These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Isolation and chemical characterization of naphthoquinone metabolites of Aspergillus parvulus Smith  

Microsoft Academic Search

Although several benzoquinone and anthraquinone compounds have been isolated from Aspergillus species, only two naphthoquinone monomers have been reported thus far. Aspergillus parvulus Smith (ATCC number16911) was first investigated chemically in 1974, and five naphthalenones, along with one naphthoquinone, were isolated and characterized. Based on biosynthetic considerations, it was thought that A. parvulus might be capable of producing additional naphthoquinones

1984-01-01

2

Formation of 5-Hydroxy-3-methoxy-1,4-naphthoquinone and 8-Hydroxy-4-methoxy-1,2-naphthoquinone from Juglone.  

PubMed

From the treatment of 5-hydroxy-1,4-naphthoquinone (juglone) with acetic anhydride and H2SO4 followed subsequently by treatment with methanolic HCl, 5-hydroxy-3-methoxy-1,4-naphthoquinone (3-methoxy juglone) and 8-hydroxy-4-methoxy-1,2-naphthoquinone were obtained as products rather than the anticipated product 2,5-dihydroxy-1,4-naphthoquinone (2-hydroxy juglone). The reaction and the identification of the products are discussed in terms of NMR and DFT calculations. PMID:24052839

Blauenburg, Bastian; Metsä-Ketelä, Mikko; Klika, Karel D

2012-01-01

3

1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling.  

PubMed

Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others) to cellular and inter-cellular signaling processes are discussed: (i) naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii) the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings. PMID:25232709

Klotz, Lars-Oliver; Hou, Xiaoqing; Jacob, Claus

2014-01-01

4

Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones.  

PubMed

The structure-function relationships of the naphthoquinone phytochemicals, plumbagin, juglone, and menadione, have been studied with regard to antimutagenic and antioxidant activities. Antimutagenicity of these compounds was assessed by the Ames test and RNA polymerase B (rpoB)-based rifampicin resistance assay. Antioxidant potential was evaluated by radical scavenging assays and reducing power measurement. Protection of cells and DNA against gamma radiation-induced oxidative damage was assayed by survival analysis and gel electrophoresis profiling, respectively. On the 1,4-naphthoquinone nucleus, plumbagin possesses 5-hydroxyl and 2-methyl functional groups, whereas juglone has only the 5-hydroxyl and menadione only the 2-methyl group. Plumbagin showed strong antimutagenic (against ultraviolet and ethyl methanesulfonate) and antioxidant activities, whereas juglone displayed only strong antimutagenic, and menadione only strong antioxidant activities. Thus, these two functional groups (5-OH/2-CH3) play important roles in the differential bioactivity of naphthoquinones. Escherichia coli, microarray analysis showed upregulation of the genes rep (replication/repair), ybaK (tRNA editing), speE (spermidine synthesis), and yjfC (glutathionyl spermidine synthesis) by plumbagin or juglone, and sodC (superoxide dismutase), xthA (oxidative repair), hycB (electron carrier between hydrogenase 3 and fumarate dehydrogenase), and ligA (formation of phosphodiester bond in DNA) by plumbagin or menadione. Studies with E. coli single-gene knockouts showed that ybaK and speE, reported to prevent mistranslation, are likely to be involved in the antimutagenicity displayed by juglone, and sodC to be involved in the antioxidant activity of menadione. PMID:23688616

Kumar, Sanjeev; Gautam, Satyendra; Sharma, Arun

2013-07-01

5

Study on acute toxicity and structure-activity relationship of Daphnia magna exposed to naphthoquinones.  

PubMed

The acute toxicities of the six naphthoquinone compounds on Daphnia magna (D. magna) at 48 h were classified as harmful, toxic, and very toxic. The results indicated that logP played an important part in the toxicity of compounds to organism. And 1-carbonyl or the other hydrophobic substituents of the naphthoquinone compounds are likely to mediate the binding of the compound to the target via hydrogen bonding and hydrophobic interactions. Our results provided a foundation for further investigation using 3D-QSAR and HQSAR to evaluate the aquatic ecological risk and the mechanism of toxicity of naphthoquinones. PMID:21787735

Song, Wenhua; Guo, Jing; Ding, Feng; Hu, Weixuan; Li, Zhen; Gao, Minling

2011-07-01

6

Cell-Specific Production and Antimicrobial Activity of Naphthoquinones in Roots of Lithospermum erythrorhizon  

Microsoft Academic Search

Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on \\

Lindy A. Brigham; Paula J. Michaels; Hector E. Flores

1999-01-01

7

Cytotoxicity of new alkylamino- and phenylamino-containing polyfluorinated derivatives of 1,4-naphthoquinone  

Microsoft Academic Search

Fluorinated derivatives of 1,4-naphthoquinone are highly potent inhibitors of Cdc25A and Cdc25 phosphatases and growth of tumor cells. Five new N-substituted polyfluorinated derivatives of 2-amino-1,4-naphthoquinone were synthesized and their mutagenic and antioxidant properties in Salmonella cells, as well as cytotoxicity in human myeloma (RPMI 8226), human mammary adenocarcinoma (MCF-7), mouse fibroblasts (LMTK) and primary mouse fibroblast cells (PMF) were studied.

Ol'ga D. Zakharova; Ludmila P. Ovchinnikova; Leonid I. Goryunov; Nadezhda M. Troshkova; Vitalij D. Shteingarts; Georgy A. Nevinsky

2010-01-01

8

Modulation of basophils' degranulation and allergy-related enzymes by monomeric and dimeric naphthoquinones.  

PubMed

Allergic disorders are characterized by an abnormal immune response towards non-infectious substances, being associated with life quality reduction and potential life-threatening reactions. The increasing prevalence of allergic disorders demands for new and effective anti-allergic treatments. Here we test the anti-allergic potential of monomeric (juglone, menadione, naphthazarin, plumbagin) and dimeric (diospyrin and diosquinone) naphthoquinones. Inhibition of RBL-2H3 rat basophils' degranulation by naphthoquinones was assessed using two complementary stimuli: IgE/antigen and calcium ionophore A23187. Additionally, we tested for the inhibition of leukotrienes production in IgE/antigen-stimulated cells, and studied hyaluronidase and lipoxidase inhibition by naphthoquinones in cell-free assays. Naphthazarin (0.1 µM) decreased degranulation induced by IgE/antigen but not A23187, suggesting a mechanism upstream of the calcium increase, unlike diospyrin (10 µM) that reduced degranulation in A23187-stimulated cells. Naphthoquinones were weak hyaluronidase inhibitors, but all inhibited soybean lipoxidase with the most lipophilic diospyrin, diosquinone and menadione being the most potent, thus suggesting a mechanism of competition with natural lipophilic substrates. Menadione was the only naphthoquinone reducing leukotriene C4 production, with a maximal effect at 5 µM. This work expands the current knowledge on the biological properties of naphthoquinones, highlighting naphthazarin, diospyrin and menadione as potential lead compounds for structural modification in the process of improving and developing novel anti-allergic drugs. PMID:24587235

Pinho, Brígida R; Sousa, Carla; Valentão, Patrícia; Oliveira, Jorge M A; Andrade, Paula B

2014-01-01

9

Modulation of Basophils' Degranulation and Allergy-Related Enzymes by Monomeric and Dimeric Naphthoquinones  

PubMed Central

Allergic disorders are characterized by an abnormal immune response towards non-infectious substances, being associated with life quality reduction and potential life-threatening reactions. The increasing prevalence of allergic disorders demands for new and effective anti-allergic treatments. Here we test the anti-allergic potential of monomeric (juglone, menadione, naphthazarin, plumbagin) and dimeric (diospyrin and diosquinone) naphthoquinones. Inhibition of RBL-2H3 rat basophils' degranulation by naphthoquinones was assessed using two complementary stimuli: IgE/antigen and calcium ionophore A23187. Additionally, we tested for the inhibition of leukotrienes production in IgE/antigen-stimulated cells, and studied hyaluronidase and lipoxidase inhibition by naphthoquinones in cell-free assays. Naphthazarin (0.1 µM) decreased degranulation induced by IgE/antigen but not A23187, suggesting a mechanism upstream of the calcium increase, unlike diospyrin (10 µM) that reduced degranulation in A23187-stimulated cells. Naphthoquinones were weak hyaluronidase inhibitors, but all inhibited soybean lipoxidase with the most lipophilic diospyrin, diosquinone and menadione being the most potent, thus suggesting a mechanism of competition with natural lipophilic substrates. Menadione was the only naphthoquinone reducing leukotriene C4 production, with a maximal effect at 5 µM. This work expands the current knowledge on the biological properties of naphthoquinones, highlighting naphthazarin, diospyrin and menadione as potential lead compounds for structural modification in the process of improving and developing novel anti-allergic drugs. PMID:24587235

Pinho, Brígida R.; Sousa, Carla; Valentão, Patrícia; Oliveira, Jorge M. A.; Andrade, Paula B.

2014-01-01

10

Isolation and chemical characterization of naphthoquinone metabolites of Aspergillus parvulus Smith  

SciTech Connect

Although several benzoquinone and anthraquinone compounds have been isolated from Aspergillus species, only two naphthoquinone monomers have been reported thus far. Aspergillus parvulus Smith (ATCC number16911) was first investigated chemically in 1974, and five naphthalenones, along with one naphthoquinone, were isolated and characterized. Based on biosynthetic considerations, it was thought that A. parvulus might be capable of producing additional naphthoquinones under suitable conditions. It was decided to undertake a further investigation of A. parvulus. Thus, three novel naphthoquinones, compounds A, B, and C, were isolated from A. parvulus cultures grown in an acidic medium of glucose and phytone peptone. The structures of these compounds were deduced largely by the comparison of the effects of acetylation on the /sup 1/H-NMR and /sup 13/C-NMR spectra of the parent compounds and their four derivatives. An unusual mass fragmentation pattern which was previously thought to be unfavorable was discovered, and the other fragmentation patterns of the parent compounds, as well as their derivatives, were proposed. This investigation appears to be the third reported isolation of 2,5,7-tri-hydroxy-1,4-naphthoquinone derivatives from nature and the first reported from A. parvulus.

Wang, C.C.P.

1984-01-01

11

STUDIES ON THE MECHANISM OF ANTIBACTERIAL ACTION OF 2-METHYL-1,4-NAPHTHOQUINONE.  

PubMed

Thioglycolic acid neutralized with sodium carbonate, sodium thioglycolate (Eastman), ethyl mercaptan, cysteine hydrochloride and certain sulfur-containing reducing agents (sodium bisulfite and sodium hydrosulfite) antagonize the antibacterial action of 2-methyl-1,4-naphthoquinone on Escherichia coli in a synthetic medium. Other reducing agents such as stannous chloride, potassium formate and sodium thiosulfate, show no such antagonism. The antibacterial activities of 2-methyl-3-chloro-1,4-naphthoquinone and 2,6-dimethyl-1,4-naphthoquinone are also abolished by excess thioglycolate and cysteine, while that of 2-methyl-3-methoxy-1,4-naphthoquinone with -OCH(3) instead of -Cl or -H in the 3 position on the quinone ring, is not. These findings suggest that the mode of antibacterial action of 2-methyl-1,4-naphthoquinone is by blocking essential enzymes through combination with sulfhydryl groups, or through combination with sulfhydryl groups of essential bacterial metabolites. This combination may take place in the 3-position on the quinone ring. This mode of action is similar to that suggested by other investigators for several antibiotic agents including penicillin. The antibacterial activity of the methoxy quinone, however, even in the presence of sulfhydryl groups, suggests that the foregoing explanation may not be the complete one. PMID:17739443

Colwell, C A; McCall, M

1945-06-01

12

THz spectra of 1,4-naphthoquinones and its four derivatives  

NASA Astrophysics Data System (ADS)

Recently some naphthoquinone derivatives have been found with anticancer or other therapeutic properties, but also have some negative side effects. Numerous research projects have been conducted to investigate their properties and therapeutic mechanisms. With Terahertz Time-Domain Spectroscopy (THz-TDS), we have successfully obtained THz spectra of 1,4-naphthoquinone and its four derivatives in a series of naphthazarin - juglone - 1,4-naphthoquinone - menadione - plumbagin, in the range between 0.2 and 2.4~2.8 THz. Although these molecules are almost identical to each other, they have very distinctive THz spectra so that they can be identified much more easily than using conventional spectroscopy. We have comparatively analyzed their THz spectra, and found some possible correlations between THz spectra and molecular structures. These THz spectra cannot only be used as spectral fingerprint, but also provide us their conformational properties that can be used in study of their interaction with biomolecules to reveal their pharmaceutical mechanisms.

Wang, Weining; Li, Hongqi; Luo, Xiang; Zeng, Xiaoni

2008-03-01

13

Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots.  

PubMed

Juglone, 5-hydroxy-1,4-naphthoquinone, is the plant secondary metabolite with allelopathic properties, which was isolated especially from the plant species belonging to family Juglandaceae A. Rich. ex Kunth (walnut family). The mechanism of phytotoxic action of juglone was investigated on lettuce seedlings Lactuca sativa L. var. capitata L. cv. Merkurion by determining its effect at different levels. We have found that juglone inhibits mitosis (mitotic index 8.5 ± 0.6% for control versus 2.2 ± 0.9% for 250 ?M juglone), changes mitotic phase index with accumulation of the cells in prophase (56.5 ± 2.6% for control versus 85.3 ± 5.0% for 250 ?M juglone), and decreases meristematic activity in lettuce root tips (51.07 ± 3.62% for control versus 5.27 ± 2.29% for 250 ?M juglone). In addition, juglone induced creation of reactive oxygen species and changed levels of reactive nitrogen species. Amount of malondialdehyde, a product of lipid peroxidation, increased from 24.0 ± 4.0 ng g(-1) FW for control to 55.5 ± 5.4 ng g(-1) FW for 250 ?M juglone. We observed also changes in cellular structure, especially changes in the morphology of endoplasmic reticulum. Reactive oxygen species induced damage of plasma membrane. All these changes resulted in the disruption of the mitochondrial membrane potential, increase in free intracellular calcium ions, and DNA fragmentation and programmed cell death that was revealed by two methods, TUNEL test and DNA electrophoresis. The portion of TUNEL-positive cells increase from 0.96 ± 0.5% for control to 7.66 ± 1.5% for 250 ?M juglone. Results of the study indicate complex mechanism of phytotoxic effect of juglone in lettuce root tips and may indicate mechanism of allelopathic activity of this compound. PMID:25240266

Babula, Petr; Vaverkova, Veronika; Poborilova, Zuzana; Ballova, Ludmila; Masarik, Michal; Provaznik, Ivo

2014-11-01

14

Reaction of beta-lapachone and related naphthoquinones with 2-mercaptoethanol: a biomimetic model of topoisomerase II poisoning by quinones.  

PubMed

1,2-Naphthoquinones, such as beta-lapachone, 4-alkoxy-1,2-naphthoquinones, and tetrahydrofuran-1,2-naphthoquinones, react rapidly with 2-mercaptoethanol in benzene to give 1,4-, 1,2-, 1,3- and 1,6-Michael-type adducts that are formed by the addition of the thiol group to the quinone ring. Menadione (2-methyl-1,4-naphthoquinone) reacts with the thiol reagent very slowly under the same reaction conditions. Although the formation of the adducts can be followed by 1H-NMR, attempts to isolate the adducts failed due to their retroconversion to the starting products. On addition of a Lewis acid, however, the adducts undergo cyclization reactions that give stable derivatives that can be isolated and characterized. Determination of the structures of the derivatives allowed for the identification of the adducts from which they originated. Thus, beta-lapachone and 2,3-dinordunnione underwent 1,4- and 1,2-Michael type additions to the quinone ring, while 4-pentyloxy-1,2-naphthoquinone underwent two simultaneous Michael additions to the quinone ring of the naphthoquinone. Menadione underwent a single 1,3-addition. The alkylation rates of the thiol group of 2-mercaptoethanol by the naphthoquinones parallel the naphthoquinones efficiencies in inducing DNA cleavage through DNA-bound topoisomerase II. These results support our hypothesis that the cytotoxic effect of the naphthoquinones derive, at least in part, from their alkylation of exposed thiol residues on the topoisomerase II-DNA complex. PMID:9620443

Neder, K; Marton, L J; Liu, L F; Frydman, B

1998-05-01

15

Naphthoquinone spiroketal with allelochemical activity from the new endophytic fungus Edenia gomezpompae  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bioassay-guided isolation from the culture of Edenia gomezpompae, a new endophytic fungus isolated from the leaves of Callicarpa acuminata (Verbenaceae) from the ecological reserve El Eden, Quintana Roo, Mexico, led to the isolation of four naphthoquinone spiroketals, including three new compounds. ...

16

Spectral and structural characterization of 2-(fluorophenylamino)- and 2-(nitrophenylamino)-1,4-naphthoquinone derivatives  

NASA Astrophysics Data System (ADS)

Naphthoquinone amino derivatives exhibit interesting physicochemical properties and are of interest for potential medicinal purposes. The preparation of novel 2-(nitrophenylamino)-1,4-naphthoquinones derivatives was achieved by reaction of nitroanilines with 1,4-naphthoquinone with a catalytic amount of FeCl3 or by direct nitration of 2-(phenylamino)-1,4-naphthoquinone (PAN). Structural and photophysical properties of a series of NO2PANs and FPANs derivatives are examined using computational and spectroscopic methods. Absorbance and emission spectra are measured in a range of solvent environments to examine the impact of solvent-solute interactions. Additionally quantum calculations are used to evaluate the electronic nature of the spectral transitions and compare structures of the different PAN derivatives. The lowest energy electronic transitions have charge transfer character, and show the most sensitivity to solvent and substituents. Higher energy ?-?* transitions are relatively insensitive to both factors. Computational predictions are in good agreement with the experimental spectra, and provide molecular-level insight variations amongst the different aniline-substituents.

Leyva, Elisa; Schmidtke Sobeck, Sarah J.; Loredo-Carrillo, Silvia E.; Magaldi-Lara, Diego A.

2014-06-01

17

Synthetic condensed 1,4-naphthoquinone derivative shifts neural stem cell differentiation by regulating redox state.  

PubMed

Naphthoquinones are bioactive compounds widespread in nature that impact on several cellular pathways, including cell proliferation and survival, by acting as prooxidants and electrophiles. We have previously described the role of the synthetic isoxazole condensed 1,4-naphthoquinone derivative 1a in preventing apoptosis induced by distinct stimuli in several cell models. In addition, apoptosis regulators and executioners may control neural stem cell (NSC) fate, without involving cell death per se. Here, we hypothesize that 1a might also play a role in NSC fate decision. We found that exposure to 1a shifts NSC differentiation potential from neurogenic to gliogenic lineage and involves the generation of reactive oxygen species, without increasing cell death. Modulation of caspases and calpains, using cysteine protease inhibitors, failed to mimic 1a effects. In addition, incubation with the naphthoquinone derivative resulted in upregulation and nuclear translocation of antioxidant responsive proteins, Nrf2 and Sirt1, which in turn may mediate 1a-directed shift in NSC differentiation. In fact, antioxidants halted the shift in NSC differentiation potential from neurogenic to gliogenic lineage, while strongly reducing reactive oxygen species generation and Nrf2 and Sirt1 nuclear translocation in NSC exposed to 1a. Collectively, these data support a new role for a specific naphthoquinone derivative in NSC fate decision and underline the importance of redox environment control. PMID:23054678

Santos, Daniela M; Santos, Maria M M; Moreira, Rui; Solá, Susana; Rodrigues, Cecília M P

2013-02-01

18

DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates.  

PubMed Central

DT-diaphorase catalysed the reduction of 1,4-naphthoquinones with hydroxy, methyl, methoxy and glutathionyl substituents at the expense of reducing equivalents from NADPH. The initial rates of quinone reduction did not correlate with either the half-wave reduction potential (E1/2) value (determined by h.p.l.c. with electrochemical detection against an Ag/AgCl reference electrode) or the partition coefficient of the quinones. After their reduction by DT-diaphorase the 1,4-naphthoquinone derivatives autoxidized at distinct rates, the extent of which was influenced by the nature of the substituents. Thus for the 1,4-naphthoquinone series the following order of rate of autoxidation was found: 5-hydroxy-1,4-naphthoquinone greater than 3-glutathionyl-1,4-naphthoquinone greater than 5-hydroxy-3-glutathionyl-1,4-naphthoquinone greater than 1,4-naphthoquinone greater than 2-hydroxy-1,4-naphthoquinone. For the 2-methyl-1,4-naphthoquinone (menadione) series the following order was observed: 5-hydroxy-2-methyl-1,4-naphthoquinone greater than 3-glutathionyl-5-hydroxy-2-methyl-1,4-naphthoquinone greater than 3-glutathionyl-2-methyl-1,4-naphthoquinone greater than 2-methyl-1,4-naphthoquinone greater than 3-hydroxy-2-methyl-1,4-naphthoquinone. The autoxidized naphthohydroquinone derivatives were re-reduced by DT-diaphorase, thus closing a cycle of enzymic reduction in equilibrium autoxidation. This was expressed as an excess of NADPH oxidized over the initial concentration of quinone present as well as H2O2 formation. These findings demonstrate that glutathionyl conjugates of 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone and those of their respective 5-hydroxy derivatives are able to act as substrates for DT-diaphorase and that they also autoxidize at rates higher than those for the unsubstituted parent compounds. These results are discussed in terms of the cellular role of DT-diaphorase in the reduction of hydroxy- or glutathionyl-substituted naphthoquinones as well as the further conjugation of these hydroquinones with glucuronide or sulphate within the cellular milieu, thereby facilitating their disposal from the cells. PMID:2494985

Buffinton, G D; Ollinger, K; Brunmark, A; Cadenas, E

1989-01-01

19

The Study of Naphthoquinones and Their Complexes with DNA by Using Raman Spectroscopy and Surface Enhanced Raman Spectroscopy: New Insight into Interactions of DNA with Plant Secondary Metabolites  

PubMed Central

Naphthoquinones represent the group of plant secondary metabolites with cytotoxic properties based on their ability to generate reactive oxygen species and interfere with the processes of cell respiration. Due to this fact, the possible cytotoxic mechanisms on cellular and subcellular levels are investigated intensively. There are many targets of cytotoxic action on the cellular level; however, DNA is a critical target of many cytotoxic compounds. Due to the cytotoxic properties of naphthoquinones, it is necessary to study the processes of naphthoquinones, DNA interactions (1,4-naphthoquinone, binapthoquinone, juglone, lawsone, plumbagin), especially by using modern analytical techniques. In our work, the Raman spectroscopy was used to determine the possible binding sites of the naphthoquinones on the DNA and to characterize the bond of naphthoquinone to DNA. Experimental data reveals the relationships between the perturbations of structure-sensitive Raman bands and the types of the naphthoquinones involved. The modification of DNA by the studied naphthoquinones leads to the nonspecific interaction, which causes the transition of B-DNA into A-DNA conformation. The change of the B-conformation of DNA for all measured DNA modified by naphthoquinones except plumbagin is obvious. PMID:25045679

Vrana, Oldrich; Adam, Vojtech

2014-01-01

20

The study of naphthoquinones and their complexes with DNA by using Raman spectroscopy and surface enhanced Raman spectroscopy: new insight into interactions of DNA with plant secondary metabolites.  

PubMed

Naphthoquinones represent the group of plant secondary metabolites with cytotoxic properties based on their ability to generate reactive oxygen species and interfere with the processes of cell respiration. Due to this fact, the possible cytotoxic mechanisms on cellular and subcellular levels are investigated intensively. There are many targets of cytotoxic action on the cellular level; however, DNA is a critical target of many cytotoxic compounds. Due to the cytotoxic properties of naphthoquinones, it is necessary to study the processes of naphthoquinones, DNA interactions (1,4-naphthoquinone, binapthoquinone, juglone, lawsone, plumbagin), especially by using modern analytical techniques. In our work, the Raman spectroscopy was used to determine the possible binding sites of the naphthoquinones on the DNA and to characterize the bond of naphthoquinone to DNA. Experimental data reveals the relationships between the perturbations of structure-sensitive Raman bands and the types of the naphthoquinones involved. The modification of DNA by the studied naphthoquinones leads to the nonspecific interaction, which causes the transition of B-DNA into A-DNA conformation. The change of the B-conformation of DNA for all measured DNA modified by naphthoquinones except plumbagin is obvious. PMID:25045679

Vaverkova, Veronika; Vrana, Oldrich; Adam, Vojtech; Pekarek, Tomas; Jampilek, Josef; Babula, Petr

2014-01-01

21

A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378.  

PubMed

A strain of Biatriospora sp. CCF 4378 was tested for the production of secondary metabolites under submerged fermentation conditions. Eleven compounds were isolated from the culture broth, and the structures of these compounds were determined using HRMS, NMR and X-ray analysis. In addition to six known naphthoquinone derivatives, i.e. ascomycone A, ascomycone B, 6-deoxyfusarubine, 6-deoxyanhydrofusarubine, herbarine and balticol A, one derivative of 2-azaanthraquinone, 6-deoxybostrycoidine, was also identified. Four new natural pyranonaphthoquinones were found, and these natural products were pleorubrin A, pleorubrin B, pleorubrin C and pleorubrin D. The toxicity on human cell lines of the crude naphthoquinone fraction and pure 6-deoxybostrycoidin, ascomycone B, pleorubrin B and 6-deoxyfusarubin was tested. Ascomycone B and 6-deoxyfusarubin elicited rapid cytotoxicity at micromolar concentrations. PMID:25416512

Stod?lková, Eva; Man, Petr; Kuzma, Marek; ?erný, Jan; Císa?ová, Ivana; Kubátová, Alena; Chudí?ková, Milada; Kola?ík, Miroslav; Flieger, Miroslav

2015-05-01

22

The Naphthoquinone Diospyrin Is an Inhibitor of DNA Gyrase with a Novel Mechanism of Action*  

PubMed Central

Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents. PMID:23275348

Karkare, Shantanu; Chung, Terence T. H.; Collin, Frederic; Mitchenall, Lesley A.; McKay, Adam R.; Greive, Sandra J.; Meyer, Jacobus J. M.; Lall, Namrita; Maxwell, Anthony

2013-01-01

23

Anticancer activity and SAR studies of substituted 1,4-naphthoquinones.  

PubMed

In this paper, we report the structure-activity relationship studies of substituted 1,4-naphthoquinones for its anticancer properties. 1,4-Naphthoquinone, Juglone, Menadione, Plumbagin and LLL12.1 were used as lead molecules to design PD compounds. Most of the PD compounds showed improved antiproliferative activity in comparison to the lead molecule in prostate (DU-145), breast (MDA-MB-231) and colon (HT-29) cancer cell lines. PD9, PD10, PD11, PD13, PD14 and PD15 were found to be the most potent compound with an IC? value of 1-3 ?M in all cancer cell lines. Fluorescent polarization assay was employed to study the inhibition of STAT3 dimerization by PD compounds. PD9 and PD18 were found to be potent STAT3 dimerization inhibitors. PMID:23791367

Bhasin, Deepak; Chettiar, Somsundaram N; Etter, Jonathan P; Mok, May; Li, Pui-Kai

2013-08-01

24

Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species  

Microsoft Academic Search

In vitro cultured carnivorous plants were grown on a hormone-free medium. They produced the following naphthoquinones: Dionaea muscipula (plumbagin: 5.3%), Drosera rotundifolia (7-methyljuglone: 0.6%), D. binata (plumbagin: 1.4%), and D. capensis (7-methyljuglone: 0.5%). A red, slow-growing suspension culture of D. muscipula was maintained in a modified McCowns Woody Plant (McC) medium and produced plumbagin (2.59%) after 30 days growth. A

Ingrid L. I. Hook

2001-01-01

25

Naphthoquinone derivative PPE8 induces endoplasmic reticulum stress in p53 null H1299 cells.  

PubMed

Endoplasmic reticulum (ER) plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1), senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78) dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1) as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment. PMID:25685256

Lien, Jin-Cherng; Huang, Chien-Chun; Lu, Te-Jung; Tseng, Chih-Hsiang; Sung, Ping-Jyun; Lee, Hong-Zin; Bao, Bo-Ying; Kuo, Yueh-Hsiung; Lu, Te-Ling

2015-01-01

26

Naphthoquinones as broad spectrum biocides for treatment of ship's ballast water: toxicity to phytoplankton and bacteria.  

PubMed

Current UN International Maritime Organization legislation mandates the phased introduction of ballast water treatment technologies capable of complying with rigorous standards related to removal of waterborne organisms. Doubts concerning mechanical treatments at very high ballasting rates have renewed interest in chemical treatment for very large vessels. High removal rates for biota require broad spectrum biocides that are safe to transport and handle and pose no corrosion problems for ships' structure. The current study focuses on the naphthoquinone group of compounds and extends a previously reported set of screening bioassays with an investigation of the toxicity of four naphthoquinones to select protists and prokaryotes, representative of typical ballast water organisms. Vegetative dinoflagellate cysts exposed to 2.0 mg/L of the naphthoquinones juglone, plumbagin, menadione and naphthazarin showed varying degrees of chloroplast destruction, with menadione demonstrating the most potency. Laboratory and mesocosm exposures of various phytoplankton genera to menadione showed toxicity at 1.0 mg/L. Juglone demonstrated the most bactericidal activity as judged by a Deltatox assay (Vibrio fischeri) and by acridine orange counts of natural bacterial populations. PMID:17270232

Wright, D A; Dawson, R; Cutler, S J; Cutler, H G; Orano-Dawson, C E; Graneli, E

2007-03-01

27

Naphthoquinone Derivative PPE8 Induces Endoplasmic Reticulum Stress in p53 Null H1299 Cells  

PubMed Central

Endoplasmic reticulum (ER) plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1), senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78) dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1) as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment. PMID:25685256

Lien, Jin-Cherng; Lu, Te-Jung; Tseng, Chih-Hsiang; Sung, Ping-Jyun; Lee, Hong-Zin; Kuo, Yueh-Hsiung; Lu, Te-Ling

2015-01-01

28

Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula  

Microsoft Academic Search

The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone

Petr Babula; Radka Mikelova; Vojtech Adam; Rene Kizek; Ladislav Havel; Zdenek Sladky

2006-01-01

29

Synthesis and Biological Evaluation of 1,4-Naphthoquinones and Quinoline-5,8-diones as Antimalarial and Schistosomicidal Agents  

PubMed Central

Improving the solubility of polysubstituted 1,4-naphthoquinone derivatives was achieved by introducing nitrogen in two different positions of the naphthoquinone core, at C-5 and at C-8 of menadione through a two-step, straightforward synthesis based on the regioselective hetero-Diels-Alder reaction. The antimalarial and the antischistosomal activities of these polysubstituted aza-1,4-naphthoquinone derivatives were evaluated and led to the selection of distinct compounds for antimalarial versus antischistosomal action. The AgII-assisted oxidative radical decarboxylation of the phenyl acetic acids using AgNO3 and ammonium peroxodisulfate was modified to generate the 3-picolinyl-menadione with improved pharmacokinetic parameters, high antimalarial effects and capacity to inhibit the formation of ?-hematin. PMID:22777178

Lanfranchi, Don Antoine; Cesar-Rodo, Elena; Bertrand, Benoît; Huang, Hsin-Hung; Day, Latasha; Johann, Laure; Elhabiri, Mourad; Becker, Katja; Williams, David L.

2012-01-01

30

Novel epoxide formation in the reaction of 2-bromo-3-methyl-1,4-naphthoquinone with 1,3-propanedithiol.  

PubMed

A novel epoxide 2 was formed as the major product in the reaction of 2-bromo-3-methyl-1,4-naphthoquinone with 1,3-propanedithiol in the presence of triethylamine in 92% yield. Molecular oxygen is suggested to be the source of the added oxygen in 2, an oxidation product of its precursor 3. A strong base such as triethylamine is required to abstract the methyl hydrogen of 1,4-naphthoquinones, leading to the formation of 3 as well as 2. PMID:21067919

Lam, Tom M; Lee, Chain; Katardjieff, Katherine; Otsuki, Tetsuo

2010-12-15

31

Effects of two naphthoquinone compounds on wheat seedlings, germination of urediospores of Puccinia graminis tritici and the host parasite relationship  

E-print Network

. length of coleoptiles per treatment were recorded after 5 days. The effect of 1 4-na htho uinone and menadione sodium bi- sulfite on the ermination of uredios ores of Puccinia raminis tritici races 2 and 6, Concentrations of 1, 4-naphthoquinone... races in 100 ml of water, and 4 drops of the surfactant Tween-20 were added to it. The spore suspensions were applied to each dish containing both the media and the naphthoquinones with an atomizer. The dishes were kept in the dark at room...

Rodriguez Campos, Enrique

1964-01-01

32

Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana  

PubMed Central

Nepenthes spp. are carnivorous plants that have developed insect capturing traps, evolved by specific modification of the leaf tips, and are able to utilize insect degradation products as nutritional precursors. A chitin-induced antifungal ability, based on the production and secretion to the trap liquid of droserone and 5-O-methyldroserone, is described here. Such specific secretion uniquely occurred when chitin injection was used as the eliciting agent and probably reflects a certain kind of defence mechanism that has been evolved for protecting the carnivory-based provision of nutritional precursors. The pitcher liquid containing droserone and 5-O-methyldroserone at 3:1 or 4:1 molar ratio, as well as the purified naphthoquinones, exerted an antifungal effect on a wide range of plant and human fungal pathogens. When tested against Candida and Aspergillus spp., the concentrations required for achieving inhibitory and fungicidal effects were significantly lower than those causing cytotoxicity in cells of the human embryonic kidney cell line, 293T. These naturally secreted 1,4-naphthoquinone derivatives, that are assumed to act via semiquinone enhancement of free radical production, may offer a new lead to develop alternative antifungal drugs with reduced selectable pressure for potentially evolved resistance. PMID:20018905

Eilenberg, Haviva; Pnini-Cohen, Smadar; Rahamim, Yocheved; Sionov, Edward; Segal, Esther; Carmeli, Shmuel; Zilberstein, Aviah

2010-01-01

33

Insight into naphthoquinone metabolism: beta-glucosidase-catalysed hydrolysis of hydrojuglone beta-D-glucopyranoside.  

PubMed Central

In plants, the naphthoquinone juglone is known to be involved in pathogenic defence mechanisms, but it may also take part in plant developmental processes. This naphthoquinone can accumulate in a glycosylated form, namely hydrojuglone beta-d-glucopyranoside. The structural configuration of this compound was shown to be 1, 5-dihydroxy-4-naphthalenyl-beta-d-glucopyranoside by means of MS, NMR and nuclear Overhauser effect spectroscopy analyses. A hydrojuglone beta-d-glucopyranoside beta-glucosidase (EC 3.2.1.21) was purified to homogeneity from Juglans regia L. The enzyme catalysed the release of juglone from hydrojuglone beta-d-glucopyranoside with high specificity and showed Michaelis-Menten kinetics with Km=0.62 mM and Vmax=14.5 microkat/mg of protein. This enzyme also showed a higher activity towards beta-d-fucosyl than beta-d-glucosyl bonds. The purified enzyme had an apparent Mr of 64000 by SDS/PAGE and a pI 8.9 by isoelectrofocusing PAGE. The purified enzyme was inhibited by several bivalent cations, such as Cu2+, Fe2+, Hg2+, and by d-glucono-1,5-lactone, showing non-competitive inhibition of the mixed type. PMID:9657966

Duroux, L; Delmotte, F M; Lancelin, J M; Kéravis, G; Jay-Allemand, C

1998-01-01

34

Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera.  

PubMed

Exploring the effects of allelopathic plant chemicals on the growth of native vegetation is essential to understand their ecological roles and importance in exotic plant invasion. Naphthoquinones have been identified as potential growth inhibitors produced by Impatiens glandulifera, an exotic annual plant that recently invaded temperate forests in Europe. However, naphthoquinone release and inhibitory potential have not been examined. We quantified the naphthoquinone content in cotyledons, leaves, stems, and roots from plants of different ages of both the invasive I. glandulifera and native Impatiens noli-tangere as well as in soil extracts and rainwater rinsed from leaves of either plant species by using ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS). We identified the compound 2-methoxy-1,4-naphthoquinone (2-MNQ) exclusively in plant organs of I. glandulifera, in resin bags buried into the soil of patches invaded by I. glandulifera, and in rainwater rinsed from its leaves. This indicates that 2-MNQ is released from the roots of I. glandulifera and leached from its leaves by rain. Specific bioassays using aqueous shoot and root extracts revealed a strong inhibitory effect on the germination of two native forest herbs and on the mycelium growth of three ectomycorrhiza fungi. These findings suggest that the release of 2-MNQ may contribute to the invasion success of I. glandulifera and support the novel weapons hypothesis. PMID:24722883

Ruckli, Regina; Hesse, Katharina; Glauser, Gaetan; Rusterholz, Hans-Peter; Baur, Bruno

2014-04-01

35

Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?  

PubMed Central

The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone), plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO) production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS). Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC25 of 1.09±0.24 µM was found, with 38.25±6.50% (p<0.001) NO reduction at 1.5 µM. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-?) and interleukin 6 (IL-6). Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction. PMID:21887376

Pinho, Brígida R.; Sousa, Carla; Valentão, Patrícia; Andrade, Paula B.

2011-01-01

36

Effect of inducers of DT-diaphorase on the toxicity of 2-methyl- and 2-hydroxy-1,4-naphthoquinone to rats  

Microsoft Academic Search

It has previously been shown that rats pre-treated with butylated hydroxyanisole (BHA), a well-known inducer of the enzyme DT-diaphorase, are protected against the toxic effects of 2-methyl-1,4-naphthoquinone but are made more susceptible to the harmful action of 2-hydroxy-1,4-naphthoquinone. In the present experiments, the effects of BHA have been compared with those of other inducers of DT-diaphorase. Rats were dosed with

Rex Munday; Barry L. Smith; Christine M. Munday

1999-01-01

37

Effect of Substituent and Ring Changes in Naturally Occurring Naphthoquinones on the Feeding Response of Larvae of the Mexican Bean Beetle, Epilachna varivestis  

Microsoft Academic Search

Behavioral evaluation of the antifeedant effect of 10 naturally occurring 1,4-naphthoquinones on larvae of the Mexican bean beetle, Epilachna varivestis Mulsant, was undertaken concurrently with that of a series of synthetic analogs and model compounds in order to assess structure–activity relationships. Plumbagin, 1,4-naphthoquinone, juglone, menadione, and naphthazarin, which were found to be active at 0.3% concentrations, were also bioassayed at

M. Weissenberg; J. Meisner; M. Klein; I. Schaeffler; M. Eliyahu; H. Schmutterer; K. R. S. Ascher

1997-01-01

38

Meroterpenoids and a Naphthoquinone from Arnebia euchroma and Their Cytotoxic Activity.  

PubMed

Four new meroterpenoids, arnebinols A-D (1-4), and one new prenylated naphthoquinone, 5,8-O-dimethyl-11-deoxyalkannin (5), together with seven known meroterpenoids (6-12) were isolated from the roots of Arnebia euchroma. The structures of the isolated compounds were elucidated unambiguously by spectroscopic data analysis, as well as X-ray-single crystal diffraction analysis. Arnebinol A (1) and B (2) are rare meroterpenoids possessing a 6/10/5 tricyclic ring system. Compounds 1-12 were evaluated for their cytotoxicities against MG-63 and SNU387 human cancer cell lines. Compound 5 exhibited the most potent activity with IC50 values of 2.69?µM and 6.08?µM, respectively. PMID:25760383

Wang, Lun; Li, Fu; Liu, Xin; Chen, Bin; Yu, Kai; Wang, Ming-Kui

2015-03-01

39

QSAR on antiproliferative naphthoquinones based on a conformation-independent approach.  

PubMed

The antiproliferative activities of a series of 36 naphthoquinone derivatives were subjected to a Quantitative Structure-Activity Relationships (QSAR) study. For this purpose a panel of four human cancer cell lines was used, namely HBL-100 (breast), HeLa (cervix), SW-1573 (non-small cell lung) and WiDr (colon). A conformation-independent representation of the chemical structure was established in order to avoid leading with the scarce experimental information on X-ray crystal structure of the drug interaction. The 1179 theoretical descriptors derived with E-Dragon and Recon software were simultaneously analyzed through linear regression models based on the Replacement Method variable subset selection technique. The established models were validated and tested through the use of external test sets of compounds, the Leave-One-Out Cross Validation method, Y-Randomization and Applicability Domain analysis. PMID:24631897

Duchowicz, Pablo R; Bennardi, Daniel O; Bacelo, Daniel E; Bonifazi, Evelyn L; Rios-Luci, Carla; Padrón, José M; Burton, Gerardo; Misico, Rosana I

2014-04-22

40

Prediction of lambda(max) of 1,4-naphthoquinone derivatives using ant colony optimization.  

PubMed

Ant colony optimization (ACO) is a meta-heuristic algorithm, which is derived from the observation of real ants. In this paper, ACO algorithm is proposed to feature selection in quantitative structure property relationship (QSPR) modeling and to predict lambda(max) of 1,4-naphthoquinone derivatives. Feature selection is the most important step in classification and regression systems. The performance of the proposed algorithm (ACO) is compared with that of a stepwise regression, genetic algorithm and simulated annealing methods. The average absolute relative deviation in this QSPR study using ACO, stepwise regression, genetic algorithm and simulated annealing using multiple linear regression method for calibration and prediction sets were 5.0%, 3.4% and 6.8%, 6.1% and 5.1%, 8.6% and 6.0%, 5.7%, respectively. It has been demonstrated that the ACO is a useful tool for feature selection with nice performance. PMID:20172089

Atabati, M; Zarei, K; Mohsennia, M

2010-03-17

41

One-electron reduction of juglone (5-hydroxy-1,4-naphthoquinone): A pulse radiolysis study  

NASA Astrophysics Data System (ADS)

Optical absorption characteristics have been determined for juglone (pK a = 8.85) and the semiquinone radicals formed from it by one-electron reduction. The latter have pK a values of 3.65 and 12. Second-order rate constants have been determined for the reactions of e -aq, CO? 2-, H· and O? 2- with juglone, and of the semiquinone radicals with themselves (disproportionation) and with O 2. Using dimethylbenzoquinone and O 2 as redox standards, one-electron reduction potential values have been determined over the pH range 6-10, and shown to match with theoretical values calculated from E17 = -93 mV (vs NHE) and pK a values of the parent and its semiquinones. A comparison is made with the semiquinones of other naphthoquinone derivatives including naphthazarin. Optical absorption spectra of fully reduced juglone have been determined.

Mukherjee, T.

42

Naphthalene and Naphthoquinone: Distributions and Human Exposure in the Los Angeles Basin  

NASA Astrophysics Data System (ADS)

Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons (PAHs). Naphthalene is found primarily in the gas-phase and has been detected in both outdoor and indoor samples. Evaporation from naphthalene-containing products (including gasoline), and during refining operations, are important sources of naphthalene in air. Naphthalene is also emitted during the combustion of fossil fuels and wood, and is a component of vehicle exhaust. Exposure to high concentrations of naphthalene can damage or destroy red blood cells, causing hemolytic anemia. If inhaled over a long period of time, naphthalene may cause kidney and liver damage, skin allergy and dermatitis, cataracts and retinal damage, as well as attack the central nervous system. Naphthalene has been found to cause cancer as a result of inhalation in animal tests. Naphthoquinones are photooxidation products of naphthalene and the potential health effects of exposure to these quinones are a current focus of research. We are developing and applying models that can be used to assess human exposure to naphthalene and its photooxidation products in major air basins such as California South Coast Air Basin (SoCAB). The work utilizes the Surface Meteorology and Ozone Generation (SMOG) airshed model, and the REgional Human EXposure (REHEX) model, including an analysis of individual exposure. We will present and discuss simulations of basin-wide distributions of, and human exposures to, naphthalene and naphthoquinone, with emphasis on the uncertainties in these estimates of atmospheric concentrations and human exposure. Regional modeling of pollutant sources and exposures can lead to cost-effective and optimally health-protective emission control strategies.

Lu, R.; Wu, J.; Turco, R.; Winer, A. M.; Atkinson, R.; Paulson, S.; Arey, J.; Lurmann, F.

2003-12-01

43

Design, synthesis, and biological testing of novel naphthoquinones as substrate-based inhibitors of the quinol/fumarate reductase from Wolinella succinogenes.  

PubMed

Novel naphthoquinones were designed, synthesized, and tested as substrate-based inhibitors against the membrane-embedded protein quinol/fumarate reductase (QFR) from Wolinella succinogenes, a target closely related to QFRs from the human pathogens Helicobacter pylori and Campylobacter jejuni. For a better understanding of the hitherto structurally unexplored substrate binding pocket, a structure-activity relationship (SAR) study was carried out. Analogues of lawsone (2-hydroxy-1,4-naphthoquinone 3a) were synthesized that vary in length and size of the alkyl side chains (3b-k). A combined study on the prototropic tautomerism of 2-hydroxy-1,4-naphthoquinones series indicated that the 1,4-tautomer is the more stable and biologically relevant isomer and that the presence of the hydroxyl group is crucial for inhibition. Furthermore, 2-bromine-1,4-naphthoquinone (4a-c) and 2-methoxy-1,4-naphthoquinone (5a-b) series were also discovered as novel and potent inhibitors. Compounds 4a and 4b showed IC50 values in low micromolar range in the primary assay and no activity in the counter DT-diaphorase assay. PMID:24251984

Nasiri, Hamid Reza; Madej, M Gregor; Panisch, Robin; Lafontaine, Michael; Bats, Jan W; Lancaster, C Roy D; Schwalbe, Harald

2013-12-12

44

Proteomics analyses of Bacillus subtilis after treatment with plumbagin, a plant-derived naphthoquinone.  

PubMed

Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ?2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine. PMID:25562197

Reddy, Panga Jaipal; Ray, Sandipan; Sathe, Gajanan J; Prasad, T S Keshava; Rapole, Srikanth; Panda, Dulal; Srivastava, Sanjeeva

2015-01-01

45

Diospyrone, crassiflorone and plumbagin: three antimycobacterial and antigonorrhoeal naphthoquinones from two Diospyros spp.  

PubMed

The aim of this study was to evaluate the antimycobacterial and antigonorrhoeal activities of three naphthoquinones (diospyrone, crassiflorone and plumbagin) from Diospyros canaliculata and Diospyros crassiflora as well as the crude extracts from these plants. The agar disk diffusion assay, broth microdilution method, microplate Alamar blue assay (MABA) and radiometric respiratory technique using the BACTEC 460 TB system were used. Results of the antimycobacterial assays indicated that the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations ranged from 1.22 microg/mL to 39.06 microg/mL for Mycobacterium smegmatis and all studied Mycobacterium tuberculosis strains for the crude extract from D. crassiflora, diospyrone and crassiflorone. Results of the killing rate experiment revealed that a total inhibition effect on M. tuberculosis H37Rv strain was observed at Day 18 for D. crassiflora and Day 21 for the crude extract from D. canaliculata and diospyrone at 4x MIC as determined by MABA. Results of the antigonorrhoeal assay indicated that diospyrone was able to prevent the growth of all studied strains of Neisseria gonorrhoeae. The overall results of this work provide evidence that the studied plant extracts (diospyrone, crassiflorone and plumbagin) might be potential sources of new antimicrobial drugs against tuberculosis and gonorrhoea. PMID:19505805

Kuete, Victor; Tangmouo, Jean G; Meyer, J J Marion; Lall, Namrita

2009-10-01

46

Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives.  

PubMed

A series of novel naphthoquinone amide derivatives of the bioactive quinones, plumbagin, juglone, menadione and lawsone, with various amino acids were synthesized. The compounds were characterized by (1)H NMR, (13)C NMR, Mass, IR and elemental analysis. All the compounds were evaluated for their anticancer activity against HeLa and SAS cancer cell lines and 3D-QSAR indicated the presence of electron donating group near sulphur enhanced the activity against HeLa cells. Among the derivatives synthesized, compounds 11f, 10a, 10b and 10g were the most active with IC50 values of 16, 12, 14 and 24.5 ?M, respectively. The analogues were also screened for antimicrobial activity against two human bacterial pathogens, the Gram-positive Methicillin resistant Staphylococcus aureus (MRSA) and the Gram-negative Pseudomonas aeruginosa and a human yeast pathogen, Fluconazole resistant Candida albicans (FRCA). Among the synthesized compounds, 8g, 10g and 11g exhibited maximum antibacterial activity towards MRSA and antifungal activity against FRCA in well diffusion method. PMID:24913712

Sreelatha, Thonthula; Kandhasamy, Subramani; Dinesh, Raghu; Shruthy, Suresh; Shweta, Sinha; Mukesh, Doble; Karunagaran, Devarajan; Balaji, Ravichandran; Mathivanan, Narayanasamy; Perumal, Paramasivan Thirumalai

2014-08-01

47

Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone  

NASA Astrophysics Data System (ADS)

Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The Cdbnd O, Csbnd H in-plane bending and Csbnd Br stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface.

Geetha, K.; Umadevi, M.; Sathe, G. V.; Vanelle, P.; Terme, T.; Khoumeri, O.

2015-03-01

48

Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.  

PubMed

Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. PMID:25481490

Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

2015-03-01

49

Cell-Specific Production and Antimicrobial Activity of Naphthoquinones in Roots of Lithospermum erythrorhizon1  

PubMed Central

Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and ?-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere. PMID:9952436

Brigham, Lindy A.; Michaels, Paula J.; Flores, Hector E.

1999-01-01

50

Toward the total synthesis of hygrocin B and divergolide C: construction of the naphthoquinone-azepinone core.  

PubMed

A highly regioselective Diels-Alder approach toward the bioactive natural products hygrocin B and divergolide C is presented. The route uses an unusual benzoquinone-azepinone dienophile prepared in 8 steps from ethyl 8-methoxy-1-naphthoate, by a route which includes, as key steps, a Birch alkylation and a Beckmann rearrangement of a tetralone oxime, both of which are demonstrated on multigram scale. The naphthoquinone-azepinone core is suitably functionalized for addition of the ansa-chain, found in the natural products. PMID:24661134

Nawrat, Christopher C; Kitson, Russell R A; Moody, Christopher J

2014-04-01

51

1,4-Naphthoquinone, a pro-oxidant, suppresses immune responses via KEAP-1 glutathionylation.  

PubMed

Low levels of oxidative stress have been shown to activate Nrf-2, an important anti-inflammatory transcription factor, by us and also by several other investigators. Earlier we showed that pro-oxidants protect normal lymphocytes against radiation injury by activating Nrf-2. In the present study, we have investigated the effect of oxidative stress on immune responses and delineated the underlying mechanism. Hydrogen peroxide, tert-butylhydroquinone and 1,4-naphthoquinone (NQ) inhibited mitogen induced proliferation of lymphocytes. NQ also inhibited mitogen (Concanavalin A) induced cytokine secretion by murine T cells and lipopolysaccharide induced release of cytokines, nitric oxide and cyclooxygenase-2 expression by macrophages. NQ modulated cellular redox by decreasing GSH/GSSG ratio and the immunosuppressive effects of NQ were significantly abrogated by thiol containing antioxidants and not by non-thiol antioxidants. This redox perturbation led to activation of Nrf-2 pathway and inhibition of NF-?B. NQ treatment increased total protein S-thiolation, induced glutathionylation of KEAP-1 protein and decreased IKK? levels in lymphocytes. Molecular docking studies revealed that NQ can disrupt KEAP-1/Nrf-2 interaction by directly blocking the binding site of Nrf-2 in the KEAP-1 protein. Further, inhibitors of Nrf-2 and HO-1 abrogated the anti-inflammatory effects of NQ. T cells isolated from spleen and gut associated lymphoid tissue of NQ administered mice also showed suppression of NF-?B activation and were hyporesponsive to mitogenic stimulation. These results demonstrate that pro-oxidants modulate inflammatory and immune responses via oxidative stress mediated KEAP-1 glutathionylation and IKK? degradation. PMID:24406247

Gambhir, Lokesh; Checker, Rahul; Thoh, Maikho; Patwardhan, R S; Sharma, Deepak; Kumar, Mukesh; Sandur, Santosh K

2014-03-01

52

Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures.  

PubMed

Suspension cultures of Arnebia euchroma supported with liquid perfluorodecalin (PFD) degassed, aerated, or ethylene-saturated were investigated as a novel in situ extraction system for enhanced alkannin/shikonin production. Simultaneously, the effect of PFD applied as the liquid gas carrier on the growth of A. euchroma biomass was studied. The similar dry (4-fold) and fresh (7-fold) biomass increase was observed in the control (without PFD addition) and supplemented with PFD-degassed or PFD-aerated cultures while PFD-ethylene application impeded cell growth. The highest total of alkannin/shikonin production (23.23 mg flask(-1)) was observed when PFD-aerated has been used and it resulted in about 50% higher yield of alkannin/shikonin compared with the control culture. Chiral HPLC analysis revealed that in cultures supported with PFD, both alkannin and shikonin were produced. Their mutual ratio varied depending on culture conditions, and the accumulation of alkannin prevailed under almost all culture conditions. PFD has proved to be exceptionally efficient and cell-safe solvent for the in situ extraction of naphthoquinone red pigments without exerting any detrimental effects on cell growth. Extracellularly secreted red naphthoquinones were easily dissolved and extracted from the PFD phase, which can be regenerated and reused (e.g., in continuous culture system). PMID:24420283

Syk?owska-Baranek, Katarzyna; Pilarek, Maciej; Cichosz, Micha?; Pietrosiuk, Agnieszka

2014-03-01

53

Naphthoquinone-mediated Inhibition of Lysine Acetyltransferase KAT3B/p300, Basis for Non-toxic Inhibitor Synthesis*  

PubMed Central

Hydroxynaphthoquinone-based inhibitors of the lysine acetyltransferase KAT3B (p300), such as plumbagin, are relatively toxic. Here, we report that free thiol reactivity and redox cycling properties greatly contribute to the toxicity of plumbagin. A reactive 3rd position in the naphthoquinone derivatives is essential for thiol reactivity and enhances redox cycling. Using this clue, we synthesized PTK1, harboring a methyl substitution at the 3rd position of plumbagin. This molecule loses its thiol reactivity completely and its redox cycling ability to a lesser extent. Mechanistically, non-competitive, reversible binding of the inhibitor to the lysine acetyltransferase (KAT) domain of p300 is largely responsible for the acetyltransferase inhibition. Remarkably, the modified inhibitor PTK1 was a nearly non-toxic inhibitor of p300. The present report elucidates the mechanism of acetyltransferase activity inhibition by 1,4-naphthoquinones, which involves redox cycling and nucleophilic adduct formation, and it suggests possible routes of synthesis of the non-toxic inhibitor. PMID:24469461

Vasudevarao, Mohankrishna Dalvoy; Mizar, Pushpak; Kumari, Sujata; Mandal, Somnath; Siddhanta, Soumik; Swamy, Mahadeva MM; Kaypee, Stephanie; Kodihalli, Ravindra C; Banerjee, Amrita; Naryana, Chandrabhas; Dasgupta, Dipak; Kundu, Tapas K.

2014-01-01

54

A Small Library of Synthetic Di-Substituted 1, 4-Naphthoquinones Induces ROS-Mediated Cell Death in Murine Fibroblasts  

PubMed Central

Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dötz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents. PMID:25197824

Ramirez, Oscar; Motta-Mena, Laura B.; Cordova, Amanda; Garza, Kristine M.

2014-01-01

55

Sequential synthesis of amino-1,4-naphthoquinone-appended triazoles and triazole-chromene hybrids and their antimycobacterial evaluation.  

PubMed

A general method for the synthesis of a library of hitherto unreported amino-1,4-naphthoquinone-appended triazoles was accomplished via a sequential three-component reaction of substituted N-propargylaminonaphthoquinones with variously substituted alkyl bromides/2-bromonaphthalene-1,4-dione and sodium azide in the presence of Et3N/CuI in water. Aminonaphthoquinone-appended iminochromene-triazole hybrid heterocycles were also synthesized from the amino-1,4-naphthoquinone-appended-1,2,3-triazolylacetonitriles. All the triazole hybrids were screened for their in vitro activity against Mycobacterium tuberculosis H37Rv (MTB). Among the triazoles, 2-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)(4-(trifluoromethyl)phenyl)amino)naphthalene-1,4-dione (7d) emerged as the most active one with IC50 = 1.87 ?M, being more potent than the anti-TB drugs, cycloserine (6 times), pyrimethamine (20 times) and equipotent as the drug ethambutol (IC50 < 1.56 ?M). PMID:25129868

Devi Bala, Balasubramanian; Muthusaravanan, Sivasubramanian; Choon, Tan Soo; Ashraf Ali, Mohamed; Perumal, Subbu

2014-10-01

56

Anti-proliferative actions of 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone in vascular smooth muscle cells  

SciTech Connect

Highlights: {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced VSMC proliferation in a dose-dependent manner with no apparent cytotoxicity. {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced phosphorylation of Erk1/2 and PLC{gamma}1. {yields} 2-Decylamino-DMNQ arrested a G{sub 0}/G{sub 1} cell cycle progression in association with pRb phosphorylation and PCNA expression. {yields} Both U0126, an Erk inhibitor, and U73122, a PLC{gamma} inhibitor, arrested a G{sub 0}/G{sub 1} phase of the cell cycle. -- Abstract: Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferation and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-R{beta} or Akt, it did inhibit the phosphorylation of Erk1/2 and PLC{gamma}1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G{sub 0}/G{sub 1} phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLC{gamma} inhibitor, increased the proportion of cells in the G{sub 0}/G{sub 1} phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G{sub 0}/G{sub 1} phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.

Lee, Jung-Jin [Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of) [Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of); Institute of Drug Research and Development, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Zhang, Wei-Yun; Yi, Hyoseok; Kim, Yohan; Kim, In-Su [Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of)] [Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of); Shen, Gui-Nan; Song, Gyu-Yong [Department of Medicinal Chemistry, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of)] [Department of Medicinal Chemistry, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of); Myung, Chang-Seon, E-mail: cm8r@cnu.ac.kr [Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of) [Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon 305-764 (Korea, Republic of); Institute of Drug Research and Development, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

2011-07-22

57

Surface Enhanced Raman Spectroscopic investigations of 2-bromo-3-methylamino-1,4-naphthoquinone on silver nanoparticles.  

PubMed

Surface Enhanced Raman Spectroscopic technique has been employed to investigate the orientation of 2-bromo-3-methylamino-1,4-naphthoquinone (BMANQ) on silver nanoparticles. Silver nanoparticles have been prepared by solution combustion method with citric acid as fuel. Silver nanoparticles were characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Scanning Electron Microscopy (SEM). XRD and morphological results confirmed the nanocrystalline nature of the prepared silver nanoparticles. The observed intense CO stretching, CBr stretching and NH2 vibration suggests that the BMANQ molecule may be adsorbed in a 'stand-on' orientation to the silver surface. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy show that charge transfer occurs within the molecule. PMID:25468439

Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

2014-11-01

58

Surface Enhanced Raman Spectroscopic investigations of 2-bromo-3-methylamino-1,4-naphthoquinone on silver nanoparticles  

NASA Astrophysics Data System (ADS)

Surface Enhanced Raman Spectroscopic technique has been employed to investigate the orientation of 2-bromo-3-methylamino-1,4-naphthoquinone (BMANQ) on silver nanoparticles. Silver nanoparticles have been prepared by solution combustion method with citric acid as fuel. Silver nanoparticles were characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Scanning Electron Microscopy (SEM). XRD and morphological results confirmed the nanocrystalline nature of the prepared silver nanoparticles. The observed intense Cdbnd O stretching, Csbnd Br stretching and NH2 vibration suggests that the BMANQ molecule may be adsorbed in a 'stand-on' orientation to the silver surface. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy show that charge transfer occurs within the molecule.

Geetha, K.; Umadevi, M.; Sathe, G. V.; Vanelle, P.; Terme, T.; Khoumeri, O.

2015-02-01

59

Naphthoquinone-directed C-H annulation and C(sp³)-H bond cleavage: one-pot synthesis of tetracyclic naphthoxazoles.  

PubMed

One-pot synthesis of tetracyclic naphthoxazole derivatives from electron-deficient naphthoquinones and alkynes was achieved via Rh(III)-catalyzed C-H activation and C(sp(3))-H bond cleavage for the first time. This approach proceeds through a tandem cascade process involving substrate tautomerization, C-H activation, oxidative addition, cyclization, and aromatization. In addition, broad substrate scope, simple starting materials, and steric tolerance make this strategy of great practicality. PMID:24746121

Wang, Meining; Zhang, Chi; Sun, Li-Ping; Ding, Chunyong; Zhang, Ao

2014-05-16

60

DNA damage and inhibition of akt pathway in mcf-7 cells and ehrlich tumor in mice treated with 1,4-naphthoquinones in combination with ascorbate.  

PubMed

The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, ?H2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells. PMID:25793019

Ourique, Fabiana; Kviecinski, Maicon R; Felipe, Karina B; Correia, João Francisco Gomes; Farias, Mirelle S; Castro, Luiza S E P W; Grinevicius, Valdelúcia M A S; Valderrama, Jaime; Rios, David; Benites, Julio; Buc Calderon, Pedro; Pedrosa, Rozangela Curi

2015-01-01

61

DNA Damage and Inhibition of Akt Pathway in MCF-7 Cells and Ehrlich Tumor in Mice Treated with 1,4-Naphthoquinones in Combination with Ascorbate  

PubMed Central

The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, ?H2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells. PMID:25793019

Ourique, Fabiana; Kviecinski, Maicon R.; Felipe, Karina B.; Correia, João Francisco Gomes; Farias, Mirelle S.; Castro, Luiza S. E. P. W.; Grinevicius, Valdelúcia M. A. S.; Valderrama, Jaime; Rios, David; Benites, Julio; Buc Calderon, Pedro; Pedrosa, Rozangela Curi

2015-01-01

62

Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.  

PubMed

The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium. PMID:16765109

Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

2006-09-14

63

Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohydrazide.  

PubMed

A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, (1)H, (13)C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50=58 ?M). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug. PMID:25153640

Kavitha Rani, P R; Fernandez, Annette; George, Annie; Remadevi, V K; Sudarsanakumar, M R; Laila, Shiny P; Arif, Muhammed

2015-01-25

64

1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents  

PubMed Central

The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

2013-01-01

65

Novel spectrophotometric method for determination of some macrolide antibiotics in pharmaceutical formulations using 1,2-naphthoquinone-4-sulphonate  

NASA Astrophysics Data System (ADS)

New, simple and rapid spectrophotometric method has been developed and validated for the assay of two macrolide drugs, azithromycin (AZT) and erythromycin (ERY) in pure and pharmaceutical formulations. The proposed method was based on the reaction of AZT and ERY with sodium 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline medium at 25 °C to form an orange-colored product of maximum absorption peak at 452 nm. All variables were studied to optimize the reaction conditions and the reaction mechanism was postulated. Beer's law was obeyed in the concentration range 1.5-33.0 and 0.92-8.0 ?g mL-1 with limit of detection values of 0.026 and 0.063 ?g mL-1 for AZT and ERY, respectively. The calculated molar absorptivity values are 4.3 × 104 and 12.3 × 104 L mol-1 cm-1 for AZT and ERY, respectively. The proposed methods were successfully applied to the determination of AZT and ERY in formulations and the results tallied well with the label claim. The results were statistically compared with those of an official method by applying the Student's t-test and F-test. No interference was observed from the concomitant substances normally added to preparations.

Ashour, Safwan; Bayram, Roula

2012-12-01

66

Direct Detection of a Triplet Vinylnitrene, 1,4-Naphthoquinone-2-ylnitrene, in Solution and Cryogenic Matrices.  

PubMed

The photolysis of 2-azido-1,4-naphthoquinone (1) in argon matrices at 8 K results in the corresponding triplet vinylnitrene (3)2, which was detected directly by IR spectroscopy. Vinylnitrene (3)2 is stable in argon matrices but forms 2-cyanoindane-1,3-dione (3) upon further irradiation. Similarly, the irradiation of azide 1 in 2-methyltetrahydrofuran (MTHF) matrices at 5 K resulted in the ESR spectrum of vinylnitrene (3)2, which is stable up to at least 100 K. The zero-field splitting parameters for nitrene (3)2, D/hc = 0.7292 cm(-1) and E/hc = 0.0048 cm(-1), verify that it has significant 1,3-biradical character. Vinylnitrene (3)2 (?max ? 460 nm, ? = 22 ?s) is also observed directly in solution at ambient temperature with laser flash photolysis of 1. Density functional theory (DFT) calculations support the characterization of vinylnitrene (3)2 and the proposed mechanism for its formation. Because vinylnitrene (3)2 is relatively stable, it has potential use as a building-block for high-spin assemblies. PMID:25760227

Sarkar, Sujan K; Sawai, Asako; Kanahara, Kousei; Wentrup, Curt; Abe, Manabu; Gudmundsdottir, Anna D

2015-04-01

67

Indoleamine 2,3-Dioxygenase Is the Anticancer Target for a Novel Series of Potent Naphthoquinone-Based Inhibitors  

PubMed Central

Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression. While small molecule inhibitors of IDO exist, there remains a dearth of high-potency compounds offering in vivo efficacy and clinical translational potential. In this study, we address this gap by defining a new class of naphthoquinone-based IDO inhibitors exemplified by the natural product menadione, which is shown in mouse tumor models to have similar antitumor activity to previously characterized IDO inhibitors. Genetic validation that IDO is the critical in vivo target is demonstrated using IDO-null mice. Elaboration of menadione to a pyranonaphthoquinone has yielded low nanomolar potency inhibitors, including new compounds which are the most potent reported to date (Ki = 61–70 nM). Synthetic accessibility of this class will facilitate preclinical chemical–genetic studies as well as further optimization of pharmacological parameters for clinical translation. PMID:18318466

Kumar, Sanjeev; Malachowski, William P.; DuHadaway, James B.; LaLonde, Judith M.; Carroll, Patrick J.; Jaller, Daniel; Metz, Richard; Prendergast, George C.; Muller, Alexander J.

2014-01-01

68

Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide  

NASA Astrophysics Data System (ADS)

A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 ?M). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

2015-01-01

69

Spectrophotometric determination of dapsone in pharmaceutical products using sodium 1,2-naphthoquinone-4-sulfonic as the chromogenic reagent  

NASA Astrophysics Data System (ADS)

Spectrophotometric determination of dapsone is described. The dapsone reacts with sodium 1,2-naphthoquinone-4-sulfonic in pH 6.98 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 525 nm, ?525=3.68×10 4 l mol -1 cm -1. The absorbance of dapsone from 0.40 to 10 ?g ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=0.2334 A+0.01288, with a linear regression correlation coefficient of 0.9998, the detection limit is 0.24 ?g ml -1, and recovery is from 99.2 to 102.4%. Effects of pH, surfactant, organic solvents, foreign ions, and standing time on the determination of dapsone have been examined. This method is simple and can be used for the determination of dapsone in injection solution of dapsone. The results obtained by this method agreed with those by the official method (dead-stop titration method [The Chinese Pharmacopoeia, Pharmacopoeia Commission, Ministry of Health, vol. 2, fifth ed., PRC Chemical Industry Press, Beijing, 2000, p.720]).

Wang, Huai You; Xu, Li Xiao; Xiao, Yan; Han, Juan

2004-10-01

70

Spectrophotometric determination of ampicillin sodium in pharmaceutical products using sodium 1,2-naphthoquinone-4-sulfonic as the chromogentic reagent  

NASA Astrophysics Data System (ADS)

Spectrophotometric determination of ampicillin sodium is described. The ampicillin sodium reacts with sodium 1,2-naphthoquinone-4-sulfonic in pH 9.00 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 463 nm, ?463=1.14×10 4. The absorbance of ampicillin sodium from 2.0-80 ?g ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=40.24 A-2.603, with a linear regression correlation coefficient is 0.9997, the detection limit is 1.5 ?g ml -1, recovery is from 97.23 to 104.5%. Effects of pH, surfactant, organic solvents, and foreign ions on the determination of ampicillin sodium have been examined. This method is rapid and simple, and can be used for the determination of ampicillin sodium in the injection solution of ampicillin sodium. The results obtained by this method agreed with those by the official method (HPLC).

Xu, Lixiao; Wang, Huaiyou; Xiao, Yan

2004-11-01

71

Spectrophotometric determination of procaine hydrochloride in pharmaceutical products using 1,2-naphthoquinone-4-sulfonic acid as the chromogenic reagent  

NASA Astrophysics Data System (ADS)

Spectrophotometric determination of procaine hydrochloride is described. The procaine hydrochloride reacts with 1,2-naphthoquinone-4-sulfonic acid in pH 3.60 buffer solution to form a salmon pink compound, and its maximum absorption wavelength is at 484 nm, ? 484=5.22×10 3.The absorbance for procaine hydrochloride from 0.30 to 100 ?g ml -1 obeys Beer's law. The linear regression equation of the calibration graph is C=19.23A-0.03, with a linear regression correlative coefficient is 0.9996, the detection limit is 0.28 ?g ml -1; recovery is from 98.0 to 105.2%. Effects of pH, surfactant, organic solvent, foreign ions, and standing time on the determination of procaine hydrochloride have been examined. This method is rapid and simple, and can be used for the determination of procaine hydrochloride in injection solution of procaine hydrochloride. The results obtained by this method agreed with those by the official method (dead-stop titration).

Xu, Li Xiao; Shen, Yun Xiu; Wang, Huai You; Jiang, Ji Gang; Xiao, Yan

2003-11-01

72

Synthesis and anticancer activity of some novel 5,6-fused hybrids of juglone based 1,4-naphthoquinones.  

PubMed

Six novel 5,6-fused hybrids such as dihydrobenzofuran-quinone (4a and 4b), benzofuran-quinone (5a and 5b) and chromene-quinone (6a and 6b) of juglone based 1,4-naphthoquinones were synthesized by employing a three step protocol with the cyclisation of o-allyl phenol as the key step. The anticancer activity of the newly synthesized compounds was evaluated in vitro against seven human cancer cell lines including cervix (ME-180 and HeLa), breast (MCF-7, MDA-MB-453 and MDA-MB-231), prostate (PC-3) and colon (HT-29) by using MTT assay. The screening results showed that majority of the synthesized compounds exhibited significant anticancer activity. In particular, compounds 6a and 6b showed potent activities than the standard drug etoposide against prostate and breast cancer cell lines respectively. Flow cytometric analysis revealed that compounds 6a and 6b induced apoptosis and arrested the cell cycle at G2/M phase in PC-3 and MDA-MB-453 cells respectively. PMID:24953027

Mallavadhani, Uppuluri Venkata; Prasad, Chakka Vara; Shrivastava, Shweta; Naidu, V G M

2014-08-18

73

Oxidative phenylamination of 5-substituted 1-hydroxynaphthalenes to N-phenyl-1,4-naphthoquinone monoimines by air and light “on water”  

PubMed Central

Summary A number of N-phenyl-1,4-naphthoquinone monoimines 6–10 were prepared by on-water oxidative phenylamination of 1,5-dihydroxynaphthalene (1) and 5-acetylamino-1-hydroxynaphthalene (5) with oxygen-substituted phenylamines under aerobic conditions and either solar or green LED radiation, in the presence of rose bengal as singlet oxygen sensitizer. As compared to the conventional oxidative phenylamination procedures, this novel synthetic method offers the advantage of aerobic conditions “on water” instead of hazardous oxidant reagents currently employed in aqueous alcoholic media. PMID:25383115

Meléndez, Juan; Estela, Cynthia; Ríos, David; Espinoza, Luis; Brito, Iván; Valderrama, Jaime A

2014-01-01

74

The crystal structure and physicochemical characteristics of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine, a new antitrypanosomal compound  

Microsoft Academic Search

This study was designed to investigate the physical characteristics and crystalline structure of 2-hydroxy-N-[3(5)-pyrazolyl]-1,4-naphthoquinone-4-imine (PNQ), a new active compound againstTrypanosoma cruzi, the causative agent of American trypanosomiasis. Methods used included differential scanning calorimetry, thermogravimetry,\\u000a hot stage microscopy, polarized light microscopy (PLM), Fourier-transform infrared (FTIR) spectroscopy, and high-resolution\\u000a X-ray powder diffraction (HR-XRPD). According to PLM and HR-XRPD data, PNQ crystallized as

Norma R. Sperandeo; Alicia Karlsson; Silvia Cuffini; Silvina Pagola; Peter W. Stephens

2005-01-01

75

Mechanism of inhibition of the ATPase domain of human topoisomerase II? by 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, and 9,10-phenanthroquinone.  

PubMed

The inhibition of human topoisomerase II? (Hu-TopoII?), a major enzyme involved in maintaining DNA topology, repair, and chromosome condensation/decondensation results in loss of genomic integrity. In the present study, the inhibition of ATPase domain of Hu-TopoII? as a possible mechanism of genotoxicity of 1,4-benzoquinone (BQ), hydroquinone (HQ), naphthoquinone (1,2-NQ and 1,4-NQ), and 9,10-phenanthroquinone (9,10-PQ) was investigated. In silico modeling predicted that 1,4-BQ, 1,2-NQ, 1,4-NQ, and 9,10-PQ could interact with Ser-148, Ser-149, Asn-150, and Asn-91 residues of the ATPase domain of Hu-TopoII?. Biochemical inhibition assays with the purified ATPase domain of Hu-TopoII? revealed that 1,4-BQ is the most potent inhibitor followed by 1,4-NQ > 1,2-NQ > 9,10-PQ > HQ. Ligand-binding studies using isothermal titration calorimetry revealed that 1,4-BQ, HQ, 1,4-NQ, 1,2-NQ, and 9,10-PQ enter into four sequentially binding site models inside the domain. 1,4-BQ exhibited the strongest binding, followed by 1,4-NQ > 1,2-NQ > 9,10-PQ > HQ, as revealed by their average K(d) values. The cellular fate of such inhibition was further evidenced by an increase in the number of Hu-TopoII?-DNA cleavage complexes in the human lung epithelial cells (BEAS-2B) using trapped in agarose DNA immunostaining (TARDIS) assay, which utilizes antibody specific for Hu-TopoII?. Furthermore, the increase in ?-H2A.X levels quantitated by flow cytometry and visualized by immunofluorescence microscopy illustrated that accumulation of DNA double-strand breaks inside the cells can be attributed to the inhibition of Hu-TopoII?. These findings collectively suggest that 1,4-BQ, 1,2-NQ, 1,4-NQ, and 9,10-PQ inhibit the ATPase domain and potentially result in Hu-TopoII?-mediated clastogenic and leukemogenic events. PMID:22218491

Gurbani, Deepak; Kukshal, Vandna; Laubenthal, Julian; Kumar, Ashutosh; Pandey, Alok; Tripathi, Sarita; Arora, Ashish; Jain, Swatantra K; Ramachandran, Ravishankar; Anderson, Diana; Dhawan, Alok

2012-04-01

76

Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues  

PubMed Central

Background Naphthoquinones (NQs) are privileged structures in medicinal chemistry due to the biological effects associated with the induction of oxidative stress. The present study evaluated the activities of sixteen NQs derivatives on Trypanosoma cruzi. Results Fourteen NQs displayed higher activity against bloodstream trypomastigotes of T. cruzi than benznidazole. Further assays with NQ1, NQ8, NQ9 and NQ12 showed inhibition of the proliferation of axenic epimastigotes and intracelulluar amastigotes interiorized in macrophages and in heart muscle cells. NQ8 was the most active NQ against both proliferative forms of T. cruzi. In epimastigotes the four NQs induced mitochondrial swelling, vacuolization, and flagellar blebbing. The treatment with NQs also induced the appearance of large endoplasmic reticulum profiles surrounding different cellular structures and of myelin-like membranous contours, morphological characteristics of an autophagic process. At IC50 concentration, NQ8 totally disrupted the ??m of about 20% of the parasites, suggesting the induction of a sub-population with metabolically inactive mitochondria. On the other hand, NQ1, NQ9 or NQ12 led only to a discrete decrease of TMRE + labeling at IC50 values. NQ8 led also to an increase in the percentage of parasites labeled with DHE, indicative of ROS production, possibly the cause of the observed mitochondrial swelling. The other three NQs behaved similarly to untreated controls. Conclusions NQ1, NQ8, NQ9 and NQ12 induce an autophagic phenotype in T. cruzi epimastigoted, as already observed with others NQs. The absence of oxidative stress in NQ1-, NQ9- and NQ12-treated parasites could be due to the existence of more than one mechanism of action involved in their trypanocidal activity, leaving ROS generation suppressed by the detoxification system of the parasite. The strong redox effect of NQ8 could be associated to the presence of the acetyl group in its structure facilitating quinone reduction, as previously demonstrated by electrochemical analysis. Further experiments using biochemical and molecular approaches are needed to better characterize ROS participation in the mechanism of action of these NQs. PMID:24004461

2013-01-01

77

High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix.  

PubMed

We report the design of a novel glucose/O2 biofuel cell (GBFC) integrating carbon nanotube-based 3D bioelectrodes and using naphthoquinone-mediated oxidation of glucose by glucose oxidase and direct oxygen reduction by laccase. The GBFCs exhibit high open circuit voltages of 0.76 V, high current densities of 4.47 mA cm(-2), and maximum power output of 1.54 mW cm(-2), 1.92 mW mL(-1) and 2.67 mW g(-1). The GBFC is able to constantly deliver 0.56 mW h cm(-2) under discharge at 0.5 V, showing among the best in vitro performances for a GBFC. Using a charge pump, the GBFC finally powered a Light Emitting Diode (LED), demonstrating its ability to amplify micro watts to power mW-demanding electronic devices. PMID:23455694

Reuillard, Bertrand; Le Goff, Alan; Agnès, Charles; Holzinger, Michael; Zebda, Abdelkader; Gondran, Chantal; Elouarzaki, Kamal; Cosnier, Serge

2013-04-14

78

A novel and efficient synthesis of diverse dihydronaphtho[1,2-b]furans using the ceric ammonium nitrate-catalyzed formal [3 + 2] cycloaddition of 1,4-naphthoquinones to olefins and its application to furomollugin.  

PubMed

A novel approach was developed for the synthesis of diverse dihydronaphtho[1,2-b]furans from 1,4-naphthoquinones and olefins in the presence of ceric ammonium nitrate. This reaction provides a rapid route for the synthesis of a variety of dihydronaphtho[1,2-b]furans and naphtho[1,2-b]furans bearing different substituents. This methodology was also used to synthesize the biologically important natural product furomollugin in only 2 steps. PMID:23963248

Xia, Likai; Lee, Yong Rok

2013-09-28

79

The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells.  

PubMed

We have investigated the antitumor functions and mechanisms of 1,2-naphthoquinone-2-thiosemicarbazone (NQTS) and its metal complexes (Cu(2+), Pd(2+), and Ni(2+)) against MCF-7 human breast cancer cells. The cells were dosed with these complexes at varying concentrations, and cell viability was measured by a sulforhodamine B (SRB) method. To study mechanisms of action, the complexes were incubated with topoisomerase II (topo II) and supercoiled DNA, linear DNA, nicked open DNA, and relaxed DNA were detected by agarose gel electrophoresis. The results revealed that these complexes are effective antitumor chemicals in inhibiting MCF-7 cell growth, with Ni-NQTS being the most effective among the complexes studied. Our data also indicated that Ni-NQTS is more effective than the commercial antitumor drug, etoposide, based on IC(50) values. The mechanistic study of action showed that metal complexes of NQTS, NQ, and NQTS can only stabilize the single-strand nicked DNA, but not double-strand breakage intermediates. In addition, metal derivatives of these ligands, but not the parent NQ and NQTS, exerted an antagonizing effect on topoisomerase II activity. In summary, chemicals with or without metal derivatives might possess different chemical-topoisomerase II-DNA interactions. PMID:15126073

Chen, Junnan; Huang, Yue-wern; Liu, Guanshu; Afrasiabi, Zahra; Sinn, Ekkehard; Padhye, Subhash; Ma, Yinfa

2004-05-15

80

Interactions of formate ion with triplets of anthraquinone-2-sulfonate, 1,4-naphthoquinone, benzophenone-4-carboxylate, and benzophenone-4-sulfonate  

SciTech Connect

The interaction of formate with the triplet states of naphthoquinone (NQ), anthraquinone-2-sulfonate (AQS), benzophenone-4-carboxylate (BC), and benzophenone-4-sulfonate (BS) was studied by laser flash photolysis. Rate constants were determined either by direct measurement of triplet lifetimes or by inhibition of product yields by competitive reactants. Radical products are formed in two stages, direct reduction by formate and efficient secondary reduction by initially formed CO{sub 2}{sup {sm bullet}{minus}} radicals. The quinones react by electron transfer with quenching rate constants k{sub q}(NQ) = 3 {times} 10{sup 9} and k{sub q}(AQS) = 4 {times} 10{sup 8} M{sup {minus}1} s{sup {minus}1}, giving anion radicals with primary yields of {phi}{sub R}(NQ) {approximately} 0.7 and {phi}{sub R}(AQS) {approximately} 0.3. Formic acid quenches {sup 3}AQS much more slowly. The less strongly oxidizing ketone triplets react by H-atom abstraction, k{sub q}(BC) = 1.3 {times} 10{sup 7} and k{sub q}(BS) = 5.3 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1}, giving protonated ketyl radicals with primary yields {phi}{sub R} {approximately} 0.7. Photoreduction of BC exhibits a deuterium isotope effect, k{sub H}/k{sub D} = 1.6, whereas AQS shows none. A new, short-lived transient, E, is observed in the {sup 3}AQS-formate reaction, which may be an exciplex or adduct. The redox potential, E{degree}{prime}(NQ/NQ{sup {sm bullet}{minus}}) = {minus}0.12 V, and rate constants for radical reactions of NQ and O{sub 2} were measured by pulse radiolysis. The results are discussed in terms of pertinent redox potentials, bond strengths, and the nature of the exciplex intermediates.

Loeff, I.; Goldstein, S.; Treinin, A. (Hebrew Univ., Jerusalem (Israel)); Linschitz, H. (Brandeis Univ., Waltham, MA (United States))

1991-05-30

81

Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action.  

PubMed

A series of ferrocene and (arene)ruthenium(II) complexes attached to the naturally occurring anticancer naphthoquinones plumbagin and juglone was tested for efficacy against various cancer cell lines and for alterations in the mode of action. The plumbagin ferrocene and (p-cymene)Ru(II) conjugates 1c and 2a overcame the multi-drug drug resistance of KB-V1/Vbl cervix carcinoma cells and showed IC50 (72 h) values around 1 ?M in growth inhibition assays using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT). They were further investigated for their influence on the cell cycle of KB-V1/Vbl and HCT-116 colon carcinoma cells, on the generation of reactive oxygen species (ROS) by the latter cell line, for their substrate character for the P-glycoprotein drug eflux pump via the calcein-AM efflux assays, and for DNA affinity by the electrophoretic mobility shift assay (EMSA). The derivatives 1c and 2a increased the number of dead cancer cells (sub-G0/G1 fraction) in a dose- and time-dependent manner. ROS levels were significantly increased upon treatment with 1c and 2a. These compounds also showed a greater affinity to linear DNA than plumbagin. While plumbagin did not affect calcein-AM transport by P-glycoprotein the derivatives 1c and 2a exhibited a 50% or 80% inhibition of the P-glycoprotein-mediated calcein-AM efflux relative to the clinically established sensitizer verapamil. PMID:24907976

Spoerlein-Guettler, Cornelia; Mahal, Katharina; Schobert, Rainer; Biersack, Bernhard

2014-09-01

82

The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2  

PubMed Central

Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 ?M, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

2008-01-01

83

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), isolated from Plumbago zeylanica, inhibits ultraviolet radiation-induced development of squamous cell carcinomas  

PubMed Central

Plumbagin (PL) (5-hydroxy-2-methyl-1,4-napthoquinone), a medicinal plant-derived naphthoquinone, was isolated from the roots of the Plumbago zeylanica L. (also known as Chitrak). The roots of P. zeylanica L. have been used in Indian medicine for >2500 years as an anti-atherogenic, cardiotonic, hepatoprotective and neuroprotective agent. We present here that topical application of non-toxic doses (100–500 nmol) of PL to skin elicits dose-dependent inhibition of ultraviolet radiation (UVR)-induced development of squamous cell carcinomas (SCC). In this experiment, FVB/N mice were exposed to UVR (2 kJ/m2) three times weekly from a bank of six Kodacel-filtered FS40 sunlamps (?60% UVB and 40% UVA). Carcinoma incidence in mice treated with vehicle, 100, 200 or 500 nmol PL, at 44 weeks post-UVR, were 86, 80 (P = 0.67), 53 (P = 0.12) and 7% (P = 0.0075), respectively. Both vehicle and PL-treated mice gained weight and did not exhibit any signs of toxicity during the entire period of the experiment. Molecular mechanisms associated with inhibition of UVR-induced development of SCC involved induction of apoptosis and inhibition of cell proliferation. Specific findings are that PL treatment (i) inhibited UVR-induced DNA binding of activating protein-1, nuclear factor-kappaB, Stat3 transcription factors and Stat3-regulated molecules (cdc25A and Survivin); (ii) inhibited protein levels of pERK1/2, PI3K85, pAKTSer473, Bcl2, BclxL, proliferating cell nuclear antigen and cell cycle inhibitory proteins p27 and p21 and (iii) increased UVR-induced Fas-associated death domain expression, poly (ADP-ribose) polymerase protein cleavage and Bax/Bcl2 ratio. Taken together, our findings suggest that PL may be a novel agent for the prevention of skin cancer. PMID:22072620

Sand, Jordan M.; Hafeez, Bilal Bin; Jamal, Mohammad Sarwar; Witkowsky, Olya; Siebers, Emily M.; Fischer, Joseph; Verma, Ajit K.

2012-01-01

84

Total synthesis of 12-methoxydihydrochelerythrine and anti-tumour activity of its quaternary base: toward an efficient synthetic route for 12-alkoxybenzo[c]phenanthridine bases via naphthoquinone monooxime from 2-benzofuranyl-1-tetralone derivative.  

PubMed

A concise total synthesis of 12-methoxydihydrochelerythrine (6), isolated from Bocconia integrifolia, is described. The synthesis features an efficient route to a 12-alkoxybenzo[c]phenanthridine skeleton via naphthoquinone monooxime 11 as a key compound. Starting from 7-methoxy-2-methylbenzo[b]furan (9), 3-aryl-1-tetralone 10 was synthesised, followed by aromatisation to 3-aryl-1-naphthol 17. After oxidative cleavage of the furan ring, basic nitrosation of naphthol 22 gave the naphthoquinone 11. The benzo[c]phenanthridine skeleton was formed by reductive cyclisation of 11. Deoxygenation of the lactam moiety in 23 afforded nor-base 32 and methylation of 32 under reductive conditions gave the target dihydro base 6 (23 steps from benzofuran 9 in 10% overall yield). The corresponding quaternary base 7 showed moderate anti-tumour activity against cancer cell lines; on NCI-H460: IC50 4.5 microM and on MDA-MB-231: IC50 1.2 microM. Introduction of a methoxy group into the 12-position of the benzo[c]phenanthridine skeleton could cause enhanced activity against MDA-MB-231 by comparison of 7 with chelerythrine (35) (IC50 5.3 microM). PMID:14518124

Watanabe, Toshiko; Ohashi, Yoshiaki; Yoshino, Rie; Komano, Naoko; Eguchi, Miyuki; Maruyama, Sakiko; Ishikawa, Tsutomu

2003-09-01

85

Atomic and Dynamic Insights into the Beneficial Effect of the 1,4-Naphthoquinon-2-yl-l-tryptophan Inhibitor on Alzheimer’s A?1–42 Dimer in Terms of Aggregation and Toxicity  

PubMed Central

Aggregation of the amyloid ? protein (A?) peptide with 40 or 42 residues is one key feature in Alzheimer’s disease (AD). The 1,4-naphthoquinon-2-yl-l-tryptophan (NQTrp) molecule was reported to alter A? self-assembly and reduce toxicity. Though nuclear magnetic resonance experiments and various simulations provided atomic information about the interaction of NQTrp with A? peptides spanning the regions of residues 12–28 and 17–42, none of these studies were conducted on the full-length A?1–42 peptide. To this end, we performed extensive atomistic replica exchange molecular dynamics simulations of A?1–42 dimer with two NQTrp molecules in explicit solvent, by using a force field known to fold diverse proteins correctly. The interactions between NQTrp and A?1–42, which change the A? interface by reducing most of the intermolecular contacts, are found to be very dynamic and multiple, leading to many transient binding sites. The most favorable binding residues are Arg5, Asp7, Tyr10, His13, Lys16, Lys18, Phe19/Phe20, and Leu34/Met35, providing therefore a completely different picture from in vitro and in silico experiments with NQTrp with shorter A? fragments. Importantly, the 10 hot residues that we identified explain the beneficial effect of NQTrp in reducing both the level of A?1–42 aggregation and toxicity. Our results also indicate that there is room to design more efficient drugs targeting A?1–42 dimer against AD. PMID:24246047

2013-01-01

86

Atomic and dynamic insights into the beneficial effect of the 1,4-naphthoquinon-2-yl-L-tryptophan inhibitor on Alzheimer's A?1-42 dimer in terms of aggregation and toxicity.  

PubMed

Aggregation of the amyloid ? protein (A?) peptide with 40 or 42 residues is one key feature in Alzheimer's disease (AD). The 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp) molecule was reported to alter A? self-assembly and reduce toxicity. Though nuclear magnetic resonance experiments and various simulations provided atomic information about the interaction of NQTrp with A? peptides spanning the regions of residues 12-28 and 17-42, none of these studies were conducted on the full-length A?1-42 peptide. To this end, we performed extensive atomistic replica exchange molecular dynamics simulations of A?1-42 dimer with two NQTrp molecules in explicit solvent, by using a force field known to fold diverse proteins correctly. The interactions between NQTrp and A?1-42, which change the A? interface by reducing most of the intermolecular contacts, are found to be very dynamic and multiple, leading to many transient binding sites. The most favorable binding residues are Arg5, Asp7, Tyr10, His13, Lys16, Lys18, Phe19/Phe20, and Leu34/Met35, providing therefore a completely different picture from in vitro and in silico experiments with NQTrp with shorter A? fragments. Importantly, the 10 hot residues that we identified explain the beneficial effect of NQTrp in reducing both the level of A?1-42 aggregation and toxicity. Our results also indicate that there is room to design more efficient drugs targeting A?1-42 dimer against AD. PMID:24246047

Zhang, Tong; Xu, Weixin; Mu, Yuguang; Derreumaux, Philippe

2014-02-19

87

Charge–transfer reaction of 2,3-dichloro-1,4-naphthoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib  

PubMed Central

The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge–transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07 × 102 l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4–500 ?g/ml. The assay limits of detection and quantitation were 2.06 and 6.23 ?g/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:25685046

Alzoman, Nourah Z.; Alshehri, Jamilah M.; Darwish, Ibrahim A.; Khalil, Nasr Y.; Abdel-Rahman, Hamdy M.

2014-01-01

88

5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization.  

PubMed

The activation of signal transducers and activators of transcription 3 (STAT3) has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin), an analogue of vitamin K, and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and interleukin 6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, Janus-activated kinase (JAK)1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1, and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and vascular endothelial growth factor; activated caspase-3; induced poly (ADP ribose) polymerase cleavage; and increased the sub-G(1) population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing the proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through the induction of SHP-1 and this may mediate the sensitization of STAT3 overexpressing cancers to chemotherapeutic agents. PMID:20068065

Sandur, Santosh K; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B

2010-01-01

89

Plumbagin, a medicinal plant (Plumbago zeylanica) - derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model  

PubMed Central

We present here first time that Plumbagin (PL), a medicinal plant-derived 1,4-naphthoquinone, inhibits the growth and metastasis of prostate cancer (PCa) in an orthotopic xenograft mouse model. In this study, human PCa PC-3M-luciferase cells (2X106) were injected into the prostate of athymic nude mice. Three days post cell implantation, mice were treated with PL (2 mg/kg body wt. i.p five days in a week) for 8 weeks. Growth and metastasis of PC-3M-luciferase cells was examined weekly by bioluminescence imaging of live mice. PL-treatment significantly (p=0.0008) inhibited the growth of orthotopic xenograft tumors. PCa metastasis into the liver, lungs and lymph nodes was determined by bioluminescence imaging and histopathology. Results demonstrated a significant inhibition of metastasis into liver (p=0.037), but inhibition of metastasis into the lungs (p=0.60) and liver (p=0.27) was not observed to be significant. These results were further confirmed by histopathology of these organs. Results of histopathology demonstrated a significant inhibition of metastasis into lymph nodes (p=0.034) and lungs (p=0.028), and a trend to significance in liver (p=0.075). None of the mice in the PL-treatment group showed PCa metastasis into the liver, but these mice had small metastasis foci into the lymph nodes and lungs. However, control mice had large metastatic foci into the lymph nodes, lungs, and liver. PL-caused inhibition of the growth and metastasis of PC-3M cells accompanies inhibition of the expression of: 1) PKC?, pStat3Tyr705, and pStat3Ser727, 2) Stat3 downstream target genes (survivin and BclxL), 3) proliferative markers Ki-67 and PCNA, 4) metastatic marker MMP9, MMP2, and uPA, and 5) angiogenesis markers CD31 and VEGF. Taken together, these results suggest that PL inhibits tumor growth and metastasis of human PCa PC3-M-luciferase cells, which could be used as a therapeutic agent for the prevention and treatment of human PCa. PL: Plumbagin, PCa: Prostate cancer. PMID:23273564

Hafeez, Bilal Bin; Zhong, Weixiong; Fischer, Joseph W.; Mustafa, Ala; Shi, Xudong Daniel; Meske, Louise; Hong, Hao; Cai, Weibo; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit. K

2012-01-01

90

Pericyclic Reactions of Prenylated Naphthoquinones: Biomimetic  

E-print Network

benefits. For example, the Chinese medicinal plant Rubia cordifolia has yielded the achiral chromene).1 In fact, plants that produce compounds of this class have long been recognized for their therapeutic bark of which is used to treat rheumatism and asthma in Chinese herbal medicine.4 Extracts from

Trauner, Dirk

91

Chemoenzymatic synthesis of novel C-ribosylated naphthoquinones.  

PubMed

The biological activity of many natural products is dependent on the presence of carbohydrate units, which are usually attached via an O-glycosidic linkage by glycosyltransferases. Recently, an exceptional C-ribosylation event was discovered in the biosynthesis of the polyketide antibiotic alnumycin A. The two-step process involves initial attachment of d-ribose-5-phosphate to the polyaromatic aglycone by the C-glycosynthase AlnA and subsequent dephosphorylation by AlnB, an enzyme of the haloacid dehalogenase family. Here, we tested 23 unnatural substrates to probe the C-ribosylation reaction. The chemoenzymatic synthesis of C-ribosylated juglone, 7-methyl juglone, monomethyl naphthazarin, 8-chloro-7-methyl juglone, and 9-hydroxy-1,4-anthraquinone revealed the importance of a 1,4-quinoid system with an adjacent phenolic ring in order for reaction to occur. To further rationalize the molecular basis for reactivity, factors governing substrate recognition were investigated by NMR binding experiments. Additionally, the suitability of substrates for nucleophilic substitution was assessed by molecular modeling using density functional theory (DFT) calculations. PMID:24015959

Blauenburg, Bastian; Oja, Terhi; Klika, Karel D; Metsä-Ketelä, Mikko

2013-11-15

92

High-performance liquid chromatographic determination of some anthraquinone and naphthoquinone dyes occurring in historical textiles  

Microsoft Academic Search

A reversed-phase HPLC method has been developed for identification and quantitation of nine natural quinone dyes and applied to historical textile fibres. A Purospher RP18e column was used with a convex gradient of methanol in a mobile phase of 0.1 M aqueous citrate buffer (pH 2.5) and spectrophotometric diode-array detection at 270 nm. For identification of alizarin, purpurin and xanthopurpurin,

Petra Novotná; V?ra Pacáková; Zuzana Bosáková; Karel Štul??k

1999-01-01

93

In Vitro Induction of Erythrocyte Phosphatidylserine Translocation by the Natural Naphthoquinone Shikonin  

PubMed Central

Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

2014-01-01

94

Molecularly imprinted polymers for the isolation of bioactive naphthoquinones from plant extracts.  

PubMed

Molecularly Imprinted Polymers (MIPs) targeting shikonin, a potent antioxidant and wound healing agent, have been prepared using methacrylic acid (MAA) and 2-diethylaminoethyl methacrylate (DEAEMA) as functional monomers. An investigation of solution association between shikonin and both acidic and basic functional monomers by UV-vis titrations, suggested stronger affinity towards the basic functionality. Strong inhibition of the co-polymerisation reaction of such basic monomers was observed, but was overcome by reduction of the amount of template used during polymer synthesis. Polymer morphology was severely impacted by the template's radical scavenging behaviour as demonstrated by solid state NMR spectroscopy measurements. HPLC evaluation of the final materials in polar conditions revealed limited imprinting effects and selectivity, with the MAA polymers exhibiting marginally better performance. During application of the polymers as MI-SPE sorbents in non-polar solvents it was found that the DEAEMA based polymer was more selective towards shikonin compared to the MAA counterpart, while shikonin recoveries of up to 72% were achieved from hexane solutions of a commercial sample of shikonin, hexane extract of Alkanna tinctoria roots and a commercial pharmaceutical ointment. PMID:24075017

Tsermentseli, Stella K; Manesiotis, Panagiotis; Assimopoulou, Andreana N; Papageorgiou, Vassilios P

2013-11-01

95

Isolation and chemopreventive evaluation of novel naphthoquinone compounds from Alkanna tinctoria.  

PubMed

Botanically derived natural products have recently become an attractive source of new chemotherapeutic agents. To explore active anticolorectal cancer compounds, we carried out phytochemical studies on Alkanna tinctoria and isolated eight quinone compounds. Using different spectral methods, compounds were identified as alkannin (1), acetylalkannin (2), angelylalkannin (3), 5-methoxyangenylalkannin (4), dimethylacryl alkannin (5), arnebifuranone (6), alkanfuranol (7), and alkandiol (8). Compounds 4, 7, and 8 are novel compounds. The structures of the three novel compounds were elucidated on the basis of extensive spectroscopic evidence including high-resolution mass spectrometry and nuclear magnetic resonance spectra. The antiproliferative effects of these eight compounds on HCT-116 and SW-480 human colorectal cancer cells were determined using the MTS method. Cell cycle and apoptosis were determined using flow cytometry. Enzymatic activities of caspases were determined using a colorimetric assay, and interactions of compound 4 and caspase 9 were explored by docking analysis. Among the eight compounds, alkannin (1), angelylalkannin (3), and 5-methoxyangenylalkannin (4) showed strong antiproliferative effects, whereas compound 4 showed the most potent effects. Compound 4 arrested cancer cells in the S and G2/M phases, and significantly induced cell apoptosis. The apoptotic effects of compound 4 were supported by caspase assay and docking analysis. The structural-functional relationship assay suggested that to increase anticancer potential, future modifications on alkannin (1) should focus on the hydroxyl groups at C-5 and C-8. PMID:24025561

Tung, Nguyen Huu; Du, Guang-Jian; Yuan, Chun-Su; Shoyama, Yukihiro; Wang, Chong-Zhi

2013-11-01

96

Electrochemical properties of substituted 2-methyl-1,4-naphthoquinones: redox behavior predictions.  

PubMed

In the context of the investigation of drug-induced oxidative stress in parasitic cells, electrochemical properties of a focused library of polysubstituted menadione derivatives were studied by cyclic voltammetry. These values were used, together with compatible measurements from literature (quinones and related compounds), to build and evaluate a predictive structure-redox potential model (quantitative structure-property relationship, QSPR). Able to provide an online evaluation (through Web interface) of the oxidant character of quinones, the model is aimed to help chemists targeting their synthetic efforts towards analogues of desired redox properties. PMID:25556761

Elhabiri, Mourad; Sidorov, Pavel; Cesar-Rodo, Elena; Marcou, Gilles; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth; Horvath, Dragos; Varnek, Alexandre

2015-02-16

97

Synthesis and Biological Evaluation of Naphthoquinone Analogs as a Novel Class of Proteasome Inhibitors  

PubMed Central

Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the ?5 and ?6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the ?6 subunit. PMID:20621484

Lawrence, Harshani R.; Kazi, Aslamuzzaman; Luo, Yunting; Kendig, Robert; Ge, Yiyu; Jain, Sanjula; Daniel, Kenyon; Santiago, Daniel; Guida, Wayne C.; Sebti, Saïd M.

2012-01-01

98

Isolation and chemopreventive evaluation of novel naphthoquinone compounds from Alkanna tinctoria  

PubMed Central

Botanically derived natural products have recently become an attractive source of new chemotherapeutic agents. To explore active anti-colorectal cancer compounds, we performed phytochemical studies on Alkanna tinctoria and isolated eight quinone compounds. Using different spectrum methods, compounds were identified as alkannin (1), acetylalkannin (2), angelylalkannin (3), 5-methoxyangenylalkannin (4), dimethylacryl alkannin (5), arnebifuranone (6), alkanfuranol (7), and alkandiol (8). Compounds 4, 7, and 8 are novel compounds. The structures of the three novel compounds were elucidated based on extensive spectroscopic evidence including high-resolution mass spectrometry and NMR spectra. The antiproliferative effects of these eight compounds on HCT-116 and SW-480 human colorectal cancer cells were determined by the MTS method. Cell cycle and apoptosis were determined using flow cytometry. Enzymatic activities of caspases were determined by colorimetric assay, and interactions of compound 4 and caspase 9 were explored by docking analysis. Among the eight compounds, alkannin (1), angelylalkannin (3), and 5-methoxyangenylalkannin (4) showed strong antiproliferative effects, while compound 4 showed the most potent effects. Compound 4 arrested cancer cells in the S and G2/M phases, and significantly induced cell apoptosis. The apoptotic effects of compound 4 were supported by caspase assay and docking analysis. The structural functional relationship assay suggested that to increase anticancer potential, future modifications on alkannin (1) should focus on the hydroxyl groups at C-5 and C-8. PMID:24025561

Tung, Nguyen Huu; Du, Guang-Jian; Yuan, Chun-Su; Shoyama, Yukihiro; Wang, Chong-Zhi

2013-01-01

99

Potent and specific bactericidal effect of juglone (5-hydroxy-1,4-naphthoquinone) on the fire blight pathogen Erwinia amylovora.  

PubMed

A screening of plant quinones for inhibiting effects on the bacterial fire blight pathogen Erwinia amylovora was performed. The most active compound, juglone from walnuts, has a potent and specific bactericidal effect on E. amylovora and minimal inhibitory concentrations of only 2.5-10 ?M, with stronger effects at lower, but still physiological, pH values. In vitro tests with juglone and inoculated flowers of apple (Malus domestica) showed an efficacy of 67% in preventing infection. In two years of field tests juglone had variable degrees of efficacy ranging from 40 to 82%, seemingly due to environmental conditions. A phytotoxic reaction to juglone, which is known for its allelopathic effect on plants, was restricted to browning of petals; later fruit russeting was not observed. Juglone is a promising candidate for the development of a new environmentally friendly plant protectant to replace the antibiotic streptomycin currently used in fire blight control. PMID:23163769

Fischer, Thilo Christopher; Gosch, Christian; Mirbeth, Beate; Gselmann, Markus; Thallmair, Veronika; Stich, Karl

2012-12-12

100

Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone refractory prostate cancer  

PubMed Central

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men. Hormone refractory invasive PCa is the end stage and accounts for the majority of PCa patient deaths. We present here that plumbagin (PL), a quinoid constituent isolated from the root of the medicinal plant Plumbago zeylanica L, may be a potential novel agent in the control of hormone refractory PCa. Specific observations are the findings that PL inhibited PCa cell invasion and selectively induced apoptosis in PCa cells but not in immortalized non-tumorigenic prostate epithelial RWPE-1 cells. Also, intraperitoneal administration of PL (2mg/kg body weight), beginning 3 days after ectopic implantation of hormone refractory DU145 PCa cells, delayed tumor growth by 3 weeks and reduced both tumor weight and volume by 90%. Discontinuation of PL treatment in PL- treated mice, for as long as 4 weeks did not result in progression of tumor growth. PL, at concentrations as low as 5 ?M, inhibited both in cultured PCa cells and DU145 xenografts the expression of: 1) PKC?, PI3K, pAKT, pJAK-2 and pStat3; 2) the DNA-binding activity of transcription factors AP-1, NFkB, and Stat3 and 3) Bcl-xL, cdc25A and COX-2 expression. The results indicate for the first time, using both in vitro and in vivo preclinical models, that PL inhibits the growth and invasion of PCa. PL inhibits multiple molecular targets including PKC?, a predictive biomarker of PCa aggressiveness. PL may be a novel agent for therapy of hormone refractory PCa. PMID:18974148

Aziz, Moammir H.; Dreckschmidt, Nancy E.; Verma, Ajit K.

2008-01-01

101

Antimicrobial activities of active component isolated from Lawsonia inermis leaves and structure-activity relationships of its analogues against food-borne bacteria.  

PubMed

The antimicrobial activities of Lawsonia inermis leaf extract and 2-hydroxy-1,4-naphthoquinone analogues against food-borne bacteria. The antimicrobial activities of five fractions derived from the methanol extract of Lawsonia inermis leaves were evaluated against 7 food-borne bacteria. 2-Hydroxy-1,4-naphthoquinone was isolated by chromatographic analyses. 2-Hydroxy-1,4-naphthoquinone showed the strong activities against Bacillus cereus, Listeria monocytogenes, Salmonella enterica, Shigella sonnei, Staphylococcus epidermidis, and S. intermedius, but exerted no growth-inhibitory activities against S. typhimurium. The antimicrobial activities of the 2-hydroxy-1,4-naphthoquinone analogues were tested against 7 food-borne bacteria to establish structure-activity relationships. Hydroxyl (2-hydroxy-1,4-naphthoquinone and 5-hydroxy-1,4-naphthoquinone), methoxy (2-methoxy-1,4-naphthoquinone), and methyl (2-methyl-1,4-naphthoquinone, and 5-hydroxy-2-methyl-1,4-naphthoquinone) functional groups on the 1,4-naphthoquinone skeleton possessed potent activities, whereas bromo (2-bromo-1,4-naphthoquinone and 2,3-dibromo-1,4-naphthoquione) and chloro (2,3-dichloro-1,4-naphthoquinone) exhibited no activity against 7 food-borne bacteria. The L. inermis leaf extract and 2-hydroxy-1,4-naphthoquinone analogues should be useful as natural antimicrobial agents against food-borne bacteria. PMID:25829631

Yang, Ji-Yeon; Lee, Hoi-Seon

2015-04-01

102

DIFFERENTIATING MECHANISMS OF REACTIVE CHEMICAL TOXICITY IN ISOLATED TROUT HEPATOCYTES  

EPA Science Inventory

The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoquinone (DMONQ), 2-methyl 1,4-naphthoquinone (MNQ ),1,4-naphthoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. Mor...

103

Spectrophotometric and spectrofluorimetric studies on the selective sensing of fluoride ions by Co(II) and Ni(II) complexes of naphthoquinone derivative possessing enhanced H-bonding property  

NASA Astrophysics Data System (ADS)

A novel colorimetric chemosensor based on aminonaphthoquinone (L) bearing an N-H receptor unit directly attached to quinone signaling unit has been designed, synthesized and demonstrated. The ligand showed a highly selective colorimetric response to fluoride ions based on H-bond formation with the receptor unit. The binding constants of the L and its square planar [Co(L)Cl2]·3H2O and [Ni(L)Cl2]·4H2O complexes, computed using fluorescent enhancement data, were found to be 0.6, 1.5 and 0.9 × 108 M-1, respectively, indicating enhancement of H-bond donor ability of the receptor unit, as a result of complexation with metal ions, towards fluoride ion sensing. Also, these sensors had high selectivity for fluoride ion detection over other common anions, such as Cl-, Br-, I-, AcO-, NO3-, H2PO4- and CN- in acetonitrile.

Madhupriya, Selvaraj; Elango, Kuppanagounder P.

2012-11-01

104

Spectrophotometric and spectrofluorimetric studies on the selective sensing of fluoride ions by Co(II) and Ni(II) complexes of naphthoquinone derivative possessing enhanced H-bonding property.  

PubMed

A novel colorimetric chemosensor based on aminonaphthoquinone (L) bearing an N-H receptor unit directly attached to quinone signaling unit has been designed, synthesized and demonstrated. The ligand showed a highly selective colorimetric response to fluoride ions based on H-bond formation with the receptor unit. The binding constants of the L and its square planar [Co(L)Cl(2)]·3H(2)O and [Ni(L)Cl(2)]·4H(2)O complexes, computed using fluorescent enhancement data, were found to be 0.6, 1.5 and 0.9×10(8)M(-1), respectively, indicating enhancement of H-bond donor ability of the receptor unit, as a result of complexation with metal ions, towards fluoride ion sensing. Also, these sensors had high selectivity for fluoride ion detection over other common anions, such as Cl(-), Br(-), I(-), AcO(-), NO(3)(-), H(2)PO(4)(-) and CN(-) in acetonitrile. PMID:22820046

Madhupriya, Selvaraj; Elango, Kuppanagounder P

2012-11-01

105

ACTIVITY OF QUINONES ON COLLETOTRICHUM SPECIES  

Technology Transfer Automated Retrieval System (TEKTRAN)

The antifungal activity of 1,4-naphthoquinones, 1,2-naphthoquinones, 1,4-benzoquinones, anthraquinones, and other miscellaneous compounds from our natural products collection were tested by bioautography. Quinones demonstrated good to moderate antifungal activity against Colletotrichum spp. Collet...

106

Chem.-Biol. Interactions, 48 (1984) 195--206 195 Elsevier Scientific Publishers Ireland Ltd.  

E-print Network

to study its activation by two well characterised and readily available model systems i.e. rat liver,4-naphthoquinone on oxygen consumption and the formation of active oxygen species by rat liver microsomes in t. THE FORMATION OF ACTIVE OXYGEN SPECIES FOLLOWING ACTIVATION OF 1-NAPHTHOL, 1,2- AND 1,4.NAPHTHOQUINONE BY RAT

California at Berkeley, University of

1984-01-01

107

Molecular Modeling of the Compounds with Nonlinear Optical Properties  

NASA Technical Reports Server (NTRS)

The molecular polarizability characteristics for a large series of naphthoquinone and quinoline derivatives have been calculated. The dependence of calculated hyperpolarizability on the positions and the number of donor and acceptor substituents is discussed.

Timofeeva, Tatiana V.; Cardelino, Beatriz H.; Clark, Ronald D.

1998-01-01

108

The Chemistry of Plant and Animal Dyes.  

ERIC Educational Resources Information Center

Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

Sequin-Frey, Margareta

1981-01-01

109

Cytotoxic and Antimicrobial Constituents of the Bark of Diospyros maritima Collected in Two Geographical Locations in Indonesia  

E-print Network

a new naphthoquinone derivative, (4S)-shinanolone (5), and a new natural product coumarin, 7,8-dimethoxy diverse secondary metabolites, including alkanol ester,7 aliphatic lactone,8 benzenoid,9 coumarin,2

Falkinham, Joseph

110

letterToward the Total Synthesis of Divergolides C and D Toward Divergolides C and D  

E-print Network

-hydroxybenzoic acid (AHBA, 6) as a starter unit and several extender units that include malonyl by deprotonation of the pentenedioic acid derived moiety in the `northeastern' sector onto the naphthoquinone

Trauner, Dirk

111

Evidence of Quinone Metabolites of Naphthalene Covalently Bound to Sulfur Nucleophiles of Proteins of  

E-print Network

Evidence of Quinone Metabolites of Naphthalene Covalently Bound to Sulfur Nucleophiles of Proteins. Toxicol. 9, 904-909]. To identify 1,2-naphthoquinone covalently bound to sulfur nucleophiles of proteins

Hammock, Bruce D.

112

Determination of the urinary aglycone metabolites of vitamin K by HPLC with redox-mode electrochemical detection  

Microsoft Academic Search

We describe a method for the determination of the two major urinary metabolites of vitamin K as the methyl esters of their aglycone structures, 2-methyl-3-(3 ? -3 ? -carboxy- methylpropyl)-1,4-naphthoquinone (5C-aglycone) and 2-methyl- 3-(5 ? -carboxy-3 ? -methyl-2 ? -pentenyl)-1,4-naphthoquinone (7C- aglycone), by HPLC with electrochemical detection (ECD) in the redox mode. Urinary salts were removed by reversed- phase (C

Dominic J. Harrington; Robin Soper; Christine Edwards; Geoffrey F. Savidge; Stephen J. Hodges; Martin J. Shearer

2005-01-01

113

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents.  

PubMed

Plumbagin, derived from the medicinal plant Plumbago zeylanica, modulates cellular proliferation, carcinogenesis, and radioresistance, all known to be regulated by the activation of the transcription factor NF-kappaB, suggesting plumbagin might affect the NF-kappaB activation pathway. We found that plumbagin inhibited NF-kappaB activation induced by TNF, and other carcinogens and inflammatory stimuli (e.g. phorbol 12-myristate 13-acetate, H2O2, cigarette smoke condensate, interleukin-1beta, lipopolysaccharide, and okadaic acid). Plumbagin also suppressed the constitutive NF-kappaB activation in certain tumor cells. The suppression of NF-kappaB activation correlated with sequential inhibition of the tumor necrosis factor (TNF)-induced activation of IkappaBalpha kinase, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, p65 nuclear translocation, and the NF-kappaB-dependent reporter gene expression activated by TNF, TNFR1, TRAF2, NIK, IKK-beta, and the p65 subunit of NF-kappaB. Plumbagin also suppressed the direct binding of nuclear p65 and recombinant p65 to the DNA, and this binding was reversed by dithiothreitol both in vitro and in vivo. However, plumbagin did not inhibit p65 binding to DNA when cells were transfected with the p65 plasmid containing cysteine 38 mutated to serine. Plumbagin down-regulated the expression of NF-kappaB-regulated anti-apoptotic (IAP1, IAP2, Bcl-2, Bcl-xL, cFLIP, Bfl-1/A1, and survivin), proliferative (cyclin D1 and COX-2), and angiogenic (matrix metalloproteinase-9 and vascular endothelial growth factor) gene products. This led to potentiation of apoptosis induced by TNF and paclitaxel and inhibited cell invasion. Overall, our results indicate that plumbagin is a potent inhibitor of the NF-kappaB activation pathway that leads to suppression of NF-kappaB-regulated gene products. This may explain its cell growth modulatory, anticarcinogenic, and radiosensitizing effects previously described. PMID:16624823

Sandur, Santosh K; Ichikawa, Haruyo; Sethi, Gautam; Ahn, Kwang Seok; Aggarwal, Bharat B

2006-06-23

114

In vitro Activation of heme oxygenase-2 by menadione and its analogs  

PubMed Central

Background Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure–activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Methods Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and ?2, respectively, as well as recombinant, human heme oxygenase-2. Results Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and ?3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, ?-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. Conclusions These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties. PMID:24533775

2014-01-01

115

Cataractogenicity and bioactivation of naphthalene derivatives in lens culture and in vivo  

SciTech Connect

The cataractogenicity of naphthalene derivatives was investigated in a lens culture system that included the lens with an intact capsule and epithelium. The in vivo cataractogenicity of naphthalene, 1000 or 2000 mg/kg ip, also was evaluated in New Zealand white and Chinchilla pigmented rabbits. A dose-related brunescence was observed in lenses incubated with 1,4-naphthoquinone in concentrations from 31.6 to 316 microM. With 316 microM naphthoquinone, lenses were totally opaque within 24 hr. No lenticular opacities were observed with 1-naphthol or 2-naphthol in incubations lasting up to 96 hr. The bioactivation of naphthalene derivatives to reactive free radical intermediates by lenses in organ culture was investigated by electron spin resonance spectrometry (ESR) using the spin trap alpha-phenyl-N-t-butylnitrone (PBN). Lenses were incubated with 316 microM naphthoquinone and 100 mM PBN for 0.25, 4 or 7 hr. A spin trapped radical product with unresolved peaks was observed with 0.25 and 7 hr incubation. No radicals were detected in the 4 hr incubation, nor in control cultures lacking either the lens, naphthoquinone or PBN. In the in vivo studies, naphthalene was cataractogenic in both albino and pigmented rabbits. The in vitro results indicate that naphthoquinone can be bioactivated by rabbit lens to a reactive free radical intermediate, which may contribute to cataractogenicity.

Lubek, B.M.; Kubow, S.; Basu, P.K.; Wells, P.G. (Univ. of Toronto, Ontario (Canada))

1989-01-01

116

Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens  

PubMed Central

Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

Stod?lková, Eva; Císa?ová, Ivana; Kola?ík, Miroslav; Chudí?ková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavl?, Barbora; ?erný, Jan; Flieger, Miroslav

2015-01-01

117

Theoretical calculation and structural studies for a new nitrogen derivative from nor-lapachol  

NASA Astrophysics Data System (ADS)

Nor-lapachol is a semi-synthetic naphthoquinone obtained by oxidative degradation from natural lapachol. This compound and its derivatives have been investigated for its interesting biological properties. Several naphthoquinone derivatives have been synthesized and characterized using different physicochemical and computational techniques, as such DFT, MM, spectroscopy and X-ray crystallography. Here, the structure of 2-methylamine-3-(2-methyl-1-propenyl-1-yl)-1,4-naphthoquinone was determined by X-ray crystallography and the geometry was optimized using B3LYP functional along with the 6-31G(d) basis set, which was also used in all calculations. The obtained results were compared with the structure determined experimentally, and both structures showed high similarity. Besides, some molecular properties of this compound were also calculated by using DFT as well as Hirschfeld surface.

Santos, Jademilson Celestino dos; de França, José Adonias A.; do Nascimento Aquino, Lucas E.; Pereira, Mariano Alves; Mafud, Ana Carolina; Amorim Camara, Celso; Malta, Valéria R. Santos; Honório, Káthia Maria

2014-02-01

118

Studies in Rats on in vitro Inhibition and in vivo Activity of Vitamin-K-Dependent Carboxylation  

Microsoft Academic Search

Vitamin-K-dependent procoagulant activity was studied in vitro by characterizing vitamin-K-dependent carboxylation and in vivo by assessing prothrombin complex activity (PCA). The kinetics of endogenous substrate carboxylation were apparently first order. Inhibition of vitamin-K-dependent carboxylation versus antagonist concentration was determined for 2,3,5,6-tetrachloropyridin-4-ol (TCP), phenindione, 2,6-dichloroindophenol sodium (2,6-DIP), 2-chloro-1,4-naphthoquinone (chloro-K3), 2-chloro-3-phytyl-l,4-naphthoquinone (chloro-K1) and warfarin. These compounds represent different chemical classes of anticoagulants

David M. Cocchetto; Thorir D. Bjornsson

1986-01-01

119

Non-enzymatic oxidation of NADH by quinones  

NASA Astrophysics Data System (ADS)

Non-enzymatic oxidation of NADH by a large number of different quinones has been explored both theoretically and experimentally. It is concluded that the smaller benzo- and naphtho-quinones are capable of oxidising NADH in aqueous solution, whereas the larger anthraquinone is not. The mechanisms of stepwise electron and proton transfers are explored, and ruled out in favour of direct hydride transfer. For menadione (2-methyl-1,4-naphthoquinone), no reaction is observed experimentally; theoretically we find that there is a very close balance between the energetic cost of hydride removal from NADH and the energy gain of formation of the menadione semiquinone radical anion.

Scherbak, Nikolai; Strid, Åke; Eriksson, Leif A.

2005-10-01

120

ORIGINAL PAPER Relationships between biochemical attributes (non-structural  

E-print Network

in the heartwood. 2-(Hydroxymethyl)anthraquinone and P1, an unidentified compound, were only detected concentrations of 1,4-naphthoquinone, anthraquinone-2-carboxylic acid, and lapachol were also only detected) suggest that P1, 2-(hydroxymethyl)anthraquinone and tectoquinone could be natural durability traits

Boyer, Edmond

121

Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis  

Microsoft Academic Search

Cellular oxidation\\/reduction state affects the cytotoxicity of a number of chemotherapeutic agents, including arsenic trioxide. Reactive oxygen species (ROS), the major intracellular oxidants, may be a determinant of cellular susceptibility to arsenic. Our previous studies showed that a naphthoquinone and an anthraquinone (emodin) displayed the capability of producing ROS and facilitating arsenic cytotoxicity in both leukemia and solid tumor cell

Jie Yang; Hui Li; Yu-Ying Chen; Xiao-Jing Wang; Gui-Ying Shi; Qing-Shen Hu; Xun-Lei Kang; Yang Lu; Xue-Ming Tang; Qiang-Su Guo; Jing Yi

2004-01-01

122

Reduced biological control and enhanced chemical pest management in the evolution  

E-print Network

of Lombok, yielded a diverse set of secondary metabolites. The naphthoquinone plumbagin (1), although found diverse secondary metabolites, including alkanol ester,7 aliphatic lactone,8 benzenoid,9 coumarin,2 bacteria,5 fungi,9 guppy fish,1,9 human tumor cells,15 and seed germination of Lactuca sativa L. var. Great

Bermingham, Eldredge

123

2-methylnaphthazarin 5- O-glucoside from the methanol extracts of in vitro cultures of Drosera species  

Microsoft Academic Search

The methanol extracts of Drosera rotundifolia and D. spathulata obtained by in vitro micropropagation yielded the new pigment 2-methylnaphthazarin (5,8-dihydroxy-2-methyl-1,4-naphthoquinone) 5-O-glucoside, which is an artefact formed from rossoliside (7-methylhydrojuglone 4-O-glucoside) during extraction with methanol.

Jaromir Budzianowski

1997-01-01

124

Antitumor Activity of DMAKO-05, a Novel Shikonin Derivative, and Its Metabolism in Rat Liver Microsome.  

PubMed

The antitumor activity of shikonin derivatives is largely dependent on the generation of superoxide radicals and the alkylation activity of their naphthoquinone moiety. However, our recent study showed that 1,4-dioxime-5,8-dimethoxynaphthalene (DMAKO-05), a novel shikonin derivative, displayed more potential antitumor activity and less toxicity compared to fluorouracil (5-FU) both in vitro and in vivo, even though the hydroxyl and carbonyl groups of its naphthoquinone structure were shielded. To understand the underlying mechanisms, we investigated the metabolism of DMAKO-05 in rat liver microsomes. The kinetic analysis indicated that DMAKO-05 underwent a biphasic metabolism in rat liver microsomes. The inhibition experiments showed that CYP1A and CYP3A were the major enzymes in the metabolism of DMAKO-05, along with partial contribution from CYP2A. In addition, the structures of eight DMAKO-05 metabolites, which were characterized by accurate mass and MS/MS fragmentograms, implied that DMAKO-05 was mainly metabolized through the oxygenation of its naphthoquinone nucleus and the hydrolysis of its side chain, instead of the oxidation of hydroxyimine to ketone. Therefore, DMAKO-05 should not be considered as a traditional naphthoquinone prodrug. PMID:25273027

Zhang, Xu; Wang, Ru-Bing; Zhou, Wen; Xiao, Sui; Meng, Qing-Qing; Li, Shao-Shun

2015-04-01

125

Chemistry of 5,8-dihydroxy-[1,4]-naphtoquinone, a key chromophore in aged cellulosics  

Technology Transfer Automated Retrieval System (TEKTRAN)

5,8-Dihydroxy-[1,4]-naphthoquinone (DHNQ) is one of the key chromophores found in aged cellulosics. Cellulose aging and yellowing as well as bleaching of cellulosic materials are key processes in the pulp and paper industries and have considerable economic importance: the knowledge of the general re...

126

Comparative study of three Plumbago L. species (Plumbaginaceae) by microscopy, UPLC–UV and HPTLC analyses  

Technology Transfer Automated Retrieval System (TEKTRAN)

This paper presents a comparative study of anatomy of leaves, stems and roots of three species of Plumbago, namely P. auriculata Lam., P. indica L. and P. zeylanica L. by light microscopy. The paper also provides qualitative and quantitative analysis of the naphthoquinone, plumbagin, a major constit...

127

Natural Product Inhibitors of Hsp90: Potential Leads for Drug Discovery  

E-print Network

-activity relationships, a comparative molecular field analysis was performed, and a second generation of 1,4-naphthoquinones was developed. Although the results were promising, concerns arose regarding the nature of the scaffold itself. It is well documented that quinone-based...

Amolins, Michael Wayne

2009-07-09

128

Selective determination of quinones by high-performance liquid chromatography with on-line post column ultraviolet irradiation and peroxyoxalate chemiluminescence detection.  

PubMed

A new HPLC method was developed for the simultaneous determination of quinones with peroxyoxalate chemiluminescence (PO-CL) detection following on-line UV irradiation. Quinones [i.e., 1,2-naphthoquinone, 1,4-naphthoquinone, 9,10-anthraquinone, 9,10-phenanthrenequinone] were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide and a fluorescent product that were determined via PO-CL detection. Generation of hydrogen peroxide from quinones with on-line UV irradiation was confirmed using flow injection analysis (FIA) system whereby incorporating an enzyme column reactor immobilized with catalase. Moreover, the structure of the produced fluorophore was confirmed using LC-MS, IR, and (1)H NMR. Afterwards, the conditions for UV irradiation and PO-CL detection were optimized. The separation of four quinones by HPLC was accomplished isocratically on an ODS column within 25 min. The detection limits (signal-to-noise ratio=3) were 6.0 pmol/injection for 1,2-naphthoquinone, 4.4 pmol/injection for 1,4-naphthoquinone, 0.2 pmol/injection for 9,10-anthraquinone, and 0.45 pmol/injection for 9,10-phenanthrenequinone. PMID:16920126

Ahmed, Sameh; Fujii, Shuu; Kishikawa, Naoya; Ohba, Yoshihito; Nakashima, Kenichiro; Kuroda, Naotaka

2006-11-10

129

Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3  

NASA Astrophysics Data System (ADS)

The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

2014-05-01

130

Biosensors and Bioelectronics 21 (2006) 20582063 Harvesting energy from the marine sedimentwater interface II  

E-print Network

, Washington, DC 20375, United States c Department of Microbiology and Molecular Genetics, Michigan State of the anodic current results from oxidation of sediment organic matter catalyzed by microorganisms colonizing include graphite modified by adsorption of anthraquinone-1,6-disulfonic acid (AQDS) or 1,4-naphthoquinone

Lovley, Derek

131

Anticancer Activities of Six Selected Natural Compounds of Some Cameroonian Medicinal Plants  

PubMed Central

Background Natural products are well recognized as sources of drugs in several human ailments. In the present work, we carried out a preliminary screening of six natural compounds, xanthone V1 (1); 2-acetylfuro-1,4-naphthoquinone (2); physcion (3); bisvismiaquinone (4); vismiaquinone (5); 1,8-dihydroxy-3-geranyloxy-6-methylanthraquinone (6) against MiaPaCa-2 pancreatic and CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Compounds 1 and 2 were then tested in several other cancer cells and their possible mode of action were investigated. Methodology/Findings The tested compounds were previously isolated from the Cameroonian medicinal plants Vismia laurentii (1, 3, 4, 5 and 6) and Newbouldia laevis (2). The preliminary cytotoxicity results allowed the selection of xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, which were then tested on a panel of cancer cell lines. The study was also extended to the analysis of cell cycle distribution, apoptosis induction, caspase 3/7 activation and the anti-angiogenic properties of xanthone V1 and 2-acetylfuro-1,4-naphthoquinone. IC50 values around or below 4 µg/ml were obtained on 64.29% and 78.57% of the tested cancer cell lines for xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, respectively. The most sensitive cell lines (IC50<1 µg/ml) were breast MCF-7 (to xanthone V1), cervix HeLa and Caski (to xanthone V1 and 2-acetylfuro-1,4-naphthoquinone), leukemia PF-382 and melanoma colo-38 (to 2-acetylfuro-1,4-naphthoquinone). The two compounds showed respectively, 65.8% and 59.6% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail eggs in the anti-angiogenic assay. Upon treatment with two fold IC50 and after 72 h, the two compounds induced cell cycle arrest in S-phase, and also significant apoptosis in CCRF-CEM leukemia cells. Caspase 3/7 was activated by xanthone V1. Conclusions/Significance The overall results of the present study provided evidence for the cytotoxicity of compounds xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, and bring supportive data for future investigations that will lead to their use in cancer therapy. PMID:21886765

Kuete, Victor; Wabo, Hippolyte K.; Eyong, Kenneth O.; Feussi, Michel T.; Wiench, Benjamin; Krusche, Benjamin; Tane, Pierre; Folefoc, Gabriel N.; Efferth, Thomas

2011-01-01

132

[Studies on flash extraction methods of Arnebia euchroma].  

PubMed

The extraction of functional components from radix of Arnebia euchroma was optimized using orthogonal design based on the extraction yields of shikonin, and hydroxyl-naphthoquinone pigments. The data processing was carried out with the multiple guidelines grading method for optimizing the extraction condition. Compared with the traditional method (refluxing and ultrasonic extraction), the flash extraction method was more efficient The optimal conditions were as follows: 95% ethanol extract 3 times with 90 s for each. Under these conditions, the extraction yields of shikonin, and hydroxyl-naphthoquinone pigments were 93.16%, 93.89%, respectively, and the dry extract rate was 5.16%. In conclusion, the result showed that the flash extraction technology was appropriate, stable and feasible. PMID:24199559

Meng, Qing-Ju; Yi, Hong; Yang, Hua; Zhu, Li-Wei; Feng, Jing; Liu, Xiao-Qian

2013-07-01

133

Quinone-Enhanced Reduction of Nitric Oxide by Xanthine/Xanthine Oxidase  

PubMed Central

The quinones 1,4-naphthoquinone, methyl-1,4-naphthoquinone, tetramethyl-1,4-benzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,6-dimethylbenzoquinone, 2,6-dimethoxybenzoquinone, and 9,10-phenanthraquinone enhance the rate of nitric oxide reduction by xanthine/xanthine oxidase in nitrogen-saturated phosphate buffer (pH 7.4). Maximum initial rates of NO reduction (Vmax) and the amount of nitrous oxide produced after 5 min of reaction increase with quinone one- and two-electron redox potentials measured in acetonitrile. One of the most active quinones of those studied is 9,10-phenanthraquinone with a Vmax value 10 times larger than that corresponding to the absence of quinone, under the conditions of this work. Because NO production is enhanced under hypoxia and under certain pathological conditions, the observations obtained in this work are very relevant to such conditions. PMID:19301825

Sanchez-Cruz, Pedro; Alegría, Antonio E.

2009-01-01

134

Protection or cytotoxicity mediated by a novel quinonoid-polyphenol compound?  

PubMed

Many natural and synthetic quinones and naphthoquinones possess a variety of beneficial pharmacological properties. In plants, the cytotoxic properties of quinones serve in their defensive roles against invading bacteria, fungi and parasites. In this regard many quinones as well as polyphenols, exerting generally toxicity at high dosages, are able to induce favorable hormetic responses at a low dosage. The novel chloronaphthoquinone derivative of quercetin (CHNQ) showed a profound cytotoxicity followed by enhancement of intracellular generation of oxidants in human neonatal B-HNF-3 fibroblasts. Its synthetic precursors, quercetin and 2-chloro-3-hydroxy-[1,4]naphthoquinone, failed to induce these effects, and paradoxically, only CHNQ at a low concentration provided partial protection of the cells against oxidative challenge. Thus, the novel quinonoid-polyphenol CHNQ might have a merit in the search for new prospective agents in prevention and management of ageing and ageing-related pathologies. PMID:25367759

Milackova, Ivana; Rackova, Lucia; Majekova, Magdalena; Mrvova, Natasa; Stefek, Milan

2015-01-01

135

In vitro combinatory antimicrobial effect of plumbagin with oxacillin and tetracycline against Staphylococcus aureus.  

PubMed

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a bicyclic naphthoquinone naturally distributed among Plumbago species, has been reported to have antimicrobial activity against a wide range of microorganisms. In this study, plumbagin was examined for its combinatory antimicrobial effect with tetracycline or oxacillin against nine strains of Staphylococcus aureus, including its methicillin- and multidrug-resistant strains. Minimum inhibitory concentrations were determined through the broth microdilution method, whereas the combinatory effect was evaluated according to the sum of fractional inhibitory concentration (?FIC) indices. Additive interactions were obtained for both combinations against most of the strains tested. Synergy was obtained for combination with oxacillin against two out of seven strains (?FIC range 0.273-0.281), both were methicillin resistant. Our results proved plumbagin as a compound suitable for anti-Staphylococcal combinatory testing. Moreover, to the best of our knowledge, this is the first report of plumbagin synergy with oxacillin against S. aureus strains, including its resistant forms. PMID:25266704

Rondevaldova, Johana; Novy, Pavel; Kokoska, Ladislav

2015-01-01

136

The metal carbonyl promoted rearrangement of aryl-cyclopropenes. II. Approaches towards a model system of dynemicin A  

SciTech Connect

The ability of 3-vinyl- or 3-phenylcyclopropenes to undergo metal carbonyl promoted rearrangement with CO insertion to yield phenol or naphthol derivatives led to investigations using 3-naphthylcyclopropenes with the goal of producing material containing an anthracene carbon framework. Rearrangement of 1-methyl-3-(1,4-dimethoxynaphth-2-yl)cyclopropene, however, only gave material containing the phenanthrene framework. It is the goal of Part I of this thesis to modify a naphthylcyclopropene so that the metal carbonyl induced rearrangement will yield material containing an anthracene framework. A working hypothesis was put forth that focused on the electronic stabilization of certain aromatic intermediates to explain phenanthrene vs. anthracene formation. Semi-empirical calculations performed on model systems to estimate thermodynamic properties supported the hypothesis. Two naphthoquinone derivatives were prepared based on the hypothesis. In the first case, the cyclopropene substituent is arranged in the 2-position of a naphthoquinone-1,4-bisketal; in the second case, the cyclpropene is at C-2 in a 1,4-naphthoquinone. In both cases, the alkene unit (C-2/C-4) is less aromatic' than an alkene unit in a naphthalene ring, and the expected rearrangement can give only the anthraquinone skeleton. Investigations with the bisketal were unsucessful; attempted rearrangement at low temperatures gave only recovered starting material and experiments at higher temperatures polymerized the sensitive cyclopropene. Investigations with the 1,4-naphthoquinone proved modestly successful. Metal carbonyl catalyzed rearrangement with CO insertion to yield anthraquinone was observed. Additionally, low temperature conditions were developed that may prove useful in future work.

Cohen, D.H.

1992-01-01

137

Antibacterial activity of novel naphthoquiones derivatives  

Microsoft Academic Search

l,4-naphthoquinone moiety is Known to confer numerous molecules with distinct-hiological activities including anti -mycobacterial,\\u000a anticancer and anti-inflammatory activities. Vitamin K2, doxorubicin and mitomycin are among the few examples of this class\\u000a of chemicals used in the treatment of bleeding, lymphoma and carcinoma respectively. Although the exact action mechanism of\\u000a these molecules is still under investigation, proposed mechanisms include their interact

Yongseog Chung; Ren shu Quan; Hyeon Mo Chang; Soo Han Kwon; Soon-Ja Kim; Young-Sam Im; Kyeong Seob Shin; Kyung-Do Park; Hak-Kyo Lee; Joong-Kook Choi

2009-01-01

138

WS5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum  

Microsoft Academic Search

The mycorrhization helper bacterium Streptomyces sp. AcH 505 inhibits Norway spruce root infection and colonisation by the root and butt rot fungus Heterobasidion annosum 005 but not by the congeneric strain Heterobasidion abietinum 331 because of higher sensitivity of H. annosum 005 towards the AcH 505-derived naphthoquinone antibiotic WS-5995 B. Differences in antibiotic sensitivity between two isolates\\u000a belonging to two

Nina A. Lehr; Aleksandra Adomas; Frederick O. Asiegbu; Rüdiger Hampp; Mika T. Tarkka

2009-01-01

139

Antidermatophyte and antimelanogenesis compound from Eleutherine americana grown in Indonesia  

Microsoft Academic Search

An active compound from the bulb of Eleutherine americana L. Merr. (Iridaceae) collected from East Kalimantan, Indonesia, was tested for its antidermatophyte and antimelanogenesis\\u000a activity. Antifungal assay-directed fractionation of the n-hexane-soluble fraction of the methanolic extract of the bulb of E. americana led to the isolation of 1 as an active compound. The compound was identified as the naphthoquinone eleutherin

Irawan Wijaya Kusuma; Enos Tangke Arung; Enih Rosamah; Sri Purwatiningsih; Harlinda Kuspradini; Syafrizal; Juli Astuti; Yong-Ung Kim; Kuniyoshi Shimizu

2010-01-01

140

Naphthohydroquinone glucosides of Drosera rotundifolia and D. intermedia from in vitro cultures  

Microsoft Academic Search

Rossoliside (7-methylhydrojuglone 4-O-glucoside) was isolated from Drosera rotundifolia, together with hydroplumbagin 4-O-glucoside, from D. intermedia, both of which were produced by in vitro micropropagation. Hydroplumbagin glucoside released the corresponding 1,4-naphthoquinone (plumbagin) more rapidly than rossoliside (7-methyljuglone). These glucosides can be detected in plant extracts by reversed-phase TLC and appearance of the corresponding free quinones after treatment with ?-glucosidase.

Jaromir Budzianowski

1996-01-01

141

Purification of sulfide oxidase from rat liver  

E-print Network

invertebrates that live in sulfide-rich habitats (Temara er al. , 1993; Visman, 1991). Sulfide oxidation also appeared to occur in the animal tissue (Powell and Arp, 1989; Baxter and Reen, 1958a, b; Baxter er al. , 1958). Sulfide is probably oxidized through...), methylene blue methods (Selvapathy et a1. , 1989), uv-spectrophotometric determination based on the reaction with 2-iodo-I-methylpyridinium iodide (Bald and Ciesielski, 1988), spectrofluorometric determination with 1, 2-naphthoquinone-4-sulphonate (Punta...

Pu, Lixia

1994-01-01

142

Efficient and Green Approaches for the Synthesis of 4H-Benzo[g]chromenes in Water, Under Neat Conditions, and Using Task-Specific Ionic Liquid  

Microsoft Academic Search

Facile and convenient procedures have been described for the synthesis of 4H-benzo[g]chromenes by one-pot condensation of aromatic aldehydes, malononitrile\\/ethyl cyanoacetate, and 2-hydroxy-1,4-naphthoquinone. The reaction has been accomplished using catalytic cetyltrimethylammonium bromide (CTAB) in water under reflux or under neat conditions at 110 °C. A task-specific ionic liquid, 1-butyl-3-methyl imidazolium hydroxide ([bmim]OH), has also been found to be an effective catalyst for

Jitender M. Khurana; Devanshi Magoo; Ankita Chaudhary

2012-01-01

143

Efficient and Green Approaches for the Synthesis of 4H-Benzo[g]chromenes in Water, Neat Conditions and Using Task-Specific Ionic Liquid  

Microsoft Academic Search

Facile and convenient procedures have been described for the synthesis of 4H-benzo[g]chromenes by one-pot condensation of aromatic aldehydes, malononitrile\\/ethyl cyanoacetate and 2-hydroxy-1,4-naphthoquinone. The reaction has been accomplished using catalytic cetyltrimethylammonium bromide (CTAB) in water under reflux or under neat conditions at 110 °C. Task-specific ionic liquid, 1-butyl-3-methyl imidazolium hydroxide ([bmim]OH), has also been found as an effective catalyst towards this transformation.

Jitender M. Khurana; Devanshi Magoo; Ankita Chaudhary

2012-01-01

144

Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds  

Microsoft Academic Search

When 56 flavonoids, 32 coumarins, five naphthoquinones, 12 anthraquinones and five structurally-related compounds were tested for their antimutagenic potencies with respect to mutagenicities induced by 2-nitrofluorene (2-NF), 3-nitrofluoranthene (3-NFA) and 1-nitropyrene (1-NP) in Salmonella typhimurium TA98 distinct structure-activity relationships were detected. First, the tetracyclic nitroarenes 3-NFA and 1-NP were in general more effectively antagonized by potent antimutagenic flavonoids and coumarins

R. Edenharder; X. Tang

1997-01-01

145

Cycloaddition reactions of thiazolidine derivatives. An approach to the synthesis of new functionalized heterocyclic systems  

Microsoft Academic Search

A one-pot procedure for the synthesis of two functionalized tricyclic systems having structures of benzo[g]isoquinoline-5,10-dione and dihydrothieno[2,3-b]naphto-4,9-dione (DTNQ) is described. These new series were synthesized from cycloaddition reactions between naphthoquinone and arylthiazolidine derivatives, the latter acting, respectively, as highly reactive N-arylidenedehydroalanine ethyl esters (2-AD) or as amino ester nucleophilic species.

Isabel M Gomez-Monterrey; Pietro Campiglia; Orazio Mazzoni; Ettore Novellino; M. Vittoria Diurno

2001-01-01

146

Spectrophotometric method for the determination of paracetamol and phenacetin  

Microsoft Academic Search

A rapid, sensitive and simple spectrophotometric method is proposed for the determination of hydrolysis products of paracetamol (PRL) and phenacetin (PHN) with sodium 1,2-naphthoquinone-4-sulphonate and cetyltrimethyl ammonium bromide (CTA) in alkaline medium. The absorbances are measured at 570 and 500 nm and the molar absorptivities found to be 1.118×104 and 4.54×103 l mol?1 cm?1 for PRL and PHN, respectively. The

P. Nagaraja; K. C. Srinivasa Murthy; K. S. Rangappa

1998-01-01

147

Discriminating Redox Cycling and Arylation Pathways of Reactive Chemical Toxicity in Trout Hepatocytes  

Microsoft Academic Search

The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoqui- none (DMONQ), 2-methyl-1,4-naphthoquinone (MNQ), 1,4-naph- thoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. More than 70% of cells died in 3 h when exposed to BQ or NQ; 50% died in 7 h when exposed to MNQ, with no mortality compared

P. K. Schmieder; M. A. Tapper; R. C. Kolanczyk; D. E. Hammermeister; B. R. Sheedy; J. S. Denny

2003-01-01

148

Insulin-like growth factor-1 protects preimplantation embryos from anti-developmental actions of menadione  

Microsoft Academic Search

Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and\\u000a cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent\\u000a process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione\\u000a caused a concentration-dependent decrease in

James I. Moss; Eduardo Pontes; Peter James Hansen

2009-01-01

149

Polyazomethines derived from polynuclear dihydroxyquinones and siloxane diamines  

Microsoft Academic Search

New polyazomethines have been synthesized based on polynuclear dihydroxy quinones (5,8-dihydroxy-1,4-naphthoquinone and 1,4-dihydroxyanthraquinone) and siloxane diamines differing by the siloxane sequence length (1,3-bis(3-aminopropyl)tetramethyldisiloxane and ?,?-bis(3-aminopropyl)oligodimethylsiloxane having about 12 siloxane units\\/sequence). The structures were verified by spectral analyses. Solubility tests, GPC and viscosity measurements were performed. Some properties of the resulted polymers were investigated by thermal (TGA and DSC), electrical, spectral

Angelica Vlad; Maria Cazacu; Grigore Munteanu; Anton Airinei; Petru Budrugeac

2008-01-01

150

Effects of ethanol on the hematotoxicity of twelve pharmaceutical and environmental agents  

SciTech Connect

The ability of ethanol (5%) to potentiate the oxidant stressor effects of twelve well-know hematoxic agents was investigated in vitro using human erythrocytes. Human whole blood was incubated with one of the following agents with and without ethanol for one hour at 37/sup 0/C: o-aminophenol (0.5 mM); p-benzoquinone (4.0 mM); butyl nitrite (1.0 mM); p-hydroxyacetophenone (3.0 mM); hydroxylamine (0.5 mM); O,N-dimethylhydroxylamine (7.0 mM); 1,2-naphthoquinone (0.4 mM); 1,4-naphthoquinone (0.5 mM); p-phenylenediamine (5.0 mM); phenylhydrazine (1.0 mM); potassium nitrite (1.0 mM) and primaquine (8.0 mM). Methemoglobin (METHB) and reduced glutathione (GSH) levels were subsequently measured. Synergistic increases in METHB levels occurred for primaquine, 1,2-naphthoquinone and p-phenylenediamine incubated with ethanol.

Calabrese, E.J.; Tilli, F.; Horton, H.M.; Stoddard, A.

1988-01-01

151

Effects of exogenous methyl jasmonate on the biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma.  

PubMed

The shikonin derivatives, accumulated in the roots of Arnebia euchroma (Boraginaceae), showed antibacterial, anti-inflammatory, and anti-tumor activities. To explore their possible biosynthesis regulation mechanism, this paper investigated the effects of exogenous methyl jasmonate (MJ) on the biosynthesis of shikonin derivatives in callus cultures of A. euchroma. The main results include: Under MJ treatment, the growth of A. euchroma callus cultures was not inhibited, but the expression level of both the genes involved in the biosynthesis of shikonin derivatives and their precursors and the genes responsible for intracellular localization of shikonin derivatives increased significantly in the Red Strain (shikonin derivatives high-producing strain). The quantitative analysis showed that six out of the seven naphthoquinone compounds under investigation increased their contents in the MJ-treated Red Strain, and in particular, the bioactive component acetylshikonin nearly doubled its content in the MJ-treated Red Strain. In addition, it was also observed that the metabolic profiling of naphthoquinone compounds changed significantly after MJ treatment, and the MJ-treated and MJ-untreated strains clearly formed distinct clusters in the score plot of PLS-DA. Our results provide some new insights into the regulation mechanism of the biosynthesis of shikonin derivatives and a possible way to increase the production of naphthoquinone compounds in A. euchroma callus cultures in the future. PMID:24974168

Hao, He; Lei, Caiyan; Dong, QiuLei; Shen, Yalin; Chi, Jianting; Ye, Hechun; Wang, Hong

2014-08-01

152

Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species.  

PubMed

Ambient particulate matter (PM) is associated with adverse health effects. Quinones present in PM are hypothesized to contribute to these harmful effects through the generation of reactive oxygen species (ROS). However, whether the ROS induced by quinones is involved in mediating DNA damage as well as other biological responses in pulmonary cells is less well known. In this study, the toxic effects of five typical airborne quinones, including 1,2-naphthoquinone, 2-methylanthraquinone, 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone, and acenaphthenequinone, on cytotoxicity, DNA damage, intracellular calcium homeostasis, and ROS generation, were studied in human lung epithelial A549 cells. An antioxidant N-acetylcysteine (NAC) was used to examine the involvement of ROS in adverse biological responses induced by quinones. The quinones caused a concentration-dependent viability decrease, cellular LDH release, DNA damage, and ROS production in A549 cells. 1,2-Naphthoquinone, but not the other four quinones, increased intracellular calcium (Ca(2+)) levels in a dose-dependent manner. These toxic effects were abolished by administration of NAC, suggesting that ROS played a key role in the observed toxic effects of quinones in A549 cells. These results emphasize the importance of quinones in PM on the adverse health effects of PMs, which has been underestimated in the past few years, and highlight the need, when evaluating the effects on health and exposure management, to always consider their qualitative chemical compositions in addition to the size and concentration of PMs. PMID:24480427

Shang, Yu; Zhang, Ling; Jiang, Yuting; Li, Yi; Lu, Ping

2014-04-01

153

Comparative assessment of antimicrobial efficacy of new potential biocides for treatment of cooling and ballast waters.  

PubMed

The comparative in vitro antibacterial activity of five non-oxidizing biocides was investigated by laboratory standard test procedures. Minimum Inhibitory Concentrations (MIC) of two alkylated naphthoquinone derivative molecules (MNB and MPB) and three commercial biocide formulations (MACROTROL(R)MT200, MICROTREAT AQZ2010 and MICROBIOCIDE 2594) were determined against a total of 23 non-pathogenic bacterial strains. This investigation demonstrated a broad-spectrum bactericidal efficacy of three of the assayed biocides (MT200 and both naphthoquinone derivatives) at low use levels, also against naturally tolerant species, such as Pseudomonas spp. MT200 was the most effective, inhibiting bacterial growth of both Gram-positive (MIC<4 mg/l) and Gram-negative bacteria (MIC<16 mg/l), whereas effectiveness of naphthoquinones was highly variable (MIC ranging from 1 to 64 mg/l). The findings show the ability of the tested products to reduce bacterial populations under laboratory conditions. These products could provide an efficient bacterial growth control, for treatment of both fresh and salt waters used for various industrial purposes. PMID:16126254

Chelossi, Elisabetta; Faimali, Marco

2006-03-01

154

Use of quinones in brain-tumor therapy: preliminary results of preclinical laboratory investigations  

SciTech Connect

Failure of current chemotherapeutic agents of effectively treat human brain tumors has prompted the search for alternative regimens based on the inherent metabolic pathways of target cells. One way to accomplish this goal would be to design drugs in an inactive form, which upon entry into the cell would be transformed to a toxic metabolite by a naturally occurring pathway. One such pathway may be the reductive activation of naphthoquinones with one or two side chains capable of alkylation, such as 2,3-dibromomethyl-1,4-naphthoquinone (DBNQ). This reductive activation can be catalyzed by the flavoprotein DT-diaphorase (NAD(P)H:quinone oxidoreductase). The authors have found that both rat 9L and some human brain-tumor cell lines contain very high levels of this enzyme and that halogenated dimethyl naphthoquinones, such as DBNQ, are highly toxic to these cells in vitro. Moreover, they have found that the cytotoxic effects of DBNQ on human tumor and murine bone marrow stem cells can be prevented or lessened by pretreatment of the cells with dicoumarol, a potent inhibitor of DT-diaphorase. Since dicoumarol does not cross the blood-brain barrier, the potential exists for human brain tumors to be destroyed with halogenated dimethylquinones and for peripheral host toxicity to be prevented by coadministration of dicoumarol.

Berger, M.S.; Talcott, R.E.; Rosenblum, M.L.; Silva, M.; AliOsman, F.; Smith, M.T.

1985-01-01

155

Development of a test system for screening toxic substances: a comparison using organic substances  

SciTech Connect

The purpose of this research was to develop a test system for screening toxic substances by predicting their aquatic ecosystem effects. The system studied was a static, one liter microcosm with a diverse species assemblage. The microcosm was composed of biotic inoculum, chemically defined medium and sediment. The biotic inoculum contained primary producers, grazers, carnivores and decomposers. Three different types of sediment were studied: sand, clay, and clay plus sand. Four organic chemicals: phenol, triethylene glycol (TEG), quinoline and naphthoquinone were evaluated with this test system. The toxicities of TEG, quinoline and naphthoquinone were compared for each sediment type. Toxicity was evaluated in terms of the chemical's effects on primary productivity and heterotrophic activity though other effects are also noted. Naphthoquinone concentration exhibited no correlation between ecosystem property values and therefore, could not be ranked. Phenol exhibited the greatest toxicity to net production immediately after the toxicant addition. Quinoline was most toxic to net production over the longer time scale. TEG exhibited the least toxicity to net production, however, TEG exhibited higher toxicity to heterotrophic activity than either quinoline or phenol. Although the type of sediment used in the microcosms did not change the relative toxicities of the chemicals, the microcosms with clay sediment always were observed to exhibit lower net production and higher variability.

Thomas, C.L.

1985-01-01

156

Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies  

PubMed Central

Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study. PMID:25099332

de Souza, Nicolli Bellotti; de Andrade, Isabel M; Carneiro, Paula F; Jardim, Guilherme AM; de Melo, Isadora MM; da Silva, Eufrânio N; Krettli, Antoniana Ursine

2014-01-01

157

Role of quinones on the ascorbate reduction rates of S-nitrosogluthathione  

PubMed Central

Quinones are one of the largest class of antitumor agents approved for clinical use and several antitumor quinones are in different stages of clinical and preclinical development. Many of these are metabolites of, or are, environmental toxins. Due to their chemical structure these are known to enhance electron transfer processes such as ascorbate oxidation and NO reduction. The paraquinones 2,6-dimethyl-1,4-benzoquinone (DMBQ), 1,4-benzoquinone (BQ), methyl-1,4-benzoquinone (MBQ), 2,6-dimethoxy-1,4-benzoquinone (DMOBQ), 2-hydroxymethyl-6-methoxy-1,4-benzoquinone (HMOBQ), trimethyl-1,4-benzoquinone (TMQ), tetramethyl-1,4-benzoquinone (DQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UBQ-0), the paranaphthoquinones 1,4-naphthoquinone (NQ), menadione (MNQ), 1,4-naphthoquinone-2-sulfonate (NQ2S), juglone (JQ) and phenanthroquinone (PHQ) all enhance the anaerobic rate of ascorbate reduction of GSNO to produce NO and GSH. Rates of this reaction were much larger for p-benzoquinones and PHQ than for p-naphthoquinone derivatives with similar one-electron redox potentials. The quinone DMBQ also enhances the rate of NO production from S-nitrosylated bovine serum albumin (BSA-NO) upon ascorbate reduction. Density functional theory calculations suggest that stronger interactions between p-benzo- or phenanthrasemiquinones than those of p-naphthosemiquinones with GSNO are the major causes of these differences. Thus, quinones, and especially p-quinones and PHQ, could act as NO release enhancers from GSNO in biomedical systems in the presence of ascorbate. Since quinones are exogenous toxins which could enter the human body via a chemotherapeutic application or as an environmental contaminant, these could boost the release of NO from S-nitrosothiol storages in the body in the presence of ascorbate and thus enhance the responses elicited by a sudden increase in NO levels. PMID:20691779

Sanchez-Cruz, Pedro; Garcia, Carmelo; Alegria, Antonio E.

2010-01-01

158

Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique  

SciTech Connect

Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

Basu, Samita; Bose, Adity; Dey, Debarati [Chemical Sciences Division, S aha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata--700 064 (India)

2008-04-24

159

Selective laser excitation of oriented molecules in polymer matrices  

SciTech Connect

The features of the fine-structure spectra and polarization fluorescence were studied in selective laser excitation of molecules imbedded in orienting polyethylene (PE) films in this article. Hydroxy derivatives of 9,10-anthraquinone, naphthoquinone, thioindigo and some porphyrins were investigated. The studies were conducted at a temperature of 4.2 K on a DFS-24 spectrometer. Fluorescence was excited by radiation from a tunable dye laser in the region of the purely electron transition. The halfwidth of the exciting laser line was approximately 1 A. The compounds studied exhibit emission band spectra even at 4.2 K with normal excitation in the PE matrices.

Nekrasov, V.V.; Nurmukhametov, R.N.; Starukhin, A.S.; Stanishevskii, I.V.; Shigorin, D.N.; Shul'ga, A.M.

1987-06-01

160

Stimulation of oxyradical production of hepatic microsomes of flounder ( Platichthys flesus ) and perch ( Perca fluviatilis ) by model and pollutant xenobiotics  

Microsoft Academic Search

Stimulation of hepatic microsomal NAD(P)H-dependent hydroxyl radical (·OH) production by model compounds, viz. menadione (2-methyl-1,4-naphthoquinone) and nitrofurantoin (N-(5-nitro-2-furfurylidene)-1-aminohydantoin), and pollutant xenobiotics, viz. benzo[a]pyrene (BaP) diones (products of microsomal BaP metabolism), duroquinone (tetramethyl-1,4-benzoquinone—present in pulp mill effluent), and the pesticide lindane (?-hexachlorocyclohexane), was examined in flounder Platichthys flesus. Duroquinone was also studied in perch Perca fluviatilis, a freshwater species used in

P. Lemaire; A. Matthews; L. Förlin; D. R. Livingstone

1994-01-01

161

Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors  

Microsoft Academic Search

The catalytic reaction of cytokinin oxidase\\/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine

James T. English; Kristin D. Bilyeu; Ond?ej Novák; Pavel Pe?; Marek Šebela; Petr Galuszka; Marco W. Fraaije; Ivo Frébort; Jan Hrbá?; Jitka Frébortová

2004-01-01

162

Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique  

NASA Astrophysics Data System (ADS)

Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

Basu, Samita; Bose, Adity; Dey, Debarati

2008-04-01

163

[Structure-activity relationship of novel vitamin K analogues as steroid and xenobiotic receptor (SXR) agonists].  

PubMed

Vitamin K2 is a ligand for a nuclear receptor, steroid and xenobiotic receptor (SXR), that induces the gene expressions of CYP3A4. We synthesized new vitamin K analogues with the same isoprene side chains symmetrically introduced at the 2 and 3 positions of 1,4-naphthoquinone and vitamin K2 analogues with hydroxyl or phenyl groups at the ?-terminal of the side chain. The upregulation of SXR-mediated transcription of the target gene by the analogues was dependent on the length of the side chain and the hydrophobicity of the ?-terminal residues. Phenyl analogue menaquinone-3 was as active as the known SXR ligand rifampicin. PMID:22864345

Suhara, Yoshitomo; Motoyoshi, Sayaka; Hirota, Yoshihisa; Sawada, Natsumi; Nakagawa, Kimie; Tokiwa, Hiroaki; Okano, Toshio

2012-01-01

164

Microwave-assisted rapid cyclization of lapachol, a main constituent of Heterophragma adenophyllum.  

PubMed

Cyclization reactions of lapachol (1) isolated from Heterophragma adenophyllum have been studied under microwave irradiation under different conditions using alumina (acidic, basic and neutral)/silica gel/montmorillonite (KSF and K-10) as solid support along with neat reaction using 2-3 drops of DMF giving naturally occurring dehydro-alpha-lapachone (2), alpha-lapachone (3), beta-lapachone (4) depending upon the nature of support and irradiation time. A novel naphthoquinone derivative adenophyllone (5) can be synthesized from lapachol using DMF under microwaves. PMID:16496478

Singh, P; Natani, K; Jain, S; Arya, K; Dandia, A

2006-02-01

165

Synthesis and Antimicrobial Activity of N-Substituted-?-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties.  

PubMed

3-[(2-Hydroxyphenyl)amino]butanoic and 3-[(2-hydroxy-5-methyl(chloro)phenyl)amino]butanoic acids were converted to a series of derivatives containing hydrazide, pyrrole and chloroquinoxaline moieties. The corresponding benzo[b]phenoxazine derivatives were synthesized by the reaction of the obtained compounds with 2,3-dichloro-1,4-naphthoquinone. Five of the synthesized compounds exhibited good antimicrobial activity against Staphylococcus aureus and Mycobacterium luteum, whereas three compounds showed significant antifungal activity against Candida tenuis and Aspergillus niger. PMID:25689642

Mickevi?ien?, Kristina; Baranauskait?, R?ta; Kantminien?, Kristina; Stasevych, Maryna; Komarovska-Porokhnyavets, Olena; Novikov, Volodymyr

2015-01-01

166

The sensitizing capacity of chimaphilin, a naturally-occurring quinone.  

PubMed

Chimaphilin is a yellow naphthoquinone which occurs naturally in various chimaphila and Pyrola species. In Chimaphila umbellata (winter green) and C. maculata, it is a major constituent. Folk medicine recommends the leaves of Chimaphila species as a topical application to treat skin diseases. Since 1887, winter green is claimed to have caused dermatitis and to have been responsible for "idiosyncrasy". Experimental sensitization using the open epicutaneous as well as Freund's complete adjuvant technique has now revealed that chimaphilin is a moderate contact sensitizer. PMID:3191678

Hausen, B M; Schiedermair, I

1988-09-01

167

Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata  

Microsoft Academic Search

Bioassay-guided fractionation of Chimaphila umbellata (L.) W. Bart (Pyrolaceae) ethanol extracts led to the identification of 2,7-dimethyl-1,4-naphthoquinone (chimaphilin) as the principal antifungal component. The structure of chimaphilin was confirmed by 1H and 13C NMR spectroscopy. The antifungal activity of chimaphilin was evaluated using the microdilution method with Saccharomyces cerevisiae (0.05mg\\/mL) and the dandruff-associated fungi Malassezia globosa (0.39mg\\/mL) and Malassezia restricta

Imelda J. Galván; Nadereh Mir-Rashed; Matthew Jessulat; Monica Atanya; Ashkan Golshani; Tony Durst; Philippe Petit; Virginie Treyvaud Amiguet; Teun Boekhout; Richard Summerbell; Isabel Cruz; John T. Arnason; Myron L. Smith

2008-01-01

168

All optical switching in henna thin film  

NASA Astrophysics Data System (ADS)

The optical nonlinearity in henna (Lawson (2- hydroxyl-1,4 naphthoquinone) film was utilized to demonstrate all optical switching. The nonlinear absorption of the henna film was calculated by measuring the transmission of the laser beam ( ? = 488 nm) as a function of incident light intensities. The observed nonlinear absorption is attributed to a two-photon absorption process. The pump and probe technique was used to demonstrate all optical switching. The switching characteristics can be utilized to generate all-optical logic gates such as simple inverter switches (NOT) NOR, AND NAND logic functions.

Henari, Fryad Z.; Jasim, Khalil E.

2013-08-01

169

Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories  

NASA Astrophysics Data System (ADS)

Vapour and particle-associated concentrations of 15 polycyclic aromatic hydrocarbons (PAH) and 11 PAH quinones have been measured in winter and summer campaigns at the rural site, Weybourne in eastern England. Concentrations of individual PAH are relatively smaller than average concentrations measured previously at urban sites in the UK. The concentrations of PAH of the air masses originating from southern England and mainland UK are significantly larger than those from Eastern Europe and the North Atlantic, while quinone to parent PAH ratios show an inverse behaviour, being highest in the more aged North Atlantic polar air masses. While concentrations of 1,2-naphthoquinone decline from winter to summer, those of 1,4-naphthoquinone and anthraquinone increase suggesting a photochemical formation pathway. A comparison of congener concentration profiles measured at Weybourne with those from an urban source area (Birmingham) reveals differential losses at the rural site, especially evident in fluoranthene : pyrene ratios and consistent with the known rates of vapour phase reactions of 3 and 4 ring compounds with hydroxyl radical. The ratios of quinones to their parent PAH at Weybourne are greater than those in the urban source area indicating either more rapid loss processes for PAH, or formation of quinones during advection of the air mass, or probably both.

Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M.

2014-03-01

170

Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories  

NASA Astrophysics Data System (ADS)

Vapour and particle-associated concentrations of 15 polycyclic aromatic hydrocarbons (PAH) and 11 PAH quinones have been measured in winter and summer campaigns at the rural site, Weybourne in eastern England. Concentrations of individual PAH are 20-140 times smaller than average concentrations at an English urban site. The concentrations of PAH are greatest in air masses originating from southern England relative to those from Scandinavia and the North Atlantic, while quinone to parent PAH ratios show an inverse behaviour, being highest in the more aged North Atlantic polar air masses. While concentration of 1,2-naphthoquinone decline from summer to winter, those of 1,4-naphthoquinone and anthraquinone increase suggesting a photochemical formation pathway. A comparison of congener concentration profiles measured at Weybourne with those from an urban source area (Birmingham) reveals differential losses at the rural site, especially evident in fluoranthene: pyrene ratios and consistent with the known rates of vapour phase reactions of 3 and 4 ring compounds with hydroxyl radical. The ratios of quinones to their parent PAH at Weybourne are greater than those in the urban source area indicating either more rapid loss processes for PAH, or formation of quinones during advection of the air mass, or probably both.

Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M.

2013-10-01

171

Improved understanding of bimolecular reactions in deceptively simple homogeneous media: From laboratory experiments to Lagrangian quantification  

NASA Astrophysics Data System (ADS)

Medium heterogeneity affects reaction kinetics by controlling the mixing of reactant particles, but the linkage between medium properties and reaction kinetics is difficult to build, even for simple, relatively homogeneous media. This study aims to explore the dynamics of bimolecular reactions, aniline + 1,2-naphthoquinone-4-sulfonic acid ? 1,2-naphthoquinone-4-aminobenzene, in relatively homogeneous flow cells. Laboratory experiments were conducted to monitor the transport of both conservative and reactive tracers through columns packed with silica sand of specific diameters. The measured tracer breakthrough curves exhibit subdiffusive behavior with a late-time tail becoming more pronounced with decreasing sand size, probably due to the segregated flow regions formed more easily in columns packed with smaller size sand. Numerical analysis using a novel Lagrangian model shows that subdiffusion has a twofold effect on bimolecular reactions. While subdiffusion enhances the power-law growth rate of product mass by prolonging the exposure of reactant particles in the depletion zone, the global reaction rate is constrained because subdiffusion constrains the mobility of reactant particles. Reactive kinetics in deceptively simple homogeneous media is therefore controlled by subdiffusion, which is sensitive to the dimensions of packed sand.

Zhang, Yong; Qian, Jiazhong; Papelis, Charalambos; Sun, Pengtao; Yu, Zhongbo

2014-02-01

172

SOME EFFECTS OF DERIVATIVES OF VITAMIN K ON THE METABOLISM OF UNICELLULAR ALGAE  

PubMed Central

Vitamin K1, 2-methyl-3-phytyl-1,4-naphthoquinone, is a substance found in all plant chloroplasts. It is, therefore, interesting to know whether it has any influence upon the metabolism of plants. Experiments made with the phytol-free derivatives like 2-methyl-1,4-naphthoquinone or the corresponding 3-oxy compound, phthiocol, gave the following results. These substances accelerate the respiration of Chlorella or Scenedesmus in a way similar to the action of the dinitrophenols. They inhibit photosynthesis and the compensation of respiration in the light strongly like hydroxylamine. In Scenedesmus they hinder the adaptation to the anaerobic utilization of hydrogen. If given after adaptation in amounts sufficient to stop photosynthesis they do not prevent photoreduction but rather stabilize this reaction against reversion. Their presence destroys the coupling between the reduction of carbon dioxide in the dark and the oxyhydrogen reaction in adapted algae. One can expect, therefore, that the natural vitamin K present in plants in concentrations of about 10–3 M takes part in some metabolic reaction as a catalyst or regulator. PMID:19873419

Gaffron, H.

1945-01-01

173

Design and Synthesis of Novel Quinone Inhibitors Targeted to the Redox Function of Apurinic/Apyrimidinic Endonuclease 1/Redox Enhancing Factor-1 (Ape1/Ref-1)  

PubMed Central

The multifunctional enzyme apurinic endonuclease 1/redox enhancing factor 1 (Ape1/Ref-1) maintains genetic fidelity through the repair of apurinic sites and regulates transcription through redox-dependent activation of transcription factors. Ape1 can therefore serve as a therapeutic target in either a DNA repair or transcriptional context. Inhibitors of the redox function can be used as either therapeutics or novel tools for separating the two functions for in vitro study. Presently there exist only a few compounds that have been reported to inhibit Ape1 redox activity; here we describe a series of quinones that exhibit micromolar inhibition of the redox function of Ape1. Benzoquinone and naphthoquinone analogs of the Ape1-inhibitor E3330 were designed and synthesized to explore structural effects on redox function and inhibition of cell growth. Most of the naphthoquinones were low micromolar inhibitors of Ape1 redox activity, and the most potent analogs inhibited tumor cell growth with IC50 values in the 10–20 micromolar range. PMID:20067291

Nyland, Rodney L.; Luo, Meihua; Kelley, Mark R.; Borch, Richard F.

2010-01-01

174

Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6.  

PubMed

During aerobic degradation of naphthalene-2-sulfonate (2NS), Sphingomonas xenophaga strain BN6 produces redox mediators which significantly increase the ability of the strain to reduce azo dyes under anaerobic conditions. It was previously suggested that 1,2-dihydroxynaphthalene (1,2-DHN), which is an intermediate in the degradative pathway of 2NS, is the precursor of these redox mediators. In order to analyze the importance of the formation of 1,2-DHN, the dihydroxynaphthalene dioxygenase gene (nsaC) was disrupted by gene replacement. The resulting strain, strain AKE1, did not degrade 2NS to salicylate. After aerobic preincubation with 2NS, strain AKE1 exhibited much higher reduction capacities for azo dyes under anaerobic conditions than the wild-type strain exhibited. Several compounds were present in the culture supernatants which enhanced the ability of S. xenophaga BN6 to reduce azo dyes under anaerobic conditions. Two major redox mediators were purified from the culture supernatants, and they were identified by high-performance liquid chromatography-mass spectrometry and comparison with chemically synthesized standards as 4-amino-1,2-naphthoquinone and 4-ethanolamino-1,2-naphthoquinone. PMID:12200285

Keck, Andreas; Rau, Jörg; Reemtsma, Thorsten; Mattes, Ralf; Stolz, Andreas; Klein, Joachim

2002-09-01

175

Effects of Atovaquone and Diospyrin-Based Drugs on Ubiquinone Biosynthesis in Pneumocystis carinii Organisms  

PubMed Central

The naphthoquinone atovaquone is effective against Plasmodium and Pneumocystis carinii carinii. In Plasmodium, the primary mechanism of drug action is an irreversible binding to the mitochondrial cytochrome bc1 complex as an analog of ubiquinone. Blockage of the electron transport chain ultimately inhibits de novo pyrimidine biosynthesis since dihydroorotate dehydrogenase, a key enzyme in pyrimidine biosynthesis, is unable to transfer electrons to ubiquinone. In the present study, the effect of atovaquone was examined on Pneumocystis carinii carinii coenzyme Q biosynthesis (rather than electron transport and respiration) by measuring its effect on the incorporation of radiolabeled p-hydroxybenzoate into ubiquinone in vitro. A triphasic dose-response was observed, with inhibition at 10 nM and then stimulation up to 0.2 ?M, followed by inhibition at 1 ?M. Since other naphthoquinone drugs may also act as analogs of ubiquinone, diospyrin and two of its derivatives were also tested for their effects on ubiquinone biosynthesis in P. carinii carinii. In contrast to atovaquone, these drugs did not inhibit the incorporation of p-hydroxybenzoate into P. carinii carinii ubiquinone. PMID:10602716

Kaneshiro, Edna S.; Sul, Donggeun; Hazra, Banasri

2000-01-01

176

Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells.  

PubMed

Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity. PMID:25633658

Kim, Min Young; Park, Seong-Joon; Shim, Jae Woong; Yang, Kwangmo; Kang, Ho Sung; Heo, Kyu

2015-04-01

177

Chemiluminescence assay for quinones based on generation of reactive oxygen species through the redox cycle of quinone.  

PubMed

A sensitive and selective chemiluminescence assay for the determination of quinones was developed. The method was based on generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol as reductant, and then the generated reactive oxygen was detected by luminol chemiluminescence. The chemiluminescence was intense, long-lived, and proportional to quinone concentration. It is concluded that superoxide anion was involved in the proposed chemiluminescence reaction because the chemiluminescence intensity was decreased only in the presence of superoxide dismutase. Among the tested quinones, the chemiluminescence was observed from 9,10-phenanthrenequinone, 1,2-naphthoquinone, and 1,4-naphthoquinone, whereas it was not observed from 9,10-anthraquinone and 1,4-benzoquinone. The chemiluminescence property was greatly different according to the structure of quinones. The chemiluminescence was also observed for biologically important quinones such as ubiquinone. Therefore, a simple and rapid assay for ubiquinone in pharmaceutical preparation was developed based on the proposed chemiluminescence reaction. The detection limit (blank + 3SD) of ubiquinone was 0.05 microM (9 ng/assay) with an analysis time of 30 s per sample. The developed assay allowed the direct determination of ubiquinone in pharmaceutical preparation without any purification procedure. PMID:19066858

Kishikawa, Naoya; Ohkubo, Nobuhiro; Ohyama, Kaname; Nakashima, Kenichiro; Kuroda, Naotaka

2009-02-01

178

Metal-independent reduction of hydrogen peroxide by semiquinones.  

PubMed

The quinones 1,4-naphthoquinone (NQ), tetramethyl-1,4-benzoquinone (DQ), 2-methyl-1,4-naphthoquinone (MNQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UBQ-0), 2,6-dimethylbenzoquinone (DMBQ), 2,6-dimethoxybenzoquinone (DMOBQ), and 9,10-phenanthraquinone (PHQ) enhance the rate of H2O2 reduction by ascorbate, under anaerobic conditions, as detected from the amount of methane produced after hydroxyl radical reaction with dimethyl sulfoxide. The amount of methane produced increases with an increase in the quinone one-electron reduction potential. The most active quinone in this series, PHQ, is only 14% less active than the classic Fenton reagent cation, Fe(2+), at the same concentration. Since PHQ is a common toxin present in diesel combustion smoke, the possibility that PHQ-mediated catalysis of hydroxyl radical formation is similar to that of Fe(2+) adds another important pathway to the modes in which PHQ can execute its toxicity. Because quinones are known to enhance the antitumor activity of ascorbate and because ascorbate enhances the formation of H2O2 in tissues, the quinone-mediated reduction of H2O2 should be relevant to this type of antitumor activity, especially under hypoxic conditions. PMID:25046766

Sanchez-Cruz, Pedro; Santos, Areli; Diaz, Stephany; Alegría, Antonio E

2014-08-18

179

Single crystal X-ray structure of Lawsone anion: Evidence for coordination of alkali metal ions and formation of naphthosemiquinone radical in basic media  

NASA Astrophysics Data System (ADS)

2-hydroxy-1,4-naphthoquinone; Lawsone (Lw) is a natural compound found in henna leaves. The reaction of lawsone with 'Na' metal (Lw-1), CH3COONa (Lw-2), NaOH (Lw-3), KOH (Lw-4), K2CO3 (Lw-5) and Tris(hydroxymethyl)aminomethane (Lw-6) were studied. Red orange solids obtained for Lw-1 to Lw-6 are characterized by Elemental Analysis, FTIR, 1HNMR and EPR studies. The results reveal the coordination of alkali metals 'Na' and 'K' to lawsone anion. The single crystal X-ray structure of Lw-6 was solved and it crystallizes in triclinic space group P-1 with extensive hydrogen bonding network of Csbnd H⋯O, Nsbnd H⋯O and Osbnd H⋯O between cations and anions. Polycrystalline powder X-band EPR spectra of Lw-1 to Lw-5 shows signals ˜2.004 at 133 K, while Lw-6 is EPR silent. The naphthosemiquinone (NSQ-rad ) radical formed in Lw-2 to Lw-5, is due to disproportion reaction of catechol and naphthoquinone.

Salunke-Gawali, Sunita; Kathawate, Laxmi; Shinde, Yogesh; Puranik, Vedavati G.; Weyhermüller, Thomas

2012-02-01

180

Naphthazarin has a protective effect on the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson's disease model.  

PubMed

"Neurohormesis" refers to a response to a moderate level of stress that enhances the ability of the nervous systems to resist more severe stress that might be lethal or cause dysfunction or disease. Neurohormetic phytochemicals, such as, resveratrol, sulforaphane, curcumin, and catechins, protect neurons against injury and disease. Naphthoquinones, such as, juglone and plumbagin, induce robust hormetic stress responses. However, the possibility that subtoxic dose of 5,8-dihydroxy-1,4-naphthoquinone (naphthazarin) may protect against brain diseases via the activation of an adaptive stress response pathway in the brain has not been investigated. In this study, we examined the neurohormetic effect of a subtoxic dose of naphthazarin in a Parkinson's disease model. It was found that, under these conditions, naphthazarin enhanced movement ability, prevented loss of dopaminergic neurons, and attenuated neuroinflammation in a 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson's disease model. Furthermore, it was found that the neuroprotective effect of naphthazarin was mediated by the suppression of astroglial activation in response to 1-methyl-4-phenylpyridine treatment. In conclusion, we suggest that naphthazarin, in view of its hormetic effect on neuroprotection, be viewed as a potential treatment for Parkinson's disease and other neurodegenerative diseases associated with neuroinflammation. PMID:22513651

Choi, Seon Young; Son, Tae Gen; Park, Hee Ra; Jang, Young Jung; Oh, Shin Bi; Jin, Bora; Lee, Jaewon

2012-09-01

181

Anticancer Compound Plumbagin and Its Molecular Targets: A Structural Insight into the Inhibitory Mechanisms Using Computational Approaches  

PubMed Central

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. The present study is the first attempt to provide structural insights into the binding mode of plumbagin to five cancer signaling proteins viz. PI3K?, AKT1/PKB?, Bcl-2, NF-?B, and Stat3 using molecular docking and (un)binding simulation analysis. We validated plumbagin docking to these targets with previously known important residues. The study also identified and characterized various novel interacting residues of these targets which mediate the binding of plumbagin. Moreover, the exact modes of inhibition when multiple mode of inhibition existed was also shown. Results indicated that the engaging of these important interacting residues in plumbagin binding leads to inhibition of these cancer-signaling proteins which are key players in the pathogenesis of cancer and thereby ceases the progression of the disease. PMID:24586269

Beg, Mohd A.; Suhail, Mohd; Chaudhary, Adeel G. A.; Damanhouri, Ghazi A.; Abuzenadah, Adel M.; Rehan, Mohd

2014-01-01

182

Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.  

PubMed

In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC?? values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). PMID:22174077

Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas

2012-03-01

183

Charge transfer and reactivity of n[pi]* and [pi][pi]* organic triplets, including anthraquinonesulfonates, in interactions with inorganic anions. A comparative study based on classical Marcus theory  

SciTech Connect

The study of rates and radical yields in charge-transfer (CT) interactions between organic triplets and simple anions has been extended to triplets of 1-sulfonate, 1,5-disulfonate, and 2,6-disulfonate derivatives of 9,10-anthraquinone and of fluorescein dianion. New information is also presented on 1,4-naphthoquinone. For comparison, H-atom-transfer reactions of the anthraquinone triplets with 2-propanol were also studied. The new triplet-anion results, together with many previously reported data, are analyzed in the framework of a simplified Marcus theory by which the activation energy of formation of the pure charge-transfer exciplex, [Delta]G[sup [double dagger

Loeff, I.; Rabani, J.; Treinin, A. (Hebrew Univ., Jerusalem (Israel)); Linschitz, H. (Brandeis Univ., Waltham, MA (United States))

1993-10-06

184

Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide  

SciTech Connect

Equilibrium solubilities of p-quinone (1,4-benzoquinone) and 9,10-anthraquinone at 35 C and 45 C in supercritical carbon dioxide over a pressure range of about (85--300) bar have been measured using a supercritical fluid extractor coupled with a high-pressure liquid chromatography apparatus. The solubility results, along with those reported in the literature for 1,4-naphthoquinone, are correlated with a modified Peng-Robinson equation of state. The ability of a supercritical fluid to separate a multicomponent mixture is unique, since it utilizes the salient features of both distillation and liquid extraction. The solubility of a solute in a supercritical fluid is the most important thermophysical property that has to be determined and modeled for an efficient design of any extraction based on supercritical solvents.

Coutsikos, P.; Magoulas, K.; Tassios, D. [National Technical Univ. of Athens (Greece)] [National Technical Univ. of Athens (Greece)

1997-05-01

185

Ultrasound and microwave assisted synthesis of isoindolo-1,2-diazine: a comparative study.  

PubMed

A comparative study, ultrasound (US) versus microwave (MW) versus conventional thermal heating (TH), for synthesis of isoindolo-1,2-diazine is described. The reaction pathway is fast, efficient and straight applicable, involving a Huisgen [3+2] dipolar cycloaddition of cycloimmonium ylides to 1,4-naphthoquinone. A feasible reaction mechanism for the obtaining of the fully aromatized tetra- and penta- cyclic isoindolo-1,2-diazine is presented. Under US irradiation the yields are much higher (sometimes substantially, by almost double), the reaction time decreases substantially, the reaction conditions are milder. The use of a generator with a higher nominal power induces higher yields and short reaction times. Overall the use of US it proved to be more efficient than MW or TH. A feasible explication for US efficiency is presented. PMID:22464108

Bejan, Vasilichia; Mantu, Dorina; Mangalagiu, Ionel I

2012-09-01

186

Onosma L.: A review of phytochemistry and ethnopharmacology.  

PubMed

The genus Onosma L. (Boraginaceae) includes about 150 species distributed world-wide in which only about 75 plants has been described for its morphology and less than 10 plants for their chemical constituents and clinical potential. The phytochemical reports of this genus revels that it comprise mainly aliphatic ketones, lipids, naphthazarins, alkaloids, phenolic compounds, naphthoquinones, flavones while most important are shikonins and onosmins. The plants are traditionally used as laxative, anthelmintic and for alexipharmic effects. The plants are also equally use in eye, blood diseases, bronchitis, abdominal pain, stangury, thirst, itch, lecoderma, fever, wounds, burns, piles and urinary calculi. The flowers of various plants are prescribed as stimulants, cardiotonic, in body swelling while leaves are used as purgative and in cutaneous eruptions. The roots are used for coloring food stuffs, oils and dying wool and in medicinal preparations. This review emphasizes the distribution, morphology, phytochemical constituents, ethnopharmacology, which may help in future research. PMID:24347922

Kumar, Neeraj; Kumar, Rajnish; Kishore, Kamal

2013-07-01

187

Pharmacological properties of shikonin - a review of literature since 2002.  

PubMed

The naphthoquinone shikonin is the main active principle of Zicao, a traditional Chinese herbal medicine made from the dried root of Lithospermum erythrorhizon. Studies carried out over the past 30 years have provided a scientific basis for the use of Zicao which has been long employed in folk medicine to treat a variety of inflammatory and infectious diseases. In particular, shikonin has been shown to possess many diverse properties, including antioxidant, anti-inflammatory, antithrombotic, antimicrobial, and wound healing effects. The fact that shikonin shows so many beneficial properties has increased the interest in this molecule dramatically, especially in the past few years. The aim of this review is to provide an update of the new data published on shikonin, whose wide spectrum of pharmacological effects as well as pharmacokinetic properties and toxicity make it a highly interesting target molecule. PMID:24155261

Andújar, Isabel; Ríos, José Luis; Giner, Rosa María; Recio, María Carmen

2013-12-01

188

Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay.  

PubMed

The antiinflammatory effects of ethanol and aqueous extracts from Drosera rotundifolia and from Drosera madagascariensis were compared in vivo in the HET-CAM assay. Both extracts from D. rotundifolia and the ethanol extract from D. madagascariensis showed remarkable efficacy at doses of 500 microg/pellet. The inhibition of the inflammation by the extracts was stronger than that by 50 microg hydrocortisone/pellet. In contrast, there was only a very weak effect observed at a dose of 500 microg/pellet of the water extract from D. madagascariensis. The chemical analyses of the extracts showed that the effect cannot be attributed to naphthoquinones, but might be due to flavonoids. Ellagic acid obviously plays an important role in the antiangiogenic effect of the Drosera extracts. PMID:16041727

Paper, Dietrich H; Karall, Elisabeth; Kremser, Michaela; Krenn, Liselotte

2005-04-01

189

In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia.  

PubMed

In investigations of the anti-inflammatory and spasmolytic effects of Drosera rotundifolia two extracts were tested in different in vitro assays. An aqueous and an ethanolic extract inhibited human neutrophil elastase, achieving IC50 values of 5 and 1 microg/mL, respectively. The very low naphthoquinone concentrations in the extracts seem not to be responsible for the effect, as the pure compounds were not effective in the test system used. Thus, flavonoids like hyperoside, quercetin and isoquercitrin, which were detected in the extracts in considerable concentrations, may contribute to the activity. These substances showed activity in the assay. Ellagic acid, detected especially in the ethanolic extract in higher amounts, was substantially less active than the flavonoids. In guinea-pig ileum the extracts led to an antispasmodic effect possibly by affecting an allosteric binding site of the muscarinic M3 receptors. PMID:15344845

Krenn, Liselotte; Beyer, Gabriele; Pertz, Heinz H; Karall, Elisabeth; Kremser, Michaela; Galambosi, Bertalan; Melzig, Matthias F

2004-01-01

190

Laser flash photolysis and magnetic-field-effect studies on interaction of thymine and thymidine with menadione: role of sugar in controlling reaction pattern  

NASA Astrophysics Data System (ADS)

The magnetic field effect (MFE) in conjunction with laser flash photolysis has been used for the study of the interaction of one of the small drug like quinone molecules, 2-methyl, 1,4-naphthoquinone, commonly known as menadione (MQ), with one of the DNA bases, thymine (THN), and its corresponding nucleoside, thymidine (THDN), in acetonitrile (ACN) and sodium dodecylsulfate (SDS) micelles. It has been observed that THN undergoes electron transfer (ET) and hydrogen (H) abstraction with MQ, while THDN undergoes only H abstraction in both the media. However, our earlier studies showed that a purine base, adenine (ADN), and its nucleoside, 2'-deoxyadenosine (ADS), undergo ET in ACN and H abstraction in SDS. Here we have attempted to explain the differences in the reactions of these DNA bases with MQ. We also reveal the crucial role of a sugar unit in altering the behavior of purine and pyrimidine bases with respect to ET and H abstraction.

Bose, Adity; Dey, Debarati; Basu, Samita

2008-04-01

191

Quinone-enhanced sonochemical production of nitric oxide from s-nitrosoglutathione  

PubMed Central

Sonolysis at 75 kHz of argon- and air-saturated aqueous solutions at pH 7.4 containing s-nitrosogluthathione (GSNO) enhances the production rate of nitric oxide (NO). The quinones, anthraquinone-2-sulfonate (AQ2S) and anthraquinone-2,7-disulfonate (AQ27S) further enhance the NO production over that produced in quinone-depleted sonicated solutions. In contrast, the hydrophobic quinones juglone (JQ) and 1,4-naphthoquinone (NQ) inhibit ultrasound-induced NO detection as compared to quinone-depleted solutions. Larger sonolytical decomposition of the hydrophobic quinones NQ and JQ, as compared to AQ2S and AQ27S, is detected which correlates with a larger production of pyrolysis-derived carbon-centered radicals. Reaction of those radicals with NO could explain NQ and JQ inhibition. This work suggests that sulfonated quinones could be used to enhance NO release from GSNO in tissues undergoing ultrasound irradiation. PMID:18595761

Alegría, Antonio E.; Dejesús-Andino, Francisco J.; Sanchez-Cruz, Pedro

2008-01-01

192

Effects of fluorescence on the spatial resolution of photoresist materials  

NASA Astrophysics Data System (ADS)

Five-substituted diazo-naphthoquinones (DNQs) are photolyzed in novolac and in various solvents in the presence of H2O. HPLC analysis reveals that, depending on the matrix or the solvent, a large fraction of the DNQ is converted into products other than indene carboxylic acid (ICA). These include products from fragmentation, dimerization, and azo- coupling as well as products from the reaction of the solvent with intermediates in the main photoreaction. A larger amount of fragmentation products is found by excimer laser exposure at 308 nm or 248 nm. The side products mentioned above are fluorescent and their fluorescence band overlaps with the first UV-absorption band of the DNQ. Photolysis of the photosensitizer by this fluorescence may affect the spatial resolution of a photoresist. Numerical simulation of the magnitude of this effect shows that, in practice, the conversion of photosensitizer due to fluorescence is in the order of a few percent at most.

Vleggaar, J. J. M.; Huizer, A. H.; Varma, Cyril A.

1993-09-01

193

Combination of a novel electrode material and artificial mediators to enhance power generation in an MFC.  

PubMed

This study focuses on two main aspects: developing a novel cost-effective electrode material and power production from domestic wastewater using three different mediators. Methylene blue (MB), neutral red (NR) and 2-hydroxy-1,4-naphthoquinone (HNQ) were selected as electrode mediators with different concentrations. A tin-coated copper mesh electrode was tested as anode electrode. Maximum power density of the microbial fuel cell (MFC) with 300 ?M MB was 636 mW/m(2). Optimal mediator concentrations with respect to the achieved maximum power output for MB, NR and HNQ were 300 ?M, 200 ?M and 50 ?M, respectively. The results demonstrate that tin-coated copper mesh showed a higher biocompatibility and electrical conductivity. PMID:25714629

Taskan, Ergin; Ozkaya, Bestamin; Hasar, Halil

2015-01-01

194

Quenching of bacteriochlorophyll fluorescence in chlorosomes from Chloroflexus aurantiacus by exogenous quinones.  

PubMed

The quenching of bacteriochlorophyll (BChl) c fluorescence in chlorosomes isolated from Chloroflexus aurantiacus was examined by the addition of various benzoquinones, naphthoquinones (NQ), and anthraquinones (AQ). Many quinones showed strong quenching in the micromolar or submicromolar range. The number of quinone molecules bound to the chlorosomes was estimated to be as small as one quinone molecule per 50 BChl c molecules. Quinones which exhibit a high quenching effect have sufficient hydrophobicity and one or more hydroxyl groups in the alpha positions of NQ and AQ. Chlorobiumquinone has been suggested to be essential for the endogenous quenching of chlorosome fluorescence in Chlorobium tepidum under oxic conditions. We suggest that the quenching effect of chlorobiumquinone in chlorosomes from Chl. tepidum is related to the 1'-oxo group neighboring the dicarbonyl group. PMID:10989605

Tokita, S; Frigaard, N U; Hirota, M; Shimada, K; Matsuura, K

2000-09-01

195

Stress-related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae.  

PubMed

The discovery of a novel biosynthetic pathway to isoquinoline alkaloids is described. The naphthylisoquinoline alkaloid dioncophylline A, one of the most prominent representatives of a new class of structurally and pharmacologically intriguing secondary metabolites, is shown to originate from acetate units, both molecular halves, the isoquinoline part and the naphthalene portion, being formed from identical polyketide precursors. All other tetrahydroisoquinoline alkaloids previously investigated, ultimately originate from aromatic amino acids. The novel pathway to isoquinoline alkaloids (hence acetogenic) was proved by feeding experiments with (13)C-labelled precursors administered to callus cultures of Triphyophyllum peltatum (Dioncophyllaceae), followed by NMR investigations using the potent cryoprobe methodology. The new pathway is largely stress-sensitive: upon exposure to chemical, biotic or physical stress, T. peltatum stops producing the isoquinoline part, so that the naphthalene moiety accumulates in the chemical form of naphthoquinones like plumbagin and droserone and the chiral tetralone isoshinanolone. PMID:11559737

Bringmann, G; Feineis, D

2001-10-01

196

Derivatization strategies for the determination of biogenic amines in wines by chromatographic and electrophoretic techniques.  

PubMed

This paper revises the derivatization approaches for the determination of biogenic amines in wines. Since most of these amines display poor spectroscopic features to be detected by UV absorption or emission (fluorescence) spectroscopy, derivatization is necessary to attain the desired sensitivity. Reagents such as o-phthaldialdehyde, fluorenylmethylchloroformate, dansyl-Cl and dabsyl-Cl have widely been used for analytical labeling through amino group. A comparison of features of off- and on-line pre- and post chromatographic/electrophoretic labeling is given using 1,2-naphthoquinone-4-sulfonate (NQS) as an example. The evaluation of the influence of the wine sample composition on the derivatization process indicates that pre-column labeling may undergo more severe matrix effects. PMID:21185242

Hernández-Cassou, Santiago; Saurina, Javier

2011-05-15

197

A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates.  

PubMed

Fnq26 from Streptomyces cinnamonensis DSM 1042 is a new member of the recently identified CloQ/Orf2 class of prenyltransferases. The enzyme was overexpressed in E. coli and purified to apparent homogeneity, resulting in a soluble, monomeric protein of 33.2 kDa. The catalytic activity of Fnq26 is independent of the presence of Mg(2+) or other divalent metal ions. With flaviolin (2,5,7-trihydroxy-1,4-naphthoquinone) as substrate, Fnq26 catalyzes the formation of a carbon-carbon-bond between C-3 (rather than C-1) of geranyl diphosphate and C-3 of flaviolin, i.e. an unusual "reverse" prenylation. With 1,3-dihydroxynaphthalene and 4-hydroxybenzoate as substrates Fnq26 catalyzes O-prenylations. PMID:17543953

Haagen, Yvonne; Unsöld, Inge; Westrich, Lucia; Gust, Bertolt; Richard, Stéphane B; Noel, Joseph P; Heide, Lutz

2007-06-26

198

Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway  

SciTech Connect

Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)] [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States) [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)] [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

2013-04-19

199

Inhibition of the HIF1?-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II).  

PubMed

Protein-protein interactions between the hypoxia inducible factor (HIF) and the transcriptional coactivators p300/CBP are potential cancer targets due to their role in the hypoxic response. A natural product based screen led to the identification of indandione and benzoquinone derivatives that reduce the tight interaction between a HIF-1? fragment and the CH1 domain of p300. The indandione derivatives were shown to fragment to give ninhydrin, which was identified as the active species. Both the naphthoquinones and ninhydrin were observed to induce Zn(II) ejection from p300 and the catalytic domain of the histone demethylase KDM4A. Together with previous reports on the effects of related compounds on HIF-1? and other systems, the results suggest that care should be taken in interpreting biological results obtained with highly electrophilic/thiol modifying compounds. PMID:25023609

Jayatunga, Madura K P; Thompson, Sam; McKee, Tawnya C; Chan, Mun Chiang; Reece, Kelie M; Hardy, Adam P; Sekirnik, Rok; Seden, Peter T; Cook, Kristina M; McMahon, James B; Figg, William D; Schofield, Christopher J; Hamilton, Andrew D

2015-04-13

200

Onosma L.: A review of phytochemistry and ethnopharmacology  

PubMed Central

The genus Onosma L. (Boraginaceae) includes about 150 species distributed world-wide in which only about 75 plants has been described for its morphology and less than 10 plants for their chemical constituents and clinical potential. The phytochemical reports of this genus revels that it comprise mainly aliphatic ketones, lipids, naphthazarins, alkaloids, phenolic compounds, naphthoquinones, flavones while most important are shikonins and onosmins. The plants are traditionally used as laxative, anthelmintic and for alexipharmic effects. The plants are also equally use in eye, blood diseases, bronchitis, abdominal pain, stangury, thirst, itch, lecoderma, fever, wounds, burns, piles and urinary calculi. The flowers of various plants are prescribed as stimulants, cardiotonic, in body swelling while leaves are used as purgative and in cutaneous eruptions. The roots are used for coloring food stuffs, oils and dying wool and in medicinal preparations. This review emphasizes the distribution, morphology, phytochemical constituents, ethnopharmacology, which may help in future research. PMID:24347922

Kumar, Neeraj; Kumar, Rajnish; Kishore, Kamal

2013-01-01

201

REGIOSELECTIVE MULTICOMPONENT DOMINO REACTIONS PROVIDING RAPID AND EFFICIENT ROUTES TO FUSED ACRIDINES  

PubMed Central

Regioselective three-component reactions of aromatic aldehydes with indazol-5-amine and 2-hydroxy-1,4-naphthoquinone in HOAc under microwave irradiation have been developed. In this one-pot reaction, a series of new pyrazole-fused benzo[h]acridine derivatives with 1,2-diketone unit were synthesized with high chemical yields. The resulting pyrazole-fused acridines were employed to further react with aldehydes and ammonium acetate to give polycyclic oxazole-fused pyrazolo[3,4-j]acridines. The present green synthesis shows several advantages including operational simplicity and fast reaction rates, which makes it a useful and attractive process of library generation for drug discovery. PMID:25364095

Zhang, Jin-Peng; Fan, Wei; Ding, Jie; Jiang, Bo; Tu, Shu-Jiang; Li, Guigen

2014-01-01

202

Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential  

SciTech Connect

Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K{sup +}-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.

Fernandes, Andreia S. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal); Konstantinov, Alexander A. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal); A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow (Russian Federation); Teixeira, Miguel [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal); Pereira, Manuela M. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Av. da Republica, Apartado 127, 2784-505 Oeiras (Portugal)]. E-mail: mpereira@itqb.unl.pt

2005-05-06

203

Melanogenesis inhibition of ?-lapachone, a natural product from Tabebuia avellanedae, with effective in vivo lightening potency.  

PubMed

?-Lapachone is an ortho naphthoquinone obtained from the bark of the lapacho tree (Tabebuia avellanedae), which has been used medicinally for centuries. The purpose of this study was to investigate the effects of ?-lapachone on inhibitory mechanism of melanogenesis. ?-Lapachone inhibited melanin synthesis and tyrosinase activity at 0.8 ?M in melan-a cells. Also, ?-lapachone reduced the expression of tyrosinase and tyrosinase-related protein-1 at transcriptional and translational levels. The decreased expression of tyrosinase and tyrosinase-related protein-1 might result from the reduced microphthalmia-associated transcription factor (MITF) level which regulates major melanogenic proteins. The reduced level of MITF was associated with delayed ERK activation by ?-lapachone. Furthermore, ?-lapachone reduced melanogenesis in the human 3D skin tissue culture; besides, it dramatically inhibited body pigmentation of zebrafish and decreased melanin content and tyrosinase activity. These results show that ?-lapachone may be useful as a potential depigmentation agent for various hyperpigmentation disorders. PMID:25663088

Kim, Jin Hee; Lee, Se Mi; Myung, Cheol Hwan; Lee, Kyung Rhim; Hyun, Seung Min; Lee, Ji Eun; Park, Young Sun; Jeon, Se Rim; Park, Jong Il; Chang, Sung Eun; Hwang, Jae Sung

2015-04-01

204

Interactions between manganese oxides and multiple-ringed aromatic compounds  

SciTech Connect

Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

Whelan, G. (Pacific Northwest Lab., Richland, WA (United States)); Sims, R.C. (Utah State Univ., Logan, UT (United States). Dept. of Civil and Environmental Engineering)

1992-08-01

205

Interactions between manganese oxides and multiple-ringed aromatic compounds  

SciTech Connect

Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

Whelan, G. [Pacific Northwest Lab., Richland, WA (United States); Sims, R.C. [Utah State Univ., Logan, UT (United States). Dept. of Civil and Environmental Engineering

1992-08-01

206

Lapachol as an epithelial tumor inhibitor agent in Drosophila melanogaster heterozygote for tumor suppressor gene wts.  

PubMed

The search for new and effective antitumor agents with fewer cytotoxic side effects on normal tissue has increasingly become important. Lapachol, a natural organic compound isolated from the lapacho tree (Tabebuia avellandedae), is chemically identified as belonging to the naphthoquinone group and is known for its anti-inflammatory, analgesic and antibiotic properties, although there are questions about its effectiveness for treating neoplasic cells. We evaluated the antitumoral effects of lapachol by testing for clones of epithelial tumors in Drosophila melanogaster. Seventy-two-hour old larvae bred from wts/TM3, Sb(1) females and mwh/mwh males, were treated with different concentrations of lapachol (20, 40 and 60 ?g/mL). Lapachol alone did not significantly increase the number of epithelial tumors. However, lapachol did significantly reduce the number of tumors provoked by doxorubicin. PMID:22194187

Costa, W F; Oliveira, A B; Nepomuceno, J C

2011-01-01

207

Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments  

PubMed Central

We have screened the Library of Pharmacologically Active Compounds (LOPAC) and the National Institutes of Health (NIH) Small Molecule Repository (SMR) libraries in a horseradish peroxidase–phenol red (HRP-PR) H2O2 detection assay to identify redox cycling compounds (RCCs) capable of generating H2O2 in buffers containing dithiothreitol (DTT). Two RCCs were identified in the LOPAC set, the ortho-naphthoquinone ?-lapachone and the para-naphthoquinone NSC 95397. Thirty-seven (0.02%) concentration-dependent RCCs were identified from 195,826 compounds in the NIH SMR library; 3 singleton structures, 9 ortho-quinones, 2 para-quinones, 4 pyrimidotriazinediones, 15 arylsulfonamides, 2 nitrothiophene-2-carboxylates, and 2 tolyl hydrazides. Sixty percent of the ortho-quinones and 80% of the pyrimidotriazinediones in the library were confirmed as RCCs. In contrast, only 3.9% of the para-quinones were confirmed as RCCs. Fifteen of the 251 arylsulfonamides in the library were confirmed as RCCs, and since we screened 17,868 compounds with a sulfonamide functional group we conclude that the redox cycling activity of the arylsulfonamide RCCs is due to peripheral reactive enone, aromatic, or heterocyclic functions. Cross-target queries of the University of Pittsburgh Drug Discovery Institute (UPDDI) and PubChem databases revealed that the RCCs exhibited promiscuous bioactivity profiles and have populated both screening databases with significantly higher numbers of active flags than non-RCCs. RCCs were promiscuously active against protein targets known to be susceptible to oxidation, but were also active in cell growth inhibition assays, and against other targets thought to be insensitive to oxidation. Profiling compound libraries or the hits from screening campaigns in the HRP-PR H2O2 detection assay significantly reduce the timelines and resources required to identify and eliminate promiscuous nuisance RCCs from the candidates for lead optimization. PMID:20070233

2010-01-01

208

Synthesis, characterization and molecular structures of homologated analogs of 2-bromo-3-(n-alkylamino)-1,4-napthoquinone  

NASA Astrophysics Data System (ADS)

Four analogues of 2-bromo-3-(n-alkylamino)-1,4-napthoquinone (where n-alkyl is methyl in L-1Br, ethyl in L-2Br, propyl in L-3Br and butyl in L-4Br) are synthesized and characterized. A reaction mechanism is proposed for the formation of L-1Br to L-4Br from the starting material 2,3-dibromo-1,4-naphthoquinone. The ?NH frequency in the FT-IR spectra is affected by the intramolecular hydrogen bonding in L-1Br to L-4Br and is observed ˜3267 cm-1 in L-2Br. A shift of ˜25 cm-1 is observed in the ?CBr frequency in all the compounds as compared to 2,3-dibromo-1,4-naphthoquinone (627 cm-1). A broad charge transfer band is observed between 400 and 600 nm in the UV-Vis spectra, which imparts red colour to all the compounds. Molecular structures of L-2Br and L-3Br were studied by single crystal X-ray diffraction studies. Molecules of L-2Br crystallize in Pca21, whereas the molecule L-3Br crystallizes in the P-1 space group. Molecules of L-2Br forms a polymeric chain through NH⋯O interaction and forms beautiful butterfly like arrangement of molecules when viewed down the 'a' axis. Ladder like polymeric chain of molecules is observed in L-3Br via CH⋯O and NH⋯O interactions. Every alternating neighbouring chains of L-3Br, show ?-? stacking interactions between the quinonoid rings of the molecules, however this interaction is not observed in L-2Br.

Salunke-Gawali, Sunita; Pawar, Omkar; Nikalje, Milind; Patil, Rishikesh; Weyhermüller, Thomas; Puranik, Vedavati G.; Badireenath Konkimalla, V.

2014-01-01

209

Synthesis of new chlorin?e6 trimethyl and protoporphyrin?IX dimethyl ester derivatives and their photophysical and electrochemical characterizations.  

PubMed

In view of increasing demands for efficient photosensitizers for photodynamic therapy (PDT), we herein report the synthesis and photophysical characterizations of new chlorin?e6 trimethyl ester and protoporphyrin?IX dimethyl ester dyads as free bases and Zn(II) complexes. The synthesis of these molecules linked at the ?-pyrrolic positions to pyrano[3,2-c]coumarin, pyrano[3,2-c]quinolinone, and pyrano[3,2-c]naphthoquinone moieties was performed by using the domino Knoevenagel hetero Diels-Alder reaction. The ?-methylenechromanes, ?-methylenequinoline, and ortho-quinone methides were generated in situ from a Knoevenagel reaction of 4-hydroxycoumarin, 4-hydroxy-6-methylcoumarin, 4-hydroxy-N-methylquinolinone, and 2-hydroxy-1,4-naphthoquinone, respectively, with paraformaldehyde in dioxane. All the dyads as free bases and as Zn(II) complexes were obtained in high yields. All new compounds were fully characterized by 1D and 2D NMR techniques, UV/Vis spectroscopy, and HRMS. Their photophysical properties were evaluated by measuring the fluorescence quantum yield, the singlet oxygen quantum yield by luminescence detection, and also the triplet lifetimes were correlated by flash photolysis and intersystem crossing (ISC) rates. The fluorescence lifetimes were measured by a time-correlated single photon count (TCSPC) method, fluorescence decay associated spectra (FDAS), and anisotropy measurements. Magnetic circular dichroism (MCD) and circular dichroism (CD) spectra were recorded for one Zn(II) complex in order to obtain information, respectively, on the electronic and conformational states, and interpretation of these spectra was enhanced by molecular orbital (MO) calculations. Electrochemical studies of the Zn(II) complexes were also carried out to gain insights into their behavior for such applications. PMID:25171181

Menezes, José C J M D S; Faustino, M Amparo F; de Oliveira, Kleber T; Uliana, Marciana P; Ferreira, Vitor F; Hackbarth, Steffen; Röder, Beate; Teixeira Tasso, Thiago; Furuyama, Taniyuki; Kobayashi, Nagao; Silva, Artur M S; Neves, M Graça P M S; Cavaleiro, José A S

2014-10-13

210

Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells.  

PubMed

The release of particulate pollutants into the air through burning of coal, crude oil, diesel, coal tar, etc. raises concerns of potential health hazards to the exposed human population. Polycyclic aromatic hydrocarbons (PAHs) are major toxic constituents of particulate matter (PM), which upon ingestion get metabolized to even more toxic metabolites such as quinones. The PAHs levels were assessed in both respirable particulate matter (RSPM, <10?M size) and suspended particulate matter (SPM, >10?M size) of urban ambient air (UAA) and that of major contributors viz. diesel exhaust particles (DEPs) and coal tar combustions emissions (CTCE). Seven US Environmental Protection Agency (USEPA) prioritized PAHs in RSPM and 10 in SPM were detected in UAA. Ten and 15 prioritized PAHs, respectively, were also detected in diesel exhaust particles (DEP) and coal tar combustion emission (CTCE) evidencing their release in the air. These PM associated PAHs for UAA, DEP and CTCE showed significant increase (p<0.05) in mutagenicity and mammalian genotoxicity in the order CTCE>DEP>UAA. Human lung alveolar (A549) and bronchiolar (BEAS-2B) cells when treated with PAH-metabolites viz. 1,4-benzoquinone (1,4-BQ), hydroquinone (HQ), 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ) and 9,10-phenanthroquinone (9,10-PQ) showed metabolic modulation in these cell lines with significant depletion of principal cellular metabolites viz. NADP, uracil, asparagines, glutamine, and histidine and accumulation of di-methyl amine and beta-hydroxybutyrate, identified using (1)H NMR spectroscopy. These results suggest that PAH-quinones induce genotoxic effects by modulating the metabolic machinery inside the cells by a combined effect of oxidative stress and energy depletion. Our data for metabolic profiling of human lung cells could also help in understanding the mechanism of toxicity of other xenobiotics. PMID:23735462

Gurbani, Deepak; Bharti, Santosh Kumar; Kumar, Ashutosh; Pandey, Alok K; Ana, Godson R E E; Verma, Ambrish; Khan, Altaf Husain; Patel, Devendra K; Mudiam, M K R; Jain, Swatantra K; Roy, Raja; Dhawan, Alok

2013-08-01

211

[Tobacco--once a medicinal plant. Does it contain substances with medicinal properties?].  

PubMed

Tobacco and its use was discovered by Christopher Columbus in parallel with the discovery of America. Soon after, tobacco became a known medicinal plant in Europe. Its harmful effects were gradually discovered, especially those of tobacco smoke, and now it is considered a toxic plant. Tobacco leaf has a monograph in German "Hagers Enzyklopädie derArzneistoffe und Drogen", which describes its old, already not valid, medicinal use and clearly shows the toxic effects. Epidemiological studies indicate about 50% lower incidence of Parkinson's disease in smokers than in non-smokers. In turn, studies of the brains of smokers using positron emission tomography showed significantly decreased level of monoamine oxidase B--an enzyme which degrades dopamine--the neurotransmitter which the significant insufficiency of about 80-85%, is responsible for the symptoms of Parkinson's disease. From the tobacco leaves there were isolated MAO-B inhibitors--naphthoquinone--2,3,6-trimethyl-1,4-naphthoquinone and diterpenoid -trans,trans-farnesol, which occur also in tobacco smoke. In the last decade many papers have appeared on the neuroprotective activity of nicotine, the best known component of tobacco. through the effect of this compound on specific nicotinic cholinergic receptors (nAChRs), which interacts with nigrostriatal dopaminergic system as well as the possibility of using nicotine for the treatment of Parkinson's disease and other neurodegenerative diseases. Moreover, tobacco was also found to contain inhibitors of neuronal nitric oxide synthase (nNOS). Tobacco cannot be considered a medicinal plant, but some compounds occurring in that plant may find therapeutic use. PMID:24501813

Budzianowski, Jaromir

2013-01-01

212

[Acidity and interaction with superoxide anion radical of echinochrome and its structural analogs].  

PubMed

Weak acid properties, autoxidation and interaction of natural polyhydroxy1,4-naphthoquinones (PHNQ) with superoxide anion-radical (O2-.) were studied by methods of potentiometric titration, polarography, and UV- and visible spectrophotometry. Sea urchin pigments 3-acetyl-2,6,7-trihydroxynaphthazarin (spinochrome C), 2,3,6,7-trihydroxynaphthazarin (spinochrome D), 2,3,6,7-trihydroxynaphthazarin (spinochrome E), 6-ethyl-2,3,7-trihydroxynaphthazarin (echinochrome A), synthetic 2,3-dihydroxy-6,7-dimethylnaphthazarin and 6-ethyl-2,3,7-trimethoxynaphthazarin (trimethoxyechinochrome A) were tested. Determined dissociation constants (pKi) were in the range of pH 5.3-8.5 (40% ethanol solvent). PHNQ autoxidation observrd in basic pH were inhibited by superoxide dismutase. Xanthine and xanthine oxidase was applied for O2-. generation. Interaction with O2-. led to sufficient time-dependent changing in spectra of echinochrome A, spinochromes D and E. There was weak O2-. influence on spinochrome C spectrum and no changing in trimethoxyechinochrome A spectrum. The spectra, that were transforming during time of reaction, contained pronounced isobestic point. It means formation the single reaction product. We proposed formation of 1,2,3,4-tetraketones from 2,3,5,8-tetrahydroxy-1,4-naphthoquinones (echinochrome A, spinochromes D and E) due to O2-.-induced oxidation of their OH-groups in 2 and 3 positions. Reaction constants were determined by competition method using nitro blue tetrazolium (NBT). The reaction constants were about 10(4)-10(5) M-1s-1. They were decreased in the order: echinochrome A > spinochrome D > spinochrome C > NBT > trimethoxyechinochrome A. Thus, we concluded that some of the natural PGNQ, containing hydroxyl groups in 2nd and 3rd positions, could operate as powerful superoxide anion-radical scavengers. PMID:10378300

Lebedev, A V; Ivanova, M V; Krasnovid, N I; Kol'tsova, E A

1999-01-01

213

Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity  

PubMed Central

We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase ? (pol ?). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol ? and human pol ?. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol ?, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50?=?2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol ? inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

2014-01-01

214

Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.  

PubMed

We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase ? (pol ?). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol ? and human pol ?. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol ?, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol ? inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

2014-01-01

215

Plumbagin inhibits prostate cancer development in TRAMP mice via targeting PKC?, Stat3 and neuroendocrine markers  

PubMed Central

Plumbagin (PL), 5-hydroxy-2-methyl-1,4-naphthoquinone, is a quinoid constituent isolated from the roots of the medicinal plant Plumbago zeylanica L. (also known as chitrak). PL has also been found in Juglans regia (English Walnut), Juglans cinerea (whitenut) and Juglans nigra (blacknut). The roots of P. zeylanica have been used in Indian and Chinese systems of medicine for more than 2500 years for the treatment of various types of ailments. We were the first to report that PL inhibits the growth and invasion of hormone refractory prostate cancer (PCa) cells [Aziz,M.H. et al. (2008) Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res., 68, 9024–9032.]. Now, we present that PL inhibits in vivo PCa development in the transgenic adenocarcinoma of mouse prostate (TRAMP). PL treatment (2mg/kg body weight i.p. in 0.2ml phosphate-buffered saline, 5 days a week) to FVB–TRAMP resulted in a significant (P < 0.01) decrease in prostate tumor size and urogenital apparatus weights at 13 and 20 weeks. Histopathological analysis revealed that PL treatment inhibited progression of prostatic intraepithelial neoplasia (PIN) to poorly differentiated carcinoma (PDC). No animal exhibited diffuse tumor formation in PL-treated group at 13 weeks, whereas 75% of the vehicle-treated mice elicited diffuse PIN and large PDC at this stage. At 20 weeks, 25% of the PL-treated animals demonstrated diffuse PIN and 75% developed small PDC, whereas 100% of the vehicle-treated mice showed large PDC. PL treatment inhibited expression of protein kinase C epsilon (PKC?), signal transducers and activators of transcription 3 phosphorylation, proliferating cell nuclear antigen and neuroendocrine markers (synaptophysin and chromogranin-A) in excised prostate tumor tissues. Taken together, these results further suggest PL could be a novel chemopreventive agent against PCa. PMID:22976928

Hafeez, Bilal Bin

2012-01-01

216

Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae).  

PubMed

Extracts, fractions and compounds from Calceolaria talcana and C. integrifolia exhibited strong inhibitory effects of the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the in vitro Ellman?s method. The most active samples were from the ethyl acetate extract, which caused a mixed-type inhibition against AChE (69.8% and 79.5% at 100 and 200 ?g/ml, respectively) and against BChE (98.5% and 99.8% at 100 and 200 ?g/ml, respectively) and its major components verbascoside 8 (50.9 and 70.0% at 200 ?g/ml, against AChE and BChE, respectively), martynoside 9, and fraction F-7 (which corresponds to a mixture of 8, 9, and other phenylethanoids and phenolics that remain unidentified) (80.2 and 85.3% at 100 and 200 ?g/ml, against AChE, respectively and 99.1 and 99.7% at 100 and 200 ?g/ml, against BChE, respectively) inhibited the acetylcholinesterase enzyme competitively. The most polar fraction F-5 from n-hexane extract (a mixture of naphthoquinones: 2-hydroxy-3-(1,1-dimethylallyl-1,4-naphthoquinone) 6, ?-dunnione 7 and other polar compounds that remain unidentified) showed a mixed-type inhibition (71.5 and 72.1% against AChE and BChE at 200 ?g/ml, respectively). Finally, the methanol-soluble residue presented a complex, mixed-type inhibition (39.9 and 67.9% against AChE and BChE at 200 ?g/ml, respectively). The mixture F-3 with diterpenes was obtained from the n-hexane extract: (1,10-cyclopropyl-9-epi-ent-isopimarol) 1, 19-?-hydroxy-abietatriene 2, and F-4 a mixture of triterpenes ?-lupeol 3, ?-sitosterol 4, ursolic acid 5 together with a complex mixture of terpenes that did not show activity. In summary, extracts and natural compounds from C. talcana and C. integrifolia were isolated, identified and characterized as cholinesterase inhibitors. PMID:24513062

Cespedes, Carlos L; Muñoz, Evelyn; Salazar, Juan R; Yamaguchi, Lydia; Werner, Enrique; Alarcon, Julio; Kubo, Isao

2013-10-25

217

(+/-)-catechin: chemical weapon, antioxidant, or stress regulator?  

PubMed

(+/-)-Catechin is a flavan-3-ol that occurs in the organs of many plant species, especially fruits. Health-beneficial effects have been studied extensively, and notable toxic effects have not been found. In contrast, (+/-)-catechin has been implicated as a 'chemical weapon' that is exuded by the roots of Centaurea stoebe, an invasive knapweed of northern America. Recently, this hypothesis has been rejected based on (+/-)-catechin's low phytotoxicity, instability at pH levels higher than 5, and poor recovery from soil. In the current study, (+/-)-catechin did not inhibit the development of white and black mustard to an extent that was comparable to the highly phytotoxic juglone, a naphthoquinone that is allegedly responsible for the allelopathy of the walnut tree. At high stress levels, caused by sub-lethal methanol concentrations in the medium, and a 12 h photoperiod, (+/-)-catechin even attenuated growth retardation. A similar effect was observed when (+/-)-catechin was assayed for brine shrimp mortality. Higher concentrations reduced the mortality caused by toxic concentrations of methanol. Further, when (+/-)-catechin was tested in variants of the deoxyribose degradation assay, it was an efficient scavenger of reactive oxygen species (ROS) when they were present in higher concentrations. This antioxidant effect was enhanced when iron was chelated directly by (+/-)-catechin. Conversely, if iron was chelated to EDTA, pro-oxidative effects were demonstrated at higher concentrations; in this case (+/-)-catechin reduced molecular oxygen and iron to reagents required by the Fenton reaction to produce hydroxyl radicals. A comparison of cyclic voltammograms of (+/-)-catechin with the phytotoxic naphthoquinone juglone indicated similar redox-cycling properties for both compounds although juglone required lower electrochemical potentials to enter redox reactions. In buffer solutions, (+/-)-catechin remained stable at pH 3.6 (vacuole) and decomposed at pH 7.4 (cytoplasm) after 24 h. The results support the recent rejection of the hypothesis that (+/-)-catechin may serve as a 'chemical weapon' for invasive plants. Instead, accumulation and exudation of (+/-)-catechin may help plants survive periods of stress. PMID:19701725

Chobot, Vladimir; Huber, Christoph; Trettenhahn, Guenter; Hadacek, Franz

2009-08-01

218

Vibrational spectroscopy of photosystem I.  

PubMed

Fourier transform infrared difference spectroscopy (FTIR DS) has been widely used to study the structural details of electron transfer cofactors (and their binding sites) in many types of photosynthetic protein complexes. This review focuses in particular on work that has been done to investigate the A?cofactor in photosystem I photosynthetic reaction centers. A review of this subject area last appeared in 2006 [1], so only work undertaken since then will be covered here. Following light excitation of intact photosystem I particles the P700?A?(1) secondary radical pair state is formed within 100ps. This state decays within 300ns at room temperature, or 300?s at 77K. Given the short-lived nature of this state, it is not easily studied using "static" photo-accumulation FTIR difference techniques at either temperature. Time-resolved techniques are required. This article focuses on the use of time-resolved step-scan FTIR DS for the study of the P700?A?(1) state in intact photosystem I. Up until now, only our group has undertaken studies in this area. So, in this article, recent work undertaken in our lab is described, where we have used low-temperature (77K), microsecond time-resolved step-scan FTIR DS to study the P700?A?(1) state in photosystem I. In photosystem I a phylloquinone molecule occupies the A?binding site. However, different quinones can be incorporated into the A1 binding site, and here work is described for photosystem I particles with plastoquinone-9, 2-phytyl naphthoquinone and 2-methyl naphthoquinone incorporated into the A?binding site. Studies in which ¹?O isotope labeled phylloquinone has been incorporated into the A1 binding site are also discussed. To fully characterize PSI particles with different quinones incorporated into the A1 binding site nanosecond to millisecond visible absorption spectroscopy has been shown to be of considerable value, especially so when undertaken using identical samples under identical conditions to that used in time-resolved step-scan FTIR measurements. In this article the latest work that has been undertaken using both visible and infrared time resolved spectroscopies on the same sample will be described. Finally, vibrational spectroscopic data that has been obtained for phylloquinone in the A1 binding site in photosystem I is compared to corresponding data for ubiquinone in the QA binding site in purple bacterial reaction centers. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25086273

Hastings, Gary

2015-01-01

219

Chemoprevention of skin cancer: effect of Lawsonia inermis L. (Henna) leaf powder and its pigment artifact, lawsone in the Epstein- Barr virus early antigen activation assay and in two-stage mouse skin carcinogenesis models.  

PubMed

In continuation of our studies with chemoprevention potential of plant-derived naphthoquinone derivatives, leaf powder of the medicinal plant Lawsonia inermis L, commonly known as 'henna', was evaluated by its inhibition of the Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Lawsone (2-hydroxy- 1,4-naphthoquinone), the reddish orange pigment artifact formed during the extraction or preparation of the dye from henna leaves and believed to be the active component, was also assessed in this in vitro assay. Both showed a profound inhibition (>88%) of EBV-EA activation. In the in vivo two-stage mouse skin carcinogenesis study using UV-B radiation for initiation and TPA for tumor promotion, oral feeding of henna (0.0025%) in drinking water ad libitum decreased tumor incidence by 66% and multiplicity by 40% when compared to the positive control at 10 weeks of treatment. Similarly, in the above mouse model, orally fed lawsone (0.0025%) decreased tumor incidence by 72% and multiplicity by 50%. The tumor inhibitory trend continued throughout the 20-week test period. Similar antitumor activities were observed when henna (0.5 mg/ml) was applied topically on the back skin in the UV-B initiated, TPA promoted and peroxynitrite initiated, TPA promoted mouse skin carcinogenesis models. Topically applied lawsone (0.015 mg/ml) also exhibited similar protection against tumor formation in the 7,12-dimtehylbenz(a)anthracene induced and TPA promoted skin cancer in mice. Also, there was a delay of 1 to 2 weeks in tumor appearance in both henna and lawsone treated groups compared to control in all three test models. This study ascertains the skin cancer chemopreventive activity of henna leaf powder and lawsone when administered by either oral (through drinking water) or topical (by application on the back skin) routes. Further, it emphasizes the need for the evaluation of these henna-derived green chemopreventive candidates in combination with currently used sunscreen agents for complementary anticancer potential against UV-induced skin carcinogenesis. PMID:23848207

Kapadia, Govind J; Rao, G Subba; Sridhar, Rajagopalan; Ichiishi, Eiichiro; Takasaki, Midori; Suzuki, Nobutaka; Konoshima, Takao; Iida, Akira; Tokuda, Harukuni

2013-12-01

220

Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells  

PubMed Central

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone; PLB), a naturally occurring naphthoquinone isolated from the roots of Plumbaginaceae plants, has been reported to possess anticancer activities in both in vitro and in vivo studies, but the effect of PLB on tongue squamous cell carcinoma (TSCC) is not fully understood. This study aimed to investigate the effects of PLB on cell cycle distribution, apoptosis, and autophagy, and the underlying mechanisms in the human TSCC cell line SCC25. The results have revealed that PLB exerted potent inducing effects on cell cycle arrest, apoptosis, and autophagy in SCC25 cells. PLB arrested SCC25 cells at the G2/M phase in a concentration- and time-dependent manner with a decrease in the expression level of cell division cycle protein 2 homolog (Cdc2) and cyclin B1 and increase in the expression level of p21 Waf1/Cip1, p27 Kip1, and p53 in SCC25 cells. PLB markedly induced apoptosis and autophagy in SCC25 cells. PLB decreased the expression of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl) while increasing the expression level of the pro-apoptotic protein Bcl-2-associated X protein (Bax) in SCC25 cells. Furthermore, PLB inhibited phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), glycogen synthase kinase 3? (GSK3?), and p38 mitogen-activated protein kinase (p38 MAPK) pathways as indicated by the alteration in the ratio of phosphorylation level over total protein expression level, contributing to the autophagy inducing effect. In addition, we found that wortmannin (a PI3K inhibitor) and SB202190 (a selective inhibitor of p38 MAPK) strikingly enhanced PLB-induced autophagy in SCC25 cells, suggesting the involvement of PI3K- and p38 MAPK-mediated signaling pathways. Moreover, PLB induced intracellular reactive oxygen species (ROS) generation and this effect was attenuated by l-glutathione (GSH) and n-acetyl-l-cysteine (NAC). Taken together, these results indicate that PLB promotes cellular apoptosis and autophagy in TSCC cells involving p38 MAPK- and PI3K/Akt/mTOR-mediated pathways with contribution from the GSK3? and ROS-mediated pathways. PMID:25834400

Pan, Shu-Ting; Qin, Yiru; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

2015-01-01

221

Evaluation of radical scavenging properties of shikonin  

PubMed Central

With the aim of developing effective anti-inflammatory drugs, we have been investigating the biochemical effects of shikonin of “Shikon” roots, which is a naphthoquinone with anti-inflammatory and antioxidative properties. Shikonin scavenged reactive oxygen species like hydroxyl radical, superoxide anion (O2•?) and singlet oxygen in previous studies, but its reactivity with reactive oxygen species is not completely understood, and comparison with standard antioxidants is lacking. This study aimed elucidation of the reactivity of shikonin with nitric oxide radical and reactive oxygen species such as alkyl-oxy radical and O2•?. By using electron paramagnetic resonance spectrometry, shikonin was found unable of reacting with nitric oxide radical in a competition assay with oxyhemoglobin. However, shikonin scavenged alkyl-oxy radical from 2,2'-azobis(2-aminopropane) dihydrochloride with oxygen radical absorbance capacity, ORAC of 0.25 relative to Trolox, and showed a strong O2•?-scavenging ability (42-fold of Trolox; estimated reaction rate constant: 1.7 × 105 M?1s?1) in electron paramagnetic resonance assays with CYPMPO as spin trap. Concerning another source of O2•?, the phagocyte NADPH oxidase (Nox2), shikonin inhibited the Nox2 activity by impairing catalysis when added before enzyme activation (IC50: 1.1 µM; NADPH oxidation assay). However, shikonin did not affect the preactivated Nox2 activity, although having potential to scavenge produced O2•?. In conclusion, shikonin scavenged O2•? and alkyl-oxy radical, but not nitric oxide radical. PMID:25320455

Yoshida, Lucia S.; Kohri, Shunji; Tsunawaki, Shohko; Kakegawa, Tomohito; Taniguchi, Taizo; Takano-Ohmuro, Hiromi; Fujii, Hirotada

2014-01-01

222

Synthesis and cytotoxic activity of metallic complexes of lawsone.  

PubMed

In the present study, a series of metallic complexes of the 1,4-naphthoquinone lawsone (2-6) were synthesized and evaluated for potential cytotoxicity in a mouse leukemic macrophagic RAW 264.7 cell line. Cell viability was determined by the MTT assay. Significant growth inhibition was observed for the copper complex (4) with an IC(50) value of 2.5 ?M. This compound was selected for further evaluation of cytotoxic activity on several human cancer cells including HT-29 (human colorectal adenocarcinoma), HepG2 (human hepatocellular carcinoma) and HeLa, (human cervical adenocarcinoma cells). Significant cell viability decrease was also observed in HepG2 cells. The apoptotic potential of this complex was evaluated in these cells. Compound 4 induced apoptosis by a mechanism that involves the activation of caspases 3, 8 and 9 and modulation of apoptotic-related proteins such as Bax, Bad, and p53. These results indicate that metal complexes of lawsone derivatives, in particular compound 4, might be used for the design of new antitumoral agents. PMID:23545136

Oramas-Royo, Sandra; Torrejón, Concepción; Cuadrado, Irene; Hernández-Molina, Rita; Hortelano, Sonsoles; Estévez-Braun, Ana; de Las Heras, Beatriz

2013-05-01

223

Development of quinone analogues as dynamin GTPase inhibitors.  

PubMed

Virtual screening of the ChemDiversity and ChemBridge compound databases against dynamin I (dynI) GTPase activity identified 2,5-bis-(benzylamino)-1,4-benzoquinone 1 as a 273 ± 106 ?M inhibitor. In silico lead optimization and focused library-led synthesis resulted in the development of four discrete benzoquinone/naphthoquinone based compound libraries comprising 54 compounds in total. Sixteen analogues were more potent than lead 1, with 2,5-bis-(4-hydroxyanilino)-1,4-benzoquinone (45) and 2,5-bis(4-carboxyanilino)-1,4-benzoquinone (49) the most active with IC50 values of 11.1 ± 3.6 and 10.6 ± 1.6 ?M respectively. Molecular modelling suggested a number of hydrogen bonding and hydrophobic interactions were involved in stabilization of 49 within the dynI GTP binding site. Six of the most active inhibitors were evaluated for potential inhibition of clathrin-mediated endocytosis (CME). Quinone 45 was the most effective CME inhibitor with an IC50(CME) of 36 ± 16 ?M. PMID:25084145

MacGregor, Kylie A; Abdel-Hamid, Mohammed K; Odell, Luke R; Chau, Ngoc; Whiting, Ainslie; Robinson, Phillip J; McCluskey, Adam

2014-10-01

224

WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum.  

PubMed

The mycorrhization helper bacterium Streptomyces sp. AcH 505 inhibits Norway spruce root infection and colonisation by the root and butt rot fungus Heterobasidion annosum 005 but not by the congeneric strain Heterobasidion abietinum 331 because of higher sensitivity of H. annosum 005 towards the AcH 505-derived naphthoquinone antibiotic WS-5995 B. Differences in antibiotic sensitivity between two isolates belonging to two species, H. annosum 005 and H. abietinum 331, were investigated by comparative gene expression analysis using macroarrays and quantitative RT-PCR after WS-5995 B, structurally related mollisin and unrelated cycloheximide application. Treatment with 25 microM WS-5995 B for 2 h resulted in a significant up-regulation of expression of inosine-5'-monophosphate dehydrogenase, phosphoglucomutase and GTPase genes, while the expression of genes encoding for thioredoxin and glutathione dependent formaldehyde dehydrogenase was down-regulated in the sensitive fungal strain. No differential expression in the tolerant strain was detected. Application of WS-5995 B at higher concentrations over a time course experiment revealed that H. annosum 005 and H. abietinum 331 responded differently to WS-5995 B. The fungal gene expression levels depended on both the concentration of WS-5995 B and the duration of its application. The WS-5995 B-unrelated cycloheximide caused highly specific changes in patterns of gene expression. Our findings indicate considerable variations in response to bacterial metabolites by the isolates of the conifer pathogen. PMID:19798499

Lehr, Nina A; Adomas, Aleksandra; Asiegbu, Frederick O; Hampp, Rüdiger; Tarkka, Mika T

2009-11-01

225

[A model of the quinone-binding site of photosystem I: investigation of charge transfer complexes of phylloquinone and its derivatives with tryptophan].  

PubMed

Phylloquinone (vitamin K1; 2-methyl-3-phytyl-1,4-naphthoquinone), the secondary electron acceptor A1 in photosystem I of plants, algae, and cyanobacteria, mediates the electron transfer between A0 (a monomeric chlorophyll a) and the iron-sulfur cluster Fx. In order to investigate the interaction of vitamin K1 with the A1-binding site, their models on the non-covalent complexes were obtained and studied. The fluorescent properties of vitamin K1, its derivatives, and their complexes with Trp showed a possible role of amino acid components in the formation of a stable energy state, which provides the energy redistribution between oxidized and reduced forms of vitamin K1. The formation of the charge-transfer complex and the influence of the ratio of the components on fluorescence derived from the tryptophan-vitamin K1, tryptophan-dihydrovitamin K1 , tryptophan-quinhydrone K1, and tryptophan-naphthochromanol complexes are described. The data obtained allow us to suggest that naphthochromanol is involved in the energy transfer reaction in PS I as an intermediate form of the secondary electron acceptor. PMID:15612535

Leonova, N M; Zhukova, E E; Evstigneeva, R P

2004-01-01

226

Molecular Structure of Urushiol  

NSDL National Science Digital Library

Urushiol is a yellow oil comprised of a mixture of organic compounds containing a catechol (1,2-hydroxy benzene) and a pentadecyl or heptadecyl side chain; some side chains may be unsaturated. The earliest use of urushiol was in the art of ancient Asia, where works of art were coated in lacquer finishes derived from the trees Toxicodendron vernicifluum or Rhus verniciflua. In fact, the name urushiol is derived from urushi, the Japanese word for the lacquer prepared from the sap of the Japanese lacquer tree ("kiurushi"). During the lacquering process, the phenols oxidize and polymerize with the help of enzymes to yield a coating that is hard and resistant to mechanical stress. Inhabitants of North America are familiar with the more malevolent side of urushiol-as the active ingredient of poison ivy and poison oak. Most people are highly allergic to urushiol and will develop redness, painful itching, and blistering of the skin if they touch even minute amounts of the oil. Interestingly, one of the most effective remedies for poison ivy comes also from a plant. The Jewelweed plant (Impatiens capensis) found in North American hardwood forests produces a chemical called Lawsone (a naphthoquinone) with antihistamine and anti-inflammatory properties that lessen the effects of urushiol on the skin.

2006-04-19

227

A portable optical human sweat sensor  

NASA Astrophysics Data System (ADS)

We describe the use of HNQ (2-hydroxy-1,4-naphthoquinone or Lawsone) as a potential sweat sensor material to detect the hydration levels of human beings. We have conducted optical measurements using both artificial and human sweat to validate our approach. We have determined that the dominant compound that affects HNQ absorbance in artificial sweat is sodium. The presence of lactate decreases the reactivity of HNQ while urea promotes more interactions of sodium and potassium ions with HNQ. The interactions between the hydroxyl group of HNQ and the artificial sweat components (salts, lactic acid, and urea) were investigated comprehensively. We have also proposed and developed a portable diode laser absorption sensor system that converts the absorbance at a particular wavelength range (at 455 ± 5 nm, where HNQ has an absorbance peak) into light intensity measurements via a photocell. The absorbance intensity values obtained from our portable sensor system agrees within 10.4% with measurements from a laboratory based ultraviolet-visible spectrometer. Findings of this research will provide significant information for researchers who are focusing on real-time, in-situ hydration level detection.

Al-omari, Mahmoud; Liu, Gengchen; Mueller, Anja; Mock, Adam; Ghosh, Ruby N.; Smith, Kyle; Kaya, Tolga

2014-11-01

228

Structure-activity relationships and colorimetric properties of specific probes for the putative cancer biomarker human arylamine N-acetyltransferase 1.  

PubMed

A naphthoquinone inhibitor of human arylamine N-acetyltransferase 1 (hNAT1), a potential cancer biomarker and therapeutic target, has been reported which undergoes a distinctive concomitant color change from red to blue upon binding to the enzyme. Here we describe the use of in silico modeling alongside structure-activity relationship studies to advance the hit compound towards a potential probe to quantify hNAT1 levels in tissues. Derivatives with both a fifty-fold higher potency against hNAT1 and a two-fold greater absorption coefficient compared to the initial hit have been synthesized; these compounds retain specificity for hNAT1 and its murine homologue mNat2 over the isoenzyme hNAT2. A relationship between pKa, inhibitor potency and colorimetric properties has also been uncovered. The high potency of representative examples against hNAT1 in ZR-75-1 cell extracts also paves the way for the development of inhibitors with improved intrinsic sensitivity which could enable detection of hNAT1 in tissue samples and potentially act as tools for elucidating the unknown role hNAT1 plays in ER+ breast cancer; this could in turn lead to a therapeutic use for such inhibitors. PMID:24758871

Egleton, James E; Thinnes, Cyrille C; Seden, Peter T; Laurieri, Nicola; Lee, Siu Po; Hadavizadeh, Kate S; Measures, Angelina R; Jones, Alan M; Thompson, Sam; Varney, Amy; Wynne, Graham M; Ryan, Ali; Sim, Edith; Russell, Angela J

2014-06-01

229

Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.  

PubMed Central

The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

2004-01-01

230

Shikonin inhibits the growth of human prostate cancer cells via modulation of the androgen receptor  

PubMed Central

Shikonin, a natural naphthoquinone isolated from the traditional Chinese medicine Zi Cao (gromwell), has been shown to possess tumor cell killing activity. The human androgen receptor (AR) is a nuclear transcription factor that serves as a major therapeutic target for prostate cancer. However, AR regulation by shikonin has not been reported. We investigated the effects of shikonin on the growth of prostate cancer cells. We observed that shikonin decreased the expression of AR at both the mRNA and the protein levels in LNCaP and 22RV1 human prostate cancer cells. The results from a luciferase assay showed that shikonin decreased the transcriptional activity of AR. Moreover, shikonin treatment inhibited AR target gene expression, PSA and growth inhibition of prostate cancer cells. In conclusion, the present study shows for the first time that shikonin treatment causes transcriptional repression of AR and inhibition of its nuclear localization in human prostate cancer cells. We propose that shikonin, an anticancer drug extracted from natural sources, induces inhibition of cell growth through modulation of AR in androgen-responsive prostate cancer cells and is a candidate for use in cancer chemotherapy for human prostate cancer. PMID:24573652

JANG, SOON YOUNG; JANG, EUN HYANG; JEONG, SEO YOUNG; KIM, JONG-HO

2014-01-01

231

Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway.  

PubMed

Shikonin, an analog of naphthoquinone pigments isolated from the root of Lithospermum erythrorhyzon, was recently reported to exert beneficial anti-inflammatory effects both in vivo and in vitro. The present study aimed to investigate the potential therapeutic effect of shikonin in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Dexamethasone was used as a positive control to evaluate the anti-inflammatory effect of shikonin in the study. Pretreatment with shikonin (intraperitoneal injection) significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and markedly attenuated myeloperoxidase activity. Furthermore, shikonin significantly reduced the concentrations of TNF-?, IL-6 and IL-1? in bronchoalveolar lavage fluid induced by LPS. Compared with the LPS group, lung histopathologic changes were less pronounced in the shikonin-pretreated mice. Additionally, Western blotting results showed that shikonin efficiently decreased nuclear factor-kappaB (NF-?B) activation by inhibiting the degradation and phosphorylation of I?B?. These results suggest that shikonin exerts anti-inflammatory properties in LPS-mediated ALI, possibly through inhibition of the NF-?B signaling pathway, which mediates the expression of pro-inflammatory cytokines. Shikonin may be a potential agent for the prophylaxis of ALI. PMID:23651796

Liang, Dejie; Sun, Yong; Shen, Yongbin; Li, Fengyang; Song, Xiaojing; Zhou, Ershun; Zhao, Fuyi; Liu, Zhicheng; Fu, Yunhe; Guo, Mengyao; Zhang, Naisheng; Yang, Zhengtao; Cao, Yongguo

2013-08-01

232

Homogeneous purification and characterization of LePGT1--a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon.  

PubMed

Membrane-bound type prenyltransferases for aromatic substrates play crucial roles in the biosynthesis of various natural compounds. Lithospermum erythrorhizon p-hydroxybenzoate: geranyltransferase (LePGT1), which contains multiple transmembrane ?-helices, is involved in the biosynthesis of a red naphthoquinone pigment, shikonin. Taking LePGT1 as a model membrane-bound aromatic substrate prenyltransferase, we utilized a baculovirus-Sf9 expression system to generate a high yield LePGT1 polypeptide, reaching ~ 1000-fold higher expression level compared with a yeast expression system. Efficient solubilization procedures and biochemical purification methods were developed to extract LePGT1 from the membrane fraction of Sf9 cells. As a result, 80 ?g of LePGT1 was purified from 150 mL culture to almost homogeneity as judged by SDS/PAGE. Using purified LePGT1, enzymatic characterization, e.g. substrate specificity, divalent cation requirement and kinetic analysis, was done. In addition, inhibition experiments revealed that aromatic compounds having two phenolic hydroxyl groups effectively inhibited LePGT1 enzyme activity, suggesting a novel recognition mechanism for aromatic substrates. As the first example of solubilization and purification of this membrane-bound protein family, the methods established in this study will provide valuable information for the precise biochemical characterization of aromatic prenyltransferases as well as for crystallographic analysis of this novel enzyme family. PMID:23490165

Ohara, Kazuaki; Mito, Koji; Yazaki, Kazufumi

2013-06-01

233

Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.  

PubMed

Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light. PMID:24060426

Gephart, Raymond T; Coneski, Peter N; Wynne, James H

2013-10-23

234

Detection of relative [Na+] and [K+] levels in sweat with optical measurements  

NASA Astrophysics Data System (ADS)

We describe the use of 2-hydroxy-1,4-naphthoquinone (HNQ, Lawsone) as a potential sweat electrolyte measurement marker. We use ultraviolet-visible absorbance measurements to determine the absorbance energy in a particular wavelength range (400 nm-500 nm). This novel approach allows us to eliminate the importance of the exact wavelength of the absorbance peak but find the integral of the range of interest. Although we numerically calculate the absorbance energy, it is imperative to use photodiodes to measure the intensity of the transmitted light that is fabricated particularly for the range of interest for future device implementations. We explored various mixing ratios of water and acetone to find the optimum solvent that would give the most sensitive and accurate relative electrolyte sensing. The pH value was also modified to see the effect on the absorbance energy and intensity. A representative group of subjects were used to collect sweat from the dehydration and hyperhydration cases. The results are convincing that HNQ solutions can be used as a wearable, continuous sweat sensor.

Al-omari, Mahmoud; Sel, Kivanc; Mueller, Anja; Edwards, Jeffery; Kaya, Tolga

2014-05-01

235

The organotelluride catalyst (PHTE)?NQ prevents HOCl-induced systemic sclerosis in mouse.  

PubMed

Systemic sclerosis (SSc) is a connective tissue disorder characterized by skin and visceral fibrosis, microvascular damage, and autoimmunity. HOCl-induced mouse SSc is a murine model that mimics the main features of the human disease, especially the activation and hyperproliferation rate of skin fibroblasts. We demonstrate here the efficiency of a tellurium-based catalyst 2,3-bis(phenyltellanyl)naphthoquinone ((PHTE)(2)NQ) in the treatment of murine SSc, through its selective cytotoxic effects on activated SSc skin fibroblasts. SSc mice treated with (PHTE)(2)NQ displayed a significant decrease in lung and skin fibrosis and in alpha-smooth muscle actin (?-SMA) expression in the skin compared with untreated mouse SSc animals. Serum concentrations of advanced oxidation protein products, nitrate, and anti-DNA topoisomerase I autoantibodies were increased in SSc mice, but were significantly reduced in SSc mice treated with (PHTE)(2)NQ. To assess the mechanism of action of (PHTE)(2)NQ, the cytotoxic effect of (PHTE)(2)NQ was compared in normal fibroblasts and in mouse SSc skin fibroblasts. ROS production is higher in mouse SSc fibroblasts than in normal fibroblasts, and was still increased by (PHTE)(2)NQ to reach a lethal threshold and kill mouse SSc fibroblasts. Therefore, the effectiveness of (PHTE)(2)NQ in the treatment of mouse SSc seems to be linked to the selective pro-oxidative and cytotoxic effects of (PHTE)(2)NQ on hyperproliferative fibroblasts. PMID:22277946

Marut, Wioleta K; Kavian, Niloufar; Servettaz, Amélie; Nicco, Carole; Ba, Lalla A; Doering, Mandy; Chéreau, Christiane; Jacob, Claus; Weill, Bernard; Batteux, Frédéric

2012-04-01

236

Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling.  

PubMed

Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl?b and c?Cbl, which are negative regulators of phosphoinositide 3?kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B?cell lymphoma 2 (Bcl?2)?associated X and p53 and reduced those of Bcl?2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin?induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells. PMID:25815461

Qu, Dan; Xu, Xiao-Man; Zhang, Meng; Jiang, Ting-Shu; Zhang, Yi; Li, Sheng-Qi

2015-07-01

237

Main constituents of a commercial Drosera fluid extract and their antagonist activity at muscarinic M3 receptors in guinea-pig ileum.  

PubMed

The range of known constituents of Drosera species is extended by identification of myricetin 3-O-galactoside, from D. madagascariensis, and (+)-cis-isoshinanolone, obtained from a commercial fluid extract. They are accompanied by the naphthoquinones droserone and plumbagin, typical of this taxon, and a series of ubiquitous flavonols, including the rarely found gossypitrin present in the latter source. Conspicuously, the commercial form of D. peltata, non-accepted by the commission E, was found to be devoid of flavonoids. In addition, the fortuitous availability of the authentic enigmatic sample 'CON', previously isolated from D. rotundifolia, led to its characterization as common quercetin. Experiments performed on isolated guinea-pig ileum demonstrated that quercetin respectively 'CON' moderately inhibited carbachol-induced contractions at 10 microM (pD'2 5.09 +/- 0.02), while (+)-cis-isoshinanolone (100 microM) was inactive. This result indicates that quercetin derivatives may well contribute to the therapeutic use of Drosera preparations. PMID:11933852

Kolodziej, H; Pertz, H H; Humke, A

2002-03-01

238

Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2  

PubMed Central

BACKGROUND AND PURPOSE Angiogenesis-based therapy is an effective anti-tumour strategy and previous reports have shown some beneficial effects of a naturally occurring bioactive compound plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone). Here, we sought to determine the biological effects of plumbagin on signalling mechanisms during tumour angiogenesis. EXPERIMENTAL APPROACH The effects of plumbagin were evaluated in various in vitro assays which utilised human umbilical vein endothelial cells (HUVEC) proliferation, migration and tube formation. Plumbagin was also evaluated in vivo using chicken embryo chorioallantoic membrane (CAM) and mouse corneal micropocket models., Human colon carcinoma and prostate cancer xenograft mouse models were used to evaluate the effects of plumbagin on angiogenesis. Immunofluorescence, GST pull-down and Western blotting were employed to explore the underlying mechanisms of VEGF receptor (VEGFR)2-mediated Ras signalling pathways. KEY RESULTS Plumbagin not only inhibited endothelial cell proliferation, migration and tube formation but also suppressed chicken chorioallantoic membrane neovascularzation and VEGF-induced mouse corneal angiogenesis. Moreover, plumbagin suppressed tumour angiogenesis and tumour growth in human colon carcinoma and prostate cancer xenograft mouse models. At a molecular level, plumbagin blocked the Ras/Rac/cofilin and Ras/MEK signalling pathways mediated by VEGFR2 in HUVECs. CONCLUSIONS AND IMPLICATIONS Plumbagin inhibited tumour angiogenesis and tumour growth by interference with the VEGFR2-mediated Ras signalling pathway in endothelial cells. Our findings demonstrate a molecular basis for the effects of plumbagin and suggest that this compound might have therapeutic ant-tumour effects. PMID:21658027

Lai, Li; Liu, Junchen; Zhai, Dong; Lin, Qingxiang; He, Lijun; Dong, Yanmin; Zhang, Jing; Lu, Binbin; Chen, Yihua; Yi, Zhengfang; Liu, Mingyao

2012-01-01

239

Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells  

PubMed Central

The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-?m-diameter electrode situated 10 ?m from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

Mauzeroll, Janine; Bard, Allen J.

2004-01-01

240

Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.  

PubMed

We have operated a microbial fuel cell in which glucose was oxidized by Klebsiella pneumoniae in the anodic compartment, and biomineralized manganese oxides, deposited by Leptothrix discophora, were electrochemically reduced in the cathodic compartment. In the anodic compartment, to facilitate the electron transfer from glucose to the graphite electrode, we added a redox mediator, 2-hydroxy-1,4-naphthoquinone. We did not add any redox mediator to the cathodic compartment because the biomineralized manganese oxides were deposited on the surface of a graphite electrode and were reduced directly by electrons from the electrode. We have demonstrated that biomineralized manganese oxides are superiorto oxygen when used as cathodic reactants in microbial fuel cells. The current density delivered by using biomineralized manganese oxides as the cathodic reactant was almost 2 orders of magnitude higher than that delivered using oxygen. Several fuel cells were operated for 500 h, reaching anodic potentials of -441.5 +/- 31 mVscE and cathodic potentials of +384.5 +/- 64 mVscE. When the electrodes were connected by a 50 Ohms resistor, the fuel cell delivered the peak power density of 126.7 +/- 31.5 mW/m2. PMID:16047807

Rhoads, Allison; Beyenal, Haluk; Lewandowski, Zbigniew

2005-06-15

241

Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression  

PubMed Central

Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5??g/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10??g/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-?, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

2015-01-01

242

Nitrosative and oxidative stress induced heme oxygenase-1 accumulation in rat mesangial cells.  

PubMed

The formation of nitric oxide (NO.) and superoxide (O2-) promotes rat mesangial cell death. Apoptotic death is characterized by DNA fragmentation, caspase-3 activation and concomitant poly(ADPribose) polymerase cleavage, as well as accumulation of the tumor suppressor protein p53. In close association with apoptotic parameters we noticed upregulation of heme oxygenase by the NO donor S-nitrosoglutathione (GSNO) and the redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in a time- and concentration-dependent manner. In response to the NO. donor, heme oxygenase-1 expression was more easily obtained than initiation of apoptosis. Radical (NO./O2-) cogeneration abrogated DNA fragmentation, suppressed caspase activation and lowered p53 accumulation, thereby promoting cell survival of mesangial cells. In contrast, heme oxygenase-1 expression remained elevated under conditions of GSNO/DMNQ coadministration. Conclusively, heme oxygenase-1 is a stress marker for both nitrosative and oxidative stress. Accumulation of heme oxygenase-1 is found under conditions of both, apoptotic cell death and cell survival, thereby questioning a specific cytoprotective role of heme oxygenase-1 under conditions of NO. and/or O2- formation in rat mesangial cells. PMID:9544795

Sandau, K; Pfeilschifter, J; Brüne, B

1998-01-19

243

Vitamin K 3 family members - Part II: Single crystal X-ray structures, temperature-induced packing polymorphism, magneto-structural correlations and probable anti-oncogenic candidature  

NASA Astrophysics Data System (ADS)

Temperature-induced packing polymorphism is observed for vitamin K 3 (menadione, 3-methyl-1,4-naphthoquinone, 1). Form 1a crystallizes at 300 K and 1b at 277 K both in the same space group P2 1/ c. Form 1b contains one molecule per asymmetric unit, performing anisotropy in g-factor viz. g z = 2.0082, g y = 2.0055 and g x = 2.0025, whereas form 1a contains two molecules in its asymmetric unit. Vitamin K 3 family members 2, [2-hydroxy vitamin K 3] and 3, [2-hydroxy-1-oximino vitamin K 3] also perform intrinsic neutral active naphthosemiquinone valence tautomers even in dark having spin concentrations due to hydrogen bonding and aromatic stacking interactions which are compared to vitamin K 3. The significant lateral C-H⋯O and O-H⋯? bifurcated or ?-? ? interactions are discussed for molecular associations and radical formations. X-ray structure of 3 revealed ?-? ? stack dimers as radicals signatured in EPR as triplet with five hyperfine splits [ ?( 14N) = 11.9 G]. The centrosymmetric biradicals in 3 show diamagnetism at high temperature but below 10 K it shows paramagnetism with ?eff as 0.19 B.M. Vitamin K 3 and its family members inhibit biological activities of acid phosphatase ( APase), which are proportional to their spin concentrations. This may relate to their probable anti-oncogenic candidature in future.

Rane, Sandhya; Ahmed, Khursheed; Salunke-Gawali, Sunita; Zaware, Santosh B.; Srinivas, D.; Gonnade, Rajesh; Bhadbhade, Mohan

2008-12-01

244

A novel liquid chromatography-tandem mass spectrometry method for determination of menadione in human plasma after derivatization with 3-mercaptopropionic acid.  

PubMed

Menadione (VK3), an essential fat-soluble naphthoquinone, takes very important physiological and pathological roles, but its detection and quantification is challenging. Herein, a new method was developed for quantification of VK3 in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after derivatization with 3-mercaptopropionic acid via Michael addition reaction. The derivative had been identified by the mass spectra and the derivatization conditions were optimized by considering different parameters. The method was demonstrated with high sensitivity and a low limit of quantification of 0.03 ng mL(-1) for VK3, which is about 33-fold better than that for the direct analysis of the underivatized compound. The method also had good precision and reproducibility. It was applied in the determination of basal VK3 in human plasma and a clinical pharmacokinetic study of menadiol sodium diphosphate. Furthermore, the method for the quantification of VK3 using LC-MS/MS was reported in this paper for the first time, and it will provide an important strategy for the further research on VK3 and menadione analogs. PMID:25059129

Liu, Ruijuan; Wang, Mengmeng; Ding, Li

2014-10-01

245

Absorption spectrometric and thermodynamic study of charge transfer complexes of menadione (Vitamin K 3) with a series of phenols  

NASA Astrophysics Data System (ADS)

The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K 3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl 4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies ( h?CT) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the h?CT values, the Hückel parameters ( hÖ and kC-Ö) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K 3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.

Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K.; Mukherjee, Dulal C.

2005-03-01

246

Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism  

SciTech Connect

Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

Smithgall, T.E.

1986-01-01

247

Effect of beta-lapachone on superoxide anion and hydrogen peroxide production in Trypanosoma cruzi.  

PubMed Central

Addition of beta-lapachone, an o-naphthoquinone endowed with trypanocidal properties to respiring Trypanosoma cruzi epimastigotes induced the release of O2- and H2O2 from the whole cells to the suspending medium. The same beta-lapachone concentration (4 micron) that released H2O2 at maximal rate completely inhibited T. cruzi growth in a liquid medium. The position isomer, alpha-lapachone, did not stimulate O2- and H2O2 release, and did not inhibit epimastigote growth. beta-Lapachone was able to stimulate H2O2 production by the epimastigote homogenate in the presence of NADH as reductant. The same effect was observed with the mitochondrial fraction supplemented with NADH, where beta-lapachone enhanced the generation of O2- and H2O2 4.5- and 2.5-fold respectively. beta-Lapachone also increased O2- and H2O2 production (2.5 and 2-fold respectively) by the microsomal fraction with NADPH as reductant. Cyanide-insensitive NADH and NADPH oxidation by the mitochondrial and microsomal fractions (quinone reductase activity) was stimulated to about the same extent by beta-lapachone. alpha-Lapachone was unable to increase O2- and H2O2 production and quinone reductase activity of the mitochondrial and microsomal fractions. PMID:217340

Boveris, A; Docampo, R; Turrens, J F; Stoppani, A O

1978-01-01

248

Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression.  

PubMed

Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1-2.5??g/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5-10??g/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-?, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

2015-01-01

249

Labeling quinone-binding sites in photosynthetic reaction centers: A 38-kilodalton protein associated with the acceptor side of photosystem II  

PubMed Central

2-Acetoxymethyl-1,4-naphthoquinone (2-AcOMeNQ) binds with rapid kinetics and high affinity to the primary quinone QA site of reaction centers from Rhodopseudomonas capsulata. Binding of 2-AcOMeNQ fully restores electron-transfer activity with kinetics that is similar, but not identical, to that seen with ubiquinone-50. When bound at the QA site, 2-AcOMeNQ preferentially labels the L subunit. This preference suggests that 2-AcOMeNQ labels primarily the region of a quinone-binding site that is close to the first isoprenoid unit of the side chain, which is expected from the location and structure of the reaction region of the molecule. In photosystem II particles from Synechococcus sp., 2-AcOMeNQ primarily labels two polypeptides with apparent molecular masses of 38 and 19 kDa. Labeling of only the 38-kDa polypeptide is sufficiently sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to conclude that it is involved in binding quinones on the acceptor side of photosystem II. Although we have not yet identified the 38-kDa protein, its properties suggest that it is the D2 protein. From the DCMU-sensitive labeling and from homologies to functionally important regions of the bacterial reaction-center subunits, we propose that the 38-kDa protein is intimately involved in binding the cofactors that mediate primary photochemistry. Images PMID:16593817

Worland, Stephen T.; Yamagishi, Akihiko; Isaacs, Stephen; Sauer, Kenneth; Hearst, John E.

1987-01-01

250

Expression Patterns of Glutathione Transferase Gene (GstI) in Maize Seedlings Under Juglone-Induced Oxidative Stress  

PubMed Central

Juglone (5-hydroxy-1,4-naphthoquinone) has been identified in organs of many plant species within Juglandaceae family. This secondary metabolite is considered as a highly bioactive substance that functions as direct oxidant stimulating the production of reactive oxygen species (ROS) in acceptor plants. Glutathione transferases (GSTs, E.C.2.5.1.18) represent an important group of cytoprotective enzymes participating in detoxification of xenobiotics and limiting oxidative damages of cellular macromolecules. The purpose of this study was to investigate the impact of tested allelochemical on growth and development of maize (Zea mays L.) seedlings. Furthermore, the effect of juglone-induced oxidative stress on glutathione transferase (GstI) gene expression patterns in maize seedlings was recorded. It was revealed that 4-day juglone treatment significantly stimulated the transcriptional activity of GstI in maize seedlings compared to control plants. By contrast, at the 6th and 8th day of experiments the expression gene responses were slightly lower as compared with non-stressed seedlings. Additionally, the specific gene expression profiles, as well as the inhibition of primary roots and coleoptile elongation were proportional to juglone concentrations. In conclusion, the results provide strong molecular evidence that allelopathic influence of juglone on growth and development of maize seedlings may be relevant with an induction of oxidative stress in acceptor plants. PMID:22174645

Sytykiewicz, Hubert

2011-01-01

251

Determination of streptomycin residues in food by solid-phase extraction and liquid chromatography with post-column derivatization and fluorometric detection.  

PubMed

A reliable and sensitive procedure is presented for the analysis of streptomycin (STP) in food of animal origin, like meat, milk and honey. The method is based on a separation by ion-pair liquid chromatography with beta-naphthoquinone-4-sulfonate (NQS) postderivatization and fluorescence detection. The clean-up of the extract is done by solid-phase extraction, firstly with a cation-exchange cartridge and secondly with an octadecyl cartridge. The selectivity is very good and not many interfering peaks are observed for various food matrices. The streptomycin recovery of the total procedure is superior to 80%. The procedure is quantitatively characterized and repeatability, linearity, detection and quantification limits are very satisfactory. A special focus is given to STP residues in honeys and a survey on 64 commercial honeys is presented. For honey analysis, the HPLC method is compared with an immunoassay test (ELISA), and the possibility of using this test for screening with and without solid-phase extraction clean-up is also discussed. PMID:10048198

Edder, P; Cominoli, A; Corvi, C

1999-01-15

252

Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius.  

PubMed

Bacterial infections are one of the most important problems in mass aquaculture, causing the loss of millions of juvenile organisms. We isolated 22 bacterial strains from the cavity fluid of the sea urchin Strongylocentrotus pallidus and used phylogenetic analysis based on 16S rRNA gene sequences to separate the bacterial strains into 9 genera (Aliivibrio, Bizionia, Colwellia, Olleya, Paenibacillus, Photobacterium, Pseudoalteromonas, Shewanella, and Vibrio). Incubating Strongylocentrotus intermedius larvae with a strain from each of the 9 bacterial genera, we investigated the viability of the larvae, the amount of pigment cells, and the level of polyketide synthase (pks) and sulfotransferase (sult) gene expression. Results of the assay on sea urchin development showed that all bacterial strains, except Pseudoalteromonas and Bizionia, suppressed sea urchin development (resulting in retardation of the embryos' development with cellular disorders) and reduced cell viability. We found that pks expression in the sea urchin larvae after incubation with the bacteria of 9 tested genera was significantly increased, while the sult expression was increased only after the treatment with Pseudoalteromonas and Shewanella. Shikimic acid, which is known to activate the biosynthesis of naphthoquinone pigments, increased the tolerance of the sea urchin embryos to the bacteria. In conclusion, we show that the cell-specific pigment genes pks and sult are involved in the bacterial defense response of sea urchins. PMID:23548362

Kiselev, Konstantin V; Ageenko, Natalya V; Kurilenko, Valeria V

2013-03-26

253

Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells.  

PubMed

Salvia officinalis (SO) and Thymus vulgaris (TV) are medicinal plants well known for their curative powers. However, the molecular mechanisms responsible for these abilities of sage and thyme have not been fully understood yet. In this study we investigated the composition and the quantitative estimation of plant extracts, the protective effects of plant extracts against hydrogen peroxide- and 2,3-dimethoxy-1,4-naphthoquinone-induced DNA damage, and levels of enzymatic and non-enzymatic antioxidants (superoxide dismutase, glutathione peroxidase, glutathione) in human HepG2 cells. To measure antioxidative activity of plant extracts we used three assays: 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The results showed that the oxidant-induced DNA lesions were significantly reduced in cells pre-treated with the plant extracts studied. The observed DNA-protective activity could be explained by both elevation of GPx activity in cells pre-treated with SO and TV and antioxidant activity of SO and TV. PMID:23870948

Kozics, Katarína; Klusová, Veronika; Sran?íková, Annamária; Mu?aji, Pavol; Slame?ová, Darina; Hunáková, Lubica; Kusznierewicz, Barbara; Horváthová, Eva

2013-12-01

254

CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts  

PubMed Central

Cytochrome P450 enzymes (CYPs) play major roles in generating highly functionalized terpenoids, but identifying the exact biotransformation step(s) catalyzed by plant CYP in terpenoid biosynthesis is extremely challenging. Tanshinones are abietane-type norditerpenoid naphthoquinones that are the main lipophilic bioactive components of the Chinese medicinal herb danshen (Salvia miltiorrhiza). Whereas the diterpene synthases responsible for the conversion of (E,E,E)-geranylgeranyl diphosphate into the abietane miltiradiene, a potential precursor to tanshinones, have been recently described, molecular characterization of further transformation of miltiradiene remains unavailable. Here we report stable-isotope labeling results that demonstrate the intermediacy of miltiradiene in tanshinone biosynthesis. We further use a next-generation sequencing approach to identify six candidate CYP genes being coregulated with the diterpene synthase genes in both the rhizome and danshen hairy roots, and demonstrate that one of these, CYP76AH1, catalyzes a unique four-electron oxidation cascade on miltiradiene to produce ferruginol both in vitro and in vivo. We then build upon the previous establishment of miltiradiene production in Saccharomyces cerevisiae, with incorporation of CYP76AH1 and phyto-CYP reductase genes leading to heterologous production of ferruginol at 10.5 mg/L. As ferruginol has been found in many plants including danshen, the results and the approaches that were described here provide a solid foundation to further elucidate the biosynthesis of tanshinones and related diterpenoids. Moreover, these results should facilitate the construction of microbial cell factories for the production of phytoterpenoids. PMID:23812755

Guo, Juan; Zhou, Yongjin J.; Hillwig, Matthew L.; Shen, Ye; Yang, Lei; Wang, Yajun; Zhang, Xianan; Liu, Wujun; Peters, Reuben J.; Chen, Xiaoya; Zhao, Zongbao K.; Huang, Luqi

2013-01-01

255

2-Phenylaminonaphthoquinones and related compounds: synthesis, trypanocidal and cytotoxic activities.  

PubMed

A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds. PMID:25127463

Sieveking, Ivan; Thomas, Pablo; Estévez, Juan C; Quiñones, Natalia; Cuéllar, Mauricio A; Villena, Juan; Espinosa-Bustos, Christian; Fierro, Angélica; Tapia, Ricardo A; Maya, Juan D; López-Muñoz, Rodrigo; Cassels, Bruce K; Estévez, Ramon J; Salas, Cristian O

2014-09-01

256

Removal of water-insoluble Sudan dyes by Shewanella oneidensis MR-1.  

PubMed

Decolorization of water-insoluble Sudan dyes was studied with Shewanella oneidensis MR-1, which removed 66.8%, 43.4%, 56.0% and 33.7% Sudan I-IV in 104 h, respectively and reduced Sudan I to aniline and 1-amino-2-naphthol. Lactate was identified as the most efficient electron donor for Sudan I reduction. Improved reduction performance was obtained in the presence of higher lactate or biomass concentration. The correlation between specific reduction rate and initial Sudan I concentration could be described with Michaelis-Menten kinetics (V(max)=1.8 mg Sudan I mg cell(-1) h(-1) and K(m)=5.3 mg l(-1)). The addition of anthraquinone-2-sulfonate stimulated the reduction significantly whereas the presence of 2-hydroxy-1,4-naphthoquinone had little enhancing effect. The main azoreductase activity was found with membrane-bound proteins of MR-1 and no reduction occurred when Sudan I was incubated with cell extracts. These data indicated for the first time that Shewanella could reduce solid-phase Sudan dye particles. PMID:22456237

Ji, Qiuyan; Liu, Guangfei; Zhou, Jiti; Wang, Jing; Jin, Ruofei; Lv, Hong

2012-06-01

257

Determination of gabapentin in human plasma and urine by high-performance liquid chromatography with UV-vis detection.  

PubMed

A simple and reliable high-performance liquid chromatographic (HPLC) method with UV-vis detection has been developed and validated for the determination of gabapentin (GBP) in human plasma and urine. The clean up of the sample was carried out by solid-phase extraction with C18-cartridge. After the clean up procedure, the samples were pre-column derivatizated with 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS). A chromatographic separation was achieved on a C18 column with a mobile phase consisting of acetonitrile and 10mM orthophosphoric acid (pH 2.5) with isocratic elution (35:65). Baclofen was used as an internal standard (I.S.). The method developed for GBP was linear over the concentration range of 0.05-5.0 microg/ml and 0.1-10.0 microg/ml for plasma and urine, respectively. The method is precise (relative standard deviation, R.S.D. <4.05%) and accurate (relative mean error, RME <0.15%); mean absolute recoveries were 72.21% for plasma and 72.73% for urine. PMID:16822634

Sagirli, Olcay; Cetin, Sevil Müge; Onal, Arma?an

2006-11-16

258

Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro  

PubMed Central

Shikonin (SK), a naturally occurring naphthoquinone, exhibits antitumor activity. However, its precise mechanisms of action are unknown. In the present study, the effects of SK on NCI-H460 human lung cancer cells were investigated. It was found that SK reduced cell viability and induced apoptosis in the NCI-H460 cells. Additionally, SK inhibited extracellular signal-regulated kinase (ERK) activity, which indicates that inhibition of the ERK pathway is probably one of the mechanisms by which SK induced NCI-H460 cell apoptosis. The expression of Cbl-b was significantly increased by treatment with SK for 4 h, and gradually increased to a maximal level at 24 h; the time taken for the upregulation of Cbl-b protein was in accordance to that required for the downregulation of phospho (p)-ERK protein. The Cbl inhibitor Ps341 reversed the SK-induced downregulation of p-ERK and apoptosis of NCI-H460 cells. These results indicate that Cbl-b potentiates the apoptotic action of SK by inhibiting the ERK pathway in lung cancer cells. PMID:25780420

QU, DAN; CHEN, YU; XU, XIAO-MAN; ZHANG, MENG; ZHANG, YI; LI, SHENG-QI

2015-01-01

259

Microplate analytical method for quinones by pulse photo-irradiation and chemiluminescence detection.  

PubMed

Quinones are widely distributed in nature and have various bioactivities. Besides, quinones are also considered as toxicological intermediates which cause severe dangerous effects. Hereby, a sensitive, simple, and rapid method is reported for quinones determination. The proposed method employed time resolved fluorescence (TRF) microplate reader based chemiluminescent (CL) detection for the first time as a novel approach for measurement. Under pulse photo-irradiation, the unique photochemical characteristic of quinones is exploited to liberate reactive oxygen species (ROS) which reacted with photosensitized CL reagent. L-012, luminol analogue, was selected for its high sensitivity. Under our investigation, para-quinones showed high CL response when compared to ortho-quinones. A linear response was obtained for studied quinone concentrations in the range of 0.05-50 ?M for 1,4-naphthquinone and of 0.05-150 ?M for 2-methyl-1,4-naphthoquinone (menadione) and 9,10-anthraquinone with detection limit (blank + 3SD) of 0.01 ?M. The proposed method allowed the rapid determination of large number of samples in very short time (96 sample/125 s). The proposed method was successfully applied for determination of menadione in spiked human serum. PMID:22910835

Elgawish, Mohamed Saleh; Shimomai, Chikako; Kishikawa, Naoya; Ohyama, Kaname; Nakashima, Kenichiro; Kuroda, Naotaka

2012-10-21

260

Effects of several quinones on insulin aggregation  

PubMed Central

Protein misfolding and aggregation are associated with more than twenty diseases, such as neurodegenerative diseases and metabolic diseases. The amyloid oligomers and fibrils may induce cell membrane disruption and lead to cell apoptosis. A great number of studies have focused on discovery of amyloid inhibitors which may prevent or treat amyloidosis diseases. Polyphenols have been extensively studied as a class of amyloid inhibitors, with several polyphenols under clinical trials as anti-neurodegenerative drugs. As oxidative intermediates of natural polyphenols, quinones widely exist in medicinal plants or food. In this study, we used insulin as an amyloid model to test the anti-amyloid effects of four simple quinones and four natural anthraquinone derivatives from rhubarb, a traditional herbal medicine used for treating Alzheimer's disease. Our results demonstrated that all eight quinones show inhibitory effects to different extent on insulin oligomerization, especially for 1,4-benzoquinone and 1,4-naphthoquinone. Significantly attenuated oligomerization, reduced amount of amyloid fibrils and reduced hemolysis levels were found after quinones treatments, indicating quinones may inhibit insulin from forming toxic oligomeric species. The results suggest a potential action of native anthraquinone derivatives in preventing protein misfolding diseases, the quinone skeleton may thus be further explored for designing effective anti-amyloidosis compounds. PMID:25008537

Gong, Hao; He, Zihao; Peng, Anlin; Zhang, Xin; Cheng, Biao; Sun, Yue; Zheng, Ling; Huang, Kun

2014-01-01

261

Discovery and Development of Natural Product-derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach?†  

PubMed Central

Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogs, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analog synthesis, as well as structure-activity relationship and mechanism of action studies. Current clinical trials agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in Phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called “maturation inhibitors”. In addition, an etoposide analog, GL-331, progressed to anticancer Phase II clinical trials, and the curcumin analog JC-9 is in Phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trials candidates will also be discussed. PMID:20187635

Lee, Kuo-Hsiung

2010-01-01

262

Antifungal and antioxidant activities of the phytomedicine pipsissewa, Chimaphila umbellata.  

PubMed

Bioassay-guided fractionation of Chimaphila umbellata (L.) W. Bart (Pyrolaceae) ethanol extracts led to the identification of 2,7-dimethyl-1,4-naphthoquinone (chimaphilin) as the principal antifungal component. The structure of chimaphilin was confirmed by 1H and 13C NMR spectroscopy. The antifungal activity of chimaphilin was evaluated using the microdilution method with Saccharomyces cerevisiae (0.05mg/mL) and the dandruff-associated fungi Malassezia globosa (0.39mg/mL) and Malassezia restricta (0.55mg/mL). Pronounced antioxidant activity of C. umbellata crude extract was also identified using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, suggesting this phytomedicine has an antioxidant function in wound healing. A chemical-genetic profile was completed with chimaphilin using approximately 4700 S. cerevisiae gene deletion mutants. Cellular roles of deleted genes in the most susceptible mutants and secondary assays indicate that the targets for chimaphilin include pathways involved in cell wall biogenesis and transcription. PMID:17950387

Galván, Imelda J; Mir-Rashed, Nadereh; Jessulat, Matthew; Atanya, Monica; Golshani, Ashkan; Durst, Tony; Petit, Philippe; Amiguet, Virginie Treyvaud; Boekhout, Teun; Summerbell, Richard; Cruz, Isabel; Arnason, John T; Smith, Myron L

2008-02-01

263

Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release  

NASA Astrophysics Data System (ADS)

The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin ?v?3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 ?g mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 ?g mL-1 and 36.2 ?g mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

2015-02-01

264

Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells  

PubMed Central

Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca2+ and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy. PMID:23118796

Wiench, Benjamin; Eichhorn, Tolga; Paulsen, Malte; Efferth, Thomas

2012-01-01

265

Physicochemical characteristics, oxidative capacities and cytotoxicities of sulfate-coated, 1,4-NQ-coated and ozone-aged black carbon particles  

NASA Astrophysics Data System (ADS)

Black carbon (BC) particles play important roles in climate change, visibility impairment, atmospheric reaction process, and health effect. The aging processes of BC alter not only atmospheric composition, but also the physicochemical characteristics of BC itself, thus impacting the environment and health effects. Here, three types of BC including sulfate-coated, 1,4-naphthoquinone (1,4-NQ)-coated, and O3-aged BC are presented. The morphologies, structures, extraction components, the amount of water-soluble organic carbon (WSOC) and free radical intensities of the three types of BC particles are examined by transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), ultraviolet-visible spectrophotometry, total organic carbon detector and electron paramagnetic resonance, respectively. Dithiothreitol (DTT) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assays are utilized to assess the changes in oxidative capacity and cytotoxicity towards murine alveolar macrophage cells. The orders of DTT activities and cytotoxicities of the particles are both arranged as follows: BC/1,4-NQ > BC/O3 > BC > BC/sulfate, mainly because 1,4-NQ owned high oxidative potential and cytotoxicity, while sulfate did not exhibit oxidative capacity and cytotoxicity. The insoluble components of particles contribute most of the total DTT activity, whereas either water or methanol extract is minor contributor. DTT activity was positively correlated with both WSOC content and free radical intensity, with the correlation between DTT activity and WSOC content was stronger than that between DTT activity and free radical intensity.

Li, Qian; Shang, Jing; Liu, Jia; Xu, Weiwei; Feng, Xiang; Li, Rui; Zhu, Tong

2015-02-01

266

Determination of acid values of fats and oils by flow injection analysis with electrochemical detection.  

PubMed

A new method using a flow injection system with electrochemical detection was developed to determine acid values of fats and oils. VK3 (2-methyl-1,4-naphthoquinone) solution, i.e., ethanol containing 3 mM VK3 and 38 mM LiClO4, was used as the carrier solution. Flow signals were monitored at -0.33 V vs. Ag/AgCl. For preparation of a sample solution, an oil sample was completely dissolved in VK3 solution, or fatty acids were extracted from the sample into this solution. Aliquots (5 microliters) of the sample solution were injected into the flow injection system. Acid values were determined based on flow signals for 14 samples and the results were found to be consistent with those by potentiometric titration. Relative standard deviation was less than 2%. Samples were processed at the rate of 60 h-1. The stability of fish and cod liver oils was followed by measuring acid values for 8 weeks. This method proved to be a simple and rapid means for acid value determination. PMID:9226584

Fuse, T; Kusu, F; Takamura, K

1997-06-01

267

[Determination of streptomycin residue in royal jelly by high performance liquid chromatography with post-column derivatization].  

PubMed

A reliable and sensitive method was introduced for the analysis of streptomycin in royal jelly. The method was based on a separation by a C8 analytical column with beta-naphthoquinone-4-sulfonate post-column derivatization and fluorescence detection. The clean-up of the extract was done by solid-phase extraction, firstly with an octadecyl cartridge and secondly with a cation-exchange cartridge. The linear range was 0.02 - 0.5 mg/L and the correlation coefficient was 0.995 8. The limits of detection (S/N = 3) and quantitation (S/N = 10) of streptomycin were 0.005 mg/kg and 0.01 mg/kg, respectively. The recoveries ranged from 84.0% to 104.0% with the relative standard deviations not larger than 7.9%. The method reduced the possibility of the false positive, and it could meet the need of the current work. PMID:18724685

Zhang, Xiaoyan; Xu, Jinzhong; Shen, Chongyu; Chen, Huilan; Wu, Bin

2008-05-01

268

Dissimilar effects of ?-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa.  

PubMed

Two anticancer drugs, ?-lapachone (?-lap, a naphthoquinone) and hydroxyurea (HU, an inhibitor of ribonucleotide reductase), differently affect nuclear morphology and cell cycle control mechanisms in root meristem cells of Allium cepa. The 18 h treatment with 100 ?M ?-lap results in a lowered number of M-phase cells, increased occurrence of mitotic abnormalities, including over-condensation of chromosomes, their enhanced stickiness, formation of anaphase bridges, micronucleation and reduced mitotic spindles. Following prolonged incubations using high doses of ?-lap, cell nuclei reveal dark-red fluorescence evenly distributed in chromatin surrounding the unstained regions of nucleoli. Both drugs generate H2O2 and induce DNA double strand breaks, which is correlated with ?-phoshorylation of H2AX histones. However, the extent of H2AX phosphorylation (including the frequency of ?-H2AX foci and the relative number cells creating phospho-H2AX domains) is considerably reduced in root meristem cells treated jointly with the ?-lap/HU mixture. Furthermore, various effects of caffeine (an inhibitor of ATM/ATR cell cycle checkpoint kinases) on ?-lap- and HU-induced ?-phoshorylation of H2AX histones and the protective activity of HU against ?-lap suggest that their genotoxic activities are largely dissimilar. ?-Lap treatment results in the induction of apoptosis-like programmed cell death, while HU treatment leads to cell adaptation to replication stress and promotion of abnormal nuclear divisions with biphasic interphase/mitotic states of chromatin condensation. PMID:24184448

Zabka, Aneta; Trzaskoma, Pawe?; Maszewski, Janusz

2013-12-01

269

Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite.  

PubMed

The effect of naturally occurring quinones including lawsone (LQ), ubiquinone (UQ), juglone (JQ), and 1,4-naphthoquinone (NQ) on the biotransformation of carbon tetrachloride (CT) in the presence of Geobacter sulfurreducens and ferrihydrite was investigated. AQDS was used as the model compound for comparison. The reductive dissolution of ferrihydrite by G. sulfurreducens was enhanced by AQDS, NQ, and LQ. However, addition of UQ and JQ had little enhancement effect on Fe(II) production. The bioreduction efficiency and rate of ferrihydrite was highly dependent on the natural property and concentration of quinone compounds and the addition of low concentrations of LQ and NQ significantly accelerated the biotransformation rate of CT. The pseudo-first-order rate constants for CT dechlorination (kobsCT) in AQDS-, LQ- and NQ-amended batches were 5.4-5.8, 4.6-7.4 and 2.4-5.8 times, respectively, higher than those in the absence of quinone. A good relationship between kobsCT for CT dechlorination and bioreduction ratio of ferrihydrite was observed, indicating the important role of biogenic Fe(II) in dechlorination of CT under iron-reducing conditions. Spectroscopic analysis showed that AQDS and NQ could be reduced to semiquinones and hydroquinones, while only hydroquinones were generated in LQ-amended batches. PMID:24290294

Doong, Ruey-an; Lee, Chun-chi; Lien, Chia-min

2014-02-01

270

Novel anti-cancer role of naphthazarin in human gastric cancer cells.  

PubMed

Gastric cancer is one of the most common malignant tumors and the second cause of cancer-related deaths worldwide. Naphthoquinones such as juglone and plumbagin are compounds used extensively to overcome resistance to chemotherapeutic agents in cancers due to their cytotoxic role. This study is the first to investigate the anti-cancer effect of naphthazarin (Naph), one of the naphthaquinones, in human gastric cancer AGS cells. We showed that Naph exhibited effective preferential cell growth inhibition via G2/M phase arrest and apoptosis, which was associated with reduced levels of Cdc2 and Cdc25C expression. Naph also increased cleaved caspase-3 and Poly ADR(adenosine diphosphate ribose) Polymerase expression, ?-H2AX expression (an indicator of DNA double strand breaks) and DNA fragmentation. We also found the generation of reactive oxygen species is a critical mediator in Naph-induced cell growth inhibition and apoptosis. The non-protein antioxidant, glutathione significantly abolished Naph-mediated inhibition of cell growth and apoptosis. Taken together, our findings showed that Naph not only inhibited cell growth, but also induced apoptosis of AGS cells, suggesting that Naph may be a potential candidate for cancer therapy against gastric cancers. PMID:21904775

Kim, Jin-Ah; Lee, Eun Kyeong; Park, Seong Joon; Kim, Nam Deuk; Hyun, Dong-Hoon; Lee, Chang Geun; Lee, Jae Ho; Yang, Kwang Mo; Heo, Kyu; Son, Tae Gen

2012-01-01

271

Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots.  

PubMed

Juglone (5-hydroxy-1,4-naphthoquinone) is known allelochemical, but its molecular mode of action is not well understood. We found that juglone induced reactive oxygen species production and calcium accumulation. To gain more insight into these cellular responses, we performed large-scale analysis of the rice transcriptome during juglone stress. Exposure to juglone triggered changes in transcript levels of genes related to cell growth, cell wall formation, chemical detoxification, abiotic stress response and epigenesis. The most predominant transcription-factor families were AP2/ERF, HSF, NAC, C2H2, WRKY, MYB and GRAS. Gene expression profiling of juglone-treated rice roots revealed upregulated signaling and biosynthesis of abscisic acid and jasmonic acid and inactivation of gibberellic acid. In addition, juglone upregulated the expression of two calcium-dependent protein kinases (CDPKs), 6 mitogen-activated protein kinase (MAPK) genes and 1 MAPK gene and markedly increased the activities of a CDPK-like kinase and MAPKs. Further characterization of these juglone-responsive genes may be helpful for better understanding the mechanisms of allelochemical tolerance in plants. PMID:22065257

Chi, Wen-Chang; Fu, Shih-Feng; Huang, Tsai-Lien; Chen, Yun-An; Chen, Chi-Cien; Huang, Hao-Jen

2011-12-01

272

Combining microdilution with MicroResp™: microbial substrate utilization, antimicrobial susceptibility and respiration.  

PubMed

Pharmacological studies focus on susceptibility of pathogenic microbes against specific drugs or combinations of them, ecological studies on substrate utilization efficiency of variable microbial communities. The MicroResp™ system was especially developed to study soil microbial communities. It was slightly modified to facilitate exploring of microbial growth efficiency in a concentration-dependent fashion (microdilutions of carbohydrate mixtures or specific toxic chemicals). After turbidimetric growth assessment, colorimetric indicator plates (cresol red agar) were mounted to the assay plates. The substrate utilisation design is illustrated by glucose and a plant carbohydrate mixture, the antimicrobial susceptibility design by the naphthoquinone juglone. Dose-response effects are explored by curve fitting of nonlinear models that especially have been developed to detect hormetic effects that are characterized by stimulation at lower followed by inhibition at higher dosages (U- and inverse U-shaped effects). Multivariate analyses are presented utilizing metavariables that were obtained in the curve fitting process of the measured parameters growth and respiration and the factor growth efficiency. PMID:22265657

Drage, Sigrid; Engelmeier, Doris; Bachmann, Gert; Sessitsch, Angela; Mitter, Birgit; Hadacek, Franz

2012-03-01

273

A fluorescence-based rapid screening assay for cytotoxic compounds.  

PubMed

A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death. PMID:15555600

Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E; Garza, Kristine; Aguilera, Renato J

2004-12-24

274

Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide  

NASA Technical Reports Server (NTRS)

Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

2002-01-01

275

In vitro evaluation of the growth inhibitory activities of 15 drugs against Babesia gibsoni (Aomori strain).  

PubMed

The in vitro growth inhibitory activities of 15 drugs against Babesia gibsoni were evaluated following establishment of a continuous culture isolate (Aomori isolate). The culture was successfully continued in an RPMI-1640 medium supplemented with 20% normal canine serum or fetal bovine serum in a humidified atmosphere containing 5% CO2 and 5% O2 at 37 degrees C. We used this isolate to evaluate the growth inhibitory effect of naphthoquinone (atovaquone), aromatic diamidine (diminazene and pentamidine), artemisinin compounds (artesunate and dihydroartemisinin), an iron chelator (deferoxamine), quinoline-containing compounds (quinine and chloroquine), macrolide antibiotics (azithromycin), lyncomycin antibiotics (clindamycin), tetracycline antibiotics (doxycycline and minocycline), imidazole antifungals (clotrimazole and ketoconazole), and a nitroimidazole antiprotozoal (metronidazole). Atovaquone and aromatic diamidine showed the highest activity; they were followed by artesunate compounds with nanomole levels of IC50. Metronidazole did not exhibit activity against the parasite. Other drugs exhibited intermediate in vitro activities with micromole levels of IC50. This is the first report to screen drug activities against B. gibsoni in vitro. The results of our study may support further in vitro drug evaluation for the establishment of therapeutic strategies against canine B. gibsoni infections. PMID:18771856

Matsuu, Aya; Yamasaki, Masahiro; Xuan, Xuenan; Ikadai, Hiromi; Hikasa, Yoshiaki

2008-10-20

276

Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus.  

PubMed

The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te(IV)) and selenite (Se(IV)) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te(0) in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se(0) precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te(0) and Se(0)nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te(0) and Se(0) nature of the nanoparticles. PMID:24462199

Borghese, Roberto; Baccolini, Chiara; Francia, Francesco; Sabatino, Piera; Turner, Raymond J; Zannoni, Davide

2014-03-30

277

Modulatory effects of Tabebuia impetiginosa (Lamiales, Bignoniaceae) on doxorubicin-induced somatic mutation and recombination in Drosophila melanogaster  

PubMed Central

The wing Somatic Mutation and Recombination Test (SMART) in D. melanogaster was used to study genotoxicity of the medicinal plant Tabebuia impetiginosa. Lapachol (naphthoquinone) and ?-lapachone (quinone) are the two main chemical constituents of T. impetiginosa. These compounds have several biological properties. They induce apoptosis by generating oxygen-reactive species, thereby inhibiting topoisomerases (I and II) or inducing other enzymes dependent on NAD(P)H:quinone oxidoreductase 1, thus affecting cell cycle checkpoints. The SMART was used in the standard (ST) version, which has normal levels of cytochrome P450 (CYP) enzymes, to check the direct action of this compound, and in the high bioactivation (HB) version, which has a high constitutive level of CYP enzymes, to check for indirect action in three different T. impetiginosa concentrations (10%, 20% or 40% w/w). It was observed that T. impetiginosa alone did not modify the spontaneous frequencies of mutant spots in either cross. The negative results observed prompted us to study this phytotherapeuticum in association with the reference mutagen doxorubicin (DXR). In co-treated series, T. impetiginosa was toxic in both crosses at higher concentration, whereas in the HB cross, it induced a considerable potentiating effect (from ~24.0 to ~95.0%) on DXR genotoxity. Therefore, further research is needed to determine the possible risks associated with the exposure of living organisms to this complex mixture. PMID:21637695

2009-01-01

278

5,8-Dimethoxy-2-Nonylamino-Naphthalene-1,4-Dione Inhibits Vascular Smooth Muscle Cell Proliferation by Blocking Autophosphorylation of PDGF-Receptor ?  

PubMed Central

As the abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis and vascular restenosis, a candidate drug with antiproliferative properties is needed. We investigated the antiproliferative action and underlying mechanism of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ), using VSMCs treated with platelet-derived growth factor (PDGF). 2-Nonylamino-DMNQ inhibited proliferation and cell number of VSMCs induced by PDGF, but not epidermal growth factor (EGF), in a concentration-dependent manner without any cytotoxicity. This derivative suppressed PDGF-induced [3H]-thymidine incorporation, cell cycle progression from G0/G1 to S phase, and the phosphorylation of phosphor-retinoblastoma protein (pRb) as well as the expression of cyclin E/D, cyclin-dependent kinase (CDK) 2/4, and proliferating cell nuclear antigen (PCNA). Importantly, 2-nonylamino-DMNQ inhibited the phosphorylation of PDGF receptor?(PDGF-R?) enhanced by PDGF at Tyr579, Tyr716, Tyr751, and Tyr1021 residues. Subsequently, 2-nonylamino-DMNQ inhibited PDGF-induced phosphorylation of STAT3, ERK1/2, Akt, and PLC?1. Therefore, our results indicate that 2-nonylamino-DMNQ inhibits PDGF-induced VSMC proliferation by blocking PDGF-R? autophosphorylation, and subsequently PDGF-R?-mediated downstream signaling pathways. PMID:23776396

Kim, Yohan; Lee, Jung-Jin; Lee, Sang-Gil; Jung, Sang-Hyuk; Han, Joo-Hui; Yang, So Young; Yun, Eunju; Song, Gyu-Yong

2013-01-01

279

Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calcium-ERK1/2-Nrf2 pathway.  

PubMed

There are no reports describing the ability of pro-oxidants to protect against radiation-induced apoptosis. Activation of the redox-sensitive transcription factor Nrf2 by low levels of ROS is known to protect against oxidative stress-induced cell death. In this study, hydrogen peroxide, diethylmaleate, and 1,4-naphthoquinone (NQ) exhibited complete protection against radiation-induced cell death in lymphocytes as estimated by propidium iodide staining. Radioprotection by NQ was demonstrated by inhibition of caspase activation, decrease in cell size, DNA fragmentation, nuclear blebbing, and clonogenic assay. Interestingly, NQ offered protection to lymphocytes even when added to cells postirradiation. NQ increased intracellular ROS levels and decreased GSH levels. NQ activated Nrf2 and increased the expression of the cytoprotective gene heme oxygenase-1 in lymphocytes. NQ increased ERK phosphorylation, which is upstream of Nrf2, and this ERK activation was through increased intracellular calcium levels. Administration of NQ to mice offered protection against whole-body irradiation (WBI)-induced apoptosis in splenic lymphocytes and loss of viability of spleen and bone marrow cells. It restored WBI-mediated changes in hematological parameters and functional responses of lymphocytes. Importantly, NQ rescued mice against WBI-induced mortality. These results demonstrated that a pro-oxidant such as NQ can protect against radiation-induced apoptosis by activation of multiple prosurvival mechanisms including activation of the calcium-ERK1/2-Nrf2 pathway. PMID:21530647

Khan, Nazir M; Sandur, Santosh K; Checker, Rahul; Sharma, Deepak; Poduval, T B; Sainis, Krishna B

2011-07-01

280

Plumbagin Promotes the Generation of Astrocytes from Rat Spinal Cord Neural Progenitors Via Activation of the Transcription Factor Stat3  

PubMed Central

Plumbagin (5-hydroxy-2-methyl-1,4 naphthoquinone) is a naturally occurring low molecular weight lipophilic phytochemical derived from roots of plants of the Plumbago genus. Plumbagin has been reported to have several clinically relevant biological activities in non-neural cells including antiatherosclerotic, anticoagulant, anticarcinogenic, antitumor and bactericidal effects. In a recent screen of a panel of botanical pesticides we identified plumbagin as having neuroprotective activity. In the present study we determined if plumbagin could modify the developmental fate of rat E14.5 embryonic neural progenitor cells (NPC). Plumbagin exhibited no cytotoxicity when applied to cultured NPC at concentrations below 1 µM. At a concentration of 0.1 µM, plumbagin significantly enhanced the proliferation of NPC as indicated by a 17% increase in the percentage of cells incorporating bromo-deoxyuridine. plumbagin at a concentration of 0.1 pM (but not 0.1 µM), stimulated the production of astrocytes as indicated by increased GFAP expression. Plumbagin selectively induced the proliferation and differentiation of glial progenitor cells without affecting the proliferation or differentiation of neuron-restricted progenitors. Plumbagin (0.1 pM) rapidly activated the transcription factor Stat3 in NPC, and a Stat3 inhibitor peptide prevented both plumbagin-induced astrocyte formation and proliferation. These findings demonstrate the ability of a low molecular weight naturally occurring phytochemical to control the fate of glial progenitor cells by a mechanism involving the Stat3 signaling pathway. PMID:20456019

Luo, Yongquan; Mughal, Mohamed; Ouyang, Xin; Jiang, Haiyang; Luo, Tae-Gen Son Weiming; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.

2010-01-01

281

Effect of quinoid redox mediators on the aerobic decolorization of azo dyes by cells and cell extracts from Escherichia coli.  

PubMed

It is widely accepted that the addition of redox mediators increases the decolorization rates of azo dyes by bacterial strains under anaerobic conditions. However, little information exists about whether quinoid redox mediators can enhance the performance of aerobic azo dye decolorization. In the present study, quinone-mediated decolorization of different azo dyes by whole cells and cell extracts from the Escherichia coli strain CD-2 under aerobic conditions were investigated. The results demonstrated that reduction rates of different azo dyes were greatly increased when quinone compounds were used as redox mediators. Compared with menadione, 2-hydroxy-1,4-naphthoquinone (lawsone) was more effective at aiding azo dye degradation and the optimum concentration for lawsone is 0.1 mM. Strain CD-2 and the anthraquinone were co-immobilized by entrapment in different polymeric matrices. The co-immobilized beads exhibited good catalytic activity for azo dye degradation and kept stable during successive repeated experiments. The mechanism of the quinone-mediated reduction showed that although whole cells incubated with quinones could significantly increase the rate of decolorization of azo dyes, the quinone compounds did not directly promote azoreductase activity. According to the survey, this is the first report to confirm that the addition of quinoid redox mediators to bacteria increased decolorization under aerobic conditions. PMID:25323408

Cui, Daizong; Li, Guofang; Zhao, Dan; Zhao, Min

2015-03-01

282

Screening of natural product biocides for control of non-indigenous species.  

PubMed

Several benzo-, naphtho- and anthraquinones were tested for their efficacy as biocides in controlling aquatic nuisance species in ships' ballast water. A requirement of this application was broad spectrum aquatic toxicity, coupled with a relatively rapid rate of degradation, in order to comply with coastal discharge requirements. Compounds were screened using a suite of toxicity bioassays designed to establish their relative toxicity to an array of planktonic organisms including larval bivalves Dreissena and Crassostrea, various developmental stages of the estuarine copepod Eurytemora affinis, brine shrimp larvae (Artemia salina), the freshwater invasive water flea Bythotrephes, larval sheepshead minnows CCyprinodon variegates) and two unicellular algal genera Isochrysis and Neochloris.. The majority of the data were recorded as the lowest concentration of the test compound resulting in complete mortality or inactivation of test organisms (LC ,m). The naphthoquinones juglone, plumbagin, menadione and naphthazarin showed the highest toxicity to the broadest range of organisms, often at levels much less than 1 mg l(-1), and most of the attention was focused on this group. While plumbagin and juglone appeared overall to be the most toxic compounds, it was concluded that menadione was probably the most cost-effective candidate compound for shipboard use for controlling invasive species in ballast water, particularly in view of the large volumes of water that would require treatment. PMID:17432383

Wright, D A; Dawson, R; Cutler, S J; Cutler, H G; Orano-Dawson, C E

2007-03-01

283

Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.  

PubMed

Chimaphilin, 2,7-dimethyl-1,4-naphthoquinone, is extracted from pyrola [Passiflora incarnata Fisch.]. In this study, the anticancer activity and underlying mechanisms of chimaphilin toward human breast cancer MCF-7 cells are firstly investigated. Chimaphilin could inhibit the viability of MCF-7 cells in a concentration-dependent manner, and the IC50 value was 43.30?M for 24h. Chimaphilin markedly induced apoptosis through the investigation of characteristic apoptotic morphological changes, nuclear DNA fragmentation, annexin V-FITC/propidium iodide (PI) double staining. Flow cytometry assay revealed that chimaphilin triggered a significant generation of ROS and disruption of mitochondrial membrane potential. Additionally, western blotting assay showed that chimaphilin suppressed Bcl-2 level and enhanced Bad level, then activated caspase-9 and caspase-3, and further activated the poly ADP-ribose polymerase (PARP), finally induced cell apoptosis involving the mitochondrial pathway. Furthermore, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment test testified that chimaphilin could increase the generation of ROS, then induce cell apoptosis. In general, the present results demonstrated that chimaphilin induced apoptosis in human breast cancer MCF-7 cells via a ROS-mediated mitochondrial pathway. PMID:24793375

Ma, Wei-Dong; Zou, Yong-Peng; Wang, Peng; Yao, Xiao-Hui; Sun, Yao; Duan, Ming-Hui; Fu, Yu-Jie; Yu, Bo

2014-08-01

284

How the oligophage codling moth Cydia pomonella survives on walnut despite its secondary metabolite juglone.  

PubMed

Besides apple, its primary host, the codling moth Cydia pomonella uses walnut as a secondary host. Abundance of toxic naphthoquinones, among which juglone prevails, does not restrain this economically important pest insect from infesting walnut, but processes underlying the suitability of this host were yet unknown. Larvae feeding on an artificial diet supplemented with juglone at naturally occurring concentrations survived to adulthood at a similarly high proportion as those in the juglone-devoid control. However, their development time was prolonged, their weight gain was reduced, and adult sex ratio was distorted. Results from the natural system with walnut and apple fruits were in line with data gained on artificial diet. Remarkably, a twofold increase of the maximal juglone content reported from the walnut husk was lethal to the larvae. Chemical analyses showed that larvae feeding on the artificial diet supplemented with juglone concentrations present in walnut contained 1,4,5-trihydroxynaphthalene and excreted it in their frass, whereas the hemolymph contained neither detectable amounts of juglone nor the product of its reduction. Hence, effective metabolism of juglone in the intestinal system of the larvae underlies their survival on host plants containing this defensive compound. PMID:21356213

Piskorski, Rafal; Dorn, Silvia

2011-06-01

285

Ability of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) to detoxify juglone, the main secondary metabolite of the non-host plant walnut.  

PubMed

Many plant species produce toxic secondary metabolites that limit attacks by herbivorous insects, and may thereby constrain insect expansion to new hosts. Walnut is a host for the codling moth Cydia pomonella, which efficiently detoxifies the main walnut defensive compound juglone (5-hydroxy-1,4-naphthoquinone). The oriental fruit moth Grapholita molesta, which also belongs to the tribe Grapholitini, does not feed on walnut. We tested the performance of G. molesta, a highly invasive species, on artificial diets containing juglone at levels mimicking those found in walnut over the growing season. Juglone-fed G. molesta survived relatively well to adulthood, but larval and adult body weights were reduced, and larval developmental time was prolonged in a dose-dependent fashion. Chemical analysis of frass from larvae that had been fed a juglone-containing diet suggests that G. molesta reduces juglone to non-toxic 1,4,5-trihydroxynaphthalene in its gut. This unexpected tolerance of G. molesta to high levels of juglone may facilitate expansion of the host range beyond the current rosacean fruit trees used by this invasive pest. PMID:21901444

Piskorski, Rafal; Ineichen, Simon; Dorn, Silvia

2011-10-01

286

Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAH) are often measured in studies of atmospheric chemistry or health effects of air pollution, due to their known human carcinogenicity. In recent years, PAH quinone derivatives have also become a focus of interest, primarily because they can contribute to oxidative stress. This work reports concentrations of 17 PAH and 15 quinones measured in air samples collected at a trafficked roadside. Data are presented for four compounds not previously reported in ambient air: 2-methyl-1,4-naphthoquinone, 2,6-di-tert-butyl-1,4-benzoquinone, methyl-1,4-benzoquinone and 2,3-dimethylanthraquinone, and a large vapour phase component is measured, not analysed in most earlier studies. Analyses are reported also for SRM 1649a and 1649b, including many compounds (8 for SRM 1649a and 12 for SRM 1649b) for which concentrations have not previously been reported. This work assesses the vapour/particle phase distribution of PAHs and quinones in relation to their molecular weight, vapour pressure, polarity and Henry's Law constant, finding that both molecular weight and vapour pressure (which are correlated) are good predictors of the partitioning.

Delgado-Saborit, Juana Maria; Alam, Mohammed S.; Godri Pollitt, Krystal J.; Stark, Christopher; Harrison, Roy M.

2013-10-01

287

Biopesticides from plants: Calceolaria integrifolia s.l.  

PubMed

The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 ?g/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 µg/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maxim

Céspedes, Carlos L; Salazar, Juan R; Ariza-Castolo, Armando; Yamaguchi, Lydia; Avila, José G; Aqueveque, Pedro; Kubo, Isao; Alarcón, Julio

2014-07-01

288

Phytochemical screening and anti-inflammatory activity of Cnidoscolus quercifolius (Euphorbiaceae) in mice  

PubMed Central

Background: Cnidoscolus quercifolius is a species popularly known as favela and faveleira, and belonging to the Caatinga biome (semi-arid vegetation, Brazil), where is used in folk medicine as an anti-inflammatory. Objective: The aim was to evaluate the anti-inflammatory effect of the ethanolic extract from barks (Cqb-EtOH) and leaves (Cql-EtOH) of C. quercifolius in mice using experimental models of inflammation. Materials and Methods: The preliminary phytochemical analysis of the ethanolic extract was performed. The activity was evaluated by paw edema induced by carrageenan and leukocytes migration to the peritoneal cavity induced by carrageenan methods. Results: A preliminary analysis of Cqb-EtOH revealed that it contained coumarins, flavonoids, monoterpenes/diterpenes and naphthoquinones, while the Cql-EtOH showed positive reaction to coumarins, anthracene derivatives, flavonoids, lignans and triterpenes/steroids. Cqb-EtOH and Cql-EtOH (100, 200 and 400 mg/kg) inhibited significantly (P < 0.01) the increase in the edema volume after administration of carrageenan. In the peritonitis test, acute pretreatment with Cqb-EtOH and Cql-EtOH (100, 200 and 400 mg/kg) inhibited the leukocyte migration. Conclusions: It can be concluded that extracts from the barks and leaves of C. quercifolius have anti-inflammatory activity, which supports the popular use of this plant to treat inflammation. Thus, extracts has significant anti-inflammatory properties, which are related probably to inhibition of release of mediators of the inflammatory process. PMID:25276074

de Araújo Gomes, Leandra Macedo; de Andrade, Thayne Mayra; Silva, Juliane Cabral; de Lima, Julianeli Tolentino; Quintans-Junior, Lucindo José; da Silva Almeida, Jackson Roberto Guedes

2014-01-01

289

Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone  

NASA Astrophysics Data System (ADS)

Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, {n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P21 space group, while L-6 in P21/c space group. Molecules of L-4 and L-8 from polymeric chains through Csbnd H⋯O and Nsbnd H⋯O close contacts. L-6 is a dimer formed by Nsbnd H⋯O interaction. Slipped ?-? stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = L-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity.

Pal, Sanjima; Jadhav, Mahesh; Weyhermüller, Thomas; Patil, Yogesh; Nethaji, M.; Kasabe, Umesh; Kathawate, Laxmi; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

2013-10-01

290

Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey  

SciTech Connect

Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent K{sub m}, V{sub max}, and catalytic efficiency (V{sub max}/K{sub m}) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar K{sub m} and V{sub max} appeared to metabolize naphthalene. The rank order of V{sub max} (rat olfactory epithelium > mouse olfactory epithelium > murine airways ? rat airways) correlated well with tissue susceptibility to naphthalene. The V{sub max} in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. - Highlights: • Naphthalene is metabolized with high catalytic efficiency in susceptible tissue. • Naphthalene is metabolized at low catalytic efficiency in non-susceptible tissue. • Respiratory tissues of the non human primate metabolize naphthalene slowly.

Buckpitt, Alan, E-mail: arbuckpitt@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Morin, Dexter [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Murphy, Shannon; Edwards, Patricia; Van Winkle, Laura [Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States); Center for Health and the Environment, UC Davis, Davis, CA 95616 United States (United States)

2013-07-15

291

Composition of Secondary Organic Aerosol from the Photolysis of 1-Nitronaphthalene  

NASA Astrophysics Data System (ADS)

Nitro-substituted polycyclic aromatic hydrocarbons are of interest due to their associated mutagenic and carcinogenic effects. 1-Nitronaphthalene is emitted directly from combustion processes such as vehicle exhaust, but is also formed through the reaction of naphthalene with the hydroxyl or nitrate radical in the presence of NOx. Photolysis has previously been demonstrated to be the major degradation pathway for 1-nitronaphthalene in the troposphere. In this study, a series of simulation chamber experiments has been performed to investigate the chemical composition of secondary organic aerosol (SOA) formed through the direct photolysis of 1-nitronaphthalene using an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS, TSI). SOA forms rapidly with a yield of up to 50% depending on precursor concentration and photolysis rate. Along with expected products such as naphthoquinone and nitronaphthol, condensed species exhibiting mass spectra consistent with the presence of four aromatic rings were also observed. It is proposed that these species may be formed through dimerization of naphthoxy radicals generated during the photolysis process. Further evidence to support this mechanism was obtained when 1-nitronaphthalene was photolyzed in the presence of excess nitrobenzene. Dimers were then formed containing three aromatic rings, consistent with the reaction of phenoxy and naphthoxy radicals. The molecular formulae of the dimers were also confirmed by collecting SOA on filters and analysing the extracts off-line using an LTQ Orbitrap Velos mass spectrometer (Thermo-Fisher Scientific), fitted with a TriVersa NanoMate chip-based electrospray ionization source (Advion Biosystems). The rapid formation of condensable dimers through the self-reaction of naphthoxy radicals represents a previously unreported potential pathway to SOA formation. Analogous mechanisms may also be important for other nitrated polycyclic aromatic hydrocarbons.

Wenger, J.; Healy, R.; Chen, Y.; Kalberer, M.; Kourtchev, I.

2012-12-01

292

Evidence for a Chemiosmotic Model of Dehalorespiration in Desulfomonile tiedjei DCB-1  

PubMed Central

Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1,4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism. PMID:9864310

Louie, Tai Man; Mohn, William W.

1999-01-01

293

Diffusion-facilitated direct determination of intrinsic parameters for rapid photoinduced bimolecular electron-transfer reactions in nonpolar solvents.  

PubMed

Bimolecular fluorescence-quenching reactions involving electron-transfer between electronically excited 5,10,15,20-tetraphenyl-21H,23H-porphine (TPP*) and 1,4-benzoquinone (BQ) or 1,4-naphthoquinone (NQ) were investigated using a set of alkane solvents that enabled the rapid reaction kinetics to be probed over a wide viscosity range, while minimizing changes in other relevant solvent parameters. Relative diffusion coefficients and reaction distances were recovered directly from analysis of fluorescence decay curves measured on a nanosecond time scale. The electron transfer from TPP* to BQ requires reactant contact, consistent with tightly associated exciplex formation in these nonpolar solvents. In contrast, electron transfer from TPP* to NQ displays a clear distance dependence, indicative of reaction via a much looser noncontact exciplex. This difference is attributed to the greater steric hindrance associated with contact between the TPP*/NQ pair. The diffusion coefficients recovered from fluorescence decay curve analysis are markedly smaller than the corresponding measured bulk relative diffusion coefficients. Classical hydrodynamics theory was found to provide a satisfactory resolution of this apparent discrepancy. The calculated hydrodynamic radii of TPP and NQ correlate very well with the van der Waals values. The hydrodynamic radius obtained for BQ is a factor of 6 times smaller than the van der Waals value, indicative of a possible tight cofacial geometry in the (TPP(+)/BQ(-))* exciplex. The present work demonstrates the utility of a straightforward methodology, based on widely available instrumentation and data analysis, that is broadly applicable for direct determination of kinetic parameter values for a wide variety of rapid bimolecular fluorescence quenching reactions in fluid solution. PMID:25719256

Scully, Andrew D; Ohtaka, Hiroyasu; Takezaki, Makoto; Tominaga, Toshihiro

2015-03-26

294

Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5,6,7,8-tetrahydronaphthalene derivatives.  

PubMed

2-Acetyl tetralin (1) reacted with N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford the enaminone 3. The reaction of 3 with piperidine and morpholine afforded the trans enaminone 5a,b, respectively. Compound 3 was treated with primary aromatic amines to give secondary enaminones 6a-e. The enaminone 3 reacted with acetylglycine and hippuric acid to yield pyranones 10a, b, respectively. The reaction of enaminone 3 with 1,4-benzoquinone and 1,4-naphthoquinone gave benzofuranyl tetralin derivatives 14a,b, respectively. Also, when 3 reacted with 5-amino-3-phenyl-1H-pyrazole 15a and 5-amino-1,2,3-triazole 15b, it afforded the new pyrazolo[1,5-a]pyrimidine 17a and 1,2,3-triazolo[1,5-a]pyrimidine 17b, respectively. While the reaction of 3 with pyrimidines 18a, b resulted in the formation of pyrido[2,3-d]pyrimidine derivatives 20a, b, respectively. Investigations of the cytotoxic effect of those compounds against different human cell lines indicated that some compounds showed high selective cytotoxicity against colon cancer HCT-116 cells. Some of these compounds led to DNA damaging and fragmentation that was associated with the induction of apoptosis via mitochondrial pathway. This pathway is initiated by the impairment of mitochondrial transmembrane potential (??m) and in response to that the mitochondria released cytochrome c increased, that in turn activated caspase-9 and caspase-3 and induced apoptosis. Compounds 17b and 20b were promising anti-cancer agents that induced intrinsic apoptosis pathway in colon cancer cells. PMID:24657569

Gamal-Eldeen, Amira M; Hamdy, Nehal A; Abdel-Aziz, Hatem A; El-Hussieny, Enas A; Fakhr, Issa M I

2014-04-22

295

From body art to anticancer activities: perspectives on medicinal properties of henna.  

PubMed

Nature has been a rich source of therapeutic agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources based on the uses of these plants in traditional medicine. Henna is one such plant commonly known as Persian Henna or Lawsonia inermis, a bushy, flowering tree, commonly found in Australia, Asia and along the Mediterranean coasts of Africa. Paste made from the leaves of Henna plant has been used since the Bronze Age to dye skin, hairs and fingernails especially at the times of festivals. In recent times henna paste has been used for body art paintings and designs in western countries. Despite such widespread use in dyeing and body art painting, Henna extracts and constituents possess numerous biological activities including antioxidant, anti-inflammatory, antibacterial and anticancer activities. The active coloring and biologically active principle of Henna is found to be Lawsone (2- hydroxy-1, 4-naphthoquinone) which can serve as a starting building block for synthesizing large number of therapeutically useful compounds including Atovaquone, Lapachol and Dichloroallyl lawsone which have been shown to possess potent anticancer activities. Some other analogs of Lawsone have been found to exhibit other beneficial biological properties such as antioxidant, anti-inflammatory, antitubercular and antimalarial. The ability of Lawsone to undergo the redox cycling and chelation of trace metal ions has been thought to be partially responsible for some of its biological activities. Despite such diverse biological properties and potent anticancer activities the compound has remained largely unexplored and hence in the present review we have summarized the chemistry and biological activities of Lawsone along with its analogs and metal complexes. PMID:23140289

Pradhan, Rohan; Dandawate, Prasad; Vyas, Alok; Padhye, Subhash; Biersack, Bernhard; Schobert, Rainer; Ahmad, Aamir; Sarkar, Fazlul H

2012-12-01

296

Modeling bimolecular reactions and transport in porous media via particle tracking  

NASA Astrophysics Data System (ADS)

We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In our numerical scheme, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing interface between dissimilar waters, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO and EDTA) and product (CuEDTA) were quantified by snapshots of light transmitted through a column packed with cryolite sand. These snapshots allow us to estimate concentration statistics and calculate the required number of particles. The experiments differ significantly due to a ˜107 difference in thermodynamic rate coefficients, making the latter experiment effectively instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20-40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle model simulates more accurately than the ADRE.

Ding, Dong; Benson, David A.; Paster, Amir; Bolster, Diogo

2013-03-01

297

Development of Enantioselective Synthetic Routes to (–)-Kinamycin F and (–)-Lomaiviticin Aglycon  

PubMed Central

The development of enantioselective synthetic routes to (–)-kinamycin F (9) and (–)-lomaiviticin aglycon (6) is described. The diazotetrahydrobenzo[b]fluorene (diazofluorene) functional group of the targets was prepared by fluoride-mediated coupling of a ?-trimethylsilylmethyl-?,?-unsaturated ketone (38) with an oxidized naphthoquinone (19), palladium-catalyzed cyclization (39?37), and diazo transfer (37?53). The D-ring precursors 60 and 68 were prepared from m-cresol and 3-ethylphenol, respectively. Coupling of the ?-trimethylsilylmethyl-?,?-unsaturated ketone 60 with the juglone derivative 61, cyclization, and diazo transfer, provided the advanced diazofluorene 63, which was elaborated to (–)-kinamycin F (9) in three steps. The diazofluorene 87 was converted to the C2-symmetric lomaiviticin aglycon precursor 91 by enoxysilane formation and oxidative dimerization with manganese tris(hexafluoroacetylacetonate) (94, 26%). The stereochemical outcome is attributed to the steric bias engendered by the mesityl acetal of 87 and contact ion pairing of the intermediates. The coupling product 91 was deprotected (tert-butylhydrogen peroxide, trifluoroacetic acid–dichloromethane) to form the chain isomer of lomaiviticin aglycon 98, which cyclizes to (–)-lomaiviticin aglycon (6, 39–41% overall). The scope of the fluoride-mediated coupling process is delineated (nine products, average yield = 72%, Table 2); a related enoxysilane quinonylation reaction is also described (10 products, average yield = 77%, Table 1). We establish that dimeric diazofluorenes undergo hydrodediazotization 3-fold faster then related monomeric diazofluorenes (Table 6). The simple diazofluorene 103 is a potent inhibitor of ovarian cancer stem cells (IC50 = 500 nM). PMID:23030272

Woo, Christina M.; Gholap, Shivajirao L.; Lu, Liang; Kaneko, Miho; Li, Zhenwu; Ravikumar, P. C.; Herzon, Seth B.

2012-01-01

298

Naphthalene--an environmental and occupational toxicant.  

PubMed

For many years naphthalene had been considered as a non-carcinogenic polycyclic aromatic hydrocarbon (PAH). Airborne naphthalene concentrations have always been observed to be below the limit values of various national committees, such as the threshold limit value (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH) and the MAK of the Deutsche Forschungsgemeinschaft (DFG) (10 ppm). Since 2000, when the US National Toxicology Program revealed clear evidence of the carcinogenic activity of naphthalene in rats, international agencies [the International Agency for Research on Cancer (IARC), the US Environmental Protection Agency (US EPA), DFG] have reclassified naphthalene as a potential human carcinogen, and the European Union (EU) is currently preparing a new risk assessment report. It is presently unknown how to protect humans from health risks resulting from occupational and environmental naphthalene exposure. Knowledge about the external and internal exposure of humans serves as the key determinant in a comprehensive risk assessment. We review here ambient monitoring studies concerning the external naphthalene exposure that results from ubiquitous environmental sources (indoor and outdoor air, water, soil, food) and from a variety of critical workplaces (coking plants, creosote impregnation, distillation of coal tar and naphthalene, manufacture of refractories, graphite electrodes, aluminium and mothballs). Based on results of ambient monitoring studies published so far, a new hygiene-based exposure limit of 1.5 mg naphthalene per cubic metre of air (0.3 ppm) is proposed. Furthermore, results from biological monitoring studies are summarised in this article. The internal burden was almost exclusively determined by means of the urinary metabolites 1-naphthol and 2-naphthol, but it is currently not possible for one to evaluate a biological tolerance level (BAT) or a biological exposure index (BEI). Based on the toxicokinetics and metabolism of naphthalene, the central question on its carcinogenicity is briefly sketched. Naphthoquinones play an important role in this context. Their adducts with macromolecules may be the parameters of choice for the estimation of effects to human health. PMID:12920524

Preuss, Ralf; Angerer, Jürgen; Drexler, Hans

2003-10-01

299

Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection.  

PubMed

Many compounds of plant origin have been identified that inhibit different stages in the replication cycle of human immunodeficiency virus (HIV): 1) virus adsorption: chromone alkaloids (schumannificine), isoquinoline alkaloids (michellamines), sulphated polysaccharides and polyphenolics, flavonoids, coumarins (glycocoumarin, licopyranocoumarin) phenolics (caffeic acid derivatives, galloyl acid derivatives, catechinic acid derivatives), tannins and triterpenes (glycyrrhizin and analogues, soyasaponin and analogues); 2) virus-cell fusion: lectins (mannose- and N-acetylglucosamine-specific) and triterpenes (betulinic acid and analogues); 3) reverse transcription; alkaloids (benzophenanthridines, protoberberines, isoquinolines, quinolines), coumarins (calanolides and analogues), flavonoids, phloroglucinols, lactones (protolichesterinic acid), tannins, iridoids (fulvoplumierin) and triterpenes; 4) integration: coumarins (3-substituted-4-hydroxycoumarins), depsidones, O-caffeoyl derivatives, lignans (arctigenin and analogues) and phenolics (curcumin); 5) translation: single chain ribosome inactivating proteins (SCRIP's); 6) proteolytic cleavage (protease inhibition): saponins (ursolic and maslinic acids), xanthones (mangostin and analogues) and coumarins; 7) glycosylation: alkaloids including indolizidines (castanospermine and analogues), piperidines (1-deoxynojirimicin and analogues) and pyrrolizidines (australine and analogues); 8) assembly/release: naphthodianthrones (hypericin and pseudohypericin), photosensitisers (terthiophenes and furoisocoumarins) and phospholipids. The target of action of several anti-HIV substances including alkaloids (O-demethyl-buchenavianine, papaverine), polysaccharides (acemannan), lignans (intheriotherins, schisantherin), phenolics (gossypol, lignins, catechol dimers such as peltatols, naphthoquinones such as conocurvone) and saponins (celasdin B, Gleditsia and Gymnocladus saponins), has not been elucidated or does not fit in the proposed scheme. Only a very few of these plant-derived anti-HIV products have been used in a limited number of patients suffering from AIDS viz. glycyrrhizin, papaverine, trichosanthin, castanospermine, N-butyl-1-deoxynojirimicin and acemannan. PMID:9525100

Vlietinck, A J; De Bruyne, T; Apers, S; Pieters, L A

1998-03-01

300

2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke.  

PubMed

2-Methoxystypandrone (2-MS), a naphthoquinone, has been shown to display an immunomodulatory effect in a cellular model. To explore whether 2-MS could protect mice against cerebral ischemic/reperfusion (I/R)-induced brain injury, we evaluated 2-MS's protective effects on an acute ischemic stroke by inducing a middle cerebral artery occlusion/reperfusion (MCAO) injury in murine model. Treatment of mice that have undergone I/R injury with 2-MS (10-100 ?g/kg, i.v.) at 2 h after MCAO enhanced survival rate and ameliorated neurological deficits, brain infarction, neural dysfunction and massive oxidative stress, due to an enormous production of free radicals and breakdown of blood-brain barrier (BBB) by I/R injury; this primarily occurred with extensive infiltration of CD11b-positive inflammatory cells and upexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and p65 nuclear factor-kappa B (NF-?B). All of these pathological changes were diminished by 2-MS; 2-MS also intensively limited cortical infarction and promoted upexpression of neurodevelopmental genes near peri-infarct cortex and endogenous neurogenesis near subgranular zone of hippocampal dentate gyrus and the subventricular zone, most possibly by inactivation of GSK3? which in turn upregulating ?-catenin, Bcl-2 adam11 and adamts20. We conclude that 2-MS blocks inflammatory responses by impairing NF-?B signaling to limit the inflammation and oxidative stress for preservation of BBB integrity; 2-MS also concomitantly promotes neurodevelopmental protein expression and endogenous neurogenesis through inactivation of GSK3? to enhance ?-catenin signaling for upexpression of neuroprotective genes and proteins. PMID:24342702

Chern, Chang-Ming; Wang, Yea-Hwey; Liou, Kuo-Tong; Hou, Yu-Chang; Chen, Chien-Chih; Shen, Yuh-Chiang

2014-02-01

301

Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth  

PubMed Central

Background and Aims Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Methods Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma–optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. Key Results The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. Conclusions The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients. PMID:23264234

Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

2013-01-01

302

Isolation and characterization of photosynthetic reaction centers from Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides  

SciTech Connect

Reaction centers were isolated by affinity chromatography on equine cytochrome C. Peripheral proteins were removed with 0.05% LDAO. Absorption and EPR spectra and bleaching assays indicate that the reaction centers retained their electron donors and acceptors in the native environment. Three reaction center polypeptides were isolated and submitted for amino-terminal sequence determination. By comparing these sequences to those deduced from DNA, it was established that the M and L subunits are post-translationally modified to remove the aminoterminal Met, whereas the H subunit is not. Inhibition of O/sub 2/ evolution in photosystem II particles from spinach by naphthoquinone derivatives show O/sub 2/ inhibition by bromomethyl and acetoxymethyl derivatives but not with hydroxymethyl derivatives. Inhibition by acetoxymethyl derivatives in irreversible and dependent on illumination suggesting that reduction of the quinone is necessary. Therefore acetoxymethyl derivatives may be useful as suicide reagents for labelling quinone binding sites. Procedures were developed to extract one or both of the quinones present in reaction centers and preserve the integrity of the co-factor binding sites. The H and M subunits were cleaned using furmic acid. Both fragments were isolated from the H subunit, while the larger fragment was isolated from the M subunit. Electrophoretic mobilities of the isolated fragments agrees well with the expected molecular weights. The L subunit was digested with Staphylococcus areus vs protease. The pattern obtained was consistant with the potential sites of cleavage, but it was not possible to assign cleavage sites unambiguously. 112 references, 37 figures, 2 tables.

Worland, S.T.

1984-09-01

303

Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols.  

PubMed

Particulate matter (PM)-mediated reactive oxygen species (ROS) generation has been implicated in health effects posed by PM. Humic-like substances (HULIS) are an unresolved mixture of water-extracted organic compounds from atmospheric aerosol particles or isolated from fog/cloudwater samples. In this study, we use a cell-free dithiothreitol (DTT) assay to measure ROS production mediated by HULIS. The HULIS samples are isolated from aerosols collected at a rural location and a suburban location in the Pearl River Delta, China. In our experiments, ROS activities by residue metal ions in the HULIS fraction are suppressed by including a strong chelating agent in the DTT assay. Under conditions of DTT consumption not exceeding 90%, the HULIS-catalyzed oxidation of DTT follows the zero-order kinetics with respect to DTT concentration, and the rate of DTT oxidation is proportional to the dose of HULIS. The ROS activity of the aerosol HULIS, on a per unit mass basis is 2% of the ROS activity by a reference quinone compound, 1,4-naphthoquinone and exceeds that of two aquatic fulvic acids. The HULIS fraction in the ambient samples tested exhibits comparable ROS activities to the organic solvent extractable fraction, which would contain compounds such as quinones, a known organic compound class capable of catalyzing generation of ROS in cells. HULIS was found to be the major redox active constituent of the water-extractable organic fraction in PM. It is plausible that HULIS contains reversible redox sites, thereby serving as electron carriers to catalyze the formation of ROS. Our work suggests that HULIS could be an active PM component in generating ROS and further work is warranted to characterize its redox properties. PMID:22044074

Lin, Peng; Yu, Jian Zhen

2011-12-15

304

Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.

Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

2014-11-01

305

Potential of herbs in skin protection from ultraviolet radiation  

PubMed Central

Herbs have been used in medicines and cosmetics from centuries. Their potential to treat different skin diseases, to adorn and improve the skin appearance is well-known. As ultraviolet (UV) radiation can cause sunburns, wrinkles, lower immunity against infections, premature aging, and cancer, there is permanent need for protection from UV radiation and prevention from their side effects. Herbs and herbal preparations have a high potential due to their antioxidant activity, primarily. Antioxidants such as vitamins (vitamin C, vitamin E), flavonoids, and phenolic acids play the main role in fighting against free radical species that are the main cause of numerous negative skin changes. Although isolated plant compounds have a high potential in protection of the skin, whole herbs extracts showed better potential due to their complex composition. Many studies showed that green and black tea (polyphenols) ameliorate adverse skin reactions following UV exposure. The gel from aloe is believed to stimulate skin and assist in new cell growth. Spectrophotometer testing indicates that as a concentrated extract of Krameria triandra it absorbs 25 to 30% of the amount of UV radiation typically absorbed by octyl methoxycinnamate. Sesame oil resists 30% of UV rays, while coconut, peanut, olive, and cottonseed oils block out about 20%. A “sclerojuglonic” compound which is forming from naphthoquinone and keratin is the reaction product that provides UV protection. Traditional use of plant in medication or beautification is the basis for researches and making new trends in cosmetics. This review covers all essential aspects of potential of herbs as radioprotective agents and its future prospects. PMID:22279374

Kora?, Radava R.; Khambholja, Kapil M.

2011-01-01

306

Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer.  

PubMed

Human papilloma virus (HPV) is the well-established etiological factor of cervical cancer. E6 and E7 oncoproteins expressed by HPV are known to inactivate tumor suppressor proteins p53 and pRb, respectively. Tanshinone IIA (Tan IIA) is a diterpenoid naphthoquinone found in the traditional Chinese medicine Danshen (Salvia sp.). Tan IIA has been shown to possess anti-tumor activity against several cancer types. In this study we show that Tan IIA potently inhibited proliferation of the human cervical cancer CaSki, SiHa, HeLa and C33a cells. Mechanistically in HPV positive CaSki cells, Tan IIA was found to (i) downregulate expression of HPV E6 and E7 genes and modulate associated proteins E6AP and E2F1, (ii) cause S phase cell cycle arrest, (iii) induce accumulation of p53 and alter expression of p53-dependent targets, (iv) modulate pRb and related proteins, and (v) cause p53-mediated apoptosis by moderating Bcl2, Bax, caspase-3, and PARP cleavage expressions. In vivo, Tan IIA resulted in over 66% reduction in tumor volume of cervical cancer xenograft in athymic nude mice. Tan IIA treated tumor tissues had lower expression of proliferation marker PCNA and changes in apoptosis targets were in agreement with in vitro studies, further confirming reduced proliferation and involvement of multiple targets behind anti-cancer effects. This is the first demonstration of Tan IIA to possess significant anti-viral activity by repressing HPV oncogenes leading to inhibition of cervical cancer. Together, our data suggest that Tan IIA can be exploited as a potent therapeutic agent for the prevention and treatment of cervical and other HPV-related cancers. PMID:25304375

Munagala, Radha; Aqil, Farrukh; Jeyabalan, Jeyaprakash; Gupta, Ramesh C

2015-01-28

307

Subtle Changes in Endochin-Like Quinolone Structure Alter the Site of Inhibition within the Cytochrome bc1 Complex of Plasmodium falciparum.  

PubMed

The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs. PMID:25605352

Stickles, Allison M; de Almeida, Mariana Justino; Morrisey, Joanne M; Sheridan, Kayla A; Forquer, Isaac P; Nilsen, Aaron; Winter, Rolf W; Burrows, Jeremy N; Fidock, David A; Vaidya, Akhil B; Riscoe, Michael K

2015-04-01

308

Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films.  

PubMed

Methods of making mesostructured sol-gel silicate thin films containing two different molecules deliberately placed in two different spatially separated regions in a one-step, one-pot preparation are developed and demonstrated. When the structure-directing agent is the surfactant cetyltrimethylammonium bromide, the structure is 2-D hexagonal with lattice spacings between 31.6 and 42.1 angstroms depending on the dopant molecules and their concentrations. The three general strategies that are used to place the molecules are philicity (like dissolves like), bonding, and bifunctionality. These strategies take advantage of the different chemical and physical properties of the regions of the films. These regions are the inorganic silicate framework, the hydrophobic organic interior of the micelles, and the ionic interface between them. Luminescent molecules that possess the physical and chemical properties appropriate for the desired strategies are chosen. Lanthanide and ruthenium complexes with condensable trialkoxysilane groups are incorporated into the silicate framework. 1,4-Naphthoquinone, pyrene, rhodamine 6G and coumarin 540A, and lanthanides with no condensable trialkoxysilanes occupy the hydrophobic core of micelles by virtue of their hydrophobicity. The locations of the molecules are determined by luminescence spectroscopy and by luminescence lifetime measurements. In all cases, the long-range order templated into the thin film is verified by X-ray diffraction. The simultaneous placement of two molecules in the structured film and the maintenance of long-range order require a delicate balance among film preparation methodology, design of the molecules to be incorporated in specific regions, and concentrations of all of the species. PMID:12452713

Minoofar, Payam N; Hernandez, Raquel; Chia, Shinye; Dunn, Bruce; Zink, Jeffrey I; Franville, Anne-Christine

2002-12-01

309

Reactive Oxygen Species Prevent Imiquimod-Induced Psoriatic Dermatitis through Enhancing Regulatory T Cell Function  

PubMed Central

Psoriasis is a chronic inflammatory skin disease resulting from immune dysregulation. Regulatory T cells (Tregs) are important in the prevention of psoriasis. Traditionally, reactive oxygen species (ROS) are known to be implicated in the progression of inflammatory diseases, including psoriasis, but many recent studies suggested the protective role of ROS in immune-mediated diseases. In particular, severe cases of psoriasis vulgaris have been reported to be successfully treated by hyperbaric oxygen therapy (HBOT), which raises tissue level of ROS. Also it was reported that Treg function was closely associated with ROS level. However, it has been only investigated in lowered levels of ROS so far. Thus, in this study, to clarify the relationship between ROS level and Treg function, as well as their role in the pathogenesis of psoriasis, we investigated imiquimod-induced psoriatic dermatitis (PD) in association with Treg function both in elevated and lowered levels of ROS by using knockout mice, such as glutathione peroxidase-1?/? and neutrophil cytosolic factor-1?/? mice, as well as by using HBOT or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-acetylcysteine. The results consistently showed Tregs were hyperfunctional in elevated levels of ROS, whereas hypofunctional in lowered levels of ROS. In addition, imiquimod-induced PD was attenuated in elevated levels of ROS, whereas aggravated in lowered levels of ROS. For the molecular mechanism that may link ROS level and Treg function, we investigated the expression of an immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO) which is induced by ROS, in PD lesions. Taken together, it was implied that appropriately elevated levels of ROS might prevent psoriasis through enhancing IDO expression and Treg function. PMID:24608112

Choi, Eun-Jeong; Hong, Min-Pyo; Kie, Jeong-Hae; Lim, Woosung; Lee, Hyeon Kook; Moon, Byung-In; Seoh, Ju-Young

2014-01-01

310

Development of enantioselective synthetic routes to (-)-kinamycin F and (-)-lomaiviticin aglycon.  

PubMed

The development of enantioselective synthetic routes to (-)-kinamycin F (9) and (-)-lomaiviticin aglycon (6) are described. The diazotetrahydrobenzo[b]fluorene (diazofluorene) functional group of the targets was prepared by fluoride-mediated coupling of a ?-trimethylsilylmethyl-?,?-unsaturated ketone (38) with an oxidized naphthoquinone (19), palladium-catalyzed cyclization (39?37), and diazo transfer (37?53). The D-ring precursors 60 and 68 were prepared from m-cresol and 3-ethylphenol, respectively. Coupling of the ?-trimethylsilylmethyl-?,?-unsaturated ketone 60 with the juglone derivative 61, cyclization, and diazo transfer provided the advanced diazofluorene 63, which was elaborated to (-)-kinamycin F (9) in three steps. The diazofluorene 87 was converted to the C(2)-symmetric lomaiviticin aglycon precursor 91 by enoxysilane formation and oxidative dimerization with manganese tris(hexafluoroacetylacetonate) (94, 26%). The stereochemical outcome in the coupling is attributed to the steric bias engendered by the mesityl acetal of 87 and contact ion pairing of the intermediates. The coupling product 91 was deprotected (tert-butylhydrogen peroxide, trifluoroacetic acid-dichloromethane) to form mixtures of the chain isomer of lomaiviticin aglycon 98 and the ring isomer 6. These mixtures converged on purification or standing to the ring isomer 6 (39-41% overall). The scope of the fluoride-mediated coupling process is delineated (nine products, average yield = 72%); a related enoxysilane quinonylation reaction is also described (10 products, average yield = 77%). We establish that dimeric diazofluorenes undergo hydrodediazotization 2-fold faster than related monomeric diazofluorenes. This enhanced reactivity may underlie the cytotoxic effects of (-)-lomaiviticin A (1). The simple diazofluorene 103 is a potent inhibitor of ovarian cancer stem cells (IC(50) = 500 nM). PMID:23030272

Woo, Christina M; Gholap, Shivajirao L; Lu, Liang; Kaneko, Miho; Li, Zhenwu; Ravikumar, P C; Herzon, Seth B

2012-10-17

311

Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids.  

PubMed

Although there have been many studies on bacterial removal of soluble azo dyes, much less information is available for biological treatment of water-insoluble azo dyes. The few bacterial species capable of removing Sudan dye generally require a long time to remove low concentrations of insoluble dye particles. The present work examined the efficient removal of Sudan I by Shewanella oneidensis MR-1 in the presence of redox mediator. It was found that the microbially reduced anthraquinone-2,6-disulfonate (AQDS) could abiotically reduce Sudan I, indicating the feasibility of microbially-mediated reduction. The addition of 100 ?M AQDS and other different quinone compounds led to 4.3-54.7 % increase in removal efficiencies in 22 h. However, adding 5-hydroxy-1,4-naphthoquinone into the system inhibited Sudan I removal. The presence of 10, 50 and 100 ?M AQDS stimulated the removal efficiency in 10 h from 26.4 to 42.8, 54.9 and 64.0 %, respectively. The presence of 300 ?M AQDS resulted in an eightfold increase in initial removal rate from 0.19 to 1.52 mg h?¹ g?¹ cell biomass. A linear relationship was observed between the initial removal rates and AQDS concentrations (0-100 ?M). Comparison of Michaelis-Menten kinetic constants revealed the advantage of AQDS-mediated removal over direct reduction. Different species of humic acid could also stimulate the removal of Sudan I. Scanning electronic microscopy analysis confirmed the accelerated removal performance in the presence of AQDS. These results provide a potential method for the efficient removal of insoluble Sudan dye. PMID:23539152

Liu, Guangfei; Zhou, Jiti; Ji, Qiuyan; Wang, Jing; Jin, Ruofei; Lv, Hong

2013-09-01

312

Isolation of cellular membranes from lignin-producing tissues of Norway spruce and analysis of redox enzymes.  

PubMed

There are no earlier reports with successful isolation of plasma membranes from lignin-forming tissues of conifers. A method to isolate cellular membranes from extracellular lignin-producing tissue-cultured cells and developing xylem of Norway spruce was optimized. Modifications to the homogenization buffer were needed to obtain membranes from these phenolics-rich tissues. Membranes were separated by aqueous polymer two-phase partitioning. Chlorophyll a determination, marker enzyme assays and western blot analyses using antibodies for each membrane type showed that mitochondrial, chloroplastic and to a certain extent also ER and Golgi membranes were efficiently diminished from the upper phase, but tonoplast and plasma membranes distributed evenly between the upper and lower phases. Redox enzymes present in the partially purified membrane fractions were assayed in order to reveal the origin of H(2)O(2) needed for lignification. The membranes of spruce contained enzymes able to generate superoxide in the presence of NAD(P)H. Besides members of the flavodoxin and flavodoxin-like family proteins, cytochrome b5, cytochrome P450 and several stress responsive proteins were identified by nitroblue tetrazolium staining of isoelectric focusing gels and by mass spectrometry. Naphthoquinones juglone and menadione increased superoxide production in activity-stained gels. Some juglone-activated enzymes were preferentially using NADH. With NADH, menadione activated only some of the enzymes that juglone did, whereas with NADPH the activation patterns were identical. Duroquinone, a benzoquinone, did not affect superoxide production. Superoxide dismutase, ascorbate peroxidase, catalase and an acidic class III peroxidase isoenzyme were detected in partially purified spruce membranes. The possible locations and functions of these enzymes are discussed. PMID:24730578

Kärkönen, Anna; Meisrimler, Claudia-Nicole; Takahashi, Junko; Väisänen, Enni; Laitinen, Teresa; Jiménez Barboza, Luis Alexis; Holmström, Sami; Salonvaara, Sadette; Wienkoop, Stefanie; Fagerstedt, Kurt V; Lüthje, Sabine

2014-12-01

313

5-Quinone derivatives of 2'-deoxyuridine 5'-phosphate: inhibition and inactivation of thymidylate synthase, antitumor cell, and antiviral studies.  

PubMed

Both photochemical aromatic substitution and palladium (0)-catalyzed biaryl coupling reactions have been employed in the synthesis of 5-substituted 2'-deoxyuridines. The former procedure was useful in the preparation of the 3,4-dimethyl-2,5-dimethoxyphenyl derivative 12a and the 3,4,6-trimethyl-2,5-dimethoxyphenyl derivative 12b. The latter reaction was efficient in the preparation of the 2-(3-methyl-1,4-dimethoxynaphthyl) derivative 14. These compounds and their nucleotides (20a-c) were converted to the corresponding quinone nucleosides 19a-c and nucleotides 6-8 by an oxidative demethylation reaction using ceric ammonium nitrate and silver(II) oxide, respectively. The kinetics and products of the reaction of the quinone nucleosides 19a,b with methyl thioglycolate showed rapid addition to the quinone ring in the trisubstituted derivative 19a and somewhat slower redox reactions with the tetrasubstituted quinones 19b and 19c. All six nucleotides had high affinity for the title enzyme from Lactobacillus casei with Ki values ranging from 0.59 to 3.6 microM; the most effective compounds were the dimethyl quinone 6 and the naphthoquinone 8. Somewhat higher inhibitory constants were observed with the quinones against the L1210 enzyme. The dimethyl quinone nucleotide 6 showed time-dependent inactivation (kinact = 0.015 s-1) against the L. casei enzyme, a rate saturation effect, and substrate protection in accord with the kinetic expression for an active-site-directed alkylating agent. The apparent second-order rate of this reaction (2.5 X 10(4) M-1 s-1) is one-twentieth the rate (kcat.) of the normal enzymatic reaction leading to product. None of the compound exhibited sufficient activity in the antitumor cell or antiviral assays to warrant further study. PMID:3027341

Al-Razzak, L A; Schwepler, D; Decedue, C J; Balzarini, J; De Clercq, E; Mertes, M P

1987-02-01

314

Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site  

PubMed Central

Previously we have shown that ONIOM type (QM/MM) calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and 18O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0), 2,3,5,6-tetramethyl-1, 4-benzoquinone (duroquinone, DQ), and 2,3-dimethyl-l,4-naphthoquinone (DMNQ) incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites. The normal modes that contribute to the bands in the calculated spectra, their composition, frequency, and intensity, and how these quantities are modified upon 18O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10–13 cm?1 separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry in H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are “tail-less.” Spectra were also calculated for reaction centers with corresponding “tail” containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated spectra. PMID:24009618

Zhao, Nan; Lamichhane, Hari P.; Hastings, Gary

2013-01-01

315

NMR Studies Reveal an Unexpected Binding Site for a Redox Inhibitor of AP Endonuclease 1  

PubMed Central

AP endonuclease 1 (APE1) is a multi-faceted protein with essential roles in DNA repair and transcriptional regulation. APE1 (Ref-1) activates many transcription factors (TF), including AP-1 and NF-?B. While the mechanism of APE1 redox activity remains unknown, it may involve reduction of an oxidized Cys in the TF DNA-binding domain. Several small molecules inhibit APE1-mediated TF activation, including the quinone derivative E3330. It has been proposed some inhibitors bind near C65, a residue suggested to be important for TF activation, but the binding site has not been determined for any inhibitor. Remarkably, NMR and molecular docking studies here reveal E3330 binds in the DNA repair active site of APE1, far removed from C65. Accordingly, AP endonuclease activity is substantially inhibited by E3330 (100 ?M), suggesting that E3330 may not selectively inhibit APE1 redox activity in cells, in contrast with previous proposals. A naphthoquinone analog of E3330, RN7-60, binds a site removed from both C65 and the repair active-site. While a detailed understanding of how these inhibitors work requires further studies into the mechanism of redox activity, our results do not support proposals that E3330 binds selectively (and slowly) to locally unfolded APE1, or that E3330 promotes formation of disulfide bonds in APE1. Rather, we suggest E3330 may suppress a conformational change needed for redox activity, disrupt productive APE1-TF binding, or block the proposed redox chaperone activity of APE1. Our results provide the first structural information for any APE1 redox inhibitor, and could facilitate development of improved inhibitors for research and perhaps clinical purposes. PMID:22032234

Manvilla, Brittney A.; Wauchope, Orrette; Seley-Radtke, Katherine L.; Drohat, Alexander C.

2011-01-01

316

Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition  

SciTech Connect

Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as {alpha}-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

Ishihara, Yasuhiro [Department of Biology, Graduate School of Science, Osaka University, Osaka 532-8686 (Japan); Shiba, Dai [Department of Biology, Graduate School of Science, Osaka University, Osaka 532-8686 (Japan); Shimamoto, Norio [Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193 (Japan)]. E-mail: n-shimamoto@kph.bunri-u.ac.jp

2006-07-15

317

Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents  

PubMed Central

Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

2012-01-01

318

Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes.  

PubMed

Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), a quinone isolated from the roots of Plumbago zeylanica was recently reported to suppress the activation of NF-kappaB in tumor cells. NF-kappaB, a ubiquitous transcription factor, plays a central role in regulating diverse processes in leukocytes like cellular proliferation, expression of immunoregulatory genes and apoptosis during innate and adaptive immune responses. Consequently, plumbagin might affect the biological functions of leukocytes participating in various immune responses. The present report describes novel immunomodulatory effects of plumbagin. Plumbagin inhibited T cell proliferation in response to polyclonal mitogen Concanavalin A (Con A) by blocking cell cycle progression. It also suppressed expression of early and late activation markers CD69 and CD25 respectively, in activated T cells. At these immunosuppressive doses (up to 5 microM), plumbagin did not reduce the viability of lymphocytes. Further, the inhibition of T cell proliferation by plumbagin was accompanied by a decrease in the levels of Con A induced IL-2, IL-4, IL-6 and IFN-gamma cytokines. Similar immunosuppressive effects of plumbagin on cytokine levels were seen in vivo. To characterize the mechanism of inhibitory action of plumbagin, the mitogen induced IkappaB-alpha degradation and nuclear translocation of NF-kappaB was studied in lymphocytes. Plumbagin completely inhibited Con A induced IkappaB-alpha degradation and NF-kappaB activation. Further, plumbagin prevented Graft Versus Host Disease-induced mortality in mice. To our knowledge this is the first report showing the immunomodulatory effects of plumbagin in lymphocytes via modulation of NF-kappaB activation. PMID:19374955

Checker, Rahul; Sharma, Deepak; Sandur, Santosh Kumar; Khanam, Shazia; Poduval, T B

2009-07-01

319

Plumbagin, Vitamin K3 Analogue, Suppresses STAT3 Activation Pathway through Induction of Protein Tyrosine Phosphatase, SHP-1: Potential Role in Chemosensitization  

PubMed Central

The activation of STAT3 has been linked with carcinogenesis through survival, proliferation, and angiogenesis of tumor cells. Agents that can suppress STAT3 activation have potential not only for prevention but also for treatment of cancer. In the present report, we investigated whether plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), an analogue of Vitamin K and isolated from chitrak (Plumbago zeylanica), an Ayurvedic medicinal plant, can modulate the STAT3 pathway. We found that plumbagin inhibited both constitutive and IL-6-inducible STAT3 phosphorylation in multiple myeloma (MM) cells and this correlated with the inhibition of c-Src, JAK1, and JAK2 activation. Vanadate, however, reversed the plumbagin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that plumbagin induced the expression of the protein tyrosine phosphatase, SHP-1; and silencing of the SHP-1 abolished the effect of plumbagin. This agent also downregulated the expression of STAT3-regulated cyclin D1, Bcl-xL, and VEGF, activated caspase-3, induced PARP cleavage, and increased the sub-G1 population of MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the plumbagin-induced apoptosis. When compared with AG490, a rationally designed STAT3/JAK2 inhibitor, plumbagin was found more potent in suppressing proliferation of cells. Plumbagin also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. Overall, these results suggest that the plumbagin inhibits STAT3 activation pathway through induction of SHP-1 and this may mediate sensitization of STAT3 overexpressing cancers to chemotherapeutic agents. PMID:20068065

Sandur, Santosh K.; Pandey, Manoj K; Sung, Bokyung; Aggarwal, Bharat B.

2009-01-01

320

Synthesis and evaluation of 11?-(4-Substituted phenyl) estradiol analogs: Transition from estrogen receptor agonists to antagonists  

PubMed Central

Introduction As part of our program to develop estrogen receptor (ER) targeted imaging and therapeutic agents we chose to evaluate 11?-substituted estradiol analogs as a representative scaffold. Previous synthetic studies provided an entry into this class of compounds and other work indicated that 11?-(substituted aryl) estradiol analogs were potent antagonists of the ER. Little information existed about the specific structural features involved in the transition from agonism to antagonism for the 11?-aryl estradiol analogs or their potential as scaffolds for drug conjugation. Methods We prepared and characterized a series of 11?-(4-Substituted phenyl) estradiol analogs using modifications of existing synthetic methods. The new compounds, as well as standard steroidal agonists and antagonists, were evaluated as competitive ligands for the ER?-LBD. Functional assays used the induction of alkaline phosphatase in Ishikawa cells to determine potency of the compounds as ER agonists or antagonists. Results The synthetic strategy successfully generated a series of compounds in which the 4-substituent was sequentially modified from hydroxyl to methoxy to azidoethoxy/N,N-dimethylaminoethoxy and eventually to a prototypical 1,4-naphthoquinone-containing moiety. The new compounds all retained high relative binding affinity (RBA) for the ER?-LBD, ranging from 13–83% that of estradiol. No subtype selectivity was observed. More importantly, the transition from agonist to antagonist activity occurs at the 4-methoxy stage where the compound is a mixed antagonist. More notably, antagonism appeared to be more dependent upon the size of the 11?-substituent than upon the nature of the terminal group Conclusions We have developed a synthetic strategy that provides facile access to potent 11?-(4-substituted phenyl) estradiol analogs. The resultant compounds retain high affinity for the ER?-LBD and, more importantly, demonstrate potent antagonist activity in cells. Large functionalities distal to the 11?-phenyl ring had little additional effect on either affinity or efficacy, suggesting the incorporation of diverse imaging or biologically active groups can be attached without significantly compromising the ER-binding capacity. Future studies are in progress to exploit the 11?-aryl estradiol analogs as potential drug delivery systems and imaging agents. PMID:22608920

Hanson, Robert N.; Hua, Edward; Hendricks, J. Adam; Labaree, David; Hochberg, Richard B.

2012-01-01

321

Investigations of solvent properties and solvent effects on chemical equilibria and reaction rates  

NASA Astrophysics Data System (ADS)

Thermodynamic and structural properties computed via simulations of pure liquids and dilute solutions are routinely used as a metric of accuracy for condensed-phase force fields and in the development and testing of new methodology. Additionally, reliable modeling of solvent systems is critical to investigations of physical phenomena, such as the elucidation of solvent effects on chemical equilibria and reaction rates. This dissertation highlights a series of studies that span these topics. The Lennard-Jones 12-6 functional form, often invoked to model van der Waals interactions, has been argued to be too repulsive at short internuclear separations. Monte Carlo simulations of organic liquids at various temperatures and pressures show that this function, in conjunction with OPLS parameters, is capable of reproducing experimental densities. In order to address potential cumulative deviations of computed properties and conformational differences between the gas phase and pure liquids, Monte Carlo simulations have been carried out for the homologous n-alkane series C4H10-C12H26 using the OPLS-AA force field. Favorable structural motifs of longer alkanes were also investigated to study self solvation in the gas phase. Next, an overview of the computation of free energy changes in solution using perturbation theory, overlap sampling, and related approximate methods is presented. Results are provided for free energies of hydration of OPLS-AA substituted benzenes in TIP4P water. For comparable amounts of computer time, the double-wide and overlap sampling methods yield very similar results. QM/MM simulations of the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the water-vacuum interface and in the gas phase. The relative free energies of activation and transition structure geometries at the interface were intermediate between those calculated in the gas phase and in bulk water, consistent with estimated experimental rate constants. Energy pair distributions reveal a loss of slightly favorable solute-solvent pair contacts but retention of stronger interactions upon transition from bulk to surface hydration. These strong interactions cause the methyl vinyl ketone transition structure to preferentially orient its carbonyl toward the surface, while the other transition structures prefer orientations parallel to the surface.

Defeo, Laura Lynn Thomas

322

Structural-Functional Characterization and Physiological Significance of Ferredoxin-NADP+ Reductase from Xanthomonas axonopodis pv. citri  

PubMed Central

Xanthomonas axonopodis pv. citri is a phytopathogen bacterium that causes severe citrus canker disease. Similar to other phytopathogens, after infection by this bacterium, plants trigger a defense mechanism that produces reactive oxygen species. Ferredoxin-NADP+ reductases (FNRs) are redox flavoenzymes that participate in several metabolic functions, including the response to reactive oxygen species. Xanthomonas axonopodis pv. citri has a gene (fpr) that encodes for a FNR (Xac-FNR) that belongs to the subclass I bacterial FNRs. The aim of this work was to search for the physiological role of this enzyme and to characterize its structural and functional properties. The functionality of Xac-FNR was tested by cross-complementation of a FNR knockout Escherichia coli strain, which exhibit high susceptibility to agents that produce an abnormal accumulation of •O2-. Xac-FNR was able to substitute for the FNR in E. coli in its antioxidant role. The expression of fpr in X. axonopodis pv. citri was assessed using semiquantitative RT-PCR and Western blot analysis. A 2.2-fold induction was observed in the presence of the superoxide-generating agents methyl viologen and 2,3-dimethoxy-1,4-naphthoquinone. Structural and functional studies showed that Xac-FNR displayed different functional features from other subclass I bacterial FNRs. Our analyses suggest that these differences may be due to the unusual carboxy-terminal region. We propose a further classification of subclass I bacterial FNRs, which is useful to determine the nature of their ferredoxin redox partners. Using sequence analysis, we identified a ferredoxin (XAC1762) as a potential substrate of Xac-FNR. The purified ferredoxin protein displayed the typical broad UV-visible spectrum of [4Fe-4S] clusters and was able to function as substrate of Xac-FNR in the cytochrome c reductase activity. Our results suggest that Xac-FNR is involved in the oxidative stress response of Xanthomonas axonopodis pv. citri and performs its biological function most likely through the interaction with ferredoxin XAC1762. PMID:22096528

Delprato, María Laura; Ceccarelli, Eduardo A.; Orellano, Elena G.

2011-01-01

323

Bioactive compounds from northern plants.  

PubMed

Northern conditions are characterised by long days with much light and low temperatures during the growing season. It has been chimed that herbs and berries grown in the north are stronger tasting compared to those of southern origin. The compounds imparting aroma and color to berries and herbs are secondary metabolites which in plants mostly act as chemical means of defense. Recently, the production of secondary metabolites using plant cells has been the subject of expanding research. Light intensity, photoperiod and temperature have been reported to influence the biosynthesis of many secondary metabolites. Native wild aromatic and medicinal plant species of different families are being studied to meet the needs of raw material for the expanding industry of e.g., health-promoting food products known as nutraceutics. There are already a large number of known secondary compounds produced by plants, but the recent advances in modern extraction and analysis should enable many more as yet unknown compounds to be found, characterised and utilised. Rose root (Rhodiola rosea) is a perennial herbaceous plant which inhabits mountain regions throughout Europe, Asia and east coastal regions of North America. The extract made from the rhizomes acts as a stimulant like the Ginseng root. Roseroot has been categorized as an adaptogen and is reported to have many pharmacological properties. The biologically active components of the extract are salitroside tyrosol and cinnamic acid glycosides (rosavin, rosarin, rosin). Round-leaved sundew (Drosera rotundifolia L.) has circumboreal distribution. It inhabits nutrient-poor, moist and sunny areas such as peat bogs and wetlands. Sundew leaves are collected from the wild-type for various medicinal preparations and can be utilized in treating e.g., as an important "cough-medicine" for different respiratory diseases. The antimicrobial activity of extracts of aerial parts against various bacteria has been investigated. Drosera produces various secondary metabolites. The most abundant, among these compounds, are the naphthoquinones. Bilberry (Vaccinium myrtillus) is a characteristic field layer species in boreal forests. Bilberry and other northern Vaccinium species, berries and leaves, contain high amounts of phenolic compounds. Bilberries are known for its exceptionally high amounts ofanthocyanins with powerful antioxidant capacity. They have been shown to possess beneficial health effects, like having a protective role in cardiovascular diseases and cancer. Many flavonoids also seem to have antiviral, antibacterial, antifungal and antiallergenic properties. The effect of ingested cranberry (V. oxycoccus) juice has been shown to prevent urinary tract infections in women. PMID:21520706

Hohtola, Anja

2010-01-01

324

Biosynthesis of vitamin K1 (phylloquinone) by plant peroxisomes and its integration into signaling molecule synthesis pathways.  

PubMed

Vitamin K1 (phylloquinone) is a substituted membrane-anchored naphthoquinone that functions as an essential electron carrier in photosystem I in photosynthetic organisms. While plants can synthesize phylloquinone de novo, humans rely on vitamin K1 uptake from green leafy vegetables as a precursor for the synthesis of its structural derivative, menaquinone-4 (vitamin K2). In vertebrates, menaquinone-4 serves as an enzymatic co-factor that is required for posttranslational protein modification, i.e. the ?-carboxylation of glutamate residues in specific proteins involved in blood coagulation, bone metabolism and vascular biology. Comprehensive knowledge of the subcellular compartmentalization of vitamin K biosynthesis in plants, pathway regulation and its integration in cellular metabolic networks is important to design functional food with elevated vitamin levels and health benefits to human consumers. It had long been assumed that plants obtained all enzymes for phylloquinone biosynthesis from the ancient cyanobacterial endosymbiont and that, upon gene transfer to the nucleus, all biosynthetic enzymes were re-directed to the plastid. This view, however, has been recently challenged by the exclusive localization of the 6th pathway enzyme (MenB/NS) to peroxisomes in Arabidopsis. Soon afterwards, not only the preceding enzyme, acyl-activating enzyme 14 (MenE/AAE14), but also the succeeding thioesterase (DHNAT) were also shown to be peroxisomal. Phylogenetic analysis revealed a heterogeneous evolutionary origin of the peroxisomal enzymes. Phylloquinone biosynthesis reveals several branching points leading to the synthesis of important defence signalling molecules, such as salicylic acid and benzoic acid derivatives. Recent research data demonstrate that, of the two phenylalanine-dependent pathways for benzoic and salicylic acid biosynthesis, the CoA-dependent ?-oxidative pathway, which is peroxisomal, is the major route. Hence, peroxisomes emerge as an important cell compartment for the interconnected networks of phylloquinone, benzoic and salicylic acid biosynthesis. Numerous mechanisms to regulate intermediate flux and the fine-tuned inducible production of secondary metabolites, including signalling molecules, await their characterization at the molecular level. PMID:23821151

Reumann, Sigrun

2013-01-01

325

Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells.  

PubMed

Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-? mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-? mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-? and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the inhibition of calcineurin activity. Therefore, shikonin has therapeutic potential for the treatment of allergic diseases as a new calcineurin inhibitor. PMID:25451590

Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto

2014-10-29

326

Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells  

PubMed Central

Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5?-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways. PMID:25632222

Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

2015-01-01

327

Plumbagin attenuates cancer cell growth and osteoclast formation in the bone microenvironment of mice  

PubMed Central

Aim: To investigate the effects of plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, on human breast cancer cell growth and the cancer cell-induced osteolysis in the bone microenvironment of mice. Methods: Human breast cancer cell subline MDA-MB-231SA with the ability to spread and grow in the bone was tested. The cell proliferation was determined using the CCK-8 assay. Apoptosis was detected with Annexin V/PI double-labeled flow cytometry. Red fluorescent protein-labeled MDA-MB-231SArfp cells were injected into the right tibia of female BALB/c-nu/nu mice. Three days after the inoculation, the mice were injected with plumbagin (2, 4, or 6 mg/kg, ip) 5 times per week for 7 weeks. The growth of the tumor cells was monitored using an in vivo imaging system. After the mice were sacrificed, the hind limbs were removed for radiographic and histological analyses. Results: Plumbagin (2.5–20 ?mol/L) concentration-dependently inhibited the cell viability and induced apoptosis of MDA-MB-231SA cells in vitro (the IC50 value of inhibition of cell viability was 14.7 ?mol/L). Administration of plumbagin to breast cancer bearing mice delayed the tumor growth by 2–3 weeks and reduced the tumor volume by 44%–74%. The in vivo imaging study showed that plumbagin dose-dependently inhibited MDA-MB-231SArfp cell growth in bone microenvironment. Furthermore, X-ray images and micro-CT study demonstrated that plumbagin reduced bone erosion area and prevented a decrease in bone tissue volume. Histological studies showed that plumbagin dose-dependently inhibited the breast cancer cell growth, enhanced the cell apoptosis and reduced the number of TRAcP-positive osteoclasts. Conclusion: Plumbagin inhibits the cell growth and induces apoptosis in human breast cancer cells in mice bone microenvironment, leading to significant reduction in osteolytic lesions caused by the tumor cells. PMID:24384612

Yan, Wei; Wang, Ting-yu; Fan, Qi-ming; Du, Lin; Xu, Jia-ke; Zhai, Zan-jing; Li, Hao-wei; Tang, Ting-ting

2014-01-01

328

Seasonal nutrient dynamics in the Anacostia River (D.C., USA): geochemistry and hydrocarbon biomarkers  

NASA Astrophysics Data System (ADS)

The seasonal biogeochemistry of the urban Anacostia River (Washington D.C. USA) was investigated. Chemical parameters examined include: inorganics (Ca, Mg, Na, S, K, P, NO3, NH4, PO4, B, Ba, Ni, Co); fatty acids and other hydrocarbons; C, N and S stable isotopes; and other water chemistry indicators (hardness, salinity, alkalinity, soluble salts, SAR, TDS). Between April and July 2010, water and sediment were sampled from three tidal freshwater sites along the Anacostia River (UP, MID, and DWN). Two of the selected sites, UP and DWN, are located next to a combined sewage outflow. Water column nutrient analysis shows increasing availability of ammonium (NH4) and nitrate (NO3) at all sites between April and July. At MID, the site showing the highest rates of nutrient growth over the sampling period, NH4 concentrations increase from 0.13 to 1.49 µg/L and NO3 concentrations increase from 0.71 to 2.88 mg/L. A marked NO3 pulse is observed at the DWN site in early May; NO3 concentrations jump from 0.68 to 3.36 mg/L between April 5 and May 6, decreasing to 1.22 mg/L by May 20. Unlike UP and MID, which show NH4 and NO3 increasing concurrently, this NO3 pulse at DWN is accompanied with a decline in NH4 levels, suggestive of an allochthonous NO3 source. Forthcoming stable isotope data are expected to characterize the source of such nitrogen inputs, as well as organic material, throughout the year. Preliminary GC-MS analysis of isolated fatty acids does not explicitly suggest bacterial or higher plant dominance in the spring; however, some notable compounds were identified, such as the PAH fluoranthene, naphthoquinone, and testosterone, as well as a number of cholesterols and other steroids. Higher proportions of bacterial fatty acid biomarkers are expected during the summer. Principle Component Analysis (PCA) of the chemistry data suggests geochemical variables, rather than nutrients, are the driving forces of observed trends. PCA, along with fatty acid characterization and nutrient analysis, is expected to demonstrate an increasing role of bacterial production and nutrient variables later in the season, while stable isotope values will facilitate organic material source identification.

Sarraino, S.; Frantz, D. E.; Macavoy, S. E.

2010-12-01

329

Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications  

NASA Astrophysics Data System (ADS)

This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

Kang, Wonjun