Sample records for naphthyridine-type ribosome inhibitors

  1. Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for N80 steel in 15% hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Ansari, K. R.; Quraishi, M. A.

    2015-05-01

    The inhibition effect of three naphthyridine derivatives namely 2-amino-4-(4-methoxyphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-1), 2-amino-4-(4-methylphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-2) and 2-amino-4-(3-nitrophenyl)-1,8-naphthyridine-3-carbonitrile (ANC-3) as corrosion inhibitors for N80 steel in 15% HCl by using gravimetric, electrochemical techniques (EIS and potentiodynamic polarization), SEM, EDX and quantum chemical calculation. The order of inhibition efficiency is ANC-1>ANC-2>ANC-3. Potentiodynamic polarization reveals that these inhibitors are mixed type with predominant cathodic control. Studied inhibitors obey the Langmuir adsorption isotherm. The quantum calculation is in good agreement with experimental results.

  2. Synthesis and biological evaluation of indeno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity.

    PubMed

    Alonso, Concepción; Fuertes, María; González, María; Rubiales, Gloria; Tesauro, Cinzia; Knudsen, Birgitta R; Palacios, Francisco

    2016-06-10

    In an effort to establish new candidates with improved anticancer activity, we report here the synthesis of various series of 7H-indeno[2,1-c][1,5]-naphthyridines and novel 7H-indeno[2,1-c][1,5]-naphthyridine-7-ones and 7H-indeno[2,1-c][1,5]-naphthyridine-7-ols. Most of the products which were synthesized were able to inhibit Topoisomerase I activity. Moreover, in vitro testing demonstrated that a subset of the products exhibited a cytotoxic effect on cell lines derived from human breast cancer (BT 20), human lung adenocarcinoma (A 549), or human ovarian carcinoma (SKOV3). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Novel 1,5-naphthyridine PI3Kδ inhibitors, an evaluation of WO2011075628.

    PubMed

    Norman, Peter

    2011-11-01

    A small series of aryl(1-arylamino)ethyl,1,5-naphthyridine derivatives that selectively inhibit PI3Kδ was prepared. The compounds are claimed to be useful in the treatment of cancer, inflammatory and autoimmune diseases. The compounds represent further variations around a structural motif explored in a number of previous applications by the applicant.

  4. Discovery and Optimization of 4-(8-(3-Fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic Acid, an Improved PDE4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease (COPD).

    PubMed

    Press, Neil J; Taylor, Roger J; Fullerton, Joseph D; Tranter, Pamela; McCarthy, Clive; Keller, Thomas H; Arnold, Nicola; Beer, David; Brown, Lyndon; Cheung, Robert; Christie, Julie; Denholm, Alastair; Haberthuer, Sandra; Hatto, Julia D I; Keenan, Mark; Mercer, Mark K; Oakman, Helen; Sahri, Helene; Tuffnell, Andrew R; Tweed, Morris; Trifilieff, Alexandre

    2015-09-10

    Herein we describe the optimization of a series of PDE4 inhibitors, with special focus on solubility and pharamcokinetics, to clinical compound 2, 4-(8-(3-fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic acid. Although compound 2 produces emesis in humans when given as a single dose, its exemplary pharmacokinetic properties enabled a novel dosing regime comprising multiple escalating doses and the resultant achievement of high plasma drug levels without associated nausea or emesis.

  5. Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties.

    PubMed

    Lu, Shao-Hung; Phang, Riping; Fang, Jim-Min

    2016-04-15

    Ethyne-linked naphthyridine-aniline conjugated molecules are selective sensors of decylguanine in dichloromethane and guanosine monophosphate in water (Kass = 16,000 M(-1)). The 2-acetamido-1,8-naphthyridine moiety binds with guanine in a DAA-ADD triply hydrogen-bonded motif. The aniline moiety enhances an electron-donating effect, and the substituent is tuned to attain extra hydrogen bonds, π-π stacking, and electrostatic interactions. The proposed binding modes are supported by a Job plot, ESI-MS, (1)H NMR, UV-vis, and fluorescence spectral analyses.

  6. Synthesis of 1,8-naphthyridines and their application in the development of anionic fluorogenic chemosensors.

    PubMed

    Nicoleti, Celso R; Garcia, Diogo N; da Silva, Luiz E; Begnini, Iêda M; Rebelo, Ricardo A; Joussef, Antonio C; Machado, Vanderlei G

    2012-07-01

    Two 1,8-naphthyridines were synthesized and found to be fluorescent in solution. These compounds were studied in the presence of Cu(+) and Cu(2+) ions and it was verified that the metal causes the quenching of their fluorescence emission, due to the formation of complexes between the naphthyridine and the metal. A displacement assay was carried out in a DMSO-water mixture with the addition of various anions to the solutions of the complexes, and it was observed that these systems have a high capacity to selectively detect cyanide.

  7. The first defective extended chromium atom chain complex with amine ligand containing naphthyridine and pyrazine

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Zhen; Geng, Shu-Bo; Liu, Shuang; Zhao, Dan; Jia, Xin-Gang; Wei, Hai-Long; Ismayilov, Rayyat H.; Yeh, Chen-Yu; Lee, Gene-Hsiang; Peng, Shie-Ming

    2017-06-01

    Through a pyrazine and naphthyridine-containing diamino ligand, N2,N7-di(pyrazin-2-yl)-1,8-naphthyridine-2,7-diamine (H2dpznda), defective extended metal atom chain complexes with one chromium(II) metal absent in centre, [Cr5(μ5-dpznda)4Cl2] (1) and [Cr5(μ5-dpznda)4(NCS)2] (2) were obtained. An electrochemistry research showed that the pentachromium(II) complexes were quite resistant to reduction although accessible to oxidation, with two reversible redox couples at E1/2 = +0.59 and +0.30 V.

  8. Molecular modelling, synthesis and acetylcholinesterase inhibition of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate.

    PubMed

    Soriano, Elena; Samadi, Abdelouahid; Chioua, Mourad; de los Ríos, Cristóbal; Marco-Contelles, José

    2010-05-01

    In silico analysis of ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate (2) predicts that this molecule should be successfully docked in the PAS, and easily accommodated in the CAS of AChE. The synthesis and the AChE/BuChE inhibition studies are reported, confirming that compound 2 is a potent and selective AChE inhibitor, and consequently, a new lead compound for further development into new dual CAS/PAS cholinergic agents for the treatment of Alzheimer's disease. 2010 Elsevier Ltd. All rights reserved.

  9. Analysis of gene expression profiles of CR80, a neuroprotective 1,8-Naphthyridine.

    PubMed

    Ramos, Eva; Romero, Alejandro; Egea, Javier; Marco-Contelles, José; Del Pino, Javier; de Los Ríos, Cristóbal

    2018-06-01

    The 1,8-naphthyridine CR80 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b] [1,8]naphthyridine-3-carboxylate) has shown interesting neuroprotective properties in in vitro and in vivo models of neurodegeneration. In spite of these promising outcomes, the molecular and cellular mechanisms underlying CR80 actions need to be further explored. We herein report the signal transduction pathways involved in developmental, neuroprotective and stress-activated processes, as well as the gene expression regulation by CR80 in SH-SY5Y neuroblastoma cells. The CR80 exposure upregulated several antioxidant enzymes (HO-1, GSR, SQSTM1, and TRXR1) and anti-apoptotic proteins (Bcl-xL, Bcl-2, P21, and Wnt6). The observed changes in gene expression would afford new insights on the neuroprotective profile of CR80.

  10. The mechanism of ureido-pyrimidinone:2,7-diamido-naphthyridine complexation and the presence of kinetically controlled pathways in multicomponent hydrogen-bonded systems.

    PubMed

    de Greef, Tom F A; Ligthart, G B W L; Lutz, Martin; Spek, Anthony L; Meijer, E W; Sijbesma, Rint P

    2008-04-23

    The kinetics of association of ureido-pyrimidinone (U) dimers, present either in the 4[1H]-keto form or in the pyrimidin-4-ol form, with 2,7-diamido-1,8-naphthyridine (N) into a complementary heterodimer have been investigated. The formation of heterodimers with 2,7-diamido-1,8-naphthyridine from pyrimidin-4-ol dimers is much faster than from 4[1H]-pyrimidinone dimers. Using a combination of simple measurements and simulations, evidence for a bimolecular tautomerization step is presented. Finally, the acquired kinetic knowledge of the different pathways leading from ureido-pyrimidinone homodimers to ureido-pyrimidinone:diamido-naphthyridine (U:N) heterodimers allows the prediction and observation of kinetically determined ureido-pyrimidinone heterodimers which slowly convert back to the corresponding homodimers.

  11. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis

    PubMed Central

    Bharat, Amrita; Blanchard, Jan E.; Brown, Eric D.

    2014-01-01

    The synthesis of ribosomes is an essential process, which is aided by a variety of transacting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Further, we describe the elimination of non-specific inhibitors that were detergent-sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counter-screens for non-specificity but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis. PMID:23606650

  12. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  13. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H)-ones via microwave-activated inverse electron-demand Diels-Alder reactions.

    PubMed

    Fadel, Salah; Hajbi, Youssef; Khouili, Mostafa; Lazar, Said; Suzenet, Franck; Guillaumet, Gérald

    2014-01-01

    Substituted 3,4-dihydro-1,8-naphthyridin-2(1H)-ones have been synthesized with the inverse electron-demand Diels-Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels-Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H)-ones by an efficient synthetic route.

  14. 1,8-Naphthyridine-2,7-diamine: a potential universal reader of Watson-Crick base pairs for DNA sequencing by electron tunneling.

    PubMed

    Liang, Feng; Lindsay, Stuart; Zhang, Peiming

    2012-11-21

    With the aid of Density Functional Theory (DFT), we designed 1,8-naphthyridine-2,7-diamine as a recognition molecule to read DNA base pairs for genomic sequencing by electron tunneling. NMR studies show that it can form stable triplets with both A : T and G : C base pairs through hydrogen bonding. Our results suggest that the naphthyridine molecule should be able to function as a universal base pair reader in a tunneling gap, generating distinguishable signatures under electrical bias for each of DNA base pairs.

  15. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H)-ones via microwave-activated inverse electron-demand Diels–Alder reactions

    PubMed Central

    Fadel, Salah; Hajbi, Youssef; Khouili, Mostafa; Lazar, Said

    2014-01-01

    Summary Substituted 3,4-dihydro-1,8-naphthyridin-2(1H)-ones have been synthesized with the inverse electron-demand Diels–Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels–Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H)-ones by an efficient synthetic route. PMID:24605148

  16. 4-Diphenyl­phosphanyl-1,5-naphthyridine

    PubMed Central

    Wu, Ya-Ming

    2012-01-01

    The asymmetric unit of the title compound, C20H15N2P, contains two independent mol­ecules with similar structures. The 1,5-naphthyridine ring system is nearly planar, with maximum deviations of 0.010 (3) and 0.012 (3) Å; its mean plane is oriented with respect to the two phenyl rings at 79.69 (12) and 84.00 (10)° in one mol­ecule, and at 74.25 (12) and 82.05 (11)° in the other. The two phenyl rings are twisted with respect to each other with a dihedral angle of 75.96 (14)° in one mol­ecule and 86.30 (13)° in the other. PMID:23125782

  17. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. 1,8-Naphthyridine-2,7-diamine: A Potential Universal Reader of the Watson-Crick Base Pairs for DNA Sequencing by Electron Tunneling

    PubMed Central

    Liang, Feng; Lindsay, Stuart; Zhang, Peiming

    2013-01-01

    With the aid of Density Functional Theory (DFT), we designed 1,8-naphthyridine-2,7-diamine as a recognition molecule to read the DNA base pairs for genomic sequencing by electron tunneling. NMR studies show that it can form stable triplets with both A:T and G:C base pairs through hydrogen bonding. Our results suggest that the naphthyridine molecule should be able to function as a universal base pair reader in a tunneling gap, generating distinguishable signatures under electrical bias for each of DNA base pairs. PMID:23038027

  19. THE INTRACELLULAR SITE OF SYNTHESIS OF MITOCHONDRIAL RIBOSOMAL PROTEINS IN NEUROSPORA CRASSA

    PubMed Central

    Lizardi, Paul M.; Luck, David J. L.

    1972-01-01

    The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes. PMID:4261038

  20. Pyrrole-pyridine and pyrrole-naphthyridine hosts for anion recognition.

    PubMed

    García, M Angeles; Farrán, M Angeles; María, Dolores Santa; Claramunt, Rosa M; Torralba, M Carmen; Torres, M Rosario; Jaime, Carlos; Elguero, José

    2015-05-27

    The association constants of the complexes formed by two hosts containing pyrrole, amide and azine (pyridine and 1,8-naphthyridine) groups and six guests, all monoanions (Cl-, CH3CO2-, NO3-, H2PO4-, BF4-, PF6-), have been determined using NMR titrations. The X-ray crystal structure of the host N2,N5-bis(6-methylpyridin-2-yl)-3,4-diphenyl-1H-pyrrole- 2,5-dicarboxamide (1) has been solved (P21/c monoclinic space group). B3LYP/6-31G(d,p) and calculations were carried out in an attempt to rationalize the trends observed in the experimental association constants.

  1. Dehydrogenative [2 + 2 + 2] Cycloaddition of Cyano-yne-allene Substrates: Convenient Access to 2,6-Naphthyridine Scaffolds.

    PubMed

    Haraburda, Ewelina; Lledó, Agustí; Roglans, Anna; Pla-Quintana, Anna

    2015-06-19

    A rhodium-catalyzed [2 + 2 + 2] cycloaddition of cyano-yne-allene scaffolds followed by a dehydrogenative process enabling the direct synthesis of unsaturated pyridine-containing compounds that can be conveniently converted to 2,6-naphthyridine derivatives is reported.

  2. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    PubMed

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Structure activity relationship of C-2 ether substituted 1,5-naphthyridine analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-5).

    PubMed

    Singh, Sheo B; Kaelin, David E; Meinke, Peter T; Wu, Jin; Miesel, Lynn; Tan, Christopher M; Olsen, David B; Lagrutta, Armando; Fukuda, Hideyuki; Kishii, Ryuta; Takei, Masaya; Takeuchi, Tomoko; Takano, Hisashi; Ohata, Kohei; Kurasaki, Haruaki; Nishimura, Akinori; Shibata, Takeshi; Fukuda, Yasumichi

    2015-09-01

    Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Common Pharmacophore of Structurally Distinct Small-Molecule Inhibitors of Intracellular Retrograde Trafficking of Ribosome Inactivating Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Shichao; Park, Jewn Giew; Kahn, Jennifer Nielsen; Tumer, Nilgun E.; Pang, Yuan-Ping

    2013-12-01

    We reported previously (+/-)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(+/-)-Retro-2cycl] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (+/-)-Retro-2cycl, analog synthesis, and cell-based evaluation showing that the two optically pure enantiomers and their achiral analog have nearly the same degree of cell protection against ricin as (+/-)-Retro-2cycl. We also report our computational studies explaining the lack of stereo preference and revealing a common pharmacophore of structurally distinct inhibitors of intracellular retrograde trafficking of RIPs. This pharmacophore comprises a central aromatic ring o-substituted by an aromatic ring and a moiety bearing an O or S atom attached to sp2 C atom(s). These results offer new insights into lead identification and optimization for RIP antidote development to minimize the global health threat caused by ribosome-inactivating proteins.

  5. Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity.

    PubMed Central

    Prestle, J; Schönfelder, M; Adam, G; Mundry, K W

    1992-01-01

    Four different type 1 ribosome-inactivating proteins (RIPs) with RNA N-glycosidase activity were tested for their ability to attack the large rRNA of plant ribosomes derived from tobacco plants, as well as from the plant species from which the particular RIP had been isolated. Incubation of tobacco ribosomes with RIPs isolated from either Phytolacca americana L. (pokeweed), Dianthus barbatus L. (carnation), Spinacia oleracea L. (spinach) or Chenopodium amaranthicolor Coste and Reyn. (chenopodium) rendered the 25S rRNA sensitive to aniline-catalyzed hydrolysis, generating a single rRNA-fragment of about 350 nucleotides. The same fragment was generated when rRNAs from pokeweed, carnation, spinach or chenopodium ribosomes were aniline-treated without any deliberate treatment of the ribosomes with the respective RIP. This indicated that ribosomes from all RIP-producing plants were already inactivated by their own RIPs during preparation. These results demonstrate that plant ribosomes are generally susceptible to RIP attack, including modification by their own RIPs. Direct sequencing of the newly generated fragments revealed that a single N-glycosidic bond at an adenosine residue within the highly conserved sequence 5'-AGUACGAGAGGA-3' was cleaved by all of the RIPs investigated, a situation also found in animal, yeast and Escherichia coli ribosomes. Images PMID:1620614

  6. Structural characterization of ribosome recruitment and translocation by type IV IRES.

    PubMed

    Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S

    2016-05-09

    Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.

  7. Structural characterization of ribosome recruitment and translocation by type IV IRES

    PubMed Central

    Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S

    2016-01-01

    Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451

  8. In vitro degradation of ribosomes.

    PubMed

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  9. Dual effect of chloramphenicol peptides on ribosome inhibition.

    PubMed

    Bougas, Anthony; Vlachogiannis, Ioannis A; Gatos, Dimitrios; Arenz, Stefan; Dinos, George P

    2017-05-01

    Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.

  10. The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design

    PubMed Central

    Kalusa, Andrew; Cano, Celine; Travers, Jon; Boxall, Kathy; Chow, Chiau Ling; Burns, Sam; Schmitt, Jessica; Pickard, Lisa; Barillari, Caterina; McAndrew, P. Craig; Clarke, Paul A.; Linardopoulos, Spiros; Griffin, Roger J.; Aherne, G. Wynne; Raynaud, Florence I.; Workman, Paul; Jones, Keith; van Montfort, Rob L.M.

    2013-01-01

    The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases. PMID:24072592

  11. An unexpected semi-hydrogenation of a ligand in the complexation of 2,7-bispyridinyl-1,8-naphthyridine with Ru3(CO)12.

    PubMed

    Liao, Bei-Sih; Liu, Yi-Hung; Peng, Shie-Ming; Reddy, K Rajender; Liu, Shin-Hung; Chou, Pi-Tai; Liu, Shiuh-Tzung

    2014-03-07

    Thermal reaction of 2,7-bis(2-pyridinyl)-l,8-naphthyridine () with Ru3(CO)12 in the presence of moisture resulted in the formation of a formate-bridged diruthenium complex [(-H3)Ru2(μ-HCOO)(CO)4] (), in which the ligand was partially hydrogenated. Complex was fully characterized by spectroscopic analyses and X-ray single crystal determination. Regarding the partially reduced ligand in , it occurs through a water-gas shift type reduction. The bridging formate ligand can be substituted by other carboxylate ligands. Physical and chemical properties of the newly prepared complexes were investigated.

  12. Ribosomal proteins: functions beyond the ribosome.

    PubMed

    Zhou, Xiang; Liao, Wen-Juan; Liao, Jun-Ming; Liao, Peng; Lu, Hua

    2015-04-01

    Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  13. Complete kinetic mechanism for recycling of the bacterial ribosome

    PubMed Central

    Borg, Anneli; Pavlov, Michael

    2016-01-01

    How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec−1, is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of ∼5 sec−1, are discussed in the perspective of rapidly growing bacterial cells. PMID:26527791

  14. Biochemical and Structural Characterization of Bisubstrate Inhibitors of BasE, the Self-standing Non-Ribosomal Peptide Synthetase Adenylate-Forming Enzyme of Acinetobactin Synthesis†,‡

    PubMed Central

    Drake, Eric J.; Duckworth, Benjamin P.; Neres, João; Aldrich, Courtney C.; Gulick, Andrew M.

    2010-01-01

    The human pathogen Acinetobacter baumannii produces a siderophore called acinetobactin that is derived from one molecule each of threonine, histidine, and 2,3-dihydroxybenzoic acid (DHB). The activity of several non-ribosomal peptide synthetase (NRPS) enzymes is used to combine the building blocks into the final molecule. The acinetobactin synthesis pathway initiates with a self-standing adenylation enzyme, BasE, that activates the DHB molecule and covalently transfers it to the pantetheine cofactor of an aryl-carrier protein of BasF, a strategy that is shared with many siderophore-producing NRPS clusters. In this reaction, DHB reacts with ATP to form the aryl adenylate and pyrophosphate. In a second partial reaction, the DHB is transferred to the carrier protein. Inhibitors of BasE and related enzymes have been identified that prevent growth of bacteria on iron-limiting media. Recently, a new inhibitor of BasE has been identified via high-throughput screening using a fluorescence polarization displacement assay. We present here biochemical and structural studies to examine the binding mode of this inhibitor. The kinetics of the wild-type BasE enzyme is shown and inhibition studies demonstrate that the new compound exhibits competitive inhibition against both ATP and 2,3-dihydroxybenzoate. Structural examination of BasE bound to this inhibitor illustrates a novel binding mode in which the phenyl moiety partially fills the enzyme pantetheine binding tunnel. Structures of rationally designed bisubstrate inhibitors are also presented. PMID:20853905

  15. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  16. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies.

    PubMed

    Di Pietro, Ornella; Pérez-Areales, F Javier; Juárez-Jiménez, Jordi; Espargaró, Alba; Clos, M Victòria; Pérez, Belén; Lavilla, Rodolfo; Sabaté, Raimon; Luque, F Javier; Muñoz-Torrero, Diego

    2014-09-12

    Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5b-d have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5a-d has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5a-d, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Further characterization of ribosome binding to thylakoid membranes. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurewitz, J.; Jagendorf, A.T.

    1987-05-01

    Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation,more » and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of (/sup 3/H)leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.« less

  18. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    PubMed

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  19. Intramolecular inverse-electron-demand Diels-Alder reactions of imidazoles with 1,2,4-triazines: a new route to 1,2,3,4-tetrahydro-1,5-naphthyridines and related heterocycles.

    PubMed

    Lahue, Brian R; Lo, Sie-Mun; Wan, Zhao-Kui; Woo, Grace H C; Snyder, John K

    2004-10-15

    The intramolecular inverse-electron-demand Diels-Alder reaction between imidazoles and 1,2,4-triazines linked by a trimethylene tether from the imidazole N1 position to the triazine C3 proceed in excellent yields to produce 1,2,3,4-tetrahydro-1,5-naphthyridines. The reaction proceeds by a cycloaddition with subsequent loss of nitrogen, followed by a presumed stepwise loss of a nitrile. The analogous intramolecular cycloadditions employing a tetramethylene tether also proceeded to give 2,3,4,5-tetrahydro-1H-pyrido[3,2-b]azepines in acceptable yields. The reaction to produce the tetrahydro-1,5-naphthyridines can also be promoted with microwave irradiation.

  20. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  1. Development of HuperTacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer's disease.

    PubMed

    Chioua, Mourad; Pérez, Marta; Bautista-Aguilera, Oscar M; Yañez, Matilde; López, Manuela G; Romero, Alejandro; Cacabelos, Ramón; de la Bellacasa, Raimon Puig; Brogi, Simone; Butini, Stefania; Borrell, José I; Marco-Contelles, Jose

    2015-01-01

    This paper describes our preliminary results on the ADMET, synthesis, biochemical evaluation, and molecular modeling of racemic HuperTacrines (HT), new hybrids resulting from the juxtaposition of huperzine A and tacrine for the potential treatment of Alzheimer's disease (AD). The synthesis of these HT was executed by Friedländer-type reactions of 2-amino-6-oxo-1,6-dihydropyridine-3-carbonitriles, or 7-amino-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitriles, with cyclohexanone. In the biochemical evaluation, initial and particular attention was devoted to test their toxicity on human hepatoma cells, followed by the in vitro inhibition of human cholinesterases (hAChE, and hBuChE), and the kinetics/mechanism of the inhibition of the most potent HT; simultaneous molecular modeling on the best HT provided the key binding interactions with the human cholinesterases. >From these analyses, (±)-5-amino-3-methyl- 3,4,6,7,8,9-hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT1) and (±)-5-amino-3-(2,6-dichlorophenyl)-3,4,6,7,8,9- hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT3) have emerged as characterized by extremely low liver toxicity reversible mixed-type, selective hAChE and, quite selective irreversible hBuChEIs, respectively, showing also good druglike properties for AD-targeted drugs.

  2. Ribosomal S6 kinase (RSK) modulators: a patent review.

    PubMed

    Ludwik, Katarzyna A; Lannigan, Deborah A

    2016-09-01

    The p90 ribosomal S6 kinases (RSK) are a family of Ser/Thr protein kinases that are downstream effectors of MEK1/2-ERK1/2. Increased RSK activation is implicated in the etiology of multiple pathologies, including numerous types of cancers, cardiovascular disease, liver and lung fibrosis, and infections. The review summarizes the patent and scientific literature on small molecule modulators of RSK and their potential use as therapeutics. The patents were identified using World Intellectual Property Organization and United States Patent and Trademark Office databases. The compounds described are predominantly RSK inhibitors, but a RSK activator is also described. The majority of the inhibitors are not RSK-specific. Based on the overwhelming evidence that RSK is involved in a number of diseases that have high mortalities it seems surprising that there are no RSK modulators that have pharmacokinetic properties suitable for in vivo use. MEK1/2 inhibitors are in the clinic, but the efficacy of these compounds appears to be limited by their side effects. We hypothesize that targeting the downstream effectors of MEK1/2, like RSK, are an untapped source of drug targets and that they will generate less side effects than MEK1/2 inhibitors because they regulate fewer effectors.

  3. Dibenzopyrrolo[1,2-a][1,8]naphthyridines: Synthesis and Structural Modification of Fluorescent L-Shaped Heteroarenes.

    PubMed

    Tateno, Kotaro; Ogawa, Rie; Sakamoto, Ryota; Tsuchiya, Mizuho; Kutsumura, Noriki; Otani, Takashi; Ono, Kosuke; Kawai, Hidetoshi; Saito, Takao

    2018-01-19

    The L-shaped, π-extended pentacycle dibenzopyrrolo[1,2-a][1,8]naphthyridine and its derivatives were synthesized using two methods: fully intramolecular [2 + 2 + 2] cycloaddition and oxidative aromatization using substituted carbodiimide and modification of an electron-rich indole ring of an L-shaped skeleton via electrophilic reaction and cross-coupling. These L-shaped compounds emitted fluorescence in high quantum yield. The position of substituents affected the fluorescence color through two different mechanisms, π-conjugation and skeletal distortion, which caused the substituted L-shaped compounds to emit fluorescence in a variety of colors and to exhibit solvato-fluorochromism.

  4. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    PubMed Central

    Yan, Shunfei; Frank, Daniel; Son, Jinbae; Hannan, Katherine M.; Hannan, Ross D.; Chan, Keefe T.; Pearson, Richard B.; Sanij, Elaine

    2017-01-01

    Overall survival for patients with ovarian cancer (OC) has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC). HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR) and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC)-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC. PMID:28117679

  5. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase

    PubMed Central

    Kosnopfel, Corinna; Sinnberg, Tobias; Sauer, Birgit; Niessner, Heike; Schmitt, Anja; Makino, Elena; Forschner, Andrea; Hailfinger, Stephan; Garbe, Claus; Schittek, Birgit

    2017-01-01

    The clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling pathway. The p90 ribosomal S6 kinase (RSK), a downstream effector of the MAPK signalling cascade, has been reported to enhance survival of melanoma cells in response to chemotherapy. Here, we can show that RSK activity is significantly increased in human melanoma cells with acquired resistance to the BRAFV600E/K inhibitor vemurafenib. Interestingly, inhibition of RSK signalling markedly impairs the viability of vemurafenib resistant melanoma cells and is effective both in two-dimensional and in three-dimensional culture systems, especially in a chronic, long-term application. The effect of RSK inhibition can be partly replicated by downregulation of the well-known RSK target, Y-box binding protein 1 (YB-1). Intriguingly, RSK inhibition also retains its efficacy in melanoma cells with combined resistance to vemurafenib and the MEK inhibitor trametinib. These data suggest that active RSK signalling might be an attractive novel therapeutic target in melanoma with acquired resistance to MAPK pathway inhibitors. PMID:28415756

  6. Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Hee Kyong; Shinozuka, Junko; Islam, Zahidul

    2009-06-01

    Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultantmore » fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis.« less

  7. Chromosomal 16S Ribosomal RNA Methyltransferase RmtE1 in Escherichia coli Sequence Type 448

    PubMed Central

    Li, Bin; Pacey, Marissa P.

    2017-01-01

    We identified rmtE1, an uncommon 16S ribosomal methyltransferase gene, in an aminoglycoside- and cephalosporin-resistant Escherichia coli sequence type 448 clinical strain co-harboring blaCMY-2. Long-read sequencing revealed insertion of a 101,257-bp fragment carrying both resistance genes to the chromosome. Our findings underscore E. coli sequence type 448 as a potential high-risk multidrug-resistant clone. PMID:28418308

  8. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine.

    PubMed

    Samadi, Abdelouahid; de los Ríos, Cristóbal; Bolea, Irene; Chioua, Mourad; Iriepa, Isabel; Moraleda, Ignacio; Bartolini, Manuela; Andrisano, Vincenza; Gálvez, Enrique; Valderas, Carolina; Unzeta, Mercedes; Marco-Contelles, José

    2012-06-01

    The synthesis, pharmacological evaluation and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amines 1-7 of type I, and 9-12 of type II, designed as multipotent inhibitors able to simultaneously inhibit monoamine oxidases (MAO-A/B) as well as cholinesterase (AChE/BuChE) enzymes, as potential drugs for the treatment of Alzheimer's disease, are described. Indole derivatives 1-7 of type I are well known MAO inhibitors whose capacity to inhibit AChE and BuChE was here investigated for the first time. As a result, compound 7 was identified as a MAO-B inhibitor (IC(50) = 31 ± 2 nM) and a moderately selective eqBuChE inhibitor (IC(50) = 4.7 ± 0.2 μM). Conversely, the new and readily available 5-amino-7-(prop-2-yn-1-yl)-6,7,8,9-tetrahydropyrido[2,3-b][1,6]naphthyridine derivatives 9-13 of type II are poor MAO inhibitors, but showed AChE selective inhibition, compound 12 being the most attractive as it acts as a non-competitive inhibitor on EeAChE (IC(50) = 25 ± 3 nM, K(i) = 65 nM). The ability of this compound to interact with the AChE peripheral binding site was confirmed by kinetic studies and by molecular modeling investigation. Studies on human ChEs confirmed that 12 is a selective AChE inhibitor with inhibitory potency in the submicromolar range. Moreover, in agreement with its mode of action, 12 was shown to be able to inhibit Aβ aggregation induced by hAChE by 30.6%. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kaiyu; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824; Zhou, Hui-Ren

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activatedmore » kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce r

  10. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    PubMed Central

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  11. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    PubMed

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  12. Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin

    PubMed Central

    Montanaro, Lucio; Sperti, Simonetta; Stirpe, Fiorenzo

    1973-01-01

    1. Ricin (a toxic protein from the seeds of Ricinus communis) is a powerful inhibitor of the poly(U)-directed incorporation of phenylalanine into polypeptides catalysed by isolated rat liver ribosomes and elongation factors 1 and 2 (EF 1 and EF 2). The inhibition can be largely overcome by increasing the concentration of ribosomes. 2. The toxin does not affect the binding of phenylalanyl-tRNA to ribosomes catalysed by EF 1, nor does it inhibit the puromycin reaction used as a test for peptide-bond formation catalysed by ribosomes. 3. Ricin inhibits the ribosome-linked GTP hydrolysis catalysed by EF 2. 4. Ribosomes treated with ricin and washed through sucrose gradients containing 0.6m-NH4Cl are functionally inactive in those assay systems that are sensitive to the presence of added toxin. 5. It is suggested that ricin brings about an irreversible modification of ribosomes which impairs their ability to interact with EF 2. Since ricin inhibits at a molar concentration much lower than that of ribosomes it probably acts catalytically. No added cofactor is necessary for the inhibitory action of the toxin. PMID:4780693

  13. High resolution measurements supported by electronic structure calculations of two naphthalene derivatives: [1,5]- and [1,6]-naphthyridine--estimation of the zero point inertial defect for planar polycyclic aromatic compounds.

    PubMed

    Gruet, S; Goubet, M; Pirali, O

    2014-06-21

    Polycyclic aromatic hydrocarbons (PAHs) molecules are suspected to be present in the interstellar medium and to participate to the broad and unresolved emissions features, the so-called unidentified infrared bands. In the laboratory, very few studies report the rotationally resolved structure of such important class of molecules. In the present work, both experimental and theoretical approaches provide the first accurate determination of the rotational energy levels of two diazanaphthalene: [1,5]- and [1,6]-naphthyridine. [1,6]-naphthyridine has been studied at high resolution, in the microwave (MW) region using a Fourier transform microwave spectrometer and in the far-infrared (FIR) region using synchrotron-based Fourier transform spectroscopy. The very accurate set of ground state (GS) constants deduced from the analysis of the MW spectrum allowed the analysis of the most intense modes in the FIR (ν38-GS centered at about 483 cm(-1) and ν34-GS centered at about 842 cm(-1)). In contrast with [1,6]-naphthyridine, pure rotation spectroscopy of [1,5]-naphthyridine cannot be performed for symmetry reasons so the combined study of the two intense FIR modes (ν22-GS centered at about 166 cm(-1) and ν18-GS centered at about 818 cm(-1)) provided the GS and the excited states constants. Although the analysis of the very dense rotational patterns for such large molecules remains very challenging, relatively accurate anharmonic density functional theory calculations appeared as a highly relevant supporting tool to the analysis for both molecules. In addition, the good agreement between the experimental and calculated infrared spectrum shows that the present theoretical approach should provide useful data for the astrophysical models. Moreover, inertial defects calculated in the GS (ΔGS) of both molecules exhibit slightly negative values as previously observed for planar species of this molecular family. We adjusted the semi-empirical relations to estimate the zero

  14. Metabolism of ribosomal proteins microinjected into the oocytes of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurugi, K.; Motizuki, M.; Mitsui, K.

    1988-01-01

    When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were /sup 3/H-labeled in vitro and injected back into X. laevis oocytes, most /sup 3/H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, /sup 3/H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of /sup 3/H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide,more » a cysteine protease inhibitor, resulting in the accumulation of /sup 3/H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus.« less

  15. Aryl-substituted aminobenzimidazoles targeting the hepatitis C virus internal ribosome entry site

    PubMed Central

    Ding, Kejia; Wang, Annie; Boerneke, Mark A.; Dibrov, Sergey M.; Hermann, Thomas

    2014-01-01

    We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex. PMID:24856063

  16. Reengineering ribosome export.

    PubMed

    Lo, Kai-Yin; Johnson, Arlen W

    2009-03-01

    Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages.

  17. Reengineering Ribosome Export

    PubMed Central

    Lo, Kai-Yin

    2009-01-01

    Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages. PMID:19144820

  18. Ribosomal RNA and ribosomal proteins in corynebacteria.

    PubMed

    Martín, Juan F; Barreiro, Carlos; González-Lavado, Eva; Barriuso, Mónica

    2003-09-04

    Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.

  19. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  20. Ribosomal Vaccines I. Immunogenicity of Ribosomal Fractions Isolated from Salmonella typhimurium and Yersinia pestis

    PubMed Central

    Johnson, William

    1972-01-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein. Images PMID:4564407

  1. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  2. The double life of the ribosome: When its protein folding activity supports prion propagation.

    PubMed

    Voisset, Cécile; Blondel, Marc; Jones, Gary W; Friocourt, Gaëlle; Stahl, Guillaume; Chédin, Stéphane; Béringue, Vincent; Gillet, Reynald

    2017-03-04

    It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation. In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases.

  3. Role of ribosomal protein mutations in tumor development (Review)

    PubMed Central

    GOUDARZI, KAVEH M.; LINDSTRÖM, MIKAEL S.

    2016-01-01

    Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research. PMID:26892688

  4. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein.

    PubMed

    Chandler, Josephine R; Truong, Thao T; Silva, Patricia M; Seyedsayamdost, Mohammad R; Carr, Gavin; Radey, Matthew; Jacobs, Michael A; Sims, Elizabeth H; Clardy, Jon; Greenberg, E Peter

    2012-12-18

    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). Currently available antibiotics target surprisingly few cellular functions, and there is a need to identify novel antibiotic targets. We have been interested in the Burkholderia thailandensis bactobolins, and we sought to learn about the target of bactobolin activity by mapping spontaneous resistance mutations in the bactobolin-sensitive Bacillus subtilis. Our results indicate that the bactobolin target is the 50S ribosome-associated L2 protein or a region of the ribosome affected by L2. Bactobolin-resistant mutants are not resistant to other known ribosome inhibitors. Our evidence indicates that bactobolins

  5. Defective ribosome assembly in Shwachman-Diamond syndrome.

    PubMed

    Wong, Chi C; Traynor, David; Basse, Nicolas; Kay, Robert R; Warren, Alan J

    2011-10-20

    Shwachman-Diamond syndrome (SDS), a recessive leukemia predisposition disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, skeletal abnormalities and poor growth, is caused by mutations in the highly conserved SBDS gene. Here, we test the hypothesis that defective ribosome biogenesis underlies the pathogenesis of SDS. We create conditional mutants in the essential SBDS ortholog of the ancient eukaryote Dictyostelium discoideum using temperature-sensitive, self-splicing inteins, showing that mutant cells fail to grow at the restrictive temperature because ribosomal subunit joining is markedly impaired. Remarkably, wild type human SBDS complements the growth and ribosome assembly defects in mutant Dictyostelium cells, but disease-associated human SBDS variants are defective. SBDS directly interacts with the GTPase elongation factor-like 1 (EFL1) on nascent 60S subunits in vivo and together they catalyze eviction of the ribosome antiassociation factor eukaryotic initiation factor 6 (eIF6), a prerequisite for the translational activation of ribosomes. Importantly, lymphoblasts from SDS patients harbor a striking defect in ribosomal subunit joining whose magnitude is inversely proportional to the level of SBDS protein. These findings in Dictyostelium and SDS patient cells provide compelling support for the hypothesis that SDS is a ribosomopathy caused by corruption of an essential cytoplasmic step in 60S subunit maturation.

  6. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.

    PubMed

    Su, Bo-Han; Huang, Yi-Syuan; Chang, Chia-Yun; Tu, Yi-Shu; Tseng, Yufeng J

    2013-10-31

    There is a compelling need to discover type II inhibitors targeting the unique DFG-out inactive kinase conformation since they are likely to possess greater potency and selectivity relative to traditional type I inhibitors. Using a known inhibitor, such as a currently available and approved drug or inhibitor, as a template to design new drugs via computational de novo design is helpful when working with known ligand-receptor interactions. This study proposes a new template-based de novo design protocol to discover new inhibitors that preserve and also optimize the binding interactions of the type II kinase template. First, sorafenib (Nexavar) and nilotinib (Tasigna), two type II inhibitors with different ligand-receptor interactions, were selected as the template compounds. The five-step protocol can reassemble each drug from a large fragment library. Our procedure demonstrates that the selected template compounds can be successfully reassembled while the key ligand-receptor interactions are preserved. Furthermore, to demonstrate that the algorithm is able to construct more potent compounds, we considered kinase inhibitors and other protein dataset, acetylcholinesterase (AChE) inhibitors. The de novo optimization was initiated using a template compound possessing a less than optimal activity from a series of aminoisoquinoline and TAK-285 inhibiting type II kinases, and E2020 derivatives inhibiting AChE respectively. Three compounds with greater potency than the template compound were discovered that were also included in the original congeneric series. This template-based lead optimization protocol with the fragment library can help to design compounds with preferred binding interactions of known inhibitors automatically and further optimize the compounds in the binding pockets.

  7. Ribosome protection by antibiotic resistance ATP-binding cassette protein.

    PubMed

    Su, Weixin; Kumar, Veerendra; Ding, Yichen; Ero, Rya; Serra, Aida; Lee, Benjamin Sian Teck; Wong, Andrew See Weng; Shi, Jian; Sze, Siu Kwan; Yang, Liang; Gao, Yong-Gui

    2018-05-15

    The ribosome is one of the richest targets for antibiotics. Unfortunately, antibiotic resistance is an urgent issue in clinical practice. Several ATP-binding cassette family proteins confer resistance to ribosome-targeting antibiotics through a yet unknown mechanism. Among them, MsrE has been implicated in macrolide resistance. Here, we report the cryo-EM structure of ATP form MsrE bound to the ribosome. Unlike previously characterized ribosomal protection proteins, MsrE is shown to bind to ribosomal exit site. Our structure reveals that the domain linker forms a unique needle-like arrangement with two crossed helices connected by an extended loop projecting into the peptidyl-transferase center and the nascent peptide exit tunnel, where numerous antibiotics bind. In combination with biochemical assays, our structure provides insight into how MsrE binding leads to conformational changes, which results in the release of the drug. This mechanism appears to be universal for the ABC-F type ribosome protection proteins. Copyright © 2018 the Author(s). Published by PNAS.

  8. Identification, characterization and structure analysis of a type I ribosome-inactivating protein from Sapium sebiferum (Euphorbiaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ying; School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan

    2015-08-07

    Ribosome-inactivating proteins (RIPs) are N-glycosidases (EC3.2.2.22) that universally inactivate the ribosome, thereby inhibiting protein biosynthesis. In this study, a novel type I RIPs named SEBIN was identified in Sapium sebiferum. Nuclear acid depurine experiment showed that SEBIN had rRNA N-Glycosidase activity. Further experiment indicated that SEBIN significantly inhibited Caenorhabditis elegans development as well as resulted in worm cell apoptosis. This is the first report to evaluate RIPs toxicity using C. elegans. We proposed that SEBIN may impaire C. elegans reproduction in a DNA-damage manner besides traditional protein synthesis inhibition approach. The predicted 3D structure was modeled using threading and ab initio modeling,more » and the r-RNA binding residue of SEBIN was identified through the protein-ligand docking approach. It showed the amino acid residues, Glu195, Asn81, Ala82, Tyr83, Glu164, Ser163, Ile159 and Arg167, played critical roles in catalytic process. Our results provided the theoretical foundation of structure–function relationships between enzymatic properties, toxicity and structural characterization of SEBIN. - Graphical abstract: Superposition of main chains of ricin (cyan) and SEBIN (brown), and adenine binding site residues of SEBIN. - Highlights: • A Ribosome-inactivating proteins gene (SEBIN) was isolated from Sapium sebiferum. • SEBIN had DNase activity besides widely reported ribosome inactivation via N-glycosidases activity. • SEBIN significantly inhibited Caenorhabditis elegans development in vivo. • SEBIN may impaire C. elegans reproduction in a DNA-damage manner with the aid of mutant strains hus-1 and clk-2. • The possible active sites between SEBIN and the adenine of rRNA were predicted.« less

  9. The nuclear import of ribosomal proteins is regulated by mTOR

    PubMed Central

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  10. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome

    PubMed Central

    Polikanov, Yury S.; Osterman, Ilya A.; Szal, Teresa; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Kusochek, Pavel; Bulkley, David; Malanicheva, Irina A.; Efimenko, Tatyana A.; Efremenkova, Olga V.; Konevega, Andrey L.; Shaw, Karen J.; Bogdanov, Alexey A.; Rodnina, Marina V.; Dontsova, Olga A.; Mankin, Alexander S.; Steitz, Thomas A.; Sergiev, Petr V.

    2014-01-01

    SUMMARY We demonstrate that the antibiotic amicoumacin A (AMI) whose cellular target was unknown, is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G. PMID:25306919

  11. Inhibitor-induced structural change in the HCV IRES domain IIa RNA

    PubMed Central

    Paulsen, Ryan B.; Seth, Punit P.; Swayze, Eric E.; Griffey, Richard H.; Skalicky, Jack J.; Cheatham, Thomas E.; Davis, Darrell R.

    2010-01-01

    Translation of the hepatitis C virus (HCV) RNA is initiated from a highly structured internal ribosomal entry site (IRES) in the 5′ untranslated region (5′ UTR) of the RNA genome. An important structural feature of the native RNA is an approximately 90° helical bend localized to domain IIa that positions the apical loop of domain IIb of the IRES near the 40S ribosomal E-site to promote eIF2-GDP release, facilitating 80S ribosome assembly. We report here the NMR structure of a domain IIa construct in complex with a potent small-molecule inhibitor of HCV replication. Molecular dynamics refinement in explicit solvent and subsequent energetic analysis indicated that each inhibitor stereoisomer bound with comparable affinity and in an equivalent binding mode. The in silico analysis was substantiated by fluorescence-based assays showing that the relative binding free energies differed by only 0.7 kcal/mol. Binding of the inhibitor displaces key nucleotide residues within the bulge region, effecting a major conformational change that eliminates the bent RNA helical trajectory, providing a mechanism for the antiviral activity of this inhibitor class. PMID:20360559

  12. Functional dynamics within the human ribosome regulate the rate of active protein synthesis

    PubMed Central

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B.; Terry, Daniel S.; Juette, Manuel F.; Burnett, Benjamin J.; Alejo, Jose L.; Dass, Randall A.; Parks, Matthew M.; Vincent, Theresa C.; Blanchard, Scott C.

    2015-01-01

    SUMMARY The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule FRET methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. PMID:26593721

  13. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    PubMed

    Chennupati, Vijaykumar; Veiga, Diogo Ft; Maslowski, Kendle M; Andina, Nicola; Tardivel, Aubry; Yu, Eric Chi-Wang; Stilinovic, Martina; Simillion, Cedric; Duchosal, Michel A; Quadroni, Manfredo; Roberts, Irene; Sankaran, Vijay G; MacDonald, H Robson; Fasel, Nicolas; Angelillo-Scherrer, Anne; Schneider, Pascal; Hoang, Trang; Allam, Ramanjaneyulu

    2018-04-02

    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.

  14. Senescent changes in the ribosomes of animal cells in vivo and in vitro

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Johnson, J. E., Jr.

    1979-01-01

    The paper examines RNA-ribosomal changes observed in protozoa and fixed postmitotic cells, as well as the characteristics of intermitotic cells. Attention is given to a discussion of the implications of the reported ribosomal changes as to the senescent deterioration of protein synthesis and physiological functions. A survey of the literature suggests that, while the data on ribosomal change in dividing cells both in vivo and in vitro are inconclusive, there is strong histological and biochemical evidence in favor of some degree of quantitative ribosomal loss in fixed postmitotic cells. Since these decreases in ribosomes are demonstrated in differential cells from nematodes, insects and mammals, they may represent a universal manifestation of cytoplasmic senescence in certain types of fixed postmitotic animal cells. The observed variability in ribosomal loss for cells belonging to the same type suggests that this involution phenomenon is rather related to the wear and tear suffered by a particular cell.

  15. Ribosomes slide on lysine-encoding homopolymeric A stretches

    PubMed Central

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  16. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    NASA Astrophysics Data System (ADS)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  17. Characterization of Ribosomes from Neurospora crassa

    PubMed Central

    Storck, R.

    1963-01-01

    Ribosomes isolated from growing hyphae of Neurospora crassa contain 53 per cent protein and 47 per cent RNA and have a sedimentation coefficient of 81S at 20°C and infinite dilution. These ribosomes are stable at pH 7.4 in the presence of 0.01 M and 0.002 M MgCl2 but undergo a dissociation into smaller particles if the MgCl2 concentration is lowered to 0.0001 M. Two types of RNA with sedimentation coefficients of 19S2050 and 13S2050 have been extracted from the 81S particles. PMID:13984420

  18. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    PubMed

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Ribosome A and P sites revealed by length analysis of ribosome profiling data

    PubMed Central

    Martens, Andrew T.; Taylor, James; Hilser, Vincent J.

    2015-01-01

    The high-throughput sequencing of nuclease-protected mRNA fragments bound to ribosomes, a technique known as ribosome profiling, quantifies the relative frequencies with which different regions of transcripts are translated. This technique has revealed novel translation initiation sites with unprecedented scope and has furthered investigations into the connections between codon biases and translation rates. Yet the location of the codon being decoded in ribosome footprints is still unknown, and has been complicated by the recent observation of footprints with non-canonical lengths. Here we show how taking into account the variations in ribosome footprint lengths can reveal the ribosome aminoacyl (A) and peptidyl (P) site locations. These location assignments are in agreement with the proposed mechanisms for various ribosome pauses and further enhance the resolution of the profiling data. We also show that GC-rich motifs at the 5′ ends of footprints are found in yeast, calling into question the anti-Shine-Dalgarno effect's role in ribosome pausing. PMID:25805170

  20. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  1. Cost effectiveness of dipeptidyl peptidase-4 inhibitors for type 2 diabetes.

    PubMed

    Geng, Jinsong; Yu, Hao; Mao, Yiwei; Zhang, Peng; Chen, Yingyao

    2015-06-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of antidiabetic drugs used for treating type 2 diabetes mellitus. While many studies have reported on the cost-effectiveness of DPP-4 inhibitors for treating type 2 diabetes, a systematic review of economic evaluations of DPP-4 inhibitors is currently lacking. The aim of this systematic review was to assess the cost effectiveness of DPP-4 inhibitors for patients with type 2 diabetes. MEDLINE, EMBASE, National Health Service Economic Evaluation Database (NHS EED), Web of Science, EconLit databases, and the Cochrane Library were searched in November 2013. Studies assessing the cost effectiveness of DPP-4 inhibitors for type 2 diabetes were eligible for analysis. DPP-4 inhibitor monotherapy or combinations with other antidiabetic agents were included in the review. The DPP-4 inhibitors were all marketed drugs. Two reviewers independently reviewed titles, abstracts, and articles sequentially to select studies for data abstraction based on the inclusion and exclusion criteria. Disagreements were resolved by consensus. The quality of included studies was assessed according to the 24-item checklist of the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. The costs reported by the included studies were converted to US dollars via purchasing power parities (PPP) in the year 2013 using the CCEMG-EPPI-Center Cost Converter. A total of 11 published studies were selected for inclusion; all were cost-utility analyses. Nine studies were conducted from a payer perspective and one used a societal perspective; however, the perspective of the other study was unclear. Four studies were of good quality, six were of moderate quality, and one was of low quality. Of the seven studies comparing DPP-4 inhibitors plus metformin with sulfonylureas plus metformin, six concluded that DPP-4 inhibitors were cost effective in patients with type 2 diabetes who were no longer adequately controlled by metformin

  2. Odilorhabdins, Antibacterial Agents that Cause Miscoding by Binding at a New Ribosomal Site.

    PubMed

    Pantel, Lucile; Florin, Tanja; Dobosz-Bartoszek, Malgorzata; Racine, Emilie; Sarciaux, Matthieu; Serri, Marine; Houard, Jessica; Campagne, Jean-Marc; de Figueiredo, Renata Marcia; Midrier, Camille; Gaudriault, Sophie; Givaudan, Alain; Lanois, Anne; Forst, Steve; Aumelas, André; Cotteaux-Lautard, Christelle; Bolla, Jean-Michel; Vingsbo Lundberg, Carina; Huseby, Douglas L; Hughes, Diarmaid; Villain-Guillot, Philippe; Mankin, Alexander S; Polikanov, Yury S; Gualtieri, Maxime

    2018-04-05

    Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    PubMed Central

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  4. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  5. [Immunochemistry of eukaryotic ribosomes].

    PubMed

    Lopaczyński, W; Gałasiński, W

    1990-01-01

    Immunochemical investigations of ribosomes should correlate with basic knowledge of the function, structure and activity of organelles in the cell processes. Our paper presents data of immunochemical methods used to determine the structure, function and differences of ribosomes. We present the usefulness of immunochemical methods to test human ribosomes, diagnosis and therapy of many diseases.

  6. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen

    2010-04-26

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, themore » streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.« less

  7. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    PubMed

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  8. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    PubMed

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  9. Ribosome-Inactivating and Related Proteins

    PubMed Central

    Schrot, Joachim; Weng, Alexander; Melzig, Matthias F.

    2015-01-01

    Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs. PMID:26008228

  10. Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2.

    PubMed

    Shi, Wei-Wei; Tang, Yun-Sang; Sze, See-Yuen; Zhu, Zhen-Ning; Wong, Kam-Bo; Shaw, Pang-Chui

    2016-10-13

    Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome.

  11. In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation.

    PubMed Central

    Yates, J L; Arfsten, A E; Nomura, M

    1980-01-01

    Escherichia coli ribosomal protein L1 (0.5 micro M) was found to inhibit the synthesis of both proteins of the L11 operon, L11 and L1, but not the synthesis of other proteins directed by lambda rifd 18 DNA. Similarly, S4 (1 micro M) selectively inhibited the synthesis of three proteins of the alpha operon, S13, S11, and S4, directed by lambda spcI DNA or a restriction enzyme fragment obtained from this DNA. S8 (3.6 micro M) also showed preferential inhibitory effects on the synthesis of some proteins encoded in the spc operon, L24 and L5 (and probably S14 and S8), directed by lambda spcl DNA or a restriction enzyme fragment carrying the genes for these proteins. The inhibitory effect of L1 was observed only with L1 and not with other proteins examined, including S4 and S8. Similarly, the effect of S4 was not observed with L1 or S8, and that of S8 was not seen with L1 or S4. Inhibition was shown to take place at the level of translation rather than transcription. Thus, at least some ribosomal proteins (L1 S4, and S8) have the ability to cause selective translational inhibition of the synthesis of certain ribosomal proteins whose genes are in the same operon as their own. These results support the hypothesis that certain free ribosomal proteins not assembled into ribosomes act as "autogenous" feedback inhibitors to regulate the synthesis of ribosomal proteins. Images PMID:6445562

  12. Structural analysis of a type 1 ribosome inactivating protein reveals multiple L-asparagine-N-acetyl-D-glucosamine monosaccharide modifications: Implications for cytotoxicity

    PubMed Central

    HOGG, TANIS; MENDEL, JAMESON T.; LAVEZO, JONATHAN L.

    2015-01-01

    Pokeweed antiviral protein (PAP) belongs to the family of type I ribosome-inactivating proteins (RIPs): Ribotoxins, which function by depurinating the sarcin-ricin loop of ribosomal RNA. In addition to its antibacterial and antifungal properties, PAP has shown promise in antiviral and targeted tumor therapy owing to its ability to depurinate viral RNA and eukaryotic rRNA. Several PAP genes are differentially expressed across pokeweed tissues, with natively isolated seed forms of PAP exhibiting the greatest cytotoxicity. To help elucidate the molecular basis of increased cytotoxicity of PAP isoenzymes from seeds, the present study used protein sequencing, mass spectroscopy and X-ray crystallography to determine the complete covalent structure and 1.7 Å X-ray crystal structure of PAP-S1aci isolated from seeds of Asian pokeweed (Phytolacca acinosa). PAP-S1aci shares ~95% sequence identity with PAP-S1 from P. americana and contains the signature catalytic residues of the RIP superfamily, corresponding to Tyr72, Tyr122, Glu175 and Arg178 in PAP-S1aci. A rare proline substitution (Pro174) was identified in the active site of PAP-S1aci, which has no effect on catalytic Glu175 positioning or overall active-site topology, yet appears to come at the expense of strained main-chain geometry at the pre-proline residue Val173. Notably, a rare type of N-glycosylation was detected consisting of N-acetyl-D-glucosamine monosaccharide residues linked to Asn10, Asn44 and Asn255 of PAP-S1aci. Of note, our modeling studies suggested that the ribosome depurination activity of seed PAPs would be adversely affected by the N-glycosylation of Asn44 and Asn255 with larger and more typical oligosaccharide chains, as they would shield the rRNA-binding sites on the protein. These results, coupled with evidence gathered from the literature, suggest that this type of minimal N-glycosylation in seed PAPs and other type I seed RIPs may serve to enhance cytotoxicity by exploiting receptor

  13. Recent developments in the synthesis of acetylcholinesterase inhibitors.

    PubMed

    Marco, José L; Carreiras, M Carmo

    2003-09-01

    The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedländer condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine. The BuChE inhibitory activity is only significant in compounds 11 and 14, ten-fold less active than tacrine. Furthermore, the products 12 and 13 are selective and moderate AChE inhibitors.

  14. Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure.

    PubMed

    Takenaka, Tsuneo; Ohno, Yoichi; Suzuki, Hiromichi

    2018-03-01

    To assess the effects of sodium-glucose co-transporter type 2 inhibitors on central blood pressure, an important determinant of cardiovascular events. Canagliflozin, Empagliflozin or Luseogliflozin was given for 102 type 2 diabetic patients with hypertension and nephropathy. Central blood pressure was evaluated by radial tonometry. Clinical parameters were followed for 6 months. Three differing sodium-glucose co-transporter type 2 inhibitors similarly reduced brachial and central blood pressures, casual blood sugar, haemoglobin A1c, estimated glomerular filtration rate and albuminuria without significant changes in pulse rate and lipid profiles. Central systolic blood pressure was associated with the decreases in albuminuria by sodium-glucose co-transporter type 2 inhibitors. Comparable influences of various sodium-glucose co-transporter type 2 inhibitors on central blood pressure suggest class effects.

  15. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  16. Differentiation of the Ribosomal Protein Compositions in the Genus Escherichia and Its Related Bacteria

    PubMed Central

    Osawa, Syozo; Itoh, Takuzi; Otaka, Eiko

    1971-01-01

    Compositions of the ribosomal proteins of 60 bacterial strains belonging to the genus Escherichia and its related genera were examined by use of a column of carboxymethyl cellulose. The ribosomes were classified into seven groups and were further differentiated into several types (subgroups) according to their protein compositions. It was shown that ribosomal protein composition is a useful characteristic for studies of bacterial taxonomy. PMID:5563866

  17. 2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1) induces G2/M arrest and mitotic catastrophe in human leukemia HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Mei-Hua; Liu, Chin-Yu; Lin, Chiao-Min

    2012-03-01

    2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1more » appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.« less

  18. A Listeria monocytogenes RNA helicase essential for growth and ribosomal maturation at low temperatures uses its C terminus for appropriate interaction with the ribosome.

    PubMed

    Netterling, Sakura; Vaitkevicius, Karolis; Nord, Stefan; Johansson, Jörgen

    2012-08-01

    Listeria monocytogenes, a Gram-positive food-borne human pathogen, is able to grow at temperatures close to 0°C and is thus of great concern for the food industry. In this work, we investigated the physiological role of one DExD-box RNA helicase in Listeria monocytogenes. The RNA helicase Lmo1722 was required for optimal growth at low temperatures, whereas it was dispensable at 37°C. A Δlmo1722 strain was less motile due to downregulation of the major subunit of the flagellum, FlaA, caused by decreased flaA expression. By ribosomal fractionation experiments, it was observed that Lmo1722 was mainly associated with the 50S subunit of the ribosome. Absence of Lmo1722 decreased the fraction of 50S ribosomal subunits and mature 70S ribosomes and affected the processing of the 23S precursor rRNA. The ribosomal profile could be restored to wild-type levels in a Δlmo1722 strain expressing Lmo1722. Interestingly, the C-terminal part of Lmo1722 was redundant for low-temperature growth, motility, 23S rRNA processing, and appropriate ribosomal maturation. However, Lmo1722 lacking the C terminus showed a reduced affinity for the 50S and 70S fractions, suggesting that the C terminus is important for proper guidance of Lmo1722 to the 50S subunit. Taken together, our results show that the Listeria RNA helicase Lmo1722 is essential for growth at low temperatures, motility, and rRNA processing and is important for ribosomal maturation, being associated mainly with the 50S subunit of the ribosome.

  19. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    PubMed

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  20. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA.

    PubMed Central

    de la Cruz, J; Vioque, A

    2001-01-01

    tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics. PMID:11780628

  1. Substrate mimicry—overcoming HIV-1 integrase resistance mutations | Center for Cancer Research

    Cancer.gov

    HIV integrase (IN) strand transfer inhibitors (INSTIs) are among the newest anti-AIDS drugs; however, mutant forms of IN can confer resistance. We developed noncytotoxic naphthyridine-containing INSTIs that retain low nanomolar IC50 values against HIV-1 variants harboring all of the major INSTI-resistant mutations. We found by analyzing crystal structures of inhibitors bound

  2. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  3. Ribosomal targets for antibiotic drug discovery

    DOEpatents

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  4. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions

    PubMed Central

    Graf, Michael; Arenz, Stefan; Huter, Paul; Dönhöfer, Alexandra; Nováček, Jiří

    2017-01-01

    Abstract Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA. PMID:27986857

  5. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    PubMed Central

    Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.

    2009-01-01

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066

  6. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    PubMed

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  7. RNA and ribosomal protein patterns during aerial spore germination in Streptomyces granaticolor.

    PubMed

    Mikulík, K; Janda, I; Weiser, J; Stastná, J; Jiránová, A

    1984-12-03

    Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.

  8. Teaching argumentation and scientific discourse using the ribosomal peptidyl transferase reaction.

    PubMed

    Johnson, R Jeremy

    2011-01-01

    Argumentation and discourse are two integral parts of scientific investigation that are often overlooked in undergraduate science education. To address this limitation, the story of peptide bond formation by the ribosome can be used to illustrate the importance of evidence, claims, arguments, and counterarguments in scientific discourse. With the determination of the first structure of the large ribosomal subunit bound to a transition state inhibitor came an initial hypothesis about the role of the ribosome in peptide bond formation. This initial hypothesis was based on a few central assumptions about the transition state mimic and acid-base catalysis by serine proteases. The initial proposed mechanism started a flurry of scientific discourse in experimental articles and commentaries that tested the validity of the initial proposed mechanism. Using this civil argumentation as a guide, class discussions, assignments, and a debate were designed that allow students to analyze and question the claims and evidence about the mechanism of peptide bond synthesis. In the end, students develop a sense of critical skepticism, and an understanding of scientific discourse, while learning about the current consensus mechanism for peptide bond synthesis. Biochemistry and Molecular Biology Education Vol. 39, No. 3, pp. 185-190, 2011. Copyright © 2011 Wiley Periodicals, Inc.

  9. Charged and Hydrophobic Surfaces on the A Chain of Shiga-Like Toxin 1 Recognize the C-Terminal Domain of Ribosomal Stalk Proteins

    PubMed Central

    McCluskey, Andrew J.; Bolewska-Pedyczak, Eleonora; Jarvik, Nick; Chen, Gang; Sidhu, Sachdev S.; Gariépy, Jean

    2012-01-01

    Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A1 chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A1 chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A1 variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A1 chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A1 chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A1 chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs. PMID:22355345

  10. A search for structurally similar cellular internal ribosome entry sites

    PubMed Central

    Baird, Stephen D.; Lewis, Stephen M.; Turcotte, Marcel; Holcik, Martin

    2007-01-01

    Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function. PMID:17591613

  11. Selective synthesis of a series of isostructural MIICuI heterobimetallic complexes spontaneously assembled by an unsymmetrical naphthyridine-based ligand.

    PubMed

    Nicolay, Amélie; Tilley, T Don

    2018-05-31

    Metal-metal cooperation is integral to the function of many enzymes and materials, and model complexes hold enormous potential for providing insights into the capabilities of analogous multimetallic cores. However, the selective synthesis of heterobimetallic complexes still presents a significant challenge, especially for systems that hold the metals in close proximity and feature open or reactive coordination sites for both metals. To address this issue, a rigid, naphthyridine-based dinucleating ligand featuring distinct binding environments was synthesized. This ligand enables the selective synthesis of a series of MIICuI bimetallic complexes (M = Mn, Fe, Co, Ni, Cu, Zn), in which each metal center exclusively occupies its preferred binding pocket, from simple chloride salts. The precision of this selectivity is evident from cyclic voltammetry, ESI-MS and anomalous X-ray diffraction measurements. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity.

    PubMed

    Park, Sang-Wook; Stevens, Noah M; Vivanco, Jorge M

    2002-12-01

    Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity.

  13. Targeting ricin to the ribosome.

    PubMed

    May, Kerrie L; Yan, Qing; Tumer, Nilgun E

    2013-07-01

    The plant toxin ricin is highly toxic for mammalian cells and is of concern for bioterrorism. Ricin belongs to a family of functionally related toxins, collectively referred to as ribosome inactivating proteins (RIPs), which disable ribosomes and halt protein synthesis. Currently there are no specific antidotes against ricin or related RIPs. The catalytic subunit of ricin is an N-glycosidase that depurinates a universally conserved adenine residue within the sarcin/ricin loop (SRL) of the 28S rRNA. This depurination activity inhibits translation and its biochemistry has been intensively studied. Yet, recent developments paint a more complex picture of toxicity, with ribosomal proteins and cellular signaling pathways contributing to the potency of ricin. In particular, several studies have now established the importance of the ribosomal stalk structure in facilitating the depurination activity and ribosome specificity of ricin and other RIPs. This review highlights recent developments defining toxin-ribosome interactions and examines the significance of these interactions for toxicity and therapeutic intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation

    PubMed Central

    Ahmed, Tofayel; Shi, Jian

    2017-01-01

    Abstract Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c. PMID:28582576

  15. Context-Dependent Antagonism between Akt Inhibitors and Topoisomerase Poisons

    PubMed Central

    Gálvez-Peralta, Marina; Flatten, Karen S.; Loegering, David A.; Peterson, Kevin L.; Schneider, Paula A.; Erlichman, Charles

    2014-01-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  16. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons.

    PubMed

    Gálvez-Peralta, Marina; Flatten, Karen S; Loegering, David A; Peterson, Kevin L; Schneider, Paula A; Erlichman, Charles; Kaufmann, Scott H

    2014-05-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  17. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter.

    PubMed

    Huang, Shijie; Zhu, Xuechen; Melançon, Charles E

    2016-01-15

    The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome-controlled green fluorescent protein (GFP) reporter that produce fluorescent signal when the orthogonal ribosome is inhibited. As a proof of concept, we demonstrate that these strains, when coexpressing homogeneous populations of aminoglycoside resistant ribosomes, act as sensitive and quantitative detectors of ribosome inhibition by a set of 12 structurally diverse aminoglycoside antibiotics. We suggest that this strategy can be extended to quantifying ribosome inhibition by other drug classes.

  18. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Y.; Li, H.; Li, Hua

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less

  19. The Association between Phosphodiesterase Type 5 Inhibitors and Prostate Cancer: Results from the REDUCE Study.

    PubMed

    Jamnagerwalla, Juzar; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J

    2016-09-01

    Despite routine use of phosphodiesterase type 5 inhibitor to treat erectile dysfunction the role in prostate cancer chemoprevention remains unclear. Only a few studies have explored the link between phosphodiesterase type 5 inhibitor use and prostate cancer. We tested the association between phosphodiesterase type 5 inhibitor and prostate cancer risk in the REDUCE (Reduction by Dutasteride of Prostate Cancer Events) trial. REDUCE was a 4-year multicenter study testing the effect of daily dutasteride on prostate cancer risk in men with prostate specific antigen 2.5 to 10.0 ng/ml and negative biopsy who underwent study mandated biopsies at 2 and 4 years. The association of phosphodiesterase type 5 inhibitor with overall prostate cancer risk and disease grade (Gleason 2-6 and 7-10) was examined using adjusted logistic and multinomial regression analysis. Secondary analysis was performed to explore the association between phosphodiesterase type 5 inhibitor and prostate cancer risk in North American men, given the significantly higher use of phosphodiesterase type 5 inhibitor in these subjects. Phosphodiesterase type 5 inhibitor was not associated with prostate cancer diagnosis (OR 0.90, 95% CI 0.68-1.20, p = 0.476), low grade disease (OR 0.93, 95% CI 0.67-1.27, p = 0.632) or high grade disease (OR 0.85, 95% CI 0.51-1.39, p = 0.508). An inverse trend was seen between phosphodiesterase type 5 inhibitor and prostate cancer diagnosis in North American men but this was not statistically significant (OR 0.67, 95% CI 0.42-1.07, p = 0.091). Phosphodiesterase type 5 inhibitor use was not associated with decreased prostate cancer diagnoses on post-hoc analysis of REDUCE. In North American men, who had much higher baseline use of phosphodiesterase type 5 inhibitor, this treatment was associated with an inverse trend of prostate cancer diagnosis that approached but did not reach statistical significance. Copyright © 2016 American Urological Association Education and

  20. Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like.

    PubMed

    Sugihara, Yoshihiko; Honda, Hiroki; Iida, Tomoharu; Morinaga, Takuma; Hino, Shingo; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2010-03-05

    Heterogeneity of ribosome structure, due to variations in ribosomal protein composition, has been shown to be of physiological significance in plants and yeast. Mammalian genomics have demonstrated numerous genes that are paralogous to genes encoding ribosomal proteins. Although the vast majority are considered to be pseudogenes, mRNA expression of a few paralogues, such as human ribosomal protein L39-like/L39-2, has been reported. In the present study, ribosomes from the liver, mammary gland, and testis of rodents were analyzed using a combination of two-dimensional gel electrophoresis under radical-free and highly reducing conditions, and mass spectrometry. This system allowed identification of 78 ribosomal proteins and Rack1 from a single gel. The degree of heterogeneity was far less than that reported for plant and yeast ribosomes, and was in accord with published biochemical and genetic data for mammalian ribosomes. Nevertheless, an uncharacterized paralogue of ribosomal protein L22, ribosomal protein L22-like 1, was identified as a minor ribosomal component. Ribosomal proteins L10-like and L39-like, paralogues of ribosomal proteins L10 and L39, respectively, were found in ribosomes only from the testis. Reverse transcription-polymerase chain reaction yielded supportive evidence for specific expression of L10-like and L39-like in the testis. Newly synthesized L39-like is likely to be transported to the nucleolus, where ribosome biosynthesis occurs, and then incorporated into translating ribosomes in the cytoplasm. Heterogeneity of mammalian testicular ribosomes is structurally non-negligible, and may offer valuable insights into the function of the customized ribosome.

  1. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  2. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy

    PubMed Central

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2014-01-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth. PMID:25229342

  3. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    PubMed

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  4. Reductive alkylation of ribosomes as a probe to the topography of ribosomal proteins*

    PubMed Central

    Moore, Graham; Crichton, Robert R.

    1974-01-01

    Escherichia coli ribosomes were treated with a number of different aldehydes of various sizes in the presence of NaBH4. After incorporation of either 3H or 14C, the ribosomal proteins were separated by two-dimensional polyacrylamide-gel electrophoresis and the extent of alkylation of the lysine residues in each protein was measured. The same pattern of alkylation was observed with the four reagents used, namely formaldehyde, acetone, benzaldehyde and 3,4,5-trimethoxybenzaldehyde. Every protein in 30S and 50S subunits was modified, although there was considerable variation in the degree of alkylation of individual proteins. A topographical classification of ribosomal proteins is presented, based on the degree of exposure of lysine residues. The data indicate that every protein of the ribosome has at least one lysine residue exposed at or near the surface of the ribonucleo-protein complex. PMID:4462744

  5. U2504 Determines the Species Specificity of the A-Site Cleft Antibiotics: The Structures of Tiamulin, Homoharringtonine, and Bruceantin Bound to the Ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gürel, Güliz; Blaha, Gregor; Moore, Peter B.

    2009-06-30

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 {angstrom}. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the Asite cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In themore » ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.« less

  6. High-resolution structure of the Escherichia coli ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  7. High-resolution structure of the Escherichia coli ribosome

    DOE PAGES

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.; ...

    2015-03-16

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  8. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.

    PubMed

    Hussmann, Jeffrey A; Patchett, Stephanie; Johnson, Arlen; Sawyer, Sara; Press, William H

    2015-12-01

    Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX) to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.

  9. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast

    PubMed Central

    Hussmann, Jeffrey A.; Patchett, Stephanie; Johnson, Arlen; Sawyer, Sara; Press, William H.

    2015-01-01

    Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX) to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics. PMID:26656907

  10. Ribosome flow model with positive feedback

    PubMed Central

    Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

  11. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism.

    PubMed

    Li, Ruixi; Sun, Ruobai; Hicks, Glenn R; Raikhel, Natasha V

    2015-01-06

    The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red staining suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.

  12. U2504 Determines the Species Specificity of the A-site Cleft Antibiotics: The sStructures of Tiamulin, Homoharringtonine and Bruceantin Bound to the Ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurel, G.; Blaha, G; Moore, P

    2009-01-01

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 {angstrom}. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the A-site cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In themore » ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.« less

  13. Canonical Initiation Factor Requirements of the Myc Family of Internal Ribosome Entry Segments▿ †

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Jopling, Catherine L.; Cooper, Rebecca E.; Wilson, Lindsay A.; Stoneley, Mark; Coldwell, Mark J.; Poncet, Didier; Shen, Ya-Ching; Morley, Simon J.; Bushell, Martin; Willis, Anne E.

    2009-01-01

    Initiation of protein synthesis in eukaryotes requires recruitment of the ribosome to the mRNA and its translocation to the start codon. There are at least two distinct mechanisms by which this process can be achieved; the ribosome can be recruited either to the cap structure at the 5′ end of the message or to an internal ribosome entry segment (IRES), a complex RNA structural element located in the 5′ untranslated region (5′-UTR) of the mRNA. However, it is not well understood how cellular IRESs function to recruit the ribosome or how the 40S ribosomal subunits translocate from the initial recruitment site on the mRNA to the AUG initiation codon. We have investigated the canonical factors that are required by the IRESs found in the 5′-UTRs of c-, L-, and N-myc, using specific inhibitors and a tissue culture-based assay system, and have shown that they differ considerably in their requirements. The L-myc IRES requires the eIF4F complex and the association of PABP and eIF3 with eIF4G for activity. The minimum requirements of the N- and c-myc IRESs are the C-terminal domain of eIF4G to which eIF4A is bound and eIF3, although interestingly this protein does not appear to be recruited to the IRES RNA via eIF4G. Finally, our data show that all three IRESs require a ternary complex, although in contrast to c- and L-myc IRESs, the N-myc IRES has a lesser requirement for a ternary complex. PMID:19124605

  14. Conformational Analysis of the DFG-Out Kinase Motif and Biochemical Profiling of Structurally Validated Type II Inhibitors

    PubMed Central

    2015-01-01

    Structural coverage of the human kinome has been steadily increasing over time. The structures provide valuable insights into the molecular basis of kinase function and also provide a foundation for understanding the mechanisms of kinase inhibitors. There are a large number of kinase structures in the PDB for which the Asp and Phe of the DFG motif on the activation loop swap positions, resulting in the formation of a new allosteric pocket. We refer to these structures as “classical DFG-out” conformations in order to distinguish them from conformations that have also been referred to as DFG-out in the literature but that do not have a fully formed allosteric pocket. We have completed a structural analysis of almost 200 small molecule inhibitors bound to classical DFG-out conformations; we find that they are recognized by both type I and type II inhibitors. In contrast, we find that nonclassical DFG-out conformations strongly select against type II inhibitors because these structures have not formed a large enough allosteric pocket to accommodate this type of binding mode. In the course of this study we discovered that the number of structurally validated type II inhibitors that can be found in the PDB and that are also represented in publicly available biochemical profiling studies of kinase inhibitors is very small. We have obtained new profiling results for several additional structurally validated type II inhibitors identified through our conformational analysis. Although the available profiling data for type II inhibitors is still much smaller than for type I inhibitors, a comparison of the two data sets supports the conclusion that type II inhibitors are more selective than type I. We comment on the possible contribution of the DFG-in to DFG-out conformational reorganization to the selectivity. PMID:25478866

  15. The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome.

    PubMed

    Kisly, Ivan; Gulay, Suna P; Mäeorg, Uno; Dinman, Jonathan D; Remme, Jaanus; Tamm, Tiina

    2016-05-22

    During translation, the two eukaryotic ribosomal subunits remain associated through 17 intersubunit bridges, five of which are eukaryote specific. These are mainly localized to the peripheral regions and are believed to stabilize the structure of the ribosome. The functional importance of these bridges remains largely unknown. Here, the essentiality of the eukaryote-specific bridge eB12 has been investigated. The main component of this bridge is ribosomal protein eL19 that is composed of an N-terminal globular domain, a middle region, and a long C-terminal α-helix. The analysis of deletion mutants demonstrated that the globular domain and middle region of eL19 are essential for cell viability, most likely functioning in ribosome assembly. The eB12 bridge, formed by contacts between the C-terminal α-helix of eL19 and 18S rRNA in concert with additional stabilizing interactions involving either eS7 or uS17, is dispensable for viability. Nevertheless, eL19 mutants impaired in eB12 bridge formation displayed slow growth phenotypes, altered sensitivity/resistance to translational inhibitors, and enhanced hyperosmotic stress tolerance. Biochemical analyses determined that the eB12 bridge contributes to the stability of ribosome subunit interactions in vitro. 60S subunits containing eL19 variants defective in eB12 bridge formation failed to form 80S ribosomes regardless of Mg(2+) concentration. The reassociation of 40S and mutant 60S subunits was markedly improved in the presence of deacetylated tRNA, emphasizing the importance of tRNAs during the subunit association. We propose that the eB12 bridge plays an important role in subunit joining and in optimizing ribosome functionality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.

    PubMed

    Albert, Benjamin; Knight, Britta; Merwin, Jason; Martin, Victoria; Ottoz, Diana; Gloor, Yvonne; Bruzzone, Maria Jessica; Rudner, Adam; Shore, David

    2016-11-17

    Cell growth potential is determined by the rate of ribosome biogenesis, a complex process that requires massive and coordinated transcriptional output. In the yeast Saccharomyces cerevisiae, ribosome biogenesis is highly regulated at the transcriptional level. Although evidence for a system that coordinates ribosomal RNA (rRNA) and ribosomal protein gene (RPG) transcription has been described, the molecular mechanisms remain poorly understood. Here we show that an interaction between the RPG transcriptional activator Ifh1 and the rRNA processing factor Utp22 serves to coordinate RPG transcription with that of rRNA. We demonstrate that Ifh1 is rapidly released from RPG promoters by a Utp22-independent mechanism following growth inhibition, but that its long-term dissociation requires Utp22. We present evidence that RNA polymerase I activity inhibits the ability of Utp22 to titrate Ifh1 from RPG promoters and propose that a dynamic Ifh1-Utp22 interaction fine-tunes RPG expression to coordinate RPG and rRNA transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis.

    PubMed

    Jin, Rui; Zhou, Wei

    2016-12-01

    Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs.

    PubMed

    Root-Bernstein, Robert; Root-Bernstein, Meredith

    2016-05-21

    We have proposed that the ribosome may represent a missing link between prebiotic chemistries and the first cells. One of the predictions that follows from this hypothesis, which we test here, is that ribosomal RNA (rRNA) must have encoded the proteins necessary for ribosomal function. In other words, the rRNA also functioned pre-biotically as mRNA. Since these ribosome-binding proteins (rb-proteins) must bind to the rRNA, but the rRNA also functioned as mRNA, it follows that rb-proteins should bind to their own mRNA as well. This hypothesis can be contrasted to a "null" hypothesis in which rb-proteins evolved independently of the rRNA sequences and therefore there should be no necessary similarity between the rRNA to which rb-proteins bind and the mRNA that encodes the rb-protein. Five types of evidence reported here support the plausibility of the hypothesis that the mRNA encoding rb-proteins evolved from rRNA: (1) the ubiquity of rb-protein binding to their own mRNAs and autogenous control of their own translation; (2) the higher-than-expected incidence of Arginine-rich modules associated with RNA binding that occurs in rRNA-encoded proteins; (3) the fact that rRNA-binding regions of rb-proteins are homologous to their mRNA binding regions; (4) the higher than expected incidence of rb-protein sequences encoded in rRNA that are of a high degree of homology to their mRNA as compared with a random selection of other proteins; and (5) rRNA in modern prokaryotes and eukaryotes encodes functional proteins. None of these results can be explained by the null hypothesis that assumes independent evolution of rRNA and the mRNAs encoding ribosomal proteins. Also noteworthy is that very few proteins bind their own mRNAs that are not associated with ribosome function. Further tests of the hypothesis are suggested: (1) experimental testing of whether rRNA-encoded proteins bind to rRNA at their coding sites; (2) whether tRNA synthetases, which are also known to bind to their

  19. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    PubMed

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-06

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    PubMed

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  1. SGLT2 inhibitors in the management of type 2 diabetes.

    PubMed

    Monica Reddy, R P; Inzucchi, Silvio E

    2016-08-01

    The glucose-lowering pharmacopeia continues to grow for patients with type 2 diabetes. The latest drug category, the SGLT2 inhibitors reduce glycated hemoglobin concentrations by increasing urinary excretion of glucose. They are used mainly in combination with metformin and other antihyperglycemic agents, including insulin. Their glucose-lowering potency is modest. Advantages include lack of hypoglycemia as a side effect, and mild reduction in blood pressure and body weight. Side effects include increased urinary frequency, owing to their mild diuretic action, symptoms of hypovolemia, genitourinary infections. There are also recent reports of rare cases of diabetic ketoacidosis occurring in insulin-treated patients. Recently, a large cardiovascular outcome trial reported that a specific SGLT2 inhibitor, empagliflozin, led to a reduction in the primary endpoint of major cardiovascular events. This effect was mainly the result of a surprising 38 % reduction in cardiovascular death, and the drug was also associated with nearly as large a reduction in heart failure hospitalization. These findings were notable because most drugs used in type 2 diabetes have not been shown to improve cardiovascular outcomes. Accordingly, there is growing interest in empagliflozin and the entire SGLT2 inhibitor class as drugs that could potentially change the manner in which we approach the management of hyperglycemia in patients with type 2 diabetes.

  2. Getting ready to translate: cytoplasmic maturation of eukaryotic ribosomes.

    PubMed

    Panse, Vikram Govind

    2011-01-01

    The ribosome is the 'universal ribozyme' that is responsible for the final step of decoding genetic information into proteins. While the function of the ribosome is being elucidated at the atomic level, in comparison, little is known regarding its assembly in vivo and intracellular transport. In contrast to prokaryotic ribosomes, the construction of eukaryotic ribosomes, which begins in the nucleolus, requires >200 evolutionary conserved non-ribosomal trans-acting factors, which transiently associate with pre-ribosomal subunits at distinct assembly stages and perform specific maturation steps. Notably, pre-ribosomal subunits are transported to the cytoplasm in a functionally inactive state where they undergo maturation prior to entering translation. In this review, I will summarize our current knowledge of the eukaryotic ribosome assembly pathway with emphasis on cytoplasmic maturation events that render pre-ribosomal subunits translation competent.

  3. A Novel In Vivo Assay Reveals Inhibition of Ribosomal Nuclear Export in Ran-Cycle and Nucleoporin Mutants

    PubMed Central

    Hurt, Ed; Hannus, Stefan; Schmelzl, Birgit; Lau, Denise; Tollervey, David; Simos, George

    1999-01-01

    To identify components involved in the nuclear export of ribosomes in yeast, we developed an in vivo assay exploiting a green fluorescent protein (GFP)-tagged version of ribosomal protein L25. After its import into the nucleolus, L25-GFP assembles with 60S ribosomal subunits that are subsequently exported into the cytoplasm. In wild-type cells, GFP-labeled ribosomes are only detected by fluorescence in the cytoplasm. However, thermosensitive rna1-1 (Ran-GAP), prp20-1 (Ran-GEF), and nucleoporin nup49 and nsp1 mutants are impaired in ribosomal export as revealed by nuclear accumulation of L25-GFP. Furthermore, overexpression of dominant-negative RanGTP (Gsp1-G21V) and the tRNA exportin Los1p inhibits ribosomal export. The pattern of subnuclear accumulation of L25-GFP observed in different mutants is not identical, suggesting that transport can be blocked at different steps. Thus, nuclear export of ribosomes requires the nuclear/cytoplasmic Ran-cycle and distinct nucleoporins. This assay can be used to identify soluble transport factors required for nuclear exit of ribosomes. PMID:9971735

  4. A Novel Inhibitor of the New Antibiotic Resistance (ARE) Protein OptrA.

    PubMed

    Zhong, Xiaobo; Xiang, Hua; Wang, Tiedong; Zhong, Ling; Ming, Di; Nie, Linyan; Cao, Fengjiao; Li, Bangbang; Cao, Junjie; Mu, Dan; Ruan, Ke; Wang, Lin; Wang, Dacheng

    2018-04-19

    The antibiotic resistance (ARE) subfamily of ABC (ATP-binding cassette) proteins confers resistance to a variety of clinically important ribosome-targeting antibiotics and plays an important role in infections caused by pathogenic bacteria. However, inhibitors of ARE proteins have rarely been reported. Here, OptrA, a new member of the ARE proteins, was used to study inhibitors of these types of proteins. We first confirmed that destroying the catalytic activity of OptrA could restore the sensitivity of host cells to antibiotics. Then, fragment-based screening (FBS), a drug screening method, was used to screen for inhibitors of OptrA. The competitive Saturation Transfer Difference (STD) experiments, docking and molecular dynamics was used to determine the binding sites and mode of interactions between OptrA and fragment screening hits. In this study, we first find a novel and specific inhibitor of OptrA (CP1), which suppressed the ATPase activity of OptrA in vitro by 30%. A hydrogen bond formed between the 8-position phenylcyclic cyano group in CP1 and the amino acid residue Lys-271 allow CP1 to form a stable complex with OptrA protein. These findings provide a theoretical basis for the further optimization of the inhibitor structure to obtain inhibitors with higher efficiencies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site.

    PubMed

    Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D; Popov, Lauren M; Chen, Jin; O'Leary, Seán E; Wang, Richard; Carette, Jan E; Sarnow, Peter; Puglisi, Joseph D

    2015-01-13

    Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.

  6. Ribosomes are optimized for autocatalytic production

    NASA Astrophysics Data System (ADS)

    Reuveni, Shlomi; Ehrenberg, Måns; Paulsson, Johan

    2017-07-01

    Many fine-scale features of ribosomes have been explained in terms of function, revealing a molecular machine that is optimized for error-correction, speed and control. Here we demonstrate mathematically that many less well understood, larger-scale features of ribosomes—such as why a few ribosomal RNA molecules dominate the mass and why the ribosomal protein content is divided into 55-80 small, similarly sized segments—speed up their autocatalytic production.

  7. SGLT-2 Inhibitors: Is There a Role in Type 1 Diabetes Mellitus Management?

    PubMed

    Ahmed-Sarwar, Nabila; Nagel, Angela K; Leistman, Samantha; Heacock, Kevin

    2017-09-01

    The purpose of this review is to identify and evaluate disease management of patients with type 1 diabetes mellitus (T1DM) who were treated with a sodium-glucose cotransporter 2 (SGLT-2) inhibitor as an adjunct to insulin therapy. A PubMed (1969 to March 2017) and Ovid (1946 to March 2017) search was performed for articles published utilizing the following MESH terms: canagliflozin, empagliflozin, dapagliflozin, type 1 diabetes mellitus, insulin dependent diabetes, insulin, sodium-glucose transporter 2. There were no limitations placed on publication type. All English-language articles were evaluated for association of SGLT-2 inhibitors and type 1 diabetes. Further studies were identified by review of pertinent manuscript bibliographies. All 3 SGLT-2 inhibitors, when combined with insulin, resulted in an overall reduction of hemoglobin A1C (up to 0.49%), lower total daily insulin doses, and a reduction in weight (up to 2.7 kg). The combination therapy of insulin and SGLT-2 inhibitors also resulted in a lower incidence of hypoglycemia. Study duration varied from 2 to 18 weeks. A review of the identified literature indicated that there is a potential role for the combination of SGLT-2 inhibitors with insulin in T1DM for improving glycemic control without increasing the risk of hypoglycemia. The short duration and small sample sizes limit the ability to fully evaluate the incidences of diabetic ketoacidosis and urogenital infections. The risks associated with this combination of medications require further evaluation.

  8. DPP-4 inhibitors improve liver dysfunction in type 2 diabetes mellitus.

    PubMed

    Kanazawa, Ippei; Tanaka, Ken-ichiro; Sugimoto, Toshitsugu

    2014-09-17

    Dipeptidyl peptidase-4 (DPP-4) inhibitors might have pleiotropic effects because receptors for incretin exist in various tissues, including liver. We examined whether DPP-4 inhibitors affect liver function in patients with type 2 diabetes. A retrospective review of 459 patients with type 2 diabetes who were prescribed DPP-4 inhibitors was performed. After exclusion of patients with hepatitis B or C, steroid use, and other diseases that might affect liver function and diabetes status, 224 patients were included in the analysis. Forty-four patients (19.6%) with liver injury defined by aspartate transaminase (AST) or alanine transaminase (ALT) over the normal level of 40 U/L. In the patients with liver injury, AST and ALT were significantly decreased after 6 months from the first date of DPP-4 prescription, with mean changes of -6.2 U/L [95% confidence interval (CI) -10.9 to -1.4, p=0.012] and of -11.9 U/L (95%CI -19.5 to -4.2, p=0.003), respectively. Percent changes in AST were significantly and negatively correlated with baseline AST and ALT (r=-0.27, p<0.001 and r=-0.23, p=0.002, respectively), and percent changes in ALT were also negatively correlated with them (r=-0.23, p=0.001 and r=-0.27, p<0.001, respectively). DPP-4 inhibitors improved liver dysfunction in patients with type 2 diabetes.

  9. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly,more » cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.« less

  10. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ruixi; Sun, Ruobai; Hicks, Glenn R.

    The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red stainingmore » suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.« less

  11. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism

    DOE PAGES

    Li, Ruixi; Sun, Ruobai; Hicks, Glenn R.; ...

    2014-12-22

    The vacuole is the most prominent compartment in plant cells and is important for ion and protein storage. In our effort to search for key regulators in the plant vacuole sorting pathway, ribosomal large subunit 4 (rpl4d) was identified as a translational mutant defective in both vacuole trafficking and normal development. Polysome profiling of the rpl4d mutant showed reduction in polysome-bound mRNA compared with wild-type, but no significant change in the general mRNA distribution pattern. Ribsomal profiling data indicated that genes in the lipid metabolism pathways were translationally down-regulated in the rpl4d mutant. Live imaging studies by Nile red stainingmore » suggested that both polar and nonpolar lipid accumulation was reduced in meristem tissues of rpl4d mutants. Pharmacological evidence showed that sterol and sphingolipid biosynthetic inhibitors can phenocopy the defects of the rpl4d mutant, including an altered vacuole trafficking pattern. Genetic evidence from lipid biosynthetic mutants indicates that alteration in the metabolism of either sterol or sphingolipid biosynthesis resulted in vacuole trafficking defects, similar to the rpl4d mutant. Tissue-specific complementation with key enzymes from lipid biosynthesis pathways can partially rescue both vacuole trafficking and auxin-related developmental defects in the rpl4d mutant. These results indicate that lipid metabolism modulates auxin-mediated tissue differentiation and endomembrane trafficking pathways downstream of ribosomal protein function.« less

  12. The participation of ribosomes in protein glycosylation. Interaction of the ribosome-UDP-N-acetyl-glucosamine complex with dolichol phosphate.

    PubMed

    Paszkiewicz-Gadek, A; Porowska, H; Gałasiński, W

    1992-01-01

    UDP-N-acetylglucosamine can be bound by pure ribosomes. The part of N-acetylglucosamine-1-P can be transferred from the complex ribosome-UDP-N-acetylglucosamine onto dolichol phosphate. Evidence is presented that N-acetylglucosamine bound to dolichol phosphate can be transferred to the nascent peptide synthesized on the ribosome.

  13. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or themore » doubly phosphorylated form of p38-alpha kinase.« less

  14. Single-cell Pharmacodynamic Monitoring of S6 Ribosomal Protein Phosphorylation in AML Blasts During a Clinical Trial Combining the mTOR Inhibitor Sirolimus and Intensive Chemotherapy

    PubMed Central

    Perl, Alexander E.; Kasner, Margaret T.; Shank, Doris; Luger, Selina M.; Carroll, Martin

    2011-01-01

    Purpose Integration of signal transduction inhibitors into chemotherapy regimens generally has generally not led to anticipated increases in response and survival. However, it remains unclear whether this is because of inadequate or inconsistent inhibition of target or other complex biology. The mammalian target of rapamycin (mTOR) signaling pathway is frequently activated in acute myelogenous leukemia (AML) and we previously demonstrated the safety of combining the mTOR inhibitor, sirolimus, with mitoxantrone, etoposide, and cytarabine (MEC) chemotherapy. However, we did not reliably determine the extent of mTOR inhibition on that study. Here we sought to develop an assay that allowed us to serially quantify mTOR kinase’s activation state during therapy. Experimental design To provide evidence of mTOR kinase activation and inhibition, we applied a validated whole blood fixation/permeabilization technique for flow cytometry in order to serially monitor S6 ribosomal protein (S6) phosphorylation in immunophenotypically-identified AML blasts. Results With this approach, we demonstrate activation of mTOR signaling in 8/10 subjects’ samples (80%) and conclusively show inhibition of mTOR in the majority of subjects’ tumor cell during therapy. Of note, S6 phosphorylation in AML blasts is heterogeneous and, in some cases, intrinsically resistant to rapamycin at clinically achieved concentrations. Conclusions The methodology described is rapid and reproducible. We demonstrate the feasibility of real-time, direct pharmacodynamic monitoring by flow cytometry during clinical trials combining intensive chemotherapy and signal transduction inhibitors. This approach greatly clarifies pharmacokinetic/pharmacodynamic relationships and has broad application to pre-clinical and clinical testing of drugs whose direct or downstream effects disrupt PI3K/AKT/mTOR signaling. PMID:22167413

  15. DPP-4 Inhibitors: Incretin-Based Medicine for Type 2 Diabetes

    MedlinePlus

    ... medicines? DPP-4 inhibitor medicines (generic names: sitagliptin saxagliptin, and linagliptin) are a type of incretin-based ... of diabetes medicine. Your dose of sitagliptin or saxagliptin (but not linagliptin) may need to be adjusted ...

  16. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    PubMed

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  17. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    PubMed

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P < 0.001) and total RNA content (-16 ± 2% vs. IGF-1; P < 0.001) in IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P < 0.05 vs. control) and total protein (+20 ± 2%; P < 0.001 vs. control) were not prevented by CX treatment. Suppression of rRNA synthesis during IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P < 0.001) and p70 S6K1 (269 ± 41% vs. CX; P < 0.001) phosphorylation. Despite robust inhibition of the dynamic ribosomal biogenesis response to IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  18. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL010 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor

    PubMed Central

    Utepbergenov, Darkhan; Derewenda, Urszula; Olekhnovich, Natalya; Szukalska, Gabriela; Banerjee, Budhaditya; Hilinski, Michael K.; Lannigan, Deborah A.; Stukenberg, P. Todd; Derewenda, Zygmunt S.

    2012-01-01

    The p90 ribosomal S6 family of kinases (RSK) are potential drug targets, due to their involvement in cancer and other pathologies. There are currently only two known selective inhibitors of RSK, but the basis for selectivity is not known. One of these inhibitors is a naturally occurring kaempferol-α-L-diacetylrhamnoside, SL0101. Here, we report the crystal structure of the complex of the N-terminal kinase domain of the RSK2 isoform with SL0101 at 1.5 Å resolution. The refined atomic model reveals unprecedented structural reorganization of the protein moiety, as compared to the nucleotide-bound form. The entire N-lobe, the hinge region and the αD-helix undergo dramatic conformational changes resulting in a rearrangement of the nucleotide binding site with concomitant formation of a highly hydrophobic pocket spatially suited to accommodate SL0101. These unexpected results will be invaluable in further optimization of the SL0101 scaffold as a promising lead for a novel class of kinase inhibitors. PMID:22846040

  19. The Circadian Clock Coordinates Ribosome Biogenesis

    PubMed Central

    Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric

    2013-01-01

    Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384

  20. Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae

    PubMed Central

    Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine

    2016-01-01

    ABSTRACT The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single

  1. Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae.

    PubMed

    Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine; Belyi, Yury

    2016-01-01

    The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5' untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62-K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62-K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62-K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62-K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62-K70 segment of Rps26 and the 5' untranslated region of mRNA. The data suggested a specific role of the Y62-K70 motif during translation initiation. Here, we report that single-site substitutions

  2. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    PubMed

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. [C-terminal fragment of ribosomal protein S15 is located at the decoding site of the human ribosome].

    PubMed

    Khaĭrulina, Iu S; Molotkov, M V; Bulygin, K N; Graĭfer, D M; Ven'iaminova, A G; Karpova, G G

    2008-01-01

    Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors mRNA codon at the decoding site and the downstream triplets. In this study we determined S15 protein fragments located close to mRNA positions +4 to +12 with respect to the first nucleotide of the P site codon on the human ribosome. For cross-linking to ribosomal protein S15, a set of mRNA was used that contained triplet UUU/UUC at the 5'-termini and a perfluorophenyl azide-modified uridine in position 3' of this triplet. The locations of mRNA analogues on the ribosome were governed by tRNAPhe cognate to the UUU/UUC triplet targeted to the P site. Cross-linked S15 protein was isolated from the irradiated with mild UV light complexes of 80S ribosomes with tRNAPhe and mRNA analogues with subsequent cleavage with CNBr that splits polypeptide chain after methionines. Analysis of modified oligopeptides resulted from the cleavage revealed that in all cases cross-linking site was located in C-terminal fragment 111-145 of protein S15 indicating that this fragment is involved in formation of decoding site of the eukaryotic ribosome.

  4. Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture).

    PubMed

    Yonath, Ada

    2010-06-14

    High-resolution structures of ribosomes, the cellular machines that translate the genetic code into proteins, revealed the decoding mechanism, detected the mRNA path, identified the sites of the tRNA molecules in the ribosome, elucidated the position and the nature of the nascent proteins exit tunnel, illuminated the interactions of the ribosome with non-ribosomal factors, such as the initiation, release and recycling factors, and provided valuable information on ribosomal antibiotics, their binding sites, modes of action, principles of selectivity and the mechanisms leading to their resistance. Notably, these structures proved that the ribosome is a ribozyme whose active site, namely where the peptide bonds are being formed, is situated within a universal symmetrical region that is embedded in the otherwise asymmetric ribosome structure. As this symmetrical region is highly conserved and provides the machinery required for peptide bond formation and for ribosome polymerase activity, it may be the remnant of the proto-ribosome, a dimeric prebiotic machine that formed peptide bonds and non-coded polypeptide chains. Structures of complexes of ribosomes with antibiotics targeting them revealed the principles allowing for their clinical use, identified resistance mechanisms and showed the structural bases for discriminating pathogenic bacteria from hosts, hence providing valuable structural information for antibiotics improvement and for the design of novel compounds that can serve as antibiotics.

  5. Kirromycin, an Inhibitor of Protein Biosynthesis that Acts on Elongation Factor Tu

    PubMed Central

    Wolf, Heinz; Chinali, Gianni; Parmeggiani, Andrea

    1974-01-01

    Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu·GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNAPhe is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNAPhe is not followed by release of EF-Tu·GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNAPhe to the poly(U)·ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same Km for GTP as the one dependent on Phe-tRNAPhe and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNAPhe, but not tRNAPhe or Ac-Phe-tRNAPhe, stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components. PMID:4373734

  6. Evolution of ribosomal proteins in Enterobacteriaceae.

    PubMed Central

    Hori, H; Osawa, S

    1978-01-01

    The evolution of ribosomal proteins of about 70 bacterial strains belonging to the family Enterobacteriaceae has been studied by use of previously reported data (S. Osawa, T. Itoh, and E. Otaka, J. Bacteriol. 107:168-178, 1971) and those obtained in this paper. The proximity of the bacteria was quantified by co-chromatographing the differentially labeled ribosomal proteins from two strains on a column of carboxymethyl cellulose in various combinations. The were then classified into 12 groups (=species?) according to their ribosomal protein compositions and were placed in a phylogenic tree. PMID:346556

  7. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  8. Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610.

    PubMed

    Fischer, Lutz; Steinhilber, Dieter; Werz, Oliver

    2004-07-01

    5-Lipoxygenase (5-LO) is a crucial enzyme in the synthesis of the bioactive leukotrienes (LTs) from arachidonic acid (AA), and inhibitors of 5-LO are thought to prevent the untowarded pathophysiological effects of LTs. In this study, we present the molecular pharmacological profile of the novel nonredox-type 5-LO inhibitor CJ-13,610 that was evaluated in various in vitro assays. In intact human polymorphonuclear leukocytes (PMNL), challenged with the Ca(2+)-ionophore A23187, CJ-13,610 potently suppressed 5-LO product formation with an IC(50)=0.07 microm. Supplementation of exogenous AA impaired the efficacy of CJ-13,610, implying a competitive mode of action. In analogy to ZM230487 and L-739.010, two closely related nonredox-type 5-LO inhibitors, CJ-13,610 up to 30 microm failed to inhibit 5-LO in cell-free assay systems under nonreducing conditions, but inclusion of peroxidase activity restored the efficacy of CJ-13,610 (IC(50)=0.3 microm). In contrast to ZM230487 and L-739.010, the potency of CJ-13,610 does not depend on the cell stimulus or the activation pathway of 5-LO. Thus, 5-LO product formation in PMNL induced by phosphorylation events was equally suppressed by CJ-13,610 as compared to Ca(2+)-mediated 5-LO activation. In transfected HeLa cells, CJ-13,610 only slightly discriminated between phosphorylatable wild-type 5-LO and a 5-LO mutant that lacks phosphorylation sites. In summary, CJ-13,610 may possess considerable potential as a potent orally active nonredox-type 5-LO inhibitor that lacks certain disadvantages of former representatives of this class of 5-LO inhibitors.

  9. Modular Assembly of the Bacterial Large Ribosomal Subunit

    PubMed Central

    Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.

    2016-01-01

    SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064

  10. Differential Muscle Hypertrophy Is Associated with Satellite Cell Numbers and Akt Pathway Activation Following Activin Type IIB Receptor Inhibition in Mtm1 p.R69C Mice

    PubMed Central

    Lawlor, Michael W.; Viola, Marissa G.; Meng, Hui; Edelstein, Rachel V.; Liu, Fujun; Yan, Ke; Luna, Elizabeth J.; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G.; Pierson, Christopher R.; Buj-Bello, Anna; Lachey, Jennifer L.; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J.; Beggs, Alan H.

    2015-01-01

    X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. PMID:24726641

  11. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly.

    PubMed

    Gamalinda, Michael; Woolford, John L

    2014-11-01

    Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function. © 2014 Gamalinda and Woolford; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrup, Olga, E-mail: osvarcova@gmail.com; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo; Norwegian Center for Stem Cell Research, Oslo

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression.more » This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.« less

  13. tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro

    PubMed Central

    Kasprzyk, Marta; Twardowski, Tomasz

    2016-01-01

    Recently, a number of ribosome-associated non-coding RNAs (rancRNAs) have been discovered in all three domains of life. In our previous studies, we have described several types of rancRNAs in Saccharomyces cerevisiae, derived from many cellular RNAs, including mRNAs, rRNAs, tRNAs and snoRNAs. Here, we present the evidence that the tRNA fragments from simple eukaryotic organism S. cerevisiae directly bind to the ribosomes. Interestingly, rancRNA-tRFs in yeast are derived from both, 5′- and 3′-part of the tRNAs and both types of tRFs associate with the ribosomes in vitro. The location of tRFs within the ribosomes is distinct from classical A- and P-tRNA binding sites. Moreover, 3′-tRFs bind to the distinct site than 5′-tRFs. These interactions are stress dependent and as a consequence, provoke regulation of protein biosynthesis. We observe strong correlation between tRF binding to the ribosomes and inhibition of protein biosynthesis in particular environmental conditions. These results implicate the existence of an ancient and conserved mechanism of translation regulation with the involvement of ribosome-associating tRNA-derived fragments. PMID:27609601

  14. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain

    PubMed Central

    Lintner, Nathanael G.; McClure, Kim F.; Petersen, Donna; Londregan, Allyn T.; Piotrowski, David W.; Wei, Liuqing; Xiao, Jun; Bolt, Michael; Loria, Paula M.; Maguire, Bruce; Geoghegan, Kieran F.; Huang, Austin; Rolph, Tim; Liras, Spiros; Doudna, Jennifer A.; Dullea, Robert G.

    2017-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. PMID:28323820

  15. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    PubMed

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  17. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. © 2016 American Heart Association, Inc.

  18. Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04979064 through Structure-Based Drug Design

    PubMed Central

    2012-01-01

    PI3K, AKT, and mTOR are key kinases from PI3K signaling pathway being extensively pursued to treat a variety of cancers in oncology. To search for a structurally differentiated back-up candidate to PF-04691502, which is currently in phase I/II clinical trials for treating solid tumors, a lead optimization effort was carried out with a tricyclic imidazo[1,5]naphthyridine series. Integration of structure-based drug design and physical properties-based optimization yielded a potent and selective PI3K/mTOR dual kinase inhibitor PF-04979064. This manuscript discusses the lead optimization for the tricyclic series, which both improved the in vitro potency and addressed a number of ADMET issues including high metabolic clearance mediated by both P450 and aldehyde oxidase (AO), poor permeability, and poor solubility. An empirical scaling tool was developed to predict human clearance from in vitro human liver S9 assay data for tricyclic derivatives that were AO substrates. PMID:24900568

  19. Ribonucleic Acid and Ribosomes of Bacillus stearothermophilus1

    PubMed Central

    Saunders, Grady F.; Campbell, L. Leon

    1966-01-01

    Saunders, Grady F. (University of Illinois, Urbana), and L. Leon Campbell. Ribonucleic acid and ribosomes of Bacillus stearothermophilus. J. Bacteriol. 91:332–339. 1966.—The ability of some thermophilic bacteria to grow at temperatures as high as 76 C emphasizes the remarkable thermal stability of their crucial macromolecules. An investigation of the ribonucleic acid (RNA) and ribosomes of Bacillus stearothermophilus was conducted. Washed log-phase cells were disrupted either by sonic treatment or by alumina grinding in 10−2m MgCl2–10−2m tris-(hydroxymethyl)aminomethane buffer, pH 7.4 (TM buffer). Ultracentrifugal analysis revealed peaks at 72.5S, 101S, and 135S, with the 101S peak being the most prominent. By lowering the Mg++ concentration to 10−3m, the ribosome preparation was dissociated to give 40S, 31S, and 54S peaks. These in turn were reassociated in the presence of 10−2m Mg++ to give the larger 73S and 135S particles. When heated in TM buffer, Escherichia coli ribosomes began a gradual dissociation at 58 C, and at 70 C underwent a large hyperchromic shift with a Tm at 72.8 C. In contrast, B. stearothermophilus ribosomes did not show a hyperchromic shift below 70 C; they had a Tm of 77.9 C. The thermal denaturation curves of the 4S, 16S, and 23S RNA from both organisms were virtually identical. The gross amino acid composition of B. stearothermophilus ribosomes showed no marked differences from that reported for E. coli ribosomes. These data suggest that the unusual thermal stability of B. stearothermophilus ribosomes may reflect either an unusual packing arrangement of the protein to the RNA or differences in the primary structure of the ribosomal proteins. Images PMID:5903099

  20. Modular Assembly of the Bacterial Large Ribosomal Subunit.

    PubMed

    Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R

    2016-12-01

    The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean.

    PubMed

    Kim, Kee-Young; Park, Seong-Whan; Chung, Young-Soo; Chung, Chung-Han; Kim, Jung-In; Lee, Jai-Heon

    2004-05-01

    Three ribosomal protein genes induced by low-temperature treatment were isolated from soybean. GmRPS13 (742 bp) encodes a 17.1 kDa protein which has 95% identity with the 40S ribosomal protein S13 of Panax ginseng (AB043974). GmRPS6 (925 bp) encodes a 28.1 kDa protein which has 94% identity with the 40S ribosomal protein S6 of Asparagus officinalis (AJ277533). GmRPL37 (494 bp) encodes a 10.7 kDa protein which has 85% identity with the 60S ribosomal protein L37 of Arabidopsis thaliana (AF370216). The expression of these ribosomal protein genes started to increase 3 d after low-temperature treatment, whereas the cold-stress protein src1 was highly induced from the first day. Such late response of these ribosomal protein genes may be due to secondary signals during cold adaptation. The induction of ribosomal protein genes might enhance the translation process or help proper ribosome functioning under low-temperature conditions.

  2. Regulation of the protein-conducting channel by a bound ribosome

    PubMed Central

    Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus

    2009-01-01

    Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480

  3. Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo.

    PubMed

    Feisst, Christian; Pergola, Carlo; Rakonjac, Marija; Rossi, Antonietta; Koeberle, Andreas; Dodt, Gabriele; Hoffmann, Marika; Hoernig, Christina; Fischer, Lutz; Steinhilber, Dieter; Franke, Lutz; Schneider, Gisbert; Rådmark, Olof; Sautebin, Lidia; Werz, Oliver

    2009-08-01

    We previously showed that, in vitro, hyperforin from St. John's wort (Hypericum perforatum) inhibits 5-lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis. Here, we demonstrate that hyperforin possesses a novel and unique molecular pharmacological profile as a 5-LO inhibitor with remarkable efficacy in vivo. Hyperforin (4 mg/kg, i.p.) significantly suppressed leukotriene B(4) formation in pleural exudates of carrageenan-treated rats associated with potent anti-inflammatory effectiveness. Inhibition of 5-LO by hyperforin, but not by the iron-ligand type 5-LO inhibitor BWA4C or the nonredox-type inhibitor ZM230487, was abolished in the presence of phosphatidylcholine and strongly reduced by mutation (W13A-W75A-W102A) of the 5-LO C2-like domain. Moreover, hyperforin impaired the interaction of 5-LO with coactosin-like protein and abrogated 5-LO nuclear membrane translocation in ionomycin-stimulated neutrophils, processes that are typically mediated via the regulatory 5-LO C2-like domain. Together, hyperforin is a novel type of 5-LO inhibitor apparently acting by interference with the C2-like domain, with high effectiveness in vivo.

  4. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K; Hong, Zhi

    2006-08-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.

  5. Novel Nonnucleoside Inhibitors That Select Nucleoside Inhibitor Resistance Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase

    PubMed Central

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K.; Hong, Zhi

    2006-01-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies. PMID:16870771

  6. Eukaryotic ribosome display with in situ DNA recovery.

    PubMed

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  7. STUDIES ON THE ORIGIN OF RIBOSOMES IN AMOEBA PROTEUS

    PubMed Central

    Craig, Nessly; Goldstein, Lester

    1969-01-01

    The origin of cytoplasmic RNA and ribosomes was studied in Amoeba proteus by transplantation of a radioactive nucleus into an unlabeled cell followed by examination of the cytoplasm of the recipient for the presence of label. When a RNA-labeled nucleus was used, label appeared in the ribosomes, ribosomal RNA, and soluble RNA. Since the kinetics of appearance of labeled RNA indicates that the nucleus was not injured during the transfer, and since the transferred nuclear pool of labeled acid-soluble RNA precursors is inadequate to account for the amount of cytoplasmic RNA label, it is concluded that cytoplasmic ribosomal RNA is derived from acid-insoluble nuclear RNA and is probably transported as an intact molecule. Likewise, cytoplasmic soluble RNA probably originated in the nucleus, although labeling by terminal exchange in the cytoplasm is also possible. The results were completely different when a protein-labeled nucleus was grafted into an unlabeled host. In this case, label was found only in soluble proteins in the host cell cytoplasm, and there were no (or very few) radioactive ribosomes. This suggests that the nuclear pool of ribosomal protein and ribosomal protein precursors is relatively small and perhaps nonexistent (and, furthermore, shows that there was no cytoplasmic ribosomal contamination of the transferred nucleus). PMID:5765758

  8. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations.

    PubMed

    Scheen, André J

    2014-05-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2), which increase urinary glucose excretion independently of insulin, are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). An extensive literature search was performed to analyze the pharmacokinetic characteristics, toxicological issues and safety concerns of SGLT2 inhibitors in humans. This review focuses on three compounds (dapagliflozin, canagliflozin, empagliflozin) with results obtained in healthy volunteers (including drug-drug interactions), patients with T2DM (single dose and multiple doses) and special populations (those with renal or hepatic impairment). The three pharmacological agents share an excellent oral bioavailability, long half-life allowing once-daily administration, low accumulation index and renal clearance, the absence of active metabolites and a limited propensity to drug-drug interactions. No clinically relevant changes in pharmacokinetic parameters were observed in T2DM patients or in patients with mild/moderate renal or hepatic impairment. Adverse events are a slightly increased incidence of mycotic genital and rare benign urinary infections. SGLT2 inhibitors have the potential to reduce several cardiovascular risk factors, and cardiovascular outcome trials are currently ongoing. The best positioning of SGLT2 inhibitors in the armamentarium for treating T2DM is still a matter of debate.

  9. Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers

    PubMed Central

    Udugama, Maheshi; Sanij, Elaine; Voon, Hsiao P. J.; Son, Jinbae; Hii, Linda; Henson, Jeremy D.; Chan, F. Lyn; Chang, Fiona T. M.; Liu, Yumei; Pearson, Richard B.; Kalitsis, Paul; Mann, Jeffrey R.; Collas, Philippe; Hannan, Ross D.; Wong, Lee H.

    2018-01-01

    ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers. PMID:29669917

  10. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    PubMed Central

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  11. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed

    Espinar-Marchena, Francisco; Rodríguez-Galán, Olga; Fernández-Fernández, José; Linnemann, Jan; de la Cruz, Jesús

    2018-05-18

    The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.

  12. Ribosomal protein L24 defect in Belly spot and tail (Bst), a mouse Minute

    PubMed Central

    Oliver, Edward R.; Saunders, Thomas L.; Tarlé, Susan A.; Glaser, Tom

    2008-01-01

    Summary Ribosomal protein mutations, termed Minutes, have been instrumental in studying the coordination of cell and tissue growth in Drosophila. Although abundant in flies, equivalent defects in mammals are relatively unknown. Belly spot and tail (Bst) is a semidominant mouse mutation that disrupts pigmentation, somitogenesis and retinal cell fate determination. Here, we identify Bst as a deletion within the Rpl24 riboprotein gene. Bst significantly impairs Rpl24 splicing and ribosome biogenesis. Bst/+ cells have decreased rates of protein synthesis and proliferation, and are outcompeted by wild-type cells in C57BLKS↔ROSA26 chimeras. Bacterial artificial chromosome (BAC) and cDNA transgenes correct the mutant phenotypes. Our findings establish Bst as a mouse Minute and provide the first detailed characterization of a mammalian ribosomal protein mutation. PMID:15289434

  13. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    PubMed

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  14. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex

    PubMed Central

    Xie, Ping

    2015-01-01

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by “hungry” codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel. PMID:26473825

  15. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    PubMed

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  16. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes.

    PubMed

    Nauck, Michael A

    2014-01-01

    The importance of the kidney's role in glucose homeostasis has gained wider understanding in recent years. Consequently, the development of a new pharmacological class of anti-diabetes agents targeting the kidney has provided new treatment options for the management of type 2 diabetes mellitus (T2DM). Sodium glucose co-transporter type 2 (SGLT2) inhibitors, such as dapagliflozin, canagliflozin, and empagliflozin, decrease renal glucose reabsorption, which results in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations. Modest reductions in body weight and blood pressure have also been observed following treatment with SGLT2 inhibitors. SGLT2 inhibitors appear to be generally well tolerated, and have been used safely when given as monotherapy or in combination with other oral anti-diabetes agents and insulin. The risk of hypoglycemia is low with SGLT2 inhibitors. Typical adverse events appear to be related to the presence of glucose in the urine, namely genital mycotic infection and lower urinary tract infection, and are more often observed in women than in men. Data from long-term safety studies with SGLT2 inhibitors and from head-to-head SGLT2 inhibitor comparator studies are needed to fully determine their benefit-risk profile, and to identify any differences between individual agents. However, given current safety and efficacy data, SGLT2 inhibitors may present an attractive option for T2DM patients who are failing with metformin monotherapy, especially if weight is part of the underlying treatment consideration.

  17. Ribosomal DNA intergenic spacer sequence in foxtail millet, Setaria italica (L.) P. Beauv. and its characterization and application to typing of foxtail millet landraces.

    PubMed

    Fukunaga, Kenji; Ichitani, Katsuyuki; Taura, Satoru; Sato, Muneharu; Kawase, Makoto

    2005-02-01

    We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.

  18. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    PubMed

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  19. The Role of the Kidney and SGLT2 Inhibitors in Type 2 Diabetes.

    PubMed

    Katz, Pamela M; Leiter, Lawrence A

    2015-12-01

    Effective glycemic control reduces the risk for diabetes-related complications. However, the majority of patients with type 2 diabetes still do not achieve glycemic targets. Beyond metformin therapy, current practice guidelines for the management of type 2 diabetes recommend individualized treatment based on patient and agent characteristics. The sodium glucose cotransporter type 2 (SGLT2) inhibitors represent a novel treatment strategy, independent of impaired beta-cell function and insulin resistance. SGLT2 inhibitors decrease renal glucose reabsorption, thereby increasing urinary glucose excretion with subsequent reduction in plasma glucose levels and glycosylated hemoglobin concentrations. Current evidence suggests that they are effective as monotherapy or as add-ons to metformin either alone, or in combination with other oral glucose-lowering agents or insulin. They are generally well tolerated, though rates of lower urinary tract and genital mycotic infections are slightly increased. The advantages of this class include modest reductions in body weight and blood pressure, and low risk for hypoglycemia. Long-term safety data and results of ongoing cardiovascular outcome studies are awaited so we can fully understand the role that SGLT2 inhibitors will play in the comprehensive management of type 2 diabetes. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  20. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    PubMed

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  1. Kunitz-type protease inhibitors group B from Solanum palustre.

    PubMed

    Speransky, Anna S; Cimaglia, Fabio; Krinitsina, Anastasya A; Poltronieri, Palmiro; Fasano, Pasqua; Bogacheva, Anna M; Valueva, Tatiana A; Halterman, Dennis; Shevelev, Alexei B; Santino, Angelo

    2007-11-01

    Five Kunitz protease inhibitor group B genes were isolated from the genome of the diploid non-tuber-forming potato species Solanum palustre. Three of five new genes share 99% identity to the published KPI-B genes from various cultivated potato accessions, while others exhibit 96% identity. Spls-KPI-B2 and Spls-KPI-B4 proteins contain unique substitutions of the most conserved residues usually involved to trypsin and chymotrypsin-specific binding sites of Kunitz-type protease inhibitor (KPI)-B, respectively. To test the inhibition of trypsin and chymotrypsin by Spls-KPI proteins, five of them were produced in E. coli purified using a Ni-sepharose resin and ion-exchange chromatography. All recombinant Spls-KPI-B inhibited trypsin; K(i) values ranged from 84.8 (Spls-KPI-B4), 345.5 (Spls-KPI-B1), and 1310.6 nM (Spls-KPI-B2) to 3883.5 (Spls-KPI-B5) and 8370 nM (Spls-KPI-B3). In addition, Spls-KPI-B1 and Spls-KPI-B4 inhibited chymotrypsin. These data suggest that regardless of substitutions of key active-center residues both Spls-KPI-B4 and Spls-KPI-B1 are functional trypsin-chymotrypsin inhibitors.

  2. Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice.

    PubMed

    Lawlor, Michael W; Viola, Marissa G; Meng, Hui; Edelstein, Rachel V; Liu, Fujun; Yan, Ke; Luna, Elizabeth J; Lerch-Gaggl, Alexandra; Hoffmann, Raymond G; Pierson, Christopher R; Buj-Bello, Anna; Lachey, Jennifer L; Pearsall, Scott; Yang, Lin; Hillard, Cecilia J; Beggs, Alan H

    2014-06-01

    X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence of hypertrophy in gastrocnemius muscles but not in quadriceps or triceps. The ability of the muscles to respond to activin receptor type IIB inhibitor treatment correlated with treatment-induced increases in satellite cell number and several muscle-specific abnormalities of hypertrophic signaling. Treatment-responsive Mtm1 p.R69C gastrocnemius muscles displayed lower levels of phosphorylated ribosomal protein S6 and higher levels of phosphorylated eukaryotic elongation factor 2 kinase than were observed in Mtm1 p.R69C quadriceps muscle or in muscles from wild-type littermates. Hypertrophy in the Mtm1 p.R69C gastrocnemius muscle was associated with increased levels of phosphorylated ribosomal protein S6. Our findings indicate that muscle-, fiber type-, and mutation-specific factors affect the response to hypertrophic therapies that will be important to assess in future therapeutic trials. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. The Phosphorylation of Ribosomal Protein in Lemna minor

    PubMed Central

    Trewavas, A.

    1973-01-01

    Sterile cultures of Lemna minor have been labeled with 32P1, and the ribosomal proteins have been examined for radioactivity. In relatively short term labeling a radioactive protein was found which ran as a single component in both urea/acetic acid and sodium lauryl sulfate gel electrophoresis. Acid hydrolysis of the labeled protein permitted the isolation of serine phosphate. After labeling to equilibrium with 32P1, calculation indicated only 0.6 to 0.75 atom of this protein phosphorus per ribosome. The phosphorylated protein is found in both polysomes and “derived” monomers and appears to be located in the ribosomal small subunit. Its apparent molecular weight is 42,000. Addition of growth-inhibiting concentrations of abscisic acid does not alter the apparent degree of labeling of this protein in 5 hours, but after 24 hours of treatment the total protein phosphorus was reduced from 0.75 atom of phosphorus per ribosome to 0.36 atom of phosphorus per ribosome. PMID:16658405

  4. Non-ribosomal halogenated protease inhibitors from cyanobacterial isolates as attractive drug targets.

    PubMed

    Silva-Stenico, M E; Rigonato, J; Leal, M G; Vaz, M G M V; Andreote, A P D; Fiore, M F

    2012-01-01

    Cyanobacteria possess the ability to produce compounds with remarkable biological activity, and have thus attracted the attention of the pharmaceutical industry. Cyanopeptides acting as protease inhibitors have shown potential in the field of pharmacotherapy through regulation of abnormal physiological processes in the human body. Despite the already described cyanopeptide protease inhibitors, the search for new congeners is of considerable interest which may pave the way for more efficient molecules. In this study, the presence of the protease inhibitors aeruginosin and cyanopeptolin with non-, mono- and dichlorination and also genes coding for their synthetases was investigated in 90 cyanobacterial strains. Mass spectrometry analyses highlighted production of 91, 19 and 3 non-, mono- and dichlorinated congeners, respectively. The purified extract of Microcystis botrys SPC759 inhibited 61% of pepsin protease. PCR amplifications of aeruginosin and cyanopeptolin synthetase gene regions were observed in 41 and 28% of evaluated strains, respectively. The sequences obtained for the aerA-aerB (aeruginosin) and mcnC-mcnE (cyanopeptolin) gene regions grouped together with their homologues found in other cyanobacterial strains in the phylogenetic analyses with high bootstrap support. Antimicrobial activity assays performed using all intracellular extracts inhibited 31 and 26% of Gram-negative and Gram-positive pathogenic bacterial growth, respectively. The results of this study showed the production of aeruginosin and cyanopeptolin and the presence of their genes in several cyanobacterial genera for the first time besides the discovery of novel congeners.

  5. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae

    PubMed Central

    Espinar-Marchena, Francisco; Rodríguez-Galán, Olga; Fernández-Fernández, José; Linnemann, Jan; de la Cruz, Jesús

    2018-01-01

    Abstract The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits. PMID:29788267

  6. Escherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation

    PubMed Central

    Duval, Mélodie; Korepanov, Alexey; Fuchsbauer, Olivier; Fechter, Pierre; Haller, Andrea; Fabbretti, Attilio; Choulier, Laurence; Micura, Ronald; Klaholz, Bruno P.; Romby, Pascale; Springer, Mathias; Marzi, Stefano

    2013-01-01

    Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5′ untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we used a combination of experimental approaches in vitro (kinetic of mRNA unfolding and binding experiments to analyze mRNA–protein or mRNA–ribosome complexes, toeprinting assays to follow the formation of ribosomal initiation complexes) and in vivo (genetic) to monitor the action of ribosomal protein S1 on the initiation of structured and regulated mRNAs. We demonstrate that r-protein S1 endows the 30S with an RNA chaperone activity that is essential for the docking and the unfolding of structured mRNAs, and for the correct positioning of the initiation codon inside the decoding channel. The first three OB-fold domains of S1 retain all its activities (mRNA and 30S binding, RNA melting activity) on the 30S subunit. S1 is not required for all mRNAs and acts differently on mRNAs according to the signals present at their 5′ ends. This work shows that S1 confers to the ribosome dynamic properties to initiate translation of a large set of mRNAs with diverse structural features. PMID:24339747

  7. Positively Charged Residues Are the Major Determinants of Ribosomal Velocity

    PubMed Central

    Charneski, Catherine A.; Hurst, Laurence D.

    2013-01-01

    Both for understanding mechanisms of disease and for the design of transgenes, it is important to understand the determinants of ribosome velocity, as changes in the rate of translation are important for protein folding, error attenuation, and localization. While there is great variation in ribosomal occupancy along even a single transcript, what determines a ribosome's occupancy is unclear. We examine this issue using data from a ribosomal footprinting assay in yeast. While codon usage is classically considered a major determinant, we find no evidence for this. By contrast, we find that positively charged amino acids greatly retard ribosomes downstream from where they are encoded, consistent with the suggestion that positively charged residues interact with the negatively charged ribosomal exit tunnel. Such slowing is independent of and greater than the average effect owing to mRNA folding. The effect of charged amino acids is additive, with ribosomal occupancy well-predicted by a linear fit to the density of positively charged residues. We thus expect that a translated poly-A tail, encoding for positively charged lysines regardless of the reading frame, would act as a sandtrap for the ribosome, consistent with experimental data. PMID:23554576

  8. [SGLT2 inhibitors: a new therapeutic class for the treatment of type 2 diabetes mellitus].

    PubMed

    Dagan, Amir; Dagan, Bracha; SegaL, Gad

    2015-03-01

    SGLT2 (Sodium Glucose co-Transporter 2 Inhibitors) inhibitors are a new group of oral medications for the treatment of type 2 diabetes mellitus patients. These medications interfere with the process of glucose reabsorption in the proximal convoluted tubules in the kidneys, therefore increasing both glucose and water diuresis. SGLT2 inhibitors were found to be effective in lowering HbA1c levels in double-blinded studies, both as monotherapy and in combination with other oral hypoglycemic medications of various other mechanisms of action. SGLT2 Inhibitors are not a risk factor for hypoglycemia and are suitable for combination with insulin therapy. Their unique mode of action, relying on glomerular filtration, make these medication unsuitable for usage as treatment for type 2 diabetes patients who are also suffering from moderate to severe renal failure. Their main adverse effects are increased risk for urinary and genital tract infections. The following review describes the relevant pathophysiology addressed by these novel medications, evidence for efficacy and the safety profile of SGLT2 Inhibitors.

  9. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes

    PubMed Central

    Nauck, Michael A

    2014-01-01

    The importance of the kidney’s role in glucose homeostasis has gained wider understanding in recent years. Consequently, the development of a new pharmacological class of anti-diabetes agents targeting the kidney has provided new treatment options for the management of type 2 diabetes mellitus (T2DM). Sodium glucose co-transporter type 2 (SGLT2) inhibitors, such as dapagliflozin, canagliflozin, and empagliflozin, decrease renal glucose reabsorption, which results in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations. Modest reductions in body weight and blood pressure have also been observed following treatment with SGLT2 inhibitors. SGLT2 inhibitors appear to be generally well tolerated, and have been used safely when given as monotherapy or in combination with other oral anti-diabetes agents and insulin. The risk of hypoglycemia is low with SGLT2 inhibitors. Typical adverse events appear to be related to the presence of glucose in the urine, namely genital mycotic infection and lower urinary tract infection, and are more often observed in women than in men. Data from long-term safety studies with SGLT2 inhibitors and from head-to-head SGLT2 inhibitor comparator studies are needed to fully determine their benefit–risk profile, and to identify any differences between individual agents. However, given current safety and efficacy data, SGLT2 inhibitors may present an attractive option for T2DM patients who are failing with metformin monotherapy, especially if weight is part of the underlying treatment consideration. PMID:25246775

  10. A new system for naming ribosomal proteins

    PubMed Central

    Ban, Nenad; Beckmann, Roland; Cate, Jamie HD; Dinman, Jonathan D; Dragon, François; Ellis, Steven R; Lafontaine, Denis LJ; Lindahl, Lasse; Liljas, Anders; Lipton, Jeffrey M; McAlear, Michael A; Moore, Peter B; Noller, Harry F; Ortega, Joaquin; Panse, Vikram Govind; Ramakrishnan, V; Spahn, Christian MT; Steitz, Thomas A; Tchorzewski, Marek; Tollervey, David; Warren, Alan J; Williamson, James R; Wilson, Daniel; Yonath, Ada; Yusupov, Marat

    2015-01-01

    A system for naming ribosomal proteins is described that the authors intend to use in the future. They urge others to adopt it. The objective is to eliminate the confusion caused by the assignment of identical names to ribosomal proteins from different species that are unrelated in structure and function. In the system proposed here, homologous ribosomal proteins are assigned the same name, regardless of species. It is designed so that new names are similar enough to old names to be easily recognized, but are written in a format that unambiguously identifies them as ‘new system’ names. PMID:24524803

  11. Effects of SGLT2 inhibitors on weight loss in patients with type 2 diabetes mellitus.

    PubMed

    Ribola, F A; Cançado, F B; Schoueri, J H M; De Toni, V F; Medeiros, V H R; Feder, D

    2017-01-01

    SGLT2 (sodium-glucose cotransporter type 2) inhibitors are a new class of drugs which reversibly block the glucose reabsorption that occurs in the kidneys. Since their mechanisms of action do not rely on insulin secretion, they constitute a complementary alternative to the classic treatment of type 2 diabetes mellitus. A glycemic level reduction in patients who used SGLT2 inhibitors due to the reversible block of their transporters could be observed. Associated with this, there was a reduction in body weight and blood pressure (BP) caused by osmotic diuresis. Few adverse effects and low drug interaction combined with antihyperglycemic effects are some of the benefits of these inhibitors widely discussed in clinical trials. Patients with history of urogenital infections or those on diuretics must be carefully evaluated before the administration of these drugs. While a promising class of drugs indicated as a treatment for patients with type 2 diabetes mellitus, SGLT2 inhibitors should not be prescribed for individuals with severe renal or hepatic impairment. Therefore, as there are only a few situations in which they should not be indicated, the efficacy, safety and tolerability of these inhibitors allow them to be used in a wide range of patients. Nevertheless, further researches are required so that the possible long-term risks can be studied and the benefits associated with their use can be more objectively elucidated.

  12. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome

    PubMed Central

    Ahmed, Tofayel; Yin, Zhan; Bhushan, Shashi

    2016-01-01

    Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features. PMID:27762343

  13. The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. Comparison with eubacterial and eukaryotic ribosomal proteins.

    PubMed

    Kimura, J; Kimura, M

    1987-09-05

    The amino acid sequences of two ribosomal proteins, S14 and S16, from the archaebacterium Halobacterium marismortui have been determined. Sequence data were obtained by the manual and solid-phase sequencing of peptides derived from enzymatic digestions with trypsin, chymotrypsin, pepsin, and Staphylococcus aureus protease as well as by chemical cleavage with cyanogen bromide. Proteins S14 and S16 contain 109 and 126 amino acid residues and have Mr values of 11,964 and 13,515, respectively. Comparison of the sequences with those of ribosomal proteins from other organisms demonstrates that S14 has a significant homology with the rat liver ribosomal protein S11 (36% identity) as well as with the Escherichia coli ribosomal protein S17 (37%), and that S16 is related to the yeast ribosomal protein YS22 (40%) and proteins S8 from E. coli (28%) and Bacillus stearothermophilus (30%). A comparison of the amino acid residues in the homologous regions of halophilic and nonhalophilic ribosomal proteins reveals that halophilic proteins have more glutamic acids, asparatic acids, prolines, and alanines, and less lysines, arginines, and isoleucines than their nonhalophilic counterparts. These amino acid substitutions probably contribute to the structural stability of halophilic ribosomal proteins.

  14. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Meng-Chiao; Sturm, Matthew B.; Almo, Steven C.

    2010-01-12

    Ricin A-chain (RTA) and saporin-L1 (SAP) catalyze adenosine depurination of 28S rRNA to inhibit protein synthesis and cause cell death. We present the crystal structures of RTA and SAP in complex with transition state analogue inhibitors. These tight-binding inhibitors mimic the sarcin-ricin recognition loop of 28S rRNA and the dissociative ribocation transition state established for RTA catalysis. RTA and SAP share unique purine-binding geometry with quadruple {pi}-stacking interactions between adjacent adenine and guanine bases and 2 conserved tyrosines. An arginine at one end of the {pi}-stack provides cationic polarization and enhanced leaving group ability to the susceptible adenine. Common featuresmore » of these ribosome-inactivating proteins include adenine leaving group activation, a remarkable lack of ribocation stabilization, and conserved glutamates as general bases for activation of the H{sub 2}O nucleophile. Catalytic forces originate primarily from leaving group activation evident in both RTA and SAP in complex with transition state analogues.« less

  15. Influence of the stringent control system on the transcription of ribosomal ribonucleic acid and ribosomal protein genes in Escherichia coli.

    PubMed Central

    Dennis, P P

    1977-01-01

    The fraction of the total ribonucleic acid (RNA) synthesis rate that is messenger RNA (mRNA) for ribosomal protein (r-protein) and ribosomal RNA (rRNA) has been estimated in valS(Ts) rel+ stringent and valS(Ts) relA1 relaxed strains of Escherichia coli during a partial inhibition of valyl-transfer RNA aminoacylation. The partial inhibition was accomplished by shifting the strains from the permissive growth temperature of 29.5 degrees C to the semipermissive temperature of 35.5 degrees C. The RNA synthesized at the elevated temperature was pulse labeled with [3H]uracil. The fraction of the total incorpoarted 3H radioactivity in r-protein mRNA or in rRNA was estimated by specific hybridization to the transducing phages gammaspc1, which carries about 15 r-protein genes and lambdailv5, which carries an rRNA transcription unit. The results clearly demonstrate that the rel gene influences the fraction of the total RNA synthesis rate that is r protein mRNA and rRNA; in the rel+ strain they are significantly increased relative to control cultures. This indicates that the expression of the genes coding for the RNA and protein component of the ribosome are most likely regulated at the level of transcription. Furthermore, it appears that the distribution of functioning RNA polymerase between rRNA genes, r-protein genes, and other types of genes is influenced by the rel gene control system; presumably this influence is mediated through the unusual nucleotide guanosine tetraphosphate. PMID:320185

  16. Cholinergic and neuroprotective drugs for the treatment of Alzheimer and neuronal vascular diseases. II. Synthesis, biological assessment, and molecular modelling of new tacrine analogues from highly substituted 2-aminopyridine-3-carbonitriles.

    PubMed

    Samadi, Abdelouahid; Valderas, Carolina; de los Ríos, Cristóbal; Bastida, Agatha; Chioua, Mourad; González-Lafuente, Laura; Colmena, Inés; Gandía, Luis; Romero, Alejandro; Del Barrio, Laura; Martín-de-Saavedra, María D; López, Manuela G; Villarroya, Mercedes; Marco-Contelles, José

    2011-01-01

    The synthesis, biological assessment, and molecular modelling of new tacrine analogues 11-22 is described. Compounds 11-22 have been obtained by Friedländer-type reaction of 2-aminopyridine-3-carbonitriles 1-10 with cyclohexanone or 1-benzyl-4-piperidone. The biological evaluation showed that some of these molecules were good AChE inhibitors, in the nanomolar range, and quite selective regarding the inhibition of BuChE, the most potent being 5-amino-2-(dimethylamino)-6,7,8,9-tetrahydrobenzo[1,8-b]-naphthyridine-3-carbonitrile (11) [IC(50) (EeAChE: 14nM); IC(50) (eqBuChE: 5.2μM]. Kinetic studies on the easily available and potent anticholinesterasic compound 5-amino-2-(methoxy)-6,7,8,9-tetrahydrobenzo[1,8-b]-naphthyridine-3-carbonitrile (16) [IC(50) (EeAChE: 64nM); IC(50) (eqBuChE: 9.6μM] showed that this compound is a mixed-type inhibitor (K(i)=69.2nM) of EeAChE. Molecular modelling on inhibitor 16 confirms that this compound, as expected and similarly to tacrine, binds at the catalytic active site of EeAChE. The neuroprotective profile of molecules 11-22 has been investigated in SH-SY5Y neuroblastoma cells stressed with a mixture of oligomycin-A/rotenone. Compound 16 was also able to rescue by 50% cell death induced by okadaic acid in SH-SY5Y cells. From these results we conclude that the neuroprotective profile of these molecules is moderate, the most potent being compounds 12 and 17 which reduced cell death by 29%. Compound 16 does not affect ACh- nor K(+)-induced calcium signals in bovine chromaffin cells. Consequently, tacrine analogues 11-22 can be considered attractive therapeutic molecules on two key pharmacological targets playing key roles in the progression of Alzheimer, that is, cholinergic dysfunction and oxidative stress, as well as in neuronal cerebrovascular diseases. Copyright © 2010. Published by Elsevier Ltd.

  17. RISSC: a novel database for ribosomal 16S–23S RNA genes spacer regions

    PubMed Central

    García-Martínez, Jesús; Bescós, Ignacio; Rodríguez-Sala, Jesús Javier; Rodríguez-Valera, Francisco

    2001-01-01

    A novel database, under the acronym RISSC (Ribosomal Intergenic Spacer Sequence Collection), has been created. It compiles more than 1600 entries of edited DNA sequence data from the 16S–23S ribosomal spacers present in most prokaryotes and organelles (e.g. mitochondria and chloroplasts) and is accessible through the Internet (http://ulises.umh.es/RISSC), where systematic searches for specific words can be conducted, as well as BLAST-type sequence searches. Additionally, a characteristic feature of this region, the presence/absence and nature of tRNA genes within the spacer, is included in all the entries, even when not previously indicated in the original database. All these combined features could provide a useful documen­tation tool for studies on evolution, identification, typing and strain characterization, among others. PMID:11125084

  18. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    NASA Astrophysics Data System (ADS)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  19. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE PAGES

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  20. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetzt, Amanda E.

    Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarlymore » to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication. - Highlights: • Arginines 193 and 235 of RTA are critical for binding to the mammalian ribosome. • R193A/R235A has full catalytic activity on RNA but not on mammalian ribosomes. • R193A/R235A is less toxic than a mutant that targets the active site. • The toxin-ribosome interaction is a therapeutic target for ricin intoxication.« less

  1. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome.

    PubMed

    Jetzt, Amanda E; Li, Xiao-Ping; Tumer, Nilgun E; Cohick, Wendie S

    2016-11-01

    Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mechanisms of In Vivo Ribosome Maintenance Change in Response to Nutrient Signals*

    PubMed Central

    Mathis, Andrew D.; Naylor, Bradley C.; Carson, Richard H.; Evans, Eric; Harwell, Justin; Knecht, Jared; Hexem, Eric; Peelor, Fredrick F.; Miller, Benjamin F.; Hamilton, Karyn L.; Transtrum, Mark K.; Bikman, Benjamin T.; Price, John C.

    2017-01-01

    Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1–4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5–7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9). PMID:27932527

  3. PDE5 Inhibitors Enhance Celecoxib Killing in Multiple Tumor Types

    PubMed Central

    BOOTH, LAURENCE; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; TAVALLAI, SEYEDMEHRAD; WEBB, TIMOTHY; SAMUEL, PETER; CONLEY, ADAM; BINION, BRITTANY; YOUNG, HAROLD F.; POKLEPOVIC, ANDREW; SPIEGEL, SARAH; DENT, PAUL

    2015-01-01

    The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. PMID:25303541

  4. Ribosomal Alterations Controlling Alkaline Phosphatase Isozymes in Escherichia coli

    PubMed Central

    Piggot, P. J.; Sklar, M. D.; Gorini, L.

    1972-01-01

    Different patterns of isozymes were obtained by starch-gel electrophoresis of alkaline phosphatase from Escherichia coli strains differing only by strA or ram mutations, or both, in the 30S ribosomal subunit. The isozyme spread was reduced in strA and increased in ram strains; this strictly parallels the restriction and enhancement of translational ambiguity produced by these mutations. Streptomycin present during growth had an effect similar to ram on both isozymes and ambiguity. The three isozymes analyzed have different N-terminal residues: aspartic acid, valine, and threonine. Different patterns of isozymes were also obtained in a wild-type strain through the specific action of exogenous arginine. A link between the mechanism of the effect of arginine and that of the ribosome is not obvious. The possibility is discussed that in both cases, although by different mechanisms, N-terminals are formed with different sensitivity to limited degradative attack. Images PMID:4552993

  5. The increasing role of monoamine oxidase type B inhibitors in Parkinson's disease therapy.

    PubMed

    Elmer, Lawrence W; Bertoni, John M

    2008-11-01

    The role of monoamine oxidase type B inhibitors in the treatment of Parkinson's disease has expanded with the new monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets. As primary therapy in early disease monoamine oxidase B inhibitors reduce motor disability and delay the need for levodopa. In more advanced disease requiring levodopa, adjunctive monoamine oxidase B inhibitors reduce 'off' time and may improve gait and freezing. Rasagiline and selegiline oral disintegrating tablets may reduce the safety risks associated with the amfetamine and methamfetamine metabolites of conventional oral selegiline while retaining or improving therapeutic efficacy. Articles were identified by searches of PubMed and searches on the Internet and reviewed. All articles and other referenced materials were retrieved using the keywords 'Parkinson's disease', 'treatment' and 'monoamine oxidase B inhibitor' and were published between 1960 and 2007, with older references selected for historical significance. Only papers published in English were reviewed. Accumulating data support the use of monoamine oxidase B inhibitors as monotherapy for early and mild Parkinson's disease and as adjunctive therapy for more advanced Parkinson's disease with levodopa-associated motor fluctuations. The recently released monoamine oxidase B inhibitor rasagiline and a new formulation, selegiline oral disintegrating tablets, have potential advantages over conventional oral selegiline.

  6. Functional Analysis of a Type-I Ribosome Inactivating Protein Balsamin from Momordica balsamina with Anti-Microbial and DNase Activity.

    PubMed

    Ajji, Parminder Kaur; Walder, Ken; Puri, Munish

    2016-09-01

    Ribosome inactivating proteins (RIPs) have received considerable attention in biomedical research because of their unique activities towards tumor and virus-infected cells. We extracted balsamin, a type-I RIP, from Momordica balsamina. In the present study, a detailed investigation on DNase activity, antioxidant capacity and antibacterial activity was conducted using purified balsamin. DNase-like activity of balsamin towards plasmid DNA was pH, incubation time and temperature dependent. Moreover, the presence of Mg(2+) (10-50 mM) influenced the DNA cleavage activity. Balsamin also demonstrated reducing power and a capacity to scavenge free radicals in a dose dependent manner. Furthermore, the protein exhibited antibacterial activity against Staphylococcus aureus, Salmonella enterica, Staphylococcus epidermidis and Escherichia coli, which suggests potential utility of balsamin as a nutraceutical.

  7. Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning.

    PubMed

    Zhang, Sai; Hu, Hailin; Zhou, Jingtian; He, Xuan; Jiang, Tao; Zeng, Jianyang

    2017-09-27

    Ribosome stalling is manifested by the local accumulation of ribosomes at specific codon positions of mRNAs. Here, we present ROSE, a deep learning framework to analyze high-throughput ribosome profiling data and estimate the probability of a ribosome stalling event occurring at each genomic location. Extensive validation tests on independent data demonstrated that ROSE possessed higher prediction accuracy than conventional prediction models, with an increase in the area under the receiver operating characteristic curve by up to 18.4%. In addition, genome-wide statistical analyses showed that ROSE predictions can be well correlated with diverse putative regulatory factors of ribosome stalling. Moreover, the genome-wide ribosome stalling landscapes of both human and yeast computed by ROSE recovered the functional interplays between ribosome stalling and cotranslational events in protein biogenesis, including protein targeting by the signal recognition particles and protein secondary structure formation. Overall, our study provides a novel method to complement the ribosome profiling techniques and further decipher the complex regulatory mechanisms underlying translation elongation dynamics encoded in the mRNA sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Superresolution Imaging of Ribosomes and RNA Polymerase in Live Escherichia coli Cells

    PubMed Central

    Bakshi, Somenath; Siryaporn, Albert; Goulian, Mark; Weisshaar, James C.

    2012-01-01

    Summary Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (β′-yGFP) in live E. coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, Nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10–15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is Dribo = 0.04 μm2/s, attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of sub-diffusion, as would arise from tethering of ribosomes. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force. PMID:22624875

  9. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2014-04-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. They are proposed as a novel approach for the management of type 2 diabetes mellitus. They have proven their efficacy in reducing glycated haemoglobin, without inducing hypoglycaemia, as monotherapy or in combination with various other glucose-lowering agents, with the add-on value of promoting some weight loss and lowering arterial blood pressure. As they may be used concomitantly with many other drugs, we review the potential drug-drug interactions (DDIs) regarding the three leaders in the class (dapagliglozin, canagliflozin and empagliflozin). Most of the available studies were performed in healthy volunteers and have assessed the pharmacokinetic interferences with a single administration of the SGLT2 inhibitor. The exposure [assessed by peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC)] to each SGLT2 inhibitor tested was not significantly influenced by the concomitant administration of other glucose-lowering agents or cardiovascular agents commonly used in patients with type 2 diabetes. Reciprocally, these medications did not influence the pharmacokinetic parameters of dapagliflozin, canagliflozin or empagliflozin. Some modest changes were not considered as clinically relevant. However, drugs that could specifically interfere with the metabolic pathways of SGLT2 inhibitors [rifampicin, inhibitors or inducers of uridine diphosphate-glucuronosyltransferase (UGT)] may result in significant changes in the exposure of SGLT2 inhibitors, as shown for dapagliflozin and canagliflozin. Potential DDIs in patients with type 2 diabetes receiving chronic treatment with an SGLT2 inhibitor deserve further attention, especially in individuals treated with several medications or in more fragile patients with hepatic and/or renal impairment.

  10. Attachment of UDP-hexosamines to the ribosomes isolated from rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopacz-Jodczyk, T.; Paszkiewicz-Gadek, A.; Galasinski, W.

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  11. Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.

    PubMed

    Body, A; Brownstein, B H

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.

  12. Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium

    PubMed Central

    Body, Barbara A.; Brownstein, Bernard H.

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833

  13. Purification and characterization of a novel type i ribosome inactivating protein, pachyerosin, from Pachyrhizus erosus seeds, and preparation of its immunotoxin against human hepatoma cells.

    PubMed

    Guo, Jin-Lin; Cheng, Yuan-Liu; Qiu, Yi; Shen, Cai-Hong; Yi, Bin; Peng, Cheng

    2014-07-01

    Pachyrhizus erosus seeds have a high protein content and are used in China due to their cytotoxic effect. Here we report the biological and pharmacological activity of the protein extracts from P. erosus seeds. A novel ribosome-inactivating protein, pachyerosin, from P. erosus seeds was successively purified to homogeneity using ammonium sulfate precipitation, DEAE-sepharose FF, and Sephacryl S-200. Pachyerosin showed to be a type I ribosome-inactivating protein with a molecular mass of 29 kDa and an isoelectric point of 9.19. It strongly inhibited protein synthesis of rabbit reticulocyte lysate with an IC50 of 0.37 ng/mL and showed N-glycosidase activity on rat liver ribosomes with an EC50 of 85.9 pM. The N-terminal 27 amino acids of pachyerosin revealed a 60.71% sequence identity with abrin A from the seeds of Abrus precatorius. With the aim of targeting the delivery of pachyerosin, immunotoxin was prepared by conjugating pachyerosin with anti-human AFP monoclonal antibodies SM0736. The immunotoxin pachyerosin-SM0736 efficiently inhibited the growth of the human hepatoma cell line HuH-7 with an IC50 of 0.050 ± 0.004 nM, 2360 times lower than that of pachyerosin and 430 times lower than that of the immunotoxin against human gastric cancer cell line SGC7901. These results imply that pachyerosin may be used as a new promising anticancer agent. Georg Thieme Verlag KG Stuttgart · New York.

  14. Cyclin-dependent Kinase 9 Links RNA Polymerase II Transcription to Processing of Ribosomal RNA*

    PubMed Central

    Burger, Kaspar; Mühl, Bastian; Rohrmoser, Michaela; Coordes, Britta; Heidemann, Martin; Kellner, Markus; Gruber-Eber, Anita; Heissmeyer, Vigo; Strässer, Katja; Eick, Dirk

    2013-01-01

    Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3′ extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3′ processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3′ rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing. PMID:23744076

  15. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.

    PubMed

    Schäkermann, Sina; Prochnow, Pascal; Bandow, Julia E

    2017-01-01

    Current research is focusing on ribosome heterogeneity as a response to changing environmental conditions and stresses, such as antibiotic stress. Altered stoichiometry and composition of ribosomal proteins as well as association of additional protein factors are mechanisms for shaping the protein expression profile or hibernating ribosomes. Here, we present a method for the isolation of ribosomes to analyze antibiotic-induced changes in the composition of ribosomes in Bacillus subtilis or other bacteria. Ribosomes and associated proteins are isolated by ultracentrifugation and proteins are identified and quantified using label-free mass spectrometry.

  16. Selection of peptides targeting helix 31 of bacterial 16S ribosomal RNA by screening M13 phage-display libraries.

    PubMed

    Lamichhane, Tek N; Abeydeera, N Dinuka; Duc, Anne-Cécile E; Cunningham, Philip R; Chow, Christine S

    2011-01-28

    Ribosomal RNA is the catalytic portion of ribosomes, and undergoes a variety of conformational changes during translation. Structural changes in ribosomal RNA can be facilitated by the presence of modified nucleotides. Helix 31 of bacterial 16S ribosomal RNA harbors two modified nucleotides, m²G966 and m⁵C967, that are highly conserved among bacteria, though the degree and nature of the modifications in this region are different in eukaryotes. Contacts between helix 31 and the P-site tRNA, initiation factors, and ribosomal proteins highlight the importance of this region in translation. In this work, a heptapeptide M13 phage-display library was screened for ligands that target the wild-type, naturally modified bacterial helix 31. Several peptides, including TYLPWPA, CVRPFAL, TLWDLIP, FVRPFPL, ATPLWLK, and DIRTQRE, were found to be prevalent after several rounds of screening. Several of the peptides exhibited moderate affinity (in the high nM to low µM range) to modified helix 31 in biophysical assays, including surface plasmon resonance (SPR), and were also shown to bind 30S ribosomal subunits. These peptides also inhibited protein synthesis in cell-free translation assays.

  17. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    PubMed

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  18. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes.

    PubMed

    Kirpekar, Finn; Hansen, Lykke H; Mundus, Julie; Tryggedsson, Stine; Teixeira Dos Santos, Patrícia; Ntokou, Eleni; Vester, Birte

    2018-06-27

    All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilising structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterised as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterised enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.

  19. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast

    PubMed Central

    Konikkat, Salini; Woolford, John L.

    2017-01-01

    Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ~76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly. PMID:28062837

  20. SGLT2 inhibitor/DPP-4 inhibitor combination therapy - complementary mechanisms of action for management of type 2 diabetes mellitus.

    PubMed

    Dey, Jayant

    2017-05-01

    Type 2 diabetes mellitus is a progressive disease with multiple underlying pathophysiologic defects. Monotherapy alone cannot maintain glycemic control and leads to treatment failure. Ideally, a combination of glucose-lowering agents should have complementary mechanisms of action that address multiple pathophysiologic pathways, can be used at all stages of the disease, and be generally well tolerated with no increased risk of hypoglycemia, cardiovascular events, or weight gain. The combination should also provide conveniences for patients, such as oral dosing, single-pill formulations, and once-daily administration, potentially translating to improved adherence. Two classes of glucose-lowering agents that meet these criteria are the sodium glucose cotransporter-2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. This article reviews the rationale for combination therapy with these agents, and evidence from clinical trials with empagliflozin and linagliptin or dapagliflozin and saxagliptin in the management of type 2 diabetes mellitus. Both combinations have been approved as single-pill formulations.

  1. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells

    PubMed Central

    Carlevaro-Fita, Joana; Rahim, Anisa; Guigó, Roderic; Vardy, Leah A.; Johnson, Rory

    2016-01-01

    Recent footprinting studies have made the surprising observation that long noncoding RNAs (lncRNAs) physically interact with ribosomes. However, these findings remain controversial, and the overall proportion of cytoplasmic lncRNAs involved is unknown. Here we make a global, absolute estimate of the cytoplasmic and ribosome-associated population of stringently filtered lncRNAs in a human cell line using polysome profiling coupled to spike-in normalized microarray analysis. Fifty-four percent of expressed lncRNAs are detected in the cytoplasm. The majority of these (70%) have >50% of their cytoplasmic copies associated with polysomal fractions. These interactions are lost upon disruption of ribosomes by puromycin. Polysomal lncRNAs are distinguished by a number of 5′ mRNA-like features, including capping and 5′UTR length. On the other hand, nonpolysomal “free cytoplasmic” lncRNAs have more conserved promoters and a wider range of expression across cell types. Exons of polysomal lncRNAs are depleted of endogenous retroviral insertions, suggesting a role for repetitive elements in lncRNA localization. Finally, we show that blocking of ribosomal elongation results in stabilization of many associated lncRNAs. Together these findings suggest that the ribosome is the default destination for the majority of cytoplasmic long noncoding RNAs and may play a role in their degradation. PMID:27090285

  2. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression

    PubMed Central

    Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.

    2018-01-01

    The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865

  3. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    PubMed

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  4. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa

    PubMed Central

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K. T.; Liu, Chuan Fa; Tam, James P.

    2016-01-01

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases. PMID:27991569

  5. Selective ribosome profiling as a tool to study the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes

    PubMed Central

    Becker, Annemarie H.; Oh, Eugene; Weissman, Jonathan S.; Kramer, Günter; Bukau, Bernd

    2014-01-01

    A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors, and enzymes. Many factors act cotranslationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling, RP), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor–RNC interactions are stabilized by crosslinking, the resulting factor–RNC adducts are then nuclease-treated to generate monosomes, and affinity-purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor and is readily adaptable to other cotranslationally acting factors, including eukaryotic factors. Factor–RNC purification and sequencing library preparation takes 7–8 days, sequencing and data analysis can be completed in 5–6 days. PMID:24136347

  6. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development

    PubMed Central

    Shamimuzzaman, Md.

    2018-01-01

    To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the

  7. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice.

    PubMed

    Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji

    2017-08-15

    In this study, we investigated and compared the effects of all six sodium-glucose cotransporter (SGLT) 2 inhibitors commercially available in Japan on diabetes-related diseases and complications in type 2 diabetic mice. Following 4-week repeated administration to diabetic mice, all SGLT2 inhibitors showed significant improvement in diabetes-related diseases and complications, including obesity; abnormal lipid metabolism; steatohepatitis; inflammation; endothelial dysfunction; and nephropathy. While all SGLT2 inhibitors exerted comparable effects in reducing hyperglycemia, improvement of these diabetes-related diseases and complications was more potent with the two long-acting drugs (ipragliflozin and dapagliflozin) than with the four intermediate-acting four drugs (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin), albeit without statistical significance. These findings demonstrate that SGLT2 inhibitors alleviate various diabetic pathological conditions in type 2 diabetic mice, and suggest that SGLT2 inhibitors, particularly long-acting drugs, might be useful not only for hyperglycemia but also in diabetes-related diseases and complications, including nephropathy in type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inadequate Triglyceride Management Worsens the Durability of Dipeptidyl Peptidase-4 Inhibitor in Subjects with Type 2 Diabetes Mellitus.

    PubMed

    Shimoda, Masashi; Miyoshi-Takai, Maiko; Irie, Shintaro; Tanabe, Akihito; Obata, Atsushi; Okauchi, Seizo; Hirukawa, Hidenori; Kimura, Tomohiko; Kohara, Kenji; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2017-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m 2 ) but not in the nonobese group (BMI < 25 kg/m 2 ). These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.

  9. The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast).

    PubMed

    Yamaguchi, K; von Knoblauch, K; Subramanian, A R

    2000-09-15

    Identification of all the protein components of a plastid (chloroplast) ribosomal 30 S subunit has been achieved, using two-dimensional gel electropholesis, high performance liquid chromatography purification, N-terminal sequencing, polymerase chain reaction-based screening of cDNA library, nucleotide sequencing, and mass spectrometry (electrospray ionization, matrix-assisted laser desorption/ionization time-of-flight, and reversed-phase HPLC coupled with electrospray ionization mass spectrometry). 25 proteins were identified, of which 21 are orthologues of all Escherichia coli 30 S ribosomal proteins (S1-S21), and 4 are plastid-specific ribosomal proteins (PSRPs) that have no homologues in the mitochondrial, archaebacterial, or cytosolic ribosomal protein sequences in data bases. 12 of the 25 plastid 30 S ribosomal proteins (PRPs) are encoded in the plastid genome, whereas the remaining 13 are encoded by the nuclear genome. Post-translational transit peptide cleavage sites for the maturation of the 13 cytosolically synthesized PRPs, and post-translational N-terminal processing in the maturation of the 12 plastid synthesized PRPs are described. Post-translational modifications in several PRPs were observed: alpha-N-acetylation of S9, N-terminal processings leading to five mature forms of S6 and two mature forms of S10, C-terminal and/or internal modifications in S1, S14, S18, and S19, leading to two distinct forms differing in mass and/or charge (the corresponding modifications are not observed in E. coli). The four PSRPs in spinach plastid 30 S ribosomal subunit (PSRP-1, 26.8 kDa, pI 6.2; PSRP-2, 21.7 kDa, pI 5.0; PSRP-3, 13.8 kDa, pI 4.9; PSRP-4, 5.2 kDa, pI 11.8) comprise 16% (67.6 kDa) of the total protein mass of the 30 S subunit (429.3 kDa). PSRP-1 and PSRP-3 show sequence similarities with hypothetical photosynthetic bacterial proteins, indicating their possible origins in photosynthetic bacteria. We propose the hypothesis that PSRPs form a "plastid

  10. Ribosomes in the sea: a window on taxon-specific lysis

    NASA Astrophysics Data System (ADS)

    Suttle, C.; Zhong, X.; Wirth, J.

    2016-02-01

    Microbes are estimated to comprise more than 90% of the biomass in the world's oceans, are major drivers of biogeochemical cycles, and have turnover rates ranging from hours to days. Despite the central role that microbes play in marine ecosystems, there is no robust method to evaluate taxon-specific mortality rates. Here, we report a method that employs extracellular free-ribosomes as a proxy to evaluate taxon-specific microbial lysis. The method was validated with laboratory cultures of the marine heterotrophic bacterium Vibrio natriegens strain PWH3a and the photoautotroph Synechococcus strain DC2, with and without grazers or viruses, to identify the origin and fate of the extracellular free-ribosomes. Our results showed both viral lysis and programmed-cell-death (PCD) contribute to free-ribosome production. Ribosomes were not released when cells were grazed, but grazers could consume free-ribosomes. We show that extracellular free-ribosomes can be used to evaluate microbial mortality caused by viral lysis and PCD. This approach was applied to environmental samples by examining the taxonomic composition and relative abundance of free 16S-ribosomes in seawater samples collected from the Strait of Georgia and Saanich Inlet, British Columbia, Canada. Based on the presence of free ribosomes, lysis was detected in 2198 out of 4013 prokaryotic taxa, representing 22 bacterial and three archaeal phyla. Of these, lysis of 140 taxa could be detected in all nine samples. Based on the ratio of free ribosomes to cellular ribosomes, some taxa associated with specific ecological niches appeared to be subject to high rates of lysis, including the genera Achromobacter, Chryseobacterium, Clostridium, Delftia, Ferruginibacter, Lactobacillus, Marinomonas, Massilia, Microbacterium, Ochrobactrum, Paenibacillus, Phyllobacterium, Pseudomonas, Rhodobacter, and Stenotrophomonas. Our results showed high-lysis coupled with low-abundance, suggesting that taxa in lower abundance are subject

  11. Ribosome rearrangements at the onset of translational bypassing

    PubMed Central

    Agirrezabala, Xabier; Samatova, Ekaterina; Klimova, Mariia; Zamora, Miguel; Gil-Carton, David; Rodnina, Marina V.; Valle, Mikel

    2017-01-01

    Bypassing is a recoding event that leads to the translation of two distal open reading frames into a single polypeptide chain. We present the structure of a translating ribosome stalled at the bypassing take-off site of gene 60 of bacteriophage T4. The nascent peptide in the exit tunnel anchors the P-site peptidyl-tRNAGly to the ribosome and locks an inactive conformation of the peptidyl transferase center (PTC). The mRNA forms a short dynamic hairpin in the decoding site. The ribosomal subunits adopt a rolling conformation in which the rotation of the small subunit around its long axis causes the opening of the A-site region. Together, PTC conformation and mRNA structure safeguard against premature termination and read-through of the stop codon and reconfigure the ribosome to a state poised for take-off and sliding along the noncoding mRNA gap. PMID:28630923

  12. Use of Ribosome-Inactivating Proteins from Sambucus for the Construction of Immunotoxins and Conjugates for Cancer Therapy

    PubMed Central

    Ferreras, José M.; Citores, Lucía; Iglesias, Rosario; Jiménez, Pilar; Girbés, Tomás

    2011-01-01

    The type 2 ribosome-inactivating proteins (RIPs) isolated from some species belonging to the Sambucus genus, have the characteristic that although being even more active than ricin inhibiting protein synthesis in cell-free extracts, they lack the high toxicity of ricin and related type 2 RIPs to intact cells and animals. This is due to the fact that after internalization, they follow a different intracellular pathway that does not allow them to reach the cytosolic ribosomes. The lack of toxicity of type 2 RIPs from Sambucus make them good candidates as toxic moieties in the construction of immunotoxins and conjugates directed against specific targets. Up to now they have been conjugated with either transferrin or anti-CD105 to target either transferrin receptor- or endoglin-overexpressing cells, respectively. PMID:22069717

  13. Genome mining for ribosomally synthesized natural products.

    PubMed

    Velásquez, Juan E; van der Donk, Wilfred A

    2011-02-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  15. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones

    PubMed Central

    Pausch, Patrick; Singh, Ujjwala; Ahmed, Yasar Luqman; Pillet, Benjamin; Murat, Guillaume; Altegoer, Florian; Stier, Gunter; Thoms, Matthias; Hurt, Ed; Sinning, Irmgard; Bange, Gert; Kressler, Dieter

    2015-01-01

    Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the assembly site. Here we explore the intuitive possibility that ribosomal proteins are captured by dedicated chaperones in a co-translational manner. Affinity purification of four chaperones (Rrb1, Syo1, Sqt1 and Yar1) selectively enriched the mRNAs encoding their specific ribosomal protein clients (Rpl3, Rpl5, Rpl10 and Rps3). X-ray crystallography reveals how the N-terminal, rRNA-binding residues of Rpl10 are shielded by Sqt1's WD-repeat β-propeller, providing mechanistic insight into the incorporation of Rpl10 into pre-60S subunits. Co-translational capturing of nascent ribosomal proteins by dedicated chaperones constitutes an elegant mechanism to prevent unspecific interactions and aggregation of ribosomal proteins on their road to incorporation. PMID:26112308

  16. Rama: a machine learning approach for ribosomal protein prediction in plants.

    PubMed

    Carvalho, Thales Francisco Mota; Silva, José Cleydson F; Calil, Iara Pinheiro; Fontes, Elizabeth Pacheco Batista; Cerqueira, Fabio Ribeiro

    2017-11-24

    Ribosomal proteins (RPs) play a fundamental role within all type of cells, as they are major components of ribosomes, which are essential for translation of mRNAs. Furthermore, these proteins are involved in various physiological and pathological processes. The intrinsic biological relevance of RPs motivated advanced studies for the identification of unrevealed RPs. In this work, we propose a new computational method, termed Rama, for the prediction of RPs, based on machine learning techniques, with a particular interest in plants. To perform an effective classification, Rama uses a set of fundamental attributes of the amino acid side chains and applies a two-step procedure to classify proteins with unknown function as RPs. The evaluation of the resultant predictive models showed that Rama could achieve mean sensitivity, precision, and specificity of 0.91, 0.91, and 0.82, respectively. Furthermore, a list of proteins that have no annotation in Phytozome v.10, and are annotated as RPs in Phytozome v.12, were correctly classified by our models. Additional computational experiments have also shown that Rama presents high accuracy to differentiate ribosomal proteins from RNA-binding proteins. Finally, two novel proteins of Arabidopsis thaliana were validated in biological experiments. Rama is freely available at http://inctipp.bioagro.ufv.br:8080/Rama .

  17. Downregulation of ribosome biogenesis during early forebrain development

    PubMed Central

    Chau, Kevin F; Shannon, Morgan L; Fame, Ryann M; Fonseca, Erin; Mullan, Hillary; Johnson, Matthew B; Sendamarai, Anoop K; Springel, Mark W; Laurent, Benoit

    2018-01-01

    Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development. PMID:29745900

  18. Ribosome-inactivating proteins: potent poisons and molecular tools.

    PubMed

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-11-15

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms.

  19. The attachment of UDP-hexosamines to the ribosomes isolated from rat liver.

    PubMed

    Kopacz-Jodczyk, T; Paszkiewicz-Gadek, A; Gałasiński, W

    1988-06-01

    The binding of UDP-N-acetylhexosamines with purified ribosomes was studied and it was found that the radioactive nucleotides can be attached to these particles. The radioactivity of the purified ribosomal pellet depends on the amounts of ribosomes and UDP-N-acetylhexosamines. Some characteristics of the binding system indicate that the attachment of UDP-sugar to ribosome does not require the participation of glycosyltransferases. The results of the competition experiment would suggest that there are specific sites on ribosomes for the binding of UDP-N-acetylglucosamine.

  20. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    PubMed Central

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  1. Acidic Ribosomal Proteins from the Extreme ’Halobacterium cutirubrum’,

    DTIC Science & Technology

    the extreme halophilic bacterium, Halobacterium cutirubrum. The identification of the protein moieties involved in these and other interactions in...the halophile ribosome requires a rapid and reproducible screening method for the separation, enumeration and identification of these acidic...polypeptides in the complex ribosomal protein mixtures. In this paper the authors present the results of analyses of the halophile ribosomal proteins using a

  2. Tunable Rh 2(II,II) Light Absorbers as Excited State Electron Donors and Acceptors Accessible with Red/Near-IR Irradiation

    DOE PAGES

    Whittemore, Tyler; Millet, Agustin; Sayre, Hannah; ...

    2018-04-04

    In this study, a series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh 2(μ-DTolF) 2(μ-L) 2][BF 4] 2, where DTolF = N,N'-di(p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. Whenmore » irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh 2(II,II) complexes. Finally, these results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.« less

  3. Tunable Rh 2(II,II) Light Absorbers as Excited State Electron Donors and Acceptors Accessible with Red/Near-IR Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittemore, Tyler; Millet, Agustin; Sayre, Hannah

    In this study, a series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh 2(μ-DTolF) 2(μ-L) 2][BF 4] 2, where DTolF = N,N'-di(p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. Whenmore » irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh 2(II,II) complexes. Finally, these results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.« less

  4. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels

    PubMed Central

    Goudarzi, Kaveh M; Nistér, Monica; Lindström, Mikael S

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors. PMID:25482947

  5. Hypermethylation of 28S ribosomal RNA in β-thalassemia trait carriers.

    PubMed

    Sornjai, Wannapa; Lithanatudom, Pathrapol; Erales, Jenny; Joly, Philippe; Francina, Alain; Hacot, Sabine; Fucharoen, Suthat; Svasti, Saovaros; Diaz, Jean Jacques; Mertani, Hichem C; Smith, Duncan R

    2017-01-01

    Ribosome biogenesis is the process of synthesis of the cellular ribosomes which mediate protein translation. Integral with the ribosomes are four cytoplasmic ribosomal RNAs (rRNAs) which show extensive post-transcriptional modifications including 2'-O-methylation and pseudouridylation. Several hereditary hematologic diseases including Diamond-Blackfan anemia have been shown to be associated with defects in ribosome biogenesis. Thalassemia is the most important hematologic inherited genetic disease worldwide, and this study examined the post-transcriptional ribose methylation status of three specific active sites of the 28S rRNA molecule at positions 1858, 4197 and 4506 of β-thalassemia trait carriers and normal controls. Samples from whole blood and cultured erythroid cells were examined. Results showed that site 4506 was hypermethylated in β-thalassemia trait carriers in both cohorts. Expression of fibrillarin, the ribosomal RNA methyltransferase as well as snoRNAs were additionally quantified by RT-qPCR and evidence of dysregulation was seen. Hemoglobin E trait carriers also showed evidence of dysregulation. These results provide the first evidence that ribosome biogenesis is dysregulated in β-thalassemia trait carriers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Research on ribosome-inactivating proteins from angiospermae to gymnospermae and cryptogamia

    PubMed Central

    Liu, Wang-Yi

    2017-01-01

    Ribosome-inactivating Proteins (RIPs) are a group of cytotoxin proteins that usually contain a RNA N-glycosidase domain, which irreversibly inactivates ribosome, thus inhibiting protein synthesis. During the past 14 years (1990-2004), the studies conducted in our laboratory had been focusing on the structure and enzymatic mechanism of several PIPs. Herein, we briefly described a summary of the studies conducted mainly in our laboratory on RIPs from angiospermae to gymnospermae and cryptogamia as follows. (1) Cinnamomin is a novel type II RIP isolated from mature seeds of camphor tree. Like ricin, it specifically removes the adenine at A4324 in rat liver 28S rRNA. We systematically studied this low-toxic RIP in term of its enzymatic mechanism, the primary and crystal structure and the nucleotide sequence of its gene, the genetic expression, and its physiological role in the seed cell and the toxicity to human cancer cells and insect larvae. The cleavage of supercoiled double-stranded DNA was its intrinsic property of cinnamomin A-chain, its N- and C-terminal regions were found to be required for deadenylation of rRNA and also necessary for deadenylation of supercoiled double-stranded circular DNA. These results strongly excluded the possibility that cleavage of supercoiled DNA was due to nuclease contamination. (2) Trichosanthin, an abortifacient protein, was purified from the Chinese medicinal herb, Tian-hua-fen, obtained from root tubers of Chinese trichosanthes plant. We proved that trichosanthin was a RNA N-glycosidase, inactivating eukaryotic ribosome by hydrolyzing the N-C glycosidic bond of the adenose at site 4324 in rat 28S rRNA, and inhibited protein synthesis in vitro. (3) A unique Biota orientalis RNase (RNase Bo) was extracted from the mature seeds of the cypress cypress tree (Oriental arborvita), which was gymnospermae plant. It cleaved only a specific phosphodiester bond between C4453 and A4454 of 28S RNA in rat ribosomes, producing a small RNA

  7. Small Molecule Inhibitors of Drug Resistant Forms of HIV-1 Integrase | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute discovered small-molecule compounds containing 1-hydroxy-2-oxo-1,8-naphthyridine moieties whose activity against HIV-1 integrase mutants confer resistance to currently approved INSTIs. Preliminary rodent efficacy, metabolic, and pharmacokinetic studies have been completed by the NCI researchers. The National Cancer Institute seeks partners to commercialize this class of compounds through licensing or co-development.

  8. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria

    PubMed Central

    Ferrin, Michael A; Subramaniam, Arvind R

    2017-01-01

    Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes. DOI: http://dx.doi.org/10.7554/eLife.23629.001 PMID:28498106

  9. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  10. Ribosomal trafficking is reduced in Schwann cells following induction of myelination.

    PubMed

    Love, James M; Shah, Sameer B

    2015-01-01

    Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP) in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body), but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following initiation of myelination.

  11. Revisiting the structures of several antibiotics bound to the bacterial ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulkley, David; Innis, C. Axel; Blaha, Gregor

    2010-10-08

    The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model.more » Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.« less

  12. Revisiting the Structures of Several Antibiotics Bound to the Bacterial Ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Bulkley; C Innis; G Blaha

    2011-12-31

    The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model.more » Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.« less

  13. Expanding the ribosomal universe.

    PubMed

    Dinman, Jonathan D; Kinzy, Terri Goss

    2009-12-09

    In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.

  14. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics.

    PubMed

    Nikolouli, Katerina; Mossialos, Dimitris

    2012-08-01

    Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.

  15. Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids

    NASA Astrophysics Data System (ADS)

    Rogers, Joseph M.; Kwon, Sunbum; Dawson, Simon J.; Mandal, Pradeep K.; Suga, Hiroaki; Huc, Ivan

    2018-03-01

    Translation, the mRNA-templated synthesis of peptides by the ribosome, can be manipulated to incorporate variants of the 20 cognate amino acids. Such approaches for expanding the range of chemical entities that can be produced by the ribosome may accelerate the discovery of molecules that can perform functions for which poorly folded, short peptidic sequences are ill suited. Here, we show that the ribosome tolerates some artificial helical aromatic oligomers, so-called foldamers. Using a flexible tRNA-acylation ribozyme—flexizyme—foldamers were attached to tRNA, and the resulting acylated tRNAs were delivered to the ribosome to initiate the synthesis of non-cyclic and cyclic foldamer-peptide hybrid molecules. Passing through the ribosome exit tunnel requires the foldamers to unfold. Yet foldamers encode sufficient folding information to influence the peptide structure once translation is completed. We also show that in cyclic hybrids, the foldamer portion can fold into a helix and force the peptide segment to adopt a constrained and stretched conformation.

  16. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  17. Type II Kinase Inhibitors Show an Unexpected Inhibition Mode against Parkinson’s Disease-Linked LRRK2 Mutant G2019S

    PubMed Central

    Liu, Min; Bender, Samantha A.; Cuny, Gregory D; Sherman, Woody; Glicksman, Marcie; Ray, Soumya S.

    2014-01-01

    A number of well-known type II inhibitors (ATP non-competitive) that bind kinases in their DFG-out conformation were tested against wild-type LRRK2 and the most common Parkinson’s disease-linked mutation G2019S. We found that traditional type II inhibitors exhibit surprising variability in their inhibition mechanism between wild type (WT) and the G2019S mutant of LRRK2. The type II kinase inhibitors were found to work by an ATP-competitive fashion against the G2019S mutant, whereas they appear to follow the expected non-competitive mechanism against WT. Since the G2019S mutation lies in the DXG-motif (DYG in LRRK2 but DFG in most other kinases) of the activation loop, we explored the structural consequence of the mutation on loop dynamics using an enhanced sampling method called metadynamics. The simulations suggest that the G2019S mutation stabilizes the DYG-in state of LRRK2 through a series of hydrogen bonds, leading to an increase in the conformational barrier between the active and inactive forms of the enzyme and a relative stabilization of the active form. The conformational bias toward the active form of LRRK2 mutants has two primary consequences: 1) the mutant enzyme becomes hyperactive, a known contributor to the Parkinsonian phenotype, as a consequence of being “locked” into the activated state and 2) the mutation creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion. Our results suggest that developing type II inhibitors, which are generally considered superior to type I inhibitors due to desirable selectivity profiles, might be especially challenging for the G2019S LRRK2 mutant. PMID:23379419

  18. Regulation of D-cyclin translation inhibition in myeloma cells treated with mTOR inhibitors: Rationale for combined treatment with ERK inhibitors and rapamycin

    PubMed Central

    Frost, Patrick; Shi, Yijiang; Hoang, Bao; Gera, Joseph; Lichtenstein, Alan

    2009-01-01

    We have shown that heightened AKT activity sensitized multiple myeloma (MM) cells to the anti-tumor effects of the mTOR-inhibitor, CCI-779. To test the mechanism of AKT’s regulatory role, we stably transfected U266 MM cell lines with an activated AKT allele or empty vector. The AKT-transfected cells were more sensitive to cytostasis induced in vitro by rapamycin or in vivo by its analog, CCI-779, whereas cells with quiescent AKT were resistant. The ability of mTOR inhibitors to downregulate D-cyclin expression was significantly greater in AKT-transfected MM cells, due in part, to AKT’s ability to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. Similar AKT-dependent regulation of rapamycin responsiveness was demonstrated in a second myeloma model: the PTEN-null OPM-2 cell line transfected with wild type PTEN. As ERK/p38 activity facilitates IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of AKT-dependent effects on rapamycin sensitivity. AKT-transfected U266 cells demonstrated significantly decreased ERK and p38 activity. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant “low AKT” myeloma cells. Furthermore, the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down regulated D-cyclin protein expression and G1 arrest. However, ectopic over-expression of an activated MEK gene did not increase cap-independent translation of D-cyclin in “high AKT” myeloma cells indicating that MEK/ERK activity was required but not sufficient for activation of the IRES. These data support a scenario where heightened AKT activity down-regulates D-cyclin IRES function in MM cells and ERK facilitates activity. PMID:19139116

  19. Identifying Novel Type ZBGs and Nonhydroxamate HDAC Inhibitors Through a SVM Based Virtual Screening Approach.

    PubMed

    Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z

    2010-05-17

    Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit

    PubMed Central

    Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.

    2000-01-01

    In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007

  1. Purification, characterization and crystallization of the human 80S ribosome

    PubMed Central

    Khatter, Heena; Myasnikov, Alexander G.; Mastio, Leslie; Billas, Isabelle M. L.; Birck, Catherine; Stella, Stefano; Klaholz, Bruno P.

    2014-01-01

    Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work. PMID:24452798

  2. Structure of ratcheted ribosomes with tRNAs in hybrid states

    PubMed Central

    Julián, Patricia; Konevega, Andrey L.; Scheres, Sjors H. W.; Lázaro, Melisa; Gil, David; Wintermeyer, Wolfgang; Rodnina, Marina V.; Valle, Mikel

    2008-01-01

    During protein synthesis, tRNAs and mRNA move through the ribosome between aminoacyl (A), peptidyl (P), and exit (E) sites of the ribosome in a process called translocation. Translocation is accompanied by the displacement of the tRNAs on the large ribosomal subunit toward the hybrid A/P and P/E states and by a rotational movement (ratchet) of the ribosomal subunits relative to one another. So far, the structure of the ratcheted state has been observed only when translation factors were bound to the ribosome. Using cryo-electron microscopy and classification, we show here that ribosomes can spontaneously adopt a ratcheted conformation with tRNAs in their hybrid states. The peptidyl-tRNA molecule in the A/P state, which is visualized here, is not distorted compared with the A/A state except for slight adjustments of its acceptor end, suggesting that the displacement of the A-site tRNA on the 50S subunit is passive and is induced by the 30S subunit rotation. Simultaneous subunit ratchet and formation of the tRNA hybrid states precede and may promote the subsequent rapid and coordinated tRNA translocation on the 30S subunit catalyzed by elongation factor G. PMID:18971332

  3. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Wei, Guo; Zhong, Hai-Jing; Yang, Hui; Leung, Lai To; Gullen, Elizabeth A; Chiu, Pauline; Cheng, Yung-Chi; Leung, Chung-Hang

    2014-11-21

    Amentoflavone has been identified as a JAK2 inhibitor by structure-based virtual screening of a natural product library. In silico optimization using the DOLPHIN model yielded analogues with enhanced potency against JAK2 activity and HCV activity in cellulo. Molecular modeling and kinetic experiments suggested that the analogues may function as Type II inhibitors of JAK2.

  4. Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus.

    PubMed

    Bayas, Camille A; Wang, Jiarui; Lee, Marissa K; Schrader, Jared M; Shapiro, Lucy; Moerner, W E

    2018-04-17

    We report the dynamic spatial organization of Caulobacter crescentus RNase E (RNA degradosome) and ribosomal protein L1 (ribosome) using 3D single-particle tracking and superresolution microscopy. RNase E formed clusters along the central axis of the cell, while weak clusters of ribosomal protein L1 were deployed throughout the cytoplasm. These results contrast with RNase E and ribosome distribution in Escherichia coli , where RNase E colocalizes with the cytoplasmic membrane and ribosomes accumulate in polar nucleoid-free zones. For both RNase E and ribosomes in Caulobacter , we observed a decrease in confinement and clustering upon transcription inhibition and subsequent depletion of nascent RNA, suggesting that RNA substrate availability for processing, degradation, and translation facilitates confinement and clustering. Importantly, RNase E cluster positions correlated with the subcellular location of chromosomal loci of two highly transcribed rRNA genes, suggesting that RNase E's function in rRNA processing occurs at the site of rRNA synthesis. Thus, components of the RNA degradosome and ribosome assembly are spatiotemporally organized in Caulobacter , with chromosomal readout serving as the template for this organization.

  5. Mechanisms of ribosome stalling by SecM at multiple elongation steps

    PubMed Central

    Zhang, Jun; Pan, Xijiang; Yan, Kaige; Sun, Shan; Gao, Ning; Sui, Sen-Fang

    2015-01-01

    Regulation of translating ribosomes is a major component of gene expression control network. In Escherichia coli, ribosome stalling by the C-terminal arrest sequence of SecM regulates the SecA-dependent secretion pathway. Previous studies reported many residues of SecM peptide and ribosome exit tunnel are critical for stalling. However, the underlying molecular mechanism is still not clear at the atomic level. Here, we present two cryo-EM structures of the SecM-stalled ribosomes at 3.3–3.7 Å resolution, which reveal two different stalling mechanisms at distinct elongation steps of the translation cycle: one is due to the inactivation of ribosomal peptidyl-transferase center which inhibits peptide bond formation with the incoming prolyl-tRNA; the other is the prolonged residence of the peptidyl-RNA at the hybrid A/P site which inhibits the full-scale tRNA translocation. These results demonstrate an elegant control of translation cycle by regulatory peptides through a continuous, dynamic reshaping of the functional center of the ribosome. DOI: http://dx.doi.org/10.7554/eLife.09684.001 PMID:26670735

  6. Single Molecule Force Measurement for Protein Synthesis on the Ribosome

    NASA Astrophysics Data System (ADS)

    Uemura, Sotaro

    2008-04-01

    The ribosome is a molecular machine that translates the genetic code described on the messenger RNA (mRNA) into an amino acid sequence through repetitive cycles of transfer RNA (tRNA) selection, peptide bond formation and translocation. Although the detailed interactions between the translation components have been revealed by extensive structural and biochemical studies, it is not known how the precise regulation of macromolecular movements required at each stage of translation is achieved. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence. The removal of the SD sequence significantly reduced the rupture force, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA in a pre-peptidyl transfer state. In contrast, the post-peptidyl transfer state weakened the rupture force as compared to the complex in a pre-peptidyl transfer state and it was the same for both the SD-containing and SD-deficient mRNAs. The results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step. In this article, we discuss about the above new results including the introduction of the ribosome translation mechanism and the optical tweezer method.

  7. 2-Guanidino-quinazolines as a novel class of translation inhibitors.

    PubMed

    Komarova Andreyanova, E S; Osterman, I A; Pletnev, P I; Ivanenkov, Y A; Majouga, A G; Bogdanov, A A; Sergiev, P V

    2017-02-01

    A variety of structurally unrelated organic compounds has been reported to have antibacterial activity. Among these, certain small-molecule translation inhibitors have attracted a great deal of attention, due to their relatively high selectivity against prokaryotes, and an appropriate therapeutic index with minor "off target" effects. However, ribosomes are being considered as poorly druggable biological targets, thereby making some routine computational-based approaches to rational drug design and its development rather ineffective. Taking this into account, diversity-oriented biological screening can reasonably be considered as the most advantageous strategy. Thus, using a high-throughput screening (HTS) platform, we applied a unique biological assay for in vitro evaluation of thousands of organic molecules, especially targeted against bacterial ribosomes and translation. As a result, we have identified a series of structurally diverse small-molecule compounds that induce a reporter strain sensitive to translation and DNA biosynthesis inhibitors. In a cell free system, several molecules were found to strongly inhibit protein biosynthesis. Among them, compounds bearing a 2-guanidino-quinazoline core demonstrated the most promising antibacterial activity. With regard to the preliminary structure-activity relationship (SAR) study, we revealed that relatively small substituents at positions 4, 6 and 8 of the quinazoline ring significantly enhance the target activity whereas modification of the guanidine group leads to decrease or loss of antibacterial potency. This novel class of translation inhibitors can properly be regarded as a promising starting point for the development of novel antibacterial therapeutic or screening tools. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Indole RSK inhibitors. Part 1: discovery and initial SAR.

    PubMed

    Boyer, Stephen J; Burke, Jennifer; Guo, Xin; Kirrane, Thomas M; Snow, Roger J; Zhang, Yunlong; Sarko, Chris; Soleymanzadeh, Lida; Swinamer, Alan; Westbrook, John; Dicapua, Frank; Padyana, Anil; Cogan, Derek; Gao, Amy; Xiong, Zhaoming; Madwed, Jeffrey B; Kashem, Mohammed; Kugler, Stanley; O'Neill, Margaret M

    2012-01-01

    A series of inhibitors for the 90 kDa ribosomal S6 kinase (RSK) based on an 1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-8-carboxamide scaffold were identified through high throughput screening. An RSK crystal structure and exploratory SAR were used to define the series pharmacophore. Compounds with good cell potency, such as compounds 43, 44, and 55 were identified, and form the basis for subsequent kinase selectivity optimization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    PubMed Central

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  10. Defect of Hepatocyte Growth Factor Activator Inhibitor Type 1/Serine Protease Inhibitor, Kunitz Type 1 (Hai-1/Spint1) Leads to Ichthyosis-Like Condition and Abnormal Hair Development in Mice

    PubMed Central

    Nagaike, Koki; Kawaguchi, Makiko; Takeda, Naoki; Fukushima, Tsuyoshi; Sawaguchi, Akira; Kohama, Kazuyo; Setoyama, Mitsuru; Kataoka, Hiroaki

    2008-01-01

    Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/serine protease inhibitor, Kunitz type 1 (SPINT1) is a membrane-bound, serine proteinase inhibitor initially identified as an inhibitor of hepatocyte growth factor activator. It also inhibits matriptase and prostasin, both of which are membrane-bound serine proteinases that have critical roles in epidermal differentiation and function. In this study, skin and hair phenotypes of mice lacking the Hai-1/Spint1 gene were characterized. Previously, we reported that the homozygous deletion of Hai-1/Spint1 in mice resulted in embryonic lethality attributable to impaired placental development. To test the role of Hai-1/Spint1 in mice, the placental function of Hai-1/Spint1-mutant mice was rescued. Injection of Hai-1/Spint1+/+ blastocysts with Hai-1/Spint1−/− embryonic stem cells successfully generated high-chimeric Hai-1/Spint1−/− embryos (B6Hai-1−/−High) with normal placentas. These embryos were delivered without apparent developmental abnormalities, confirming that embryonic lethality of Hai-1/Spint1−/− mice was caused by placental dysfunction. However, newborn B6Hai-1−/−High mice showed growth retardation and died by 16 days. These mice developed scaly skin because of hyperkeratinization, reminiscent of ichthyosis, and abnormal hair shafts that showed loss of regular cuticular septation. The interfollicular epidermis showed acanthosis with enhanced Akt phosphorylation. Immunoblot analysis revealed altered proteolytic processing of profilaggrin in Hai-1/Spint1-deleted skin with impaired generation of filaggrin monomers. These findings indicate that Hai-1/Spint1 has critical roles in the regulated keratinization of the epidermis and hair development. PMID:18832587

  11. Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals

    DOE PAGES

    Enganti, Ramya; Cho, Sung Ki; Toperzer, Jody D.; ...

    2018-01-19

    The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type,more » clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.« less

  12. Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enganti, Ramya; Cho, Sung Ki; Toperzer, Jody D.

    The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type,more » clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.« less

  13. Toward a Whole-Cell Model of Ribosome Biogenesis: Kinetic Modeling of SSU Assembly

    PubMed Central

    Earnest, Tyler M.; Lai, Jonathan; Chen, Ke; Hallock, Michael J.; Williamson, James R.; Luthey-Schulten, Zaida

    2015-01-01

    Central to all life is the assembly of the ribosome: a coordinated process involving the hierarchical association of ribosomal proteins to the RNAs forming the small and large ribosomal subunits. The process is further complicated by effects arising from the intracellular heterogeneous environment and the location of ribosomal operons within the cell. We provide a simplified model of ribosome biogenesis in slow-growing Escherichia coli. Kinetic models of in vitro small-subunit reconstitution at the level of individual protein/ribosomal RNA interactions are developed for two temperature regimes. The model at low temperatures predicts the existence of a novel 5′→3′→central assembly pathway, which we investigate further using molecular dynamics. The high-temperature assembly network is incorporated into a model of in vivo ribosome biogenesis in slow-growing E. coli. The model, described in terms of reaction-diffusion master equations, contains 1336 reactions and 251 species that dynamically couple transcription and translation to ribosome assembly. We use the Lattice Microbes software package to simulate the stochastic production of mRNA, proteins, and ribosome intermediates over a full cell cycle of 120 min. The whole-cell model captures the correct growth rate of ribosomes, predicts the localization of early assembly intermediates to the nucleoid region, and reproduces the known assembly timescales for the small subunit with no modifications made to the embedded in vitro assembly network. PMID:26333594

  14. Determination of imidazoline and amido-amine type corrosion inhibitors in both crude oil and produced brine from oilfield production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matherly, R.M.; Jiao, J.; Blumer, D.J.

    1995-12-01

    The classical method for the determination of corrosion inhibitors in oilfield brines is the dye transfer method. Within this method are many variations which the analyst may use to determine the amount of corrosion inhibitor in either water or crude oil. These methods, however, suffer from many interferences which result in both false positive and negatives for corrosion inhibitor content. These methods essentially detect all amines as corrosion inhibitors. Improved high pressure liquid chromatography (HPLC) methods have been developed for the analysis of quaternary salt type corrosion inhibitors in brine waters, however, these methods do not appear to work inmore » crude oil or for other forms of corrosion inhibitors such as the imidazolines, and amido-amines. This paper presents a method for the quantitative analysis of the imidazoline and amido-amine type corrosion inhibitors in both oilfield water and crude oil samples by HPLC. The corrosion inhibitor of interest is first separated from the matrix on a small column, then derivatized to form a product which is both sensitive and selective on a fluorescence detector. Detection limits for imidazolines are around 0.2 mg/L, amides and amines are similar. The advantage of this procedure is it can be used to determine the amount of corrosion inhibitor in both oil and brine water phases as well as on solid surfaces.« less

  15. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus.

    PubMed

    Li, Ning; Wang, Li-Jun; Jiang, Bo; Li, Xiang-Qian; Guo, Chuan-Long; Guo, Shu-Ju; Shi, Da-Yong

    2018-05-10

    Diabetes is a fast growing chronic metabolic disorder around the world. Dipeptidyl peptidase-4 (DPP-4) is a new promising target during type 2 diabetes glycemic control. Thus, a number of potent DPP-4 inhibitors were developed and play a rapidly evolving role in the management of type 2 diabetes in recent years. This article reviews the development of synthetic and natural DPP-4 inhibitors from 2012 to 2017 and provides their physico-chemical properties, biological activities against DPP-4 and selectivity over dipeptidyl peptidase-8/9. Moreover, the glucose-lowering mechanisms and the active site of DPP-4 are also discussed. We also discuss strategies and structure-activity relationships for identifying potent DPP-4 inhibitors, which will provide useful information for developing potent DPP-4 drugs as type 2 diabtes treatments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Effects of Sodium Glucose Cotransporter-2 Inhibitors on Serum Uric Acid in Type 2 Diabetes Mellitus.

    PubMed

    Ahmadieh, Hala; Azar, Sami

    2017-09-01

    Hyperuricemia has been linked to metabolic syndrome, cardiovascular disease, and chronic kidney disease. Hyperuricemia and type 2 diabetes mellitus were inter-related, type 2 diabetes mellitus was more at risk of having a higher serum uric acid level, and also individuals with higher serum uric acid had higher risk of developing type 2 diabetes in the future. Insulin resistance seems to play an important role in the causal relationship between metabolic syndrome, type 2 diabetes, and hyperuricemia. Oral diabetic drugs that would have additional beneficial effects on reducing serum uric acid levels are of importance. Selective SGLT2 inhibitors were extensively studied in type 2 diabetes mellitus and were found to have improvement of glycemic control, in addition to their proven metabolic effects on weight and blood pressure. Additional beneficial effect of SGLT2 inhibitors on serum uric acid level reduction is investigated. Recently, data have been accumulating showing that they have additional beneficial effects on serum uric acid reduction. As for the postulated mechanism, serum uric acid decreased in SGLT2 inhibitor users as a result of the increase in the urinary excretion rate of uric acid, due to the inhibition of uric acid reabsorption mediated by the effect of the drug on the GLUT9 isoform 2, located at the collecting duct of the renal tubule.

  17. Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor.

    PubMed

    Sintsova, Oksana; Gladkikh, Irina; Chausova, Victoria; Monastyrnaya, Margarita; Anastyuk, Stanislav; Chernikov, Oleg; Yurchenko, Ekaterina; Aminin, Dmitriy; Isaeva, Marina; Leychenko, Elena; Kozlovskaya, Emma

    2018-02-20

    Sea anemone mucus, due to its multiple and vital functions, is a valuable substance for investigation of new biologically active peptides. In this work, compounds of Heteractis magnifica mucus were separated by multistage liquid chromatography and resulting fractions were analyzed by MALDI-TOF MS. Peptide maps constructed according to the molecular masses and hydrophobicity showed presence of 326 both new and known peptides. Several major peptides from mucus were identified, including the sodium channel toxin RpII isolated earlier from H. magnifica, and four Kunitz-type proteinase inhibitors identical to H. crispa ones. Kunitz-type transcript diversity was studied and sequences of mature peptides were deduced. New β-defensin α-amylase inhibitor, a homolog of helianthamide from Stichodactyla helianthus, was isolated and structurally characterized. Overall, H. magnifica is a source of biologically active peptides with great pharmacological potential. Proteinase and α-amylase inhibitors along with toxins are major components of H. magnifica mucus which play an important role in the successful existence of sea anemones. Obtained peptide maps create a basis for more accurate identification of peptides during future transcriptomic/genomic studies of sea anemone H. magnifica. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. DPP-4 Inhibitor Treatment in Chinese Type 2 Diabetes Patients: A Meta-Analysis.

    PubMed

    Cai, Xiaoling; Gao, Xueying; Yang, Wenjia; Chen, Yifei; Zhou, Lingli; Zhang, Simin; Han, Xueyao; Ji, Linong

    2016-12-01

    The aim of this meta-analysis was to assess the comprehensive clinical efficacy of dipeptidyl peptidase-IV (DPP-4) inhibitors in Chinese type 2 diabetes patients and to evaluate whether there is a different response to treatment with different kinds of DPP-4 inhibitors in those patients. Databases were systematically searched, and qualifying clinical studies of Chinese type 2 diabetes patients were included. A total of 30 studies were included. Treatment with saxagliptin resulted in a significantly greater change from baseline in HbA 1c levels (weighted mean difference [WMD], -1.28%; 95% CI, -1.37% to -1.19%); treatment with sitagliptin led to a significantly greater change from baseline (WMD, -1.17%; 95% CI, -1.46% to -0.89%); treatment with vildagliptin was associated with a significantly greater change in HbA 1c levels (WMD, -0.77%; 95% CI, -0.88% to -0.65%); treatment with linagliptin led to a significantly greater change (WMD, -0.84%; 95% CI, -0.92% to -0.75%); and treatment with alogliptin also led to a significantly greater change (WMD, -0.91%; 95% CI, -1.48% to -0.33%). In terms of body weight, treatment with saxagliptin was associated with no significant decreases in Chinese type 2 diabetes mellitus (T2DM) patients (WMD, -0.17 kg, 95% CI, -4.26 to 3.92 kg). Treatment with sitagliptin and linagliptin was also associated with no significant changes in body weight (WMD, 0.16 and 0.11 kg, respectively, P > 0.05). In Chinese type 2 diabetes patients, the efficacy of glucose control in all five kinds of DPP-4 inhibitor treatments was well confirmed, and no significant change in body weight was found.

  19. Human Immunodeficiency Virus Type 1 (HIV-1) Integration: a Potential Target for Microbicides To Prevent Cell-Free or Cell-Associated HIV-1 Infection ▿

    PubMed Central

    Terrazas-Aranda, Katty; Van Herrewege, Yven; Hazuda, Daria; Lewi, Paul; Costi, Roberta; Di Santo, Roberto; Cara, Andrea; Vanham, Guido

    2008-01-01

    Conceptually, blocking human immunodeficiency virus type 1 (HIV-1) integration is the last possibility for preventing irreversible cellular infection. Using cocultures of monocyte-derived dendritic cells and CD4+ T cells, which represent primary targets in sexual transmission, we demonstrated that blocking integration with integrase strand transfer inhibitors (InSTIs), particularly L-870812, could consistently block cell-free and cell-associated HIV-1 infection. In a pretreatment setting in which the compound was present before and during infection and was afterwards gradually diluted during the culture period, the naphthyridine carboxamide L-870812 blocked infection with the cell-free and cell-associated HIV-1 Ba-L strain at concentrations of, respectively, 1,000 and 10,000 nM. The potency of L-870812 was similar to that of the nucleotide reverse transcriptase inhibitor R-9-(2-phosphonylmethoxypropyl) adenine (PMPA) but one or two orders of magnitude lower than those of the nonnucleoside reverse transcriptase inhibitors UC781 and TMC120. In contrast, the diketo acid RDS derivative InSTIs showed clear-cut but weaker antiviral activity than L-870812. Moreover, L-870812 completely blocked subtype C and CRFO2_AG primary isolates, which are prevalent in the African heterosexual epidemic. Furthermore, the addition of micromolar concentrations of L-870812 even 24 h after infection could still block both cell-free and cell-associated Ba-L, opening the prospect of postexposure prophylaxis. Finally, an evaluation of the combined activity of L-870812 with either T20, zidovudine, PMPA, UC781, or TMC120 against replication-deficient HIV-1 Ba-L (env) pseudovirus suggested synergistic activity for all combinations. Importantly, compounds selected for the study by using the coculture model were devoid of acute or delayed cytotoxic effects at HIV-blocking concentrations. Therefore, these findings provide evidence supporting consideration of HIV-1 integration as a target for

  20. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

    PubMed

    Alejo, Jose L; Blanchard, Scott C

    2017-10-10

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

  1. Miscoding-induced stalling of substrate translocation on the bacterial ribosome

    PubMed Central

    Alejo, Jose L.; Blanchard, Scott C.

    2017-01-01

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G–catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors. PMID:28973849

  2. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase.

    PubMed

    Jha, Sujata; Rollins, Madeline G; Fuchs, Gabriele; Procter, Dean J; Hall, Elizabeth A; Cozzolino, Kira; Sarnow, Peter; Savas, Jeffrey N; Walsh, Derek

    2017-06-29

    Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements. However, beyond differential subunit expression during development, evidence for regulated ribosome specification within individual cells has remained elusive. Here we report that a poxvirus kinase phosphorylates serine/threonine residues in the human small ribosomal subunit protein, receptor for activated C kinase (RACK1), that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs with 5' untranslated regions that contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analyses revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, in which these leaders act as translational enhancers. Phosphomimetics and inter-species chimaeras have shown that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase confer a translational advantage. Our findings provide insight into ribosome customization through trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie poxvirus polyA-leaders.

  3. Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.

    PubMed

    Nikolaitchik, Olga A; Hu, Wei-Shau

    2014-04-01

    A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1

  4. Deciphering the Role of the Gag-Pol Ribosomal Frameshift Signal in HIV-1 RNA Genome Packaging

    PubMed Central

    Nikolaitchik, Olga A.

    2014-01-01

    ABSTRACT A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5′ untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. IMPORTANCE To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5′ end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important

  5. PCSK9 (Proprotein convertase subtilisin/kexin type 9) inhibitors: past, present, and the future.

    PubMed

    Shimada, Yuichi J; Cannon, Christopher P

    2015-09-21

    Reduction in low-density lipoprotein cholesterol (LDL-C), mainly with statins, has decreased the risk of cardiovascular events over the last few decades. However, there are several patient populations that warrant further decrease in LDL-C by additional cholesterol-lowering therapy other than statins. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are a new class of drugs that have been shown to further decrease LDL-C by 50-70% when administered as a monotherapy or on a background therapy with statins. Proprotein convertase subtilisin/kexin type 9 inhibitors are also an excellent example of drug development in which discovery of gene mutations and its clinical effects have rapidly progressed into successful preclinical and clinical studies with multiple Phases 1-3 clinical trials completed or ongoing to date. This review summarizes the rapid evolution of the drug from genetic discovery to identification of targets for the drugs, to animal and human testing, and to large clinical outcomes trials, followed by discussion on foreseeable challenges of PCSK9 inhibitors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  6. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale

    PubMed Central

    Michel, Audrey M; Baranov, Pavel V

    2013-01-01

    Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes. © 2013 John Wiley & Sons, Ltd. PMID:23696005

  7. Vegetable peptones increase production of type I collagen in human fibroblasts by inducing the RSK-CCAAT/enhancer binding protein-β phosphorylation pathway.

    PubMed

    Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung

    2015-02-01

    Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas.

    PubMed

    Couso, Inmaculada; Pérez-Pérez, María Esther; Martínez-Force, Enrique; Kim, Hee-Sik; He, Yonghua; Umen, James G; Crespo, José L

    2018-03-14

    Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in Chlamydomonas.

  9. Computational resources for ribosome profiling: from database to Web server and software.

    PubMed

    Wang, Hongwei; Wang, Yan; Xie, Zhi

    2017-08-14

    Ribosome profiling is emerging as a powerful technique that enables genome-wide investigation of in vivo translation at sub-codon resolution. The increasing application of ribosome profiling in recent years has achieved remarkable progress toward understanding the composition, regulation and mechanism of translation. This benefits from not only the awesome power of ribosome profiling but also an extensive range of computational resources available for ribosome profiling. At present, however, a comprehensive review on these resources is still lacking. Here, we survey the recent computational advances guided by ribosome profiling, with a focus on databases, Web servers and software tools for storing, visualizing and analyzing ribosome profiling data. This review is intended to provide experimental and computational biologists with a reference to make appropriate choices among existing resources for the question at hand. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Protein-protein interactions within late pre-40S ribosomes.

    PubMed

    Campbell, Melody G; Karbstein, Katrin

    2011-01-20

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  11. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse.

    PubMed

    Barends, Sharief; Bink, Hugo H J; van den Worm, Sjoerd H E; Pleij, Cornelis W A; Kraal, Barend

    2003-01-10

    Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.

  12. Peeling the onion: ribosomes are ancient molecular fossils.

    PubMed

    Hsiao, Chiaolong; Mohan, Srividya; Kalahar, Benson K; Williams, Loren Dean

    2009-11-01

    We describe a method to establish chronologies of ancient ribosomal evolution. The method uses structure-based and sequence-based comparison of the large subunits (LSUs) of Haloarcula marismortui and Thermus thermophilus. These are the highest resolution ribosome structures available and represent disparate regions of the evolutionary tree. We have sectioned the superimposed LSUs into concentric shells, like an onion, using the site of peptidyl transfer as the origin (the PT-origin). This spherical approximation combined with a shell-by-shell comparison captures significant information along the evolutionary time line revealing, for example, that sequence and conformational similarity of the 23S rRNAs are greatest near the PT-origin and diverge smoothly with distance from it. The results suggest that the conformation and interactions of both RNA and protein can be described as changing, in an observable manner, over evolutionary time. The tendency of macromolecules to assume regular secondary structural elements such as A-form helices with Watson-Crick base pairs (RNA) and alpha-helices and beta-sheets (protein) is low at early time points but increases as time progresses. The conformations of ribosomal protein components near the PT-origin suggest that they may be molecular fossils of the peptide ancestors of ribosomal proteins. Their abbreviated length may have proscribed formation of secondary structure, which is indeed nearly absent from the region of the LSU nearest the PT-origin. Formation and evolution of the early PT center may have involved Mg(2+)-mediated assembly of at least partially single-stranded RNA oligomers or polymers. As one moves from center to periphery, proteins appear to replace magnesium ions. The LSU is known to have undergone large-scale conformation changes upon assembly. The T. thermophilus LSU analyzed here is part of a fully assembled ribosome, whereas the H. marismortui LSU analyzed here is dissociated from other ribosomal components

  13. RPG: the Ribosomal Protein Gene database.

    PubMed

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.

  14. In vivo labelling of functional ribosomes reveals spatial regulation during starvation in Podospora anserina

    PubMed Central

    Lalucque, Hervé; Silar, Philippe

    2000-01-01

    Background To date, in eukaryotes, ribosomal protein expression is known to be regulated at the transcriptional and/or translational levels. But other forms of regulation may be possible. Results Here, we report the successful tagging of functional ribosomal particles with a S7-GFP chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation during the passage between cell growth and stationary phases, with a transient accumulation of ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed at the beginning of stationary phase. Conclusion Nuclear sequestration can be another level of ribosomal protein regulation in eukaryotic cells.This may contribute to the regulation of cell growth and division. PMID:11112985

  15. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons.

    PubMed Central

    Xiong, Y; Eickbush, T H

    1988-01-01

    Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons. Images PMID:2447482

  16. KF19514, a phosphodieterase 4 and 1 inhibitor, inhibits PAF-induced lung inflammatory responses by inhaled administration in guinea pigs.

    PubMed

    Manabe, H; Akuta, K; Okamura, K; Ohmori, K

    1997-12-01

    Phosphodiesterase (PDE) 4 inhibitors are well known for their inhibitory effect on bronchoconstriction and inflammation and may be promising anti-asthma drugs. Platelet-activating factor (PAF) has been proposed as an inflammatory mediator to be relevant to asthma. It causes bronchoconstriction, airway microvascular leakage, inflammatory cell accumulation in the lung and hyperresponsiveness. In this study, we therefore have investigated the anti-asthmatic effects of the inhaled KF19514 [5-phenyl-3'-(3-pyridyl)methyl-3H-imidazo(4,5-c)(1,8) naphthyridin-4(5H)-one], a PDE 4 and 1 inhibitor, on PAF-induced lung inflammatory responses in guinea pigs. The inhaled KF19514 (0.0001-0.01%) significantly inhibited PAF-induced eosinophil and neutrophil accumulation into the airway and hyperresponsiveness in guinea pigs. The IC50 value of KF19514 against eosinophil accumulation was 14.8 microM (0.00063%). Moreover, the effect of KF19514 on the electrical field stimulation-induced bronchial contraction was examined using the main bronchi of guinea pigs in vitro. KF19514 inhibited both cholinergic and tachykininergic contraction and, in particular, produced a potent inhibitory effect on tachykininergic contraction (IC50 = 0.49 microM). The mechanism by which KF19514 inhibited the PAF-induced hyperresponsiveness may in part be the suppression of the tachykinin release. Based on these results, it was demonstrated that the inhaled KF19514 might have a significant potential effect on the inflammatory cell accumulation and hyperresponsiveness induced by PAF.

  17. Direct measurement of the mechanical work during translocation by the ribosome

    DOE PAGES

    Liu, Tingting; Kaplan, Ariel; Alexander, Lisa; ...

    2014-08-11

    A detailed understanding of tRNA/mRNA translocation requires measurement of the forces generated by the ribosome during this movement. Such measurements have so far remained elusive and, thus, little is known about the relation between force and translocation and how this reflects on its mechanism and regulation. Here, we address these questions using optical tweezers to follow translation by individual ribosomes along single mRNA molecules, against an applied force. We find that translocation rates depend exponentially on the force, with a characteristic distance close to the one-codon step, ruling out the existence of sub-steps and showing that the ribosome likely functionsmore » as a Brownian ratchet. We show that the ribosome generates ∼13 pN of force, barely sufficient to unwind the most stable structures in mRNAs, thus providing a basis for their regulatory role. Our assay opens the way to characterizing the ribosome's full mechano–chemical cycle.« less

  18. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.

    PubMed

    Khajuria, Rajiv K; Munschauer, Mathias; Ulirsch, Jacob C; Fiorini, Claudia; Ludwig, Leif S; McFarland, Sean K; Abdulhay, Nour J; Specht, Harrison; Keshishian, Hasmik; Mani, D R; Jovanovic, Marko; Ellis, Steven R; Fulco, Charles P; Engreitz, Jesse M; Schütz, Sabina; Lian, John; Gripp, Karen W; Weinberg, Olga K; Pinkus, Geraldine S; Gehrke, Lee; Regev, Aviv; Lander, Eric S; Gazda, Hanna T; Lee, Winston Y; Panse, Vikram G; Carr, Steven A; Sankaran, Vijay G

    2018-03-22

    Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase

    PubMed Central

    Jha, Sujata; Rollins, Madeline G.; Fuchs, Gabriele; Procter, Dean J.; Hall, Elizabeth A.; Cozzolino, Kira; Sarnow, Peter; Savas, Jeffrey N.; Walsh, Derek

    2017-01-01

    Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements1. However, beyond differential subunit expression during development2,3, evidence for regulated ribosome specification within individual cells has remained elusive1. Here, we report that a poxvirus kinase phosphorylates serine/threonine residues in the small ribosomal subunit protein, Receptor for Activated C Kinase (RACK1) that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs whose 5’ untranslated regions (UTRs) contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analysis revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, where these leaders act as translational enhancers for poorly understood reasons. Phosphomimetics and inter-species chimeras demonstrated that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase4 confer a translational advantage. Our findings uncover ribosome customization through a novel trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie the enigmatic poxvirus polyA-leaders4. PMID:28636603

  1. Ribosome Biogenesis in African Trypanosomes Requires Conserved and Trypanosome-Specific Factors

    PubMed Central

    Umaer, Khan; Ciganda, Martin

    2014-01-01

    Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention. PMID:24706018

  2. DNA Topoisomerases of Leishmania parasites; druggable targets for drug discovery.

    PubMed

    Reguera, Rosa Mª; Elmahallawy, Ehab Kotb; Garcia-Estrada, Carlos; Carbajo-Andres, Ruben; Balana-Fouce, Rafael

    2018-05-17

    DNA topoisomerases (Top) are a group of isomerase enzymes responsible for controlling the topological problems caused by DNA double helix in the cell during the processes of replication, transcription and recombination. Interestingly, these enzymes have been known since long to be key molecular machines in several cellular processes through overwinding or underwinding of DNA in all-living organisms. Leishmania, a trypanosomatid parasite responsible for causing fatal diseases mostly in impoverished populations of low-income countries, have a set of six classes of Top enzymes. These are placed in the nucleus and the single mitochondrion and can be deadly targets of suitable drugs. Given the fact that there are clear differences in structure and expression between parasite and host enzymes, numerous studies have reported the therapeutic potential of Top inhibitors as antileishmanial drugs. In this regard, numerous compounds have been described as Top type IB and Top type II inhibitors in Leishmania parasites, such as camptothecin derivatives, indenoisoquinolines, indeno-1,5-naphthyridines, fluoroquinolones, antracyclines and podophyllotoxins. The aim of this review is to highlight several facts about Top and Top inhibitors as potential antileishmanial drugs, which may represent a promising strategy for the control of this disease of public health importance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes.

    PubMed

    Thompson, R C; Dix, D B; Gerson, R B; Karim, A M

    1981-01-10

    The characteristics of a GTPase reaction between poly(U)-programmed ribosomes, EFTu . GTP, and the near-cognate aminoacyl (aa)-tRNA, Leu-tRNA Leu 2, have been studied to assess the role of this reaction in proofreading of the codon-anticodon interaction. The reaction resembles the GTPase reaction with cognate aa-tRNAs and EFTu . GTP in its substrate requirements, in its involving EFTu . GTP . aa-tRNA ternary complexes, and in its requiring a free ribosomal A-site. The noncognate reaction differs from the cognate one in that aa-tRNA becomes stably bound to the ribosomes only 5% of the time; it therefore seems best characterized as an abortive enzymatic binding reaction. The rate of reaction is a significant fraction (4%) of that of the cognate aa-tRNA, indicating that recognition of ternary complexes by ribosomes involves a level of error greater than that of translation as a whole. The rejection of the noncognate aa-tRNA following GTP hydrolysis is therefore a vital step in the translation process and fulfills the criteria set for a proofreading reaction. Leu-tRNA Leu 2 which escapes rejection through proofreading, forms a stable complex with the ribosomal A-site, so it appears that the Leu-tRNA2 which was rejected never reached the A-site and that proofreading precedes full A-site binding.

  4. Protein-Protein Interactions within Late Pre-40S Ribosomes

    PubMed Central

    Campbell, Melody G.; Karbstein, Katrin

    2011-01-01

    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps. PMID:21283762

  5. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  6. Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Quorn) in a patient allergic to molds caused by acidic ribosomal protein P2.

    PubMed

    Hoff, Michael; Trüeb, Ralph M; Ballmer-Weber, Barbara K; Vieths, Stefan; Wuethrich, Brunello

    2003-05-01

    Quorn is the brand name for a line of foods made with so-called "mycoprotein," which springs from the mold Fusarium venenatum. Since the introduction on the food market, there have been complaints from consumers reporting adverse gastrointestinal reactions after ingestion of mycoprotein. To date, it is not clear whether the reported symptoms are IgE-mediated. The aim of the study was to describe for the first time a case history of an asthmatic patient with severe hypersensitivity reactions to ingested mycoprotein and to identify and characterize the potential allergen that might be responsible for this. The sensitization pattern of the asthmatic subject was characterized, and food allergy to mycoprotein was assessed by double-blinded placebo-controlled food challenge. Afterward, specific IgE antibodies of the serum of this patient were used to screen a Fusarium culmorum cDNA expression library. The coding sequence of one enriched cDNA-clone was expressed in Escherichia coli to produce a recombinant protein that was further purified and immunologically characterized. The patient showed high sensitization to many known aeroallergens but apart from Quorn not to any other tested food samples. The deduced amino acid sequence of the enriched cDNA-clone (Fus c 1) showed large identity to the 60S acidic ribosomal protein P2 which is highly conserved among several species and also described as minor allergen in other mold species. The frequency of IgE reactivity of sera from F culmorum -sensitized subjects to rFus c 1 was approximately 35%. By enzyme allergosorbent test inhibition, we found 65% inhibition of mycoprotein IgE reactivity by rFus c 1. On the opposite we found reduced IgE reactivity of rFus c 1 of 68% by using mycoprotein as inhibitor. Sensitization to mold allergens by the respiratory tract and subsequent oral ingestion of cross-reactive proteins may lead to severe food-allergic reactions. Thus, the 60S acidic ribosomal protein P2 of F venenatum probably is

  7. A model for competition for ribosomes in the cell

    PubMed Central

    Raveh, Alon; Margaliot, Michael; Sontag, Eduardo D.; Tuller, Tamir

    2016-01-01

    A single mammalian cell includes an order of 104–105 mRNA molecules and as many as 105–106 ribosomes. Large-scale simultaneous mRNA translation induces correlations between the mRNA molecules, as they all compete for the finite pool of available ribosomes. This has important implications for the cell's functioning and evolution. Developing a better understanding of the intricate correlations between these simultaneous processes, rather than focusing on the translation of a single isolated transcript, should help in gaining a better understanding of mRNA translation regulation and the way elongation rates affect organismal fitness. A model of simultaneous translation is specifically important when dealing with highly expressed genes, as these consume more resources. In addition, such a model can lead to more accurate predictions that are needed in the interconnection of translational modules in synthetic biology. We develop and analyse a general dynamical model for large-scale simultaneous mRNA translation and competition for ribosomes. This is based on combining several ribosome flow models (RFMs) interconnected via a pool of free ribosomes. We use this model to explore the interactions between the various mRNA molecules and ribosomes at steady state. We show that the compound system always converges to a steady state and that it always entrains or phase locks to periodically time-varying transition rates in any of the mRNA molecules. We then study the effect of changing the transition rates in one mRNA molecule on the steady-state translation rates of the other mRNAs that results from the competition for ribosomes. We show that increasing any of the codon translation rates in a specific mRNA molecule yields a local effect, an increase in the translation rate of this mRNA, and also a global effect, the translation rates in the other mRNA molecules all increase or all decrease. These results suggest that the effect of codon decoding rates of endogenous and

  8. RPG: the Ribosomal Protein Gene database

    PubMed Central

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes. PMID:14681386

  9. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk.

    PubMed

    Li, Xiao-Ping; Kahn, Peter C; Kahn, Jennifer Nielsen; Grela, Przemyslaw; Tumer, Nilgun E

    2013-10-18

    Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.

  10. Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes

    PubMed Central

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F.; Martin, William F.

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force. PMID:24259312

  11. Immunomodulatory properties of 1,2-dihydro-4-hydroxy-2-oxo-1,8-naphthyridine-3-carboxamide derivative VL15.

    PubMed

    Malfitano, Anna Maria; Laezza, Chiara; Bertini, Simone; Marasco, Daniela; Tuccinardi, Tiziano; Bifulco, Maurizio; Manera, Clementina

    2017-04-01

    1,2-Dihydro-4-hydroxy-2-oxo-1,8-naphthyridine-3-carboxamide derivative VL15 has been recently developed as a selective cannabinoid CB2 receptor compound. Given the high selectivity of this compound at the cannabinoid CB2 receptor and the well-known protective function of this receptor in neurological disorders with autoimmune component like multiple sclerosis, we assessed the immunomodulatory properties of VL15. We assessed on activated peripheral blood mononuclear cells), proliferation and viability, cell cycle progression and measured activation markers and the expression of phosphorylated proteins. We found that VL15 reduces PBMC proliferation slightly affecting cell vitality, blocks the cell cycle progression and down-regulates the levels of T cell activation markers as well as the expression of phosphorylated proteins, NF-kB, IKKαβ, IKBα, ERK and Akt. VL15 was also used in drug-permeability assays on Caco-2 cell line to evaluate its oral bioavailability and on MDCKII-hMDR1 cell lines to estimate its propensity to cross the blood-brain barrier by passive diffusion, in order to potentially maintain its efficiency on the infiltrating auto-reactive lymphocytes in the central nervous system. In these models, VL15 showed high intestinal absorption and good blood-brain barrier penetration. Our findings suggest that VL15, by controlling the immune response, might find potential application as orally administered drug in pathologies like multiple sclerosis. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion.

    PubMed

    Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne

    2018-04-15

    The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials.

    PubMed

    Tang, Huilin; Zhang, Xi; Zhang, Jingjing; Li, Yufeng; Del Gobbo, Liana C; Zhai, Suodi; Song, Yiqing

    2016-12-01

    By analysing available evidence from randomised controlled trials (RCTs), we aimed to examine whether and to what extent sodium-glucose cotransporter 2 (SGLT2) inhibitors affect serum electrolyte levels in type 2 diabetes patients. We searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov up to 24 May 2016 for published RCTs of SGLT2 inhibitors that reported changes in serum electrolyte levels. Weighted mean differences (WMD) between each SGLT2 inhibitor and placebo were calculated using a random-effects model. Dose-dependent relationships for each SGLT2 inhibitor were evaluated using meta-regression analysis. Eighteen eligible RCTs, including 15,309 patients and four SGLT2 inhibitors (canagliflozin, dapagliflozin, empagliflozin and ipragliflozin) were evaluated. In patients without chronic kidney disease, each SGLT2 inhibitor significantly increased serum magnesium levels compared with placebo (canagliflozin: WMD 0.06 mmol/l for 100 mg and 0.09 mmol/l for 300 mg; dapagliflozin: WMD 0.1 mmol/l for 10 mg; empagliflozin: WMD 0.04 mmol/l for 10 mg and 0.07 mmol/l for 25 mg; and ipragliflozin: WMD 0.05 mmol/l for 50 mg). Canagliflozin increased serum magnesium in a linear dose-dependent manner (p = 0.10). Serum phosphate was significantly increased by dapagliflozin. Serum sodium appeared to significantly differ by SGLT2 inhibitor type. No significant changes in serum calcium and potassium were observed. Findings were robust after including trials involving patients with chronic kidney disease. SGLT2 inhibitors marginally increased serum magnesium levels in type 2 diabetes patients indicating a drug class effect. Further investigations are required to examine the clinical significance of elevated magnesium levels in individuals with type 2 diabetes.

  14. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Das, Nirmal Kumar; Aich, Krishnendu; Sen, Debabrata; Fun, Hoong-Kun; Goswami, Shyamaprasad

    2013-09-01

    Co-crystals of 1a and 1b have been prepared by slow evaporation of the solutions of mixtures of 2,7-dimethyl-1,8-naphthyridine (1), urea (a) and thiourea (b). The structures of the complexes are determined by the single crystal X-ray diffraction and a detailed investigation of the crystal packing and classification of intermolecular interactions is presented by means of Hirshfeld surface analysis which is of considerable current interest in crystal engineering. The X-ray study reveals that the co-crystal formers are envisioned to produce N-H⋯N hydrogen bond as well as N-H⋯O/N-H⋯S pair-wise hydrogen bonds and also the weaker aromatic π⋯π interactions which cooperatively take part in the crystal packing. The recurring feature of the self-assembly in the compounds is the appearance of the molecular ribbon through multiple hydrogen bonding which are further stacked into molecular layers by π⋯π stacking interactions. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D Fingerprint plots have been used to examine molecular shapes. Crystal structure analysis supported with the Hirshfeld surface and fingerprint plots enabled the identification of the significant intermolecular interactions.

  15. The activity of the acidic phosphoproteins from the 80 S rat liver ribosome.

    PubMed

    MacConnell, W P; Kaplan, N O

    1982-05-25

    The selective removal of acidic phosphoproteins from the 80 S rat liver ribosome was accomplished by successive alcohol extractions at low salt concentration. The resulting core ribosomes lost over 90% of their translation activity and were unable to support the elongation factor 2 GTPase reaction. Both activities were partially restored when the dialyzed extracts were added back to the core ribosome. The binding of labeled adenosine diphosphoribosyl-elongation factor 2 to ribosomes was also affected by extraction and could be reconstituted, although not to the same extent as the GTPase activity associated with elongation factor 2 in the presence of the ribosome. The alcohol extracts of the 80 S ribosome contained mostly phosphoproteins P1 and P2 which could be dephosphorylated and rephosphorylated in solution by alkaline phosphatase and protein kinase, respectively. Dephosphorylation of the P1/P2 mixture in the extracts caused a decrease in the ability of these proteins to reactivate the polyphenylalanine synthesis activity of the core ribosome. However, treatment of the dephosphorylated proteins with the catalytic subunit of 3':5'-cAMP-dependent protein kinase in the presence of ATP reactivated the proteins when compared to the activity of the native extracts. Rabbit antisera raised against the alcohol-extracted proteins were capable of impairing both the polyphenylalanine synthesis reaction and the elongation factor 2-dependent GTPase reaction in the intact ribosomes.

  16. Phosphodiesterase Type 5 Inhibitors, Sport and Doping.

    PubMed

    Di Luigi, Luigi; Sansone, Massimiliano; Sansone, Andrea; Ceci, Roberta; Duranti, Guglielmo; Borrione, Paolo; Crescioli, Clara; Sgrò, Paolo; Sabatini, Stefania

    Phosphodiesterase type 5 inhibitors (PDE5i) (e.g., sildenafil, tadalafil, vardenafil, and avanafil) are drugs commonly used to treat erectile dysfunction, pulmonary arterial hypertension, and benign prostatic hyperplasia. PDE5i are not prohibited by the World Anti-Doping Agency (WADA) but are alleged to be frequently misused by healthy athletes to improve sporting performance. In vitro and in vivo studies have reported various effects of PDE5i on cardiovascular, muscular, metabolic, and neuroendocrine systems and the potential, therefore, to enhance performance of healthy athletes during training and competition. This suggests well-controlled research studies to examine the ergogenic effects of PDE5i on performance during activities that simulate real sporting situations are warranted to determine if PDE5i should be included on the prohibited WADA list. In the meantime, there is concern that some otherwise healthy athletes will continue to misuse PDE5i to gain an unfair competitive advantage over their competitors.

  17. The amino terminal end determines the stability and assembling capacity of eukaryotic ribosomal stalk proteins P1 and P2.

    PubMed

    Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G

    2011-05-01

    The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.

  18. SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.

    PubMed

    Jabbour, Serge A

    2014-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent mechanism of action. The SGLT2 is a transporter found in the proximal tubule of the kidney and is responsible for approximately 90% of renal glucose reabsorption. The SGLT2 inhibitors reduce reabsorption of glucose in the kidney, resulting in glucose excretion in the urine (50-90 g of ~180 g filtered by the kidneys daily), which in turn lowers plasma glucose levels in people with diabetes. The insulin-independent mechanism of action of SGLT2 inhibitors dictates that they are associated with a very low risk of hypoglycemia and can be used in patients with any degree of β-cell function or insulin sensitivity. Clinical trials have shown that SGLT2 inhibitors are effective at reducing blood glucose levels, body weight, and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus. Treatment with SGLT2 inhibitors is generally well tolerated, although these agents have been associated with an increased incidence of genital infections. The SGLT2 inhibitors have become a valuable addition to the armory of drugs used to treat patients with type 2 diabetes mellitus, and several agents within the class are currently under investigation in phase III clinical trials.

  19. A dormant internal ribosome entry site controls translation of feline immunodeficiency virus.

    PubMed

    Camerini, Valentina; Decimo, Didier; Balvay, Laurent; Pistello, Mauro; Bendinelli, Mauro; Darlix, Jean-Luc; Ohlmann, Théophile

    2008-04-01

    The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5' untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5' UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a "dormant" IRES that becomes activated by viral infection and cellular stress.

  20. A Dormant Internal Ribosome Entry Site Controls Translation of Feline Immunodeficiency Virus▿

    PubMed Central

    Camerini, Valentina; Decimo, Didier; Balvay, Laurent; Pistello, Mauro; Bendinelli, Mauro; Darlix, Jean-Luc; Ohlmann, Théophile

    2008-01-01

    The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5′ untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5′ UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a “dormant” IRES that becomes activated by viral infection and cellular stress. PMID:18234788

  1. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryo-EM

    PubMed Central

    Chen, Bo; Kaledhonkar, Sandip; Sun, Ming; Shen, Bingxin; Lu, Zonghuan; Barnard, David; Lu, Toh-Ming; Gonzalez, Ruben L.; Frank, Joachim

    2015-01-01

    Ribosomal subunit association is a key checkpoint in translation initiation, but its structural dynamics are poorly understood. Here, we used a recently developed mixing-spraying, time-resolved, cryogenic electron microscopy (cryo-EM) method to study ribosomal subunit association in the sub-second time range. We have improved this method and increased the cryo-EM data yield by tenfold. Pre-equilibrium states of the association reaction were captured by reacting the mixture of ribosomal subunits for 60 ms and 140 ms. We also identified three distinct ribosome conformations in the associated ribosomes. The observed proportions of these conformations are the same in these two time points, suggesting that ribosomes equilibrate among the three conformations within less than 60 ms upon formation. Our results demonstrate that the mixing-spraying method can capture multiple states of macromolecules during a sub-second reaction. Other fast processes, such as translation initiation, decoding and ribosome recycling, are amenable to study with this method. PMID:26004440

  2. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity.

    PubMed

    Andrade, José M; Dos Santos, Ricardo F; Chelysheva, Irina; Ignatova, Zoya; Arraiano, Cecília M

    2018-06-01

    Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA-mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA Hfq assists ribosome assembly and associates with pre-30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq-mediated regulation of ribosomes is independent of its function as sRNA-regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm-like protein Hfq beyond its function in small RNA-mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation. © 2018 The Authors.

  3. [Protein S3 fragments neighboring mRNA during elongation and translation termination on the human ribosome].

    PubMed

    Khaĭrulina, Iu S; Molotkov, M V; Bulygin, K N; Graĭfer, D M; Ven'yaminova, A G; Frolova, L Iu; Stahl, J; Karpova, G G

    2008-01-01

    Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site binding codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5'-termini that could predetermine the position of the tRNA(Phe) on the ribosome by the location of P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3' of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide-induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2-127) and/or in the C-terminal fragment 190-236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.

  4. POTENTIAL PLACE OF SGLT2 INHIBITORS IN TREATMENT PARADIGMS FOR TYPE 2 DIABETES MELLITUS.

    PubMed

    Handelsman, Yehuda

    2015-09-01

    Following the first Food and Drug Administration (FDA) approval in 2013, sodium glucose cotransporter 2 (SGLT2) inhibitors have generated much interest among physicians treating patients with type 2 diabetes mellitus (T2DM). Here, the role in treatment with this drug class is considered in the context of T2DM treatment paradigms. The clinical trials for the SGLT2 inhibitors are examined with a focus on canagliflozin, dapagliflozin, and empagliflozin. Evidence from clinical trials in patients with T2DM supports the use of SGLT2 inhibitors either as monotherapy or in addition to other glucose-lowering treatments as adjuncts to diet and exercise, and we have gained significant clinical experience in a relatively short time. The drugs appear to be useful in a variety of T2DM populations, contingent primarily on renal function. Most obviously, SGLT2 inhibitors appear to be well suited for patients with potential for hypoglycemia or weight gain. In clinical trials, patients treated with SGLT2 inhibitors have experienced moderate weight loss and a low risk of hypoglycemic events except when used in combination with an insulin secretagogue. In addition, SGLT2 inhibitors have been shown to reduce blood pressure, so they may be beneficial in patients with T2DM complicated by hypertension. SGLT2 inhibitors were incorporated into the 2015 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) position statement on the management of hyperglycemia and received an even more prominent position in the American Association of Clinical Endocrinologists (AACE)/American College of Endocrinology (ACE) comprehensive diabetes management guidelines and algorithm.

  5. Factors Affecting Nuclear Export of the 60S Ribosomal Subunit In Vivo

    PubMed Central

    Stage-Zimmermann, Tracy; Schmidt, Ute; Silver, Pamela A.

    2000-01-01

    In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit in S. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the ∼45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b–GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b–GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b–GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b–GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120. PMID:11071906

  6. DNA replication stress restricts ribosomal DNA copy number

    PubMed Central

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  7. DNA replication stress restricts ribosomal DNA copy number.

    PubMed

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  8. Small protein domains fold inside the ribosome exit tunnel.

    PubMed

    Marino, Jacopo; von Heijne, Gunnar; Beckmann, Roland

    2016-03-01

    Cotranslational folding of small protein domains within the ribosome exit tunnel may be an important cellular strategy to avoid protein misfolding. However, the pathway of cotranslational folding has so far been described only for a few proteins, and therefore, it is unclear whether folding in the ribosome exit tunnel is a common feature for small protein domains. Here, we have analyzed nine small protein domains and determined at which point during translation their folding generates sufficient force on the nascent chain to release translational arrest by the SecM arrest peptide, both in vitro and in live E. coli cells. We find that all nine protein domains initiate folding while still located well within the ribosome exit tunnel. © 2016 Federation of European Biochemical Societies.

  9. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes.

    PubMed

    Schäfer, Thorsten; Strauss, Daniela; Petfalski, Elisabeth; Tollervey, David; Hurt, Ed

    2003-03-17

    Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.

  10. Genome-wide assessment of differential translations with ribosome profiling data.

    PubMed

    Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui

    2016-04-04

    The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations.

  11. Genome-wide assessment of differential translations with ribosome profiling data

    PubMed Central

    Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui

    2016-01-01

    The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations. PMID:27041671

  12. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  13. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    USDA-ARS?s Scientific Manuscript database

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  14. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death

    PubMed Central

    McCall, Ingrid C.; Perrot, Véronique; Weiss, Howard; Ovesepian, Armen; Baquero, Fernando

    2017-01-01

    ABSTRACT We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn) operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE), is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures. PMID:28174311

  15. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2015-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). Several compounds are already available in many countries (dapagliflozin, canagliflozin, empagliflozin and ipragliflozin) and some others are in a late phase of development. The available SGLT2 inhibitors share similar pharmacokinetic characteristics, with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites, the absence of clinically relevant drug-drug interactions and a low renal elimination as parent drug. SGLT2 co-transporters are responsible for reabsorption of most (90 %) of the glucose filtered by the kidneys. The pharmacological inhibition of SGLT2 co-transporters reduces hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. The amount of glucose excreted in the urine depends on both the level of hyperglycaemia and the glomerular filtration rate. Results of numerous placebo-controlled randomised clinical trials of 12-104 weeks duration have shown significant reductions in glycated haemoglobin (HbA1c), resulting in a significant increase in the proportion of patients reaching HbA1c targets, and a significant lowering of fasting plasma glucose when SGLT2 inhibitors were administered as monotherapy or in addition to other glucose-lowering therapies including insulin in patients with T2DM. In head-to-head trials of up to 2 years, SGLT2 inhibitors exerted similar glucose-lowering activity to metformin, sulphonylureas or sitagliptin. The durability of the glucose-lowering effect of SGLT2 inhibitors appears to be better; however, this remains to be more extensively investigated. The risk of hypoglycaemia was much lower with SGLT2 inhibitors than with sulphonylureas and was similarly low as that reported with metformin, pioglitazone or sitagliptin

  16. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription.

    PubMed

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J; Naef, Félix; Shore, David

    2014-08-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output. © 2014 Knight et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

    PubMed Central

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J.; Naef, Félix

    2014-01-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and −1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these “fragile” nucleosomes play an important role in regulating RPG transcriptional output. PMID:25085421

  18. Adherence to Phosphodiesterase Type 5 Inhibitors in the Treatment of Erectile Dysfunction in Long-Term Users: How Do Men Use the Inhibitors?

    PubMed Central

    Carvalheira, Ana; Forjaz, Vera; Pereira, Nuno Monteiro

    2014-01-01

    Introduction The high effectiveness of phosphodiesterase type 5 inhibitors (PDE5-i) in the treatment of erectile dysfunction (ED) has been demonstrated. However, previous research shows that PDE5-i treatments have high discontinuation rates. Aim The main goals of this study were to (i) characterize the way men use PDE5-i and (ii) analyze the adherence to treatment, identifying the factors that influence PDE5-i use. Methods A total of 148 men with clinical diagnosis for ED who maintained the treatment with PDE5-i for over 3 years were interviewed. Interviews concerning their ongoing treatment were carried out using a standardized questionnaire with quantitative and qualitative items. Main Outcome Measures Physiological measures included the intracavernous alprostadil injection test, associated with penile rigidometry and penile Doppler ultrasound. The qualitative measure included two questions: “Do you use the drug in every sexual intercourse?” and “How do you use the inhibitor?” Results ED causes were classified as venogenic (31%), arteriogenic (23%), psychogenic (18%), iatrogenic (13%), neurogenic (8%), and diabetic (7%). Participation rate was 71.8%. Of the 148 patients studied, 75% claimed not to use PDE5-i in every intercourse. Most used tadalafil (66%), followed by sildenafil (20%), vardenafil (10%), and 4% alternated the type of medicine. Four main categories emerged concerning the factors that determine the intake of PDE5-i in some intercourse situations and not in others: (i) psychological factors; (ii) medication-related factors; (iii) circumstantial factors; and (iv) relational factors. Conclusion The analysis of men's narratives revealed a combination of factors that influence the adherence to PDE5-i. The psychological and medication-related factors were the most prevalent. This study highlighted the importance of taking these factors into account, both at the time of prescription and during the follow-up in order to improve adherence

  19. A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson's disease.

    PubMed

    Binde, C D; Tvete, I F; Gåsemyr, J; Natvig, B; Klemp, M

    2018-05-30

    To the best of our knowledge, there are no systematic reviews or meta-analyses that compare rasagiline, selegiline and safinamide. Therefore, we aimed to perform a drug class review comparing all available monoamine oxidase type B (MAO-B) inhibitors in a multiple treatment comparison. We performed a systematic literature search to identify randomized controlled trials assessing the efficacy of MAO-B inhibitors in patients with Parkinson's disease. MAO-B inhibitors were evaluated either as monotherapy or in combination with levodopa or dopamine agonists. Endpoints of interest were change in the Unified Parkinson's Disease Rating Scale (UPDRS) score and serious adverse events. We estimated the relative effect of each MAO-B inhibitor versus the comparator drug by creating three networks of direct and indirect comparisons. For each of the networks, we considered a joint model. The systematic literature search and study selection process identified 27 publications eligible for our three network analyses. We found the relative effects of rasagiline, safinamide and selegiline treatment given alone and compared to placebo in a model without explanatory variables to be 1.560 (1.409, 1.734), 1.449 (0.873, 2.413) and 1.532 (1.337, 1.757) respectively. We also found all MAO-B inhibitors to be efficient when given together with levodopa. When ranking the MAO-B inhibitors given in combination with levodopa, selegiline was the most effective and rasagiline was the second best. All of the included MAO-B inhibitors were effective compared to placebo when given as monotherapy. Combination therapy with MAO-B inhibitors and levodopa showed that all three MAO-B inhibitors were effective compared to placebo, but selegiline was the most effective drug. © 2018 The British Pharmacological Society.

  20. SGLT2 inhibitors with cardiovascular benefits: Transforming clinical care in Type 2 diabetes mellitus.

    PubMed

    d'Emden, Michael; Amerena, John; Deed, Gary; Pollock, Carol; Cooper, Mark E

    2018-02-01

    Cardiovascular risk reduction in individuals with Type 2 diabetes mellitus (T2DM) is a key part of clinical management. Sodium-glucose co-transporter (SGLT2) inhibitors improve glycaemic control, reduce body weight and decrease blood pressure. In addition, the SGLT2 inhibitors empagliflozin and canagliflozin reduced the risk of composite cardiovascular events in high-risk individuals with T2DM in the EMPA-REG OUTCOME trial and the CANVAS Program, respectively. Empagliflozin also reduced cardiovascular deaths and improved renal outcomes. This class of agents should be considered in people with established cardiovascular disease, usually in combination with other glucose lowering medications, when satisfactory glycaemic control has not been achieved. The dose of insulin or sulfonylureas may need to be lowered when used with SGLT2 inhibitors, to reduce the risk of hypoglycaemia. Genitourinary infections can occur with SGLT2 inhibitors in a small proportion of people. In people with osteoporosis or prior amputation, it may be prudent to use empagliflozin rather than canagliflozin, based on the increased risk for bone fractures and amputations observed with canagliflozin in the CANVAS Program. SGLT2 inhibitors have the potential to transform the clinical care of persons with T2DM by not only improving glycaemic control but also reducing blood pressure, body weight and diabetes-related end-organ complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 2- and 3-substituted imidazo[1,2-a]pyrazines as inhibitors of bacterial type IV secretion

    PubMed Central

    Sayer, James R.; Walldén, Karin; Pesnot, Thomas; Campbell, Frederick; Gane, Paul J.; Simone, Michela; Koss, Hans; Buelens, Floris; Boyle, Timothy P.; Selwood, David L.; Waksman, Gabriel; Tabor, Alethea B.

    2014-01-01

    A novel series of 8-amino imidazo[1,2-a]pyrazine derivatives has been developed as inhibitors of the VirB11 ATPase HP0525, a key component of the bacterial type IV secretion system. A flexible synthetic route to both 2- and 3-aryl substituted regioisomers has been developed. The resulting series of imidazo[1,2-a]pyrazines has been used to probe the structure–activity relationships of these inhibitors, which show potential as antibacterial agents. PMID:25438770

  2. Diagnostics of Neisseriaceae and Moraxellaceae by Ribosomal DNA Sequencing: Ribosomal Differentiation of Medical Microorganisms

    PubMed Central

    Harmsen, Dag; Singer, Christian; Rothgänger, Jörg; Tønjum, Tone; Sybren de Hoog, Gerrit; Shah, Haroun; Albert, Jürgen; Frosch, Matthias

    2001-01-01

    Fast and reliable identification of microbial isolates is a fundamental goal of clinical microbiology. However, in the case of some fastidious gram-negative bacterial species, classical phenotype identification based on either metabolic, enzymatic, or serological methods is difficult, time-consuming, and/or inadequate. 16S or 23S ribosomal DNA (rDNA) bacterial sequencing will most often result in accurate speciation of isolates. Therefore, the objective of this study was to find a hypervariable rDNA stretch, flanked by strongly conserved regions, which is suitable for molecular species identification of members of the Neisseriaceae and Moraxellaceae. The inter- and intrageneric relationships were investigated using comparative sequence analysis of PCR-amplified partial 16S and 23S rDNAs from a total of 94 strains. When compared to the type species of the genera Acinetobacter, Moraxella, and Neisseria, an average of 30 polymorphic positions was observed within the partial 16S rDNA investigated (corresponding to Escherichia coli positions 54 to 510) for each species and an average of 11 polymorphic positions was observed within the 202 nucleotides of the 23S rDNA gene (positions 1400 to 1600). Neisseria macacae and Neisseria mucosa subsp. mucosa (ATCC 19696) had identical 16S and 23S rDNA sequences. Species clusters were heterogeneous in both genes in the case of Acinetobacter lwoffii, Moraxella lacunata, and N. mucosa. Neisseria meningitidis isolates failed to cluster only in the 23S rDNA subset. Our data showed that the 16S rDNA region is more suitable than the partial 23S rDNA for the molecular diagnosis of Neisseriaceae and Moraxellaceae and that a reference database should include more than one strain of each species. All sequence chromatograms and taxonomic and disease-related information are available as part of our ribosomal differentiation of medical microorganisms (RIDOM) web-based service (http://www.ridom.hygiene.uni-wuerzburg.de/). Users can submit a

  3. Differences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins.

    PubMed

    Li, Xiao-Ping; Tumer, Nilgun E

    2017-04-11

    Both ricin and Shiga holotoxins display no ribosomal activity in their native forms and need to be activated to inhibit translation in a cell-free translation inhibition assay. This is because the ribosome binding site of the ricin A chain (RTA) is blocked by the B subunit in ricin holotoxin. However, it is not clear why Shiga toxin 1 (Stx1) or Shiga toxin 2 (Stx2) holotoxin is not active in a cell-free system. Here, we compare the ribosome binding and depurination activity of Stx1 and Stx2 holotoxins with the A1 subunits of Stx1 and Stx2 using either the ribosome or a 10-mer RNA mimic of the sarcin/ricin loop as substrates. Our results demonstrate that the active sites of Stx1 and Stx2 holotoxins are blocked by the A2 chain and the B subunit, while the ribosome binding sites are exposed to the solvent. Unlike ricin, which is enzymatically active, but cannot interact with the ribosome, Stx1 and Stx2 holotoxins are enzymatically inactive but can interact with the ribosome.

  4. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    PubMed

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  5. The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins.

    PubMed

    Dijk, J; van den Broek, R; Nasiulas, G; Beck, A; Reinhardt, R; Wittmann-Liebold, B

    1987-08-01

    The amino-terminal sequence of ribosomal protein L10 from Halobacterium marismortui has been determined up to residue 54, using both a liquid- and a gas-phase sequenator. The two sequences are in good agreement. The protein is clearly homologous to protein HcuL10 from the related strain Halobacterium cutirubrum. Furthermore, a weaker but distinct homology to ribosomal protein L6 from Escherichia coli and Bacillus stearothermophilus can be detected. In addition to 7 identical amino acids in the first 36 residues in all four sequences a number of conservative replacements occurs, of mainly hydrophobic amino acids. In this common region the pattern of conserved amino acids suggests the presence of a beta-alpha fold as it occurs in ribosomal proteins L12 and L30. Furthermore, several potential cases of homology to other ribosomal components of the three ur-kingdoms have been found.

  6. Ribosomes: Ribozymes that Survived Evolution Pressures but Is Paralyzed by Tiny Antibiotics

    NASA Astrophysics Data System (ADS)

    Yonath, Ada

    An impressive number of crystal structures of ribosomes, the universal cellular machines that translate the genetic code into proteins, emerged during the last decade. The determination of ribosome high resolution structure, which was widely considered formidable, led to novel insights into the ribosomal function, namely, fidelity, catalytic mechanism, and polymerize activities. They also led to suggestions concerning its origin and shed light on the action, selectivity and synergism of ribosomal antibiotics; illuminated mechanisms acquiring bacterial resistance and provided structural information for drug improvement and design. These studies required the pioneering and implementation of advanced technologies, which directly influenced the remarkable increase of the number of structures deposited in the Protein Data Bank.

  7. Comparative proteomic analysis provides insight into the biological role of protein phosphatase inhibitor-2 from Arabidopsis.

    PubMed

    Ahsan, Nagib; Chen, Mingjie; Salvato, Fernanda; Wilson, Rashaun S; Shyama Prasad Rao, R; Thelen, Jay J

    2017-08-08

    Protein phosphatase inhibitor-2 (PPI-2) is a conserved eukaryotic effector protein that inhibits type one protein phosphatases (TOPP). A transfer-DNA knockdown of AtPPI-2 resulted in stunted growth in both vegetative and reproductive phases of Arabidopsis development. At the cellular level, AtPPI-2 knockdown had 35 to 40% smaller cells in developing roots and leaves. This developmental phenotype was rescued by transgenic expression of the AtPPI-2 cDNA behind a constitutive promoter. Comparative proteomics of developing leaves of wild type (WT) and AtPPI-2 mutant revealed reduced levels of proteins associated with chloroplast development, ribosome biogenesis, transport, and cell cycle regulation processes. Decreased abundance of several ribosomal proteins, a DEAD box RNA helicase family protein (AtRH3), Clp protease (ClpP3) and proteins associated with cell division suggests a bottleneck in chloroplast ribosomal biogenesis and cell cycle regulation in AtPPI-2 mutant plants. In contrast, eight out of nine Arabidopsis TOPP isoforms were increased at the transcript level in AtPPI-2 leaves compared to WT. A protein-protein interaction network revealed that >75% of the differentially accumulated proteins have at least secondary and/or tertiary connections with AtPPI-2. Collectively, these data reveal a potential basis for the growth defects of AtPPI-2 and support the presumed role of AtPPI-2 as a master regulator for TOPPs, which regulate diverse growth and developmental processes. Comparative label-free proteomics was used to characterize an AtPPI-2T-DNA knockdown mutant. The complex, reduced growth phenotype supports the notion that AtPPI-2 is a global regulator of TOPPs, and possibly other proteins. Comparative proteomics revealed a range of differences in protein abundance from various cellular processes such as chloroplast development, ribosome biogenesis, and transporter activity in the AtPPI-2 mutant relative to WT Arabidopsis. Collectively the results of

  8. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors.

    PubMed

    Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2013-11-01

    A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.

    PubMed

    Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C

    2016-04-01

    Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.

  10. Sorting Out Antibiotics' Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors

    PubMed Central

    Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2016-01-01

    In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765

  11. [Intranuclear distribution of rat liver ribosomal RNA].

    PubMed

    Dabeva, M D; Todorov, B N; Khadzhiolova, A A

    1976-03-01

    A method is described for the isolation of pure liver nuclei with minimal cytoplasmic contaminants, loss of nuclear RNA and degradation of nuclear RNA. The RNA components are extracted in three distinct fractions by subsequent treatment with phenol at 4 degrees, 50 degrees and 85 degrees C. The total and 14C-orotate labelled RNA components in the three nuclear RNA fractions are characterized by nucleotide composition, poly(A)-RNA content and agar-gel electrophoresis. The results show that the RNA in three fractions correspond to the nucleosol, nucleolus and chromatin compartments of the nucleus. The nuclear HnRNA components are exclusively in the 85 degrees C RNA. Nuclear ribosomal RNA is extracted in the 4 degrees C and 50 degrees C RNA fractions. These two nuclear RNA fractions are distinct in constituent pre-rRNA species and the rate of labelling of their rRNA components. The amount of the pre-rRNA and rRNA species is determined. The results show that the nucleolus-nucleosol and nucleosol-cytoplasm transitions of ribosomal subparticles are markedly slower processes than the preceeding steps of ribosome biogenesis.

  12. Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression.

    PubMed

    Chang, Cherry Yin-Yi; Lai, Ming-Tsung; Chen, Yi; Yang, Ching-Wen; Chang, Hui-Wen; Lu, Cheng-Chan; Chen, Chih-Mei; Chan, Carmen; Chung, Ching; Tseng, Chun-Cheng; Hwang, Tritium; Sheu, Jim Jinn-Chyuan; Tsai, Fuu-Jen

    2016-11-22

    Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies.

  13. Mutations Altering Chloroplast Ribosome Phenotype in Chlamydomonas, I. Non-Mendelian Mutations*

    PubMed Central

    Gillham, Nicholas W.; Boynton, John E.; Burkholder, Barbara

    1970-01-01

    Uniparentally inherited mutations to antibiotic resistance and dependence in Chlamydomonas reinhardi exhibit an altered chloroplast ribosome phenotype. Genetic studies demonstrate an absolute correlation between the drug resistance or dependence and the ribosome phenotype in two such mutants. Images PMID:5289000

  14. The AAA-ATPase NVL2 is a component of pre-ribosomal particles that interacts with the DExD/H-box RNA helicase DOB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagahama, Masami; Yamazoe, Takeshi; Hara, Yoshimitsu

    2006-08-04

    Nuclear VCP/p97-like protein 2 (NVL2) is a member of the chaperone-like AAA-ATPase family with two conserved ATP-binding modules. Our previous studies have shown that NVL2 is localized to the nucleolus by interacting with ribosomal protein L5 and may participate in ribosome synthesis, a process involving various non-ribosomal factors including chaperones and RNA helicases. Here, we show that NVL2 is associated with pre-ribosomal particles in the nucleus. Moreover, we used yeast two-hybrid and co-immunoprecipitation assays to identify an NVL2-interacting protein that could yield insights into NVL2 function in ribosome biogenesis. We found that NVL2 interacts with DOB1, a DExD/H-box RNA helicase,more » whose yeast homologue functions in a late stage of the 60S subunit synthesis. DOB1 can interact with a second ATP-binding module mutant of NVL2, which shows a dominant negative effect on ribosome synthesis. In contrast, it cannot interact with a first ATP-binding module mutant, which does not show the dominant negative effect. When the dominant negative mutant of NVL2 was overexpressed in cells, DOB1 appeared to remain associated with nuclear pre-ribosomal particles. Such accumulation was not observed upon overexpression of wild-type NVL2 or a nondominant-negative mutant. Taken together, our results suggest that NVL2 might regulate the association/dissociation reaction of DOB1 with pre-ribosomal particles by acting as a molecular chaperone.« less

  15. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN.

    PubMed

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K

    2016-07-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Energetics of codon-anticodon recognition on the small ribosomal subunit.

    PubMed

    Almlöf, Martin; Andér, Martin; Aqvist, Johan

    2007-01-09

    Recent crystal structures of the small ribosomal subunit have made it possible to examine the detailed energetics of codon recognition on the ribosome by computational methods. The binding of cognate and near-cognate anticodon stem loops to the ribosome decoding center, with mRNA containing the Phe UUU and UUC codons, are analyzed here using explicit solvent molecular dynamics simulations together with the linear interaction energy (LIE) method. The calculated binding free energies are in excellent agreement with experimental binding constants and reproduce the relative effects of mismatches in the first and second codon position versus a mismatch at the wobble position. The simulations further predict that the Leu2 anticodon stem loop is about 10 times more stable than the Ser stem loop in complex with the Phe UUU codon. It is also found that the ribosome significantly enhances the intrinsic stability differences of codon-anticodon complexes in aqueous solution. Structural analysis of the simulations confirms the previously suggested importance of the universally conserved nucleotides A1492, A1493, and G530 in the decoding process.

  17. SGLT2 inhibitors: a promising new therapeutic option for treatment of type 2 diabetes mellitus.

    PubMed

    Misra, Monika

    2013-03-01

    Hyperglycemia is an important pathogenic component in the development of microvascular and macrovascular complications in type 2 diabetes mellitus. Inhibition of renal tubular glucose reabsorption that leads to glycosuria has been proposed as a new mechanism to attain normoglycemia and thus prevent and diminish these complications. Sodium glucose cotransporter 2 (SGLT2) has a key role in reabsorption of glucose in kidney. Competitive inhibitors of SGLT2 have been discovered and a few of them have also been advanced in clinical trials for the treatment of diabetes. To discuss the therapeutic potential of SGLT2 inhibitors currently in clinical development. A number of preclinical and clinical studies of SGLT2 inhibitors have demonstrated a good safety profile and beneficial effects in lowering plasma glucose levels, diminishing glucotoxicity, improving glycemic control and reducing weight in diabetes. Of all the SGLT2 inhibitors, dapagliflozin is a relatively advanced compound with regards to clinical development. SGLT2 inhibitors are emerging as a promising therapeutic option for the treatment of diabetes. Their unique mechanism of action offers them the potential to be used in combination with other oral anti-diabetic drugs as well as with insulin. © 2012 The Author. JPP © 2012 Royal Pharmaceutical Society.

  18. Structural Biology of Non-Ribosomal Peptide Synthetases

    PubMed Central

    Miller, Bradley R.; Gulick, Andrew M.

    2016-01-01

    Summary The non-ribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains. PMID:26831698

  19. Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia

    PubMed Central

    Aspesi, Anna; Pavesi, Elisa; Robotti, Elisa; Crescitelli, Rossella; Boria, Ilenia; Avondo, Federica; Moniz, Hélène; Da Costa, Lydie; Mohandas, Narla; Roncaglia, Paola; Ramenghi, Ugo; Ronchi, Antonella; Gustincich, Stefano; Merlin, Simone; Marengo, Emilio; Ellis, Steven R.; Follenzi, Antonia; Santoro, Claudio; Dianzani, Irma

    2014-01-01

    Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA. PMID:24835311

  20. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    PubMed Central

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  1. Sequential protein association with nascent 60S ribosomal particles.

    PubMed

    Saveanu, Cosmin; Namane, Abdelkader; Gleizes, Pierre-Emmanuel; Lebreton, Alice; Rousselle, Jean-Claude; Noaillac-Depeyre, Jacqueline; Gas, Nicole; Jacquier, Alain; Fromont-Racine, Micheline

    2003-07-01

    Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.

  2. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation.

    PubMed

    Rodnina, Marina V; Wintermeyer, Wolfgang

    2011-04-01

    Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.

  3. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis.

    PubMed

    Ruanpeng, Darin; Ungprasert, Patompong; Sangtian, Jutarat; Harindhanavudhi, Tasma

    2017-09-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors could potentially alter calcium and phosphate homeostasis and may increase the risk of bone fracture. The current meta-analysis was conducted to investigate the fracture risk among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors. Randomized controlled trials that compared the efficacy of SGLT2 inhibitors to placebo were identified. The risk ratios of fracture among patients who received SGLT2 inhibitors versus placebo were extracted from each study. Pooled risk ratios and 95% confidence intervals were calculated using a random-effect, Mantel-Haenszel analysis. A total of 20 studies with 8286 patients treated with SGLT2 inhibitors were included. The pooled risk ratio of bone fracture in patients receiving SGLT2 inhibitors versus placebo was 0.67 (95% confidence interval, 0.42-1.07). The pooled risk ratio for canagliflozin, dapagliflozin, and empagliflozin was 0.66 (95% confidence interval, 0.37-1.19), 0.84 (95% confidence interval, 0.22-3.18), and 0.57 (95% confidence interval, 0.20-1.59), respectively. Increased risk of bone fracture among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors compared with placebo was not observed in this meta-analysis. However, the results were limited by short duration of treatment/follow-up and low incidence of the event of interest. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes.

    PubMed

    Chae, Young Kwang; Chiec, Lauren; Mohindra, Nisha; Gentzler, Ryan; Patel, Jyoti; Giles, Francis

    2017-01-01

    Immune checkpoint inhibitors such as pembrolizumab, ipilimumab, and nivolumab, now FDA-approved for use in treating several types of cancer, have been associated with immune-related adverse effects. Specifically, the antibodies targeting the programmed-cell death-1 immune checkpoint, pembrolizumab and nivolumab, have been rarely reported to induce the development of type 1 diabetes mellitus. Here we describe a case of a patient who developed antibody-positive type 1 diabetes mellitus following treatment with pembrolizumab in combination with systemic chemotherapy for metastatic adenocarcinoma of the lung. We will also provide a brief literature review of other rarely reported cases of type 1 diabetes presenting after treatment with pembrolizumab and nivolumab, as well as discussion regarding potential mechanisms of this adverse effect and its importance as these drugs continue to become even more widespread.

  5. Homology modeling and virtual screening of inhibitors against TEM- and SHV-type-resistant mutants: A multilayer filtering approach.

    PubMed

    Baig, Mohammad H; Balaramnavar, Vishal M; Wadhwa, Gulshan; Khan, Asad U

    2015-01-01

    TEM and SHV are class-A-type β-lactamases commonly found in Escherichia coli and Klebsiella pneumoniae. Previous studies reported S130G and K234R mutations in SHVs to be 41- and 10-fold more resistant toward clavulanic acid than SHV-1, respectively, whereas TEM S130G and R244S also showed the same level of resistance. These selected mutants confer higher level of resistance against clavulanic acid. They also show little susceptibility against other commercially available β-lactamase inhibitors. In this study, we have used docking-based virtual screening approach in order to screen potential inhibitors against some of the major resistant mutants of SHV and TEM types β-lactamase. Two different inhibitor-resistant mutants from SHV and TEM were selected. Moreover, we have retained the active site water molecules within each enzyme. Active site water molecules were placed within modeled structure of the mutant whose structure was unavailable with protein databank. The novelty of this work lies in the use of multilayer virtual screening approach for the prediction of best and accurate results. We are reporting five inhibitors on the basis of their efficacy against all the selected resistant mutants. These inhibitors were selected on the basis of their binding efficacies and pharmacophore features. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis.

    PubMed

    Min, Se Hee; Yoon, Jeong-Hwa; Hahn, Seokyung; Cho, Young Min

    2017-01-01

    Both sodium glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors can be used to treat patients with type 2 diabetes mellitus (T2DM) that is inadequately controlled with insulin therapy, and yet there has been no direct comparison of these two inhibitors. We searched MEDLINE, EMBASE, LILACS, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov through June 2015. Randomized controlled trials published in English that compare SGLT2 inhibitor plus insulin (SGLT2i/INS) with placebo plus insulin or DPP4 inhibitor plus insulin (DPP4i/INS) with placebo plus insulin in patients with T2DM were selected. Data on the study characteristics, efficacy and safety outcomes were extracted. We compared the efficacy and safety between SGLT2i/INS and DPP4i/INS indirectly with covariates adjustment. Risk of potential bias was assessed. Fourteen eligible randomized controlled trials comprising 6980 patients were included (five SGLT2 inhibitor studies and nine DPP4 inhibitor studies). Covariate-adjusted indirect comparison using meta-regression analyses revealed that SGLT2i/INS achieved greater reduction in HbA 1c [weighted mean difference (WMD) -0.24%, 95% confidence interval (CI) -0.43 to -0.05%], fasting plasma glucose (WMD -18.0 mg/dL, 95% CI -28.5 to -7.6 mg/dL) and body weight (WMD -2.38 kg, 95% CI -3.18 to -1.58 kg) from baseline than DPP4i/INS without increasing the risk of hypoglycaemia (relative risks 1.19, 95% CI 0.78 to 1.82). Sodium glucose cotransporter 2 inhibitors achieved better glycaemic control and greater weight reduction than DPP4 inhibitors without increasing the risk of hypoglycaemia in patients with T2DM that is inadequately controlled with insulin. There has been no direct comparison of SGLT2 inhibitors and DPP4 inhibitors in patients with T2DM inadequately controlled with insulin therapy. In this study, we performed indirect meta-analysis comparing SGLT2 inhibitors and DPP4 inhibitors added to insulin

  7. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits

    PubMed Central

    Jakovljevic, Jelena; Ohmayer, Uli; Gamalinda, Michael; Talkish, Jason; Alexander, Lisa; Linnemann, Jan; Milkereit, Philipp; Woolford, John L.

    2012-01-01

    Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA3 to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA3 pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A3 assembly factors and for proper assembly of the neighborhoods containing domains I and II. PMID:22893726

  8. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1971-01-01

    1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA. PMID:5165653

  9. Lupus autoantibodies target ribosomal P proteins

    PubMed Central

    1985-01-01

    All nine SLE (systemic lupus erythematosus) sera with antiribosomal antibody activity targeted the same three ribosomal protein antigens, of molecular masses 38 and 17/19 kD when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. One serum reacted with an additional protein of approximately kD. Ribosomal subunit fractionation by composite gel electrophoresis and sucrose density ultracentrifugation showed that these proteins were part of the large subunit. Isoelectric focusing in agarose, and two-dimensional polyacrylamide gel electrophoresis revealed that the antigens had pI between 4.5 and 6.5, but that the 17/19 kD antigens were more acidic than the 38 kD antigen. Similarities in the molecular masses, charges, as well as the presence of highly conserved crossreactive epitopes, failure to bind to carboxymethylcellulose at pH 4.2, and extractability of the 17/19 kD proteins by 400 mM NH4Cl-ethanol at 0 degrees C indicated that these antigens were analogous to the proteins P0 (38 kD) and P1/P2 (17/19 kD) described previously (25, 36). Co-identity was confirmed using reference antibodies and antigen. Although antibodies to these proteins were only found in 5-10% of more than 50 sera screened by radioimmunoassay or Western blotting, the selective production of antibodies to epitopes on three (out of a total of more than 80) ribosomal proteins may provide further clues to autoantibody induction of SLE. PMID:2410526

  10. Trajectories of the ribosome as a Brownian nanomachine

    DOE PAGES

    Dashti, Ali; Schwander, Peter; Langlois, Robert; ...

    2014-11-24

    In a Brownian machine, there is a tiny device buffeted by the random motions of molecules in the environment, is capable of exploiting these thermal motions for many of the conformational changes in its work cycle. Such machines are now thought to be ubiquitous, with the ribosome, a molecular machine responsible for protein synthesis, increasingly regarded as prototypical. We present a new analytical approach capable of determining the free-energy landscape and the continuous trajectories of molecular machines from a large number of snapshots obtained by cryogenic electron microscopy. We demonstrate this approach in the context of experimental cryogenic electron microscopemore » images of a large ensemble of nontranslating ribosomes purified from yeast cells. The free-energy landscape is seen to contain a closed path of low energy, along which the ribosome exhibits conformational changes known to be associated with the elongation cycle. This approach allows model-free quantitative analysis of the degrees of freedom and the energy landscape underlying continuous conformational changes in nanomachines, including those important for biological function.« less

  11. The ribosome as an optimal decoder: a lesson in molecular recognition.

    PubMed

    Savir, Yonatan; Tlusty, Tsvi

    2013-04-11

    The ribosome is a complex molecular machine that, in order to synthesize proteins, has to decode mRNAs by pairing their codons with matching tRNAs. Decoding is a major determinant of fitness and requires accurate and fast selection of correct tRNAs among many similar competitors. However, it is unclear whether the modern ribosome, and in particular its large conformational changes during decoding, are the outcome of adaptation to its task as a decoder or the result of other constraints. Here, we derive the energy landscape that provides optimal discrimination between competing substrates and thereby optimal tRNA decoding. We show that the measured landscape of the prokaryotic ribosome is sculpted in this way. This model suggests that conformational changes of the ribosome and tRNA during decoding are means to obtain an optimal decoder. Our analysis puts forward a generic mechanism that may be utilized broadly by molecular recognition systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations.

    PubMed

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-Kang

    2013-11-01

    To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π-π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met.

  13. Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells.

    PubMed

    Morgado-Palacin, Lucia; Llanos, Susana; Serrano, Manuel

    2012-02-01

    Ribosome biogenesis is the most demanding energetic process in proliferating cells and it is emerging as a critical sensor of cellular homeostasis. Upon disturbance of ribosome biogenesis, specific free ribosomal proteins, most notably L11, bind and inhibit Mdm2, resulting in activation of the tumor suppressor p53. This pathway has been characterized in somatic and cancer cells, but its function in embryonic pluripotent cells has remained unexplored. Here, we show that treatment with low doses of Actinomycin D or depletion of ribosomal protein L37, two well-established inducers of ribosomal stress, activate p53 in an L11-dependent manner in mouse embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). Activation of p53 results in transcriptional induction of p53 targets, including p21, Mdm2, Pidd, Puma, Noxa and Bax. Finally, ribosomal stress elicits L11- and p53-dependent apoptosis in ESCs/iPSCs. These results extend to pluripotent cells the functionality of the ribosomal stress pathway and we speculate that this could be a relevant cellular checkpoint during early embryogenesis.

  14. A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements.

    PubMed

    Guimond, A; Moss, T

    1999-02-01

    We have used a differential cloning approach to isolate ribosomal/non-ribosomal frontier sequences from Xenopus laevis. A ribosomal intergenic spacer sequence (IGS) was cloned and shown not to be physically linked with the ribosomal locus. This ribosomal orphon contained the IGS sequences found immediately downstream of the 28S gene and included an array of enhancer repetitions and a non-functional spacer promoter. The orphon sequence was flanked by a member of the novel 'Frt' low copy repetitive element family. Three individual Frt repeats were sequenced and all members of this family were shown to lie clustered at two chromosomal sites, one of which contained the ribosomal orphon. One of the Frt elements contained an insertion of 297 bp that showed extensive homology to sequences within at least three other Xenopus genes. Each homology region was flanked by members of the T2 family of short interspersed repetitive elements, (SINEs), and by its target insertion sequence, suggesting multiple translocation events. The data are discussed in terms of the evolution of the ribosomal gene locus.

  15. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    PubMed

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight intomore » the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.« less

  17. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    PubMed

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  18. Optimized P2A for reporter gene insertion into Nipah virus results in efficient ribosomal skipping and wild-type lethality.

    PubMed

    Park, Arnold; Yun, Tatyana; Hill, Terence E; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Freiberg, Alexander N; Lee, Benhur

    2016-04-01

    Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.

  19. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis.

    PubMed

    Kong, Hee Jeong; Cho, Hyun Kook; Park, Eun-Mi; Hong, Gyeong-Eun; Kim, Young-Ok; Nam, Bo-Hye; Kim, Woo-Jin; Lee, Sang-Jun; Han, Hyon Sob; Jang, In-Kwon; Lee, Chang Hoon; Cheong, Jaehun; Choi, Tae-Jin

    2009-01-01

    Proteinase inhibitors play important roles in host defence systems involving blood coagulation and pathogen digestion. We isolated and characterized a cDNA clone for a Kazal-type proteinase inhibitor (KPI) from a hemocyte cDNA library of the oriental white shrimp Fenneropenaeus chinensis. The KPI gene consists of three exons and two introns. KPI cDNA contains an open reading frame of 396 bp, a polyadenylation signal sequence AATAAA, and a poly (A) tail. KPI cDNA encodes a polypeptide of 131 amino acids with a putative signal peptide of 21 amino acids. The deduced amino acid sequence of KPI contains two homologous Kazal domains, each with six conserved cysteine residues. The mRNA of KPI is expressed in the hemocytes of healthy shrimp, and the higher expression of KPI transcript is observed in shrimp infected with the white spot syndrome virus (WSSV), suggesting a potential role for KPI in host defence mechanisms.

  20. Fluctuations in protein synthesis from a single RNA template: stochastic kinetics of ribosomes.

    PubMed

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them--namely, the dwell time distribution--has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  1. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    PubMed

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  2. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering

    NASA Astrophysics Data System (ADS)

    Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada

    2016-11-01

    Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.

  3. Electronic structure and nature of the ground state of the mixed-valence binuclear tetra(mu-1,8-naphthyridine-N,N')-bis(halogenonickel) tetraphenylborate complexes: experimental and DFT characterization.

    PubMed

    Bencini, Alessandro; Berti, Elisabetta; Caneschi, Andrea; Gatteschi, Dante; Giannasi, Elisa; Invernizzi, Ivana

    2002-08-16

    The ground state electronic structure of the mixed-valence systems [Ni(2)(napy)(4)X(2)](BPh(4)) (napy=1,8-naphthyridine; X=Cl, Br, I) was studied with combined experimental (X-ray diffraction, temperature dependence of the magnetic susceptibility, and high-field EPR spectroscopy) and theoretical (DFT) methods. The zero-field splitting (zfs) ground S=3/2 spin state is axial with /D/ approximately 3 cm(-1). The iodide derivative was found to be isostructural with the previously reported bromide complex, but not isomorphous. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a=17.240(5), b=26.200(5), c=11.340(5) A, beta=101.320(5) degrees. DFT calculations were performed on the S=3/2 state to characterize the ground state potential energy surface as a function of the nuclear displacements. The molecules can thus be classified as Class III mixed-valence compounds with a computed delocalization parameter, B=3716, 3583, and 3261 cm(-1) for the Cl, Br, and I derivatives, respectively.

  4. The ribosome-associated complex antagonizes prion formation in yeast.

    PubMed

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  5. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  6. The 5S RNP Couples p53 Homeostasis to Ribosome Biogenesis and Nucleolar Stress

    PubMed Central

    Sloan, Katherine E.; Bohnsack, Markus T.; Watkins, Nicholas J.

    2013-01-01

    Summary Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14ARF, a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production. PMID:24120868

  7. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    PubMed

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. sORFs.org: a repository of small ORFs identified by ribosome profiling.

    PubMed

    Olexiouk, Volodimir; Crappé, Jeroen; Verbruggen, Steven; Verhegen, Kenneth; Martens, Lennart; Menschaert, Gerben

    2016-01-04

    With the advent of ribosome profiling, a next generation sequencing technique providing a "snap-shot'' of translated mRNA in a cell, many short open reading frames (sORFs) with ribosomal activity were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these 'sORFs', indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. sORFs.org: a repository of small ORFs identified by ribosome profiling

    PubMed Central

    Olexiouk, Volodimir; Crappé, Jeroen; Verbruggen, Steven; Verhegen, Kenneth; Martens, Lennart; Menschaert, Gerben

    2016-01-01

    With the advent of ribosome profiling, a next generation sequencing technique providing a “snap-shot’’ of translated mRNA in a cell, many short open reading frames (sORFs) with ribosomal activity were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these ‘sORFs’, indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects. PMID:26527729

  10. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    PubMed

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  11. Discovery of Platelet-Type 12-Human Lipoxygenase Selective Inhibitors by High-Throughput Screening of Structurally Diverse Libraries

    PubMed Central

    Deschamps, Joshua D.; Gautschi, Jeffrey T.; Whitman, Stephanie; Johnson, Tyler A.; Gassner, Nadine C.; Crews, Phillip; Holman, Theodore R.

    2007-01-01

    Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, antiviral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being α-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for an hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (Ki = 17 µM) and selective over reticulocyte 15-hLO-1 (Ki 15-hLO-1/12-hLO > 30). PMID:17826100

  12. Pioglitazone Enhances Mitochondrial Biogenesis and Ribosomal Protein Biosynthesis in Skeletal Muscle in Polycystic Ovary Syndrome

    PubMed Central

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen; Tan, Qihua; Jensen, Thomas; Kruse, Torben A.; Beck-Nielsen, Henning; Højlund, Kurt

    2008-01-01

    Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZDs) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZDs in PCOS is, in part, mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity. Using Affymetrix microarrays, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene expression in skeletal muscle of 10 obese women with PCOS metabolically characterized by a euglycemic-hyperinsulinemic clamp. Moreover, we explored gene expression changes between these PCOS patients before treatment and 13 healthy women. Treatment with pioglitazone improved insulin-stimulated glucose metabolism and plasma adiponectin, and reduced fasting serum insulin (all P<0.05). Global pathway analysis using Gene Map Annotator and Pathway Profiler (GenMAPP 2.1) and Gene Set Enrichment Analysis (GSEA 2.0.1) revealed a significant upregulation of genes representing mitochondrial oxidative phosphorylation (OXPHOS), ribosomal proteins, mRNA processing reactome, translation factors, and proteasome degradation in PCOS after pioglitazone therapy. Quantitative real-time PCR suggested that upregulation of OXPHOS genes was mediated by an increase in PGC-1α expression (P<0.05). Pretreatment expression of genes representing OXPHOS and ribosomal proteins was down-regulated in PCOS patients compared to healthy women. These data indicate that pioglitazone therapy restores insulin sensitivity, in part, by a coordinated upregulation of genes involved in mitochondrial OXPHOS and ribosomal protein biosynthesis in muscle in PCOS. These transcriptional effects of pioglitazone may contribute to prevent the onset of type 2 diabetes in these women. PMID:18560589

  13. Impact of Type III Secretion Effectors and of Phenoxyacetamide Inhibitors of Type III Secretion on Abscess Formation in a Mouse Model of Pseudomonas aeruginosa Infection

    PubMed Central

    Berube, Bryan J.; Murphy, Katherine R.; Torhan, Matthew C.; Bowlin, Nicholas O.; Williams, John D.; Bowlin, Terry L.; Moir, Donald T.

    2017-01-01

    ABSTRACT Pseudomonas aeruginosa is a leading cause of intra-abdominal infections, wound infections, and community-acquired folliculitis, each of which may involve macro- or microabscess formation. The rising incidence of multidrug resistance among P. aeruginosa isolates has increased both the economic burden and the morbidity and mortality associated with P. aeruginosa disease and necessitates a search for novel therapeutics. Previous work from our group detailed novel phenoxyacetamide inhibitors that block type III secretion and injection into host cells in vitro. In this study, we used a mouse model of P. aeruginosa abscess formation to test the in vivo efficacy of these compounds against the P. aeruginosa type III secretion system (T3SS). Bacteria used the T3SS to intoxicate infiltrating neutrophils to establish abscesses. Despite this antagonism, sufficient numbers of functioning neutrophils remained for proper containment of the abscesses, as neutrophil depletion resulted in an increased abscess size, the formation of dermonecrotic lesions on the skin, and the dissemination of P. aeruginosa to internal organs. Consistent with the specificity of the T3SS-neutrophil interaction, P. aeruginosa bacteria lacking a functional T3SS were fully capable of causing abscesses in a neutropenic host. Phenoxyacetamide inhibitors attenuated abscess formation and aided in the immune clearance of the bacteria. Finally, a P. aeruginosa strain resistant to the phenoxyacetamide compound was fully capable of causing abscess formation even in the presence of the T3SS inhibitors. Together, our results further define the role of type III secretion in murine abscess formation and demonstrate the in vivo efficacy of phenoxyacetamide inhibitors in P. aeruginosa infection. PMID:28807906

  14. Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus.

    PubMed

    Grover, Sonam; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai

    2014-01-01

    Interaction of the small peptide hormone glucagon with glucagon receptor (GCGR) stimulates the release of glucose from the hepatic cells during fasting; hence GCGR performs a significant function in glucose homeostasis. Inhibiting the interaction between glucagon and its receptor has been reported to control hepatic glucose overproduction and thus GCGR has evolved as an attractive therapeutic target for the treatment of type II diabetes mellitus. In the present study, a large library of natural compounds was screened against 7 transmembrane domain of GCGR to identify novel therapeutic molecules that can inhibit the binding of glucagon with GCGR. Molecular dynamics simulations were performed to study the dynamic behaviour of the docked complexes and the molecular interactions between the screened compounds and the ligand binding residues of GCGR were analysed in detail. The top scoring compounds were also compared with already documented GCGR inhibitors- MK-0893 and LY2409021 for their binding affinity and other ADME properties. Finally, we have reported two natural drug like compounds PIB and CAA which showed good binding affinity for GCGR and are potent inhibitor of its functional activity. This study contributes evidence for application of these compounds as prospective small ligand molecules against type II diabetes. Novel natural drug like inhibitors against the 7 transmembrane domain of GCGR have been identified which showed high binding affinity and potent inhibition of GCGR.

  15. 5SRNAdb: an information resource for 5S ribosomal RNAs.

    PubMed

    Szymanski, Maciej; Zielezinski, Andrzej; Barciszewski, Jan; Erdmann, Volker A; Karlowski, Wojciech M

    2016-01-04

    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi.

    PubMed

    Li, Youshan; Zhao, Ping; Liu, Huawei; Guo, Xiaomeng; He, Huawei; Zhu, Rui; Xiang, Zhonghuai; Xia, Qingyou

    2015-02-01

    Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease.

    PubMed

    Scheen, André J

    2015-07-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus. SGLT2 cotransporters are responsible for reabsorption of 90 % of the glucose filtered by the kidney. The glucuretic effect resulting from SGLT2 inhibition contributes to reduce hyperglycaemia and also assists weight loss and blood pressure reduction. Several SGLT2 inhibitors are already available in many countries (dapagliflozin, canagliflozin, empagliflozin) and in Japan (ipragliflozin, tofogliflozin). These SGLT2 inhibitors share similar pharmacokinetic characteristics with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites and a low renal elimination as a parent drug. Pharmacokinetic parameters are slightly altered in the case of chronic kidney disease (CKD). While no dose adjustment is required in the case of mild CKD, SGLT2 inhibitors may not be used or only at a lower daily dose in patients with moderate CKD. Furthermore, the pharmacodynamic response to SGLT2 inhibitors as assessed by urinary glucose excretion declines with increasing severity of renal impairment as assessed by a reduction in the estimated glomerular filtration rate. Nevertheless, the glucose-lowering efficacy and safety of SGLT2 inhibitors are almost comparable in patients with mild CKD as in patients with normal kidney function. In patients with moderate CKD, the efficacy tends to be dampened and safety concerns may occur. In patients with severe CKD, the use of SGLT2 inhibitors is contraindicated. Thus, prescribing information should be consulted regarding dosage adjustments or restrictions in the case of renal dysfunction for each SGLT2 inhibitor. The clinical impact of SGLT2 inhibitors on renal function and their potential to influence the course of diabetic nephropathy deserve attention because of preliminary favourable results

  18. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6

    PubMed Central

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A.; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5′ untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5′ terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase. PMID:27877176

  19. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials.

    PubMed

    Abuissa, Hussam; Jones, Philip G; Marso, Steven P; O'Keefe, James H

    2005-09-06

    We sought to investigate the role of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) in preventing the new onset of type 2 diabetes mellitus. Diabetes is a public health problem of epidemic proportions and its prevalence is on the rise. The typical American born today has a one in three chance of developing type 2 diabetes. This diagnosis is associated with an adverse cardiovascular prognosis and is considered the risk equivalent of established coronary disease. Even in high-risk individuals, diabetes is a preventable disease. Several studies have shown that ACE inhibitors and ARBs decrease the incidence of new-onset type 2 diabetes. However, the exact role of these agents in diabetes prevention has not yet been fully elucidated. We conducted a meta-analysis of 12 randomized controlled clinical trials of ACE inhibitors or ARBs, identified through a MEDLINE search and a review of reports from scientific meetings, to study the efficacy of these medications in diabetes prevention. This showed that ACE inhibitors and ARBs were associated with reductions in the incidence of newly diagnosed diabetes by 27% and 23%, respectively, and by 25% in the pooled analysis. The use of an ACE inhibitor or ARB should be considered in patients with pre-diabetic conditions such as metabolic syndrome, hypertension, impaired fasting glucose, family history of diabetes, obesity, congestive heart failure, or coronary heart disease.

  20. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry

    PubMed Central

    Kiosze-Becker, Kristin; Ori, Alessandro; Gerovac, Milan; Heuer, André; Nürenberg-Goloub, Elina; Rashid, Umar Jan; Becker, Thomas; Beckmann, Roland; Beck, Martin; Tampé, Robert

    2016-01-01

    Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling. PMID:27824037

  1. Fitness advantages conferred by the L20-interacting RNA cis-regulator of ribosomal protein synthesis in Bacillus subtilis.

    PubMed

    Babina, Arianne M; Parker, Darren J; Li, Gene-Wei; Meyer, Michelle M

    2018-06-20

    In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in non-coding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or mis-assembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  3. Methylation of yeast ribosomal protein Rpl3 promotes translational elongation fidelity.

    PubMed

    Al-Hadid, Qais; Roy, Kevin; Chanfreau, Guillaume; Clarke, Steven G

    2016-04-01

    Rpl3, a highly conserved ribosomal protein, is methylated at histidine 243 by the Hpm1 methyltransferase in Saccharomyces cerevisiae. Histidine 243 lies close to the peptidyl transferase center in a functionally important region of Rpl3 designated as the basic thumb that coordinates the decoding, peptidyl transfer, and translocation steps of translation elongation. Hpm1 was recently implicated in ribosome biogenesis and translation. However, the biological role of methylation of its Rpl3 substrate has not been identified. Here we interrogate the role of Rpl3 methylation at H243 by investigating the functional impact of mutating this histidine residue to alanine (rpl3-H243A). Akin to Hpm1-deficient cells, rpl3-H243A cells accumulate 35S and 23S pre-rRNA precursors to a similar extent, confirming an important role for histidine methylation in pre-rRNA processing. In contrast, Hpm1-deficient cells but not rpl3-H243A mutants show perturbed levels of ribosomal subunits. We show that Hpm1 has multiple substrates in different subcellular fractions, suggesting that methylation of proteins other than Rpl3 may be important for controlling ribosomal subunit levels. Finally, translational fidelity assays demonstrate that like Hpm1-deficient cells, rpl3-H243A mutants have defects in translation elongation resulting in decreased translational accuracy. These data suggest that Rpl3 methylation at H243 is playing a significant role in translation elongation, likely via the basic thumb, but has little impact on ribosomal subunit levels. Hpm1 is therefore a multifunctional methyltransferase with independent roles in ribosome biogenesis and translation. © 2016 Al-Hadid et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  4. An analysis by metabolic labelling of the encephalomyocarditis virus ribosomal frameshifting efficiency and stimulators.

    PubMed

    Ling, Roger; Firth, Andrew E

    2017-08-01

    Programmed -1 ribosomal frameshifting is a mechanism of gene expression whereby specific signals within messenger RNAs direct a proportion of ribosomes to shift -1 nt and continue translating in the new reading frame. Such frameshifting normally depends on an RNA structure stimulator 3'-adjacent to a 'slippery' heptanucleotide shift site sequence. Recently we identified an unusual frameshifting mechanism in encephalomyocarditis virus, where the stimulator involves a trans-acting virus protein. Thus, in contrast to other examples of -1 frameshifting, the efficiency of frameshifting in encephalomyocarditis virus is best studied in the context of virus infection. Here we use metabolic labelling to analyse the frameshifting efficiency of wild-type and mutant viruses. Confirming previous results, frameshifting depends on a G_GUU_UUU shift site sequence and a 3'-adjacent stem-loop structure, but is not appreciably affected by the 'StopGo' sequence present ~30 nt upstream. At late timepoints, frameshifting was estimated to be 46-76 % efficient.

  5. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility

    PubMed Central

    Bashan, Anat; Yonath, Ada

    2009-01-01

    Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655

  6. Ribosome hijacking: a role for small protein B during trans-translation

    PubMed Central

    Nonin-Lecomte, Sylvie; Germain-Amiot, Noella; Gillet, Reynald; Hallier, Marc; Ponchon, Luc; Dardel, Frédéric; Felden, Brice

    2009-01-01

    Tight recognition of codon–anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the ‘tmRNA–SmpB' system (transfer messenger RNA–small protein B). Remarkably, entry and accommodation of aminoacylated-tmRNA into stalled ribosomes occur without a codon–anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon–anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for ΔsmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon. PMID:19132006

  7. Ribosome hijacking: a role for small protein B during trans-translation.

    PubMed

    Nonin-Lecomte, Sylvie; Germain-Amiot, Noella; Gillet, Reynald; Hallier, Marc; Ponchon, Luc; Dardel, Frédéric; Felden, Brice

    2009-02-01

    Tight recognition of codon-anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the 'tmRNA-SmpB' system (transfer messenger RNA-small protein B). Remarkably, entry and accommodation of aminoacylated-tmRNA into stalled ribosomes occur without a codon-anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon-anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for DeltasmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon.

  8. The Ribosome: The Cell's Protein-Synthesizing Machine and How Antibiotics Disrupt It

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venki Ramakrishnan

    Determining the structure of the ribosome has made it possible for Ramakrishnan and his colleagues to image antibiotics bound to the ribosome, leading to a better understanding of their action, which could help in the development of novel drugs. In his ta

  9. The Ribosome: The Cell's Protein-Synthesizing Machine and How Antibiotics Disrupt It

    ScienceCinema

    Venki Ramakrishnan

    2017-12-09

    Determining the structure of the ribosome has made it possible for Ramakrishnan and his colleagues to image antibiotics bound to the ribosome, leading to a better understanding of their action, which could help in the development of novel drugs. In his ta

  10. Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach

    NASA Astrophysics Data System (ADS)

    Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.

    2012-10-01

    In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.

  11. Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

    PubMed Central

    Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.

    2016-01-01

    Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435

  12. Drug-Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation

    PubMed Central

    Arenz, Stefan; Meydan, Sezen; Starosta, Agata L.; Berninghausen, Otto; Beckmann, Roland; Vázquez-Laslop, Nora; Wilson, Daniel N.

    2014-01-01

    SUMMARY During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site leading to inhibition of peptide bond formation and translation arrest. PMID:25306253

  13. New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation.

    PubMed

    Blair, Wade S; Cao, Joan; Fok-Seang, Juin; Griffin, Paul; Isaacson, Jason; Jackson, R Lynn; Murray, Edward; Patick, Amy K; Peng, Qinghai; Perros, Manos; Pickford, Chris; Wu, Hua; Butler, Scott L

    2009-12-01

    A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.

  14. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  15. The potential of SGLT2 inhibitors in phase II clinical development for treating type 2 diabetes.

    PubMed

    Pafili, K; Maltezos, E; Papanas, N

    2016-10-01

    There is now an abundance of anti-diabetic agents. However, only few patients achieve glycemic targets. Moreover, current glucose-lowering agents mainly depend upon insulin secretion or function. Sodium glucose co-transporter type 2 (SGLT2) inhibitors present a novel glucose-lowering therapy, inducing glycosuria in an insulin-independent fashion. In this review, the authors discuss the key efficacy and safety data from phase II clinical trials in type 2 diabetes mellitus (T2DM) of the main SGLT2 inhibitors approved or currently in development, and provide a rationale for their use in T2DM. Despite the very promising characteristics of this new therapeutic class, a number of issues await consideration. One important question is what to expect from head-to-head comparison data. We also need to know if dual inhibition of SGLT1/SGLT2 is more efficacious in reducing HbA1c and how this therapy affects metabolic and cardiovascular parameters. Additionally, several SGLT2 agents that have not yet come to market have hitherto been evaluated in Asian populations, whereas approved SGLT2 inhibitors have been frequently studied in other populations, including Caucasian subjects. Thus, we need more information on the potential role of ethnicity on their efficacy and safety.

  16. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress.

    PubMed

    Sloan, Katherine E; Bohnsack, Markus T; Watkins, Nicholas J

    2013-10-17

    Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A novel melanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana.

    PubMed

    Maeda, Kazuhisa; Naitou, Tomoko; Umishio, Kenichi; Fukuhara, Tadao; Motoyama, Akira

    2007-05-01

    We isolated a novel inhibitor of melanin biosynthesis from the flowers of Arnica montana L. (Compositae), and identified it as a traxastane-type triterpene (3beta,16beta-dihydroxy-21alpha-hydroperoxy-20(30)-taraxastene) [1] by means of 1D or 2D-NMR and liquid chromatography/high-resolution mass spectrometry (LC-HR-MS). Compound [1] at the concentration of 0.53 muM completely inhibited melanin accumulation in cultured B16 melanoma cells. It is one of the most potent among known plant inhibitors of melanin biosynthesis in cultured cells, being 50 times more potent than 4-methoxyphenol, which is used as an anti-pigmentation agent. Its mechanism of action is considered to involve inhibition of transcriptional factor MITF-M (melanocyte-type isoform of microphthalmia-associated transcription factor), which would lead to a decrease of tyrosinase and related genes. We confirmed that compound [1] decreased the protein levels of tyrosinase and its related proteins in B16 melanoma cells. Further study revealed that a similar hydroperoxy triterpene also suppressed the melanin pigment accumulation of B16 melanoma cells. These results indicate that the hydroperoxy group may play an important role in the suppression of the melanin accumulation by compound [1].

  18. Energetic factors determining the binding of type I inhibitors to c-Met kinase: experimental studies and quantum mechanical calculations

    PubMed Central

    Yu, Zhe; Ma, Yu-chi; Ai, Jing; Chen, Dan-qi; Zhao, Dong-mei; Wang, Xin; Chen, Yue-lei; Geng, Mei-yu; Xiong, Bing; Cheng, Mao-sheng; Shen, Jing-kang

    2013-01-01

    Aim: To decipher the molecular interactions between c-Met and its type I inhibitors and to facilitate the design of novel c-Met inhibitors. Methods: Based on the prototype model inhibitor 1, four ligands with subtle differences in the fused aromatic rings were synthesized. Quantum chemistry was employed to calculate the binding free energy for each ligand. Symmetry-adapted perturbation theory (SAPT) was used to decompose the binding energy into several fundamental forces to elucidate the determinant factors. Results: Binding free energies calculated from quantum chemistry were correlated well with experimental data. SAPT calculations showed that the predominant driving force for binding was derived from a sandwich π–π interaction with Tyr-1230. Arg-1208 was the differentiating factor, interacting with the 6-position of the fused aromatic ring system through the backbone carbonyl with a force pattern similar to hydrogen bonding. Therefore, a hydrogen atom must be attached at the 6-position, and changing the carbon atom to nitrogen caused unfavorable electrostatic interactions. Conclusion: The theoretical studies have elucidated the determinant factors involved in the binding of type I inhibitors to c-Met. PMID:24056705

  19. Mitochondrial ribosome assembly in health and disease

    PubMed Central

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health. PMID:26030272

  20. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Ryo, E-mail: kodera@cc.okayama-u.ac.jp; Shikata, Kenichi; Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbationmore » of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.« less

  1. The kidney and type 2 diabetes mellitus: therapeutic implications of SGLT2 inhibitors.

    PubMed

    Weir, Matthew R

    2016-01-01

    Understanding the role of the kidneys in type 2 diabetes mellitus (T2DM) has taken on an increased importance in recent years with the arrival of sodium-glucose co-transporter 2 (SGLT2) inhibitors - antihyperglycemic agents (AHAs) that specifically target the kidneys. This review includes an update on the physiology of the kidneys, their role in the pathophysiology of T2DM, and the mechanisms implicated in the development and progression of diabetic kidney disease, such as glomerular hyperfiltration and inflammation. It also discusses renal issues that could influence the choice of AHA for patients with T2DM, including special populations such as patients with concomitant chronic kidney disease. The most recent data published on the clinical efficacy and safety of the SGLT2 inhibitors canagliflozin, dapagliflozin, and empagliflozin and their effects on renal function are presented, showing how the renally mediated mechanisms of action of these agents translate into clinical benefits, including the potential for renoprotection. The observed positive effects of these agents on measures such as glucose control, estimated glomerular filtration rate, albumin-to-creatinine ratio, blood pressure, and body weight in patients both with and without impaired renal function suggest that SGLT2 inhibitors represent an important extension to the diabetes treatment armamentarium.

  2. Phosphorylation of Wheat Germ Initiation Factors and Ribosomal Proteins 1

    PubMed Central

    Browning, Karen S.; Yan, Tyan Fuh J.; Lauer, Stephen J.; Aquino, Lu Ann; Tao, Mariano; Ravel, Joanne M.

    1985-01-01

    The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro. Images Fig. 1 Fig. 3 Fig. 4 PMID:16664060

  3. Mutations Altering Chloroplast Ribosome Phenotype in Chlamydomonas, II. A New Mendelian Mutation*

    PubMed Central

    Boynton, John E.; Gillham, Nicholas W.; Burkholder, Barbara

    1970-01-01

    A new mutation of Chlamydomonas reinhardi, cr-1, is characterized. The mutation exhibits Mendelian inheritance and affects the sedimentation velocity and formation of intact chloroplast ribosomes. The mutant grows reasonably well when supplied with sodium acetate as a carbon source, but poorly when forced to grow photosynthetically using carbon dioxide. Since the mutant cr-1 accumulates large subunits of the chloroplast ribosome, we postulate that it is blocked in the formation of the small subunit. A tentative model explaining the behavior of the several mutants in Chlamydomonas now known to have altered chloroplast ribosomal phenotypes is presented. Images PMID:16591885

  4. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Kai; College of Life Science and Technology, Jinan University, Guangzhou; Chen, Maoyun

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoicmore » acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.« less

  5. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis

    PubMed Central

    Wise, Mark G.; McArthur, J Vaun; Shimkets, Lawrence J.

    1999-01-01

    The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4.8 versus 6.8), air/CH4/CO2 headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1× nitrate minimal salts [NMS] versus 0.2× NMS). Screening of the isolates showed that the nutrient-rich 1× NMS selected for type I methanotrophs, while the nutrient-poor 0.2× NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase

  6. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics

    PubMed Central

    Diner, Elie J.; Hayes, Christopher S.

    2009-01-01

    Summary Mutations in ribosomal proteins L4 and L22 confer resistance to erythromycin and other macrolide antibiotics in a variety of bacteria. L4 and L22 have elongated loops whose tips converge in the peptide exit tunnel near the macrolide binding site, and resistance mutations typically affect residues within these loops. Here, we use bacteriophage λ Red-mediated recombination, or “recombineering”, to uncover new L4 and L22 alleles that confer macrolide resistance in Escherichia coli. We randomized residues at the tips of the L4 and L22 loops using recombineered oligonucleotide libraries, and selected the mutagenized cells for erythromycin-resistant mutants. These experiments led to the identification of 341 different resistance mutations encoding 278 unique L4 and L22 proteins – the overwhelming majority of which are novel. Many resistance mutations were complex, involving multiple missense mutations, in-frame deletions, and insertions. Transfer of L4 and L22 mutations into wild-type cells by phage P1-mediated transduction demonstrated that each allele was sufficient to confer macrolide resistance. Although L4 and L22 mutants are typically resistant to most macrolides, selections carried out on different antibiotics revealed macrolide-specific resistance mutations. L22 Lys90Trp is one such allele, which confers resistance to erythromycin, but not tylosin or spiramycin. Purified L22 Lys90Trp ribosomes show reduced erythromycin binding, but have the same affinity for tylosin as wild-type ribosomes. Moreover, DMS methylation protection assays demonstrated that L22 Lys90Trp ribosomes bind tylosin more readily than erythromycin in vivo. This work underscores the exceptional functional plasticity of the L4 and L22 proteins, and highlights the utility of Red-mediated recombination in targeted genetic selections. PMID:19150357

  7. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    PubMed

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  8. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  9. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    PubMed Central

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A.; Thomas, George

    2013-01-01

    SUMMARY Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. PMID:23831031

  10. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    PubMed

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Potential utility of a peptide deformylase inhibitor (NVP PDF-713) against oxazolidinone-resistant or streptogramin-resistant Gram-positive organism isolates.

    PubMed

    Jones, Ronald N; Moet, Gary J; Sader, Helio S; Fritsche, Thomas R

    2004-05-01

    To evaluate the potency of a novel peptide deformylase inhibitor, NVP PDF-713, against Gram-positive organisms having resistances to linezolid or quinupristin/dalfopristin. A total of 45 strains from three genera (six species groups) were tested by reference broth microdilution methods. The mechanism of resistance to the oxazolidinone was determined by sequencing of the gene encoding the ribosomal target. NVP PDF-713 retained activity against linezolid-resistant staphylococci (MIC range 0.25-2 mg/L), Streptococcus oralis (MIC 0.5 mg/L), Enterococcus faecalis (MIC range 2-4 mg/L) and Enterococcus faecium (MIC range 0.5-4 mg/L). Quinupristin/dalfopristin-resistant E. faecium (MIC range 1-2 mg/L) and staphylococci (MIC range 0.12-2 mg/L) were also inhibited by NVP PDF-713. Many (10 of 13 strains) of the linezolid-resistant enterococci were resistant to vancomycin and these clinical strains had a G2576U ribosomal target mutation. NVP PDF-713 appears to be a promising clinical candidate among the peptide deformylase inhibitors for the treatment of infections caused by Gram-positive organisms that possess resistances to oxazolidinones or streptogramin combinations.

  12. New Insights into Ribosome Structure and Function.

    PubMed

    Jobe, Amy; Liu, Zheng; Gutierrez-Vargas, Cristina; Frank, Joachim

    2018-06-14

    In the past 4 years, because of the advent of new cameras, many ribosome structures have been solved by cryoelectron microscopy (cryo-EM) at high, often near-atomic resolution, bringing new mechanistic insights into the processes of translation initiation, peptide elongation, termination, and recycling. Thus, cryo-EM has joined X-ray crystallography as a powerful technique in structural studies of translation. The significance of this new development is that structures of ribosomes in complex with their functional binding partners can now be determined to high resolution in multiple states as they perform their work. The aim of this article is to provide an overview of these new studies and assess the contributions they have made toward an understanding of translation and translational control. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Immunogenic Activity of a Ribosomal Fraction Obtained from Mycobacterium tuberculosis

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1965-01-01

    Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Immunogenic activity of a ribosomal fraction obtained from Mycobacterium tuberculosis. J. Bacteriol. 89:1291–1298. 1965.—The highly immunogenic particulate fraction obtained from mechanically ruptured cells of the H37Ra strain of Mycobacterium tuberculosis was suspended and centrifuged at 20,360 × g. The supernatant liquid from this centrifugation was centrifuged at 56,550 × g to remove the larger particles, and the supernatant liquid from this was centrifuged at 144,000 × g to obtain a ribosomal fraction. The sediments from the first two centrifugations were highly immunogenic, but the ribosomal fraction showed only slight capacity to immunize mice. However, when the ribosomal fraction was mixed with Freund's incomplete adjuvant, the immunogenic activity was equivalent to the particulate fraction from which it was prepared. To test the hypothesis that some membranous substance in the particulate fraction was acting as an adjuvant for the smaller particles in the ribosomal fraction, portions of the particulate fraction were treated separately with each of the membrane-disrupting agents, sodium deoxycholate, sodium lauryl sulfate, and 1 m sodium chloride. The treated materials were then centrifuged at 144,000 × g, and the sediments were tested for immunogenicity both with and without the addition of Freund's incomplete adjuvant. Without the adjuvant, the immunizing activities were very weak or absent; with the adjuvant, they were equivalent to that of the particulate fraction from which they were prepared. Other factors which have been found to damage or destroy membranes, such as freezing and thawing, and heat, also significantly decreased the immunogenic activity of the particulate fraction unless it was incorporated into Freund's incomplete adjuvant. The larger particles which sedimented at 56,550 × g were also treated with sodium lauryl sulfate and sodium

  14. [Study on membrane type leaf water evaporation inhibitors for improving effect of preventing diseases and pest controlling of Lycium barbarum].

    PubMed

    Wang, Dan-Dan; Lv, Zhe; Xu, Chang-Qing; Liu, Sai; Chen, Jun; Peng, Xiao; Wu, Yan

    2018-01-01

    Through indoor and field comparative experiments, the properties of membrane type leaf evaporation inhibitors and its effects on photosynthesis of Lycium barbarum and compatibility and synergistic of pesticide were studied. The evaporation inhibitors and L. barbarum were chosen to investigate the suppression of water evaporation and the compatibility with pesticides. The effect of evaporation inhibitors on photosynthesis of L. barbarum leaves was determined by the chlorophyll fluorescence imaging system. The results showed that water evaporation of L. barbarum leaves of different leaf age were evidently suppressed after treated with evaporation inhibitor. The inhibitor was well compatible with pesticide and effectively improved the pesticide efficacy,and had no significant effect on chlorophyll fluorescence parameters. It is concluded that the evaporation inhibitor has good compatibility with the pesticide, and has remarkable effect of restraining moisture evaporation, which make it can be used for reducing the dosage and improving the efficacy of the pesticide in the field of L. barbarum. Copyright© by the Chinese Pharmaceutical Association.

  15. Pseudoknot and translational control in the expression of the S15 ribosomal protein.

    PubMed

    Bénard, L; Philippe, C; Ehresmann, B; Ehresmann, C; Portier, C

    1996-01-01

    Translational autocontrol of the expression of the ribosomal protein S15 proceeds through the transitory formation of a pseudoknot. A synopsis of the known data is used to propose a molecular model of the mechanism involved and for the role of the pseudoknot. This latter structure is able to recruit 30S ribosomal subunits to initiate translation, but also to bind S15 and to stop translation by trapping the ribosome on its loading site. Information on the S15 protein recognition of the messenger RNA site was deduced from mutational analyses and chemical probing. A comparison of this messenger site with the S15 ribosomal binding site was conducted by analysing hydroxyl radical footprintings of these two sites. The existence of two subsites in 16S RNA suggests that the ribosomal protein S15 might present either two different binding sites or at least one common subsite. Clues for the presence of a common site between the messenger and 16S RNA are given which cannot rule out that recognition specificity is linked to a few other determinants. Whether these determinants are different or not remains an open question.

  16. Dipeptidyl peptidase IV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes.

    PubMed

    Wiedeman, Paul E; Trevillyan, James M

    2003-04-01

    Glucagon-like peptide-1 (GLP-1 (7-36) amide) is a gut hormone released from L-cells in the small intestine in response to the ingestion of nutrients and enhances the glucose-dependent secretion of insulin from pancreatic beta-cells. In type 2 diabetic patients, the continuous infusion of GLP-1 (7-36) amide decreases plasma glucose and hemoglobin A1c concentrations and improves beta-cell function. Hormone action is rapidly terminated by the N-terminal cleavage of GLP-1 at Ala2 by the aminopeptidase, dipeptidyl peptidase IV (DPPIV). The short in vivo half-life of GLP-1 (< 3 min) poses challenges to the development of exogenous GLP-1-based therapy. The inhibition of endogenous GLP-1 degradation by reducing DPPIV activity is an alternative strategy for improving the incretin action of GLP-1 in vivo. This review summarizes recent advances in the design of potent and selective small molecule inhibitors of DPPIV and the potential challenges to the development of DPPIV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes.

  17. Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria.

    PubMed

    Glotz, C; Müssig, J; Gewitz, H S; Makowski, I; Arad, T; Yonath, A; Wittmann, H G

    1987-11-01

    Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.

  18. Ribosome profiling reveals the what, when, where and how of protein synthesis.

    PubMed

    Brar, Gloria A; Weissman, Jonathan S

    2015-11-01

    Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.

  19. The ribosome as a missing link in the evolution of life.

    PubMed

    Root-Bernstein, Meredith; Root-Bernstein, Robert

    2015-02-21

    Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The use of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes & chronic kidney disease

    PubMed Central

    Bittle, Polly A.

    2017-01-01

    Abstract: There is a need for treatment options in patients with type 2 diabetes mellitus and kidney disease to achieve glucose targets without risk of hypoglycemia. This article describes management options for these patients using glucose-lowering therapies, in particular dipeptidyl peptidase-4 inhibitors. PMID:28225432

  1. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex

    PubMed Central

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.

    2014-01-01

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383

  2. Nom1 Mediates Pancreas Development by Regulating Ribosome Biogenesis in Zebrafish

    PubMed Central

    Qin, Wei; Chen, Zelin; Zhang, Yihan; Yan, Ruibin; Yan, Guanrong; Li, Song; Zhong, Hanbing; Lin, Shuo

    2014-01-01

    Ribosome biogenesis is an important biological process for proper cellular function and development. Defects leading to improper ribosome biogenesis can cause diseases such as Diamond-Blackfan anemia and Shwachman-Bodian-Diamond syndrome. Nucleolar proteins are a large family of proteins and are involved in many cellular processes, including the regulation of ribosome biogenesis. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish line carrying mutation in nucleolar protein with MIF4G domain 1 (nom1), which encodes a conserved nulceolar protein with a role in pre-rRNA processing. Zebrafish nom1 mutants exhibit major defects in endoderm development, especially in exocrine pancreas. Further studies revealed that impaired proliferation of ptf1a-expressing pancreatic progenitor cells mainly contributed to the phenotype. RNA-seq and molecular analysis showed that ribosome biogenesis and pre-mRNA splicing were both affected in the mutant embryos. Several defects of ribosome assembly have been shown to have a p53-dependent mechanism. In the nom1 mutant, loss of p53 did not rescue the pancreatic defect, suggesting a p53-independent role. Further studies indicate that protein phosphatase 1 alpha, an interacting protein to Nom1, could partially rescue the pancreatic defect in nom1 morphants if a human nucleolar localization signal sequence was artificially added. This suggests that targeting Pp1α into the nucleolus by Nom1 is important for pancreatic proliferation. Altogether, our studies revealed a new mechanism involving Nom1 in controlling vertebrate exocrine pancreas formation. PMID:24967912

  3. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    PubMed

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-08

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Structural and functional organization of ribosomal genes within the mammalian cell nucleolus.

    PubMed

    Derenzini, Massimo; Pasquinelli, Gianandrea; O'Donohue, Marie-Françoise; Ploton, Dominique; Thiry, Marc

    2006-02-01

    Data on the in situ structural-functional organization of ribosomal genes in the mammalian cell nucleolus are reviewed here. Major findings on chromatin structure in situ come from investigations carried out using the Feulgen-like osmium ammine reaction as a highly specific electron-opaque DNA tracer. Intranucleolar chromatin shows three different levels of organization: compact clumps, fibers ranging from 11 to 30 nm, and loose agglomerates of extended DNA filaments. Both clumps and fibers of chromatin exhibit a nucleosomal organization that is lacking in the loose agglomerates of extended DNA filaments. In fact, these filaments constantly show a thickness of 2-3 nm, the same as a DNA double-helix molecule. The loose agglomerates of DNA filaments are located in the fibrillar centers, the interphase counterpart of metaphase NORs, therefore being constituted by ribosomal DNA. The extended, non-nucleosomal configuration of this rDNA has been shown to be independent of transcriptional activity and characterizes ribosome genes that are either transcribed or transcriptionally silent. Data reviewed are consistent with a model of control for ribosome gene activity that is not mediated by changes in chromatin structure. The presence of rDNA in mammalian cells always structurally ready for transcription might facilitate a more rapid adjustment of the ribosome production in response to the metabolic needs of the cell.

  5. Modulation of the malignant phenotype with the urokinase-type plasminogen activator and the type I plasminogen activator inhibitor.

    PubMed

    Sordat, B; Reiter, L; Cajot, J F

    1990-12-02

    Gene transfer techniques were utilized to evaluate the role of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) in enhancing or preventing the expression of the invasive malignant phenotype, respectively. Mouse L-cell transfectants expressing human uPA or human PAI-1 as well as mouse B16 transfectants expressing mouse uPA or human PAI-1 were generated. These transfectants were tested using a variety of experimental methods including smooth muscle cell matrix solubilization in vitro, lung colony formation in vivo and co-cultures of antagonist-expressing cells in vitro. Results from these studies provide direct evidence for an enhancing role of uPA in malignant invasion and experimental metastasis and for a modulatory role of PAI-1 in tumor cell-mediated breakdown of extracellular matrices.

  6. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors.

    PubMed

    Lamarche, M J; Borawski, J; Bose, A; Capacci-Daniel, C; Colvin, R; Dennehy, M; Ding, J; Dobler, M; Drumm, J; Gaither, L A; Gao, J; Jiang, X; Lin, K; McKeever, U; Puyang, X; Raman, P; Thohan, S; Tommasi, R; Wagner, K; Xiong, X; Zabawa, T; Zhu, S; Wiedmann, B

    2012-10-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C.

  7. Anti-Hepatitis C Virus Activity and Toxicity of Type III Phosphatidylinositol-4-Kinase Beta Inhibitors

    PubMed Central

    LaMarche, M. J.; Borawski, J.; Bose, A.; Capacci-Daniel, C.; Colvin, R.; Dennehy, M.; Ding, J.; Dobler, M.; Drumm, J.; Gaither, L. A.; Gao, J.; Jiang, X.; Lin, K.; McKeever, U.; Puyang, X.; Raman, P.; Thohan, S.; Tommasi, R.; Wagner, K.; Xiong, X.; Zabawa, T.; Zhu, S.

    2012-01-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C. PMID:22825118

  8. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system.

    PubMed Central

    Watson, K L; Konrad, K D; Woods, D F; Bryant, P J

    1992-01-01

    The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation. Images PMID:1454811

  9. Identification and structural analysis of ricin inhibitors. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertus, J.D.

    1996-12-01

    Ricin is a potent cytotoxin which has been used by governments and terrorists as a poison. The three-dimensional structure of this toxic molecule was solved by X-ray crystallography, including an atomic description of its active site. The goal of this project was to use computer searches and other molecular modeling techniques to identify an inhibitor or ricin A chain (RTA). The program CHEM-X was used to predict that pteroic acid (PTA) would bind to RTA. This was shown to be the case by kinetic assays, where PTA protected ribosomes against the action of RTA, and by X-ray crystallography. The affinitymore » of PTA is weak, with a Ki estimated at 600 Micrometers. The pterin group of PTA was observed to make many polar interactions with RTA within the specificity site of the enzyme, and to bind more strongly than the natural substrate adenine. Further work will be required to increase the binding affinity of this class of inhibitors, and to improve their solubility if efficacious antidotes are to be designed from this lead.« less

  10. Is it Possible to have the Similar Unit Cell in Crystals of Different form from the same Macromolecule? (A Case Study of Ribosome Crystals)

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.

  11. Human Immunodeficiency Virus Type 1 cDNA Integration: New Aromatic Hydroxylated Inhibitors and Studies of the Inhibition Mechanism

    PubMed Central

    Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.

    1998-01-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543

  12. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  13. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    PubMed

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing

    PubMed Central

    Sloan, Katherine E.; Mattijssen, Sandy; Lebaron, Simon; Tollervey, David; Pruijn, Ger J.M.

    2013-01-01

    Human ribosome production is up-regulated during tumorogenesis and is defective in many genetic diseases (ribosomopathies). We have undertaken a detailed analysis of human precursor ribosomal RNA (pre-rRNA) processing because surprisingly little is known about this important pathway. Processing in internal transcribed spacer 1 (ITS1) is a key step that separates the rRNA components of the large and small ribosomal subunits. We report that this was initiated by endonuclease cleavage, which required large subunit biogenesis factors. This was followed by 3′ to 5′ exonucleolytic processing by RRP6 and the exosome, an enzyme complex not previously linked to ITS1 removal. In contrast, RNA interference–mediated knockdown of the endoribonuclease MRP did not result in a clear defect in ITS1 processing. Despite the apparently high evolutionary conservation of the pre-rRNA processing pathway and ribosome synthesis factors, each of these features of human ITS1 processing is distinct from those in budding yeast. These results also provide significant insight into the links between ribosomopathies and ribosome production in human cells. PMID:23439679

  15. Comparative study between prokaryotes and eukaryotes by chemical iodination of ribosomal proteins.

    PubMed

    Bernabeu, C; Vázquez, D; Conde, F P

    1979-04-25

    Escherichia coli and Saccharomyces cerevisiae ribosomal proteins were chemically iodinated with 125I by chloramine T under conditions in which the proteins were denatured. The labelled proteins were subsequently separated by two-dimensional gel electrophoresis with an excess of untreated ribosomal proteins from the same species. The iodination did not change the electrophoretic mobility of the proteins as shown by the pattern of spots in the stained gel slabs and their autoradiography. The 125I radioactivity incorporated in the proteins was estimated by cutting out the gel spots from the two-dimensional electrophoresis gel slabs. The highest content of 125I was found in the ribosomal proteins L2, L11, L13, L20/S12, S4 and S9 from E. coli, and L2/L3, L4/L6/S7, L5, L19/L20, L22/S17, L29/S27, L35/L37 and S14/S15 from S. cerevisiae. Comparisons between the electrophoretic patterns of E. coli and S. cerevisiae ribosomal proteins were carried out by coelectrophoresis of labelled and unlabelled proteins from both species. E. coli ribosomal proteins L5, L11, L20, S2, S3 and S15/S16 were found to overlap with L15, L11/L16, L36/L37, S3, S10 and S33 from S. cerevisiae, respectively. Similar coelectrophoresis of E. coli 125I-labelled proteins with unlabelled rat liver and wheat germ ribosomal proteins showed the former to overlap with proteins L1, L11, L14, L16, L19, L20 and the latter with L2, L5, L6, L15, L17 from E. coli.

  16. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome

    PubMed Central

    Merz, Frieder; Boehringer, Daniel; Schaffitzel, Christiane; Preissler, Steffen; Hoffmann, Anja; Maier, Timm; Rutkowska, Anna; Lozza, Jasmin; Ban, Nenad; Bukau, Bernd; Deuerling, Elke

    2008-01-01

    Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome–nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors. PMID:18497744

  17. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase

    PubMed Central

    Schawalder, James; Paric, Enesa; Neff, Norma F

    2003-01-01

    Background Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Results Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. Conclusion These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres. PMID:14577841

  18. Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells.

    PubMed

    Wang, Hsiang-Tsui; Chen, Tzu-Ying; Weng, Ching-Wen; Yang, Chun-Hsiang; Tang, Moon-Shong

    2016-12-06

    Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.

  19. Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night.

    PubMed

    Turkina, Maria V; Klang Årstrand, Hanna; Vener, Alexander V

    2011-01-01

    Protein synthesis in plants is characterized by increase in the translation rates for numerous proteins and central metabolic enzymes during the day phase of the photoperiod. The detailed molecular mechanisms of this diurnal regulation are unknown, while eukaryotic protein translation is mainly controlled at the level of ribosomal initiation complexes, which also involves multiple events of protein phosphorylation. We characterized the extent of protein phosphorylation in cytosolic ribosomes isolated from leaves of the model plant Arabidopsis thaliana harvested during day or night. Proteomic analyses of preparations corresponding to both phases of the photoperiod detected phosphorylation at eight serine residues in the C-termini of six ribosomal proteins: S2-3, S6-1, S6-2, P0-2, P1 and L29-1. This included previously unknown phosphorylation of the 40S ribosomal protein S6 at Ser-231. Relative quantification of the phosphorylated peptides using stable isotope labeling and mass spectrometry revealed a 2.2 times increase in the day/night phosphorylation ratio at this site. Phosphorylation of the S6-1 and S6-2 variants of the same protein at Ser-240 increased by the factors of 4.2 and 1.8, respectively. The 1.6 increase in phosphorylation during the day was also found at Ser-58 of the 60S ribosomal protein L29-1. It is suggested that differential phosphorylation of the ribosomal proteins S6-1, S6-2 and L29-1 may contribute to modulation of the diurnal protein synthesis in plants.

  20. Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting.

    PubMed

    Tran, Thi Phuong Anh; Vo, Duc Duy; Di Giorgio, Audrey; Duca, Maria

    2015-09-01

    MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level. It is now well established that the overexpression of some miRNAs (oncogenic miRNAs) is responsible for initiation and progression of human cancers and the discovery of new molecules able to interfere with their production and/or function represents one of the most important challenges of current medicinal chemistry of RNA ligands. In this work, we studied the ability of 18 different antibiotics, known as prokaryotic ribosomal RNA, to bind to oncogenic miRNA precursors (stem-loop structured pre-miRNAs) in order to inhibit miRNAs production. In vitro inhibition, binding constants, thermodynamic parameters and binding sites were investigated and highlighted that aminoglycosides and tetracyclines represent interesting pre-miRNA ligands with the ability to inhibit Dicer processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana.

    PubMed

    Palm, Denise; Simm, Stefan; Darm, Katrin; Weis, Benjamin L; Ruprecht, Maike; Schleiff, Enrico; Scharf, Christian

    2016-01-01

    Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast.

  2. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana

    PubMed Central

    Palm, Denise; Simm, Stefan; Darm, Katrin; Weis, Benjamin L.; Ruprecht, Maike; Schleiff, Enrico; Scharf, Christian

    2016-01-01

    ABSTRACT Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast. PMID:26980300

  3. Transcriptional mapping of the ribosomal RNA region of mouse L-cell mitochondrial DNA.

    PubMed Central

    Nagley, P; Clayton, D A

    1980-01-01

    The map positions in mouse mitochondrial DNA of the two ribosomal RNA genes and adjacent genes coding several small transcripts have been determined precisely by application of a procedure in which DNA-RNA hybrids have been subjected to digestion by S1 nuclease under conditions of varying severity. Digestion of the DNA-RNA hybrids with S1 nuclease yielded a series of species which were shown to contain ribosomal RNA molecules together with adjacent transcripts hybridized conjointly to a continuous segment of mitochondrial DNA. There is one small transcript about 60 bases long whose gene adjoins the sequences coding the 5'-end of the small ribosomal RNA (950 bases) and which lies approximately 200 nucleotides from the D-loop origin of heavy strand mitochondrial DNA synthesis. An 80-base transcript lies between the small and large ribosomal RNA genes, and genes for two further short transcript (each about 80 bases in length) abut the sequences coding the 3'-end of the large ribosomal RNA (approximately 1500 bases). The ability to isolate a discrete DNA-RNA hybrid species approximately 2700 base pairs in length containing all these transcripts suggests that there can be few nucleotides in this region of mouse mitochondrial DNA which are not represented as stable RNA species. Images PMID:6253898

  4. Binding of Dihydrostreptomycin to Escherichia coli Ribosomes: Characteristics and Equilibrium of the Reaction

    PubMed Central

    Chang, F. N.; Flaks, Joel G.

    1972-01-01

    The binding of dihydrostreptomycin to ribosomes and ribosomal subunits of a number of different Escherichia coli strains was studied, and the Mg2+ and pH dependence, as well as the effect of salts and polynucleotides, was determined. The only requirement for binding with ribosomes and subunits from susceptible strains was 10 mm Mg2+. Monovalent salts weakened the binding in a manner similar to the effects on ribonucleic acid secondary structure, and this was antagonized to some extent by increased amounts of Mg2+. Bound dihydrostreptomycin could be readily exchanged by streptomycin and any antibiotically active derivative, but not by fragments of the antibiotic or any other aminoglycoside. With native (run-off) 70S ribosomes from streptomycin-susceptible strains, the binding was rapid and relatively temperature independent over the range from 0 to 37 C. Polynucleotides did not stimulate the binding. With concentrations of dihydrostreptomycin up to 10−5m, greater than 95% of native 70S ribosomes bound exactly 1 molecule of the antibiotic tightly, with a Kdiss for the bound complex at 25 C of 9.4 × 10−8m. The following thermodynamic parameters were found for the binding with 70S ribosomes at 25 C:ΔG° = −9.6 kcal/mole, ΔH° = −6.2 kcal/mole, and ΔS° = +11.4 entropy units/mole. Differences in affinity for the antibiotic were found between ribosomes of K-12 strains and those of other E. coli strains. There was insignificant binding to 70S ribosomes or subunits from streptomycin-resistant or -dependent strains, and to 50S subunits from susceptible strains. The binding to 30S subunits from susceptible strains was weaker by an order of magnitude than that to the 70S particle, with a Kdiss at 25 C of 10−6m. Polyuridylic acid stimulated this binding slightly but did not influence the affinity of the bound molecule. At antibiotic concentrations above 10−5m, streptomycin-susceptible 70S and 30S particles bound additional molecules of the antibiotic, and

  5. Access to Ribosomal Protein Rpl25p by the Signal Recognition Particle Is Required for Efficient Cotranslational Translocation

    PubMed Central

    Dalley, Jane A.; Selkirk, Alexander

    2008-01-01

    Targeting of proteins to the endoplasmic reticulum (ER) occurs cotranslationally necessitating the interaction of the signal recognition particle (SRP) and the translocon with the ribosome. Biochemical and structural studies implicate ribosomal protein Rpl25p as a major ribosome interaction site for both these factors. Here we characterize an RPL25GFP fusion, which behaves as a dominant mutant leading to defects in co- but not posttranslational translocation in vivo. In these cells, ribosomes still interact with ER membrane and the translocon, but are defective in binding SRP. Overexpression of SRP can restore ribosome binding of SRP, but only partially rescues growth and translocation defects. Our results indicate that Rpl25p plays a critical role in the recruitment of SRP to the ribosome. PMID:18448667

  6. Tempo and Mode of Gene Duplication in Mammalian Ribosomal Protein Evolution

    PubMed Central

    Gajdosik, Matthew D.; Simon, Amanda; Nelson, Craig E.

    2014-01-01

    Gene duplication has been widely recognized as a major driver of evolutionary change and organismal complexity through the generation of multi-gene families. Therefore, understanding the forces that govern the evolution of gene families through the retention or loss of duplicated genes is fundamentally important in our efforts to study genome evolution. Previous work from our lab has shown that ribosomal protein (RP) genes constitute one of the largest classes of conserved duplicated genes in mammals. This result was surprising due to the fact that ribosomal protein genes evolve slowly and transcript levels are very tightly regulated. In our present study, we identified and characterized all RP duplicates in eight mammalian genomes in order to investigate the tempo and mode of ribosomal protein family evolution. We show that a sizable number of duplicates are transcriptionally active and are very highly conserved. Furthermore, we conclude that existing gene duplication models do not readily account for the preservation of a very large number of intact retroduplicated ribosomal protein (RT-RP) genes observed in mammalian genomes. We suggest that selection against dominant-negative mutations may underlie the unexpected retention and conservation of duplicated RP genes, and may shape the fate of newly duplicated genes, regardless of duplication mechanism. PMID:25369106

  7. Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus

    PubMed Central

    Finch, Leanne K.; Ling, Roger; Napthine, Sawsan; Olspert, Allan; Michiels, Thomas; Lardinois, Cécile; Bell, Susanne; Loughran, Gary; Brierley, Ian

    2015-01-01

    ABSTRACT Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed −1 ribosomal frameshift (−1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that −1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3′ RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient −1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses. IMPORTANCE Many viruses utilize programmed −1 ribosomal frameshifting (−1 PRF) to produce different protein products at a defined ratio, or to translate overlapping ORFs to increase coding capacity. With few exceptions, −1 PRF occurs on specific “slippery” heptanucleotide sequences and is stimulated by RNA structure beginning 5 to 9 nucleotides (nt) downstream of the slippery site. Here we describe an unusual case of −1 PRF in Theiler's murine encephalomyelitis virus (TMEV) that is extraordinarily efficient (74 to 82% of ribosomes shift into the alternative reading frame) and, in stark contrast to other examples of −1 PRF, is dependent upon a stem-loop structure beginning 14 nt downstream of

  8. A model for the study of ligand binding to the ribosomal RNA helix h44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibrov, Sergey M.; Parsons, Jerod; Hermann, Thomas

    2010-09-02

    Oligonucleotide models of ribosomal RNA domains are powerful tools to study the binding and molecular recognition of antibiotics that interfere with bacterial translation. Techniques such as selective chemical modification, fluorescence labeling and mutations are cumbersome for the whole ribosome but readily applicable to model RNAs, which are readily crystallized and often give rise to higher resolution crystal structures suitable for detailed analysis of ligand-RNA interactions. Here, we have investigated the HX RNA construct which contains two adjacent ligand binding regions of helix h44 in 16S ribosomal RNA. High-resolution crystal structure analysis confirmed that the HX RNA is a faithful structuralmore » model of the ribosomal target. Solution studies showed that HX RNA carrying a fluorescent 2-aminopurine modification provides a model system that can be used to monitor ligand binding to both the ribosomal decoding site and, through an indirect effect, the hygromycin B interaction region.« less

  9. Translational control of ribosomal protein S15.

    PubMed

    Portier, C; Philippe, C; Dondon, L; Grunberg-Manago, M; Ebel, J P; Ehresmann, B; Ehresmann, C

    1990-08-27

    The expression of ribosomal protein S15 is shown to be translationally and negatively autocontrolled using a fusion within a reporter gene. Isolation and characterization of several deregulated mutants indicate that the regulatory site (the translational operator site) overlaps the ribosome loading site of the S15 messenger. In this region, three domains, each exhibiting a stem-loop structure, were determined using chemical and enzymatic probes. The most downstream hairpin carries the Shine-Dalgarno sequence and the initiation codon. Genetic and structural data derived from mutants constructed by site-directed mutagenesis show that the operator is a dynamic structure, two domains of which can form a pseudoknot. Binding of S15 to these two domains suggests that the pseudoknot could be stabilized by S15. A model is presented in which two alternative structures would explain the molecular basis of the S15 autocontrol.

  10. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples.

    PubMed

    Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T

    1998-09-25

    A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.

  11. Role of messenger RNA-ribosome complex in complementary DNA display.

    PubMed

    Naimuddin, Mohammed; Ohtsuka, Isao; Kitamura, Koichiro; Kudou, Motonori; Kimura, Shinnosuke

    2013-07-15

    In vitro display technologies such as ribosome display and messenger RNA (mRNA)/complementary DNA (cDNA) display are powerful methods that can generate library diversities on the order of 10(10-14). However, in mRNA and cDNA display methods, the end use diversity is two orders of magnitude lower than initial diversity and is dependent on the downstream processes that act as limiting factors. We found that in our previous cDNA display protocol, the purification of protein fusions by the use of streptavidin matrices from cell-free translation mixtures had poor efficiency (∼10-15%) that seriously affected the diversity of the purified library. Here, we have investigated and optimized the protocols that provided remarkable purification efficiencies. The stalled ribosome in the mRNA-ribosome complex was found to impede this purification efficiency. Among the various conditions tested, destabilization of ribosomes by appropriate concentration of metal chelating agents in combination with an optimal temperature of 30°C were found to be crucial and effective for nearly complete isolation of protein fusions from the cell-free translation system. Thus, this protocol provided 8- to 10-fold increased efficiency of purification over the previous method and results in retaining the diversity of the library by approximately an order of magnitude-important for directed evolution. We also discuss the possible effects in the fabrication of protein chips. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.

    PubMed

    Matyszak, M K; Perry, V H

    1996-09-01

    We have studied the effect of an inhibitor of matrix metalloproleinases, BB-1101, on a delayed-type hypersensitivity (DTH) response in the CNS. We used a recently described model in which heat-killed bacillus Calmette-Guérin (BCG) sequestered behind the blood-brain barrier (BBB) is targeted by a T-cell mediated response after subcutaneous injection of BCG (Matyszak and Perry, 1995). The DTH lesions are characterised by breakdown of the BBB, macrophage and lymphocyte infiltration and tissue damage including myelin loss. Treatment with BB-1101, which is not only a potent inhibitor of matrix metalloproteinases but also strongly inhibits TNF-alpha release, dramatically attenuated the CNS lesions. Breakdown of the BBB and the recruitment of T-cells into the site of the lesion were significantly reduced. There were many fewer inflammatory macrophages in DTH lesions than in comparable lesions from untreated animals. There was also significantly less myelin damage (assessed by staining with anti-MBP antibody). The DTH response in animals treated with dexamethasone was also reduced, but to a lesser degree. No significant effect was seen after administration of pentoxifylline, a phosphodiesterase inhibitor with effects including the inhibition of TNF-alpha production. Our results suggest that inhibitors of matrix metalloproteinases may be of considerable therapeutic benefit in neuroinflammatory diseases.

  13. Ribosomal Translocation: One Step Closer to the Molecular Mechanism

    PubMed Central

    Shoji, Shinichiro; Walker, Sarah E.; Fredrick, Kurt

    2010-01-01

    Protein synthesis occurs in ribosomes, the targets of numerous antibiotics. How these large and complex machines read and move along mRNA have proven to be challenging questions. In this Review, we focus on translocation, the last step of the elongation cycle in which movement of tRNA and mRNA is catalyzed by elongation factor G. Translocation entails large-scale movements of the tRNAs and conformational changes in the ribosome that require numerous tertiary contacts to be disrupted and reformed. We highlight recent progress toward elucidating the molecular basis of translocation and how various antibiotics influence tRNA–mRNA movement. PMID:19173642

  14. Assembly constraints drive co-evolution among ribosomal constituents.

    PubMed

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Xiaomin; Meehan, Edward J.; Xie, Jieming

    2008-10-27

    A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04more » {angstrom}, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven {alpha}-helices and eight {beta}-strands, and a smaller C-terminal domain consisting of three {alpha}-helices and two {beta}-strands. The high resolution structure established a glycosylation pattern of GlcNAc{sub 2}Man3Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.« less

  16. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation.

    PubMed

    Tummala, Hemanth; Walne, Amanda J; Williams, Mike; Bockett, Nicholas; Collopy, Laura; Cardoso, Shirleny; Ellison, Alicia; Wynn, Rob; Leblanc, Thierry; Fitzgibbon, Jude; Kelsell, David P; van Heel, David A; Payne, Elspeth; Plagnol, Vincent; Dokal, Inderjeet; Vulliamy, Tom

    2016-07-07

    A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit. Copyright © 2016. Published by Elsevier Inc.

  17. Perceptions of erectile dysfunction and phosphodiesterase type 5 inhibitor therapy in a qualitative study of men and women in affected relationships.

    PubMed

    McGraw, Sarah A; Rosen, Raymond C; Althof, Stanley E; Dunn, Marian; Cameron, Ann; Wong, David

    2015-01-01

    Erectile dysfunction negatively affects men and women in relationships; however, the subjective experience of erectile dysfunction and phosphodiesterase-type 5 inhibitor therapy remains poorly understood. The authors therefore characterized participants' subjective understanding of erectile dysfunction and phosphodiesterase-type 5 inhibitor therapy using individual interviews with affected heterosexual men (n = 58) and women (n = 65). Responses were characterized by 6 psychosocial domains: explanation of the experience, emotional responses, socially expected responses, value of sex, communication with the partner, and treatment expectations. The findings may aid clinicians in relating to men with erectile dysfunction and thus potentially improve effectiveness of therapy.

  18. An inhibitor of eIF2 activity in the sRNA pool of eukaryotic cells.

    PubMed

    Centrella, Michael; Porter, David L; McCarthy, Thomas L

    2011-08-15

    Eukaryotic protein synthesis is a multi-step and highly controlled process that includes an early initiation complex containing eukaryotic initiation factor 2 (eIF2), GTP, and methionine-charged initiator methionyl-tRNA (met-tRNAi). During studies to reconstruct formation of the ternary complex containing these molecules, we detected a potent inhibitor in low molecular mass RNA (sRNA) preparations of eukaryotic tRNA. The ternary complex inhibitor (TCI) was retained in the total sRNA pool after met-tRNAi was charged by aminoacyl tRNA synthetase, co-eluted with sRNA by size exclusion chromatography, but resolved from met-tRNAi by ion exchange chromatography. The adverse effect of TCI was not overcome by high GTP or magnesium omission and was independent of GTP regeneration. Rather, TCI suppressed the rate of ternary complex formation, and disrupted protein synthesis and the accumulation of heavy polymeric ribosomes in reticulocyte lysates in vitro. Lastly, a component or components in ribosome depleted cell lysate significantly reversed TCI activity. Since assembly of the met-tRNAi/eIF2/GTP ternary complex is integral to protein synthesis, awareness of TCI is important to avoid confusion in studies of translation initiation. A clear definition of TCI may also allow a better appreciation of physiologic or pathologic situations, factors, and events that control protein synthesis in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome

    PubMed Central

    Arenz, Stefan; Graf, Michael; Nguyen, Fabian; Huter, Paul; Polikanov, Yury S.; Blanchard, Scott C.; Wilson, Daniel N.

    2016-01-01

    The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis. PMID:27330110

  20. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center

    PubMed Central

    Willi, Jessica; Küpfer, Pascal; Evéquoz, Damien; Fernandez, Guillermo; Polacek, Norbert

    2018-01-01

    Abstract Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation. PMID:29309687