation relative to the nanoparticle. We find that when the transition dipole moment of an excitation is oriented towards the nanoparticle there is a significant increase in the molecular absorption as a result of coupling to the metal nanoparticle. In contrast, we find that the molecular absorption is decreased when the transition dipole moment is oriented parallel to the metal nanoparticle. The coupling between the molecule and the metal nanoparticle is found to be surprisingly long range and important on a length scale comparable to the size of the metal nanoparticle. A simple analytical model that describes the molecule and the metal nanoparticle as two interacting point objects is found to be in excellent agreement with the full DIM/QM calculations over the entire range studied. The results presented here are important for understanding plasmon-exciton hybridization, plasmon enhanced photochemistry, and single-molecule surface-enhanced Raman scattering.

  13. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  14. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    PubMed

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-01

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. PMID:26388379

  15. Antiparasitic activities of novel ruthenium/lapachol complexes.

    PubMed

    Barbosa, Marlia I F; Corra, Rodrigo S; de Oliveira, Katia Mara; Rodrigues, Claudia; Ellena, Javier; Nascimento, Otaciro R; Rocha, Vincius P C; Nonato, Fabiana R; Macedo, Tas S; Barbosa-Filho, Jos Maria; Soares, Milena B P; Batista, Alzir A

    2014-07-01

    The present study describes the synthesis, characterization, antileishmanial and antiplasmodial activities of novel diimine/(2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 4,4'-methylbipyridine (Me-bipy) and 4,4'-methoxybipyridine (MeO-bipy)/phosphine/ruthenium(II) complexes containing lapachol (Lap, 2-hydroxy-3-(3-33 methyl-2-buthenyl)-1,4-naphthoquinone) as bidentate ligand. The [Ru(Lap)(PPh3)2(bipy)]PF6 (1), [Ru(Lap)(PPh3)2(Me-bipy)]PF6 (2), [Ru(Lap)(PPh3)2(MeO-bipy)]PF6(3) and[Ru(Lap)(PPh3)2(phen)]PF6 (4) complexes, PPh3=triphenylphospine, were synthesized from the reactions of cis-[RuCl2(PPh3)2(X-bipy)] or cis-[RuCl2(PPh3)2(phen)], with lapachol. The [RuCl2(Lap)(dppb)] (5) [dppb=1,4-bis(diphenylphosphine)butane] was synthesized from the mer-[RuCl3(dppb)(H2O)] complex. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (31)P{(1)H} and (1)H NMR, and cyclic voltammetry. The Ru(III) complex, [RuCl2(Lap)(dppb)], was also characterized by the EPR technique. The structure of the complexes [Ru(Lap)(PPh3)2(bipy)]PF6 and [RuCl2(Lap)(dppb)] was elucidated by X-ray diffraction. The evaluation of the antiparasitic activities of the complexes against Leishmania amazonensis and Plasmodium falciparum demonstrated that lapachol-ruthenium complexes are more potent than the free lapachol. The [RuCl2(Lap)(dppb)] complex is the most potent and selective antiparasitic compound among the five new ruthenium complexes studied in this work, exhibiting an activity comparable to the reference drugs. PMID:24727183

  16. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives.

    PubMed

    Misaki, Kentaro; Takamura-Enya, Takeji; Ogawa, Hideoki; Takamori, Kenji; Yanagida, Mitsuaki

    2016-03-01

    Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (?10 foci following exposure to <100nM). In addition, clear mRNA expression of CYP1A1, which is associated with aryl hydrocarbon receptor (AhR)-mediated activation, was observed following the exposure of cells to two PAHs (B[k]FA and B[b]FA) and three oxy-PAHs (1,2-naphthoquinone, 11H-benzo[b]fluoren-11-one and BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses. PMID:26656082

  17. Absorption of lawsone through human skin.

    PubMed

    Kraeling, Margaret E K; Bronaugh, Robert L; Jung, Connie T

    2007-01-01

    Lawsone (2-hydroxy-1,4-naphthoquinone) is the principal color ingredient in henna, a color additive approved with limitations for coloring hair by the Food and Drug Administration (FDA) under 21 CFR 73.2190. In 2002, the scientific committee on cosmetics and non-food products (SCCNFP), now known as the scientific committee for consumer products (SCCP), evaluated the safety of lawsone as a coloring agent in hair dye products of the European Union (EU). The SCCNFP concluded that lawsone was mutagenic and not suitable for use as a hair coloring agent. As a result, studies were conducted to measure the extent of lawsone absorption through human skin. Lawsone skin absorption was determined from two hair coloring products and two shampoo products, all containing henna. [(14)C]-Lawsone (sp. act. 22.9 mCi/mmol) was added to each commercial product and the products were applied to dermatomed, nonviable human skin mounted in flow-through diffusion cells perfused with a physiological buffer (HEPES-buffered Hanks' balanced salt solution, pH 7.4). Products remained on the skin for 5 minutes (shampoos) and 1 hour (hair color paste). For the henna hair paste products, 0.3 and 1.3% of the applied dose was absorbed into the receptor fluid in 24 hours while 2.2 and 4.0% remained in the skin. For both henna shampoo products, 0.3% of the applied dose was absorbed into the receptor fluid at 24 hours while 3.6 and 6.8% remained in the skin. For all products, most of the lawsone applied was washed from the surface of the skin (83-102%) at the end of the exposure period. Extended absorption studies were conducted for 72 hours to determine if skin levels of lawsone in the 24 hour studies might eventually be percutaneously absorbed. These studies determined that the majority of the lawsone remained in the skin with only a small but significant increase (for three out of four products) in receptor fluid values. Therefore, it appears that receptor fluid values would give a good estimate of lawsone absorption for an exposure estimate and that skin levels of lawsone need not be included. PMID:17464748

  18. Mode-of-Action Uncertainty for Dual-Mode Carcinogens:Lower Bounds for Naphthalene-Induced Nasal Tumors in Rats Implied byPBPK and 2-Stage Stochastic Cancer Risk Models

    SciTech Connect

    Bogen, K T

    2007-01-30

    As reflected in the 2005 USEPA Guidelines for Cancer Risk Assessment, some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using separate ''linear'' (genotoxic) vs. ''nonlinear'' (nongenotoxic) approaches to low-level risk extrapolation. However, the Guidelines allow the latter approach to be used only when evidence is sufficient to parameterize a biologically based model that reliably extrapolates risk to low levels of concern. The Guidelines thus effectively prevent MOA uncertainty from being characterized and addressed when data are insufficient to parameterize such a model, but otherwise clearly support a DMOA. A bounding factor approach--similar to that used in reference dose procedures for classic toxicity endpoints--can address MOA uncertainty in a way that avoids explicit modeling of low-dose risk as a function of administered or internal dose. Even when a ''nonlinear'' toxicokinetic model cannot be fully validated, implications of DMOA uncertainty on low-dose risk may be bounded with reasonable confidence when target tumor types happen to be extremely rare. This concept was illustrated for the rodent carcinogen naphthalene. Bioassay data, supplemental toxicokinetic data, and related physiologically based pharmacokinetic and 2-stage stochastic carcinogenesis modeling results all clearly indicate that naphthalene is a DMOA carcinogen. Plausibility bounds on rat-tumor-type specific DMOA-related uncertainty were obtained using a 2-stage model adapted to reflect the empirical link between genotoxic and cytotoxic effects of the most potent identified genotoxic naphthalene metabolites, 1,2- and 1,4-naphthoquinone. Resulting bounds each provided the basis for a corresponding ''uncertainty'' factor <1 appropriate to apply to estimates of naphthalene risk obtained by linear extrapolation under a default genotoxic MOA assumption. This procedure is proposed as scientifically credible method to address MOA uncertainty for DMOA carcinogens.

  19. Mode-of-Action Uncertainty for Dual-Mode Carcinogens: A Bounding Approach for Naphthalene-Induced Nasal Tumors in Rats Based on PBPK and 2-Stage Stochastic Cancer Risk Models

    SciTech Connect

    Bogen, K T

    2007-05-11

    A relatively simple, quantitative approach is proposed to address a specific, important gap in the appr approach recommended by the USEPA Guidelines for Cancer Risk Assessment to oach address uncertainty in carcinogenic mode of action of certain chemicals when risk is extrapolated from bioassay data. These Guidelines recognize that some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using separate 'linear' (genotoxic) vs. 'nonlinear' (nongenotoxic) approaches to low low-level risk extrapolation. However, the Guidelines allow the latter approach to be used only when evidence is sufficient t to parameterize a biologically based model that reliably o extrapolates risk to low levels of concern. The Guidelines thus effectively prevent MOA uncertainty from being characterized and addressed when data are insufficient to parameterize such a model, but otherwise clearly support a DMOA. A bounding factor approach - similar to that used in reference dose procedures for classic toxicity endpoints - can address MOA uncertainty in a way that avoids explicit modeling of low low-dose risk as a function of administere administered or internal dose. Even when a 'nonlinear' toxicokinetic model cannot be fully validated, implications of DMOA uncertainty on low low-dose risk may be bounded with reasonable confidence when target tumor types happen to be extremely rare. This concept was i illustrated llustrated for a likely DMOA rodent carcinogen naphthalene, specifically to the issue of risk extrapolation from bioassay data on naphthalene naphthalene-induced nasal tumors in rats. Bioassay data, supplemental toxicokinetic data, and related physiologically based p pharmacokinetic and 2 harmacokinetic 2-stage stochastic carcinogenesis modeling results all clearly indicate that naphthalene is a DMOA carcinogen. Plausibility bounds on rat rat-tumor tumor-type specific DMOA DMOA-related uncertainty were obtained using a 2-stage model adapted to reflec reflect the empirical link between genotoxic and cytotoxic effects of t the most potent identified genotoxic naphthalene metabolites, 1,2 1,2- and 1,4 1,4-naphthoquinone. Bound Bound-specific 'adjustment' factors were then used to reduce naphthalene risk estimated by linear ex extrapolation (under the default genotoxic MOA assumption), to account for the DMOA trapolation exhibited by this compound.

  20. Investigations of solvent properties and solvent effects on chemical equilibria and reaction rates

    NASA Astrophysics Data System (ADS)

    Defeo, Laura Lynn Thomas

    Thermodynamic and structural properties computed via simulations of pure liquids and dilute solutions are routinely used as a metric of accuracy for condensed-phase force fields and in the development and testing of new methodology. Additionally, reliable modeling of solvent systems is critical to investigations of physical phenomena, such as the elucidation of solvent effects on chemical equilibria and reaction rates. This dissertation highlights a series of studies that span these topics. The Lennard-Jones 12-6 functional form, often invoked to model van der Waals interactions, has been argued to be too repulsive at short internuclear separations. Monte Carlo simulations of organic liquids at various temperatures and pressures show that this function, in conjunction with OPLS parameters, is capable of reproducing experimental densities. In order to address potential cumulative deviations of computed properties and conformational differences between the gas phase and pure liquids, Monte Carlo simulations have been carried out for the homologous n-alkane series C4H10-C12H26 using the OPLS-AA force field. Favorable structural motifs of longer alkanes were also investigated to study self solvation in the gas phase. Next, an overview of the computation of free energy changes in solution using perturbation theory, overlap sampling, and related approximate methods is presented. Results are provided for free energies of hydration of OPLS-AA substituted benzenes in TIP4P water. For comparable amounts of computer time, the double-wide and overlap sampling methods yield very similar results. QM/MM simulations of the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the water-vacuum interface and in the gas phase. The relative free energies of activation and transition structure geometries at the interface were intermediate between those calculated in the gas phase and in bulk water, consistent with estimated experimental rate constants. Energy pair distributions reveal a loss of slightly favorable solute-solvent pair contacts but retention of stronger interactions upon transition from bulk to surface hydration. These strong interactions cause the methyl vinyl ketone transition structure to preferentially orient its carbonyl toward the surface, while the other transition structures prefer orientations parallel to the surface.

  1. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.

    PubMed Central

    Laue, H; Denger, K; Cook, A M

    1997-01-01

    Organosulfonates are important natural and man-made compounds, but until recently (T. J. Lie, T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. Arch. Microbiol. 166:204-210, 1996), they were not believed to be dissimilated under anoxic conditions. We also chose to test whether alkane- and arenesulfonates could serve as electron sinks in respiratory metabolism. We generated 60 anoxic enrichment cultures in mineral salts medium which included several potential electron donors and a single organic sulfonate as an electron sink, and we used material from anaerobic digestors in communal sewage works as inocula. None of the four aromatic sulfonates, the three unsubstituted alkanesulfonates, or the N-sulfonate tested gave positive enrichment cultures requiring both the electron donor and electron sink for growth. Nine cultures utilizing the natural products taurine, cysteate, or isethionate were considered positive for growth, and all formed sulfide. Two clearly different pure cultures were examined. Putative Desulfovibrio sp. strain RZACYSA, with lactate as the electron donor, utilized sulfate, aminomethanesulfonate, taurine, isethionate, and cysteate, converting the latter to ammonia, acetate, and sulfide. Strain RZATAU was identified by 16S rDNA analysis as Bilophila wadsworthia. In the presence of, e.g., formate as the electron donor, it utilized, e.g., cysteate and isethionate and converted taurine quantitatively to cell material and products identified as ammonia, acetate, and sulfide. Sulfite and thiosulfate, but not sulfate, were utilized as electron sinks, as was nitrate, when lactate was provided as the electron donor and carbon source. A growth requirement for 1,4-naphthoquinone indicates a menaquinone electron carrier, and the presence of cytochrome c supports the presence of an electron transport chain. Pyruvate-dependent disappearance of taurine from cell extracts, as well as formation of alanine and release of ammonia and acetate, was detected. We suspected that sulfite is an intermediate, and we detected desulfoviridin (sulfite reductase). We thus believe that sulfonate reduction is one aspect of a respiratory system transferring electrons from, e.g., formate to sulfite reductase via an electron transport system which presumably generates a proton gradient across the cell membrane. PMID:9143131

  2. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum.

    PubMed

    Archibald, F S; Fridovich, I

    1981-01-01

    Lactobacillus plantarum is aerotolerant during log-phase growth on glucose, but is an obligate aerobe on polyols. Respiration was cyanide resistant and under certain conditions was associated with the accumulation of millimolar concentrations of H(2)O(2). On glucose, optimal growth was observed in the absence of O(2). Extracts of L. plantarum did not catalyze the reduction of paraquat by reduced nicotinamide adenine dinucleotide, but plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was readily reduced. Such extracts produced O(2) (-) in the presence of NADH plus plumbagin. Plumbagin caused a 10-fold increase in the rate of respiration of intact cells in the presence of glucose and also imposed a loss of viability which was dependent upon both glucose and O(2). Although extracts of L. plantarum were devoid of true superoxide dismutase activity, this organism was comparable to superoxide dismutase-containing species in its resistance toward hyperbaric O(2) and toward the oxygen-dependent lethality of plumbagin. L. plantarum required Mn-rich media and actively accumulated Mn(II). Soluble extracts were found to contain approximately 9 mug of Mn per mg of protein and 75 to 90% of this Mn was dialyzable. Such extracts exhibited a dialyzable and ethylenediaminetetraacetic acid-inhibitable ability to scavenge O(2) (-). This O(2) (-)-scavenging activity was due to the dialyzable Mn(II) present in these extracts and could be mimicked by MnCl(2). Cells grown in Mn-rich media were enriched in dialyzable Mn and were more resistant toward oxygen toxicity and toward the oxygen-dependent plumbagin toxicity than were cells grown in Mn-deficient media. L. plantarum exhibited no nutritional requirement for iron and little or no iron was present in these cells, even when they were grown in iron-rich media. L. plantarum thus appears to use millimolar levels of Mn(II) to scavenge O(2) (-), much as most other organisms use micromolar levels of superoxide dismutases. PMID:6257639

  3. Arnebin-1 promotes angiogenesis by inducing eNOS, VEGF and HIF-1? expression through the PI3K-dependent pathway

    PubMed Central

    ZENG, ZHI; HUANG, WEN-DONG; GAO, QI; SU, MEI-LING; YANG, YONG-FEI; LIU, ZHAO-CHUN; ZHU, BANG-HAO

    2015-01-01

    Arnebin-1, a naphthoquinone derivative, plays a crucial role in the wound healing properties of Zicao (a traditional wound healing herbal medicine). It has been noted that Arnebin-1, in conjunction with vascular endothelial growth factor (VEGF), exerts a synergistic pro-angiogenic effect on human umbilical vein endothelial cells (HUVECs) and accelerates the healing process of diabetic wounds. However, the mechanisms responsible for the pro-angiogenic effect of arnebin-1 on HUVECs and its healing effect on diabetic wounds have not yet been fully elucidated. In this study, in an aim to elucidate these mechanisms of action of arnebin-1, we investigated the effects of arnebin-1 on the VEGF receptor 2 (VEGFR2) and the phosphoinositide 3-kinase (PI3K)-dependent signaling pathways in HUVECs treated with VEGF by western blot analysis. The pro-angiogenic effects of arnebin-1 on HUVECs, including its effects on proliferation and migration, were evaluated by MTT assay, Transwell assay and tube formation assay in vitro. The expression levels of hypoxia-inducible factor (HIF)-1?, endothelial nitric oxide synthase (eNOS) and VEGF were determined by western blot analysis in the HUVECs and wound tissues obtained from non-diabetic and diabetic rats. CD31 expression in the rat wounds was evaluated by immunofluorescence staining. We found that the activation of the VEGFR2 signaling pathway induced by VEGF was enhanced by arnebin-1. Arnebin-1 promoted endothelial cell proliferation, migration and tube formation through the PI3K-dependent pathway. Moreover, Arnebin-1 significantly increased the eNOS, VEGF and HIF-1? expression levels in the HUVECs and accelerated the healing of diabetic wounds through the PI3K-dependent signaling pathway. CD31 expression was markedly enhanced in the wounds of diabetic rats treated with arnebin-1 compared to the wounds of untreated diabetic rats. Therefore, the findings of the present study indicate that arnebin-1 promotes the wound healing process in diabetic rats by eliciting a pro-angiogenic response. PMID:26202335

  4. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway during the early stages of adipogenesis. PMID:23919458

  5. Neural stem cells and cell death.

    PubMed

    Ceccatelli, S; Tamm, C; Sleeper, E; Orrenius, S

    2004-04-01

    Neural stem cells (NSC) undergo apoptotic cell death as an essential component of neural development. Here, we present the results of our studies on the mechanisms by which NSC undergo cell death in response to neurotoxic insults. As experimental models we used primary culture of adult NSC from the subventricular zone of the rat brain, and the neural stem cell line C17.2 initially derived from developing mouse cerebellum. NSC undergo apoptosis in response to staurosporine (0.25 microM) as well as agents inducing oxidative stress such as 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). Exposed cells demonstrate an apoptotic morphology, positive TUNEL staining and phosphatidyl serine exposure as labeled with Annexin V. Using an antibody specific for cytochrome c, we found that cells exposed to staurosporine or DMNQ exhibited diffuse fluorescence throughout the cytosol, implying a release of cytochrome c from the mitochondria. In addition to positive immunoreactivity against the active fragment (p17) of caspase-3, the administration of the pan-caspase inhibitor, zVAD-fmk (40 microM), prevents apoptosis. Both NSC and C17.2 express the Fas receptor, and procaspase-8, but exposure to agonistic Fas mAb (250 ng/ml) fails to induce apoptosis. Pretreatment with cycloheximide or actinomycin D does not influence the cell response to Fas mAb, suggesting that the endogenous inhibitor of caspase-8 FLICE-inhibitory protein (FLIP) is not responsible for the inhibition of the Fas pathway. Thus, it appears that the Fas dependent cell death pathway is not operative in these cells, while the mitochondrial pathway is active and caspase-3 serves as an executioner caspase in the apoptotic machinery. It is known that Fas not only induces apoptosis, but can also deliver growth stimulatory signals through activation of the extracellular-signal regulated kinase (ERK) pathway. The Fas-induced ERK phosphorylation that we detect in C17.2 cells suggests that in NSC Fas may function as a mediator of growth rather than death. PMID:15093249

  6. Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells.

    PubMed

    Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto

    2014-10-29

    Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-α mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-α mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-α and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the inhibition of calcineurin activity. Therefore, shikonin has therapeutic potential for the treatment of allergic diseases as a new calcineurin inhibitor. PMID:25451590

  7. Characterization of the redox components of transplasma membrane electron transport system from Leishmania donovani promastigotes.

    PubMed

    Bera, Tanmoy; Lakshman, Kuruba; Ghanteswari, Debiprasad; Pal, Sabita; Sudhahar, Dharmalingam; Islam, Md Nurul; Bhuyan, Nihar Ranjan; Das, Pradeep

    2005-10-10

    An investigation has been made of the points of coupling of four nonpermeable electron acceptors e.g., alpha-lipoic acid (ALA), 5,5'-dithiobis (2-nitroaniline-N-sulphonic acid) (DTNS), 1,2-naphthoquinone-4-sulphonic acid (NQSA) and ferricyanide which are mainly reduced via an interaction with the redox sites present in the plasma membrane of Leishmania donovani promastigotes. ALA, DTNS, NQSA and ferricyanide reduction and part of O2 reduction is shown to take place on the exoplasmic face of the cell, for it is affected by external pH and agents that react with the external surface. Redox enzymes of the transplasma membrane electron transport system orderly transfer electron from one redox carrier to the next with the molecular oxygen as the final electron acceptor. The redox carriers mediate the transfer of electrons from metabolically generated reductant to nonpermeable electron acceptors and oxygen. At a pH of 6.4, respiration of Leishmania cells on glucose substrate shut down almost completely upon addition of an uncoupler FCCP and K+-ionophore valinomycin. The most pronounced effects on O2 uptake were obtained by treatment with antimycin A, 2-heptadecyl-4-hydroxyquinone-N-oxide, paracholoromercuribenzene sulphonic acid and trifluoperazine. Relatively smaller effects were obtained by treatment with potassium cyanide. Inhibition observed with respect to the reduction of the electron acceptors ALA, DTNS, NQSA and ferricyanide was not similar in most cases. The redox chain appears to be branched at several points and it is suggested that this redox chain incorporate iron-sulphur center, b-cytochromes, cyanide insensitive oxygen redox site, Na+ and K+ channel, capsaicin inhibited energy coupling site and trifluoperazine inhibited energy linked P-type ATPase. We analyzed the influence of ionic composition of the medium on reduction of electron acceptors in Leishmania donovani promastigotes. Our data suggest that K+ have some role for ALA reduction and Na+ for ferricyanide reduction. No significant effects were found with DTNS and NQSA reduction when Na+ or K+ was omitted from the medium. Stimulation of ALA, DTNS, NQSA and ferricyanide reduction was obtained by omitting Cl- from the medium. We propose that this redox system may be an energy source for control of membrane function in Leishmania cells. PMID:16023297

  8. Destruction of Leishmania mexicana amazonensis amastigotes within macrophages in culture by phenazine methosulfate and other electron carriers.

    PubMed

    Rabinovitch, M; Dedet, J P; Ryter, A; Robineaux, R; Topper, G; Brunet, E

    1982-02-01

    Exposure of macrophages infected with Leishmania mexicana amazonensis to phenazine methosulfate (PMS) resulted in rapid damage and disappearance of the intracellular amastigotes without obvious ill effects to the host cells. The reduction of the percent infection was related to the concentration of PMS and to the duration of the pulse. Most Leishmania disappeared within 2 h of a 2-h pulse with 10 muM of the drug. In contrast, pretreatment of the macrophages with PMS followed by removal of the drug before infection did not result in disappearance of the parasites. The pH of the PMS medium markedly influenced the disappearance of Leishmania: maximum effect was observed at pH 8.0, while the effect was negligible at pH 6.3. The pH effect may be related to pseudobase formation by the PMS cation. Dose-response curves for PMS were similar for resident, elicited, or activated macrophages. Observations by time-lapse cinemicrography documented the explosion-like fragmentation of the amastigotes within 1-2 h of exposure of infected macrophages to the drug. Parasite-derived granules and vacuoles were seen to scatter within the parasitophorous vacuoles. This early damage to the parasites was confirmed by transmission electron microscopic observations. Infected macrophages incubated with PMS displayed detectable vacuolar fluorescence, indicating that PMS or a metabolite of PMS had access to the vacuoles. A series of other electron carriers, including phenyl methanes, phenazines, oxazines, a xanthene, and a naphthoquinone, given continuously for 18 h, also induced the disappearance of the Leishmania. The most potent was crystal violet, active at 70 nM. The presence of apolar substituents enhanced activity and this is probably related to increased permeation of the dyes. Finally, PMS, as well as other electron carriers examined, also reduced the growth of Leishmania promastigotes in culture. The results are compatible with a direct effect of the drugs on the intracellular amastigotes, involving only a permissive participation of the macrophages. We propose that the diverse agents destroy the amastigotes by redox-cycling generation of active oxygen metabolites at or near the parasites. Alternatively, the effect of the drugs could be mediated by toxic free radical reduction species of the drugs or by interference with electron flow or with the intermediary metabolism of Leishmania. PMID:7057140

  9. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5?-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways. PMID:25632222

  10. Vitamin K3 disrupts the microtubule networks by binding to tubulin: a novel mechanism of its antiproliferative activity.

    PubMed

    Acharya, Bipul R; Choudhury, Diptiman; Das, Amlan; Chakrabarti, Gopal

    2009-07-28

    Vitamin K3 (2-methyl-1,4-naphthoquinone), also known as menadione, is the synthetic precursor of all the naturally occurring vitamin K in the body. Vitamin K is necessary for the production of prothrombin and five other blood-clotting factors in humans. We have examined the effects of menadione on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human cervical epithelial cancer cells (HeLa) and human oral epithelial cancer cells (KB) indicated that the IC(50) values for menadione are 25.6 +/- 0.6 and 64.3 +/- 0.36 microM, respectively, in those cells. Mendione arrests HeLa cells in mitosis. Immunofluorescence studies using an anti-alpha-tubulin antibody showed a significant irreversible depolymeriztion of the interphase microtubule network and spindle microtubule in a dose-dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by menadione with an IC(50) value of 47 +/- 0.65 microM. The binding of menadione with tubulin was studied using menadione fluorescence and intrinsic tryptophan fluorescence of tubulin. Binding of menadione to tubulin is slow, taking 35 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 189.12 +/- 17 and 32.44 +/- 21 M(-1) s(-1) at 25 degrees C, respectively. The stoichiometry of menadione binding to tubulin is 1:1 (molar ratio) with a dissociation constant from 2.44 +/- 0.34 to 3.65 +/- 0.25 microM at 25 degrees C. Menadione competes for the colchicine binding site with a K(i) of 2.5 muM as determined from a modified Dixon plot. The obtained data suggested that menadione binds at the colchicine binding site to tubulin. Thus, we can conclude one novel mechanism of inhibition of cancer cell proliferation by menadione is through tubulin binding. PMID:19527023

  11. Identification of natural inhibitors of Entamoeba histolytica cysteine synthase from microbial secondary metabolites

    PubMed Central

    Mori, Mihoko; Jeelani, Ghulam; Masuda, Yui; Sakai, Kazunari; Tsukui, Kumiko; Waluyo, Danang; Tarwadi; Watanabe, Yoshio; Nonaka, Kenichi; Matsumoto, Atsuko; Ōmura, Satoshi; Nozaki, Tomoyoshi; Shiomi, Kazuro

    2015-01-01

    Amebiasis is a common worldwide diarrheal disease, caused by the protozoan parasite, Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its known side effects and low efficacy against asymptomatic cyst carriers. E. histolytica is also capable of surviving sub-therapeutic levels of metronidazole in vitro. Novel drugs with different mode of action are therefore urgently needed. The sulfur assimilatory de novo L-cysteine biosynthetic pathway is essential for various cellular activities, including the proliferation and anti-oxidative defense of E. histolytica. Since the pathway, consisting of two reactions catalyzed by serine acetyltransferase (SAT) and cysteine synthase (CS, O-acetylserine sulfhydrylase), does not exist in humans, it is a rational drug target against amebiasis. To discover inhibitors against the CS of E. histolytica (EhCS), the compounds of Kitasato Natural Products Library were screened against two recombinant CS isozymes: EhCS1 and EhCS3. Nine compounds inhibited EhCS1 and EhCS3 with IC50 values of 0.31–490 μM. Of those, seven compounds share a naphthoquinone moiety, indicating the structural importance of the moiety for binding to the active site of EhCS1 and EhCS3. We further screened >9,000 microbial broths for CS inhibition and purified two compounds, xanthofulvin and exophillic acid from fungal broths. Xanthofulvin inhibited EhCS1 and EhCS3. Exophillic acid showed high selectivity against EhCS1, but exhibited no inhibition against EhCS3. In vitro anti-amebic activity of the 11 EhCS inhibitors was also examined. Deacetylkinamycin C and nanaomycin A showed more potent amebicidal activity with IC50 values of 18 and 0.8 μM, respectively, in the cysteine deprived conditions. The differential sensitivity of trophozoites against deacetylkinamycin C in the presence or absence of L-cysteine in the medium and the IC50 values against EhCS suggest the amebicidal effect of deacetylkinamycin C is due to CS inhibition. PMID:26441896

  12. Seasonal nutrient dynamics in the Anacostia River (D.C., USA): geochemistry and hydrocarbon biomarkers

    NASA Astrophysics Data System (ADS)

    Sarraino, S.; Frantz, D. E.; Macavoy, S. E.

    2010-12-01

    The seasonal biogeochemistry of the urban Anacostia River (Washington D.C. USA) was investigated. Chemical parameters examined include: inorganics (Ca, Mg, Na, S, K, P, NO3, NH4, PO4, B, Ba, Ni, Co); fatty acids and other hydrocarbons; C, N and S stable isotopes; and other water chemistry indicators (hardness, salinity, alkalinity, soluble salts, SAR, TDS). Between April and July 2010, water and sediment were sampled from three tidal freshwater sites along the Anacostia River (UP, MID, and DWN). Two of the selected sites, UP and DWN, are located next to a combined sewage outflow. Water column nutrient analysis shows increasing availability of ammonium (NH4) and nitrate (NO3) at all sites between April and July. At MID, the site showing the highest rates of nutrient growth over the sampling period, NH4 concentrations increase from 0.13 to 1.49 µg/L and NO3 concentrations increase from 0.71 to 2.88 mg/L. A marked NO3 pulse is observed at the DWN site in early May; NO3 concentrations jump from 0.68 to 3.36 mg/L between April 5 and May 6, decreasing to 1.22 mg/L by May 20. Unlike UP and MID, which show NH4 and NO3 increasing concurrently, this NO3 pulse at DWN is accompanied with a decline in NH4 levels, suggestive of an allochthonous NO3 source. Forthcoming stable isotope data are expected to characterize the source of such nitrogen inputs, as well as organic material, throughout the year. Preliminary GC-MS analysis of isolated fatty acids does not explicitly suggest bacterial or higher plant dominance in the spring; however, some notable compounds were identified, such as the PAH fluoranthene, naphthoquinone, and testosterone, as well as a number of cholesterols and other steroids. Higher proportions of bacterial fatty acid biomarkers are expected during the summer. Principle Component Analysis (PCA) of the chemistry data suggests geochemical variables, rather than nutrients, are the driving forces of observed trends. PCA, along with fatty acid characterization and nutrient analysis, is expected to demonstrate an increasing role of bacterial production and nutrient variables later in the season, while stable isotope values will facilitate organic material source identification.

  13. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.

    PubMed

    Vasil'ev, S; Bruce, D

    1998-08-01

    Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in calculations of photochemical and nonphotochemical quenching parameters. The implications of our data with respect to kinetic models for the excited-state dynamics of photosystem II and the practical applications of the fluorescence yield parameters Fm and Fsat to calculations of photochemical yield are discussed. PMID:9693000

  14. Metabolic disposition of 14C-labelled carmoisine in the rat, mouse and guinea-pig.

    PubMed

    Phillips, J C; Bex, C; Walters, D G; Gaunt, I F

    1987-12-01

    The absorption, metabolism and excretion of 14C-labelled carmoisine has been studied in the rat, mouse and guinea-pig. Following administration of a single oral dose of either 0.5 or 50 mg/kg body weight, substantially all of the dose was recovered in the excreta within 72 hr, mainly in the faeces. Although the urinary excretion of radioactivity was similar in the rat and the mouse, the proportion of the radioactivity found in the urine of the guinea-pig was significantly greater than that of the other species at both dose levels. Pretreating male rats with unlabelled colouring in the diet (0.05%, w/w) for 28 days prior to dosing with 14C-labelled colouring had no effect on the route of excretion or the time taken to eliminate the majority of the labelled dose. Following a single oral dose of 14C-labelled colouring to previously untreated rats, mice and guinea-pigs or to rats pretreated as above, no marked accumulation of radioactivity in any tissue was found. Pregnant rats eliminated a single oral dose of 14C-labelled colouring at a similar rate to non-pregnant females, and the concentration of radioactivity in the foetuses was similar to that in the other tissues. Naphthionic acid was the major urinary metabolite in all three species. In the rat and mouse, most of the remaining radioactivity co-chromatographed with 2-amino-1-naphthol-4-sulphonic acid (2-ANS), but in the guinea-pig radioactivity also co-chromatographed with 1,2-naphthoquinone-4-sulphonate (1,2-NQS). Only a trace amount of unchanged carmoisine was detected in the urine of the species examined. Naphthionic acid was also found in the faeces of all three species, but neither carmoisine, 2-ANS or 1,2-NQS was detected. At least five other radioactive metabolites were found in the faecal extracts of all three species, including a substantial amount of a compound with chromatographic properties similar to those of a trace metabolite in the urine. Two of the faecal metabolites were hydrolysed by beta-glucuronidase and sulphatase treatment. In studies on the absorption of carmoisine at concentrations of 50, 500 or 5000 ppm from isolated intestinal loops, no significant absorption was detected in the rat, mouse or guinea-pig. PMID:3692400

  15. Manganese and Defenses against Oxygen Toxicity in Lactobacillus plantarum

    PubMed Central

    Archibald, Frederick S.; Fridovich, Irwin

    1981-01-01

    Lactobacillus plantarum is aerotolerant during log-phase growth on glucose, but is an obligate aerobe on polyols. Respiration was cyanide resistant and under certain conditions was associated with the accumulation of millimolar concentrations of H2O2. On glucose, optimal growth was observed in the absence of O2. Extracts of L. plantarum did not catalyze the reduction of paraquat by reduced nicotinamide adenine dinucleotide, but plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was readily reduced. Such extracts produced O2? in the presence of NADH plus plumbagin. Plumbagin caused a 10-fold increase in the rate of respiration of intact cells in the presence of glucose and also imposed a loss of viability which was dependent upon both glucose and O2. Although extracts of L. plantarum were devoid of true superoxide dismutase activity, this organism was comparable to superoxide dismutase-containing species in its resistance toward hyperbaric O2 and toward the oxygen-dependent lethality of plumbagin. L. plantarum required Mn-rich media and actively accumulated Mn(II). Soluble extracts were found to contain approximately 9 ?g of Mn per mg of protein and 75 to 90% of this Mn was dialyzable. Such extracts exhibited a dialyzable and ethylenediaminetetraacetic acid-inhibitable ability to scavenge O2?. This O2?-scavenging activity was due to the dialyzable Mn(II) present in these extracts and could be mimicked by MnCl2. Cells grown in Mn-rich media were enriched in dialyzable Mn and were more resistant toward oxygen toxicity and toward the oxygen-dependent plumbagin toxicity than were cells grown in Mn-deficient media. L. plantarum exhibited no nutritional requirement for iron and little or no iron was present in these cells, even when they were grown in iron-rich media. L. plantarum thus appears to use millimolar levels of Mn(II) to scavenge O2?, much as most other organisms use micromolar levels of superoxide dismutases. PMID:6257639

  16. Interaction of ascorbate with photosystem I.

    PubMed

    Trubitsin, Boris V; Mamedov, Mahir D; Semenov, Alexey Yu; Tikhonov, Alexander N

    2014-11-01

    Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers [Formula: see text] and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to [Formula: see text] via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to [Formula: see text]. Otherwise, inactivation of Pc with CN(-) ions inhibited electron flow from ascorbate to [Formula: see text]. This proves that the main route of electron flow from ascorbate to [Formula: see text] runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to [Formula: see text] is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of [Formula: see text]. The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to [Formula: see text], ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed. PMID:24965848

  17. Oxidative reactions of tetrametal Pd(0)...Mo(II)-Mo(II)...Pd(0) clusters: electrochemical communication of two Pd(0) centers through the Mo(2) moiety and oxidative formation of a Pd(I)-Mo(II)-Mo(II)-Pd(I) array.

    PubMed

    Mashima, Kazushi; Shima, Asuka; Nakao, Keisuke; Fukumoto, Atsushi; Kaneda, Yutaka; Kusumi, Yoshitaka

    2009-03-01

    Reaction of Mo(2)(pyphos)(4) (1) (pyphos = 6-diphenylphosphino-2-pyridonate) with Pd(dba)(2) (dba = dibenzylideneacetone) afforded the Pd(0) complex Mo(2)Pd(2)(pyphos)(4) (2) which has two Pd(0) centers at both axial positions of the Mo(2) core. The unsaturated Pd(0) centers of 2 were coordinated with donor molecules such as olefins, acetylenes, isonitriles, carbon monoxide, and triphenylphosphine to give the corresponding adducts, Mo(2)Pd(2)(pyphos)(4)(L)(2) (3a: L = acrylonitrile, 3b: L = fumaronitrile, 3c: L = tetracyanoethylene, 3d: L = diisopropyl fumarate, 3e: L = diethyl fumarate, 3f: L = dimethyl fumarate, 3g: L = dimethyl maleate, 3h: L = 2,6-xylylisocyanide, 3i: L = tert-butylisocyanide, 3j: L = dimethyl acetylenedicarboxylate, 3k: L = 1,4-benzoquinone, 3l: L = 1,4-naphthoquinone, 3m: L = carbon monooxide, and 3n: L = triphenylphosphine). Oxidative 1,4-addition of ArSSAr and benzoyl peroxide to the Pd(0) centers of 2 afforded the corresponding Pd(I) complexes Mo(2)Pd(2)(SAr)(2)(pyphos)(4) (7a: Ar = C(6)H(5), 7b: Ar = 4-Me(3)CC(6)H(4), 7c: Ar = 4-MeC(6)H(4), 7d: 4-NO(2)C(6)H(4)) and Mo(2)Pd(2)(OCOPh)(2)(pyphos)(4) (9). Chemical oxidation of 2 with [Cp(2)Fe][BF(4)] in CH(3)CN afforded a dicationic Pd(I) complex [Mo(2)Pd(2)(pyphos)(4)(CH(3)CN)(2)][BF(4)](2) (10a). Similarly, the reaction of 2 with [Cp(2)Fe][BF(4)] in the presence of excess amounts of various donor molecules in THF gave rise to corresponding dicationic Pd(I) complexes [Mo(2)Pd(2)(pyphos)(4)(L')(2)][BF(4)](2) (10b; L' = dimethylsulfoxide, 10c: L' = THF, 10d: L' = benzonitrile, 10e: L' = p-methoxyphenylnitrile, 10f: L' = p-trifluoromethylphenylnitrile, 10g: L' = pyridine, and 10h: L' = p-dimethylaminopyridine), whereas complexes [Mo(2)Pd(2)(pyphos)(4)(CNXyl)(2)][BF(4)](2) (10i) and [Mo(2)Pd(2)(pyphos)(4)(CN(t)Bu)(2)][BF(4)](2) (10j) were prepared by oxidation of the corresponding isonitrile-Pd(0) complexes 3h and 3i. Cyclic voltammetry of 10aj displayed two different oxidation profiles of Pd(0) depending on the donor molecules: complexes 10af showed two waves ascribed to electron communication through monocationic species as intermediates, whereas complexes 10gj showed one wave due to two-electron process. Furthermore, the oxidative addition of alkyl and aryl halides to 2 gave rise to two different reaction patterns: excess amounts of benzyl halides BnX (X = Cl, Br, I), PhCl, and PhBr, and 2 equiv of PhI reacted with 2 to give Pd(I) complexes Mo(2)Pd(2)(X)(2)(pyphos)(4) (4a: X = Cl, 4b: X = Br, 4c: X = I), and the reactions of 2 with excess amounts of PhI and MeI afforded Pd(II) complexes Mo(2)Pd(2)(Ph)(2)I(2)(pyphos)(4) (11) and Mo(2)Pd(2)(CH(3))(2)I(2)(pyphos)(4) (13) bearing two "Pd(Ph)I" and "Pd(CH(3))I" moieties. PMID:19235951