Sample records for napus attenuate verticillium

  1. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    PubMed

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  2. Verticillium Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in Arabidopsis[W

    PubMed Central

    Reusche, Michael; Thole, Karin; Janz, Dennis; Truskina, Jekaterina; Rindfleisch, Sören; Drübert, Christine; Polle, Andrea; Lipka, Volker; Teichmann, Thomas

    2012-01-01

    The soilborne fungal plant pathogen Verticillium longisporum invades the roots of its Brassicaceae hosts and proliferates in the plant vascular system. Typical aboveground symptoms of Verticillium infection on Brassica napus and Arabidopsis thaliana are stunted growth, vein clearing, and leaf chloroses. Here, we provide evidence that vein clearing is caused by pathogen-induced transdifferentiation of chloroplast-containing bundle sheath cells to functional xylem elements. In addition, our findings suggest that reinitiation of cambial activity and transdifferentiation of xylem parenchyma cells results in xylem hyperplasia within the vasculature of Arabidopsis leaves, hypocotyls, and roots. The observed de novo xylem formation correlates with Verticillium-induced expression of the VASCULAR-RELATED NAC DOMAIN (VND) transcription factor gene VND7. Transgenic Arabidopsis plants expressing the chimeric repressor VND7-SRDX under control of a Verticillium infection-responsive promoter exhibit reduced de novo xylem formation. Interestingly, infected Arabidopsis wild-type plants show higher drought stress tolerance compared with noninfected plants, whereas this effect is attenuated by suppression of VND7 activity. Together, our results suggest that V. longisporum triggers a tissue-specific developmental plant program that compensates for compromised water transport and enhances the water storage capacity of infected Brassicaceae host plants. In conclusion, we provide evidence that this natural plant–fungus pathosystem has conditionally mutualistic features. PMID:23023171

  3. The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt.

    PubMed

    Tyvaert, L; França, S C; Debode, J; Höfte, M

    2014-06-01

    To investigate the interaction between cauliflower and the isolate VerticilliumVt305, obtained from a field suppressive to Verticillium wilt of cauliflower, and to evaluate the ability of VerticilliumVt305 to control Verticillium wilt of cauliflower caused by V. longisporum. Single and combined inoculations of VerticilliumVt305 and V. longisporum were performed on cauliflower seedlings. Symptom development was evaluated, and fungal colonization was measured in the roots, hypocotyl and stem with real-time PCR. No symptoms were observed after single inoculation of VerticilliumVt305, although it colonized the plant tissues. Pre-inoculation of VerticilliumVt305 reduced symptom development and colonization of plant tissues by V. longisporum. VerticilliumVt305 is an endophyte on cauliflower plants and showed effective biological control of V. longisporum in controlled conditions. This work can contribute to the development of a sustainable control measure of V. longisporum in Brassicaceae hosts, which is currently not available. Additionally, this study provides evidence for the different roles of Verticillium species present in the agro-ecosystem. © 2014 The Society for Applied Microbiology.

  4. Growth of Verticillium longisporum in Xylem Sap of Brassica napus is Independent from Cultivar Resistance but Promoted by Plant Aging.

    PubMed

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-09-01

    As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in

  5. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    PubMed

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. An aversion to Verticillium

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt is a one of the most serious diseases affecting field production of ornamental trees and shrubs. The disease is caused by the soilborne fungus, Verticillium dahliae. The pathogen is very common in agricultural fields and infects hundreds of economically important plant species incl...

  7. Verticillium wilt in the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt is a serious disease of many economically important agricultural and horticultural crops in the Pacific Northwest (PNW). The disease affects herbaceous annuals and perennials as well as woody trees and shrubs. Plants affected by Verticillium wilt exhibit chlorosis, wilting, defolia...

  8. First report of Verticillium wilt caused by Verticillium nonalfalfae on tree-of-heaven (Ailanthus altissima) in Ohio

    Treesearch

    J. Rebbeck; M.A. Malone; D.P.G. Short; M.T. Kasson; E.S. O' Neal; D.D. Davis

    2013-01-01

    Verticillium wilt of the highly invasive tree-of-heaven [Ailanthus altissima (Mill.) Swingle], caused by Verticillium nonalfalfae Interbitzin et al. (1), formerly classified as V. albo-atrum Reinke and Berthold, has been reported in the United States from two states: Pennsylvania (2) and Virginia (3). Infected...

  9. QTL mapping and candidate gene discovery in potato for resistance to the Verticillium wilt pathogen Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt (VW) of potato (Solanum tuberosum), caused by fungal pathogens, Verticillium dahliae and V. albo atrum, is a disease of major significance throughout the potato growing regions in the world. In the past, researchers have focused on the Ve gene, which is a major dominant gene that c...

  10. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens.

    PubMed

    Depotter, Jasper R L; Rodriguez-Moreno, Luis; Thomma, Bart P H J; Wood, Thomas A

    2017-11-01

    Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.

  11. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt.

    PubMed

    Deketelaere, Silke; Tyvaert, Lien; França, Soraya C; Höfte, Monica

    2017-01-01

    The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae , and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta . Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be

  12. Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt

    PubMed Central

    Deketelaere, Silke; Tyvaert, Lien; França, Soraya C.; Höfte, Monica

    2017-01-01

    The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be

  13. Selection for resistance to Verticillium wilt caused by race 2 isolates of Verticillium dahliae in accessions of lettuce (Lactuca sativa L.).

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. The pathogen exists as two races (races 1 and 2) in lettuce, and complete resistance to race 1 is known. Resistance to race 2 isolates has not been reported, and production of race 1 re...

  14. Host range of Verticillium isaacii and Verticillium klebahnii from artichoke, spinach, and lettuce

    USDA-ARS?s Scientific Manuscript database

    Verticillium is a genus that includes major vascular wilt pathogens. The recent multilocus phylogenetic analyses of the genus identified 5 new species including V. isaacii and V. klebahnii, both of which occur in agricultural soils in coastal California, and have been isolated from asymptomatic and ...

  15. A qPCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    USDA-ARS?s Scientific Manuscript database

    The fungus Verticillium dahliae is the causal agent of Verticillium wilt of lettuce and other specialty crops in the Salinas Valley of California. Spinach, another major specialty crop in California, is not affected by Verticillium wilt in commercial production. However, spinach seed infected with ...

  16. Development of a qPCR assay for quantification of verticillium dahliae in spinach seed.

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, is an important disease of lettuce and other specialty crops in the Salinas Valley of California. Although spinach is not affected by Verticillium wilt in commercial production, spinach seed infected with V. dahliae from locatio...

  17. Comparative RNA-seq for the investigation of tolerance to Verticillium wilt in black raspberry

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae Kleb., a cause of verticillium wilt, is a wide-spread, soil-borne fungal pathogen with a wide host range that includes many fruit and vegetable crops. Verticillium dahliae has been isolated from Rubus species showing symptoms of the disease. Very little is known about the intera...

  18. Breeding and genetics of lettuce for resistance against race 2 Verticillium wilt

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by Verticillium dahliae Kleb., is an economically important disease of lettuce in central coastal California. Most isolates of the pathogen detected in the Salinas Valley belong to race 1 for which complete resistance exists. However, adequate level of resistance is not ava...

  19. Verticillium dahliae disease resistance and the regulatory pathway for tuberization in potato

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae Kleb. is a pathogenic fungus causing wilting, chlorosis, and early dying in potato. Genetic mapping of resistance V. dahliae was done using a diploid population in potato. A quantitative trait locus (QTL) on chromosome 9 co-localized with the Ve2 Verticillium wilt resistance ge...

  20. Variability associated with screening for common scab and verticillium wilt in potato

    USDA-ARS?s Scientific Manuscript database

    Common Scab (CS) and Verticillium Wilt (VW) are caused by the soilborne bacteria Streptomyces scabies, and fungi, Verticillium dahliae and V. albo-atrum, respectively, in potato (Solanum tuberosum). Both diseases result in biological and/or marketable yield loss and are tested in fields with high di...

  1. Heterologous expression of the cotton NBS-LRR gene GbaNA1 enhances Verticillium wilt resistance in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR...

  2. Finding the fighters. Maturity-adjusted resistance of potato cultivars to Verticillium wilt

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt of potato, also known as early dying disease, is caused by two soil-borne fungi of Verticillium: V. dahliae and V. albo-atrum. Of the two, V. dahliae is found in most of the U.S., whereas, V. albo-atrum is found primarily in the northern U.S. and southern Canada. The fungus is ca...

  3. Genetics of the partial resistance against race 2 of Verticillium dahliae in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) production on the Coastal California is threatened by Verticillium wilt, a soil borne fungal disease caused by Verticillium dahliae that diminishes yield and quality. Two races of V. dahliae were identified on lettuce, race 1 and race 2. Complete resistance to race 1 is c...

  4. Screening of wild and cultivated Capsicum germplasm reveals new sources of Verticillium wilt resistance

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt caused by Verticillium dahliae is an important soilborne disease of pepper (Capsicum species) worldwide. Most commercial pepper cultivars lack resistance to this pathogen. Our objective was to identify resistance to multiple V. dahliae isolates in wild and cultivated Capsicum acces...

  5. Possibilities of direct introgression from Brassica napus to B. juncea and indirect introgression from B. napus to related Brassicaceae through B. juncea

    PubMed Central

    Tsuda, Mai; Ohsawa, Ryo; Tabei, Yutaka

    2014-01-01

    The impact of genetically modified canola (Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report. PMID:24987292

  6. Iceberg lettuce breeding lines with resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture and the University of California, Davis, announce the release of two breeding lines of lettuce (Lactuca sativa L.). Lines RH08-0472 and RH08-0475 are F9 iceberg type lettuce breeding lines with resistance to Verticillium wil...

  7. Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting.

    PubMed

    Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J; Ho, Julie; Reisen, Peter; Samac, Deborah A

    2014-01-01

    Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.

  8. Population biology of Verticillium dahliae isolates from lettuce in the Sallinas Valley of Californis.

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...

  9. Development of an assay for rapid detection and quantification of Verticillium dahliae in soil

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is responsible for Verticillium wilt on a wide range of hosts including strawberry, on which low inoculum densities can cause significant crop loss. Determination of inoculum density is currently done by soil plating, but this can take 6-8 weeks to complete and delay the grower...

  10. Identification of Molecular Markers Associated with Verticillium Wilt Resistance in Alfalfa (Medicago Sativa L.) Using High-Resolution Melting

    PubMed Central

    Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J.; Ho, Julie; Reisen, Peter; Samac, Deborah A.

    2014-01-01

    Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs. PMID:25536106

  11. Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive.

    PubMed

    Varo, A; Raya-Ortega, M C; Trapero, A

    2016-09-01

    To identify potential biological control agents against Verticillium wilt in olive through a mass screening approach. A total of 47 strains and nine mixtures of micro-organisms were evaluated against Verticillium dahliae in a three stage screening: (i) in vitro, by the effect on the mycelial growth and spore germination of the pathogen; (ii) in natural infested soil, by the effect on the reduction of microsclerotia of the pathogen; (iii) in planta, by the effect on the infection of olive plants under controlled conditions. Various fungal and bacterial strains and mixtures inhibited the pathogen and showed consistent biocontrol activity against Verticillium wilt of olive. The screening has resulted in promising fungi and bacteria strains with antagonistic activity against Verticillium, such as two non-pathogenic Fusarium oxysporum, one Phoma sp., one Pseudomonas fluorescens and two mixtures of micro-organisms that may possess multiple modes of action. This study provides a practical basis for the potential use of selected strains as biocontrol agents for the protection of olive plants against V. dahliae infection. In addition, our study presented an effective method to evaluate antagonistic micro-organisms of V. dahliae in olive. © 2016 The Society for Applied Microbiology.

  12. Diversity, Pathogenicity And Control of Verticillium Species.

    USDA-ARS?s Scientific Manuscript database

    The genus Verticillium is a cosmopolitan group of ascomycetous fungi, encompassing phytopathogenic species that cause vascular wilts of plants. Two of these species, V. dahliae and V. albo-atrum, cause billions of dollars in annual crop losses worldwide. The soil habitat of these species, the exte...

  13. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  14. Using comparative genomics to develop a new model of understanding Verticillium wilt resistance in potato

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt (VW) is a persistent and costly disease affecting potato production. VW is caused by the soilborne fungi Verticillium dahliae and V. albo-atrum. Because of the difficulty in dealing with this disease, host resistance offers a low input, effective method of control. Most potato cult...

  15. Segregation of unknown signaling components in potato complicates marker-assisted selection for Ve-mediated Verticillium resistance

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt (VW), caused primarily by soil-borne fungi Verticillium dahliae Kleb and V. albo-atrum Reinke and Berthold is characterized by unilateral wilting of leaves, chlorosis, and premature senescence. VW is mainly controlled by fumigating fields with metam sodium, which has negative econo...

  16. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae (Vd) and Verticillium albo-atrum (Va) are cosmopolitan soil fungi causing very disruptive vascular diseases on a wide range of crop plants. To date, no sexual stage has been identified in either microorganism suggesting that somatic mutation is a major force in generating geneti...

  17. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae.

    PubMed

    Shaban, Muhammad; Miao, Yuhuan; Ullah, Abid; Khan, Anam Qadir; Menghwar, Hakim; Khan, Aamir Hamid; Ahmed, Muhammad Mahmood; Tabassum, Muhammad Adnan; Zhu, Longfu

    2018-04-01

    Cotton, a natural fiber producing crop of huge importance for textile industry, has been reckoned as the backbone in the economy of many developing countries. Verticillium wilt caused by Verticillium dahliae reflected as the most devastating disease of cotton crop in several parts of the world. Average losses due to attack of this disease are tremendous every year. There is urgent need to develop strategies for effective control of this disease. In the last decade, progress has been made to understand the interaction between cotton-V. dahliae and several growth and pathogenicity related genes were identified. Still, most of the molecular components and mechanisms of cotton defense against Verticillium wilt are poorly understood. However, from existing knowledge, it is perceived that cotton defense mechanism primarily depends on the pre-formed defense structures including thick cuticle, synthesis of phenolic compounds and delaying or hindering the expansion of the invader through advanced measures such as reinforcement of cell wall structure, accumulation of reactive oxygen species (ROS), release of phytoalexins, the hypersensitive response and the development of broad spectrum resistance named as, systemic acquired resistance (SAR). Investigation of these defense tactics provide valuable information about the improvement of cotton breeding strategies for the development of durable, cost effective, and broad spectrum resistant varieties. Consequently, this management approach will help to reduce the use of fungicides and also minimize other environmental hazards. In the present paper, we summarized the V. dahliae virulence mechanism and comprehensively discussed the cotton molecular mechanisms of defense such as physiological, biochemical responses with the addition of signaling pathways that are implicated towards attaining resistance against Verticillium wilt. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Genetics of resistance in lettuce to races 1 and 2 of Verticillium dahliae from different host species

    USDA-ARS?s Scientific Manuscript database

    Race 1 resistance against Verticillium dahliae in lettuce was originally shown in the cultivar La Brillante to be conditioned by a single dominant gene (Verticillium resistance 1, Vr1). Multiple, morphologically diverse sources of germplasm have been identified as resistant to race 1. In this study...

  19. Molecular determinants of resistance to Verticillium dahliae in potato

    USDA-ARS?s Scientific Manuscript database

    A constant evolutionary arms race between host resistance genes and pathogen effectors determine adaptive fitness. Therefore, identification of both host resistance genes and pathogen effectors is important in devising effective strategies to control disease. In tomato, resistance to Verticillium da...

  20. Frequency of Verticillium Species in Commercial Spinach Fields and Transmission of V. dahliae from Spinach to Subsequent Lettuce Crops.

    PubMed

    Short, D P G; Gurung, S; Koike, S T; Klosterman, S J; Subbarao, K V

    2015-01-01

    Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.

  1. Phenotyping of Brassica napus for high oil content

    USDA-ARS?s Scientific Manuscript database

    Multi-trait and multi-growth stage phenotyping may improve our ability to assess the dynamic changes in the B. napus phenome under spatiotemporal field conditions. A minimum set of phenotypic traits that can integrate ontogeny and architecture of Brassica napus L. is required for breeding and select...

  2. The Ectopic Overexpression of the Cotton Ve1 and Ve2-Homolog Sequences Leads to Resistance Response to Verticillium Wilt in Arabidopsis

    PubMed Central

    Chen, Jieyin; Li, Nanyang; Ma, Xuefeng; Gupta, Vijai K.; Zhang, Dandan; Li, Tinggang; Dai, Xiaofeng

    2017-01-01

    Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. A receptor-like protein (RLP) gene, Ve1, has been reported to confer resistance to V. dahliae in tomato plants, but few genes have been found to be involved in cotton Verticillium wilt resistance. Here, we cloned two RLP gene homologs, Gossypium barbadense resistance gene to Verticillium dahliae 1 (GbaVd1) and GbaVd2, from the Verticillium wilt-resistant cultivar G. barbadense cv. Hai7124. GbaVd1 and GbaVd2 display sequence divergence, but both encode typical RLPs. Virus-induced gene silencing of GbaVd1 or GbaVd2 compromised the resistance of cotton to V. dahliae, and both genes conferred Verticillium wilt resistance after interfamily transfer into Arabidopsis. Microarray analysis revealed that GbaVd1 and GbaVd2 participate in Verticillium wilt resistance in Arabidopsis through activation of defense responses, including the endocytosis process, signaling factors, transcription factors and reinforcement of the cell wall, as demonstrated by lignification in Arabidopsis transgenic plants. In addition, microarray analysis showed that GbaVd1 and GbaVd2 differentially mediate resistance signaling and activation of defense responses after overexpression in Arabidopsis. Thus, GbaVd1 and GbaVd2 encode RLPs and act as disease resistance genes that mediate the defense response against V. dahliae in cotton. PMID:28611793

  3. Methylation-sensitive amplified polymorphism analysis of Verticillium wilt-stressed cotton (Gossypium).

    PubMed

    Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H

    2016-10-06

    In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.

  4. Frequency of Verticillium species in commercial spinach fields and transmission of V. dahliae from spinach to subsequent lettuce crops

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt, caused by Verticillium dahlia,e is a devastating disease of lettuce in California. The disease on lettuce is currently restricted to a small geographic area in the central coastal California, even though cropping patterns in other coastal lettuce production regions in the state ar...

  5. Fifteen years of verticillium wilt of lettuce in america’s salad bowl: a tale of immigration, subjugation and abatement.

    USDA-ARS?s Scientific Manuscript database

    Lettuce is a popular leafy vegetable that is globally cultivated. The US ranks second in production, with coastal California producing half of the US supply. In 1995, Verticillium wilt caused by the soil borne fungus Verticillium dahliae was identified as a disease of lettuce in coastal California, ...

  6. Characterization of Verticillium dahliae disease reactions in lettuce differential cultivars

    USDA-ARS?s Scientific Manuscript database

    Soilborne diseases significantly affect high value crops in coastal California, including lettuce and strawberry. Breeding crops for pathogen resistance is a strategy for the sustainable management of crop disease. Verticillium dahliae is a soilborne fungus that causes wilt and economic losses in a ...

  7. Citric acid assisted phytoremediation of copper by Brassica napus L.

    PubMed

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Soil Temperature Determines the Reaction of Olive Cultivars to Verticillium dahliae Pathotypes

    PubMed Central

    Calderón, Rocío; Lucena, Carlos; Trapero-Casas, José L.; Zarco-Tejada, Pablo J.; Navas-Cortés, Juan A.

    2014-01-01

    Background Development of Verticillium wilt in olive, caused by the soil-borne fungus Verticillium dahliae, can be influenced by biotic and environmental factors. In this study we modeled i) the combined effects of biotic factors (i.e., pathotype virulence and cultivar susceptibility) and abiotic factors (i.e., soil temperature) on disease development and ii) the relationship between disease severity and several remote sensing parameters and plant stress indicators. Methodology Plants of Arbequina and Picual olive cultivars inoculated with isolates of defoliating and non-defoliating V. dahliae pathotypes were grown in soil tanks with a range of soil temperatures from 16 to 32°C. Disease progression was correlated with plant stress parameters (i.e., leaf temperature, steady-state chlorophyll fluorescence, photochemical reflectance index, chlorophyll content, and ethylene production) and plant growth-related parameters (i.e., canopy length and dry weight). Findings Disease development in plants infected with the defoliating pathotype was faster and more severe in Picual. Models estimated that infection with the defoliating pathotype was promoted by soil temperatures in a range of 16 to 24°C in cv. Picual and of 20 to 24°C in cv. Arbequina. In the non-defoliating pathotype, soil temperatures ranging from 16 to 20°C were estimated to be most favorable for infection. The relationship between stress-related parameters and disease severity determined by multinomial logistic regression and classification trees was able to detect the effects of V. dahliae infection and colonization on water flow that eventually cause water stress. Conclusions Chlorophyll content, steady-state chlorophyll fluorescence, and leaf temperature were the best indicators for Verticillium wilt detection at early stages of disease development, while ethylene production and photochemical reflectance index were indicators for disease detection at advanced stages. These results provide a better

  9. Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana.

    PubMed

    Häffner, Eva; Karlovsky, Petr; Diederichsen, Elke

    2010-11-02

    Verticillium spp. are major pathogens of dicotyledonous plants such as cotton, tomato, olive or oilseed rape. Verticillium symptoms are often ambiguous and influenced by development and environment. The aim of the present study was to define disease and resistance traits of the complex Verticillium longisporum syndrome in Arabidopsis thaliana (L.) Heynh. A genetic approach was used to determine genetic, developmental and environmental factors controlling specific disease and resistance traits and to study their interrelations. A segregating F2/F3 population originating from ecotypes 'Burren' (Bur) and 'Landsberg erecta' (Ler) was established. Plants were root-dip inoculated and tested under greenhouse conditions. The Verticillium syndrome was dissected into components like systemic spread, stunting, development time and axillary branching. Systemic spread of V. longisporum via colonisation of the shoot was extensive in Ler; Bur showed a high degree of resistance against systemic spread. Fungal colonisation of the shoot apex was determined by (a) determining the percentage of plants from which the fungus could be re-isolated and (b) measuring fungal DNA content with quantitative real-time PCR (qPCR). Four quantitative trait loci (QTL) controlling systemic spread were identified for the percentage of plants showing fungal outgrowth, two of these QTL were confirmed with qPCR data. The degree of colonisation by V. longisporum was negatively correlated with development time. QTL controlling development time showed some overlap with QTL for resistance to systemic spread. Stunting depended on host genotype, development time and seasonal effects. Five QTL controlling this trait were identified which did not co-localize with QTL controlling systemic spread. V. longisporum induced increased axillary branching in Bur; two QTL controlling this reaction were found. Systemic spread of V. longisporum in the host as well as resistance to this major disease trait are described for

  10. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is the primary causal agent for Verticillium wilt disease on a diverse array of economically important crops, including cotton. In previous research, we screened a T-DNA insertional mutant library of the highly virulent isolate Vd080 derived from cotton. In this study, the targ...

  11. Peroxidase activity in cotton cell culture infected with Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    In our studies with cotton, we have shown that the plant’s induced anionic peroxidases bind to chitin, which is a component of the cell wall of the plant pathogenic fungus Verticillium dahliae. In binding to the cell wall surface, they disrupt the integrity of the pathogen’s cell wall. Thus, these...

  12. Analysis of a MULE-cyanide hydratase gene fusion in Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    The genome of the phytopathogenic fungus Verticillium dahliae encodes numerous Class II “cut-and-paste” transposable elements, including those of a small group of MULE transposons. We have previously identified a fusion event between a MULE transposon sequence and sequence encoding a cyanide hydrata...

  13. Colonization of spinach (Spinacia oleracea L.) by GFP-tagged verticillium dahliae.

    USDA-ARS?s Scientific Manuscript database

    The soilborne fungus, Verticillium dahliae, causes wilt in a wide range of hosts, including spinach (Spinacia oleracea L.). The interaction between a green fluorescent protein (GFP)-tagged V. dahliae strain and spinach was studied by confocal laser scanning microscopy. The roots of spinach seedlings...

  14. Occurrence of metaxenia and false hybrids in Brassica juncea L. cv. Kikarashina × B. napus

    PubMed Central

    Tsuda, Mai; Konagaya, Ken-ichi; Okuzaki, Ayako; Kaneko, Yukio; Tabei, Yutaka

    2011-01-01

    Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids. PMID:23136472

  15. Analysis of molecular variability among the isolated of Verticillium dahliae from diverse host species based on florescene-based amplified fragment length polymorphism.

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...

  16. Gbvdr6, a Gene Encoding a Receptor-Like Protein of Cotton (Gossypium barbadense), Confers Resistance to Verticillium Wilt in Arabidopsis and Upland Cotton

    PubMed Central

    Yang, Yuwen; Chen, Tianzi; Ling, Xitie; Ma, Zhengqiang

    2018-01-01

    Verticillium wilt is a soil-borne disease that can cause devastating losses in cotton production. Because there is no effective chemical means to combat the disease, the only effective way to control Verticillium wilt is through genetic improvement. Therefore, the identification of additional disease-resistance genes will benefit efforts toward the genetic improvement of cotton resistance to Verticillium wilt. Based on screening of a BAC library with a partial Ve homologous fragment and expression analysis, a V. dahliae-induced gene, Gbvdr6, was isolated and cloned from the Verticillium wilt-resistant cotton G. barbadense cultivar Hai7124. The gene was located in the gene cluster containing Gbve1 and Gbvdr5 and adjacent to the Verticillium wilt-resistance QTL hotspot. Gbvdr6 was induced by Verticillium dahliae Kleb and by the plant hormones salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH) but not by abscisic acid (ABA). Gbvdr6 was localized to the plasma membrane. Overexpression of Gbvdr6 in Arabidopsis and cotton enhanced resistance to V. dahliae. Moreover, the JA/ET signaling pathway-related genes PR3, PDF 1.2, ERF1 and the SA-related genes PR1 and PR2 were constitutively expressed in transgenic plants. Gbvdr6-overexpressing Arabidopsis was less sensitive than the wild-type plant to MeJA. Furthermore, the accumulation of reactive oxygen species and callose was triggered at early time points after V. dahliae infection. These results suggest that Gbvdr6 confers resistance to V. dahliae through regulation of the JA/ET and SA signaling pathways. PMID:29387078

  17. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress.

    PubMed

    Chen, Shuisen; Ding, Guangda; Wang, Zhenhua; Cai, Hongmei; Xu, Fangsen

    2015-03-18

    Given low solubility and immobility in many soils of the world, phosphorus (P) may be the most widely studied macronutrient for plants. In an attempt to gain an insight into the adaptability of Brassica napus to P deficiency, proteome alterations of roots and leaves in two B. napus contrasting genotypes, P-efficient 'Eyou Changjia' and P-inefficient 'B104-2', under long-term low P stress and short-term P-free starvation conditions were investigated, and proteomic combined with comparative genomic analyses were conducted to interpret the interrelation of differential abundance protein species (DAPs) responding to P deficiency with quantitative trait loci (QTLs) for P deficiency tolerance. P-efficient 'Eyou Changjia' had higher dry weight and P content, and showed high tolerance to low P stress compared with P-inefficient 'B104-2'. A total of 146 DAPs were successfully identified by MALDI TOF/TOF MS, which were categorized into several groups including defense and stress response, carbohydrate and energy metabolism, signaling and regulation, amino acid and fatty acid metabolism, protein process, biogenesis and cellular component, and function unknown. 94 of 146 DAPs were mapped to a linkage map constructed by a B. napus population derived from a cross between the two genotypes, and 72 DAPs were located in the confidence intervals of QTLs for P efficiency related traits. We conclude that the identification of these DAPs and the co-location of DAPs with QTLs in the B. napus linkage genetic map provide us novel information in understanding the adaptability of B. napus to P deficiency, and helpful to isolate P-efficient genes in B. napus. Low P seriously limits the production and quality of B. napus. Proteomics and genetic linkage map were widely used to study the adaptive strategies of B. napus response to P deficiency, proteomic combined with comparative genetic analysis to investigate the correlations between DAPs and QTLs are scarce. Thus, we herein investigated

  18. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton

    PubMed Central

    Zhang, Zhiyuan; Zhao, Jun; Ding, Lingyun; Zou, Lifang; Li, Yurong; Chen, Gongyou; Zhang, Tianzhen

    2016-01-01

    Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro. The spread of fungal biomass was also inhibited in vivo since the V. dahliae biomass was decreased dramatically in transgenic cotton plants after inoculation with V. dahliae. Together, these results demonstrate that Hcm1 could activate innate immunity and inhibit the growth of V. dahliae and F. oxysporum to protect cotton against Verticillium and Fusarium wilts. PMID:26856318

  19. Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt.

    PubMed

    Berg, G; Kurze, S; Buchner, A; Wellington, E M; Smalla, K

    2000-12-01

    In order to isolate and characterize new strawberry-associated bacteria antagonistic to the soil-borne pathogenic fungus Verticillium dahliae Kleb., rhizobacterial populations from two different strawberry species, Greenish Strawberry (Fragaria viridis) and Garden Strawberry (F. x ananassa) obtained after plating onto King's B and glycerol-arginine agar, were screened for in vitro antagonism toward V. dahliae. The proportion of isolates with antifungal activity determined in in vitro assay against V. dahliae was higher for the Garden Strawberry than for the Greenish Strawberry. From 300 isolates, 20 isolates with strong antifungal activity were selected characterized by physiological profiling and molecular fingerprinting methods. Diversity among the isolates was characterized with molecular fingerprints using amplified ribosomal DNA restriction analysis (ARDRA) and the more discriminating BOX-PCR fingerprint method. The physiological profiles were well correlated with molecular fingerprinting pattern analysis. Significant reduction of Verticillium wilt by bacterial dipping bath treatment was shown in the greenhouse and in fields naturally infested by V. dahliae. The relative increase of yield ranged from 117% (Streptomyces albidoflavus S1) to 344% (Pseudomonas fluorescens P10) in greenhouse trials, and 113% (Streptomyces albidoflavus S1) to 247% (Pseudomonas fluorescens P6) in field trials. Evaluation resulted in the selection of three effective biocontrol agents (Pseudomonas fluorescens P6, P10, and Streptomyces diastatochromogenes S9) antagonistic to the Verticillium wilt pathogen.

  20. Population Genetics of Verticillium dahliae in Iran Based on Microsatellite and Single Nucleotide Polymorphism Markers.

    PubMed

    Rafiei, Vahideh; Banihashemi, Ziaeddin; Bautista-Jalon, Laura S; Del Mar Jiménez-Gasco, Maria; Turgeon, B Gillian; Milgroom, Michael G

    2018-06-01

    Verticillium dahliae is a plant pathogenic fungus that reproduces asexually and its population structure is highly clonal. In the present study, 78 V. dahliae isolates from Iran were genotyped for mating type, single nucleotide polymorphisms (SNPs), and microsatellites to assign them to clonal lineages and to determine population genetic structure in Iran. The mating type of all isolates was MAT1-2. Based on neighbor-joining analysis and minimum spanning networks constructed from SNPs and microsatellite genotypes, respectively, all but four isolates were assigned to lineage 2B 824 ; four isolates were assigned to lineage 4B. The inferred coalescent genealogy of isolates in lineage 2B 824 showed a clear divergence into two clades that corresponded to geographic origin and host. Haplotypes of cotton and pistachio isolates sampled from central Iran were in one clade, and those of isolates from Prunus spp. sampled from northwestern Iran were in the other. The strong divergence in haplotypes between the two clades suggests that there were at least two separate introductions of lineage 2B 824 to different parts of Iran. Given the history of cotton and pistachio cultivation and Verticillium wilt in Iran, these results are consistent with the hypothesis that cotton was historically a likely source inoculum causing Verticillium wilt in pistachio.

  1. A model for multiseasonal spread of verticillium wilt of lettuce.

    PubMed

    Wu, B M; Subbarao, K V

    2014-09-01

    Verticillium wilt, caused by Verticillium dahliae, is a destructive disease in lettuce, and the pathogen is seedborne. Even though maximum seed infestation rates of <5% have been detected in commercial lettuce seed lots, it is necessary to establish acceptable contamination thresholds to prevent introduction and establishment of the pathogen in lettuce production fields. However, introduction of inoculum into lettuce fields for experimental purposes to determine its long term effects is undesirable. Therefore, we constructed a simulation model to study the spread of Verticillium wilt following pathogen introduction from seed. The model consists of four components: the first for simulating infection of host plants, the second for simulating reproduction of microsclerotia on diseased plants, the third for simulating the survival of microsclerotia, and the fourth for simulating the dispersal of microsclerotia. The simulation results demonstrated that the inoculum density-disease incidence curve parameters and the dispersal gradients affect disease spread in the field. Although a steep dispersal gradient facilitated the establishment of the disease in a new field with a low inoculum density, a long-tail gradient allowed microsclerotia to be dispersed over greater distances, promoting the disease spread in fields with high inoculum density. The simulation results also revealed the importance of avoiding successive lettuce crops in the same field, reducing survival rate of microsclerotia between crops, and the need for breeding resistance against V. dahliae in lettuce cultivars to lower the number of microsclerotia formed on each diseased plant. The simulation results, however, suggested that, even with a low seed infestation rate, the pathogen would eventually become established if susceptible lettuce cultivars were grown consecutively in the same field for many years. A threshold for seed infestation can be established only when two of the three drivers of the disease

  2. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus.

    PubMed

    Ma, Ni; Li, Zai-Yun; Cartagena, J A; Fukui, K

    2006-10-01

    New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (approximately 70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro x Orychophragmus violaceus F5 hybrid plant (2n = 31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n = 38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus-specific bands, deleted bands in 'Oro' and novel bands for two parents were detected. The possible mechanisms for these results were discussed.

  3. Analysis of returns above variable costs for management of Verticillium wilt in cotton

    USDA-ARS?s Scientific Manuscript database

    A large plot study located in Halfway, TX, was conducted from 2007 to 2013 in an irrigated field infested with Verticillium wilt. Management options (crop rotation, irrigation amount, variety election) and combinations of options that can reduce this disease were compared using returns above variabl...

  4. Aerobic nonaseptic growth of Verticillium on coffee waste waters and cane blackstrap molasses at a pilot plant scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, R.; Maldonado, O.; Menchu, J.F.

    1977-01-01

    An evaluation is made of the pilot plant studies on the biosynthesis of Verticillium sp. both on coffee waste waters and blackstrap molasses. The purpose of the study was two-fold: the first to produce a filamentous fungi as a source of protein and the second to alleviate the serious water pollution resulting from the processing of coffee berries. The molasses was studied as an alternative medium to enable year-round operation of the plant since coffee is a seasonal crop. The results indicated that the growth of Verticillium is technically feasible in a batch operation. (JSR)

  5. Deletion of a Stay-Green Gene Associates with Adaptive Selection in Brassica napus.

    PubMed

    Qian, Lunwen; Voss-Fels, Kai; Cui, Yixin; Jan, Habib U; Samans, Birgit; Obermeier, Christian; Qian, Wei; Snowdon, Rod J

    2016-12-05

    Chlorophyll levels provide important information about plant growth and physiological plasticity in response to changing environments. The stay-green gene NON-YELLOWING 1 (NYE1) is believed to regulate chlorophyll degradation during senescence, concomitantly affecting the disassembly of the light-harvesting complex and hence indirectly influencing photosynthesis. We identified Brassica napus accessions carrying an NYE1 deletion associated with increased chlorophyll content, and with upregulated expression of light-harvesting complex and photosynthetic reaction center (PSI and PSII) genes. Comparative analysis of the seed oil content of accessions with related genetic backgrounds revealed that the B. napus NYE1 gene deletion (bnnye1) affected oil accumulation, and linkage disequilibrium signatures suggested that the locus has been subject to artificial selection by breeding in oilseed B. napus forms. Comparative analysis of haplotype diversity groups (haplogroups) between three different ecotypes of the allopolyploid B. napus and its A-subgenome diploid progenitor, Brassica rapa, indicated that introgression of the bnnye1 deletion from Asian B. rapa into winter-type B. napus may have simultaneously improved its adaptation to cooler environments experienced by autumn-sown rapeseed. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  6. Rootstock Effects on Pistachio Trees Grown in Verticillium dahliae-Infested Soil.

    PubMed

    Epstein, L; Beede, R; Kaur, S; Ferguson, L

    2004-04-01

    ABSTRACT In a field trial in soil infested with Verticillium dahliae, we compared the yield, growth, incidence of symptoms of Verticillium wilt, and mortality of two interspecific hybrid pistachio tree rootstocks (UCBI and PGII) with the standard rootstocks: the V. dahliae-resistant and susceptible Pistacia integerrima and P. atlantica, respectively. After 10 years, the trees were destructively sampled for V. dahliae in the xylem at the graft union. The results indicate that trees on the (P. atlantica 'KAC' x P. integerrima) hybrid UCBI rootstock grew and yielded as well as those on P. integerrima. Trees on the hybrid PGII yielded the least. Analysis of variance and log-linear models indicate that in soil infested with V. dahliae, three associations significantly affect pistachio nut yield. Rootstock affects scion vigor and extent of infection. Third, the extent of infection and scion vigor are inversely associated. Although trees on the P. integerrima rootstock had the highest ratings in a visual assessment of vigor, 65% were infected with V. dahliae in the trunk in the graft region compared with 73% in P. atlantica and 25% in UCBI. Thus, P. integerrima and UCBI have at least one different mechanism for resistance to V. dahliae.

  7. Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species

    PubMed Central

    Inderbitzin, Patrik; Bostock, Richard M.; Davis, R. Michael; Usami, Toshiyuki; Platt, Harold W.; Subbarao, Krishna V.

    2011-01-01

    Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen

  8. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus

    PubMed Central

    Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng

    2016-01-01

    The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus. PMID:27822216

  9. Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt

    PubMed Central

    Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M.; He, Ping; Shan, Libo

    2011-01-01

    SUMMARY Cotton is an important cash crop worldwide and serves as a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort in genetics and genomics has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. With the effort of whole genome sequencing of cotton, it is essential to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully established an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with different genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we established a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons, and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, we demonstrated that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton using gene silencing assays, and established the high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton. PMID:21219508

  10. Assembly and comparison of two closely related Brassica napus genomes.

    PubMed

    Bayer, Philipp E; Hurgobin, Bhavna; Golicz, Agnieszka A; Chan, Chon-Kit Kenneth; Yuan, Yuxuan; Lee, HueyTyng; Renton, Michael; Meng, Jinling; Li, Ruiyuan; Long, Yan; Zou, Jun; Bancroft, Ian; Chalhoub, Boulos; King, Graham J; Batley, Jacqueline; Edwards, David

    2017-12-01

    As an increasing number of plant genome sequences become available, it is clear that gene content varies between individuals, and the challenge arises to predict the gene content of a species. However, genome comparison is often confounded by variation in assembly and annotation. Differentiating between true gene absence and variation in assembly or annotation is essential for the accurate identification of conserved and variable genes in a species. Here, we present the de novo assembly of the B. napus cultivar Tapidor and comparison with an improved assembly of the Brassica napus cultivar Darmor-bzh. Both cultivars were annotated using the same method to allow comparison of gene content. We identified genes unique to each cultivar and differentiate these from artefacts due to variation in the assembly and annotation. We demonstrate that using a common annotation pipeline can result in different gene predictions, even for closely related cultivars, and repeat regions which collapse during assembly impact whole genome comparison. After accounting for differences in assembly and annotation, we demonstrate that the genome of Darmor-bzh contains a greater number of genes than the genome of Tapidor. Our results are the first step towards comparison of the true differences between B. napus genomes and highlight the potential sources of error in future production of a B. napus pangenome. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    PubMed Central

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  12. Aerial Warfare: A Volatile Dialogue between the Plant Pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa

    PubMed Central

    Rybakova, Daria; Rack-Wetzlinger, Ute; Cernava, Tomislav; Schaefer, Angelika; Schmuck, Maria; Berg, Gabriele

    2017-01-01

    Verticillium wilt caused by Verticillium spp. results in severe yield losses in a broad range of crops. Verticillium outbreaks are challenging to control, and exacerbated by increases in soil temperatures and drought associated with global warming. Employing natural antagonists as biocontrol agents offers a promising approach to addressing this challenge. Paenibacillus polymyxa Sb3-1 was proven to reduce the growth of Verticillium longisporum during in vitro experiments and was shown to promote the growth of oilseed rape seedlings infested with V. longisporum. Our novel approach combined in vitro and in planta methods with the study of the mode of interaction between Sb3-1 and V. longisporum EVL43 via their volatile organic compounds (VOCs). Volatile and soluble substances, produced by both microorganisms as a reaction to one another's VOCs, were detected by using both gas and liquid chromatography-mass spectrometry. P. polymyxa Sb3-1 continually produced antimicrobial and plant growth promoting VOCs, such as 2-nonanone and 3-hydroxy-2-butanone. Several other antimicrobial volatile substances, such as isoamyl acetate and durenol, were downregulated. The general metabolic activity of Sb3-1, including protein and DNA biotransformations, was upregulated upon contact with EVL43 VOCs. V. longisporum increased its production of antimicrobial substances, such as 1-butanol, and downregulated its metabolic activities upon exposure to Sb3-1 VOCs. Additionally, several stress response substances such as arabitol and protein breakdown products (e.g., L-Isoleucyl-L-glutamic acid), were increased in the co-incubated samples. The results obtained depict an ongoing dialog between these microorganisms resulting in growth inhibition, the slowing down of metabolism, and the cell death of V. longisporum due to contact with the P. polymyxa Sb3-1 VOCs. Moreover, the results indicate that VOCs make a substantial contribution to the interaction between pathogens and their natural

  13. Genome-Wide Delineation of Natural Variation for Pod Shatter Resistance in Brassica napus

    PubMed Central

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Carling, Jason; Coombes, Neil; Diffey, Simon; Kadkol, Gururaj; Edwards, David; McCully, Margaret; Ruperao, Pradeep; Parkin, Isobel A. P.; Batley, Jacqueline; Luckett, David J.; Wratten, Neil

    2014-01-01

    Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified. PMID:25006804

  14. Potato stem cuttings to study Verticillium dahliae infection for resistance breeding and ‘omics’ studies

    USDA-ARS?s Scientific Manuscript database

    The use of consistent and effective methods for early discrimination of resistance to pathogens and selection of appropriate times for tissue sampling are important for experiments focused on global gene expression and metabolomics. Assays for resistance to the vascular pathogen Verticillium dahliae...

  15. Identification of phytotoxins in different plant parts of Brassica napus and their influence on mung bean.

    PubMed

    Mehmood, Azhar; Naeem, Muhammad; Khalid, Farhan; Saeed, Yousaf; Abbas, Tasawer; Jabran, Khawar; Sarwar, Muhammad Aqeel; Tanveer, Asif; Javaid, Muhammad Mansoor

    2018-04-24

    Plants in Brassica genus have been found to possess strong allelopathic potential. They may inhibit seed germination and emergence of subsequent crops following them in a rotation system. Series of laboratory and greenhouse experiments were conducted to determine the allelopathic impacts of Brassica napus L. against mung bean. We studied (1) the effects of aqueous extract (5%) of different plant parts (root, stem, leaf, flower, and whole plant) of B. napus, (2) the effects of leaf and flower extracts of B. napus at 0, 1, 2, 3, and 4% concentrations, and (3) the effect of residues of different B. napus plant parts and decomposition periods (0, 7, 14, and 21 days) on germination and seedling growth of mung bean. Various types of phenolics including quercitin, chlorogenic acid, p-coumeric acid, m-coumaric acid, benzoic acid, caffeic acid, syringic acid, vanillic acid, ferulic acid, cinamic acid, and gallic acid were identified in plant parts of B. napus. Among aqueous extracts of various plant parts, leaf and flower were found to have stronger inhibitory effects on germination and seedling growth traits of mung bean, higher concentrations were more toxic. The decomposition period changed the phtotoxic effect of residues, more inhibitory effect was shown at 14 days decomposition while decomposition for 21 days reduced inhibitory effect. The more total water-soluble phenolic was found in 5% (w/v) aqueous extract and 5% (w/w) residues of B. napus flowers at 14 days of decomposition (89.80 and 10.47 mg L -1 ), respectively. The strong inhibitory effects of B. napus should be managed when followed in rotation.

  16. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    PubMed

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  17. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae.

    PubMed

    Gong, Qian; Yang, Zhaoen; Wang, Xiaoqian; Butt, Hamama Islam; Chen, Eryong; He, Shoupu; Zhang, Chaojun; Zhang, Xueyan; Li, Fuguang

    2017-03-03

    Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be useful for controlling this disease. We cloned the ribosomal protein L18 (GaRPL18) gene, which mediates resistance to Verticillium wilt, from a wilt-resistant cotton species (Gossypium arboreum). We then characterized the function of this gene in cotton and Arabidopsis thaliana plants. GaRPL18 encodes a 60S ribosomal protein subunit important for intracellular protein biosynthesis. However, previous studies revealed that some ribosomal proteins are also inhibitory toward oncogenesis and congenital diseases in humans and play a role in plant disease defense. Here, we observed that V. dahliae infections induce GaRPL18 expression. Furthermore, we determined that the GaRPL18 expression pattern is consistent with the disease resistance level of different cotton varieties. GaRPL18 expression is upregulated by salicylic acid (SA) treatments, suggesting the involvement of GaRPL18 in the SA signal transduction pathway. Virus-induced gene silencing technology was used to determine whether the GaRPL18 expression level influences cotton disease resistance. Wilt-resistant cotton species in which GaRPL18 was silenced became more susceptible to V. dahliae than the control plants because of a significant decrease in the abundance of immune-related molecules. We also transformed A. thaliana ecotype Columbia (Col-0) plants with GaRPL18 according to the floral dip method. The plants overexpressing GaRPL18 were more resistant to V. dahliae infections than the wild-type Col-0 plants. The enhanced resistance of transgenic A. thaliana plants to V. dahliae is likely mediated by the SA pathway. Our findings provide new insights into the role of GaRPL18, indicating that it plays a crucial role in

  18. Oil body biogenesis during Brassica napus embryogenesis.

    PubMed

    He, Yu-Qing; Wu, Yan

    2009-08-01

    Although the oil body is known to be an important membrane enclosed compartment for oil storage in seeds, we have little understanding about its biogenesis during embryogenesis. In the present study we investigated the oil body emergence and variations in Brassica napus cv. Topas. The results demonstrate that the oil bodies could be detected already at the heart stage, at the same time as the embryos began to turn green, and the starch grains accumulated in the chloroplast stroma. In comparison, we have studied the development of oil bodies between Arabidopsis thaliana wild type (Col) and the low-seed-oil mutant wrinkled1-3. We observed that the oil body development in the embryos of Col is similar to that of B. napus cv. Topas, and that the size of the oil bodies was obviously smaller in the embryos of wrinkled1-3. Our results suggest that the oil body biogenesis might be coupled with the embryo chloroplast.

  19. Dynamics of Verticillium species microsclerotia in field soils in response to fumigation, cropping patterns, and flooding

    USDA-ARS?s Scientific Manuscript database

    Many soil-inhabiting fungi are capable of surviving the dynamic soil microenvironment through the formation of resilient resting structures, such as thick-walled spores, melanized hyphae, and sclerotia. Verticillium dahliae is a soil-inhabiting, economically significant plant pathogenic fungus that ...

  20. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.

    PubMed

    Chalhoub, Boulos; Denoeud, France; Liu, Shengyi; Parkin, Isobel A P; Tang, Haibao; Wang, Xiyin; Chiquet, Julien; Belcram, Harry; Tong, Chaobo; Samans, Birgit; Corréa, Margot; Da Silva, Corinne; Just, Jérémy; Falentin, Cyril; Koh, Chu Shin; Le Clainche, Isabelle; Bernard, Maria; Bento, Pascal; Noel, Benjamin; Labadie, Karine; Alberti, Adriana; Charles, Mathieu; Arnaud, Dominique; Guo, Hui; Daviaud, Christian; Alamery, Salman; Jabbari, Kamel; Zhao, Meixia; Edger, Patrick P; Chelaifa, Houda; Tack, David; Lassalle, Gilles; Mestiri, Imen; Schnel, Nicolas; Le Paslier, Marie-Christine; Fan, Guangyi; Renault, Victor; Bayer, Philippe E; Golicz, Agnieszka A; Manoli, Sahana; Lee, Tae-Ho; Thi, Vinh Ha Dinh; Chalabi, Smahane; Hu, Qiong; Fan, Chuchuan; Tollenaere, Reece; Lu, Yunhai; Battail, Christophe; Shen, Jinxiong; Sidebottom, Christine H D; Wang, Xinfa; Canaguier, Aurélie; Chauveau, Aurélie; Bérard, Aurélie; Deniot, Gwenaëlle; Guan, Mei; Liu, Zhongsong; Sun, Fengming; Lim, Yong Pyo; Lyons, Eric; Town, Christopher D; Bancroft, Ian; Wang, Xiaowu; Meng, Jinling; Ma, Jianxin; Pires, J Chris; King, Graham J; Brunel, Dominique; Delourme, Régine; Renard, Michel; Aury, Jean-Marc; Adams, Keith L; Batley, Jacqueline; Snowdon, Rod J; Tost, Jorg; Edwards, David; Zhou, Yongming; Hua, Wei; Sharpe, Andrew G; Paterson, Andrew H; Guan, Chunyun; Wincker, Patrick

    2014-08-22

    Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement. Copyright © 2014, American Association for the Advancement of Science.

  1. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family.

    PubMed

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three "Arabidopsis-like" subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of oilseeds

  2. Functional Analysis of the Brassica napus L. Phytoene Synthase (PSY) Gene Family

    PubMed Central

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three “Arabidopsis-like” subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of

  3. Cold-Induced Accumulation of hsp90 Transcripts in Brassica napus.

    PubMed Central

    Krishna, P.; Sacco, M.; Cherutti, J. F.; Hill, S.

    1995-01-01

    Characterization of the expression of hsp90 genes of Brassica napus by northern blot analysis and immunoblotting showed that the hsp90 mRNA and protein are present in all B. napus tissues examined, albeit at different levels. High levels of hsp90 mRNA and protein were found in young and rapidly dividing tissues such as shoot apices and flower buds, suggesting that hsp90 may have an important role in plant growth and development. A significant increase in hsp90 mRNA levels was detected in seedlings exposed to 5[deg]C. The transcript levels reached a maximum within 1 d of cold treatment and remained elevated for the entire duration of cold treatment. The levels of hsp90 mRNA rapidly decreased to the level found in control plants upon return to 20[deg]C. The cold-induced accumulation of hsp90 mRNA closely resembles the expression of two previously identified cold-regulated genes of B. napus. We have also confirmed cold regulation of hsp90 mRNA in spinach (Spinacea oleracea). Our results suggest a role for hsp90 in adaptation to cold temperature stress. PMID:12228411

  4. Biocontrol of verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate.

    PubMed

    Li, C-H; Shi, L; Han, Q; Hu, H-L; Zhao, M-W; Tang, C-M; Li, S-P

    2012-09-01

    To explore biocontrol potential of 39 DAEB isolates (doubly antagonistic towards both Verticillium dahliae Kleb and Fusarium oxysporum) against verticillium wilt of cotton and to elucidate colonization and category characteristics of an endophytic bacterium with significant biocontrol activity. Thirty-nine antagonistic endophytic bacteria strains were tested for their ability to control verticillium wilt in cotton plants caused by a defoliating pathotype of V. dahliae 107 in cotton under controlled conditions. The biocontrol trial revealed that an endophytic bacterium, designated HA02, showed a significant biocontrol activity to V. dahliae 107. After cotton seedlings were inoculated with a gfp gene-tagged HA02 (HA02-gfp), HA02-gfp populations were higher in the root than in the stem; in addition, the HA02-gfp was distributed in the maturation zone of cotton root. Furthermore, HA02-gfp also colonized seedlings of maize, rape and soybean after the bacteria inoculation. Phylogenetic trees based on 16S rDNA sequences combined with morphological, physiological and identification showed that the bacterium belongs to the Enterobacter genus. Our results showed that only 1 of 39 DAEB isolates demonstrated more efficient biocontrol potential towards V. dahliae 107 in greenhouse and field trials. HA02-gfp mainly colonized cotton in roots. In addition, we quantitatively observed HA02 colonization in other hosts. HA02 belongs to the Enterobacter genus. This is the first study on biocontrol to defoliating pathotype of V. dahliae Kleb by endophytic bacteria. The HA02 showed effective biocontrol to V. dahliae 107 in greenhouse and field trials. Furthermore, we assessed the quantitative and qualitative colonization of HA02 in cotton seedlings. Our study provides basic information to further explore managing strategies to control this critical disease. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus

    PubMed Central

    Sochorová, Jana; Coriton, Olivier; Kuderová, Alena; Lunerová, Jana; Chèvre, Anne-Marie; Kovařík, Aleš

    2017-01-01

    Background and aims Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. Methods We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. Key Results Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH (‘Darmor’, ‘Yudal’ and ‘Asparagus kale’) harboured the same number (12 per diploid set) of loci. In B. napus ‘Darmor’, the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus ‘Darmor’. In contrast, B. napus ‘Yudal’ showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus ‘Asparagus kale’ showed an intermediate pattern to ‘Darmor’ and ‘Yudal’. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar (‘Norin 9’) showed co-dominance. Conclusions The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates

  6. Characterization of a novel single-stranded RNA mycovirus related to invertebrate viruses from the plant pathogen Verticillium dahliae.

    PubMed

    Cañizares, M Carmen; López-Escudero, Francisco J; Pérez-Artés, Encarnación; García-Pedrajas, María D

    2018-03-01

    Fungal viruses, also known as mycoviruses, are widespread in all major groups of fungi. Mycoviruses from plant pathogens can reduce the virulence of their host fungus and have therefore potential as biological control agents. This has spurred the identification of novel mycoviruses in plant pathogens, research which is greatly contributing to our understanding of these organisms. In this work, we report the characterization of a novel monopartite mycovirus from Verticillium dahliae, the main causal agent of Verticillium wilt. This novel mycovirus, which we termed Verticillium dahliae RNA virus 1 (VdRV1), was identified in three different isolates of V. dahliae collected in olive growing areas of the Guadalquivir valley, southern Spain. We determined that the VdRV1 genome is a positive (+) single-stranded (ss) RNA, 2631 nucleotides in length, containing two open reading frames. VdRV1 showed few similarities with known mycoviruses, only with a group of unassigned (+) ssRNA mycoviruses which are related to plant viruses classified within the family Tombusviridae. However, phylogenetic analysis revealed that VdRV1 and the unassigned (+) ssRNA mycoviruses have a closer relationship with recently reported invertebrate viruses. This result indicates that as more viral sequences become available, the relationships of mycoviruses with viruses from other hosts should be reexamined. Additionally, the work supports the hypothesis of a heterogeneous origin for mycoviruses.

  7. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus

    PubMed Central

    Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.

    2014-01-01

    Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314

  8. LMI1-like genes involved in leaf margin development of Brassica napus.

    PubMed

    Ni, Xiyuan; Liu, Han; Huang, Jixiang; Zhao, Jianyi

    2017-06-01

    In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.

  9. Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports

    PubMed Central

    Katsuta, Kensuke; Matsuo, Kazuhito; Yoshimura, Yasuyuki; Ohsawa, Ryo

    2015-01-01

    Genetically modified, herbicide-tolerant (GMHT) Brassica napus plants originating from seed spill have recently been found along roadsides leading from Japanese ports that unload oilseed rape. Such introductions have potential biodiversity effects (as defined by the Cartagena Protocol): these include replacement of native elements in the biota through competitive suppression or hybridization. We conducted surveys in the period 2006–2011 to assess such threats. We examined shifts in the population distribution and occurrence of GMHT plants in 1,029 volunteer introduced assemblages of B. napus, 1,169 of B. juncea, and 184 of B. rapa around 12 ports. GMHT B. napus was found around 10 of 12 ports, but its proportion in the populations varied greatly by year and location. Over the survey period, the distributions of a pure non-GMHT population around Tobata and a pure GMHT population around Hakata increased significantly. However, there was no common trend of population expansion or contraction around the 12 ports. Furthermore, we found no herbicide tolerant B. juncea and B. rapa plants derived from crosses with GMHT B. napus. Therefore, GMHT B. napus is not invading native vegetation surrounding its populations and not likely to cross with congeners in Japanese environment. PMID:26175624

  10. Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding.

    PubMed

    Jugulam, M; Ziauddin, Asma; So, Kenny K Y; Chen, Shu; Hall, J Christopher

    2015-01-01

    Auxinic herbicides (e.g. dicamba) are extensively used in agriculture to selectively control broadleaf weeds. Although cultivated species of Brassicaceae (e.g. Canola) are susceptible to auxinic herbicides, some biotypes of Sinapis arvensis (wild mustard) were found dicamba resistant in Canada. In this research, dicamba tolerance from wild mustard was introgressed into canola through embryo rescue followed by conventional breeding. Intergeneric hybrids between S. arvensis (2n = 18) and B. napus (2n = 38) were produced through embryo rescue. Embryo formation and hybrid plant regeneration was achieved. Transfer of dicamba tolerance from S. arvensis into the hybrid plants was determined by molecular analysis and at the whole plant level. Dicamba tolerance was introgressed into B. napus by backcrossing for seven generations. Homozygous dicamba-tolerant B. napus lines were identified. The ploidy of the hybrid progeny was assessed by flow cytometry. Finally, introgression of the piece of DNA possibly containing the dicamba tolerance gene into B. napus was confirmed using florescence in situ hybridization (FISH). This research demonstrates for the first time stable introgression of dicamba tolerance from S. arvensis into B. napus via in vitro embryo rescue followed by repeated backcross breeding. Creation of dicamba-tolerant B. napus varieties by this approach may have potential to provide options to growers to choose a desirable herbicide-tolerant technology. Furthermore, adoption of such technology facilitates effective weed control, less tillage, and possibly minimize evolution of herbicide resistant weeds.

  11. The self-compatibility mechanism in Brassica napus L. is applicable to F1 hybrid breeding.

    PubMed

    Tochigi, Takahiro; Udagawa, Hisashi; Li, Feng; Kitashiba, Hiroyasu; Nishio, Takeshi

    2011-08-01

    Brassica napus, an allopolyploid species having the A genome of B. rapa and the C genome of B. oleracea, is self-compatible, although both B. rapa and B. oleracea are self-incompatible. We have previously reported that SP11/SCR alleles are not expressed in anthers, while SRK alleles are functional in the stigma in B. napus cv. 'Westar', which has BnS-1 similar to B. rapa S-47 and BnS-6 similar to B. oleracea S-15. This genotype is the most frequent S genotype in B. napus, and we hypothesized that the loss of the function of SP11 is the primary cause of the self-compatibility of 'Westar'. To verify this hypothesis, we transformed 'Westar' plants with the SP11 allele of B. rapa S-47. All the transgenic plants and their progeny were completely self-incompatible, demonstrating self-compatibility to be due to the S haplotype having the non-functional SP11 allele in the A genome, which suppresses a functional recessive SP11 allele in the C genome. An artificially synthesized B. napus line having two recessive SP11 alleles was developed by interspecific hybridization between B. rapa and B. oleracea. This line was self-incompatible, but F(1) hybrids between this line and 'Westar' were self-compatible. These results suggest that the self-compatibility mechanism of 'Westar' is applicable to F(1) seed production in B. napus.

  12. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.

    PubMed

    Li, Lun; Long, Yan; Zhang, Libin; Dalton-Morgan, Jessica; Batley, Jacqueline; Yu, Longjiang; Meng, Jinling; Li, Maoteng

    2015-01-01

    The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci.

  13. Phytotoxicity evaluation of some commonly used shampoos using Brassica napus L.

    PubMed

    Naeem, Faiqa; Ahmed, Faiza; Kanwal, Memoona; Murad, Waheed; Azizullah, Azizullah

    2015-10-01

    Hair shampoos are among the most commonly used chemicals in everyday life. Since shampoos are a major component of domestic and municipal wastewater, they may affect plants when irrigated with wastewater. However, their effects on plants have never been investigated in detail. The present study was aimed to evaluate the effect of some commonly used hair shampoos on seed germination and seedling vigor of Brassica napus. Seeds of Brassica napus were exposed to different concentrations of hair shampoos, i.e., 0 (control), 0.001, 0.01, 0.1, 1.0, and 10 %. The obtained results revealed that germination was not very sensitive to shampoo stress and was significantly inhibited only at the highest tested concentration (10 %) of shampoo except in the case of one shampoo where it was inhibited at concentration of 1 % or above. The other tested parameters of Brassica napus were comparatively more sensitive than germination to shampoo stress. However, at lower concentrations of shampoos, stimulatory effects were also observed in some cases. Although no exact data is available on shampoo concentration in wastewater used for irrigation, it is unlikely that shampoo concentration in irrigation water reach so high and pose adversity to plants.

  14. SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Suppression subtractive hybridization (SSH) was employed to identify lettuce (Lactuca sativa) genes that are differentially expressed in symptomatic leaves infected with Verticillium dahliae. Genes expressed only in symptomatic leaves included those with homology to pathogenesis-related (PR) protei...

  15. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).

    PubMed

    Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling

    2014-04-01

    This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.

  16. Genetic Structure, Linkage Disequilibrium and Association Mapping of Verticillium Wilt Resistance in Elite Cotton (Gossypium hirsutum L.) Germplasm Population

    PubMed Central

    Zhao, Yunlei; Wang, Hongmei; Chen, Wei; Li, Yunhai

    2014-01-01

    Understanding the population structure and linkage disequilibrium in an association panel can effectively avoid spurious associations and improve the accuracy in association mapping. In this study, one hundred and fifty eight elite cotton (Gossypium hirsutum L.) germplasm from all over the world, which were genotyped with 212 whole genome-wide marker loci and phenotyped with an disease nursery and greenhouse screening method, were assayed for population structure, linkage disequilibrium, and association mapping of Verticillium wilt resistance. A total of 480 alleles ranging from 2 to 4 per locus were identified from all collections. Model-based analysis identified two groups (G1 and G2) and seven subgroups (G1a–c, G2a–d), and differentiation analysis showed that subgroup having a single origin or pedigree was apt to differentiate with those having a mixed origin. Only 8.12% linked marker pairs showed significant LD (P<0.001) in this association panel. The LD level for linked markers is significantly higher than that for unlinked markers, suggesting that physical linkage strongly influences LD in this panel, and LD level was elevated when the panel was classified into groups and subgroups. The LD decay analysis for several chromosomes showed that different chromosomes showed a notable change in LD decay distances for the same gene pool. Based on the disease nursery and greenhouse environment, 42 marker loci associated with Verticillium wilt resistance were identified through association mapping, which widely were distributed among 15 chromosomes. Among which 10 marker loci were found to be consistent with previously identified QTLs and 32 were new unreported marker loci, and QTL clusters for Verticillium wilt resistanc on Chr.16 were also proved in our study, which was consistent with the strong linkage in this chromosome. Our results would contribute to association mapping and supply the marker candidates for marker-assisted selection of Verticillium wilt

  17. Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana.

    PubMed

    Zuñiga-Mayo, Victor M; Baños-Bayardo, Cesar R; Díaz-Ramírez, David; Marsch-Martínez, Nayelli; de Folter, Stefan

    2018-05-01

    Hormones are an important component in the regulatory networks guiding plant development. Cytokinins are involved in different physiological and developmental processes in plants. In the model plant Arabidopsis thaliana, cytokinin application during gynoecium development produces conspicuous phenotypes. On the other hand, Brassica napus, also known as canola, is a crop plant belonging to the Brassicaceae family, as A. thaliana. This makes B. napus a good candidate to study whether the cytokinin responses observed in A. thaliana are conserved in the same plant family. Here, we observed that cytokinin treatment in B. napus affects different traits of flower and fruit development. It increases ovule and seed number, affects stamen filament elongation and anther maturation, and causes a conspicuous overgrowth of tissue in petals and gynoecia. Furthermore, cytokinin recovers replum development in both wild type B. napus and in the A. thaliana rpl ntt double mutant, in which no replum is visible. These results indicate both conserved and novel responses to cytokinin in B. napus. Moreover, in this species, some cytokinin-induced phenotypes are inherited to the next, untreated generation, suggesting that cytokinins may trigger epigenetic modifications.

  18. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    PubMed

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  19. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus

    PubMed Central

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Xu, Xinfu; Wang, Rui; Li, Jiana

    2017-01-01

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus. PMID:29064393

  20. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    PubMed

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  1. Isocitrate Lyase Is Essential for Pathogenicity of the Fungus Leptosphaeria maculans to Canola (Brassica napus)

    PubMed Central

    Idnurm, Alexander; Howlett, Barbara J.

    2002-01-01

    A pathogenicity gene has been identified in Leptosphaeria maculans, the ascomycetous fungus that causes blackleg disease of canola (Brassica napus). This gene encodes isocitrate lyase, a component of the glyoxylate cycle, and is essential for the successful colonization of B. napus. It was identified by a reverse genetics approach whereby a plasmid conferring hygromycin resistance was inserted randomly into the L. maculans genome. Twelve of 516 transformants tested had reduced pathogenicity on cotyledons of B. juncea and B. napus, and 1 of these 12 had a deletion of the isocitrate lyase gene, as well as an insertion of the hygromycin resistance gene. This mutant was unable to grow on fatty acids, including monolaurate, and the isocitrate lyase transcript was not detected. When the wild-type gene was reintroduced into the mutant, growth on monolaurate was restored and pathogenicity was partially restored. L. maculans isocitrate lyase is produced during infection of B. napus cotyledons, while the plant homologue is not. When 2.5% glucose was added to the inoculum of the isocitrate lyase mutant, lesions of sizes similar to those caused by wild-type isolate M1 developed on B. napus cotyledons. These findings suggest that the glyoxylate pathway is essential for disease development by this plant-pathogenic fungus, as has been shown recently for a fungal and bacterial pathogen of animals and a bacterial pathogen of plants. Involvement of the glyoxylate pathway in pathogenesis in animals and plants presents potential drug targets for control of diseases. PMID:12455691

  2. Assessment of potential environmental risks of transgene flow in smallholder farming systems in Asia: Brassica napus as a case study in Korea.

    PubMed

    Zhang, Chuan-Jie; Yook, Min-Jung; Park, Hae-Rim; Lim, Soo-Hyun; Kim, Jin-Won; Nah, Gyoungju; Song, Hae-Ryong; Jo, Beom-Ho; Roh, Kyung Hee; Park, Suhyoung; Kim, Do-Soon

    2018-06-02

    The cultivation of genetically modified (GM) crops has raised many questions regarding their environmental risks, particularly about their ecological impact on non-target organisms, such as their closely-related relative species. Although evaluations of transgene flow from GM crops to their conventional crops has been conducted under large-scale farming system worldwide, in particular in North America and Australia, few studies have been conducted under smallholder farming systems in Asia with diverse crops in co-existence. A two-year field study was conducted to assess the potential environmental risks of gene flow from glufosinate-ammonium resistant (GR) Brassica napus to its conventional relatives, B. napus, B. juncea, and Raphanus sativus under simulated smallholder field conditions in Korea. Herbicide resistance and simple sequence repeat (SSR) markers were used to identify the hybrids. Hybridization frequency of B. napus × GR B. napus was 2.33% at a 2 m distance, which decreased to 0.007% at 75 m. For B. juncea, it was 0.076% at 2 m and decreased to 0.025% at 16 m. No gene flow was observed to R. sativus. The log-logistic model described hybridization frequency with increasing distance from GR B. napus to B. napus and B. juncea and predicted that the effective isolation distances for 0.01% gene flow from GR B. napus to B. napus and B. juncea were 122.5 and 23.7 m, respectively. Results suggest that long-distance gene flow from GR B. napus to B. napus and B. juncea is unlikely, but gene flow can potentially occur between adjacent fields where the smallholder farming systems exist. Copyright © 2018. Published by Elsevier B.V.

  3. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    PubMed

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  4. Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods

    NASA Astrophysics Data System (ADS)

    Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud

    2012-01-01

    The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.

  5. Data integration and knowledge management to facilitate research on plant-pathogen interactions: case study Solanum tuberosum – Verticillium

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt is an important disease causing considerable economic losses in potato production globally. Soil and environmental conditions affect symptom expression and the effect of the disease on yield. A ten year field trial has been conducted in order to better understand the dynamics of wi...

  6. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    USDA-ARS?s Scientific Manuscript database

    Brassica napus (L.) is a crop of major economic importance that produces canola oil (seed), vegetables, fodder and animal meal. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this s...

  7. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response.

    PubMed

    Niazi, Nabeel Khan; Bibi, Irshad; Fatimah, Ayesha; Shahid, Muhammad; Javed, Muhammad Tariq; Wang, Hailong; Ok, Yong Sik; Bashir, Safdar; Murtaza, Behzad; Saqib, Zulfiqar Ahmad; Shakoor, Muhammad Bilal

    2017-07-03

    In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg -1 ) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg -1 ) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg -1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.

  8. Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.

    PubMed

    Simard, Marie-Josée; Légère, Anne; Willenborg, Christian J

    2009-01-01

    Pollen-mediated gene flow in space is well documented and isolation distances are recommended to ensure genetic purity of Brassica napus seed crops. Isolation in time could also contribute to gene flow management but has been little investigated. We assessed the effects of asynchronous and synchronous flowering on intraspecific B. napus gene flow by seeding adjacent plots of transgenic spring canola cultivars, either resistant to glyphosate or glufosinate, over a 0-4 week interval and measuring outcrossing rates and seed-set. Outcrossing rates, evaluated in the center of the first adjacent row, were reduced to the lowest level in plots flowering first when the seeding interval > 2 weeks. Increasing the time gap increased outcrossing rates in plots flowering second up to a seeding interval of two weeks. Flowers that opened during the last week of the flowering period produced fewer seed (< 10% of total seed production) and a smaller fraction of outcrossed seed (-25%). Observed time gap effects were likely caused by extraneous pollen load during the receptivity of productive seed-setting early flowers. Clearly, manipulation of B. napus flowering development through staggered planting dates can contribute to gene flow management. The approach will need to be validated by additional site-years and increased isolation distances.

  9. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus.

    PubMed

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent.

  10. Genetic and Epigenetic Changes in Oilseed Rape (Brassica napus L.) Extracted from Intergeneric Allopolyploid and Additions with Orychophragmus

    PubMed Central

    Gautam, Mayank; Dang, Yanwei; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    Allopolyploidization with the merger of the genomes from different species has been shown to be associated with genetic and epigenetic changes. But the maintenance of such alterations related to one parental species after the genome is extracted from the allopolyploid remains to be detected. In this study, the genome of Brassica napus L. (2n = 38, genomes AACC) was extracted from its intergeneric allohexaploid (2n = 62, genomes AACCOO) with another crucifer Orychophragmus violaceus (2n = 24, genome OO), by backcrossing and development of alien addition lines. B. napus-type plants identified in the self-pollinated progenies of nine monosomic additions were analyzed by the methods of amplified fragment length polymorphism, sequence-specific amplified polymorphism, and methylation-sensitive amplified polymorphism. They showed modifications to certain extents in genomic components (loss and gain of DNA segments and transposons, introgression of alien DNA segments) and DNA methylation, compared with B. napus donor. The significant differences in the changes between the B. napus types extracted from these additions likely resulted from the different effects of individual alien chromosomes. Particularly, the additions which harbored the O. violaceus chromosome carrying dominant rRNA genes over those of B. napus tended to result in the development of plants which showed fewer changes, suggesting a role of the expression levels of alien rRNA genes in genomic stability. These results provided new cues for the genetic alterations in one parental genome that are maintained even after the genome becomes independent. PMID:27148282

  11. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem for crop production worldwide. In this work, we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putat...

  13. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.

    PubMed

    Kim, Jihye; Lee, Won Je; Vu, Tien Thanh; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung

    2017-08-01

    The ectopic expression of AtDFR results in increased accumulation of anthocyanins leading to enhanced salinity and drought stress tolerance in B. napus plants. Flavonoids with antioxidant effects confer many additional benefits to plants. Evidence indicates that flavonoids, including anthocyanins, protect tissues against oxidative stress from various abiotic stressors. We determined whether increases in anthocyanins increased abiotic stress tolerance in Brassica napus, because the values of B. napus L. and its cultivation area are increasing worldwide. We overexpressed Arabidopsis dihydroflavonol-4-reductase (DFR) in B. napus. Increased DFR transcript levels for AtDFR-OX B. shoots correlated with higher anthocyanin accumulation. AtDFR-OX Brassica shoots exhibited lower reactive oxygen species (ROS) accumulation than wild-type (WT) shoots under high NaCl and mannitol concentrations. This was corroborated by 3,3-diaminobenzidine staining for ROS scavenging activity in 1,1-diphenyl-2-picryl-hydrazyl assays. Shoots of the AtDFR-OX B. napus lines grown in a high salt medium exhibited enhanced salt tolerance and higher chlorophyll content than similarly grown WT plants. Our observations suggested that the AtDFR gene can be effectively manipulated to modulate salinity and drought stress tolerance by directing to high accumulation of anthocyanins in oilseed plants.

  14. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus

    PubMed Central

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  15. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    PubMed

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  16. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus.

    PubMed

    Zhu, Lixia; Yang, Zonghui; Zeng, Xinhua; Gao, Jie; Liu, Jie; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2017-04-01

    We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.

  17. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds.

    PubMed

    Niu, Yanxing; Rogiewicz, Anna; Wan, Chuyun; Guo, Mian; Huang, Fenghong; Slominski, Bogdan A

    2015-04-01

    A study was conducted to evaluate the effect of microwave heating on the efficacy of expeller pressing of rapeseed and mustard seed and the composition of expeller meals in two types of Brassica napus rapeseed (intermediate- and low-glucosinolate) and in Brassica juncea mustard (high-glucosinolate). Following microwave treatment, the microstructure of rapeseed using transmission electron microscopy showed a significant disappearance of oil bodies and myrosin cells. After 6 min of microwave heating (400 g, 800 W), the oil content of rapeseed expeller meal decreased from 44.9 to 13.5% for intermediate-glucosinolate B. napus rapeseed, from 42.6 to 11.3% for low-glucosinolate B. napus rapeseed, and from 44.4 to 14.1% for B. juncea mustard. The latter values were much lower than the oil contents of the corresponding expeller meals derived from the unheated seeds (i.e., 26.6, 22.6, and 29.8%, respectively). Neutral detergent fiber (NDF) contents showed no differences except for the expeller meal from the intermediate-glucosinolate B. napus rapeseed, which increased from 22.7 to 29.2% after 6 min of microwave heating. Microwave treatment for 4 and 5 min effectively inactivated myrosinase enzyme of intermediate-glucosinolate B. napus rapeseed and B. juncea mustard seed, respectively. In low-glucosinolate B. napus rapeseed the enzyme appeared to be more heat stable, with some activity being present after 6 min of microwave heating. Myrosinase enzyme inactivation had a profound effect on the glucosinolate content of expeller meals and prevented their hydrolysis to toxic breakdown products during the expelling process. It appeared evident from this study that microwave heating for 6 min was an effective method of producing expeller meal without toxic glucosinolate breakdown products while at the same time facilitating high yield of oil during the expelling process.

  18. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.

    PubMed

    Shakoor, Muhammad Bilal; Ali, Shafaqat; Hameed, Amjad; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Najeeb, Ullah; Bharwana, Saima Aslam; Abbasi, Ghulam Hasan

    2014-11-01

    Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Inheritance and variability of tolerance to Verticillium dahliae Kleb amoung geographically remote F1-F2 hybrids of Gossypium hirsutum L.

    USDA-ARS?s Scientific Manuscript database

    One of the most important problems for cotton breeding in Uzbekistan is development of Verticillium dahliae tolerant varieties. One approach is to utilize ecologically remote intraspecific and interspecific hybridization with local commercial cultivars. To this end, we have conducted genetically b...

  20. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    DOE PAGES

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; ...

    2016-04-21

    Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadlymore » concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.« less

  1. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.

    Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadlymore » concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.« less

  2. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.

    PubMed

    Hurgobin, Bhavna; Golicz, Agnieszka A; Bayer, Philipp E; Chan, Chon-Kit Kenneth; Tirnaz, Soodeh; Dolatabadian, Aria; Schiessl, Sarah V; Samans, Birgit; Montenegro, Juan D; Parkin, Isobel A P; Pires, J Chris; Chalhoub, Boulos; King, Graham J; Snowdon, Rod; Batley, Jacqueline; Edwards, David

    2018-07-01

    Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation.

    PubMed

    Wang, Jingxue; Singh, Sanjay K; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed ( Brassica napus ) is an important oil seed crop, providing more than 13% of the world's supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus . Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B . napus genome. B. rapa and B. oleracea , two diploid progenitors of B. napus , contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5 , and WRINKLED1 , as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE , and LONG - CHAIN ACYL-CoA SYNTHETASES . We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B . napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  4. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae.

    PubMed

    Jin, Lirong; Li, Guanglin; Yu, Dazhao; Huang, Wei; Cheng, Chao; Liao, Shengjie; Wu, Qijia; Zhang, Yi

    2017-02-06

    Alternative splicing (AS) regulation is extensive and shapes the functional complexity of higher organisms. However, the contribution of alternative splicing to fungal biology is not well studied. This study provides sequences of the transcriptomes of the plant wilt pathogen Verticillium dahliae, using two different strains and multiple methods for cDNA library preparations. We identified alternatively spliced mRNA isoforms in over a half of the multi-exonic fungal genes. Over one-thousand isoforms involve TopHat novel splice junction; multiple types of combinatory alternative splicing patterns were identified. We showed that one Verticillium gene could use four different 5' splice sites and two different 3' donor sites to produce up to five mature mRNAs, representing one of the most sophisticated alternative splicing model in eukaryotes other than animals. Hundreds of novel intron types involving a pair of new splice sites were identified in the V. dahliae genome. All the types of AS events were validated by using RT-PCR. Functional enrichment analysis showed that AS genes are involved in most known biological functions and enriched in ATP biosynthesis, sexual/asexual reproduction, morphogenesis, signal transduction etc., predicting that the AS regulation modulates mRNA isoform output and shapes the V. dahliae proteome plasticity of the pathogen in response to the environmental and developmental changes. These findings demonstrate the comprehensive alternative splicing mechanisms in a fungal plant pathogen, which argues the importance of this fungus in developing complicate genome regulation strategies in eukaryotes.

  5. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    PubMed

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Metabolome classification of Brassica napus L. organs via UPLC-QTOF-PDA-MS and their anti-oxidant potential.

    PubMed

    Farag, Mohamed A; Sharaf Eldin, Mohamed G; Kassem, Hanaa; Abou el Fetouh, Mohamed

    2013-01-01

    Brassica napus L. is a crop widely grown for its oil production and other nutritional components in the seed. In addition to the seed, other organs contain a wide range of phenolic metabolites although they have not been investigated to the same extent as in seeds. To define and compare the phytochemical composition of B. napus L. organs, namely the root, stem, leaf, inflorescence and seeds. Non-targeted metabolomic analysis via UPLC-QTOF-MS was utilised in order to localise compounds belonging to various chemical classes (i.e. oxygenated fatty acids, flavonols, phenolic acids and sinapoyl choline derivatives). The vast majority of identified metabolites were flavonol glycosides that accumulated in most of the plant organs. Whereas other classes were detected predominantly in specific organs, i.e. sinapoyl cholines were present uniquely in seeds. Furthermore, variation in the accumulation pattern of metabolites from the same class was observed, particularly in the case of quercetin, kaempferol and isorhamnetin flavonols. Anti-oxidant activity, based on 2,2-diphenyl-1-picrylhdrazyl analysis was observed for all extracts, and correlated to some extent with total flavonoid content. This study provides the most complete map for polyphenol composition in B. napus L. organs. By describing the metabolites profile in B. napus L., this study provides the basis for future investigations of seeds for potential health and/or medicinal use. Copyright © 2012 John Wiley & Sons, Ltd.

  7. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.

    PubMed Central

    Wang, Xiaodong; Yu, Kunjiang; Li, Hongge; Peng, Qi; Chen, Feng; Zhang, Wei; Chen, Song; Hu, Maolong; Zhang, Jiefu

    2015-01-01

    The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line ‘APL01’ and a normally petalled variety ‘Holly’. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus. PMID:26779193

  8. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.

    PubMed

    Wang, Xiaodong; Yu, Kunjiang; Li, Hongge; Peng, Qi; Chen, Feng; Zhang, Wei; Chen, Song; Hu, Maolong; Zhang, Jiefu

    2015-01-01

    The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petalled variety 'Holly'. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.

  9. Comparative quantitative trait loci for silique length and seed weight in Brassica napus.

    PubMed

    Fu, Ying; Wei, Dayong; Dong, Hongli; He, Yajun; Cui, Yixin; Mei, Jiaqin; Wan, Huafang; Li, Jiana; Snowdon, Rod; Friedt, Wolfgang; Li, Xiaorong; Qian, Wei

    2015-09-23

    Silique length (SL) and seed weight (SW) are important yield-associated traits in rapeseed (Brassica napus). Although many quantitative trait loci (QTL) for SL and SW have been identified in B. napus, comparative analysis for those QTL is seldom performed. In the present study, 20 and 21 QTL for SL and SW were identified in doubled haploid (DH) and DH-derived reconstructed F2 populations in rapeseed, explaining 55.1-74.3% and 24.4-62.9% of the phenotypic variation across three years, respectively. Of which, 17 QTL with partially or completely overlapped confidence interval on chromosome A09, were homologous with two overlapped QTL on chromosome C08 by aligning QTL confidence intervals with the reference genomes of Brassica crops. By high density selective genotyping of DH lines with extreme phenotypes, using a Brassica single-nucleotide polymorphism (SNP) array, the QTL on chromosome A09 was narrowed, and aligned into 1.14-Mb region from 30.84 to 31.98 Mb on chromosome R09 of B. rapa and 1.05-Mb region from 27.21 to 28.26 Mb on chromosome A09 of B. napus. The alignment of QTL with Brassica reference genomes revealed homologous QTL on A09 and C08 for SL. The narrowed QTL region provides clues for gene cloning and breeding cultivars by marker-assisted selection.

  10. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.

    PubMed

    Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J

    2015-09-29

    Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the

  11. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    PubMed Central

    Maldonado-González, M. Mercedes; Bakker, Peter A. H. M.; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  12. Genome-Wide Survey of Flavonoid Biosynthesis Genes and Gene Expression Analysis between Black- and Yellow-Seeded Brassica napus

    PubMed Central

    Qu, Cunmin; Zhao, Huiyan; Fu, Fuyou; Wang, Zhen; Zhang, Kai; Zhou, Yan; Wang, Xin; Wang, Rui; Xu, Xinfu; Tang, Zhanglin; Lu, Kun; Li, Jia-Na

    2016-01-01

    Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT) genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in Arabidopsis thaliana, 53 were identified in Brassica rapa, 50 in Brassica oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of 18 flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, 14 of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1) had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18, and BnBAN), regulatory genes (BnTTG2 and BnTT16) and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10) might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species. PMID:27999578

  13. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    EPA Science Inventory

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  14. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soil-borne fungus that causes vascular wilt diseases in a wide range of plant hosts. V. dahliae produces multicelled, melanized resting bodies, also known as microsclerotia (MS) that can survive for years in the soil. Thus, MS formation marks an important event in the disea...

  15. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry

    PubMed Central

    Fan, Rong; Cockerton, Helen M.; Armitage, Andrew D.; Bates, Helen; Cascant-Lopez, Emma; Antanaviciute, Laima; Xu, Xiangming; Hu, Xiaoping

    2018-01-01

    Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector. PMID:29451893

  16. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry.

    PubMed

    Fan, Rong; Cockerton, Helen M; Armitage, Andrew D; Bates, Helen; Cascant-Lopez, Emma; Antanaviciute, Laima; Xu, Xiangming; Hu, Xiaoping; Harrison, Richard J

    2018-01-01

    Verticillium dahliae infection of strawberry (Fragaria x ananassa) is a major cause of disease-induced wilting in soil-grown strawberries across the world. To understand what components of the pathogen are affecting disease expression, the presence of the known effector VdAve1 was screened in a sample of Verticillium dahliae isolates. Isolates from strawberry were found to contain VdAve1 and were divided into two major clades, based upon their vegetative compatibility groups (VCG); no UK strawberry isolates contained VdAve1. VC clade was strongly related to their virulence levels. VdAve1-containing isolates pathogenic on strawberry were found in both clades, in contrast to some recently published findings. On strawberry, VdAve1-containing isolates had significantly higher virulence during early infection, which diminished in significance as the infection progressed. Transformation of a virulent non-VdAve1 containing isolate, with VdAve1 was found neither to increase nor decrease virulence when inoculated on a susceptible strawberry cultivar. There are therefore virulence factors that are epistatic to VdAve1 and potentially multiple independent routes to high virulence on strawberry in V. dahliae lineages. Genome sequencing a subset of isolates across the two VCGs revealed that isolates were differentiated at the whole genome level and contained multiple changes in putative effector content, indicating that different clonal VCGs may have evolved different strategies for infecting strawberry, leading to different virulence levels in pathogenicity tests. It is therefore important to consider both clonal lineage and effector complement as the adaptive potential of each lineage will differ, even if they contain the same race determining effector.

  17. Expression of the C3-C 4 intermediate character in somatic hybrids between Brassica napus and the C3-C 4 species Moricandia arvensis.

    PubMed

    O'Neill, C M; Murata, T; Morgan, C L; Mathias, R J

    1996-12-01

    The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, 'Ariana', 'Cobra' and 'Westar'. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids.

  18. Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus.

    PubMed

    Wang, Xiaodong; Wang, Hao; Long, Yan; Li, Dianrong; Yin, Yongtai; Tian, Jianhua; Chen, Li; Liu, Liezhao; Zhao, Weiguo; Zhao, Yajun; Yu, Longjiang; Li, Maoteng

    2013-01-01

    Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between 'KenC-8' and 'N53-2', two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64-17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.

  19. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.

    PubMed

    Zaier, Hanen; Ghnaya, Tahar; Ben Rejeb, Kilani; Lakhdar, Abdelbasset; Rejeb, Salwa; Jemal, Fatima

    2010-06-01

    Sludge application is a reliable practice to ameliorate soil fertility. However, repetitive sludge addition represents a potential soil contamination source with heavy metals, which must be extracted. The aim of this study was to evaluate the capacity of Brassica napus to remove metals from soils amended with sludge, and to study the effect of EDTA on this process. Seedlings were cultivated in presence of sludge combined or not with EDTA. Results showed that sludge ameliorate significantly biomass production. This effect was accompanied with an increase in Pb, Zn and Mn shoot concentrations. EDTA application does not affect significantly plant growth. However, this chelator enhances shoot metals accumulation. It's therefore concluded that sludge has a beneficial effect on soil fertility, B. napus can be used for the decontamination of affected soils and that the EDTA addition increases the ability of B. napus to accumulate heavy metals. Published by Elsevier Ltd.

  20. A High-Density Genetic Map Identifies a Novel Major QTL for Boron Efficiency in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus. PMID:25375356

  1. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    PubMed

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  2. Temporal impact of the vascular wilt pathogen Verticillium dahliae on tomato root proteome.

    PubMed

    Witzel, Katja; Buhtz, Anja; Grosch, Rita

    2017-10-03

    The soil-borne fungus Verticillium dahliae is the causal agent of wilting disease and affects a wide range of plant species worldwide. Here, we report on the time-resolved analysis of the tomato root proteome in response to fungal colonization. Tomato (Solanum lycopersicum cv. Hildares) was inoculated with V. dahliae at the two-leaf stage and roots were harvested at 7, 14 and 21 days post inoculation (dpi). In order to identify proteins related to the fungal spread at the different time points, a subsequent proteome analysis by two-dimensional differential gel electrophoresis (2D-DIGE) was conducted on samples from three independent experiments. Hierarchical clustering and k-means clustering of identified proteins distinguished early and late responses to fungal colonization. The results underline that plant defense and adaptation responses are timely coordinated. Proteins involved in oxidative stress were down-regulated at 7 dpi but induced 21 dpi indicating versatile reactive oxygen species signaling interacting with salicylic acid defence signaling at that stage of infection. Drought-stress proteins were induced at 21 dpi, reflecting the beginning of wilting symptoms. Notably, two proteins involved in energy-generating pathways were induced throughout all sampling dates and may reflect the increase in metabolic activity to maintain root growth and, concurrently, activate defense responses. Mounting of defense responses requires a substantial flux of carbon and nitrogen from primary to secondary metabolites. In-depth understanding of these key metabolic pathways required for growth and defense responses, especially at proteome level, will allow the development of breeding strategies for crops where Verticillium tolerance is absent. Our data show early and late responses of tomato root proteins towards pathogen infection and identify primary metabolism enzymes affected by V. dahliae. Those proteins represent candidates for plant improvement. Copyright © 2017

  3. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L.

    PubMed

    Yang, Hongli; Liu, Jing; Huang, Shunmou; Guo, Tingting; Deng, Linbin; Hua, Wei

    2014-03-15

    Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12

    PubMed Central

    Alkooranee, Jawadayn Talib; Yin, Yongtai; Aledan, Tamarah Raad; Jiang, Yingfen; Lu, Guangyuan; Wu, Jiangsheng; Li, Maoteng

    2015-01-01

    Trichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B. napus and R. alboglabra infected with E. cruciferarum. The histological study showed the resistance of R. alboglabra to powdery mildew disease. The growth of fungal colonies was not observed on R. alboglabra leaves at 1, 2, 4, 6, 8, and 10 days post-inoculation (dpi), whereas this was clearly observed on B. napus leaves after 6 dpi. In addition, the gene expression of six plant defense-related genes, namely, PR-1, PR-2 (a marker for SA signaling), PR-3, PDF 1.2 (a marker for JA/ET signaling), CHI620, and CHI570, for both genotypes were analyzed in the leaves of B. napus and R. alboglabra after treatment with TH12 or CF and compared with the non-treated ones. The qRT-PCR results showed that the PR-1 and PR-2 expression levels increased in E. cruciferarum-infected leaves, but decreased in the TH12-treated leaves compared with leaves treated with CF. The expression levels of PR-3 and PDF1.2 decreased in plants infected by E. cruciferarum. However, expression levels increased when the leaves were treated with TH12. For the first time, we disclosed the nature of gene expression in B. napus and R. alboglabra to explore the resistance pathways in the leaves of both genotypes infected and non-infected by powdery mildew and inoculated or non-inoculated with elicitor factors. Results suggested that R. alboglabra exhibited resistance to powdery mildew disease, and the application of T. harzianum and its CF are a useful tool to facilitate new protection methods for resist or susceptible plants. PMID:26540161

  5. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12.

    PubMed

    Alkooranee, Jawadayn Talib; Yin, Yongtai; Aledan, Tamarah Raad; Jiang, Yingfen; Lu, Guangyuan; Wu, Jiangsheng; Li, Maoteng

    2015-01-01

    Trichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B. napus and R. alboglabra infected with E. cruciferarum. The histological study showed the resistance of R. alboglabra to powdery mildew disease. The growth of fungal colonies was not observed on R. alboglabra leaves at 1, 2, 4, 6, 8, and 10 days post-inoculation (dpi), whereas this was clearly observed on B. napus leaves after 6 dpi. In addition, the gene expression of six plant defense-related genes, namely, PR-1, PR-2 (a marker for SA signaling), PR-3, PDF 1.2 (a marker for JA/ET signaling), CHI620, and CHI570, for both genotypes were analyzed in the leaves of B. napus and R. alboglabra after treatment with TH12 or CF and compared with the non-treated ones. The qRT-PCR results showed that the PR-1 and PR-2 expression levels increased in E. cruciferarum-infected leaves, but decreased in the TH12-treated leaves compared with leaves treated with CF. The expression levels of PR-3 and PDF1.2 decreased in plants infected by E. cruciferarum. However, expression levels increased when the leaves were treated with TH12. For the first time, we disclosed the nature of gene expression in B. napus and R. alboglabra to explore the resistance pathways in the leaves of both genotypes infected and non-infected by powdery mildew and inoculated or non-inoculated with elicitor factors. Results suggested that R. alboglabra exhibited resistance to powdery mildew disease, and the application of T. harzianum and its CF are a useful tool to facilitate new protection methods for resist or susceptible plants.

  6. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  7. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated verticillium wilt resistance in autotetraploid alfalfa (sedicago sativa l.)

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt (VW) of alfalfa is a soilborne disease that causes severe yield loss in alfalfa. To identify molecular markers associated with VW resistance, an integrated framework of genome-wide association study (GWAS) with high-throughput genotyping by sequencing (GBS) was used for mapping lo...

  8. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Verticillium dahliae is a soilborne fungus that causes vascular wilt diseases on numerous plant species worldwide. The production of darkly melanized microsclerotia is crucial in the disease cycle of V. dahliae, as these structures allow for long-term survival in soil. Previously, transcriptomic and...

  9. Identification of QTLs Associated with Oil Content in a High-Oil Brassica napus Cultivar and Construction of a High-Density Consensus Map for QTLs Comparison in B. napus

    PubMed Central

    Long, Yan; Li, Dianrong; Yin, Yongtai; Tian, Jianhua; Chen, Li; Liu, Liezhao; Zhao, Weiguo; Zhao, Yajun; Yu, Longjiang; Li, Maoteng

    2013-01-01

    Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus. PMID:24312482

  10. Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: Brassica napus-Raphanus raphanistrum Model.

    PubMed

    Adamczyk-Chauvat, Katarzyna; Delaunay, Sabrina; Vannier, Anne; François, Caroline; Thomas, Gwenaëlle; Eber, Frédérique; Lodé, Maryse; Gilet, Marie; Huteau, Virginie; Morice, Jérôme; Nègre, Sylvie; Falentin, Cyril; Coriton, Olivier; Darmency, Henri; Alrustom, Bachar; Jenczewski, Eric; Rousseau-Gueutin, Mathieu; Chèvre, Anne-Marie

    2017-07-01

    The effect of gene location within a crop genome on its transfer to a weed genome remains an open question for gene flow assessment. To elucidate this question, we analyzed advanced generations of intergeneric hybrids, derived from an initial pollination of known oilseed rape varieties ( Brassica napus , AACC, 2 n  = 38) by a local population of wild radish ( Raphanus raphanistrum , RrRr, 2 n  = 18). After five generations of recurrent pollination, 307 G5 plants with a chromosome number similar to wild radish were genotyped using 105 B. napus specific markers well distributed along the chromosomes. They revealed that 49.8% of G5 plants carried at least one B. napus genomic region. According to the frequency of B. napus markers (0-28%), four classes were defined: Class 1 (near zero frequency), with 75 markers covering ∼70% of oilseed rape genome; Class 2 (low frequency), with 20 markers located on 11 genomic regions; Class 3 (high frequency), with eight markers on three genomic regions; and Class 4 (higher frequency), with two adjacent markers detected on A10. Therefore, some regions of the oilseed rape genome are more prone than others to be introgressed into wild radish. Inheritance and growth of plant progeny revealed that genomic regions of oilseed rape could be stably introduced into wild radish and variably impact the plant fitness (plant height and seed number). Our results pinpoint that novel technologies enabling the targeted insertion of transgenes should select genomic regions that are less likely to be introgressed into the weed genome, thereby reducing gene flow. Copyright © 2017 by the Genetics Society of America.

  11. Cotton ACAULIS5 is involved in stem elongation and the plant defense response to Verticillium dahliae through thermospermine alteration.

    PubMed

    Mo, Huijuan; Wang, Xingfen; Zhang, Yan; Yang, Jun; Ma, Zhiying

    2015-11-01

    Overexpression of GhACL5 , an ACAULIS5 from cotton, in Arabidopsis increased plant height and T-Spm level. Silencing of GhACL5 in cotton exhibited a dwarf phenotype and reduced resistance to Verticillium dahliae. The Arabidopsis thaliana gene ACAULIS5 (ACL5), for which inactivation causes a defect in stem elongation, encodes thermospermine (T-Spm) synthase. However, limited information is available about improvement in plant height by the overexpression of ACL5 gene, and the biological functions of ACL5 genes in response to biotic stress. Here, this study reports that constitutive expression of the cotton ACL5 gene (GhACL5) in Arabidopsis thaliana significantly increased plant height and elevated the level of T-Spm. Silencing of that gene in cotton reduced the amount of T-Spm and led to a severe dwarf phenotype. Expression of GhACL5 was induced upon treatment with the fungal pathogen Verticillium dahliae and plant hormones salicylic acid, jasmonic acid, and ethylene in resistant cotton plants, but gene silencing in cotton enhanced their susceptibility to V. dahliae infection. Furthermore, T-Spm exposure effectively inhibited V. dahliae growth in vitro. In summary, GhACL5 expression is related to in planta levels of T-Spm and is involved in stem elongation and defense responses against V. dahliae.

  12. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.

    PubMed

    Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong

    2016-09-08

    SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for

  13. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    PubMed

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further

  14. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap

    USDA-ARS?s Scientific Manuscript database

    The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2-DE (IEF-SDS PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Two hundred sixty-three spots were consistently detected...

  15. A Novel Cytoplasmic Male Sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad.

    PubMed

    Kang, Lei; Li, Pengfei; Wang, Aifan; Ge, Xianhong; Li, Zaiyun

    2017-01-01

    A novel cytoplasmic male sterility (CMS) in Brassica napus (inap CMS) was selected from the somatic hybrid with Isatis indigotica (Chinese woad) by recurrent backcrossing. The male sterility was caused by the conversion of tetradynamous stamens into carpelloid structures with stigmatoid tissues at their tips and ovule-like tissues in the margins, and the two shorter stamens into filaments without anthers. The feminized development of the stamens resulted in the complete lack of pollen grains, which was stable in different years and environments. The pistils of inap CMS displayed normal morphology and good seed-set after pollinated by B. napus . Histological sections showed that the developmental alteration of the stamens initiated at the stage of stamen primordium differentiation. AFLP analysis of the nuclear genomic composition with 23 pairs of selective primers detected no woad DNA bands in inap CMS. Twenty out of 25 mitochondrial genes originated from I. indigotica , except for cox2-2 which was the recombinant between cox2 from woad and cox2-2 from rapeseed. The novel cox2-2 was transcribed in flower buds of inap CMS weakly and comparatively with the fertile B. napus addition line Me harboring one particular woad chromosome. The restorers of other autoplasmic and alloplasmic CMS systems in rapeseed failed to restore the fertility of inap CMS and the screening of B. napus wide resources found no fertility restoration variety, showing its distinct origin and the related mechanism of sterility. The reasons for the mitochondrial rearrangements and the breeding of the restorer for the novel CMS system were discussed.

  16. A Novel Cytoplasmic Male Sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad

    PubMed Central

    Kang, Lei; Li, Pengfei; Wang, Aifan; Ge, Xianhong; Li, Zaiyun

    2017-01-01

    A novel cytoplasmic male sterility (CMS) in Brassica napus (inap CMS) was selected from the somatic hybrid with Isatis indigotica (Chinese woad) by recurrent backcrossing. The male sterility was caused by the conversion of tetradynamous stamens into carpelloid structures with stigmatoid tissues at their tips and ovule-like tissues in the margins, and the two shorter stamens into filaments without anthers. The feminized development of the stamens resulted in the complete lack of pollen grains, which was stable in different years and environments. The pistils of inap CMS displayed normal morphology and good seed-set after pollinated by B. napus. Histological sections showed that the developmental alteration of the stamens initiated at the stage of stamen primordium differentiation. AFLP analysis of the nuclear genomic composition with 23 pairs of selective primers detected no woad DNA bands in inap CMS. Twenty out of 25 mitochondrial genes originated from I. indigotica, except for cox2-2 which was the recombinant between cox2 from woad and cox2-2 from rapeseed. The novel cox2-2 was transcribed in flower buds of inap CMS weakly and comparatively with the fertile B. napus addition line Me harboring one particular woad chromosome. The restorers of other autoplasmic and alloplasmic CMS systems in rapeseed failed to restore the fertility of inap CMS and the screening of B. napus wide resources found no fertility restoration variety, showing its distinct origin and the related mechanism of sterility. The reasons for the mitochondrial rearrangements and the breeding of the restorer for the novel CMS system were discussed. PMID:28428799

  17. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus.

    PubMed

    Liu, Sheng; Fan, Chuchuan; Li, Jiana; Cai, Guangqin; Yang, Qingyong; Wu, Jian; Yi, Xinqi; Zhang, Chunyu; Zhou, Yongming

    2016-06-01

    A set of additive loci for seed oil content were identified using association mapping and one of the novel loci on the chromosome A5 was validated by linkage mapping. Increasing seed oil content is one of the most important goals in the breeding of oilseed crops including Brassica napus, yet the genetic basis for variations in this important trait remains unclear. By genome-wide association study of seed oil content using 521 B. napus accessions genotyped with the Brassica 60K SNP array, we identified 50 loci significantly associated with seed oil content using three statistical models, the general linear model, the mixed linear model and the Anderson-Darling test. Together, the identified loci could explain approximately 80 % of the total phenotypic variance, and 29 of these loci have not been reported previously. Furthermore, a novel locus on the chromosome A5 that could increase 1.5-1.7 % of seed oil content was validated in an independent bi-parental linkage population. Haplotype analysis showed that the favorable alleles for seed oil content exhibit cumulative effects. Our results thus provide valuable information for understanding the genetic control of seed oil content in B. napus and may facilitate marker-based breeding for a higher seed oil content in this important oil crop.

  18. Improved Medium for Selecting Nitrate-Nonutilizing (nit) Mutants of Verticillium dahliae.

    PubMed

    Korolev, N; Katan, T

    1997-10-01

    ABSTRACT Nitrate-nonutilizing (nit) mutants are commonly used to determine vegetative compatibility between isolates of Verticillium dahliae by complementation (heterokaryon) testing. These mutants emerge spontaneously as chlorate-resistant sectors growing out of partially restricted, wild-type colonies on chlorate-amended media. The commonly used chlorate media are based on minimal medium (MMC) or cornmeal agar (CMC), amended with potassium chlorate. nit mutants recovered on these media constituted 10 to 36%(on MMC) and 25 to 45%(on CMC) of the apparently resistant sectors. An improved water agar chlorate medium (WAC) is described that is more effective for selecting chlorate-resistant nit mutants. WAC medium consists of agar (2%), glucose (0.02%), and potassium chlorate (2 to 5%). On WAC, growth of most V. dahliae isolates was strongly inhibited, and 66 to 100%(average >80%) of the chlorate-resistant sectors formed were nit mutants. Most mutants were characterized as nit1, and about 6% as NitM.

  19. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb.

    PubMed

    Peng, Dan; Zhou, Bo; Jiang, Yueqiao; Tan, XiaoFeng; Yuan, DeYi; Zhang, Lin

    2018-07-01

    Sapium sebiferum (L.) Roxb. is an important woody oil tree and traditional herbal medicine in China. Stearoyl-acyl carrier protein desaturase (SAD) is a dehydrogenase enzyme that plays a key role in the transformation of saturated fatty acids into unsaturated fatty acids in oil; these fatty acids greatly influence the freezing tolerance of plants. However, it remains unclear whether freezing tolerance can be regulated by the expression level of SsSAD in S. sebiferum L. Our research indicated that SsSAD expression in S. sebiferum L. increased under freezing stress. To further confirm this result, we constructed a pEGAD-SsSAD vector and transformed it into B. napus L. W10 by Agrobacterium tumefaciens-mediated transformation. Transgenic plants that overexpressed the SsSAD gene exhibited significantly higher linoleic (18:2) and linolenic acid (18:3) content and advanced freezing tolerance. These results suggest that SsSAD overexpression in B. napus L. can increase the content of polyunsaturated fatty acids (PUFAs) such as linoleic (18:2) and linolenic acid (18:3), which are likely pivotal in improving freezing tolerance in B. napus L. plants. Thus, SsSAD overexpression could be useful in the production of freeze-tolerant varieties of B. napus L. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Conserved Function of ACYL-ACYL CARRIER PROTEIN DESATURASE 5 on Seed Oil and Oleic Acid Biosynthesis between Arabidopsis thaliana and Brassica napus.

    PubMed

    Jin, Changyu; Li, Dong; Gao, Chenhao; Liu, Kaige; Qi, Shuanghui; Duan, Shaowei; Li, Zixiong; Gong, Jingyun; Wang, Jianjun; Hai, Jiangbo; Chen, Mingxun

    2017-01-01

    Previous studies have shown that several ACYL-ACYL CARRIER PROTEIN DESATURASE (AtAAD) members in Arabidopsis thaliana are responsible for oleic acid (C18:1) biosynthesis. Limited research has been conducted on another member, AtAAD5, and its paralog BnAAD5 in the closely related and commercially important plant, Brassica napus . Here, we found that AtAAD5 was predominantly and exclusively expressed in developing embryos at the whole seed developmental stages. The aad5 mutation caused a significant decrease in the amounts of oil and C18:1, and a considerable increase in the content of stearic acid (C18:0) in mature seeds, suggesting that AtAAD5 functioned as an important facilitator of seed oil biosynthesis. We also cloned the full-length coding sequence of BnAAD5-1 from the A3 subgenome of the B. napus inbred line L111. We showed that ectopic expression of BnAAD5-1 in the A. thaliana aad5-2 mutant fully complemented the phenotypes of the mutant, such as lower oil content and altered contents of C18:0 and C18:1. These results help us to better understand the functions of AAD members in A. thaliana and B. napus and provide a promising target for genetic manipulation of B. napus .

  1. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  2. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype.

    PubMed

    Sun, Fengming; Fan, Guangyi; Hu, Qiong; Zhou, Yongming; Guan, Mei; Tong, Chaobo; Li, Jiana; Du, Dezhi; Qi, Cunkou; Jiang, Liangcai; Liu, Weiqing; Huang, Shunmou; Chen, Wenbin; Yu, Jingyin; Mei, Desheng; Meng, Jinling; Zeng, Peng; Shi, Jiaqin; Liu, Kede; Wang, Xi; Wang, Xinfa; Long, Yan; Liang, Xinming; Hu, Zhiyong; Huang, Guodong; Dong, Caihua; Zhang, He; Li, Jun; Zhang, Yaolei; Li, Liangwei; Shi, Chengcheng; Wang, Jiahao; Lee, Simon Ming-Yuen; Guan, Chunyun; Xu, Xun; Liu, Shengyi; Liu, Xin; Chalhoub, Boulos; Hua, Wei; Wang, Hanzhong

    2017-11-01

    Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (A r ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with A r , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Glyphosate drift promotes changes in fitness and transgene flow in canola (Brassica napus) and hybrids

    EPA Science Inventory

    1. With the advent of transgenic crops, genetically modified, herbicide resistant B. napus has become a model system for examining the risks of escape of transgenes from cultivation and for evaluating potential ecological consequences of novel genes in wild species. 2. We exam...

  4. Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii

    PubMed Central

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-01-01

    Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF) which encodes a protein of 423 amino acids (aa), but also is interrupted by three short introns. Vlchit1 protein showed that the chitinase Vlchit1 has a (a/b)8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests. PMID:24031223

  5. Mechanism of Salt-Induced Self-Compatibility Dissected by Comparative Proteomic Analysis in Brassica napus L.

    PubMed

    Yang, Yong; Liu, Zhiquan; Zhang, Tong; Zhou, Guilong; Duan, Zhiqiang; Li, Bing; Dou, Shengwei; Liang, Xiaomei; Tu, Jinxing; Shen, Jinxiong; Yi, Bin; Fu, Tingdong; Dai, Cheng; Ma, Chaozhi

    2018-06-03

    Self-incompatibility (SI) in plants genetically prevents self-fertilization to promote outcrossing and genetic diversity. Its hybrids in Brassica have been widely cultivated due to the propagation of SI lines by spraying a salt solution. We demonstrated that suppression of Brassica napus SI from edible salt solution treatment was ascribed to sodium chloride and independent of S haplotypes, but it did not obviously change the expression of SI - related genes. Using the isobaric tags for relative and absolute quantitation (iTRAQ) technique, we identified 885 differentially accumulated proteins (DAPs) in Brassica napus stigmas of un-pollinated (UP), pollinated with compatible pollen (PC), pollinated with incompatible pollen (PI), and pollinated with incompatible pollen after edible salt solution treatment (NA). Of the 307 DAPs in NA/UP, 134 were unique and 94 were shared only with PC/UP. In PC and NA, some salt stress protein species, such as glyoxalase I , were induced, and these protein species were likely to participate in the self-compatibility (SC) pathway. Most of the identified protein species were related to metabolic pathways, biosynthesis of secondary metabolites, ribosome, and so on. A systematic analysis implied that salt treatment-overcoming SI in B. napus was likely conferred by at least five different physiological mechanisms: (i) the use of Ca 2+ as signal molecule; (ii) loosening of the cell wall to allow pollen tube penetration; (iii) synthesis of compatibility factor protein species for pollen tube growth; (iv) depolymerization of microtubule networks to facilitate pollen tube movement; and (v) inhibition of protein degradation pathways to restrain the SI response.

  6. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.)

    PubMed Central

    Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885

  7. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes.

    PubMed

    Zhao, Ying-Tao; Wang, Meng; Fu, San-Xiong; Yang, Wei-Cai; Qi, Cun-Kou; Wang, Xiu-Jie

    2012-02-01

    MicroRNAs (miRNAs) and small interfering RNAs are important regulators of plant development and seed formation, yet their population and abundance in the oil crop Brassica napus are still not well understood, especially at different developmental stages and among cultivars with varied seed oil contents. Here, we systematically analyzed the small RNA expression profiles of Brassica napus seeds at early embryonic developmental stages in high-oil-content and low-oil-content B. napus cultivars, both cultured in two environments. A total of 50 conserved miRNAs and 9 new miRNAs were identified, together with some new miRNA targets. Expression analysis revealed some miRNAs with varied expression levels in different seed oil content cultivars or at different embryonic developmental stages. A large number of 23-nucleotide small RNAs with specific nucleotide composition preferences were also identified, which may present new classes of functional small RNAs.

  8. Improvement of Verticillium Wilt Resistance by Applying Arbuscular Mycorrhizal Fungi to a Cotton Variety with High Symbiotic Efficiency under Field Conditions

    PubMed Central

    Zhang, Qiang; Gao, Xinpeng; Ren, Yanyun; Ding, Xinhua; Qiu, Jiajia; Li, Ning; Zeng, Fanchang

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in nutrient cycling processes and plant stress resistance. To evaluate the effect of Rhizophagus irregularis CD1 on plant growth promotion (PGP) and Verticillium wilt disease, the symbiotic efficiency of AMF (SEA) was first investigated over a range of 3% to 94% in 17 cotton varieties. The high-SEA subgroup had significant PGP effects in a greenhouse. From these results, the highest-SEA variety of Lumian 1 was selected for a two-year field assay. Consistent with the performance from the greenhouse, the AMF-mediated PGP of Lumian 1 also produced significant results, including an increased plant height, stem diameter, number of petioles, and phosphorus content. Compared with the mock treatment, AMF colonization obviously inhibited the symptom development of Verticillium dahliae and more strongly elevated the expression of pathogenesis-related genes and lignin synthesis-related genes. These results suggest that AMF colonization could lead to the mycorrhiza-induced resistance (MIR) of Lumian 1 to V. dahliae. Interestingly, our results indicated that the AMF endosymbiont could directly inhibit the growth of phytopathogenic fungi including V. dahliae by releasing undefined volatiles. In summary, our results suggest that stronger effects of AMF application result from the high-SEA. PMID:29342876

  9. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    PubMed

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  10. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus

    PubMed Central

    Gacek, Katarzyna; Bayer, Philipp E.; Bartkowiak-Broda, Iwona; Szala, Laurencja; Bocianowski, Jan; Edwards, David; Batley, Jacqueline

    2017-01-01

    Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. PMID:28163710

  11. Gene Silencing of BnTT10 Family Genes Causes Retarded Pigmentation and Lignin Reduction in the Seed Coat of Brassica napus

    PubMed Central

    Zhang, Kai; Lu, Kun; Qu, Cunmin; Liang, Ying; Wang, Rui; Chai, Yourong; Li, Jiana

    2013-01-01

    Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus. PMID:23613820

  12. Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus

    PubMed Central

    Di, Feifei; Jian, Hongju; Wang, Tengyue; Chen, Xueping; Ding, Yiran; Du, Hai; Li, Jiana; Liu, Liezhao

    2018-01-01

    Abscisic acid (ABA) is an endogenous phytohormone that plays important roles in the regulation of plant growth, development, and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein is a core regulatory component of ABA signaling networks in plants. However, no details regarding this family in Brassica napus are available. Here, 46 PYLs were identified in the B. napus genome. Based on phylogenetic analysis, BnPYR1 and BnPYL1-3 belong to subfamily I, BnPYL7-10 belong to subfamily II, and BnPYL4-6 and BnPYL11-13 belong to subfamily III. Analysis of BnPYL conserved motifs showed that every subfamily contained four common motifs. By predicting cis-elements in the promoters, we found that all BnPYL members contained hormone- and stress-related elements and that expression levels of most BnPYLs were relatively higher in seeds at the germination stage than those in other organs or at other developmental stages. Gene Ontology (GO) enrichment showed that BnPYL genes mainly participate in responses to stimuli. To identify crucial PYLs mediating the response to abiotic stress in B. napus, expression changes in 14 BnPYL genes were determined by quantitative real-time RT-PCR after drought, heat, and salinity treatments, and identified BnPYR1-3, BnPYL1-2, and BnPYL7-2 in respond to abiotic stresses. The findings of this study lay a foundation for further investigations of PYL genes in B. napus. PMID:29534558

  13. Late summer disease symptoms in western Washington red raspberry fields associated with co-occurrence of Phytophthora rubi, Verticillium dahliae, and Pratylenchus penetrans, but not Raspberry bushy dwarf virus

    USDA-ARS?s Scientific Manuscript database

    60% of the $109 million processed by the U.S. red raspberry industry is in northern Washington. In 2012, late summer disease symptoms were observed in many raspberry fields. These symptoms were initially attributed to Verticillium dahliae, but other soilborne pathogens (Phytophthora rubi, Pratylench...

  14. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus.

    PubMed

    Liu, Jing; Hua, Wei; Zhan, Gaomiao; Wei, Fang; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2010-01-01

    Rapeseed (Brassica napus) is one of the most important edible oilseed crops in the world and is increasingly used globally to produce bio-diesel. Therefore, increasing oil content of oilseed corps is of importance economically in both food and oil industries. The wri1 genes are differentially expressed in B. napus lines with different oil content. To investigate the effects of B. napus WRI1 (BnWRI1) on oil content, two Bnwri1 genes with different lengths, Bnwri1-1 and Bnwri1-2, were identified and sequenced. Homology analysis shows 80% amino acids of Bnwri1s are homologous to Arabidopsis thaliana WRI1 (AtWRI1). Overexpression of Bnwri1 cDNAs driven by cauliflower mosaic virus 35S-promoter in 51 transgenic A. thaliana lines resulted in 10-40% increased seed oil content and enlarged seed size and mass. Detailed analysis on transgenic embryos indicates an increased cell size other than cell number. In addition, Bnwri1 sequence polymorphism is highly related to oil content (p < 0.001). Taking together, Bnwri1 has potential applications in food and oil industries and in rapeseed breeding. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  15. Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7

    PubMed Central

    Prieto, Pilar; Navarro‐Raya, Carmen; Valverde‐Corredor, Antonio; Amyotte, Stefan G.; Dobinson, Katherine F.; Mercado‐Blanco, Jesús

    2009-01-01

    Summary The colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V. dahliae in olive tissues. Olive plants were bacterized with PICF7 and then transferred to V. dahliae‐infested soil. Monitoring olive colonization events by V. dahliae and its interaction with PICF7 was conducted using a non‐gnotobiotic system, confocal laser scanner microscopy and tissue vibratoming sections. A yellow fluorescently tagged V. dahliae derivative (VDAT‐36I) was obtained by Agrobacterium tumefaciens‐mediated transformation. Isolate VDAT‐36I quickly colonized olive root surface, successfully invaded root cortex and vascular tissues via macro‐ and micro‐breakages, and progressed to the aerial parts of the plant through xylem vessel cells. Strain PICF7 used root hairs as preferred penetration site, and once established on/in root tissues, hindered pathogen colonization. For the first time using this approach, the entire colonization process of a woody plant by V. dahliae is reported. Early and localized root surface and root endophytic colonization by P. fluorescens PICF7 is needed to impair full progress of verticillium wilt epidemics in olive. PMID:21255281

  16. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity

    PubMed Central

    Qin, Jun; Wang, Kailun; Sun, Lifan; Xing, Haiying; Wang, Sheng; Li, Lin; Chen, She

    2018-01-01

    The vascular pathogen Verticillium dahliae infects the roots of plants to cause Verticillium wilt. The molecular mechanisms underlying V. dahliae virulence and host resistance remain elusive. Here, we demonstrate that a secretory protein, VdSCP41, functions as an intracellular effector that promotes V. dahliae virulence. The Arabidopsis master immune regulators CBP60g and SARD1 and cotton GhCBP60b are targeted by VdSCP41. VdSCP41 binds the C-terminal portion of CBP60g to inhibit its transcription factor activity. Further analyses reveal a transcription activation domain within CBP60g that is required for VdSCP41 targeting. Mutations in both CBP60g and SARD1 compromise Arabidopsis resistance against V. dahliae and partially impair VdSCP41-mediated virulence. Moreover, virus-induced silencing of GhCBP60b compromises cotton resistance to V. dahliae. This work uncovers a virulence strategy in which the V. dahliae secretory protein VdSCP41 directly targets plant transcription factors to inhibit immunity, and reveals CBP60g, SARD1 and GhCBP60b as crucial components governing V. dahliae resistance. PMID:29757140

  17. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach.

    PubMed

    Wang, Yankun; Chen, Wenjing; Chu, Pu; Wan, Shubei; Yang, Mao; Wang, Mingming; Guan, Rongzhan

    2016-08-18

    Key genes related to plant type traits have played very important roles in the "green revolution" by increasing lodging resistance and elevating the harvest indices of crop cultivars. Although there have been numerous achievements in the development of dwarfism and plant type in Brassica napus breeding, exploring new materials conferring oilseed rape with efficient plant types that provide higher yields is still of significance in breeding, as well as in elucidating the mechanisms underlying plant development. Here, we report a new dwarf architecture with down-curved leaf mutant (Bndwf/dcl1) isolated from an ethyl methanesulphonate (EMS)-mutagenized B. napus line, together with its inheritance and gene mapping, and pleiotropic effects of the mapped locus on plant-type traits. We constructed a high-density single-nucleotide polymorphism (SNP) map using a backcross population derived from the Bndwf/dcl1 mutant and the canola cultivar 'zhongshuang11' ('ZS11') and mapped the dwarf architecture with the down-curved leaf dominant locus, BnDWF/DCL1, in a 6.58-cM interval between SNP marker bins M46180 and M49962 on the linkage group (LG) C05 of B. napus. Further mapping with other materials derived from Bndwf/dcl1 narrowed the interval harbouring BnDWF/DCL1 to 175 kb in length and this interval contained 16 annotated genes. Quantitative trait locus (QTL) mappings with the backcross population for plant type traits, including plant height, branching height, main raceme length and average branching interval, indicated that the mapped QTLs for plant type traits were located at the same position as the BnDWF/DCL1 locus. This study suggests that the BnDWF/DCL1 locus is a major pleiotropic locus/QTL in B. napus, which may reduce plant height, alter plant type traits and change leaf shape, and thus may lead to compact plant architecture. Accordingly, this locus may have substantial breeding potential for increasing planting density.

  18. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus

    PubMed Central

    Bennett, Rick A.; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola–whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity. PMID:29320498

  19. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    PubMed

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  20. BnaC9.SMG7b Functions as a Positive Regulator of the Number of Seeds per Silique in Brassica napus by Regulating the Formation of Functional Female Gametophytes.

    PubMed

    Li, Shipeng; Chen, Lei; Zhang, Liwu; Li, Xi; Liu, Ying; Wu, Zhikun; Dong, Faming; Wan, Lili; Liu, Kede; Hong, Dengfeng; Yang, Guangsheng

    2015-12-01

    Number of seeds per silique (NSS) is an important determinant of seed yield potential in Brassicaceae crops, and it is controlled by naturally occurring quantitative trait loci. We previously mapped a major quantitative trait locus, qSS.C9, on the C9 chromosome that controls NSS in Brassica napus. To gain a better understanding of how qSS.C9 controls NSS in B. napus, we isolated this locus through a map-based cloning strategy. qSS.C9 encodes a predicted small protein with 119 amino acids, designated as BnaC9.SMG7b, that shows homology with the Ever ShorterTelomere1 tertratricopeptide repeats and Ever Shorter Telomere central domains of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7). BnaC9.SMG7b plays a role in regulating the formation of functional female gametophyte, thus determining the formation of functional megaspores and then mature ovules. Natural loss or artificial knockdown of BnaC9.SMG7b significantly reduces the number of functional ovules per silique and thus, results in decreased seed number, indicating that qSS.C9 is a positive regulator of NSS in B. napus. Sequence and function analyses show that BnaC9.SMG7b experiences a subfunctionalization process that causes loss of function in nonsense-mediated mRNA decay, such as in Arabidopsis SMG7. Haplotype analysis in 84 accessions showed that the favorable BnaC9.SMG7b alleles are prevalent in modern B. napus germplasms, suggesting that this locus has been a major selection target of B. napus improvement. Our results represent the first step toward unraveling the molecular mechanism that controls the natural variation of NSS in B. napus. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus.

    PubMed

    Fu, Wen-qin; Zhao, Zhi-gang; Ge, Xian-hong; Ding, Li; Li, Zai-yun

    2014-01-23

    The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus.

  2. Impact of Transgenic Brassica napus Harboring the Antifungal Synthetic Chitinase (NiC) Gene on Rhizosphere Microbial Diversity and Enzyme Activities

    PubMed Central

    Khan, Mohammad S.; Sadat, Syed U.; Jan, Asad; Munir, Iqbal

    2017-01-01

    Transgenic Brassica napus harboring the synthetic chitinase (NiC) gene exhibits broad-spectrum antifungal resistance. As the rhizosphere microorganisms play an important role in element cycling and nutrient transformation, therefore, biosafety assessment of NiC containing transgenic plants on soil ecosystem is a regulatory requirement. The current study is designed to evaluate the impact of NiC gene on the rhizosphere enzyme activities and microbial community structure. The transgenic lines with the synthetic chitinase gene (NiC) showed resistance to Alternaria brassicicola, a common disease causing fungal pathogen. The rhizosphere enzyme analysis showed no significant difference in the activities of fivesoil enzymes: alkalyine phosphomonoestarase, arylsulphatase, β-glucosidase, urease and sucrase between the transgenic and non-transgenic lines of B. napus varieties, Durr-e-NIFA (DN) and Abasyne-95 (AB-95). However, varietal differences were observed based on the analysis of molecular variance. Some individual enzymes were significantly different in the transgenic lines from those of non-transgenic but the results were not reproducible in the second trail and thus were considered as environmental effect. Genotypic diversity of soil microbes through 16S–23S rRNA intergenic spacer region amplification was conducted to evaluate the potential impact of the transgene. No significant diversity (4% for bacteria and 12% for fungal) between soil microbes of NiC B. napus and the non-transgenic lines was found. However, significant varietal differences were observed between DN and AB-95 with 79% for bacterial and 54% for fungal diversity. We conclude that the NiC B. napus lines may not affect the microbial enzyme activities and community structure of the rhizosphere soil. Varietal differences might be responsible for minor changes in the tested parameters. PMID:28791039

  3. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    PubMed Central

    Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod

    2009-01-01

    Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793

  4. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1.

    PubMed

    Li, Huapeng; Wang, Yun; Li, Xiaocheng; Gao, Yong; Wang, Zhijun; Zhao, Yun; Wang, Maolin

    2011-01-01

    A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.

  5. A triallelic genetic male sterility locus in Brassica napus: an integrative strategy for its physical mapping and possible local chromosome evolution around it

    PubMed Central

    Lu, Wei; Liu, Jun; Xin, Qiang; Wan, Lili; Hong, Dengfeng; Yang, Guangsheng

    2013-01-01

    Background and Aims Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5. Methods A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5. Key Results BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence. Conclusions This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus. PMID:23243189

  6. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Impacts of adding different components of wood vinegar on rape (Brassica napus L.) seed germiantion

    NASA Astrophysics Data System (ADS)

    Shan, Xue; Liu, Xia; Zhang, Qian

    2018-03-01

    In recent years, wood vinegar has been widely used in the agricultural production. It can be used as the soil amendment, antibacterial agent and organic fertilizer. This study investigated the effect of wood vinegar on rape (Brassica napus L.) seed germination. The results in this study showed that 1% (v/v) wood vinegar had the greatest inhibition effect on the seed germination of rape (Brassica napus L.). The wood vinegar (WV) and the distilled wood vinegar at 98 - 130 °C (D2) significantly inhibited seed germination by 100%, compared to the control treatment. However, the distilled wood vinegar (D1) had significantly increased the shoot length and root length by 58.4% and 31.7%, respectively. These positive effects could be attributed to the improved soil fertility, increased nutrient supply, and further stimulated plant growth. Overall, the D1 could be a promising soil amendment to promote plants growth and enhance crop yields. Effect of adding different components of distilled wood vinegar on the seed germination of rape

  8. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.

    PubMed

    Xu, Hai-Ming; Kong, Xiang-Dong; Chen, Fei; Huang, Ji-Xiang; Lou, Xiang-Yang; Zhao, Jian-Yi

    2015-10-24

    Brassica napus is an important oilseed crop. Dissection of the genetic architecture underlying oil-related biological processes will greatly facilitates the genetic improvement of rapeseed. The differential gene expression during pod development offers a snapshot on the genes responsible for oil accumulation in. To identify candidate genes in the linkage peaks reported previously, we used RNA sequencing (RNA-Seq) technology to analyze the pod transcriptomes of German cultivar Sollux and Chinese inbred line Gaoyou. The RNA samples were collected for RNA-Seq at 5-7, 15-17 and 25-27 days after flowering (DAF). Bioinformatics analysis was performed to investigate differentially expressed genes (DEGs). Gene annotation analysis was integrated with QTL mapping and Brassica napus pod transcriptome profiling to detect potential candidate genes in oilseed. Four hundred sixty five and two thousand, one hundred fourteen candidate DEGs were identified, respectively, between two varieties at the same stages and across different periods of each variety. Then, 33 DEGs between Sollux and Gaoyou were identified as the candidate genes affecting seed oil content by combining those DEGs with the quantitative trait locus (QTL) mapping results, of which, one was found to be homologous to Arabidopsis thaliana lipid-related genes. Intervarietal DEGs of lipid pathways in QTL regions represent important candidate genes for oil-related traits. Integrated analysis of transcriptome profiling, QTL mapping and comparative genomics with other relative species leads to efficient identification of most plausible functional genes underlying oil-content related characters, offering valuable resources for bettering breeding program of Brassica napus. This study provided a comprehensive overview on the pod transcriptomes of two varieties with different oil-contents at the three developmental stages.

  9. Potential impact of genetically modified Lepidoptera-resistant Brassica napus in biodiversity hotspots: Sicily as a theoretical model.

    PubMed

    Manachini, Barbara; Bazan, Giuseppe; Schicchi, Rosario

    2018-03-14

    The general increase of the cultivation and trade of Bt transgenic plants resistant to Lepidoptera pests raises concerns regarding the conservation of animal and plant biodiversity. Demand for biofuels has increased the cultivation and importation of oilseed rape (Brassica napus L.), including transgenic lines. In environmental risk assessments (ERAs) for its potential future cultivation as well as for food and feed uses, the impact on wild Brassicaeae relatives and on non-target Lepidoptera should be assessed. Here we consider the potential exposure of butterflies as results of possible cultivation or naturalization of spilled seed in Sicily (Italy). Diurnal Lepidoptera, which are pollinators, can be exposed directly to the insecticidal proteins as larvae (mainly of Pieridae) through the host and through the pollen that can deposit on other host plants. Adults can be exposed via pollen and nectar. The flight periods of butterflies were recorded, and they were found to overlap for about 90% of the flowering period of B. napus for the majority of the species. In addition, B. napus has a high potential to hybridise with endemic taxa belonging to the B. oleracea group. This could lead to an exposure of non-target Lepidoptera if introgression of the Bt gene into a wild population happens. A rank of the risk for butterflies and wild relatives of oilseed rape is given. We conclude that, in environmental risk assessments, attention should be paid to plant-insect interaction especially in a biodiversity hotspot such as Sicily. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  10. Application of a Sex Pheromone, Pheromone Analogs, and Verticillium lecanii for Management of Heterodera glycines

    PubMed Central

    Meyer, S. L. F.; Huettel, R. N.

    1996-01-01

    A mutant strain of the fungus Verticillium lecanii and selected bioregulators of Heterodera glycines were evaluated for their potential to reduce population densities of the nematode on soybean under greenhouse conditions. The bioregulators tested were the H. glycines sex pheromone vanillic acid and the pheromone analogs syringic acid, isovanillic acid, ferulic acid, 4-hydroxy-3-methoxybenzonitrile, and methyl vanillate. A V. lecanii-vanillic acid combination and a V. lecanii-syringic acid combination were also applied as treatments. Syringic acid, 4-hydroxy-3-methoxybenzonitrile, V. lecanii, V. lecanii-vanillic acid, and V. lecanii-syringic acid significantly reduced nematode population densities in the greenhouse tests. Results with vanillic acid, isovanillic acid, and ferulic acid treatments were variable. Methyl vanillate did not significantly reduce cyst nematode population densities in the greenhouse tests. PMID:19277343

  11. Genome-wide investigation of genetic changes during modern breeding of Brassica napus.

    PubMed

    Wang, Nian; Li, Feng; Chen, Biyun; Xu, Kun; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Gao, Guizhen; Bancroft, Ian; Meng, Jingling; King, Graham J; Wu, Xiaoming

    2014-08-01

    Considerable genome variation had been incorporated within rapeseed breeding programs over past decades. In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6-10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.

  12. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L.

    PubMed

    Su, Zhen-Zhu; Wang, Ting; Shrivastava, Neeraj; Chen, You-Yuan; Liu, Xiaoxi; Sun, Chao; Yin, Yufeng; Gao, Qi-Kang; Lou, Bing-Gan

    2017-06-01

    In current scenario, crop productivity is being challenged by decreasing soil fertility. To cope up with this problem, different beneficial microbes are explored to increase the crop productivity with value additions. In this study, Brassica napus L., an important agricultural economic oilseed crop with rich source of nutritive qualities, was interacted with Piriformospora indica, a unique root colonizing fungus with wide host range and multifunctional aspects. The fungus-treated plants showed a significant increase in agronomic parameters with plant biomass, lodging-resistance, early bolting and flowering, oil yield and quality. Nutritional analysis revealed that plants treated by P. indica had reduced erucic acid and glucosinolates contents, and increased the accumulation of N, Ca, Mg, P, K, S, B, Fe and Zn elements. Low erucic acid and glucosinolates contents are important parameters for high quality oil, because oils high in erucic acid and glucosinolates are considered undesirable for human nutrition. Furthermore, the expression profiles of two encoding enzyme genes, Bn-FAE1 and BnECR, which are responsible for regulating erucic acid biosynthesis, were down-regulated at mid- and late- life stages during seeds development in colonized plants. These results demonstrated that P. indica played an important role in enhancing plant growth, rapeseed yield and quality improvement of B. napus. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.).

    PubMed

    Li, Tinggang; Ma, Xuefeng; Li, Nanyang; Zhou, Lei; Liu, Zheng; Han, Huanyong; Gui, Yuejing; Bao, Yuming; Chen, Jieyin; Dai, Xiaofeng

    2017-12-01

    Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P < 1.17 × 10 -5 (P = 1/85 630, -log 10 P = 4.93); the peaks of SNPs associated with VW resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P-value (-log 10 P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372-kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR-NBS-LRR domains that may be involved in disease resistance response. Real-time quantitative PCR and virus-induced gene silencing (VIGS) analysis showed that CG02 was specific to up-regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Molecular Mapping and Validation of a Major QTL Conferring Resistance to a Defoliating Isolate of Verticillium Wilt in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2014-01-01

    Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1–27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW. PMID:24781706

  15. Production and genetic analysis of resynthesized Brassica napus from a B. rapa landrace from the Qinghai-Tibet Plateau and B. alboglabra.

    PubMed

    Liu, H D; Zhao, Z G; Du, D Z; Deng, C R; Fu, G

    2016-01-08

    This study aimed to reveal the genetic and epigenetic variations involved in a resynthesized Brassica napus (AACC) generated from a hybridization between a B. rapa (AA) landrace and B. alboglabra (CC). Amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism, and the cDNA-AFLP technique were performed to detect changes between different generations at the genome, methylation, and transcription levels. We obtained 30 lines of resynthesized B. napus with a mean 1000-seed weight of over 7.50 g. All of the lines were self-compatible, probably because both parents were self-compatible. At the genome level, the S0 generation had the lowest frequency of variations (0.18%) and the S3 generation had the highest (6.07%). The main variation pattern was the elimination of amplified restriction fragments on the CC genome from the S0 to the S4 generations. At the methylation level, we found three loci that exhibited altered methylation patterns on the parental A genome; the variance rate was 1.35%. At the transcription level, we detected 43.77% reverse mutations and 37.56% deletion mutations that mainly occurred on the A and C genomes, respectively, in the S3 generation. Our results highlight the genetic variations that occur during the diploidization of resynthesized B. napus.

  16. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-12-14

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.

  17. Application of Endophytic Pseudomonas fluorescens and a Bacterial Consortium to Brassica napus Can Increase Plant Height and Biomass under Greenhouse and Field Conditions

    PubMed Central

    Lally, Richard D.; Galbally, Paul; Moreira, António S.; Spink, John; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2017-01-01

    Plant associated bacteria with plant growth promotion (PGP) properties have been proposed for use as environmentally friendly biofertilizers for sustainable agriculture; however, analysis of their efficacy in the field is often limited. In this study, greenhouse and field trials were carried out using individual endophytic Pseudomonas fluorescens strains, the well characterized rhizospheric P. fluorescens F113 and an endophytic microbial consortium of 10 different strains. These bacteria had been previously characterized with respect to their PGP properties in vitro and had been shown to harbor a range of traits associated with PGP including siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and inorganic phosphate solubilization. In greenhouse experiments individual strains tagged with gfp and Kmr were applied to Brassica napus as a seed coat and were shown to effectively colonize the rhizosphere and root of B. napus and in addition they demonstrated a significant increase in plant biomass compared with the non-inoculated control. In the field experiment, the bacteria (individual and consortium) were spray inoculated to winter oilseed rape B. napus var. Compass which was grown under standard North Western European agronomic conditions. Analysis of the data provides evidence that the application of the live bacterial biofertilizers can enhance aspects of crop development in B. napus at field scale. The field data demonstrated statistically significant increases in crop height, stem/leaf, and pod biomass, particularly, in the case of the consortium inoculated treatment. However, although seed and oil yield were increased in the field in response to inoculation, these data were not statistically significant under the experimental conditions tested. Future field trials will investigate the effectiveness of the inoculants under different agronomic conditions. PMID:29312422

  18. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  19. Unusually large oilbodies are highly correlated with lower oil content in Brassica napus.

    PubMed

    Hu, Zhiyong; Wang, Xinfa; Zhan, Gaomiao; Liu, Guihua; Hua, Wei; Wang, Hanzhong

    2009-04-01

    Rapeseed cultivars exhibit a wide range of oil content in the mature seeds. Little is known about the relationship between the oilbody structures and the differences in oil contents of Brassica napus cultivars. In the present study, the oilbody morphology and its fate during the embryo development and seedling growth in several cultivars with oil contents ranging from 33.4 to 49.8% were studied. Cultivars with low oil contents (LO), some of the oilbodies were in similar size to those in cultivars with high oil content (HO), while some oilbodies in the LO cultivars were several times bigger (over 5.0 microm). These are much larger than the average size of B. napus seed oilbodies that were previously reported (Mantese et al. Ann Bot 97:999-1010, 2006). The oleosin protein levels and oleosin1 gene transcript abundances in the HO cultivars were clearly higher than in the LO cultivars. The shapes of oilbodies were similar during early stages of embryo development in both HO and LO cultivars, while as the embryos matured, the unusually large oilbodies were generated in the LO cells. After germination, the oilbodies in LO cultivars were consumed more slowly than in HO, and the seed germination rates of LO cultivars were less than those of HO cultivars. The low accumulation of oleosins results in the forming of unusually large oilbodies in LO cultivars.

  20. Meligethes aeneus pollen-feeding suppresses, and oviposition induces, Brassica napus volatiles: beetle attraction/repellence to lilac aldehydes and veratrole

    USDA-ARS?s Scientific Manuscript database

    Insect pollination and pollen-feeding can reduce plant volatile emissions and future insect floral attraction, with oviposition having different effects. Meligethes aeneus F. (Coleoptera: Nitidulidae), is a pollen-feeding pest beetle of oilseed rape, Brassica napus L. (Brassicaceae). We measured pla...

  1. Bioremediation of pesticide wastes in soil using two plant species, Kochia Scoparia and Brassica Napus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, E.L.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    Radiotracer studies were conducted to determine the fate of atrazine and metolachlor, applied as a mixture, in soils taken from pesticide-contaminated sites. Samples taken from nonvegetated areas and from the rhizosphere of Kochia scoparia were treated with {sup 14}C-atrazine and unlabeled metolachlor (50 {mu}g/g each) and incubated for 30, 60 or 135 d. A mass balance of the {sup 14}C applied revealed significant differences between the two soil types in soil bound residues, {sup 14}CO{sub 2}, and the extractable organic fraction (p<0.05). After 135-d incubation, 28% of the applied {sup 14}C was mineralized in Kochia rhizosphere soil, compared to 4%more » in soil taken from a nonvegetated area. A greater amount of {sup 14}C was extractable from the nonvegetated soil compared to the rhizosphere soil (64% and 22%, respectively). The half-life of atrazine based on extractable {sup 14}C-atrazine was 193 d in nonvegetated soil and 50 d in Kochia rhizosphere soil. Additional subsamples of nonvegetated soils treated with a mixture of {sup 14}C-atrazine and metolachlor were allowed to age for 135 d, and then were either planted with Brassica napus, Kochia scoparia, or left unvegetated. Incubations were carried out in enclosed chambers under controlled conditions. After 30 additional days, a subset of samples was extracted and analyzed using thin-layer chromatography, soil and plant combustion, and liquid scintillation spectroscopy. The percent of applied {sup 14}C-atrazine remaining as atrazine in soil which was nonvegetated, or planted with Brassica napus or Kochia scoparia was 9.3, 6.5, and 4.2%, respectively. Combustion of plants revealed that 11% of the applied radioactivity was taken up in Kochia scoparia, while less than 1% was taken up in Brassica napus plants. The potential for vegetation to aid in bioremediating pesticide wastes in soil is promising.« less

  2. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation.

    PubMed

    Lacalle, Rafael G; Gómez-Sagasti, María T; Artetxe, Unai; Garbisu, Carlos; Becerril, José M

    2018-03-15

    Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to rehabilitate multi-contaminated soils. Recently, newer techniques, such as the application of metallic nanoparticles, are being deployed in an attempt to improve traditional remediation options. In order to implement a phytomanagement strategy on calcareous alkaline peri-urban soils simultaneously contaminated with several metals and diesel, we evaluated the effectiveness of Brassica napus L., a profitable crop species, assisted with organic amendment and zero-valent iron nanoparticles (nZVI). A two-month phytotron experiment was carried out using two soils, i.e. amended and unamended with organic matter. Soils were artificially contaminated with Zn, Cu and Cd (1500, 500 and 50mgkg -1 , respectively) and diesel (6000mgkg -1 ). After one month of stabilization, soils were treated with nZVI and/or planted with B. napus. The experiment was conducted with 16 treatments resulting from the combination of the following factors: amended/unamended, contaminated/non-contaminated, planted/unplanted and nZVI/no-nZVI. Soil physicochemical characteristics and biological indicators (plant performance and soil microbial properties) were determined at several time points along the experiment. Carbonate content of soils was the crucial factor for metal immobilization and, concomitantly, reduction of metal toxicity. Organic amendment was essential to promote diesel degradation and to improve the health and biomass of B. napus. Soil microorganisms degraded preferably diesel hydrocarbons of biological origin (biodiesel). Plants had a remarkable positive impact on the activity and functional diversity of soil microbial communities. The nZVI were ineffective as soil remediation tools, but did not

  3. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh.

    PubMed

    Guo, Yanli; Huang, Yi; Gao, Jie; Pu, Yuanyuan; Wang, Nan; Shen, Wenyun; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Zou, Jitao; Shen, Jinxiong

    2018-01-01

    Accumulation of storage compounds during seed development plays an important role in the life cycle of oilseed plants; these compounds provide carbon and energy resources to support the establishment of seedlings. In this study, we show that BnCIPK9 has a broad expression pattern in Brassica napus L. tissues and that wounding stress strongly induces its expression. The overexpression of BnCIPK9 during seed development reduced oil synthesis in transgenic B. napus compared to that observed in wild-type (WT) plants. Functional analysis revealed that seed oil content (OC) of complementation lines was similar to that of WT plants, whereas OC in Arabidopsis thaliana (L.) Heynh. Atcipk9 knockout mutants ( cipk9 ) was higher than that of WT plants. Seedling of cipk9 mutants failed to establish roots on a sugar-free medium, but root establishment could be rescued by supplementation of sucrose or glucose. The phenotype of complementation transgenic lines was similar to that of WT plants when grown on sugar-free medium. Mutants, cipk9 , cbl2 , and cbl3 presented similar phenotypes, suggesting that CIPK9, CBL2, and CBL3 might work together and play similar roles in root establishment under sugar-free condition. This study showed that BnCIPK9 and AtCIPK9 encode a protein kinase that is involved in sugar-related response and plays important roles in the regulation of energy reserves. Our results suggest that AtCIPK9 negatively regulates lipid accumulation and has a significant effect on early seedling establishment in A. thaliana . The functional characterization of CIPK9 provides insights into the regulation of OC, and might be used for improving OC in B. napus . We believe that our study makes a significant contribution to the literature because it provides information on how CIPKs coordinate stress regulation and energy signaling.

  4. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering.

    PubMed

    Wei, Wenhui; Li, Yunchang; Wang, Lijun; Liu, Shengyi; Yan, Xiaohong; Mei, Desheng; Li, Yinde; Xu, Yusong; Peng, Pengfei; Hu, Qiong

    2010-04-01

    An allo-cytoplasmic male sterile line, which was developed through somatic hybridization between Brassica napus and Sinapis arvensis (thus designated as Nsa CMS line), possesses high potential for hybrid production of rapeseed. In order to select for restorer lines, fertile plants derived from the same somatic hybridization combination were self-pollinated and testcrossed with the parental Nsa CMS line for six generations. A novel disomic alien addition line, B. napus-S. arvensis, has been successfully developed. GISH analysis showed that it contains one pair of chromosomes from S. arvensis and 19 pairs from B. napus, and retains stable and regular mitotic and meiotic processes. The addition line displays very strong restoration ability to Nsa CMS line, high resistance to Sclerotinia sclerotiorum and a low incidence of pod shattering. Because the addition line shares these very important agricultural characters, it is a valuable restorer to Nsa CMS line, and is named NR1 here (Nsa restorer no. 1).

  5. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    PubMed Central

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-01-01

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  6. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae.

    PubMed

    Sarmiento-Villamil, Jorge L; Prieto, Pilar; Klosterman, Steven J; García-Pedrajas, María D

    2018-04-01

    Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem for crop production worldwide. In this work, we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putative homologue of the transcription factor Ste12. Vhb1 (VDAG_08786), identified in a forward genetics approach, is similar to the homeobox transcription factor Htf1, reported as a regulator of conidiogenesis in several fungi. Deletion of vph1 did not affect vegetative growth, whereas deletion of vhb1 greatly reduced sporulation rates in liquid medium. Both mutants failed to induce Verticillium wilt symptoms. However, unlike Δvph1, Δvhb1 could be re-isolated from the vascular system of some asymptomatic plants. Confocal microscopy further indicated that Δvph1 and Δvhb1 differed in their behaviour in planta; Δvph1 could not penetrate the root cortex, whereas Δvhb1 was impaired in its ability to colonize the xylem. In agreement with these observations, only Δvhb1 could penetrate cellophane paper. On cellophane, wild-type and Δvhb1 strains produced numerous short branches with swollen tips, resembling the hyphopodia formed on root surfaces, contrasting with Δvph1, which generated unbranched long filaments without swollen tips. A microarray analysis showed that these differences in growth were associated with differences in global transcription patterns, and allowed us to identify a large set of novel genes potentially involved in virulence in V. dahliae. Ste12 homologues are known regulators of invasive growth, but Vhb1 is the first putative Htf1 homologue identified with a critical role in virulence. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  7. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  8. Lead effects on Brassica napus photosynthetic organs.

    PubMed

    Ferreyroa, Gisele V; Lagorio, M Gabriela; Trinelli, María A; Lavado, Raúl S; Molina, Fernando V

    2017-06-01

    In this study, effects of lead on ultracellular structure and pigment contents of Brassica napus were examined. Pb(II) was added in soluble form to soil prior to sowing. Pb contents were measured in plant organs at the ontogenetic stages of flowering (FL) and physiological maturity (PM). Pigment contents were evaluated through reflectance measurements. Pb content in organs was found to decrease in the order; roots>stems>leaves. Lead content in senescent leaves at FL stage was significantly higher than harvested leaves, strongly suggesting a detoxification mechanism. Leaves and stems harvested at the PM stage showed damage at subcellular level, namely chloroplast disorganization, cell wall damage and presence of osmiophilic bodies. Chlorophyll content increased in the presence of Pb at the FL stage, compared with control; at the PM stage, chlorophyll contents decreased with low Pb concentration but showed no significant differences with control at high Pb soil concentration. The results suggest an increase in antioxidants at low Pb concentration and cell damage at higher lead concentration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    PubMed

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

  10. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    PubMed Central

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content. PMID

  11. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) modelmore » and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis ( 13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch

  12. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    DOE PAGES

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; ...

    2014-12-19

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) modelmore » and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis ( 13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch

  13. Destiny of a transgene escape from Brassica napus into Brassica rapa.

    PubMed

    Lu, M.; Kato, M.; Kakihara, F.

    2002-07-01

    Transgenic Brassica napus can be easily crossed with wild Brassica rapa. The spread of the transgene to wild species has aroused the general concern about its effect on ecological and agricultural systems. This paper was designated, by means of population genetics, to study the fate of a transgene escape from B. napus to B. rapa. Three models were proposed to survey the change in gene frequency during successive backcross processes by considering selection pressures against aneuploids, against herbicide-susceptible individuals, and by considering A-C intergenomic recombination and the effect of genetic drift. The transmission rate of an A-chromosome gene through an individual to the next generation was 50%, irrespective of the chromosome number; while that of a C-chromosome transgene varied from 8.7% to 39.9%, depending on the chromosome number of the individual used in the backcross. Without spraying herbicide, the frequency of an A-chromosome gene was 50% in the BC(1) generation, and decreased by 50% with the advance of each backcross generation; that of a C-chromosome gene was around 39.9% in BC(1), 7.7% in BC(2), 1.2% in BC(3) and 0.1% in the BC(4) generation. Under the selection pressure against herbicide-susceptible individuals, the frequency of a transgene reached a stable value of about 5.5% within six generations of successive backcrossings. The effect of genetic drift and intergenomic exchange on gene transmission rate was discussed. It is suggested that the transgene integrated on a C-chromosome (or better on a cytoplasm genome) is safer than that on an A-chromosome. The transgenic cultivars should be cultivated rotationally by year(s) with other non-transgenic varieties in order to reduce the transfer of the transgene to wild B. rapa species.

  14. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    PubMed

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  15. Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus.

    PubMed

    Raboanatahiry, Nadia; Chao, Hongbo; Guo, Liangxing; Gan, Jianping; Xiang, Jun; Yan, Mingli; Zhang, Libin; Yu, Longjiang; Li, Maoteng

    2017-10-12

    Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome "Darmor-bzh" to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of

  16. IrrE, a Global Regulator of Extreme Radiation Resistance in Deinococcus radiodurans, Enhances Salt Tolerance in Escherichia coli and Brassica napus

    PubMed Central

    Zhou, Zhengfu; Yan, Yongliang; Zhang, Wei; Lu, Wei; Ping, Shuzhen; Dai, Qilin; Yuan, Menglong; Feng, Bin; Hou, Xiaoguang; Zhang, Ying; Ruiqiang; Liu, Tingting; Feng, Lu; Wang, Lei; Chen, Ming; Lin, Min

    2009-01-01

    Background Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferring extreme resistance. In Deinococcus radiodurans, the irrE gene encodes a global regulator responsible for extreme radioresistance. Methodology/Principal Findings Using plate assays, we showed that IrrE protected E. coli cells against salt shock and other abiotic stresses such as oxidative, osmotic and thermal shocks. Comparative proteomic analysis revealed that IrrE functions as a switch to regulate different sets of proteins such as stress responsive proteins, protein kinases, glycerol-degrading enzymes, detoxification proteins, and growth-related proteins in E. coli. We also used quantitative RT-PCR to investigate expression of nine selected stress-responsive genes in transgenic and wild-type Brassica napus plants. Transgenic B. napus plants expressing the IrrE protein can tolerate 350 mM NaCl, a concentration that inhibits the growth of almost all crop plants. Conclusions Expression of IrrE, a global regulator for extreme radiation resistance in D. radiodurans, confers significantly enhanced salt tolerance in both E. coli and B. napus. We thus propose that the irrE gene might be used as a potentially promising transgene to improve abiotic stress tolerances in crop plants. PMID:19204796

  17. Cultivar Variation in Hormonal Balance Is a Significant Determinant of Disease Susceptibility to Xanthomonas campestris pv. campestris in Brassica napus.

    PubMed

    Islam, Md Tabibul; Lee, Bok-Rye; Park, Sang-Hyun; La, Van Hien; Bae, Dong-Won; Kim, Tae-Hwan

    2017-01-01

    This study aimed to directly elucidate cultivar variation in disease susceptibility and disease responses in relation to hormonal status in the interaction of Brassica napus cultivars and Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease. Fully expanded leaves of six B. napus cultivars (cvs. Capitol, Youngsan, Saturnin, Colosse, Tamra, and Mosa) were inoculated with Xcc. At 14 days post-inoculation with Xcc, cultivar variation in susceptibility or resistance was interpreted with defense responses as estimated by redox status, defensive metabolites, and expression of phenylpropanoid synthesis-related genes in relation to endogenous hormonal status. Disease susceptibility of six cultivars was distinguished by necrotic lesions in the Xcc-inoculated leaves and characterized concurrently based on the higher increase in reactive oxygen species and lipid peroxidation. Among these cultivars, as the susceptibility was higher, the ratios of abscisic acid (ABA)/jasmonic acid (JA) and salicylic acid (SA)/JA tended to increase with enhanced expression of SA signaling regulatory gene NPR1 and transcriptional factor TGA1 and antagonistic suppression of JA-regulated gene PDF 1.2 . In the resistant cultivar (cv. Capitol), accumulation of defensive metabolites with enhanced expression of genes involved in flavonoids (chalcone synthase), proanthocyanidins (anthocyanidin reductase), and hydroxycinnamic acids (ferulate-5-hydroxylase) biosynthesis and higher redox status were observed, whereas the opposite results were obtained for susceptible cultivars (cvs. Mosa and Tamra). These results clearly indicate that cultivar variation in susceptibility to infection by Xcc was determined by enhanced alteration of the SA/JA ratio, as a negative regulator of redox status and phenylpropanoid synthesis in the Brasica napus -Xcc pathosystem.

  18. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  19. Biological Control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus Is Mediated by Different Mechanisms.

    PubMed

    Madi, L; Katan, T; Katan, J; Henis, Y

    1997-10-01

    ABSTRACT Ten wild-type strains and two benomyl-resistant mutants of Talaromyces flavus were examined for their ability to secrete the cell wall-degrading enzymes chitinase, beta-1,3-glucanase, and cellulase, to parasitize sclerotia of Sclerotium rolfsii, to reduce bean stem rot caused by S. rolfsii, and to secrete antifungal substance(s) active against Verticillium dahliae. The benomyl-resistant mutant Ben(R)TF1-R6 overproduced extracellular enzymes and exhibited enhanced antagonistic activity against S. rolfsii and V. dahliae compared to the wild-type strains and other mu tants. Correlation analyses between the extracellular enzymatic activities of different isolates of T. flavus and their ability to antagonize S. rolfsii indicated that mycoparasitism by T. flavus and biological control of S rolfsii were related to the chitinase activity of T. flavus. On the other hand, production of antifungal compounds and glucose-oxidase activity may play a role in antagonism of V. dahliae by retardation of germination and hyphal growth and melanization of newly formed microsclerotia.

  20. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing.

    PubMed

    Wang, Zhiwei; Qiao, Yan; Zhang, Jingjing; Shi, Wenhui; Zhang, Jinwen

    2017-07-01

    Rapeseed (Brassica napus) is an important cash crop considered as the third largest oil crop worldwide. Rapeseed oil contains various saturation or unsaturation fatty acids, these fatty acids, whose could incorporation with TAG form into lipids stored in seeds play various roles in the metabolic activity. The different fatty acids in B. napus seeds determine oil quality, define if the oil is edible or must be used as industrial material. miRNAs are kind of non-coding sRNAs that could regulate gene expressions through post-transcriptional modification to their target transcripts playing important roles in plant metabolic activities. We employed high-throughput sequencing to identify the miRNAs and their target transcripts involved in fatty acids and lipids metabolism in different development of B. napus seeds. As a result, we identified 826 miRNA sequences, including 523 conserved and 303 newly miRNAs. From the degradome sequencing, we found 589 mRNA could be targeted by 236 miRNAs, it includes 49 novel miRNAs and 187 conserved miRNAs. The miRNA-target couple suggests that bna-5p-163957_18, bna-5p-396192_7, miR9563a-p3, miR9563b-p5, miR838-p3, miR156e-p3, miR159c and miR1134 could target PDP, LACS9, MFPA, ADSL1, ACO32, C0401, GDL73, PlCD6, OLEO3 and WSD1. These target transcripts are involving in acetyl-CoA generate and carbon chain desaturase, regulating the levels of very long chain fatty acids, β-oxidation and lipids transport and metabolism process. At the same, we employed the q-PCR to valid the expression of miRNAs and their target transcripts that involve in fatty acid and lipid metabolism, the result suggested that the miRNA and their transcript expression are negative correlation, which in accord with the expression of miRNA and its target transcript. The study findings suggest that the identified miRNA may play important role in the fatty acids and lipids metabolism in seeds of B. napus. Copyright © 2017 The Author(s). Published by Elsevier B.V. All

  1. Storage lipid biosynthesis in microspore-derived Brassica napus embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Underhill, E.W.; Weber, N.

    1989-04-01

    Erucic acid, a fatty acid which is confined to the neutral lipids in developing seed cotyledons or rape, was chosen as a marker to study triacylglycerol (TAG) biosynthesis in a Brassica napus L. cv Reston microspore-derived embryo culture system. Accumulation and changes in acyl composition of TAGs during embryogenesis strongly paralleled that observed during seed development. Homogenates of 29-day cultured embryos were examined for the ability to incorporate erucoyl moieties into storage lipids. In the presence of {sup 14}C erucoyl CoA and various acceptors, including glycerol-3-phosphate (G3P), {sup 14}C erucic acid was rapidly incorporated into the TAG fraction. However, inmore » contrast to studies with {sup 14}C oleoyl CoA, there was no measurable radioactivity in any Kennedy Pathway intermediates or within membrane lipid components. Analysis of the radiolabelled TAG species suggested that erucoyl moieties were incorporated into the sn-3 position by a highly active diacylglyercol acyltransferase.« less

  2. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells.

    PubMed

    Wycliffe, Paul; Sitbon, Folke; Wernersson, Jonny; Ezcurra, Inés; Ellerström, Mats; Rask, Lars

    2005-10-01

    Brassica napus complementary deoxyribonucleic acid (cDNA) clones encoding a DNA-binding protein, BnPEND, were isolated by Southwestern screening. A distinctive feature of the protein was a bZIP-like sequence in the amino-terminal portion, which, after expression in Escherichia coli, bound DNA. BnPEND transcripts were present in B. napus roots and flower buds, and to a lesser extent in stems, flowers and young leaves. Treatment in the dark for 72 h markedly increased the amount of BnPEND transcript in leaves of all ages. Sequence comparison showed that BnPEND was similar to a presumed transcription factor from B. napus, GSBF1, a protein deduced from an Arabidopsis thaliana cDNA (BX825084) and the PEND protein from Pisum sativum, believed to anchor the plastid DNA to the envelope early during plastid development. Homology to expressed sequence tag (EST) sequences from additional species suggested that BnPEND homologues are widespread among the angiosperms. Transient expression of BnPEND fused with green fluorescent protein (GFP) in Nicotiana benthamiana epidermal cells showed that BnPEND is a plastid protein, and that the 15 amino acids at the amino-terminal contain information about plastid targeting. Expression of BnPEND in Nicotiana tabacum from the Cauliflower Mosaic Virus 35S promoter gave stable transformants with different extents of white to light-green areas in the leaves, and even albino plants. In the white areas, but not in adjacent green tissue, the development of palisade cells and chloroplasts was disrupted. Our data demonstrate that the BnPEND protein, when over-expressed at an inappropriate stage, functionally blocks the development of plastids and leads to altered leaf anatomy, possibly by preventing the release of plastid DNA from the envelope.

  3. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress.

    PubMed

    Farid, Mujahid; Ali, Shafaqat; Rizwan, Muhammad; Saeed, Rashid; Tauqeer, Hafiz Muhammad; Sallah-Ud-Din, Rasham; Azam, Ahmed; Raza, Nighat

    2017-09-01

    The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H 2 O 2 ) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.

  4. The Three Lineages of the Diploid Hybrid Verticillium longisporum Differ in Virulence and Pathogenicity.

    PubMed

    Novakazi, Fluturë; Inderbitzin, Patrik; Sandoya, German; Hayes, Ryan J; von Tiedemann, Andreas; Subbarao, Krishna V

    2015-05-01

    Verticillium longisporum is an economically important vascular pathogen of Brassicaceae crops in different parts of the world. V. longisporum is a diploid hybrid that consists of three different lineages, each of which originated from a separate hybridization event between two different sets of parental species. We used 20 isolates representing the three V. longisporum lineages and the relative V. dahliae, and performed pathogenicity tests on 11 different hosts, including artichoke, cabbage, cauliflower, cotton, eggplant, horseradish, lettuce, linseed, oilseed rape (canola), tomato, and watermelon. V. longisporum was overall more virulent on the Brassicaceae crops than V. dahliae, which was more virulent than V. longisporum across the non-Brassicaceae crops. There were differences in virulence between the three V. longisporum lineages. V. longisporum lineage A1/D1 was the most virulent lineage on oilseed rape, and V. longisporum lineage A1/D2 was the most virulent lineage on cabbage and horseradish. We also found that on the non-Brassicaceae hosts eggplant, tomato, lettuce, and watermelon, V. longisporum was more or equally virulent than V. dahliae. This suggests that V. longisporum may have a wider potential host range than currently appreciated.

  5. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grison, R.; Grezes-Besset, B.; Lucante, N.

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  6. Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination12[C][W

    PubMed Central

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-01-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070

  7. The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea).

    PubMed

    Liu, Yong-Bo; Tang, Zhi-Xi; Darmency, Henri; Stewart, C Neal; Di, Kun; Wei, Wei; Ma, Ke-ping

    2012-01-01

    Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories. Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents. Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.

  8. An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus.

    PubMed

    Chu, Pu; Liu, Huijuan; Yang, Qing; Wang, Yankun; Yan, Guixia; Guan, Rongzhan

    2014-12-01

    Interspecific hybridizations promote gene transfer between species and play an important role in plant speciation and crop improvement. However, hybrid sterility that commonly found in the first generation of hybrids hinders the utilization of interspecific hybridization. The combination of divergent parental genomes can create extensive transcriptome variations, and to determine these gene expression alterations and their effects on hybrids, an interspecific Brassica hybrid of B. carinata × B. napus was generated. Scanning electron microscopy analysis indicated that some of the hybrid pollen grains were irregular in shape and exhibited abnormal exine patterns compared with those from the parents. Using the Illumina HiSeq 2000 platform, 39,598, 32,403 and 42,208 genes were identified in flower buds of B. carinata cv. W29, B. napus cv. Zhongshuang 11 and their hybrids, respectively. The differentially expressed genes were significantly enriched in pollen wall assembly, pollen exine formation, pollen development, pollen tube growth, pollination, gene transcription, macromolecule methylation and translation, which might be associated with impaired fertility in the F1 hybrid. These results will shed light on the mechanisms underlying the low fertility of the interspecific hybrids and expand our knowledge of interspecific hybridization.

  9. Protein composition of oil bodies from mature Brassica napus seeds.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie

    2009-06-01

    Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.

  10. Evaluation of nine genotypes of oilseed rape (Brassica napus L.) for larval infestation and performance of rape stem weevil (Ceutorhynchus napi Gyll.)

    PubMed Central

    Becker, Heiko C.; Vidal, Stefan

    2017-01-01

    The rape stem weevil, Ceutorhynchus napi Gyll., is a serious pest of winter oilseed rape (Brassica napus L.) crops in Europe causing severe yield loss. In currently used oilseed rape cultivars no resistance to C. napi has been identified. Resynthesized lines of B. napus have potential to broaden the genetic variability and may improve resistance to insect pests. In this study, the susceptibility to C. napi of three cultivars, one breeding line and five resynthesized lines of oilseed rape was compared in a semi-field plot experiment under multi-choice conditions. Plant acceptance for oviposition was estimated by counting the number of C. napi larvae in stems. The larval instar index and the dry body mass were assessed as indicators of larval performance. The extent of larval feeding within stems was determined by the stem injury coefficient. Morphological stem traits and stem contents of glucosinolates were assessed as potential mediators of resistance. The resynthesized line S30 had significantly fewer larvae than the cultivars Express617 and Visby and the resynthesized lines L122 and L16. The low level of larval infestation in S30 was associated with a low larval instar and stem injury index. Low numbers of larvae were not correlated with the length or diameter of stems, and the level of stem glucosinolates. As indicated by the low larval infestation and slow larval development the resistance of S30 to C. napi is based on both antixenotic and antibiotic properties of the genotypes. The resynthesized line S30 should therefore be introduced into B. napus breeding programs to enhance resistance against C. napi. PMID:28686731

  11. Functional Identification and Characterization of the Brassica Napus Transcription Factor Gene BnAP2, the Ortholog of Arabidopsis Thaliana APETALA2

    PubMed Central

    Xiong, Zhiyong; Chen, Chunli; Wang, Lijun; Yu, Jingyin; Lu, Changming; Wei, Wenhui

    2012-01-01

    BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered. PMID:22479468

  12. Functional identification and characterization of the Brassica napus transcription factor gene BnAP2, the ortholog of Arabidopsis thaliana APETALA2.

    PubMed

    Yan, Xiaohong; Zhang, Lei; Chen, Bo; Xiong, Zhiyong; Chen, Chunli; Wang, Lijun; Yu, Jingyin; Lu, Changming; Wei, Wenhui

    2012-01-01

    BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered.

  13. The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L.

    PubMed

    Dąbrowska, G; Hrynkiewicz, K; Trejgell, A; Baum, C

    2017-07-03

    The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment, the strains were used for single Ba, Pf, Va or combined Ba + Pf, Ba + Va, Pf + Va, and Ba + Pf + Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it. However, single inoculation with Ba significantly increased the chlorophyll content and K + concentration in the leaves. The inoculation of rapeseed with Ba and Va strains was indicated to be the most promising combination for phytoextraction of Cd and Zn from contaminated soil. Combined inoculation with Pf+Va and Pf + Ba+Va significantly decreased the concentration of heavy metals in the roots of rapeseed. We conclude that suitable combinations of PGPR can control the metal uptake of B. napus, selectively increasing either metal extraction or metal stabilization in the rhizosphere and offering promising applications in soil remediation.

  14. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance

    PubMed Central

    Sahni, Sangita; Prasad, Bishun D.; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P.; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR–related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  15. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus

    PubMed Central

    Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng

    2017-01-01

    Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway. PMID:28111582

  16. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus.

    PubMed

    Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng

    2016-01-01

    Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.

  17. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

    PubMed

    Wu, Jian; Cai, Guangqin; Tu, Jiangying; Li, Lixia; Liu, Sheng; Luo, Xinping; Zhou, Lipeng; Fan, Chuchuan; Zhou, Yongming

    2013-01-01

    Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus), is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL) for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR) at the mature plant stage and three QTLs for leaf resistance (LR) at the seedling stage in multiple environments were mapped on nine linkage groups (LGs) of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54-15.86% and 29.01%-32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790) was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.

  18. Metabolic Changes during Storage of Brassica napus Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil.

    PubMed

    Bonte, Anja; Schweiger, Rabea; Pons, Caroline; Wagner, Claudia; Brühl, Ludger; Matthäus, Bertrand; Müller, Caroline

    2017-12-20

    Virgin rapeseed (Brassica napus) oil is a valuable niche product, if delivered with a high quality. In this study, the effects of moist storage of B. napus seeds for 1 to 4 days on the seed metabolome and the chemo-sensory properties of the produced oils were determined. The concentrations of several primary metabolites, including monosaccharides and amino acids, rapidly increased in the seeds, probably indicating the breakdown of storage compounds to support seed germination. Seed concentrations of indole glucosinolates increased with a slight time offset suggesting that amino acids may be used to modify secondary metabolism. The volatile profiles of the oils were pronouncedly influenced by moist seed storage, with the sensory quality of the oils decreasing. This study provides a direct time-resolved link between seed metabolism under moist conditions and the quality of the resulting oils, thereby emphasizing the crucial role of dry seed storage in ensuring high oil quality.

  19. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L.

    PubMed

    Mimmo, Tanja; Hann, Stephan; Jaitz, Leonhard; Cesco, Stefano; Gessa, Carlo Emanuele; Puschenreiter, Markus

    2011-11-01

    Root exudates influence significantly physical, chemical and biological characteristics of rhizosphere soil. Their qualitative and quantitative composition is affected by environmental factors such as pH, soil type, oxygen status, light intensity, soil temperature, plant growth, nutrient availability and microorganisms. The aim of the present study was to assess the influence of growth substrate and plant age on the release of carboxylates from Lupinus albus L. and Brassica napus L. Both plant species were studied in continuously percolated microcosms filled with either sand, soil or sand + soil (1:1) mixture. Soil solution was collected every week at 7, 14, 21, 28 and 35 days after planting (DAP). Carboxylate concentrations were determined by reversed-phase liquid chromatography - electrospray ionization - time of flight mass spectrometry (LC-ESI-TOFMS). Oxalate, citrate, succinate, malate and maleate were detected in soil solutions of both plant species. Their concentrations were correlated with the physiological status of the plant and the growth substrate. Oxalate was the predominant carboxylate detected within the soil solution of B. napus plants while oxalate and citrate were the predominant ones found in the soil solutions of L. albus plants. The sampling determination of carboxylates released by plant roots with continuous percolation systems seems to be promising as it is a non-destructive method and allows sampling and determination of soluble low molecular weight organic compounds derived from root exudation as well as the concentration of soluble nutrients, which both might reflect the nutritional status of plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus.

    PubMed

    Huang, Yi; Tao, Zhangsheng; Liu, Qiong; Wang, Xinfa; Yu, Jingyin; Liu, Guihua; Wang, Hanzhong

    2014-07-01

    Inflorescence architecture, pedicel length and stomata patterning in Arabidopsis thaliana are specified by inter-tissue communication mediated by ERECTA and its signaling ligands in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family of secreted cysteine-rich peptides. Here, we identified and characterized BnEPFL6 from Brassica napus. Heterologous expression of this gene under the double enhanced CaMV promoter (D35S) in Arabidopsis resulted in shortened stamen filaments, filaments degradation, and reduced filament cell size that displayed down-regulated expression of AHK2, in which phenotypic variation of ahk2-1 mutant presented highly consistent with that of BnEPFL6 transgenic lines. Especially, the expression level of BnEPFL6 in the shortened filaments of four B. napus male sterile lines (98A, 86A, SA, and Z11A) was similar to that of BnEPFL6 in the transgenic Arabidopsis lines. The activity of pBnEPFL6.2::GUS was intensive in the filaments of transgenic lines. These observations reveal that BnEPFL6 plays an important role in filament elongation and may also affect organ morphology and floral organ specification via a BnEPFL6-mediated cascade.

  1. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense.

    PubMed

    Shi, Yuzhen; Zhang, Baocai; Liu, Aiying; Li, Wentan; Li, Junwen; Lu, Quanwei; Zhang, Zhen; Li, Shaoqi; Gong, Wankui; Shang, Haihong; Gong, Juwu; Chen, Tingting; Ge, Qun; Wang, Tao; Zhu, Heqin; Liu, Zhi; Yuan, Youlu

    2016-11-05

    Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding. In the present study, BC 1 F 1 , BC 1 S 1 , and BC 2 F 1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC 1 F 1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC 2 F 1 in the artificial disease nursery and one date of BC 1 S 1 and BC 2 F 1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2-10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense. These stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease

  2. Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: indication for plastidic localization of at least one isoform.

    PubMed

    Schulte, W; Töpfer, R; Stracke, R; Schell, J; Martini, N

    1997-04-01

    Three genes coding for different multifunctional acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) isoenzymes from Brassica napus were isolated and divided into two major classes according to structural features in their 5' regions: class I comprises two genes with an additional coding exon of approximately 300 bp at the 5' end, and class II is represented by one gene carrying an intron of 586 bp in its 5' untranslated region. Fusion of the peptide sequence encoded by the additional first exon of a class I ACCase gene to the jellyfish Aequorea victoria green fluorescent protein (GFP) and transient expression in tobacco protoplasts targeted GFP to the chloroplasts. In contrast to the deduced primary structure of the biotin carboxylase domain encoded by the class I gene, the corresponding amino acid sequence of the class II ACCase shows higher identity with that of the Arabidopsis ACCase, both lacking a transit peptide. The Arabidopsis ACCase has been proposed to be a cytosolic isoenzyme. These observations indicate that the two classes of ACCase genes encode plastidic and cytosolic isoforms of multi-functional, eukaryotic type, respectively, and that B. napus contains at least one multi-functional ACCase besides the multi-subunit, prokaryotic type located in plastids. Southern blot analysis of genomic DNA from B. napus, Brassica rapa, and Brassica oleracea, the ancestors of amphidiploid rapeseed, using a fragment of a multi-functional ACCase gene as a probe revealed that ACCase is encoded by a multi-gene family of at least five members.

  3. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  4. Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.).

    PubMed

    Liu, Pu; Zhang, Chao; Ma, Jin-Qi; Zhang, Li-Yuan; Yang, Bo; Tang, Xin-Yu; Huang, Ling; Zhou, Xin-Tong; Lu, Kun; Li, Jia-Na

    2018-03-16

    Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus , genome-wide identification and expression analysis of the BnCKX gene family has become technically feasible. In this study, we identified 23 BnCKX genes and analyzed their phylogenetic relationships, gene structures, conserved motifs, protein subcellular localizations, and other properties. We also analyzed the expression of the 23 BnCKX genes in the B. napus cultivar Zhong Shuang 11 ('ZS11') by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), revealing their diverse expression patterns. We selected four BnCKX genes based on the results of RNA-sequencing and qRT-PCR and compared their expression in cultivated varieties with extremely long versus short siliques. The expression levels of BnCKX5-1 , 5-2 , 6-1 , and 7-1 significantly differed between the two lines and changed during pod development, suggesting they might play roles in determining silique length and in pod development. Finally, we investigated the effects of treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA) and the auxin indole-3-acetic acid (IAA) on the expression of the four selected BnCKX genes. Our results suggest that regulating BnCKX expression is a promising way to enhance the harvest index and stress resistance in plants.

  5. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394

    PubMed Central

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus LEAF CURLING RESPONSIVENESS (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development. PMID:25978066

  6. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

    PubMed

    Elhiti, Mohamed; Yang, Cunchun; Chan, Ainsley; Durnin, Douglas C; Belmonte, Mark F; Ayele, Belay T; Tahir, Muhammad; Stasolla, Claudio

    2012-07-01

    SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.

  7. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus.

    PubMed

    An, Hong; Yang, Zonghui; Yi, Bin; Wen, Jing; Shen, Jinxiong; Tu, Jinxing; Ma, Chaozhi; Fu, Tingdong

    2014-04-03

    The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rfp have been used in hybrid breeding in Brassica napus, which has greatly improved the yield of rapeseed. However, the mechanism of the male sterility transition in pol CMS remains to be determined. To investigate the transcriptome during the male sterility transition in pol CMS, a near-isogenic line (NIL) of pol CMS was constructed. The phenotypic features and sterility stage were confirmed by anatomical analysis. Subsequently, we compared the genomic expression profiles of fertile and sterile young flower buds by RNA-Seq. A total of 105,481,136 sequences were successfully obtained. These reads were assembled into 112,770 unigenes, which composed the transcriptome of the bud. Among these unigenes, 72,408 (64.21%) were annotated using public protein databases and classified into functional clusters. In addition, we investigated the changes in expression of the fertile and sterile buds; the RNA-seq data showed 1,148 unigenes had significantly different expression and they were mainly distributed in metabolic and protein synthesis pathways. Additionally, some unigenes controlling anther development were dramatically down-regulated in sterile buds. These results suggested that an energy deficiency caused by orf224/atp6 may inhibit a series of genes that regulate pollen development through nuclear-mitochondrial interaction. This results in the sterility of pol CMS by leading to the failure of sporogenous cell differentiation. This study may provide assistance for detailed molecular analysis and a better understanding of pol CMS in B. napus.

  8. Impact of distillery effluent on germination behaviour of Brassica napus L.

    PubMed

    Malaviya, Piyush; Sharma, Anuradha

    2011-01-01

    The study has been focused on effect of untreated distillery effluent (Devans Breweries Ltd., Jammu) on germination of gobi sarson (Brassica napus. L. var. Punjabi Special). Six treatments (E0.... E100) each having three replicates were made. E0 was taken as control in which tap water was used for irrigation of the plants. For E20, E40, E60, E80 and E100, different concentrations i.e. 20, 40, 60, 80 and 100% of effluent were used for irrigation, respectively. The 100% sample of distillery effluent analyzed for various physicochemical parameters showed acidic nature (pH 4.0) and higher values of COD (2496 mg l(-1)), TDS (799.7 mg l(-1)) and chlorides (1408 mg l(-1)). The parameters e.g. percent germination, germination index, speed of germination, and peak value were highest in treatment receiving 20% effluent concentration which also showed minimum values for percent inhibition, germination period, and delay index.

  9. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.).

    PubMed

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F(2) (RC-F(2)) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2) populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol

  11. Unraveling the Genetic Basis of Seed Tocopherol Content and Composition in Rapeseed (Brassica napus L.)

    PubMed Central

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Background Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. Methodology/Principal Findings We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F2 (RC-F2) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. Conclusions/Significance This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker

  12. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb.

    PubMed

    Novo, Marta; Silvar, Cristina; Merino, Fuencisla; Martínez-Cortés, Teresa; Lu, Fachuang; Ralph, John; Pomar, Federico

    2017-05-01

    Verticillium dahliae is an economically relevant soilborne pathogen that causes vascular wilt in several crops, including pepper (Capsicum annuum). Fungal infection is usually visualized as a vascular browning, likely due to the onset of phenylpropanoid metabolism, which also seems to play a crucial role in the tolerance of some pepper varieties. In the current work, the potential function of distinct phenylpropanoid derivatives (suberin, lignin and phenolic compounds) in the pepper tolerance response against V. dahliae, was investigated. Histochemical and biochemical analyses ruled out suberin as a key player in the pepper-fungus interaction. However, changes observed in lignin composition and higher deposition of bound phenolics in infected stems seemed to contribute to the reinforcement of cell walls and the impairment of V. dahliae colonization. Most importantly, this is the first time that the accumulation of the hydroxycinnamic acid amide N-feruloyltyramine was reported in pepper stems in response to a vascular fungus. Fungitoxic activity for that hydroxycinnamate-tyramine conjugate was demonstrated as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.

    PubMed

    Wei, Lijuan; Jian, Hongju; Lu, Kun; Filardo, Fiona; Yin, Nengwen; Liu, Liezhao; Qu, Cunmin; Li, Wei; Du, Hai; Li, Jiana

    2016-06-01

    Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. High Density Linkage Map Construction and QTL Detection for Three Silique-Related Traits in Orychophragmus violaceus Derived Brassica napus Population.

    PubMed

    Yang, Yi; Shen, Yusen; Li, Shunda; Ge, Xianhong; Li, Zaiyun

    2017-01-01

    Seeds per silique (SS), seed weight (SW), and silique length (SL) are important determinant traits of seed yield potential in rapeseed ( Brassica napus L.), and are controlled by naturally occurring quantitative trait loci (QTLs). Mapping QTLs to narrow chromosomal regions provides an effective means of characterizing the genetic basis of these complex traits. Orychophragmus violaceus is a crucifer with long siliques, many SS, and heavy seeds. A novel B. napus introgression line with many SS was previously selected from multiple crosses ( B. rapa ssp. chinesis × O. violaceus ) × B. napus . In present study, a doubled haploid (DH) population with 167 lines was established from a cross between the introgression line and a line with far fewer SS, in order to detect QTLs for silique-related traits. By screening with a Brassica 60K single nucleotide polymorphism (SNP) array, a high-density linkage map consisting of 1,153 bins and spanning a cumulative length of 2,209.1 cM was constructed, using 12,602 high-quality polymorphic SNPs in the DH population. The average recombination bin densities of the A and C subgenomes were 1.7 and 2.4 cM, respectively. 45 QTLs were identified for the three traits in all, which explained 4.0-34.4% of the total phenotypic variation; 20 of them were integrated into three unique QTLs by meta-analysis. These unique QTLs revealed a significant positive correlation between SS and SL and a significant negative correlation between SW and SS, and were mapped onto the linkage groups A05, C08, and C09. A trait-by-trait meta-analysis revealed eight, four, and seven consensus QTLs for SS, SW, and SL, respectively, and five major QTLs ( cqSS.A09b, cqSS.C09, cqSW.A05, cqSW.C09 , and cqSL.C09 ) were identified. Five, three, and four QTLs for SS, SW, and SL, respectively, might be novel QTLs because of the existence of alien genetic loci for these traits in the alien introgression. Thirty-eight candidate genes underlying nine QTLs for silique

  15. Embryo-Specific Gene Expression in Microspore-Derived Embryos of Brassica napus. An Interaction between Abscisic Acid and Jasmonic Acid1, 2

    PubMed Central

    Hays, Dirk B.; Wilen, Ronald W.; Sheng, Chuxing; Moloney, Maurice M.; Pharis, Richard P.

    1999-01-01

    The induction of napin and oleosin gene expression in Brassica napus microspore-derived embryos (MDEs) was studied to assess the possible interaction between abscisic acid (ABA) and jasmonic acid (JA). Napin and oleosin transcripts were detected sooner following treatment with ABA than JA. Treatment of MDEs with ABA plus JA gave an additive accumulation of both napin and oleosin mRNA, the absolute amount being dependent on the concentration of each hormone. Endogenous ABA levels were reduced by 10-fold after treatment with JA, negating the possibility that the observed additive interaction was due to JA-induced ABA biosynthesis. Also, JA did not significantly increase the uptake of [3H-ABA] from the medium into MDEs. This suggests that the additive interaction was not due to an enhanced carrier-mediated ABA uptake by JA. Finally, when JA was added to MDEs that had been treated with the ABA biosynthesis inhibitor fluridone, napin mRNA did not increase. Based on these results with the MDE system, it is possible that embryos of B. napus use endogenous JA to modulate ABA effects on expression of both napin and oleosin. In addition, JA could play a causal role in the reduction of ABA that occurs during late stages of seed development. PMID:10069845

  16. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus

    PubMed Central

    Zhao, Cuizhu; Li, Huan; Zhang, Wenxue; Wang, Hailan; Xu, Aixia; Tian, Jianhua; Zou, Jitao; Taylor, David C.; Zhang, Meng

    2017-01-01

    As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content. PMID:29312429

  17. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus.

    PubMed

    Zhao, Cuizhu; Li, Huan; Zhang, Wenxue; Wang, Hailan; Xu, Aixia; Tian, Jianhua; Zou, Jitao; Taylor, David C; Zhang, Meng

    2017-01-01

    As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 ( DGAT1 ) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1 s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1 s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1 s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.

  18. Transcriptomic basis for drought-resistance in Brassica napus L.

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  19. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea

    PubMed Central

    Ford, Caroline S; Allainguillaume, Joël; Grilli-Chantler, Phil; Cuccato, Giulia; Allender, Charlotte J; Wilkinson, Mike J

    2006-01-01

    Research on the environmental risks of gene flow from genetically modified (GM) crops to wild relatives has traditionally emphasized recipients yielding most hybrids. For GM rapeseed (Brassica napus), interest has centred on the ‘frequently hybridizing’ Brassica rapa over relatives such as Brassica oleracea, where spontaneous hybrids are unreported in the wild. In two sites, where rapeseed and wild B. oleracea grow together, we used flow cytometry and crop-specific microsatellite markers to identify one triploid F1 hybrid, together with nine diploid and two near triploid introgressants. Given the newly discovered capacity for spontaneous introgression into B. oleracea, we then surveyed associated flora and fauna to evaluate the capacity of both recipients to harm cohabitant species with acknowledged conservational importance. Only B. oleracea occupies rich communities containing species afforded legislative protection; these include one rare micromoth species that feeds on B. oleracea and warrants further assessment. We conclude that increased attention should now focus on B. oleracea and similar species that yield few crop-hybrids, but possess scope to affect rare or endangered associates. PMID:17015343

  1. Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea.

    PubMed

    Ford, Caroline S; Allainguillaume, Joël; Grilli-Chantler, Phil; Cuccato, Giulia; Allender, Charlotte J; Wilkinson, Mike J

    2006-12-22

    Research on the environmental risks of gene flow from genetically modified (GM) crops to wild relatives has traditionally emphasized recipients yielding most hybrids. For GM rapeseed (Brassica napus), interest has centred on the 'frequently hybridizing' Brassica rapa over relatives such as Brassica oleracea, where spontaneous hybrids are unreported in the wild. In two sites, where rapeseed and wild B. oleracea grow together, we used flow cytometry and crop-specific microsatellite markers to identify one triploid F1 hybrid, together with nine diploid and two near triploid introgressants. Given the newly discovered capacity for spontaneous introgression into B. oleracea, we then surveyed associated flora and fauna to evaluate the capacity of both recipients to harm cohabitant species with acknowledged conservational importance. Only B. oleracea occupies rich communities containing species afforded legislative protection; these include one rare micromoth species that feeds on B. oleracea and warrants further assessment. We conclude that increased attention should now focus on B. oleracea and similar species that yield few crop-hybrids, but possess scope to affect rare or endangered associates.

  2. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    PubMed

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  3. Isolation of genomic DNA from defatted oil seed residue of rapeseed (Brassica napus).

    PubMed

    Sadia, M; Rabbani, M A; Hameed, S; Pearce, S R; Malik, S A

    2011-02-08

    A simple protocol for obtaining pure, restrictable and amplifiable megabase genomic DNA from oil-free seed residue of Brassica napus, an important oil seed plant, has been developed. Oil from the dry seeds was completely recovered in an organic solvent and quantified gravimetrically followed by processing of the residual biomass (defatted seed residue) for genomic DNA isolation. The isolated DNA can be cut by a range of restriction enzymes. The method enables simultaneous isolation and recovery of lipids and genomic DNA from the same test sample, thus allowing two independent analyses from a single sample. Multiple micro-scale oil extraction from the commercial seeds gave approximately 39% oil, which is close to the usual oil recovery from standard oil seed. Most of the amplified fragments were scored in the range of 2.5 to 0.5 kb, best suited for scoring as molecular diagnostics.

  4. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress.

    PubMed

    Kanwal, Urooj; Ali, Shafaqat; Shakoor, Muhammad Bilal; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Adrees, Muhammad; Bharwana, Saima Aslam; Abbas, Farhat

    2014-01-01

    Brassica species are very effective in remediation of heavy metal contaminated sites. Lead (Pb) as a toxic pollutant causes number of morphological and biochemical variations in the plants. Synthetic chelator such as ethylenediaminetetraacetic acid (EDTA) improves the capability of plants to uptake heavy metals from polluted soil. In this regard, the role of EDTA in phytoextraction of lead, the seedlings of Brassica napus L. were grown hydroponically. Lead levels (50 and 100 μM) were supplied alone or together with 2.5 mM EDTA in the nutrient culture. After 7 weeks of stress, plants indicated that toxicity of Pb caused negative effects on plants and significantly reduced growth, biomass, chlorophyll content, gas exchange characteristics, and antioxidant enzymes activities such as superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT). Exposure to Pb induced the malondialdehyde (MDA), and hydrogen peroxide (H2O2) generation in both shoots and roots. The addition of EDTA alone or in combination with Pb significantly improved the plant growth, biomass, gas exchange characteristics, chlorophyll content, and antioxidant enzymes activities. EDTA also caused substantial improvement in Pb accumulation in Brassica plants. It can be deduced that application of EDTA significantly lessened the adverse effects of lead toxicity. Additionally, B. napus L. exhibited greater degree of tolerance against Pb toxicity and it also accumulated significant concentration of Pb from media.

  5. BraLTP1, a Lipid Transfer Protein Gene Involved in Epicuticular Wax Deposition, Cell Proliferation and Flower Development in Brassica napus

    PubMed Central

    Liu, Fang; Xiong, Xiaojuan; Wu, Lei; Fu, Donghui; Hayward, Alice; Zeng, Xinhua; Cao, Yinglong; Wu, Yuhua; Li, Yunjing; Wu, Gang

    2014-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17–80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development. PMID:25314222

  6. Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus.

    PubMed

    Gyawali, Sanjaya; Harrington, Myrtle; Durkin, Jonathan; Horner, Kyla; Parkin, Isobel A P; Hegedus, Dwayne D; Bekkaoui, Diana; Buchwaldt, Lone

    The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape ( Brassica napus ) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus , 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated ( r  = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.

  7. Detection of Verticillium wilt of olive trees and downy mildew of opium poppy using hyperspectral and thermal UAV imagery

    NASA Astrophysics Data System (ADS)

    Calderón Madrid, Rocío; Navas Cortés, Juan Antonio; Montes Borrego, Miguel; Landa del Castillo, Blanca Beatriz; Lucena León, Carlos; Jesús Zarco Tejada, Pablo

    2014-05-01

    The present study explored the use of high-resolution thermal, multispectral and hyperspectral imagery as indicators of the infections caused by Verticillium wilt (VW) in olive trees and downy mildew (DM) in opium poppy fields. VW, caused by the soil-borne fungus Verticillium dahliae, and DM, caused by the biotrophic obligate oomycete Peronospora arborescens, are the most economically limiting diseases of olive trees and opium poppy, respectively, worldwide. V. dahliae infects the plant by the roots and colonizes its vascular system, blocking water flow and eventually inducing water stress. P. arborescens colonizes the mesophyll, appearing the first symptoms as small chlorotic leaf lesions, which can evolve to curled and thickened tissues and systemic infections that become deformed and necrotic as the disease develops. The work conducted to detect VW and DM infection consisted on the acquisition of time series of airborne thermal, multispectral and hyperspectral imagery using 2-m and 5-m wingspan electric Unmanned Aerial Vehicles (UAVs) in spring and summer of three consecutive years (2009 to 2011) for VW detection and on three dates in spring of 2009 for DM detection. Two 7-ha commercial olive orchards naturally infected with V. dahliae and two opium poppy field plots artificially infected by P. arborescens were flown. Concurrently to the airborne campaigns, olive orchards and opium poppy fields were assessed "in situ" to assess actual VW severity and DM incidence. Furthermore, field measurements were conducted at leaf and crown level. The field results related to VW detection showed a significant increase in crown temperature (Tc) minus air temperature (Ta) and a decrease in leaf stomatal conductance (G) as VW severity increased. This reduction in G was associated with a significant increase in the Photochemical Reflectance Index (PRI570) and a decrease in chlorophyll fluorescence. DM asymptomatic leaves showed significantly higher NDVI and lower green/red index

  8. Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus

    NASA Astrophysics Data System (ADS)

    Palmqvist, N. G. Martin; Seisenbaeva, Gulaim A.; Svedlindh, Peter; Kessler, Vadim G.

    2017-12-01

    Yttrium doping-stabilized γ-Fe2O3 nanoparticles were studied for its potential to serve as a plant fertilizer and, through enzymatic activity, support drought stress management. Levels of both hydrogen peroxide and lipid peroxidation, after drought, were reduced when γ-Fe2O3 nanoparticles were delivered by irrigation in a nutrient solution to Brassica napus plants grown in soil. Hydrogen peroxide was reduced from 151 to 83 μM g-1 compared to control, and the malondialdehyde formation was reduced from 36 to 26 mM g-1. Growth rate of leaves was enhanced from 33 to 50% growth compared to fully fertilized plants and SPAD-measurements of chlorophyll increased from 47 to 52 suggesting improved agronomic properties by use of γ-Fe2O3 nanoparticles as fertilizer as compared to chelated iron.

  9. BnLATE, a Cys2/His2-Type Zinc-Finger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus

    PubMed Central

    Tao, Zhangsheng; Huang, Yi; Zhang, Lida; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2017-01-01

    Silique shattering resistance is one of the most important agricultural traits in oil crop breeding. Seed shedding from siliques prior to and during harvest causes devastating losses in oilseed yield. Lignin biosynthesis in the silique walls is thought to affect silique-shattering resistance in oil crops. Here, we identified and characterized B. napus LATE FLOWERING (BnLATE), which encodes a Cys2/His2-type zinc-finger protein. Heterologous expression of BnLATE under the double enhanced CaMV 35S promoter (D35S) in wild-type Arabidopsis plants resulted in a marked decrease in lignification in the replum, valve layer (carpel) and dehiscence zone. pBnLATE::GUS activity was strong in the yellowing silique walls of transgenic lines. Furthermore, the expression pattern of BnLATE and the lignin content gradient in the silique walls at 48 days after pollination (DAP) of 73290, a B. napus silique shattering-resistant line, are similar to those in transgenic Arabidopsis lines expressing BnLATE. Transcriptome sequencing of the silique walls revealed that genes encoding peroxidases, which polymerize monolignols and lignin in the phenylpropanoid pathway, were down-regulated at least two-fold change in the D35S::BnLATE transgenic lines. pBnLATE::BnLATE transgenic lines were further used to identify the function of BnLATE, and the results showed that lignification in the carpel and dehiscence zone of yellowing silique also remarkably decreased compared with the wild-type control, the silique shattering-resistance and expression pattern of peroxidase genes are very similar to results with D35S::BnLATE. These results suggest that BnLATE is a negative regulator of lignin biosynthesis in the yellowing silique walls, and promotes silique-shattering resistance in B. napus through restraining the polymerization of monolignols and lignin. PMID:28081140

  10. Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus.

    PubMed

    Chen, Yubo; Qi, Lu; Zhang, Xiaoyu; Huang, Jixiang; Wang, Jibian; Chen, Hongcheng; Ni, Xiyuan; Xu, Fei; Dong, Yanjun; Xu, Haiming; Zhao, Jianyi

    2013-10-01

    Increasing seed oil content has become one of the most important breeding criteria in rapeseed (Brassica napus). However, oil content is a complex quantitative trait. QTL mapping in a double haploid population (SG population) emerging from a cross between a German (Sollux) and Chinese (Gaoyou) cultivars revealed one QTL for oil content on linkage group A1 (OilA1), which was mapped to a 17 cM genetic interval. To further validate and characterize the OilA1, we constructed a high-resolution map using B. rapa sequence resources and developed a set of near-isogenic lines (NILs) by employing a DH line SG-DH267 as donor and Chinese parent Gaoyou as recurrent background. The results showed highly conserved synteny order between B. rapa and B. napus within the linkage group A1 and revealed a possible centromere region between two markers ZAASA1-38 and NTP3 (2.5 cM). OilA1 was firstly validated by 250 BC5F2 plants and was confirmed in a 10.6 cM interval between the markers ZAASA1-47 and ZAASA1-77. Further substitution mapping was conducted by using two generations of QTL-NILs, 283 lines from eight BC5F3:4 families and 428 plants from six BC5F4 sub-NILs and thus narrowed the OilA1 interval to 6.9 cM and 4.3 cM (1.4 Mb), respectively. Field investigations with two replications using homozygous BC5F3:4 sister sub-NILs indicated that NILs, which carry a Sollux chromosome segment across the target region showed significant higher oil content (1.26 %, p < 0.001) than their sister NILs containing Gaoyou chromosome. The OilA1 locus is of particular interest for breeding purpose in China because 80 % of Chinese cultivars do not carry this desirable allele.

  11. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton

    PubMed Central

    Xu, Jun; Xu, Xiaoyang; Tian, Liangliang; Wang, Guilin; Zhang, Xueying; Wang, Xinyu; Guo, Wangzhen

    2016-01-01

    Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3–79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae. PMID:27354165

  12. Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants

    PubMed Central

    Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767

  13. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  14. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes

    PubMed Central

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L.; Triviño, Juan C.; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  15. Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes.

    PubMed

    Gómez-Lama Cabanás, Carmen; Legarda, Garikoitz; Ruano-Rosa, David; Pizarro-Tobías, Paloma; Valverde-Corredor, Antonio; Niqui, José L; Triviño, Juan C; Roca, Amalia; Mercado-Blanco, Jesús

    2018-01-01

    The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive ( Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae , were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the " Pseudomonas mandelii subgroup," within the " Pseudomonas fluorescens group," Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the " Pseudomonas aeruginosa group," Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive

  16. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum).

    PubMed

    Cao, Peng; Liu, Chongxi; Sun, Pengyu; Fu, Xuepeng; Wang, Shaoxian; Wu, Fengzhi; Wang, Xiangjing

    2016-12-01

    Plant endophytes play important roles in biocontrol of plant diseases. Actinomycetes are used for biocontrol of fungal diseases caused by Verticillium dahliae. Many studies have focused on the endophytic actinomycetes isolated from the roots of healthy plants, but few on those from the roots of diseased plants. In the present research, actinomycetes were isolated from the roots of diseased and healthy tomato plants, respectively. The results showed that, in total, 86 endophytic actinomycetes were isolated for screening of their antimicrobial activities, 8 of which showed antagonism to V. dahliae in vitro. Among the 8 antagonistic strains, 5 (out of 36) were from the roots of diseased plants, with inhibition diameter zones ranging from 11.2 to 18.2 mm, whereas 3 (out of 50) were from the roots of healthy plants, with inhibition diameter zones ranging from 11.5 to 15.5 mm. Endophytic strain DHV3-2 was isolated from the root of a diseased plant and demonstrated a potent effect against V. dahliae and other pathogenic fungi by showing the largest inhibition diameter zones among all the eight antagonistic strains. Thus, strain DHV3-2 was chosen to investigate its biological control efficacies in vivo. Further study showed that the disease incidence and disease severity indices of tomato Verticillium wilt decreased significantly (P < 0.05). We also found that the plant shoot fresh weight and height increased greatly (P < 0.05) upon treatment with strain DHV3-2 compared to the plants uninoculated in greenhouse conditions. Root colonization showed that strain DHV3-2 had the higher root-colonizing capacity in the roots of infected plants compared with the roots of healthy plants. This isolate was identified as Streptomyces sp. based on morphological characteristics and 16S rRNA gene analysis. In conclusion, the roots of diseased tomato plants are a potential reservoir of biological control actinomycetes, and Streptomyces sp. strain DHV3-2 is a potential biocontrol

  17. Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland.

    PubMed

    Hecht, Mirco; Oehen, Bernadette; Schulze, Jürg; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).

  18. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph.

    PubMed

    Nováková, Miroslava; Sašek, Vladimír; Dobrev, Petre I; Valentová, Olga; Burketová, Lenka

    2014-07-01

    According to general model, jasmonic acid (JA) and ethylene (ET) signaling pathways are induced in Arabidopsis after an attack of necrotroph, Sclerotinia sclerotiorum (Lib.) de Bary. However, abscisic acid (ABA) and salicylic acid (SA) also seem to play a role. While signaling events in Arabidopsis have been intensively studied recently, information for the natural host Brassica napus is limited. In this study, multiple plant hormone quantification and expression analysis of marker genes of the signaling pathways was used to gain a complete view of the interaction of B. napus with S. sclerotiorum. Strong response of ET biosynthetic gene ACS2 was observed, accompanied by increases of SA and JA levels that correspond to the elevated expression of marker genes PR1 and LOX3. Interestingly, the level of ABA and the expression of its marker gene RD26 were also elevated. Furthermore, induction of the SA-dependent defense decreased disease symptoms. In addition, SA signaling is suggested as a possible target for manipulation by S. sclerotiorum. A gene for putative chorismate mutase SS1G_14320 was identified that is highly expressed during infection but not in vitro. Our results bring the evidence of SA involvement in the interaction of plant with the necrotroph that conflict with the current model. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage.

    PubMed

    Liu, Han; Yang, Qingyong; Fan, Chuchuan; Zhao, Xiaoqin; Wang, Xuemin; Zhou, Yongming

    2015-04-01

    The silique of oilseed rape (Brassica napus) is a composite organ including seeds and the silique wall (SW) that possesses distinctly physiological, biochemical and functional differentiations. Yet, the molecular events controlling such differences between the SW and seeds, as well as their coordination during silique development at transcriptional level are largely unknown. Here, we identified large sets of differentially expressed genes in the SW and seeds of siliques at 21-22 days after flowering with a Brassica 95K EST microarray. At this particular stage, there were 3278 SW preferentially expressed genes and 2425 seed preferentially expressed genes. Using the MapMan visualization software, genes differentially regulated in various metabolic pathways and sub-pathways between the SW and seeds were revealed. Photosynthesis and transport-related genes were more actively transcripted in the SW, while those involved in lipid metabolism were more active in seeds during the seed filling stage. On the other hand, genes involved in secondary metabolisms were selectively regulated in the SW and seeds. Large numbers of transcription factors were identified to be differentially expressed between the SW and seeds, suggesting a complex pattern of transcriptional control in these two organs. Furthermore, most genes discussed in categories or pathways showed a similar expression pattern through 21 DAF to 42 DAF. Our results thus provide insights into the coordination of seeds and the SW in the developing silique at the transcriptional levels, which will facilitate the functional studies of important genes for improving B. napus seed productivity and quality. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Overexpression of phyA and appA Genes Improves Soil Organic Phosphorus Utilisation and Seed Phytase Activity in Brassica napus

    PubMed Central

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  1. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing.

    PubMed

    Malmberg, M Michelle; Shi, Fan; Spangenberg, German C; Daetwyler, Hans D; Cogan, Noel O I

    2018-01-01

    Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  2. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus

    PubMed Central

    Uloth, Margaret B.; Clode, Peta L.; You, Ming Pei; Barbetti, Martin J.

    2016-01-01

    Background and Aims Sclerotinia stem rot (SSR, Sclerotinia sclerotiorum) is a damaging disease of oilseed brassicas world-wide. Host resistance is urgently needed to achieve control, yet the factors that contribute to stem resistance are not well understood. This study investigated the mechanisms of resistance to SSR. Methods Stems of 5-week-old Brassica carinata, B. juncea and B. napus of known resistance were infected via filter paper discs impregnated with S. sclerotiorum mycelium under controlled conditions. Transverse sections of the stem and portions of the stem surface were examined using optical and scanning electron microscopy. The association of anatomical features with the severity of disease (measured by mean lesion length) was determined. Key Results Several distinct resistance mechanisms were recorded for the first time in these Brassica–pathogen interactions, including hypersensitive reactions and lignification within the stem cortex, endodermis and in tissues surrounding the lesions. Genotypes showing a strong lignification response 72 h post-infection (hpi) tended to have smaller lesions. Extensive vascular invasion by S. sclerotiorum was observed only in susceptible genotypes, especially in the vascular fibres and xylem. Mean lesion length was negatively correlated with the number of cell layers in the cortex, suggesting progress of S. sclerotiorum is impeded by more cell layers. Hyphae in the centre of lesions became highly vacuolate 72 hpi, reflecting an ageing process in S. sclerotiorum hyphal networks that was independent of host resistance. The infection process of S. sclerotiorum was analogous in B. carinata and B. napus. Infection cushions of the highly virulent isolate of S. sclerotiorum MBRS-1 were grouped together in dense parallel bundles, while hyphae in the infection cushions of a less aggressive isolate WW-3 were more diffuse, and this was unaffected by host genotype. Conclusions A variety of mechanisms contribute to host

  3. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    PubMed

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  4. Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness.

    PubMed

    El-Bebany, Ahmed F; Rampitsch, Christof; Daayf, Fouad

    2010-01-01

    Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396-9) and weakly (Vs06-14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty-five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC-ESI-MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant-defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics-based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.

  5. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    PubMed Central

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  7. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus.

    PubMed

    Piffanelli, P; Ross, J H; Murphy, D J

    1997-03-01

    Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2-3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3-4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3-5 mm bud stages, with the SAD and EAR gene products detected in 4-7 mm buds. This pattern of expression coincided with

  8. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    PubMed

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  9. Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO2

    PubMed Central

    Geng, Sisi; Yu, Bing; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2017-01-01

    Stomatal guard cell response to various stimuli is an important process that balances plant carbon dioxide (CO2) uptake and water transpiration. Elevated CO2 induces stomatal closure, while low CO2 promotes stomatal opening. The signaling process of elevated CO2 induced stomatal closure has been extensively studied in recent years. However, the mechanism of low CO2 induced stomatal opening is not fully understood. Here we report metabolomic and proteomic responses of Brassica napus guard cells to low CO2 using hyphenated mass spectrometry technologies. A total of 411 metabolites and 1397 proteins were quantified in a time-course study of low CO2 effects. Metabolites and proteins that exhibited significant changes are overrepresented in fatty acid metabolism, starch and sucrose metabolism, glycolysis and redox regulation. Concomitantly, multiple hormones that promote stomatal opening increased in response to low CO2. Interestingly, jasmonic acid precursors were diverted to a branch pathway of traumatic acid biosynthesis. These results indicate that the low CO2 response is mediated by a complex crosstalk between different phytohormones. PMID:28791296

  10. Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO2.

    PubMed

    Geng, Sisi; Yu, Bing; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2017-01-01

    Stomatal guard cell response to various stimuli is an important process that balances plant carbon dioxide (CO 2 ) uptake and water transpiration. Elevated CO 2 induces stomatal closure, while low CO 2 promotes stomatal opening. The signaling process of elevated CO 2 induced stomatal closure has been extensively studied in recent years. However, the mechanism of low CO 2 induced stomatal opening is not fully understood. Here we report metabolomic and proteomic responses of Brassica napus guard cells to low CO 2 using hyphenated mass spectrometry technologies. A total of 411 metabolites and 1397 proteins were quantified in a time-course study of low CO 2 effects. Metabolites and proteins that exhibited significant changes are overrepresented in fatty acid metabolism, starch and sucrose metabolism, glycolysis and redox regulation. Concomitantly, multiple hormones that promote stomatal opening increased in response to low CO 2 . Interestingly, jasmonic acid precursors were diverted to a branch pathway of traumatic acid biosynthesis. These results indicate that the low CO 2 response is mediated by a complex crosstalk between different phytohormones.

  11. Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus

    PubMed Central

    Gruber, Margaret Y.; Hannoufa, Abdelali

    2012-01-01

    An Arabidopsis thaliana mutant, cbd (carotenoid biosynthesis deficient), was recovered from a mutant population based on its yellow cotyledons, yellow-first true leaves, and stunted growth. Seven-day-old seedlings and mature seeds of this mutant had lower chlorophyll and total carotenoids than the wild type (WT). Genetic and molecular characterization revealed that cbd was a recessive mutant caused by a T-DNA insertion in the gene cpSRP54 encoding the 54kDa subunit of the chloroplast signal recognition particle. Transcript levels of most of the main carotenoid biosynthetic genes in cbd were unchanged relative to WT, but expression increased in carotenoid and abscisic acid catabolic genes. The chloroplasts of cbd also had developmental defects that contributed to decreased carotenoid and chlorophyll contents. Transcription of AtGLK1 (Golden 2-like 1), AtGLK2, and GUN4 appeared to be disrupted in the cbd mutant suggesting that the plastid-to-nucleus retrograde signal may be affected, regulating the changes in chloroplast functional and developmental states and carotenoid content flux. Transformation of A. thaliana and Brassica napus with a gDNA encoding the Arabidopsis cpSRP54 showed the utility of this gene in enhancing levels of seed carotenoids without affecting growth or seed yield. PMID:22791829

  12. Control algorithms for dynamic attenuators

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  13. Control algorithms for dynamic attenuators.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without

  14. Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum.

    PubMed

    Hajji-Hedfi, Lobna; Regaieg, Hajer; Larayedh, Asma; Chihani, Noura; Horrigue-Raouani, Najet

    2017-09-23

    The efficacy of Verticillium leptobactrum isolate (HR1) was evaluated in the control of root-knot nematode and Fusarium wilt fungus under laboratory and greenhouse conditions. Five concentrations of V. leptobactrum (HR1) isolate were tested for their nematicidal and fungicidal activities against Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici in vitro. Laboratory trials showed that mycelium growth inhibition of Fusarium wilt fungus was correlated to the increase of the concentration of culture filtrate. All dilutions showed efficiency in reducing the growth of Fusarium oxysporum f.sp. lycopersici. The greatest nematicidal activity was observed at 50, 75, and 100% filtrate dilutions. The egg hatching percentage reached 42%, and the juvenile's corrected mortality registered 90% for the above treatments. In greenhouse experiment, the biocontrol agent fungus enhanced significantly tomato growth components (height and weight of plant and root). The multiplication rate of root-knot nematode and the Fusarium wilt disease incidence declined significantly with soil application of V. leptobactrum as with chemical treatments. The isolate HR1 was efficient to control wilt disease complex caused by M. javanica and Fusarium oxysporum f.sp. lycopersici.

  15. Genome Wide Identification of the Immunophilin Gene Family in Leptosphaeria maculans: A Causal Agent of Blackleg Disease in Oilseed Rape (Brassica napus)

    PubMed Central

    Zouhar, Miloslav; Mazakova, Jana; Rysanek, Pavel

    2014-01-01

    Abstract Phoma stem canker (blackleg) is a disease of world-wide importance on oilseed rape (Brassica napus) and can cause serious losses for crops globally. The disease is caused by dothideomycetous fungus, Leptosphaeria maculans, which is highly virulent/aggressive. Cyclophilins (CYPs) and FK506-binding proteins (FKBPs) are ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) family. They are collectively referred to as immunophilins (IMMs). In the present study, IMM genes, CYP and FKBP in haploid strain v23.1.3 of L. maculans genome, were identified and classified. Twelve CYPs and five FKBPs were determined in total. Domain architecture analysis revealed the presence of a conserved cyclophilin-like domain (CLD) in the case of CYPs and FKBP_C in the case of FKBPs. Interestingly, IMMs in L. maculans also subgrouped into single domain (SD) and multidomain (MD) proteins. They were primarily found to be localized in cytoplasm, nuclei, and mitochondria. Homologous and orthologous gene pairs were also determined by comparison with the model organism Saccharomyces cerevisiae. Remarkably, IMMs of L. maculans contain shorter introns in comparison to exons. Moreover, CYPs, in contrast with FKBPs, contain few exons. However, two CYPs were determined as being intronless. The expression profile of IMMs in both mycelium and infected primary leaves of B. napus demonstrated their potential role during infection. Secondary structure analysis revealed the presence of atypical eight β strands and two α helices fold architecture. Gene ontology analysis of IMMs predicted their significant role in protein folding and PPIase activity. Taken together, our findings for the first time present new prospects of this highly conserved gene family in phytopathogenic fungus. PMID:25259854

  16. Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.

    PubMed

    Roos, Jonas; Bejai, Sarosh; Mozūraitis, Raimondas; Dixelius, Christina

    2015-02-01

    The fungus Verticillium longisporum is a soil-borne plant pathogen of increasing economic importance, and information on plant responses to it is limited. To identify the genes and components involved in the early stages of infection, transcripts in roots of V. longisporum-challenged Arabidopsis Col-0 and the susceptible NON-RACE SPECIFIC DISEASE RESISTANCE 1 (ndr1-1) mutant were compared using ATH1 gene chips. The analysis revealed altered transcript levels of several terpene biosynthesis genes, including the monoterpene synthase TPS23/27. When transgenic 35S:TPS23/27 and TPS23/27-amiRNA plants were monitored the over-expresser line showed enhanced fungal colonization whereas the silenced genotype was indistinguishable from Col-0. Transcript analysis of terpene biosynthesis genes suggested that only the TPS23/27 pathway is affected in the two transgenic genotypes. To confirm changes in monoterpene production, emitted volatiles were determined using solid-phase microextraction and gas chromatography-mass spectrometry. Levels of all identified TPS23/27 monoterpene products were significantly altered in the transgenic plants. A stimulatory effect on conidial germination and hyphal growth of V. longisporum was also seen in co-cultivation with 35S:TPS23/27 plants and upon exposure to 1,8-cineole, the main product of TPS23/27. Methyl jasmonate treatments of myc2-1 and myc2-2 mutants and analysis of TPS23/27:uidA in the myc2-2 background suggested a dependence on jasmonic acid mediated by the transcription factor MYC2. Taken together, our results show that TPS23/27-produced monoterpenes stimulate germination and subsequent invasion of V. longisporum in Arabidopsis roots. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    NASA Technical Reports Server (NTRS)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  18. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus.

    PubMed

    Uloth, Margaret B; Clode, Peta L; You, Ming Pei; Barbetti, Martin J

    2016-01-01

    Sclerotinia stem rot (SSR, Sclerotinia sclerotiorum) is a damaging disease of oilseed brassicas world-wide. Host resistance is urgently needed to achieve control, yet the factors that contribute to stem resistance are not well understood. This study investigated the mechanisms of resistance to SSR. Stems of 5-week-old Brassica carinata, B. juncea and B. napus of known resistance were infected via filter paper discs impregnated with S. sclerotiorum mycelium under controlled conditions. Transverse sections of the stem and portions of the stem surface were examined using optical and scanning electron microscopy. The association of anatomical features with the severity of disease (measured by mean lesion length) was determined. Several distinct resistance mechanisms were recorded for the first time in these Brassica-pathogen interactions, including hypersensitive reactions and lignification within the stem cortex, endodermis and in tissues surrounding the lesions. Genotypes showing a strong lignification response 72 h post-infection (hpi) tended to have smaller lesions. Extensive vascular invasion by S. sclerotiorum was observed only in susceptible genotypes, especially in the vascular fibres and xylem. Mean lesion length was negatively correlated with the number of cell layers in the cortex, suggesting progress of S. sclerotiorum is impeded by more cell layers. Hyphae in the centre of lesions became highly vacuolate 72 hpi, reflecting an ageing process in S. sclerotiorum hyphal networks that was independent of host resistance. The infection process of S. sclerotiorum was analogous in B. carinata and B. napus. Infection cushions of the highly virulent isolate of S. sclerotiorum MBRS-1 were grouped together in dense parallel bundles, while hyphae in the infection cushions of a less aggressive isolate WW-3 were more diffuse, and this was unaffected by host genotype. A variety of mechanisms contribute to host resistance against S. sclerotiorum across the three

  19. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections.

    PubMed

    Zhang, Lisha; Ni, Hao; Du, Xuan; Wang, Sheng; Ma, Xiao-Wei; Nürnberger, Thorsten; Guo, Hui-Shan; Hua, Chenlei

    2017-07-01

    Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae.

    PubMed

    Zhou, Bang-Jun; Jia, Pei-Song; Gao, Feng; Guo, Hui-Shan

    2012-07-01

    Verticillium dahliae Kleb. is a hemibiotrophic, phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. Successful host colonization by hemibiotrophic pathogens requires the induction of plant cell death to provide the saprophytic nutrition for the transition from the biotrophic to the necrotrophic stage. In this study, we identified a necrosis-inducing Phytophthora protein (NPP1) domain-containing protein family containing nine genes in a virulent, defoliating isolate of V. dahliae (V592), named the VdNLP genes. Functional analysis demonstrated that only two of these VdNLP genes, VdNLP1 and VdNLP2, encoded proteins that were capable of inducing necrotic lesions and triggering defense responses in Nicotiana benthamiana, Arabidopsis, and cotton plants. Both VdNLP1 and VdNLP2 induced the wilting of cotton seedling cotyledons. However, gene-deletion mutants targeted by VdNLP1, VdNLP2, or both did not affect the pathogenicity of V. dahliae V592 in cotton infection. Similar expression and induction patterns were found for seven of the nine VdNLP transcripts. Through a comparison of the conserved amino acid residues of VdNLP with different necrosis-inducing activities, combined with mutagenesis-based analyses, we identified several novel conserved amino acid residues, in addition to the known conserved heptapeptide GHRHDWE motif and the cysteine residues of the NPP domain-containing protein, that are indispensable for the necrosis-inducing activity of the VdNLP2 protein.

  1. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  2. The mononuclear nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2 N2 ,N3 ]nickel(II) protects tomato from Verticillium dahliae by inhibiting fungal growth and activating plant defences.

    PubMed

    Zine, Hanane; Rifai, Lalla Aicha; Koussa, Tayeb; Bentiss, Fouad; Guesmi, Salaheddine; Laachir, Abdelhakim; Makroum, Kacem; Belfaiza, Malika; Faize, Mohamed

    2017-01-01

    The antifungal properties of the nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ 2 N 2 ,N 3 ]nickel(II) [NiL 2 (N 3 ) 2 ] and its parental ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole were examined to evaluate their ability to protect tomato plants against Verticillium dahliae. Our main objectives were to determine their effects on the in vitro growth of the pathogen, and their aptitude for controlling verticillium wilt and activating plant defence responses in the greenhouse. NiL 2 (N 3 ) 2 exhibited in vitro an elevated inhibition of radial growth of three strains of the pathogen. According to the strain, the EC 50 values ranged from 10 to 29 µg mL -1 for NiL 2 (N 3 ) 2 . In the greenhouse, it induced an elevated protection against V. dahliae when it was applied twice as foliar sprays at 50 µg mL -1 . It reduced the leaf alteration index by 85% and vessel browning by 96%. In addition, its protective ability was associated with the accumulation of H 2 O 2 and the activation of total phenolic content, as well as potentiation of the activity of peroxidase and polyphenol oxidase. These results demonstrated that the coordination of the ligand with Ni associated with the azide as a coligand resulted in an improvement in its biological activity by both inhibiting the growth of V. dahliae and activating plant defence responses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  4. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content

    PubMed Central

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m−2 s−1). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops. PMID:26504531

  5. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.).

    PubMed

    Hou, Jinna; Long, Yan; Raman, Harsh; Zou, Xiaoxiao; Wang, Jing; Dai, Shutao; Xiao, Qinqin; Li, Cong; Fan, Longjiang; Liu, Bin; Meng, Jinling

    2012-12-15

    Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in

  7. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  8. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.

    PubMed

    Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin

    2016-03-01

    Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae.

    PubMed

    Mohamad, Osama A A; Li, Li; Ma, Jin-Biao; Hatab, Shaimaa; Xu, Lin; Guo, Jian-Wei; Rasulov, Bakhtiyor A; Liu, Yong-Hong; Hedlund, Brian P; Li, Wen-Jun

    2018-01-01

    Endophytic bacteria associated with medicinal plants possess unique strategies that enhance growth and suvival of host plants, many of which are mediated by distinctive secondary metabolites. These bacteria and their secondary metabolites are important subjects for both basic and applied research aimed at sustainable agriculture. In the present study, 114 endophytic strains isolated from the wild ethnomedicinal plant Glycyrrhiza uralensis (licorice) were screened for their in vitro antimicrobial activities against common fungal pathogens of tomato ( Fusarium oxysporum f. sp., Fulvia fulva , Alternaria solani ), cotton ( Fusarium oxysporum f. sp. Vesinfectum, Verticillium dahliae ), pomegranite ( Ceratocystis fimbriata ), Cymbidinium ( Colletotrichum gloeosporioides ), and Tsao-ko ( Pestalotiopsis microspora and Fusarium graminearum ) and the common bacteria Staphylococcus aureus , Bacillus cereus , Salmonella enteritidis , and Escherichia coli . Several Bacillus strains, particularly Bacillus atrophaeus and Bacillus mojavensis , had a broad spectrum of antifungal and antibacterial activity. A total of 16 strains, selected based on broad antimicrobial activity, were shown to contain at least one putative secondary metabolite-encoding gene (i.e., polyketide synthase or non-ribosomal peptide synthetase) and/or one lytic enzyme (i.e., protease, cellulase, lipase, chitinase), which may be important mediators of antagonistic activity against pathogens. Five strains, representing Bacillus atrophaeus and Bacillus mojavensis , were selected for plant growth chamber experiments based on strong in vitro antifungal activities. All five strains significantly reduced disease severity in Arabidopsis thaliana plants challenged with V. dahlia infection. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of Bacillus atrophaeus strain XEGI50 showed that at least 13 compounds were produced only during co-cultivation with V. dahlia , including putative compounds known

  10. Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil.

    PubMed

    Ma, Jin-Kui; Zhang, Han; Tsuchiya, Tomohiro; Akiyama, Yoshinobu; Chen, Jie-Yu

    2015-04-01

    This study was carried out to investigate the frying performance of Kizakinonatane (Brassica napus) oil during deep-fat frying of frozen French fries with/without replenishment. Commercial regular canola oil was used for comparison. The frying oils were used during intermittent frying of frozen French fries at 180, 200, and 220 ℃ for 7 h daily over four consecutive days. The Kizakinonatane oil exhibited lower levels of total polar compounds, carbonyl value, and viscosity as well as comparable color (optical density) values to that of the canola oil. The monounsaturated fatty acid/polyunsaturated fatty acid ratios were lower than that of canola oil, whereas the polyunsaturated fatty acid/saturated fatty acid ratios are higher than that of canola oil after heating. Results showed that fresh Kizakinonatane oil contains higher levels of acid value, viscosity, optical density values, tocopherols, and total phenolics contents than that of canola oil. Replenishment with fresh oil had significant effects on all chemical and physical parameters, except the acid value of the Kizakinonatane oil during frying processes. Based on the results, the Kizakinonatane oil is inherently suitable for preparing deep-fried foods at high temperatures. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Role of Abscisic Acid in the Induction of Freezing Tolerance in Brassica napus Suspension-Cultured Cells 1

    PubMed Central

    Johnson-Flanagan, Anne M.; Huiwen, Zhong; Thiagarajah, Mohan R.; Saini, Hargurdeep S.

    1991-01-01

    Brassica napus suspension-cultured cells could be hardened in 6 days at 25°C by the addition of mefluidide or ABA to the culture medium. Cells treated with mefluidide (10 milligrams per liter) or ABA (50 micromolar) attained an LT50 of −17.5°C or −18°C, respectively, while the LT50 for the comparable nonhardened control (sucrose) was −10°C. The increased freezing tolerance of mefluidide-treated cells was paralleled by a 4- to 23-fold increase in ABA, as measured by gas-liquid chromatography using electron capture detection. Application of 1 milligram per liter of fluridone, an inhibitor of abscisic acid biosynthesis, prevented the mefluidide-induced increase in freezing tolerance and the accumulation of ABA. Both these inhibitory effects of fluridone were overridden by 50 micromolar ABA in the culture medium. On the basis of these results, we concluded that increased ABA levels are important for the induction of freezing tolerance in suspension-cultured cells. PMID:16668089

  12. Modification of (137)Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms.

    PubMed

    Pareniuk, O; Shavanova, K; Laceby, J P; Illienko, V; Tytova, L; Levchuk, S; Gudkov, I; Nanba, K

    2015-11-01

    After nuclear accidents, such as those experienced in Chernobyl and Fukushima, microorganisms may help purify contaminated soils by changing the mobility of radionuclides and their availability for plants by altering the physical and chemical properties of the substrate. Here, using model experiments with quartz sand as a substrate we investigate the influence of microorganisms on (137)Cs transfer from substrate to plants. The highest transition of (137)Cs from substrate to plants (50% increase compared to the control) was observed after Brassica napus L. seeds were inoculated by Azotobacter chroococcum. The best results for reducing the accumulation of (137)Cs radionuclides (30% less) were noted after the inoculation by Burkholderia sp.. Furthermore, Bacillus megaterium demonstrated an increased ability to accumulate (137)Cs. This research improves our prediction of the behavior of radionuclides in soil and may contribute towards new, microbiological countermeasures for soil remediation following nuclear accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  15. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  16. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  17. Characterization of a Functional Soluble Form of a Brassica napus Membrane-Anchored Endo-1,4-β-Glucanase Heterologously Expressed in Pichia pastoris1

    PubMed Central

    Mølhøj, Michael; Ulvskov, Peter; Dal Degan, Florence

    2001-01-01

    The Brassica napus gene, Cel16, encodes a membrane-anchored endo-1,4-β-glucanase with a deduced molecular mass of 69 kD. As for other membrane-anchored endo-1,4-β-glucanases, Cel16 consists of a predicted intracellular, charged N terminus (methionine1-lysine70), a hydrophobic transmembrane domain (isoleucine71-valine93), and a periplasmic catalytic core (lysine94-proline621). Here, we report the functional analysis of Δ1-90Cel16, the N terminally truncated Cel16, missing residues 1 through 90 and comprising the catalytic domain of Cel16 expressed recombinantly in the methylotrophic yeast Pichia pastoris as a soluble protein. A two-step purification protocol yielded Δ1-90Cel16 in a pure form. The molecular mass of Δ1-90Cel16, when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was about 130 kD and about 60 kD after enzymatic removal of N-glycans, fitting the expected molecular mass of 59 kD. Δ1-90Cel16 was highly N glycosylated as compared with the native B. napus Cel16 protein. Δ1-90Cel16 had a pH optimum of 6.0. The activity of Δ1-90Cel16 was inhibited by EDTA and exhibited a strong dependence on calcium. Δ1-90Cel16 showed substrate specificity for low substituted carboxymethyl-cellulose and amorphous cellulose. It did not hydrolyze crystalline cellulose, xyloglycan, xylan, (1→3),(1→4)-β-d-glucan, the highly substituted hydroxyethylcellulose, or the oligosaccharides cellotriose, cellotetraose, cellopentaose, or xylopentaose. Size exclusion analysis of Δ1-90Cel16-hydrolyzed carboxymethylcellulose showed that Δ1-90Cel16 is a true endo-acting glucanase. PMID:11598241

  18. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  19. [Study on the early detection of Sclerotinia of Brassica napus based on combinational-stimulated bands].

    PubMed

    Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong

    2010-07-01

    The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.

  20. Changes in Protein Synthesis in Rapeseed (Brassica napus) Seedlings during a Low Temperature Treatment 1

    PubMed Central

    Meza-Basso, Luis; Alberdi, Miren; Raynal, Monique; Ferrero-Cadinanos, Maria-Luz; Delseny, Michel

    1986-01-01

    Changes induced by cold treatment in young rapeseed (Brassica napus) seedlings were investigated at the molecular level. Following germination at 18°C for 48 hours, one half of the seedlings was transferred to 0°C for another 48 hour period, the other half being kept at 18°C as a control. Newly synthesized proteins were labeled for the last 6 hours of incubation with [35S]methionine. The different polypeptides were separated by two-dimensional electrophoresis in polyacrylamide gels. Newly synthesized proteins were revealed by fluorography. Protein synthesis clearly continues at 0°C and some polypeptides preferentially accumulate at this temperature. On the other hand, synthesis of several others is repressed while many are insensitive to cold treatment. Similar changes are also observed when mRNA is prepared from cold treated seedlings, translated in vitro in a reticulocyte cell free system and compared with the products of mRNA extracted from control samples. Among the genes which are repressed we identified the small subunit of ribulose 1,6-bisphosphate carboxylase. These changes are also detectable after shorter treatments. Images Fig. 1 Fig. 2 Fig. 3 PMID:16665102

  1. Detection of Fungus Infection on Petals of Rapeseed (Brassica napus L.) Using NIR Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Ru; Yu, Ke-Qiang; Li, Xiaoli; He, Yong

    2016-12-01

    Infected petals are often regarded as the source for the spread of fungi Sclerotinia sclerotiorum in all growing process of rapeseed (Brassica napus L.) plants. This research aimed to detect fungal infection of rapeseed petals by applying hyperspectral imaging in the spectral region of 874-1734 nm coupled with chemometrics. Reflectance was extracted from regions of interest (ROIs) in the hyperspectral image of each sample. Firstly, principal component analysis (PCA) was applied to conduct a cluster analysis with the first several principal components (PCs). Then, two methods including X-loadings of PCA and random frog (RF) algorithm were used and compared for optimizing wavebands selection. Least squares-support vector machine (LS-SVM) methodology was employed to establish discriminative models based on the optimal and full wavebands. Finally, area under the receiver operating characteristics curve (AUC) was utilized to evaluate classification performance of these LS-SVM models. It was found that LS-SVM based on the combination of all optimal wavebands had the best performance with AUC of 0.929. These results were promising and demonstrated the potential of applying hyperspectral imaging in fungus infection detection on rapeseed petals.

  2. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.)

    PubMed Central

    2012-01-01

    Background Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. Results We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral ‘A’ genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. Conclusions Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for

  3. Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives.

    PubMed

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2016-12-01

    The presence of glyphosate-resistant oilseed rape populations in Argentina was detected and characterized. The resistant plants were found as weeds in RR soybeans and other fields. The immunological and molecular analysis showed that the accessions presented the GT73 transgenic event. The origin of this event was uncertain, as the cultivation of transgenic oilseed rape cultivars is prohibited in Argentina. This finding might suggest that glyphosate resistance could come from unauthorized transgenic oilseed rape crops cultivated in the country or as seed contaminants in imported oilseed rape cultivars or other seed imports. Experimentation showed that there are alternative herbicides for controlling resistant Brassica napus populations in various situations and crops. AHAS-inhibiting herbicides (imazethapyr, chlorimuron and diclosulam), glufosinate, 2,4-D, fluroxypyr and saflufenacil proved to be very effective in controlling these plants. Herbicides evaluated in this research were employed by farmers in one of the fields invaded with this biotype and monitoring of this field showed no evidence of its presence in the following years.

  4. RabGAP22 Is Required for Defense to the Vascular Pathogen Verticillium longisporum and Contributes to Stomata Immunity

    PubMed Central

    Roos, Jonas; Bejai, Sarosh; Oide, Shinichi; Dixelius, Christina

    2014-01-01

    Verticillium longisporum is a soil-borne pathogen with a preference for plants within the family Brassicaceae. Following invasion of the roots, the fungus proliferates in the plant vascular system leading to stunted plant growth, chlorosis and premature senescence. RabGTPases have been demonstrated to play a crucial role in regulating multiple responses in plants. Here, we report on the identification and characterization of the Rab GTPase-activating protein RabGAP22 gene from Arabidopsis, as an activator of multiple components in the immune responses to V. longisporum. RabGAP22Pro:GUS transgenic lines showed GUS expression predominantly in root meristems, vascular tissues and stomata, whereas the RabGAP22 protein localized in the nucleus. Reduced RabGAP22 transcript levels in mutants of the brassinolide (BL) signaling gene BRI1-ASSOCIATED RECEPTOR KINASE 1, together with a reduction of fungal proliferation following BL pretreatment, suggested RabGAP22 to be involved in BL-mediated responses. Pull-down assays revealed SERINE:GLYOXYLATE AMINOTRANSFERASE (AGT1) as an interacting partner during V. longisporum infection and bimolecular fluorescence complementation (BiFC) showed the RabGAP22-AGT1 protein complex to be localized in the peroxisomes. Further, fungal-induced RabGAP22 expression was found to be associated with elevated endogenous levels of the plant hormones jasmonic acid (JA) and abscisic acid (ABA). An inadequate ABA response in rabgap22-1 mutants, coupled with a stomata-localized expression of RabGAP22 and impairment of guard cell closure in response to V. longisporum and Pseudomonas syringae, suggest that RabGAP22 has multiple roles in innate immunity. PMID:24505423

  5. [Effects of simulated acid rain on oilseed rape (Brassica napus) physiological characteristics at flowering stage and yield].

    PubMed

    Cao, Chun-Xin; Zhou, Qin; Han, Liang-Liang; Zhang, Pei; Jiang, Hai-Dong

    2010-08-01

    A pot experiment was conducted to study the effects of different acidity simulated acid rain on the physiological characteristics at flowering stage and yield of oilseed rape (B. napus cv. Qinyou 9). Comparing with the control (pH 6.0), weak acidity (pH = 4.0-5.0) simulated acid rain stimulated the rape growth to some extent, but had less effects on the plant biomass, leaf chlorophyll content, photosynthetic characteristics, and yield. With the further increase of acid rain acidity, the plant biomass, leaf chlorophyll content, photosynthetic rate, antioxidative enzyme activities, and non-enzyme antioxidant contents all decreased gradually, while the leaf malonyldialdehyde (MDA) content and relative conductivity increased significantly. As the results, the pod number per plant, seed number per pod, seed weight, and actual yield decreased. However, different yield components showed different sensitivity to simulated acid rain. With the increasing acidity of simulated acid rain, the pod number per plant and the seed number per pod decreased significantly, while the seed weight was less affected.

  6. Plasma Parameters From Reentry Signal Attenuation

    DOE PAGES

    Statom, T. K.

    2018-02-27

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  7. Plasma Parameters From Reentry Signal Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statom, T. K.

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  8. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Abeysinghe, Amal (Inventor); Kwan, Hwa-Wan (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  9. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content

    PubMed Central

    Weselake, Randall J.; Shah, Saleh; Tang, Mingguo; Quant, Patti A.; Snyder, Crystal L.; Furukawa-Stoffer, Tara L.; Zhu, Weiming; Taylor, David C.; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M.; Harwood, John L.

    2008-01-01

    Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content. PMID:18703491

  10. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

    PubMed

    Weselake, Randall J; Shah, Saleh; Tang, Mingguo; Quant, Patti A; Snyder, Crystal L; Furukawa-Stoffer, Tara L; Zhu, Weiming; Taylor, David C; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M; Harwood, John L

    2008-01-01

    Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.

  11. Critical period of weed control in winter canola (Brassica napus L.) in a semi-arid region.

    PubMed

    Aghaalikhani, M; Yaghoobi, S R

    2008-03-01

    In order to determine the critical period of weed control in winter canola (Brassica napus L. cv. Okapi) an experiment was carried out at research field of Tarbiat Modarres University, Tehran, Iran on 2004-2005 growing season. Fourteen experimental treatments which divided into two sets were arranged in Randomized complete blocks design with four replications. In the first set, the crop was kept weed-free from emergence time to two-leaf stage (V2), four-leaf stage (V4), six-leaf stage (V6), eight-leaf stage (V8), early flowering (IF), 50% of silique set (50% SS) and final harvest (H). In the second set, weeds where permitted to grow with the crop until above mentioned stages. In this study critical period of weed control was determined according to evaluate seed bank emerged weed biomass effect on canola grain yield loss using Gompertz and logistic equations. Result showed a critical time of weed control about 25 days after emergence (between four to six-leaf stages) with 5% accepted yield loss. Therefore, weed control in this time could provide the best result and avoid yield loss and damage to agroecosystem.

  12. Attenuation in gas-charged magma

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J. W.; Lensky, N.; Lyakhovsky, V.; Navon, O.

    2006-05-01

    Low frequency seismic events observed on volcanoes, such as Soufriere Hills Volcano, Montserrat, are thought to be caused by a resonating system. The modelling of seismic waves in gas-charged magma is critical for the understanding of seismic resonance effects in conduits, dykes and cracks. Seismic attenuation, which depends mainly on magma viscosity, gas and crystal content, is an essential factor in such modelling attempts. So far only two-phase gas-melt systems with the assumption of no diffusion and transport of volatiles between the melt and the gas bubbles have been considered. In this study, we develop a method of quantifying attenuation within gas-charged magma, including the effects of diffusion and exsolution of gas into the bubbles. The results show that by including such bubble growth processes attenuation levels are increased within magma. The resulting complex behaviour of attenuation with pressure and frequency indicates that two factors are controlling attenuation, the first due to viscous hindrance or the melt, and the second due diffusion processes. The level of attenuation within a gas-charged magma conduit suggests an upper limit on the length of a resonating conduit section of just a few hundred meters.

  13. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    PubMed

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  14. Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus).

    PubMed

    McCully, Margaret E; Miller, Celia; Sprague, Susan J; Huang, Cheng X; Kirkegaard, John A

    2008-01-01

    To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system.

  15. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  16. Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus).

    PubMed

    Lutman, Peter J W; Berry, Kate; Payne, Roger W; Simpson, Euan; Sweet, Jeremy B; Champion, Gillian T; May, Mike J; Wightman, Pat; Walker, Kerr; Lainsbury, Martin

    2005-09-22

    A series of rotation experiments at five sites over four years has explored the environmental and agronomic implications of growing herbicide tolerant oilseed rape and sugar beet. This paper reports on the population dynamics of volunteer rape (Brassica napus). The experiments compared four winter oilseed rape (WOSR) cultivars: a conventional cultivar (Apex) and three developmental cultivars either genetically modified (GM) to be tolerant to glyphosate or glufosinate, or conventionally bred to be tolerant to herbicides of the imidazolinone group. Seed losses at harvest averaged 3575 seeds m(-2) but ranged from less than 2000 up to more than 10000 seeds m(-2). There was a rapid decline in seed numbers during the first few months after harvest, resulting in a mean loss of seeds of 60%. In subsequent seasons, the seedbank declined much more slowly at four of the five sites (ca 20% per year) and the models predicted 95% seed loss after approximately 9 years. Seed decline was much faster at the fifth site. There were no clear differences between the four cultivars in either the numbers of seeds shed at harvest or in their subsequent persistence. The importance of the persistence of GM rape seeds, in the context of the coexistence of GM and non-GM crops and the role of good management practices that minimize seed persistence, are discussed.

  17. Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus)

    PubMed Central

    Lutman, Peter J.W; Berry, Kate; Payne, Roger W; Simpson, Euan; Sweet, Jeremy B; Champion, Gillian T; May, Mike J; Wightman, Pat; Walker, Kerr; Lainsbury, Martin

    2005-01-01

    A series of rotation experiments at five sites over four years has explored the environmental and agronomic implications of growing herbicide tolerant oilseed rape and sugar beet. This paper reports on the population dynamics of volunteer rape (Brassica napus). The experiments compared four winter oilseed rape (WOSR) cultivars: a conventional cultivar (Apex) and three developmental cultivars either genetically modified (GM) to be tolerant to glyphosate or glufosinate, or conventionally bred to be tolerant to herbicides of the imidazolinone group. Seed losses at harvest averaged 3575 seeds m−2 but ranged from less than 2000 up to more than 10 000 seeds m−2. There was a rapid decline in seed numbers during the first few months after harvest, resulting in a mean loss of seeds of 60%. In subsequent seasons, the seedbank declined much more slowly at four of the five sites (ca 20% per year) and the models predicted 95% seed loss after approximately 9 years. Seed decline was much faster at the fifth site. There were no clear differences between the four cultivars in either the numbers of seeds shed at harvest or in their subsequent persistence. The importance of the persistence of GM rape seeds, in the context of the coexistence of GM and non-GM crops and the role of good management practices that minimize seed persistence, are discussed. PMID:16191596

  18. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation.

    PubMed

    Akbarzadeh, A; Ay, M R; Ahmadian, A; Alam, N Riahi; Zaidi, H

    2013-02-01

    Hybrid PET/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies.

  19. Water and Temperature Stresses Impact Canola (Brassica napus L.) Fatty Acid, Protein, and Yield over Nitrogen and Sulfur.

    PubMed

    Hammac, W Ashley; Maaz, Tai M; Koenig, Richard T; Burke, Ian C; Pan, William L

    2017-12-06

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha -1 ), and two S rates (0 and 17 kg ha -1 ). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.

  20. Phenological and phytochemical changes correlate with differential interactions of Verticillium dahliae with broccoli and cauliflower.

    PubMed

    Njoroge, S M C; Vallad, G E; Park, S-Y; Kang, S; Koike, S T; Bolda, M; Burman, P; Polonik, W; Subbarao, K V

    2011-05-01

    Cauliflower (Brassica oleracea var. botrytis subvar. cauliflora) is susceptible to wilt caused by Verticillium dahliae but broccoli (B. oleracea var. italica subvar. cyamosa) is not. Infection of broccoli and cauliflower by a green fluorescent protein-expressing isolate of V. dahliae was examined using epifluorescence and confocal laser-scanning microscopy to follow infection and colonization in relation to plant phenology. Plant glucosinolate, phenolic, and lignin contents were also assayed at 0, 4, 14, and 28 days postinoculation. V. dahliae consistently infected and colonized the vascular tissues of all cauliflower plants regardless of age at inoculation, with the pathogen ultimately appearing in the developing seed; however, colonization decreased with plant age. In broccoli, V. dahliae infected and colonized root and stem xylem tissues of plants inoculated at 1, 2, or 3 weeks postemergence. However, V. dahliae colonized only the root xylem and the epidermal and cortical tissues of broccoli plants inoculated at 4, 5, and 6 weeks postemergence. The frequency of reisolation of V. dahliae from the stems (4 to 22%) and roots (10 to 40%) of mature broccoli plants was lower than for cauliflower stems (25 to 64%) and roots (31 to 71%). The mean level of aliphatic glucosinolates in broccoli roots was 6.18 times higher than in the shoots and did not vary with age, whereas it was 3.65 times higher in cauliflower shoots than in the roots and there was a proportional increase with age. Indole glucosinolate content was identical in both cauliflower and broccoli, and both indole and aromatic glucosinolates did not vary with plant age in either crop. Qualitative differences in characterized glucosinolates were observed between broccoli and cauliflower but no differences were observed between inoculated and noninoculated plants for either broccoli or cauliflower. However, the phenolic and lignin contents were significantly higher in broccoli following inoculation than in

  1. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae.

    PubMed

    Stotz, Henrik U; Harvey, Pascoe J; Haddadi, Parham; Mashanova, Alla; Kukol, Andreas; Larkan, Nicholas J; Borhan, M Hossein; Fitt, Bruce D L

    2018-01-01

    Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.

  2. Live attenuated tetravalent dengue vaccine.

    PubMed

    Bhamarapravati, N; Sutee, Y

    2000-05-26

    The development of a live attenuated tetravalent dengue vaccine is currently the best strategy to obtain a vaccine against dengue viruses. The Mahidol University group developed candidate live attenuated vaccines by attenuation through serial passages in certified primary cell cultures. Dengue serotype 1, 2 and 4 viruses were developed in primary dog kidney cells, whereas dengue serotype 3 was serially passaged in primary African green monkey kidney cells. Tissue culture passaged strain viruses were subjected to biological marker studies. Candidate vaccines have been tested as monovalent (single virus), bivalent (two viruses), trivalent (three viruses) and tetravalent (all four serotype viruses) vaccines in Thai volunteers. They were found to be safe and immunogenic in both adults and children. The Mahidol live attenuated dengue 2 virus was also tested in American volunteers and resulted in good immune response indistinguishable from those induced in Thai volunteers. The master seeds from the four live attenuated virus strains developed were provided to Pasteur Merieux Connaught of France for production on an industrial scale following good manufacturing practice guidelines.

  3. Biodiversity of nematofauna of oilseed rape (Brassica napus L.).

    PubMed

    Manachini, B; Landi, S; Tomasini, V

    2005-01-01

    Few data is available on the nematodes found in Brassicaceae, except for the most important plant parasite. However, studying the structure of nematofauna could be an important database for the soil quality and in order to assess the effects of future disturbance. This is particularly important considering that the diffusion of the canola crop in the world is increasing because of its use as a bio-diesel. Very diffused is also the Bt variety of oil seed rape, and, in this case, the study of the impact on the soil health and on bio-diversity is essential. In this research we have analyzed the nematode community, used as a bio-indicator of the soil condition. The nematofauna found in canola (Brassica napus var. oleifera) fields located in Southern Italy (Metaponto - MT) was investigated. The nematode community was studied considering its abundance, genus composition and trophic structure. Maturity and biodiversity indices were also calculated. A total of 5286 nematodes were extracted. They belong to 14 families and 24 genera. Bacterial and fungal feeders, 50.18% and 42.90% of the total respectively, dominated the trophic structure. Aphelencus is the most abundant genus (23.71%) followed by Acrobeloides (20.49%) and Aphelencoides (19.18%). Among plant feeders (6.59%), Pratylenchus is the dominant genus (2.20%) and Tylenchidae the main family (3.54%). No infestation of Meloidogyne, Heterodera or Naboccus, important plant-parasitic nematodes of canola crops, was recorded. Other important phytophagous were Helycotylenchus (0.5%), Trichotylenchus (0.5%) and Filenchus (0.9%). All of them had an abundance level below injury level. The indices of biodiversity are rather low (H'=0.93, J'=0.67), as is typical for agro ecosystems. However, the nematofauna community is quite well structured (N2=6.31, D=0.16) and the maturity index rather high (EMI=1.94). These values demonstrate that oilseed rape has a lower impact on the soil compared to other crop systems and that it could be

  4. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    PubMed

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  5. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium.

    PubMed

    Chen, Jie-Yin; Liu, Chun; Gui, Yue-Jing; Si, Kai-Wei; Zhang, Dan-Dan; Wang, Jie; Short, Dylan P G; Huang, Jin-Qun; Li, Nan-Yang; Liang, Yong; Zhang, Wen-Qi; Yang, Lin; Ma, Xue-Feng; Li, Ting-Gang; Zhou, Lei; Wang, Bao-Li; Bao, Yu-Ming; Subbarao, Krishna V; Zhang, Geng-Yun; Dai, Xiao-Feng

    2018-01-01

    Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce). Pathogenicity-related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed. The Vd991 genome harbored several exclusive, lineage-specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G-LSR2) in Vd991 were less virulent only on cotton. Integration of G-LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G-LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer. Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    PubMed

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.).

    PubMed

    Woodfield, Helen K; Cazenave-Gassiot, Amaury; Haslam, Richard P; Guschina, Irina A; Wenk, Markus R; Harwood, John L

    2018-03-01

    With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds. The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns. Our data contribute significantly to our understanding of lipid accumulation in the world's third most important oil crop. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Computer-controlled attenuator.

    PubMed

    Mitov, D; Grozev, Z

    1991-01-01

    Various possibilities for applying electronic computer-controlled attenuators for the automation of physiological experiments are considered. A detailed description is given of the design of a 4-channel computer-controlled attenuator, in two of the channels of which the output signal can change by a linear step, in the other two channels--by a logarithmic step. This, together with the existence of additional programmable timers, allows to automate a wide range of studies in different spheres of physiology and psychophysics, including vision and hearing.

  9. A Citizen's Guide to Monitored Natural Attenuation

    EPA Pesticide Factsheets

    Citizen's Guide describing how natural attenuation relies on natural processes to decrease or attenuate concentrations of contaminants in soil and groundwater. Scientists monitor these conditions to make sure natural attenuation is working.

  10. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  11. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  12. Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.

    PubMed

    Farooq, Muhammad A; Gill, Rafaqat A; Islam, Faisal; Ali, Basharat; Liu, Hongbo; Xu, Jianxiang; He, Shuiping; Zhou, Weijun

    2016-01-01

    Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 - a black seed type, and Zheda 622 - a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH(-)) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.

  13. Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.

    PubMed Central

    Farooq, Muhammad A.; Gill, Rafaqat A.; Islam, Faisal; Ali, Basharat; Liu, Hongbo; Xu, Jianxiang; He, Shuiping; Zhou, Weijun

    2016-01-01

    Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars. PMID:27148299

  14. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    PubMed

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    PubMed

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  16. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus

    PubMed Central

    Li, Lixia; Luo, Yujie; Chen, Biyun; Xu, Kun; Zhang, Fugui; Li, Hao; Huang, Qian; Xiao, Xin; Zhang, Tianyao; Hu, Jihong; Li, Feng; Wu, Xiaoming

    2016-01-01

    Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR. PMID:27746804

  17. Worker safety during operations with mobile attenuators.

    DOT National Transportation Integrated Search

    2013-05-01

    While most transportation agencies are very familiar with truck-mounted attenuators, trailer-mounted : attenuators are increasing in popularity. There is a concern for the level of protection that attenuators : provide for workers when they are mount...

  18. Thiol-based Redox Proteins in Brassica napus Guard Cell Abscisic Acid and Methyl Jasmonate Signaling

    PubMed Central

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C.; Assmann, Sarah M.; Chen, Sixue

    2014-01-01

    SUMMARY Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in different physiological processes. Little is known, however, about redox sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis (DIGE) and isotope-coded affinity tag (ICAT). In total, 65 and 118 potential redox responsive proteins were identified in ABA and MeJA treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of energy, stress and defense, and metabolism. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA and MeJA treated samples. A total of 44 cysteines was mapped in all the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a SNRK2 kinase and an isopropylmalate dehydrogenase were confirmed to be redox regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in guard cell ABA and MeJA signal transduction. PMID:24580573

  19. Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury.

    PubMed

    Iglesia-Turiño, Santiago; Febrero, Anna; Jauregui, Olga; Caldelas, Cristina; Araus, Jose Luis; Bort, Jordi

    2006-10-01

    The mercury (Hg) accumulation mechanism was studied in rape (Brassica napus) plants grown under a Hg concentration gradient (0 microm-1,000 microm). Hg mainly accumulated in roots. Therefore, the presence of phytochelatins (PCs) was studied in the roots of the plants. The high stability of the PC-Hg multicomplexes (mPC-nHg) seems to be the main reason for the lack of previous Hg-PC characterization studies. We propose a modification of the method to detect and quantify unbound PC of Hg in plant extracts via high-performance liquid chromatography coupled to electrospray tandem mass spectrometry and inductively coupled plasma mass spectrometry in parallel. We separated the PC from the Hg by adding the chelating agent sodium 2,3-dimercaptopropanesulfonate monohydrate. We only detected the presence of PC after the addition of the chelating agent. Some multicomplexes mPC-nHg could be formed but, due to their large sizes, could not be detected. In this study, only PC(2) was observed in plant samples. Hg accumulation was correlated with PC(2) concentration (r(2) = 0.98).

  20. Starch Hydrolysis and Vessel Occlusion Related to Wilt Symptoms in Olive Stems of Susceptible Cultivars Infected by Verticillium dahliae

    PubMed Central

    Trapero, Carlos; Alcántara, Esteban; Jiménez, Jaime; Amaro-Ventura, María C.; Romero, Joaquín; Koopmann, Birger; Karlovsky, Petr; von Tiedemann, Andreas; Pérez-Rodríguez, Mario; López-Escudero, Francisco J.

    2018-01-01

    This study investigated starch content, amount of pathogen DNA and density of occluded vessels in healthy and Verticillium dahliae infected olive shoots and stems. Starch hydrolysis is considered a mechanism to refill xylem vessels that suffered cavitation by either, drought conditions or pathogen infections. The main objective of this work was to evaluate this mechanism in olive plants subjected to V. dahliae infection or to drought conditions, in order to know the importance of cavitation in the development of wilting symptoms. In initial experiments starch content in the shoots was studied in trees of cultivars differing in the level of resistance growing in fields naturally infested with V. dahliae. The starch content, esteemed by microscopic observation of stem transversal sections stained with lugol, decreased with the level of symptom severity. Results were confirmed in a new experiment developed with young plants of cultivars ‘Picual’ (highly susceptible), ‘Arbequina’ (moderately susceptible) and ‘Frantoio’ (resistant), growing in pots under greenhouse conditions, either inoculated or not with V. dahliae. In this experiment, the pathogen DNA content, quantified by real-time PCR, and the density of occluded vessels, recorded by microscopic observations of transversal sections stained with toluidine blue, were related to the symptoms severity caused by the pathogen. Finally, a drought experiment was established with young plants of the cultivar ‘Picual’ grown in pots under greenhouse conditions in order to compare the effects caused by water deficit with those caused by the pathogen infection. In both cases, results show that starch hydrolysis occurred, what indirectly evidence the importance of xylem cavitation in the development of the symptoms caused by V. dahliae but in the water stressed plants no vessel occlusion was detected. PMID:29445388

  1. Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray- tandem mass spectrometry.

    PubMed

    Böttcher, Christoph; von Roepenack-Lahaye, Edda; Schmidt, Jürgen; Clemens, Stephan; Scheel, Dierk

    2009-04-01

    Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI-QTOF-MS and direct infusion ESI-FTICR-MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision-induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl- and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed-phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI-MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright (c) 2009 John Wiley & Sons, Ltd.

  2. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.).

    PubMed

    Kelly, Amélie A; Shaw, Eve; Powers, Stephen J; Kurup, Smita; Eastmond, Peter J

    2013-04-01

    Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Velocities and Attenuations of Gas Hydrate-Bearing Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    Monopole and dipole logging data at the Mallik 5L-38, Mackenzie Delta, Canada, provide a challenge for sonic velocity and attenuation models used to remotely estimate pore-space gas hydrate content. Velocity and attenuation are linked, with velocity dispersion causing increased attenuation. Sonic waveforms for Mallik 5L-38, however, show no velocity dispersion in gas hydrate-bearing layers, yet are highly attenuated. Attenuation models applied to Mallik 5L-38 data are shown to be inconsistent with the observed velocity measurements, and therefore are suspect in their ability to predict gas hydrate content. A model explicitly linking velocity and attenuation data is presented, accurately predicting gas hydrate content from velocity data alone while demonstrating that the attenuation mechanisms at the Mallik 5L-38 site have not yet been identified.

  4. Mode-independent attenuation in evanescent-field sensors

    NASA Astrophysics Data System (ADS)

    Gnewuch, Harald; Renner, Hagen

    1995-03-01

    Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.

  5. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    PubMed

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  6. Development and application of SINE multilocus and quantitative genetic markers to study oilseed rape (Brassica napus L.) crops.

    PubMed

    Allnutt, T R; Roper, K; Henry, C

    2008-01-23

    A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.

  7. Traffic Noise Ground Attenuation Algorithm Evaluation

    NASA Astrophysics Data System (ADS)

    Herman, Lloyd Allen

    The Federal Highway Administration traffic noise prediction program, STAMINA 2.0, was evaluated for its accuracy. In addition, the ground attenuation algorithm used in the Ontario ORNAMENT method was evaluated to determine its potential to improve these predictions. Field measurements of sound levels were made at 41 sites on I-440 in Nashville, Tennessee in order to both study noise barrier effectiveness and to evaluate STAMINA 2.0 and the performance of the ORNAMENT ground attenuation algorithm. The measurement sites, which contain large variations in terrain, included several cross sections. Further, all sites contain some type of barrier, natural or constructed, which could more fully expose the strength and weaknesses of the ground attenuation algorithms. The noise barrier evaluation was accomplished in accordance with American National Standard Methods for Determination of Insertion Loss of Outdoor Noise Barriers which resulted in an evaluation of this standard. The entire 7.2 mile length of I-440 was modeled using STAMINA 2.0. A multiple run procedure was developed to emulate the results that would be obtained if the ORNAMENT algorithm was incorporated into STAMINA 2.0. Finally, the predicted noise levels based on STAMINA 2.0 and STAMINA with the ORNAMENT ground attenuation algorithm were compared with each other and with the field measurements. It was found that STAMINA 2.0 overpredicted noise levels by an average of over 2 dB for the receivers on I-440, whereas, the STAMINA with ORNAMENT ground attenuation algorithm overpredicted noise levels by an average of less than 0.5 dB. The mean errors for the two predictions were found to be statistically different from each other, and the mean error for the prediction with the ORNAMENT ground attenuation algorithm was not found to be statistically different from zero. The STAMINA 2.0 program predicts little, if any, ground attenuation for receivers at typical first-row distances from highways where noise barriers

  8. Light attenuation characteristics of glacially-fed lakes

    NASA Astrophysics Data System (ADS)

    Rose, Kevin C.; Hamilton, David P.; Williamson, Craig E.; McBride, Chris G.; Fischer, Janet M.; Olson, Mark H.; Saros, Jasmine E.; Allan, Mathew G.; Cabrol, Nathalie

    2014-07-01

    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.

  9. Surveys for Pathogens of Monoecious Hydrilla in 2013

    DTIC Science & Technology

    2014-10-01

    formulated as a mycoherbicide. Species in the genera Fusarium and Verticillium are best known as vascular wilt pathogens of vegetables, flowers , field...attacks only bananas (Agrios 2005). The causal agents of most Verticillium wilts are V. albo- atrum and V. dahlia. Although both species have been reported

  10. Properties of a membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons.

    PubMed

    Rosnitschek, I; Theimer, R R

    1980-04-01

    The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l(-1), with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l(-1) NaCl and on the presence of at least 0.1 mol l(-1) NaCl in the test mixture. Desoxycholate and up to 0.1 mol l(-1) CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.

  11. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria.

    PubMed

    Baranowski, Piotr; Jedryczka, Malgorzata; Mazurek, Wojciech; Babula-Skowronska, Danuta; Siedliska, Anna; Kaczmarek, Joanna

    2015-01-01

    In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%).

  12. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations.

    PubMed

    Zhang, Xueli; Ge, Xianhong; Shao, Yujiao; Sun, Genlou; Li, Zaiyun

    2013-01-01

    Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4-39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.

  13. Detection and Quantification of Unbound Phytochelatin 2 in Plant Extracts of Brassica napus Grown with Different Levels of Mercury1

    PubMed Central

    Iglesia-Turiño, Santiago; Febrero, Anna; Jauregui, Olga; Caldelas, Cristina; Araus, Jose Luis; Bort, Jordi

    2006-01-01

    The mercury (Hg) accumulation mechanism was studied in rape (Brassica napus) plants grown under a Hg concentration gradient (0 μm–1,000 μm). Hg mainly accumulated in roots. Therefore, the presence of phytochelatins (PCs) was studied in the roots of the plants. The high stability of the PC-Hg multicomplexes (mPC-nHg) seems to be the main reason for the lack of previous Hg-PC characterization studies. We propose a modification of the method to detect and quantify unbound PC of Hg in plant extracts via high-performance liquid chromatography coupled to electrospray tandem mass spectrometry and inductively coupled plasma mass spectrometry in parallel. We separated the PC from the Hg by adding the chelating agent sodium 2,3-dimercaptopropanesulfonate monohydrate. We only detected the presence of PC after the addition of the chelating agent. Some multicomplexes mPC-nHg could be formed but, due to their large sizes, could not be detected. In this study, only PC2 was observed in plant samples. Hg accumulation was correlated with PC2 concentration (r2 = 0.98). PMID:16920879

  14. A New Synthetic Amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought

    PubMed Central

    Chen, Yu; Wang, Yingying; Zhao, Ting; Yang, Jianwei; Feng, Shouli; Nazeer, Wajad; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium arboreum, a cultivated cotton species (2n = 26, AA) native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD) and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mgl-1 kinetin and 250 mg-1 casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination) hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs. PMID:26061996

  15. Pressure-dependent attenuation with microbubbles at low mechanical index.

    PubMed

    Tang, Meng-Xing; Eckersley, Robert J; Noble, J Alison

    2005-03-01

    It has previously been shown that the attenuation of ultrasound (US) by microbubble contrast agents is dependent on acoustic pressure (Chen et al. 2002). Although previous studies have modelled the pressure-dependence of attenuation in single bubbles, this paper investigates this subject by considering a bulk volume of bubbles together with other linear attenuators. Specifically, a new pressure-dependent attenuation model for an inhomogeneous volume of attenuators is proposed. In this model, the effect of the attenuation on US propagation is considered. The model was validated using experimental measurements on the US contrast agent Sonovue. The results indicate, at low acoustic pressures, a linear relationship between the attenuation of Sonovue, measured in dB, and the insonating acoustic pressure.

  16. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Kortesniemi, Maaria; Lehto, Kirsi; Niemi, Jarmo; Yang, Baoru; Kallio, Heikki P

    2014-02-15

    Crop production for vegetable oil in the northern latitudes utilises oilseed rape (Brassica napus subsp. oleifera) and turnip rape (B. rapa subsp. oleifera), having similar oil compositions. The oil consists mostly of triacylglycerols, which are synthesised during seed development. In this study, we characterised the oil composition and the expression levels of genes involved in triacylglycerol biosynthesis in the developing seeds in optimal, low temperature (15 °C) and short day (12-h day length) conditions. Gene expression levels of several genes were altered during seed development. Low temperature and short day treatments increased the level of 9,12,15-octadecatrienoic acid (18:3n-3) in turnip rape and short day treatment decreased the total oil content in both species. This study gives a novel view on seed oil biosynthesis under different growth conditions, bringing together gene expression levels of the triacylglycerol biosynthesis pathway and oil composition over a time series in two related oilseed species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  18. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves.

    PubMed

    Yan, Hui; Filardo, Fiona; Hu, Xiaotao; Zhao, Xiaomin; Fu, DongHui

    2016-02-01

    In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O2(• -)) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.

  19. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.

    PubMed

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng; Li, Xue-Bao

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.

  20. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus

    PubMed Central

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus. PMID:28594951

  1. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  2. Extrinsic Versus Intrinsic Seismic Anisotropy and Attenuation

    NASA Astrophysics Data System (ADS)

    Montagner, J. P.; Ricard, Y. R.; Capdeville, Y.; Bodin, T.; Wang, N.

    2015-12-01

    The apparent large scale anisotropy is the mixing of intrinsic anisotropic minerals (LPO) and extrinsic anisotropy due to materials with fine layering, fluid inclusions, cracks (SPO) . The same issue arises for attenuation (with many different anelastic processes). The proportion of extrinsic and intrinsic anisotropy and attenuation in the Earth mantle is still an open question. The interpretation of observations of seismic anisotropy and attenuation is the subject of controversies and often contradictory according to their intrinsic or extrinsic nature. Fine layering is a good candidate for explaining at the same time a large part of observed radial anisotropy (Wang et al., Geophys. Res. Lett., 2013) and attenuation (Ricard et al., Earth Planet. Sci. Lett., 2014). A plausible model of mixing of materials in a chaotic convecting fluid creates a spectrum of heterogeneity varying like 1/k (k wavenumber of the heterogeneity). A body wave propagating in a finely layered medium will be scattered and its distorted waveform can be interpreted as due to attenuation with a quality factor Q. We showed that, with the specific 1/k spectrum and only 6-9% RMS heterogeneity, the resulting apparent attenuation Q is frequency independent. Aggregates of randomly orientated anisotropic minerals are good candidates for giving rise to this extrinsic apparent attenuation. The relationship for a 1/k spectrum with apparent seismic anisotropy is also explored.

  3. Is non-attenuation-corrected PET inferior to body attenuation-corrected PET or PET/CT in lung cancer?

    NASA Astrophysics Data System (ADS)

    Maintas, Dimitris; Houzard, Claire; Ksyar, Rachid; Mognetti, Thomas; Maintas, Catherine; Scheiber, Christian; Itti, Roland

    2006-12-01

    It is considered that one of the great strengths of PET imaging is the ability to correct for body attenuation. This enables better lesion uptake quantification and quality of PET images. The aim of this work is to compare the sensitivity of non-attenuation-corrected (NAC) PET images, the gamma photons (GPAC) and CT attenuation-corrected (CTAC) images in detecting and staging of lung cancer. We have studied 66 patients undergoing PET/CT examinations for detecting and staging NSC lung cancer. The patients were injected with 18-FDG; 5 MBq/kg under fasting conditions and examination was started 60 min later. Transmission data were acquired by a spiral CT X-ray tube and by gamma photons emitting Cs-137l source and were used for the patient body attenuation correction without correction for respiratory motion. In 55 of 66 patients we performed both attenuation correction procedures and in 11 patients only CT attenuation correction. In seven patients with solitary nodules PET was negative and in 59 patients with lung cancer PET/CT was positive for pulmonary or other localization. In the group of 55 patients we found 165 areas of focal increased 18-FDG uptake in NAC, 165 in CTAC and 164 in GPAC PET images.In the patients with only CTAC we found 58 areas of increased 18-FDG uptake on NAC and 58 areas lesions on CTAC. In the patients with positive PET we found 223 areas of focal increased uptake in NAC and 223 areas in CTAC images. The sensitivity of NAC was equal to the sensitivity of CTAC and GPAC images. The visualization of peripheral lesions was better in NAC images and the lesions were better localized in attenuation-corrected images. In three lesions of the thorax the localization was better in GPAC and fused images than in CTAC images.

  4. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  5. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus).

    PubMed

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation.

  6. Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus.

    PubMed

    Huang, Yong-Ju; Evans, Neal; Li, Zi-Qin; Eckert, Maria; Chèvre, Anne-Marie; Renard, Michel; Fitt, Bruce D L

    2006-01-01

    Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.

  7. MS5 Mediates Early Meiotic Progression and Its Natural Variants May Have Applications for Hybrid Production in Brassica napus

    PubMed Central

    Xin, Qiang; Shen, Yi; Li, Xi; Lu, Wei; Wang, Xiang; Han, Xue; Dong, Faming; Wan, Lili; Yang, Guangsheng; Cheng, Zhukuan

    2016-01-01

    During meiotic prophase I, chromatin undergoes dynamic changes to establish a structural basis for essential meiotic events. However, the mechanism that coordinates chromosome structure and meiotic progression remains poorly understood in plants. Here, we characterized a spontaneous sterile mutant MS5bMS5b in oilseed rape (Brassica napus) and found its meiotic chromosomes were arrested at leptotene. MS5 is preferentially expressed in reproductive organs and encodes a Brassica-specific protein carrying conserved coiled-coil and DUF626 domains with unknown function. MS5 is essential for pairing of homologs in meiosis, but not necessary for the initiation of DNA double-strand breaks. The distribution of the axis element-associated protein ASY1 occurs independently of MS5, but localization of the meiotic cohesion subunit SYN1 requires functional MS5. Furthermore, both the central element of the synaptonemal complex and the recombination element do not properly form in MS5bMS5b mutants. Our results demonstrate that MS5 participates in progression of meiosis during early prophase I and its allelic variants lead to differences in fertility, which may provide a promising strategy for pollination control for heterosis breeding. PMID:27194707

  8. Perceptibility curve test for digital radiographs before and after correction for attenuation and correction for attenuation and visual response.

    PubMed

    Li, G; Welander, U; Yoshiura, K; Shi, X-Q; McDavid, W D

    2003-11-01

    Two digital image processing methods, correction for X-ray attenuation and correction for attenuation and visual response, have been developed. The aim of the present study was to compare digital radiographs before and after correction for attenuation and correction for attenuation and visual response by means of a perceptibility curve test. Radiographs were exposed of an aluminium test object containing holes ranging from 0.03 mm to 0.30 mm with increments of 0.03 mm. Fourteen radiographs were exposed with the Dixi system (Planmeca Oy, Helsinki, Finland) and twelve radiographs were exposed with the F1 iOX system (Fimet Oy, Monninkylä, Finland) from low to high exposures covering the full exposure ranges of the systems. Radiographs obtained from the Dixi and F1 iOX systems were 12 bit and 8 bit images, respectively. Original radiographs were then processed for correction for attenuation and correction for attenuation and visual response. Thus, two series of radiographs were created. Ten viewers evaluated all the radiographs in the same random order under the same viewing conditions. The object detail having the lowest perceptible contrast was recorded for each observer. Perceptibility curves were plotted according to the mean of observer data. The perceptibility curves for processed radiographs obtained with the F1 iOX system are higher than those for originals in the exposure range up to the peak, where the curves are basically the same. For radiographs exposed with the Dixi system, perceptibility curves for processed radiographs are higher than those for originals for all exposures. Perceptibility curves show that for 8 bit radiographs obtained from the F1 iOX system, the contrast threshold was increased in processed radiographs up to the peak, while for 12 bit radiographs obtained with the Dixi system, the contrast threshold was increased in processed radiographs for all exposures. When comparisons were made between radiographs corrected for attenuation and

  9. Light attenuation in estuarine mangrove lakes

    NASA Astrophysics Data System (ADS)

    Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.

    2017-01-01

    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (<2 m depth) mangrove-surrounded lakes in two sub-estuaries in the coastal Everglades, Florida USA. Turbidity, chromophoric dissolved organic matter (CDOM), and phytoplankton chlorophyll a (chl a) were measured concurrently and their respective contributions to the light attenuation rate were estimated. Light transmission to the benthos relative to literature estimates of minimum requirements for SAV growth indicated that the underwater light environment was often unsuitable for SAV. Light attenuation rates (n = 417) corrected for solar elevation angles ranged from 0.16 m-1 to 9.83 m-1 with a mean of 1.73 m-1. High concentrations of CDOM with high specific light absorption contributed the most to light attenuation followed by turbidity and chl a. CDOM alone sufficiently reduces light transmission beyond the estimated limits for SAV growth, making it difficult for ecosystem managers to increase SAV abundance by management activities. Light limitation of SAV in these areas may be a persistent feature because of their proximity to CDOM source materials from the surrounding mangrove swamp. Increasing freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.

  10. LONG TERM MONITORING FOR NATURAL ATTENUATION

    EPA Science Inventory

    We have good statistical methods to: (1) determine whether concentrations of a contaminant are attenuating over time, (2) determine the rate of attenuation and confidence interval on the rate, and (3) determine whether concentrations have met a particular clean up goal. We do no...

  11. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzedmore » effects of E{sub 138}K and K{sub 279}M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use. - Highlights: • Further attenuation of a WN vaccine precursor is outlined. • Effect of SA14-14-2 attenuating mutations is tested. • Mechanism of attenuation is proposed and illustrated. • The need for additional attenuating mutations is justified.« less

  12. DNA-launched live-attenuated vaccines for biodefense applications

    PubMed Central

    Pushko, Peter; Lukashevich, Igor S.; Weaver, Scott C.; Tretyakova, Irina

    2016-01-01

    Summary A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  13. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration

    PubMed Central

    Kalantari, Faraz; Wang, Jing

    2017-01-01

    Purpose Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. Methods A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from non-rigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a non-rigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to 1) the Demons non-rigid registration only and 2) a single attenuation map based on quantitative parameters in individual PET frames. Results Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root mean

  14. Natural Attenuation of Persistent Chemical Warfare Agent VX ...

    EPA Pesticide Factsheets

    Report Natural attenuation of persistent CWAs such as VX was investigated and occurs, given sufficient time (days to weeks). Natural attenuation was found to be faster at warmer temperatures (i.e., 35 °C and 25 °C) than cooler temperatures (i.e., 10 °C). Attenuation of VX was material dependent with a general trend of faster to slower attenuation in the order ceramic tile - galvanized metal - silanized glass - painted drywall. Trace amounts of VX may still be present weeks to months after a contamination event.

  15. Characterization of thiol-based redox modifications of Brassica napusSNF1-related protein kinase 2.6-2C.

    PubMed

    Ma, Tianyi; Yoo, Mi-Jeong; Zhang, Tong; Liu, Lihong; Koh, Jin; Song, Wen-Yuan; Harmon, Alice C; Sha, Wei; Chen, Sixue

    2018-04-01

    Sucrose nonfermenting 1-related protein kinase 2.6 (SnRK2.6), also known as Open Stomata 1 (OST1) in Arabidopsis thaliana , plays a pivotal role in abscisic acid (ABA)-mediated stomatal closure. Four SnRK2.6 paralogs were identified in the Brassica napus genome in our previous work. Here we studied one of the paralogs, BnSnRK2.6-2C , which was transcriptionally induced by ABA in guard cells. Recombinant BnSnRK2.6-2C exhibited autophosphorylation activity and its phosphorylation sites were mapped. The autophosphorylation activity was inhibited by S-nitrosoglutathione (GSNO) and by oxidized glutathione (GSSG), and the inhibition was reversed by reductants. Using monobromobimane (mBBr) labeling, we demonstrated a dose-dependent modification of BnSnRK2.6-2C by GSNO. Furthermore, mass spectrometry analysis revealed previously uncharacterized thiol-based modifications including glutathionylation and sulfonic acid formation. Of the six cysteine residues in BnSnRK2.6-2C, C159 was found to have different types of thiol modifications, suggesting its high redox sensitivity and versatility. In addition, mBBr labeling on tyrosine residues was identified. Collectively, these data provide detailed biochemical characterization of redox-induced modifications and changes of the BnSnRK2.6-2C activity.

  16. Plasticity in Cell Division Patterns and Auxin Transport Dependency during in Vitro Embryogenesis in Brassica napus[C][W

    PubMed Central

    Soriano, Mercedes; Li, Hui; Jacquard, Cédric; Angenent, Gerco C.; Krochko, Joan; Offringa, Remko; Boutilier, Kim

    2014-01-01

    In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport. PMID:24951481

  17. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. Calculation Of Pneumatic Attenuation In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  19. Tick Passage Results in Enhanced Attenuation of Babesia bovis

    PubMed Central

    McElwain, Terry F.; Ueti, Massaro W.; Scoles, Glen A.; Reif, Kathryn E.; Lau, Audrey O. T.

    2014-01-01

    Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype. PMID:25114111

  20. Seismic attenuation system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liszkai, Tamas; Cadell, Seth

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vesselmore » are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.« less

  1. Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L. upon infection with Verticillium dahliae Kleb.

    PubMed

    Mahesh, H M; Murali, M; Anup Chandra Pal, M; Melvin, Prasad; Sharada, M S

    2017-08-01

    Salicylic acid (SA) is a hormone connected with various cellular functions including the fight against invading pathogens. Priming of seeds pre-sowing is a very simple method to the farmers' to produce better growth, yield and manage the pathogens. The present study was aimed to determine the growth and disease resistance ability in brinjal seeds primed with different concentrations (0.25, 0.5, 0.75 and 1.0 mM) of SA under greenhouse conditions. Priming of seeds with SA significantly increased seed germination and seedling vigor with a maximum of 84% and 859.18, respectively at 0.5 mM concentration. Seed priming with SA also reduced Verticillium wilt incidence to 39.25% (at 0.5 mM) under greenhouse conditions and also enhanced the vegetative growth parameters of the plant compared to control. The induced resistance obtained with SA was in line with higher expression of PR-protein (β-1,3-glucanase and chitinase) related defense enzymes. Further, an increase of 1.7, 2.9, 2.1, 2.5 and 2-fold increase in gene expression of IAA27, MPK1, GPX, chitinase and β-1,3-glucanase, respectively were observed in SA primed challenge inoculated seedlings than non-primed susceptible inoculated controls. The higher expression of IAA27, MPK1, GPX, chitinase and β-1,3-glucanase correlates with the plant growth promoting and disease protection studies as these genes are vital for increasing plant growth and inducing resistance during host-pathogen interaction. Enhanced activation of defense-related activities in plants upon priming with SA suggests that it alters plant physiology which in turn is useful for production and protection of brinjal. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    PubMed Central

    Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling

    2016-01-01

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881

  3. Hyperspectral and Thermal Imaging of Oilseed Rape (Brassica napus) Response to Fungal Species of the Genus Alternaria

    PubMed Central

    Baranowski, Piotr; Jedryczka, Malgorzata; Mazurek, Wojciech; Babula-Skowronska, Danuta; Siedliska, Anna; Kaczmarek, Joanna

    2015-01-01

    In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%). PMID:25826369

  4. Genomic Change, Retrotransposon Mobilization and Extensive Cytosine Methylation Alteration in Brassica napus Introgressions from Two Intertribal Hybridizations

    PubMed Central

    Zhang, Xueli; Ge, Xianhong; Shao, Yujiao; Sun, Genlou; Li, Zaiyun

    2013-01-01

    Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4–39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed. PMID:23468861

  5. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  6. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.

    PubMed

    Duke, Kelly A; Becker, Michael G; Girard, Ian J; Millar, Jenna L; Dilantha Fernando, W G; Belmonte, Mark F; de Kievit, Teresa R

    2017-06-19

    The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H 2 O 2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.

  7. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells.

    PubMed

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C; Assmann, Sarah M; Chen, Sixue

    2014-05-01

    Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species.

    PubMed

    Kouvelis, Vassili N; Sialakouma, Aphrodite; Typas, Milton A

    2008-07-01

    The recent revision of Verticillium sect. Prostrata led to the introduction of the genus Lecanicillium, which comprises the majority of the entomopathogenic strains. Sixty-five strains previously classified as Verticillium lecanii or Verticillium sp. from different geographical regions and hosts were examined and their phylogenetic relationships were determined using sequences from three mitochondrial (mt) genes [the small rRNA subunit (rns), the NADH dehydrogenase subunits 1 (nad1) and 3 (nad3)] and the ITS region. In general, single gene phylogenetic trees differentiated and placed the strains examined in well-supported (by BS analysis) groups of L. lecanii, L. longisporum, L. muscarium, and L. nodulosum, although in some cases a few uncertainties still remained. nad1 was the most informative single gene in phylogenetic analyses and was also found to contain group I introns with putative open reading frames (ORFs) encoding for GIY-YIG endonucleases. The combined use of mt gene sequences resolved taxonomic uncertainties arisen from ITS analysis and, alone or in combination with ITS sequences, helped in placing uncharacterised Verticillium lecanii and Verticillium sp. firmly into Lecanicillium species. Combined gene data from all the mt genes and all the mt genes and the ITS region together, were very similar. Furthermore, a relaxed correlation with host specificity -- at least for Homoptera -- was indicated for the rns and the combined mt gene sequences. Thus, the usefulness of mt gene sequences as a convenient molecular tool in phylogenetic studies of entomopathogenic fungi was demonstrated.

  9. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress.

    PubMed

    Chen, Liang; Zhong, Hui; Ren, Feng; Guo, Qian-Qian; Hu, Xu-Peng; Li, Xue-Bao

    2011-04-01

    Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.

  10. Inner Core Anisotropy in Attenuation

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.

    2004-12-01

    It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation

  11. Ultrasound attenuation estimation using backscattered echoes from multiple sources.

    PubMed

    Bigelow, Timothy A

    2008-08-01

    The objective of this study was to devise an algorithm that can accurately estimate the attenuation along the propagation path (i.e., the total attenuation) from backscattered echoes. It was shown that the downshift in the center frequency of the backscattered ultrasound echoes compared to echoes obtained in a water bath was calculated to have the form Deltaf=mf(o)+b after normalizing with respect to the source bandwidth where m depends on the correlation length, b depends on the total attenuation, and f(o) is the center frequency of the source as measured from a reference echo. Therefore, the total attenuation can be determined independent of the scatterer correlation length by measuring the downshift in center frequency from multiple sources (i.e., different f(o)) and fitting a line to the measured shifts versus f(o). The intercept of the line gives the total attenuation along the propagation path. The calculations were verified using computer simulations of five spherically focused sources with 50% bandwidths and center frequencies of 6, 8, 10, 12, and 14 MHz. The simulated tissue had Gaussian scattering structures with effective radii of 25 mum placed at a density of 250 mm(3). The attenuation of the tissue was varied from 0.1 to 0.9 dB / cm-MHz. The error in the attenuation along the propagation path ranged from -3.5+/-14.7% for a tissue attenuation of 0.1 dB / cm-MHz to -7.0+/-3.1% for a tissue attenuation of 0.9 dB / cm-MHz demonstrating that the attenuation along the propagation path could be accurately determined using backscattered echoes from multiple sources using the derived algorithm.

  12. GPR measurements of attenuation in concrete

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-03-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  13. Fat Attenuation at CT in Anorexia Nervosa

    PubMed Central

    Gill, Corey M.; Torriani, Martin; Murphy, Rachel; Harris, Tamara B.; Miller, Karen K.; Klibanski, Anne

    2016-01-01

    Purpose To investigate the composition, cross-sectional area (CSA), and hormonal correlates of different fat depots in women with anorexia nervosa (AN) and control subjects with normal weights to find out whether patients with AN have lower fat CSA but higher attenuation than did control subjects and whether these changes may be mediated by gonadal steroids, cortisol, and thyroid hormones. Materials and Methods This study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. Forty premenopausal women with AN and 40 normal-weight women of comparable age (mean age ± standard deviation, 26 years ± 5) were studied. All individuals underwent computed tomography of the abdomen and thigh with a calibration phantom. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), thigh SAT, and thigh intermuscular adipose tissue CSA and attenuation were quantified. Serum estradiol, thyroid hormones, and urinary free cortisol levels were assessed. Variables were compared by using analysis of variance. Associations were examined by using linear regression analysis. Results Women with AN had higher fat attenuation than did control subjects (−100.1 to −46.7 HU vs −117.6 to −61.8 HU, P < .0001), despite lower fat CSA (2.0–62.8 cm2 vs 5.5–185.9 cm2, P < .0001). VAT attenuation but not CSA was inversely associated with lowest prior lifetime body mass index in AN (r = −0.71, P = .006). Serum estradiol levels were inversely associated with fat attenuation (r = −0.34 to −0.61, P = .03 to <.0001) and were positively associated with fat CSA of all compartments (r = 0.42–0.64, P = .007 to <.0001). Thyroxine levels and urinary free cortisol levels were positively associated with thigh SAT attenuation (r = 0.64 [P = .006] and r = 0.68 [P = .0004], respectively) and were inversely associated with abdominal SAT and VAT CSA (r = −0.44 to −0.58, P = .04 to .02). Conclusion Women with AN have differences in fat

  14. Quantifying contributions to light attenuation in estuaries and ...

    EPA Pesticide Factsheets

    In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates higher values in the upper Bay, where rivers with sediment and nutrient-rich waters enter and elevate TSS, CDOM, and chl-a concentrations. The temporal trends of light attenuation during the summer months (July–August) differed at various locations in the Bay, having the highest values in July. For the same period, spectral methods overestimated attenuation throughout the Bay. These findings quantify the behavior of light attenuation in space and time, providing information that can guide decisions related to improving water clarity and help understanding the effects of various environmental and management scenarios on it. The methods developed can be used to study the effect of various environmental and management scenarios on the recovery efforts for SAV beds in estuarine and coastal systems. An innovative normalization for light attenuation is presented to validate comparison between water clarity of the same or different systems in space and time.

  15. Rain attenuation measurements: Variability and data quality assessment

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1989-01-01

    Year to year variations in the cumulative distributions of rain rate or rain attenuation are evident in any of the published measurements for a single propagation path that span a period of several years of observation. These variations must be described by models for the prediction of rain attenuation statistics. Now that a large measurement data base has been assembled by the International Radio Consultative Committee, the information needed to assess variability is available. On the basis of 252 sample cumulative distribution functions for the occurrence of attenuation by rain, the expected year to year variation in attenuation at a fixed probability level in the 0.1 to 0.001 percent of a year range is estimated to be 27 percent. The expected deviation from an attenuation model prediction for a single year of observations is estimated to exceed 33 percent when any of the available global rain climate model are employed to estimate the rain rate statistics. The probability distribution for the variation in attenuation or rain rate at a fixed fraction of a year is lognormal. The lognormal behavior of the variate was used to compile the statistics for variability.

  16. Examination of the Lateral Attenuation of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.

  17. Seismic attenuation of the inner core: Viscoelastic or stratigraphic?

    USGS Publications Warehouse

    Cormier, V.F.; Xu, L.; Choy, G.L.

    1998-01-01

    Broadband velocity waveforms of PKIKP in the distance range 150??to 180??are inverted for inner core attenuation. A mean Q?? of 244 is determined at 1 Hz from 8 polar and 9 equatorial paths. The scatter in measured Q-1 exceeds individual error estimates, suggesting significant variation in attenuation with path. These results are interpreted by (1) viscoelasticity, in which the relaxation spectrum has a low-frequency corner near or slightly above the frequency band of short-period body waves, and by (2) stratigraphic (scattering) attenuation, in which attenuation and pulse broadening are caused by the interference of scattered multiples in a velocity structure having rapid fluctuations along a PKIKP path. In the scattering interpretation, PKIKP attenuation is only weakly affected by the intrinsic shear attenuation measured in the free-oscillation band. Instead, its frequency dependence, path variations, and fluctuations are all explained by scattering attenuation in a heterogeneous fabric resulting from solidification texturing of intrinsically anisotropic iron. The requisite fabric may consist of either single or ordered groups of crystals with P velocity differences of at least 5% and as much as 12% between two crystallographic axes at scale lengths of 0.5 to 2 km in the direction parallel to the axis of rotation and longer in the cylindrically radial direction, perpendicular to the axis of rotation.Broadband velocity waveforms of PKIKP in the distance range 150?? to 180?? are inverted for inner core attenuation. A mean Q?? of 244 is determined at 1 Hz from 8 polar and 9 equatorial paths. The scatter in the measured Q-1 exceeds individual error estimates, indicating significant variation in attenuation with path. The results are interpreted by viscoelasticity and stratigraphic (scattering) attenuation.

  18. A description of shock attenuation for children running.

    PubMed

    Mercer, John A; Dufek, Janet S; Mangus, Brent C; Rubley, Mack D; Bhanot, Kunal; Aldridge, Jennifer M

    2010-01-01

    A growing number of children are participating in organized sport activities, resulting in a concomitant increase in lower extremity injuries. Little is known about the impact generated when children are running or how this impact is attenuated in child runners. To describe shock attenuation characteristics for children running at different speeds on a treadmill and at a single speed over ground. Prospective cohort study. Biomechanics laboratory. Eleven boys (age = 10.5 +/- 0.9 years, height = 143.7 +/- 8.3 cm, mass = 39.4 +/- 10.9 kg) and 7 girls (age = 9.9 +/- 1.1 years, height = 136.2 +/- 7.7 cm, mass = 35.1 +/- 9.6 kg) participated. Participants completed 4 running conditions, including 3 treadmill (TM) running speeds (preferred, fast [0.5 m/s more than preferred], and slow [0.5 m/s less than preferred]) and 1 overground (OG) running speed. We measured leg peak impact acceleration (LgPk), head peak impact acceleration (HdPk), and shock attenuation (ratio of LgPk to HdPk). Shock attenuation (F(2,16) = 4.80, P = .01) was influenced by the interaction of speed and sex. Shock attenuation increased across speeds (slow, preferred, fast) for boys (P < .05) but not for girls (P > .05). Both LgPk (F(1,16) = 5.04, P = .04) and HdPk (F(1,16) = 6.04, P = .03) were different across speeds, and both were greater for girls than for boys. None of the dependent variables were influenced by the interaction of setting (TM, OG) and sex (P >or= .05). Shock attenuation (F(1,16) = 33.51, P < .001) and LgPk (F(1,16) = 31.54, P < .001) were different between TM and OG, and each was greater when running OG than on the TM, regardless of sex. Shock attenuation was between 66% and 76% for children running under a variety of conditions. Girls had greater peak impact accelerations at the leg and head levels than boys but achieved similar shock attenuation. We do not know how these shock attenuation characteristics are related to overuse injuries.

  19. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum.

    PubMed

    Häffner, Eva; Karlovsky, Petr; Splivallo, Richard; Traczewska, Anna; Diederichsen, Elke

    2014-04-01

    Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (Bur×Ler) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid (SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were identified: Erecta mediated

  20. Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents.

    PubMed

    Raymond, Jason L; Haworth, Kevin J; Bader, Kenneth B; Radhakrishnan, Kirthi; Griffin, Joseph K; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2014-02-01

    The aim of this study was to characterize the frequency-dependent acoustic attenuation of three phospholipid-shelled ultrasound contrast agents (UCAs): Definity, MicroMarker and echogenic liposomes. A broadband through-transmission technique allowed for measurement over 2 to 25 MHz with a single pair of transducers. Viscoelastic shell parameters of the UCAs were estimated using a linearized model developed by N. de Jong, L. Hoff, T. Skotland and N. Bom (Ultrasonics 1992; 30:95-103). The effect of diluent on the attenuation of these UCA suspensions was evaluated by performing attenuation measurements in 0.5% (w/v) bovine serum albumin and whole blood. Changes in attenuation and shell parameters of the UCAs were investigated at room temperature (25°C) and physiologic temperature (37°C). The attenuation of the UCAs diluted in 0.5% (w/v) bovine serum albumin was found to be identical to the attenuation of UCAs in whole blood. For each UCA, attenuation was higher at 37°C than at 25°C, underscoring the importance of conducting characterization studies at physiologic temperature. Echogenic liposomes exhibited a larger increase in attenuation at 37°C versus 25°C than either Definity or MicroMarker. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Action-related auditory ERP attenuation: Paradigms and hypotheses.

    PubMed

    Horváth, János

    2015-11-11

    A number studies have shown that the auditory N1 event-related potential (ERP) is attenuated when elicited by self-induced or self-generated sounds. Because N1 is a correlate of auditory feature- and event-detection, it was generally assumed that N1-attenuation reflected the cancellation of auditory re-afference, enabled by the internal forward modeling of the predictable sensory consequences of the given action. Focusing on paradigms utilizing non-speech actions, the present review summarizes recent progress on action-related auditory attenuation. Following a critical analysis of the most widely used, contingent paradigm, two further hypotheses on the possible causes of action-related auditory ERP attenuation are presented. The attention hypotheses suggest that auditory ERP attenuation is brought about by a temporary division of attention between the action and the auditory stimulation. The pre-activation hypothesis suggests that the attenuation is caused by the activation of a sensory template during the initiation of the action, which interferes with the incoming stimulation. Although each hypothesis can account for a number of findings, none of them can accommodate the whole spectrum of results. It is suggested that a better understanding of auditory ERP attenuation phenomena could be achieved by systematic investigations of the types of actions, the degree of action-effect contingency, and the temporal characteristics of action-effect contingency representation-buildup and -deactivation. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015. Published by Elsevier B.V.

  2. Rollover of Apparent Wave Attenuation in Ice Covered Seas

    NASA Astrophysics Data System (ADS)

    Li, Jingkai; Kohout, Alison L.; Doble, Martin J.; Wadhams, Peter; Guan, Changlong; Shen, Hayley H.

    2017-11-01

    Wave attenuation from two field experiments in the ice-covered Southern Ocean is examined. Instead of monotonically increasing with shorter waves, the measured apparent attenuation rate peaks at an intermediate wave period. This "rollover" phenomenon has been postulated as the result of wind input and nonlinear energy transfer between wave frequencies. Using WAVEWATCH III®, we first validate the model results with available buoy data, then use the model data to analyze the apparent wave attenuation. With the choice of source parameterizations used in this study, it is shown that rollover of the apparent attenuation exists when wind input and nonlinear transfer are present, independent of the different wave attenuation models used. The period of rollover increases with increasing distance between buoys. Furthermore, the apparent attenuation for shorter waves drops with increasing separation between buoys or increasing wind input. These phenomena are direct consequences of the wind input and nonlinear energy transfer, which offset the damping caused by the intervening ice.

  3. Drug and tobacco detection using neutron transmission/attenuation

    NASA Astrophysics Data System (ADS)

    Miller, Thomas G.

    1994-10-01

    A neutron transmission/attenuation spectrometer has been used to obtain the neutron attenuation signature of cocaine, heroin, hashish, methamphetamine, pipe tobacco and chewing tobacco. A pulsed `white neutron' source was created by bombarding a thick beryllium target with a 5 MeV pulsed deuteron beam. The neutron intensity was measured from about 0.75 MeV to about 4 MeV with the suitcase in and out of the neutron beam to determine the neutron attenuation. Experiments were performed for drugs and tobacco alone and when imbedded in an `average suitcase'. The experimentally determined neutron attenuation curves were used to determine the atomic ratios C/O, N/O, and H/C through the samples using measured neutron cross sections.

  4. GPR measurements of attenuation in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena,more » and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.« less

  5. Seismic Attenuation Structure and Intraplate Deformation

    NASA Astrophysics Data System (ADS)

    Bezada, M.; Kowalke, S.; Smale, J.

    2017-12-01

    It has been suggested that intraplate deformation and seismicity is localized at weak zones in the lithosphere and at rheological boundaries. Comparisons of intraplate deformation regions with mantle seismic velocity structure suggest a correlation, but are not universally accepted as compelling evidence. We present P-wave attenuation models built from records of teleseismic deep-focus earthquakes in three different regions that show significant correlation between attenuation structure and intraplate seismicity and deformation. In the eastern United States, the New Madrid, Wabash Valley, Eastern Tennessee, Central Virginia, and Carolina seismic zones all occur at or near the edges of high-Q (low attenuation) regions. In Spain, intraplate seismicity is absent from high-Q regions but relatively abundant in surrounding low-Q regions where intraplate orogeny is also observed. In Australia, where our model resolution is relatively poor owing to sparse and uneven station coverage, the Petermann and Alice Springs intraplate orogens occur near the edge of a high-Q feature roughly coinciding with the undeformed Amadeus basin. Our results suggest that lithospheric structure exerts important controls on the localization of intraplate deformation and seismicity and that seismic attenuation is a useful proxy for lithospheric strength.

  6. Entanglement sensitivity to signal attenuation and amplification

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.; Ziman, Mário

    2014-07-01

    We analyze general laws of continuous-variable entanglement dynamics during the deterministic attenuation and amplification of the physical signal carrying the entanglement. These processes are inevitably accompanied by noises, so we find fundamental limitations on noise intensities that destroy entanglement of Gaussian and non-Gaussian input states. The phase-insensitive amplification Φ1⊗Φ2⊗⋯ΦN with the power gain κi≥2 (≈3 dB, i =1,...,N) is shown to destroy entanglement of any N-mode Gaussian state even in the case of quantum-limited performance. In contrast, we demonstrate non-Gaussian states with the energy of a few photons such that their entanglement survives within a wide range of noises beyond quantum-limited performance for any degree of attenuation or gain. We detect entanglement preservation properties of the channel Φ1⊗Φ2, where each mode is deterministically attenuated or amplified. Gaussian states of high energy are shown to be robust to very asymmetric attenuations, whereas non-Gaussian states are at an advantage in the case of symmetric attenuation and general amplification. If Φ1=Φ2, the total noise should not exceed 1/2√κ2+1 to guarantee entanglement preservation.

  7. Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study.

    PubMed

    Légère, Anne

    2005-03-01

    Data from the literature and recent experiments with herbicide-resistant (HR) canola (Brassica napus L) repeatedly confirm that genes and transgenes will flow and hybrids will form if certain conditions are met. These include sympatry with a compatible relative (weedy, wild or crop), synchrony of flowering, successful fertilization and viable offspring. The chance of these events occurring is real; however, it is generally low and varies with species and circumstances. Plants of the same species (non-transgenic or with a different HR transgene) in neighbouring fields may inherit the new HR gene, potentially generating plants with single and multiple HR. For canola, seed losses at harvest and secondary dormancy ensures the persistence over time of the HR trait(s) in the seed bank, and the potential presence of crop volunteers in subsequent crops. Although canola has many wild/weedy relatives, the risk of gene flow is quite low for most of these species, except with Brassica rapa L. Introgression of genes and transgenes in B rapa populations occurs with apparently little or no fitness costs. Consequences of HR canola gene flow for the agro-ecosystem include contamination of seed lots, potentially more complex and costly control strategy, and limitations in cropping system design. Consequences for non-agricultural habitats may be minor but appear largely undocumented. Minister of Public Works and Government Services Canada 2005

  8. A depolarization and attenuation experiment using the COMSTAR and CTS satellites

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Manus, E. A.; Marshall, R. E.; Overstreet, W. P.; Persinger, R. R.; Powell, J. D.; Santago, P.; Stutzman, W. L.; Wiley, P. H.

    1978-01-01

    Monthly statistical data are presented on ground rainfall rate and attenuation of satellite downlinks at 11.7 GHz, 19.04 GHz, and 28.56 GHz and on cross-polarization isolation at 11.7 GHz. Regression equations for relating isolation to attenuation, attenuation to rain rate, and attenuation at one frequency to attenuation at another frequency are also included. Longer-term statistics are also presented and discussed.

  9. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death.

    PubMed

    Wang, Boya; Guo, Xiaohua; Wang, Chen; Ma, Jieyu; Niu, Fangfang; Zhang, Hanfeng; Yang, Bo; Liang, Wanwan; Han, Feng; Jiang, Yuan-Qing

    2015-03-01

    NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.

  10. GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China.

    PubMed

    Dong, Jing-Jing; Zhang, Ming-Gang; Wei, Wei; Ma, Ke-Ping; Wang, Ying-Hao

    2018-06-16

    Risk of gene flow from canola (Brassica napus) to species of wild relatives was used as an example to evaluate the risk of gene flow of transgenic crops. B. juncea and B. rapa were the most common weedy Brassica species in China, which were both sexually compatible with canola. Data on canola cultivation in China were collected and analyzed using geographic information system (GIS), and the distribution of its wild relatives was predicted by MaxEnt species distribution model. Based on biological and phenological evidence, our results showed that gene flow risk exists in most parts of the country, especially in places with higher richness of wild Brassica species. However, risk in dominant canola cultivation regions is relatively low owing to the reduced distribution density of wild species in these regions. Three regions of higher risk of gene flow had been identified. Risk of gene flow is relatively high in certain areas. China has been assumed to be the original center of B. juncea and B. rapa, and gene flow may lead to negative effects on the conservation of biodiversity of local species. Strategies had been proposed to reduce the possibility of gene flow either by monitoring introgression from crops to wild relatives in the areas of high adoption of the crop or by taking measures to limit the releasing of new crops or varieties in the areas with abundant wild relatives.

  11. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  12. An Appraisal of the Occurrence of the More Serious Tree Pests and Infectious Diseases in Poland in 1980 and a Forecast of Their Appearance in 1981,

    DTIC Science & Technology

    1982-10-28

    122 2. Verticillium deciduous tree wilt (Verticillium alboatrum) ...... 124 3. Gray mold rot of conifer seedlings ( Botrytis cinerea ...or Botrytis cinerea . The overall occurrence of seedling wilt disease in young forest tree nur- series is shown in Table 53. Parasitic seedling wilt...successive years. 3. Gray mold rot of conifer seedlings ( Botrytis cinerea ) The occurrence of conifer seedling gray mold rot was confirmed on black pine

  13. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites.

    PubMed

    Singer, Mirko; Frischknecht, Friedrich

    2017-03-01

    Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the

  15. WE-H-207A-02: Attenuation Correction in 4D-PET Using a Single-Phase Attenuation Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantari, F; Wang, J

    2016-06-15

    Purpose: 4D-PET imaging has been proposed as a potential solution to the respiratory motion effect in thoracic region. CT-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference of 4D-PET and a single breath-hold CT, motion artifacts are observed in the attenuation-corrected PET images that can lead to error in tumor shape and uptake. We introduce a practical method for aligning single-phase CT to all other 4D-PET phases using a penalized non-rigid demons registration. Methods: Individual 4D-PET frames were reconstructed without AC. Non-rigid Demons registration was used to derive deformation vectormore » fields (DVFs) between the PET matched with CT phase and other 4D-PET images. While attenuated PET images provide enough useful data for organ borders such as lung and liver, tumors are not distinguishable from background due to loss of contrast. To preserve tumor shape in different phases, from CT image an ROI covering tumor was excluded from non-rigid transformation. Mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of tumor along with a non-rigid transformation of other organs. 4D XCAT phantom with spherical tumors in lung with diameters ranging from 10 to 40 mm was used to evaluate the algorithm. Results: Motion related induced artifacts in attenuation-corrected 4D-PET images were significantly reduced. For tumors smaller than 20 mm, non-rigid transformation was capable to provide quantitative results. However, for larger tumors, where tumor self-attenuation is considerable, our combined method yields superior results. Conclusion: We introduced a practical method for deforming a single CT to match all 4D-PET images for accurate AC. Although 4D-PET data include insignificant anatomical information, we showed that they are still useful to estimate DVFs for aligning attenuation map and accurate AC.« less

  16. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    PubMed

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  17. Monitored natural attenuation and enhanced attenuation for chlorinated solvent plumes - It's all about balance

    USGS Publications Warehouse

    Adams, K.A.; Vangelas, K.M.; Looney, B.B.; Chapelle, F.; Early, T.; Gilmore, T.; Sink, C.H.

    2005-01-01

    Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC of the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept. Copyright ASCE 2005.

  18. On the suitability of broadband attenuation measurement for characterizing contrast microbubbles.

    PubMed

    Chatterjee, Dhiman; Sarkar, Kausik; Jain, Pankaj; Schreppler, Nathan E

    2005-06-01

    Broadband attenuation measurement has been widely used for characterizing ultrasound contrast agents. Chen et al. (2002) recently suggested that broadband attenuation data depend on the center frequency of the broadband excitation pulse and, therefore, that they are not a reliable measure of the bubble behavior. We investigated the suitability of measurement of broadband attenuation as a characterizing tool using the contrast agent Definity as a test case. Analyzing the attenuation data obtained with three broadband unfocused transducers with different center frequencies (2.25, 3.5 and 5 MHz), we found that attenuation is independent of the transducer used and matches in the overlap regions of any two transducers. Attenuation does not depend on excitation pressure amplitude as long as the excitation amplitude remains below a critical value ( approximately 0.26 MPa), indicating that the measurement of broadband attenuation below critical excitation can, indeed, be used for characterization. Furthermore, the linear relationship of attenuation with concentrations of Definity is also investigated.

  19. METHODS AND ANALYSES FOR IMPLEMENTING NATURAL ATTENUATION PROTOCOLS

    EPA Science Inventory

    Technical protocols for evaluating natural attenuation at petroleum hydrocarbon and chlorinated solvent contaminated sites specify the analysis of electron acceptors and metabolic by-products for identifying and quantifying natural attenuation processes. However, these protocols ...

  20. Comparative study of the floral biology and of the response of productivity to insect visitation in two rapeseed cultivars (Brassica napus L.) in Rio Grande do Sul.

    PubMed

    Blochtein, B; Nunes-Silva, P; Halinski, R; Lopes, L A; Witter, S

    2014-11-01

    Planning the artificial pollination of agricultural crops requires knowledge of the floral biology and reproductive system of the crop in question. Many studies have shown that rapeseed (Brassica napus Linnaeus) is self-compatible and self-pollinated, but its productivity may be increased by insect visitation. In the present study, the floral biology and the response of productivity to insect visitation of two rapeseed cultivars (Hyola 420 and Hyola 61) were analyzed and compared in three regions of Rio Grande do Sul, Brazil. The rapeseed flowers presented three stages during anthesis, with the time periods varying between the cultivars. Both cultivars are self-compatible, but free visitation of insects increased productivity by 17% in the Hyola 420 cultivar and by approximately 30% in the Hyola 61 cultivar. Therefore, it is concluded that the cultivar Hyola 61 is more dependent on insect pollination than Hyola 420.

  1. Attenuation correction strategies for multi-energy photon emitters using SPECT

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; King, M. A.; Pan, T.-S.; Hutton, B. F.

    1997-06-01

    The aim of this study was to investigate whether the photopeak window projections from different energy photons can be combined into a single window for reconstruction or if it is better to not combine the projections due to differences in the attenuation maps required for each photon energy. The mathematical cardiac torso (MCAT) phantom was modified to simulate the uptake of Ga-67 in the human body. Four spherical hot tumors were placed in locations which challenged attenuation correction. An analytical 3D projector with attenuation and detector response included was used to generate projection sets. Data were reconstructed using filtered backprojection (FBP) reconstruction with Butterworth filtering in conjunction with one iteration of Chang attenuation correction, and with 5 and 10 iterations of ordered-subset maximum-likelihood expectation maximization (ML-OS) reconstruction. To serve as a standard for comparison, the projection sets obtained from the two energies were first reconstructed separately using their own attenuation maps. The emission data obtained from both energies were added and reconstructed using the following attenuation strategies: 1) the 93 keV attenuation map for attenuation correction, 2) the 185 keV attenuation map for attenuation correction, 3) using a weighted mean obtained from combining the 93 keV and 185 keV maps, and 4) an ordered subset approach which combines both energies. The central count ratio (CCR) and total count ratio (TCR) were used to compare the performance of the different strategies. Compared to the standard method, results indicate an over-estimation with strategy 1, an under-estimation with strategy 2 and comparable results with strategies 3 and 4. In all strategies, the CCRs of sphere 4 (in proximity to the liver, spleen and backbone) were under-estimated, although TCRs were comparable to that of the other locations. The weighted mean and ordered subset strategies for attenuation correction were of comparable

  2. Attenuation correction strategies for multi-energy photon emitters using SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretorius, P.H.; King, M.A.; Pan, T.S.

    1996-12-31

    The aim of this study was to investigate whether the photopeak window projections from different energy photons can be combined into a single window for reconstruction or if it is better to not combine the projections due to differences in the attenuation maps required for each photon energy. The mathematical cardiac torso (MCAT) phantom was modified to simulate the uptake of Ga-67 in the human body. Four spherical hot tumors were placed in locations which challenged attenuation correction. An analytical 3D projector with attenuation and detector response included was used to generate projection sets. Data were reconstructed using filtered backprojectionmore » (FBP) reconstruction with Butterworth filtering in conjunction with one iteration of Chang attenuation correction, and with 5 and 10 iterations of ordered-subset maximum-likelihood expectation-maximization reconstruction. To serve as a standard for comparison, the projection sets obtained from the two energies were first reconstructed separately using their own attenuation maps. The emission data obtained from both energies were added and reconstructed using the following attenuation strategies: (1) the 93 keV attenuation map for attenuation correction, (2) the 185 keV attenuation map for attenuation correction, (3) using a weighted mean obtained from combining the 93 keV and 185 keV maps, and (4) an ordered subset approach which combines both energies. The central count ratio (CCR) and total count ratio (TCR) were used to compare the performance of the different strategies. Compared to the standard method, results indicate an over-estimation with strategy 1, an under-estimation with strategy 2 and comparable results with strategies 3 and 4. In all strategies, the CCR`s of sphere 4 were under-estimated, although TCR`s were comparable to that of the other locations. The weighted mean and ordered subset strategies for attenuation correction were of comparable accuracy to reconstruction of the windows

  3. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    NASA Technical Reports Server (NTRS)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  4. A depolarization and attenuation experiment using the COMSTAR and CTS satellites

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Overstreet, W. P.; Persinger, R. R.; Stutzman, W. L.; Wiley, P. H.

    1978-01-01

    An experiment for measuring precipitation attenuation and depolarization on the CTS 11.7 and the COMSTAR 19.04 and 28.56 GHz downlinks is described. Attenuation scaling, effective path length, and the relationship between isolation and attenuation are discussed. Attenuation and effective path data are presented for the months of July, August, and September, 1977.

  5. The Seismic Attenuation Structure of the East Pacific Rise

    DTIC Science & Technology

    1992-02-27

    Kanamori, R. W. Clayton, Three- dimensional attenuation structure of Kilauea -East rift zone, Hawaii , J. Geophys. Res., submitted, 1990. Holt, M., Underwater...and J. J. Zucca, Active high-resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake volcano , northern California...zones of anomalously high S-wave attenuation in the upper crust near Ruapehu and Ngauruhoe volcanoes , New Zealand, J. Volcanol. Geotherm. Res., 10, 125

  6. Lateral Attenuation of Aircraft Flight Noise.

    DTIC Science & Technology

    1985-03-01

    levels with elevation angle. Comparisons of different Imodels are made in terms of the differences in A - levels for a flyover with the observer directly...attenuation adjustment to be applied to the basic noise data is the same when applied to maximum levels (maximum A - levels for example) or to integrated...attenuation values were applied to sets of one-third octave band spectra for different aircraft The resulting differences in A - levels for these noise spectra

  7. Attenuation Measurements of Cell Pellets Using Through Transmission

    NASA Astrophysics Data System (ADS)

    Vadas, Justin; Greene, Claudia; Grygotis, Emma; Kuhn, Stephen; Mahlalela, Sanele; Newland, Tinisha; Ovutmen, Idil; Herd, Maria-Teresa

    2011-10-01

    A better understanding of differences in ultrasound tissue characteristics (such as speed of sound, attenuation, and backscatter coefficients) of benign compared to malignant cells could lead to improved cancer detection and diagnosis. A narrow band technique for measuring ultrasonic speed of sound and attenuation of small biological materials was developed and tested. Several mechanical improvements were made to the system to drastically improve alignment, allowing for accurate measurements of small cell pellets. Narrow band attenuation measurements were made first with tissue-mimicking phantoms and then with three different types of cell pellets: Chinese hamster ovary cells, healthy human prostate cells, and cancerous human prostate cells. Attenuation and speed of sound results for all three cell types, as well as the culture medium and tissue mimicking phantoms, are presented for a frequency range of 5 to 25 MHz.

  8. Differences in attenuation among the stable continental regions

    USGS Publications Warehouse

    Bakun, W.H.; McGarr, A.

    2002-01-01

    There are systematic differences in the attenuation of damaging earthquake ground motions between different stable continental regions (SCRs). Seismic intensity and weak-motion data show that the attenuation in seismic waves for eastern North America (ENA) is less than for India, Africa, Australia, and northwest Europe. If ENA ground-motion attenuation relations are used in seismic hazard models for other SCRs, as is commonly done, then the estimated ground motions and resulting hazard may be too large. If an attenuation model that averages observations from ENA and the other SCRs is used to estimate the magnitudes of large historical earthquakes in ENA, as is the case for recent estimates of M for the 1811-1812 New Madrid, Missouri and the 1886 Charleston, South Carolina events, then the magnitude estimates for these events will be too large, as will be the resulting hazard.

  9. X-Ray Form Factor, Attenuation and Scattering Tables

    National Institute of Standards and Technology Data Gateway

    SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access)   This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).

  10. Image quality assessment of automatic three-segment MR attenuation correction vs. CT attenuation correction.

    PubMed

    Partovi, Sasan; Kohan, Andres; Gaeta, Chiara; Rubbert, Christian; Vercher-Conejero, Jose L; Jones, Robert S; O'Donnell, James K; Wojtylak, Patrick; Faulhaber, Peter

    2013-01-01

    The purpose of this study is to systematically evaluate the usefulness of Positron emission tomography/Magnetic resonance imaging (PET/MRI) images in a clinical setting by assessing the image quality of Positron emission tomography (PET) images using a three-segment MR attenuation correction (MRAC) versus the standard CT attenuation correction (CTAC). We prospectively studied 48 patients who had their clinically scheduled FDG-PET/CT followed by an FDG-PET/MRI. Three nuclear radiologists evaluated the image quality of CTAC vs. MRAC using a Likert scale (five-point scale). A two-sided, paired t-test was performed for comparison purposes. The image quality was further assessed by categorizing it as acceptable (equal to 4 and 5 on the five-point Likert scale) or unacceptable (equal to 1, 2, and 3 on the five-point Likert scale) quality using the McNemar test. When assessing the image quality using the Likert scale, one reader observed a significant difference between CTAC and MRAC (p=0.0015), whereas the other readers did not observe a difference (p=0.8924 and p=0.1880, respectively). When performing the grouping analysis, no significant difference was found between CTAC vs. MRAC for any of the readers (p=0.6137 for reader 1, p=1 for reader 2, and p=0.8137 for reader 3). All three readers more often reported artifacts on the MRAC images than on the CTAC images. There was no clinically significant difference in quality between PET images generated on a PET/MRI system and those from a Positron emission tomography/Computed tomography (PET/CT) system. PET images using the automatic three-segmented MR attenuation method provided diagnostic image quality. However, future research regarding the image quality obtained using different MR attenuation based methods is warranted before PET/MRI can be used clinically.

  11. The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications.

    PubMed

    Kouvelis, Vassili N; Ghikas, Dimitri V; Typas, Milton A

    2004-10-01

    The mitochondrial genome (mtDNA) of the entomopathogenic fungus Lecanicillium muscarium (synonym Verticillium lecanii) with a total size of 24,499-bp has been analyzed. So far, it is the smallest known mitochondrial genome among Pezizomycotina, with an extremely compact gene organization and only one group-I intron in its large ribosomal RNA (rnl) gene. It contains the 14 typical genes coding for proteins related to oxidative phosphorylation, the two rRNA genes, one intronic ORF coding for a possible ribosomal protein (rps), and a set of 25 tRNA genes which recognize codons for all amino acids, except alanine and cysteine. All genes are transcribed from the same DNA strand. Gene order comparison with all available complete fungal mtDNAs-representatives of all four Phyla are included-revealed some characteristic common features like uninterrupted gene pairs, overlapping genes, and extremely variable intergenic regions, that can all be exploited for the study of fungal mitochondrial genomes. Moreover, a minimum common mtDNA gene order could be detected, in two units, for all known Sordariomycetes namely nad1-nad4-atp8-atp6 and rns-cox3-rnl, which can be extended in Hypocreales, to nad4L-nad5-cob-cox1-nad1-nad4-atp8-atp6 and rns-cox3-rnl nad2-nad3, respectively. Phylogenetic analysis of all fungal mtDNA essential protein-coding genes as one unit, clearly demonstrated the superiority of small genome (mtDNA) over single gene comparisons.

  12. MLAA-based RF surface coil attenuation estimation in hybrid PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Kachelrieß, Marc

    2017-03-01

    Attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons is required for accurate PET quantification. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is performed using CT{derived attenuation templates. AC for flexible hardware components such as MR radiofrequency (RF) surface coils is more challenging. Registration{based approaches, aligning scaled CT{derived attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring RF coil attenuation has been shown to result in regional activity underestimation values of up to 18 %. We propose to employ a modified version of the maximum{ likelihood reconstruction of attenuation and activity (MLAA) algorithm to obtain an estimate of the RF coil attenuation. Starting with an initial attenuation map not including the RF coil, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate RF coil attenuation without changing the patient attenuation map. Hence, the proposed method is referred to as external MLAA (xMLAA). In this work, xMLAA for RF surface coil attenuation estimation is investigated using phantom and patient data acquired with a Siemens Biograph mMR. For the phantom data, average activity errors compared to the ground truth was reduced from -8:1% to +0:8% when using the proposed method. Patient data revealed an average activity underestimation of -6:1% for the abdominal region and -5:3% for the thoracic region when ignoring RF coil attenuation.

  13. Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca2+ Signaling Is Required for Plant Infection by Verticillium dahliae.

    PubMed

    Zhao, Yun-Long; Zhou, Ting-Ting; Guo, Hui-Shan

    2016-07-01

    Verticillium dahliae is a phytopathogenic fungus obligate in root infection. A few hyphopodia differentiate from large numbers of hyphae after conidia germination on the root surface for further infection. However, the molecular features and role of hyphopodia in the pathogenicity of V. dahliae remain elusive. In this study, we found that the VdPls1, a tetraspanin, and the VdNoxB, a catalytic subunit of membrane-bound NADPH oxidases for reactive oxygen species (ROS) production, were specifically expressed in hyphopodia. VdPls1 and VdNoxB highly co-localize with the plasma membrane at the base of hyphopodia, where ROS and penetration pegs are generated. Mutant strains, VdΔnoxb and VdΔpls1, in which VdPls1 and VdNoxB were deleted, respectively, developed defective hyphpodia incapable of producing ROS and penetration pegs. Defective plasma membrane localization of VdNoxB in VdΔpls1 demonstrates that VdPls1 functions as an adaptor protein for the recruitment and activation of the VdNoxB. Furthermore, in VdΔnoxb and VdΔpls1, tip-high Ca2+ accumulation was impaired in hyphopodia, but not in vegetative hyphal tips. Moreover, nuclear targeting of VdCrz1 and activation of calcineurin-Crz1 signaling upon hyphopodium induction in wild-type V. dahliae was impaired in both knockout mutants, indicating that VdPls1/VdNoxB-dependent ROS was specifically required for tip-high Ca2+ elevation in hyphopodia to activate the transcription factor VdCrz1 in the regulation of penetration peg formation. Together with the loss of virulence of VdΔnoxb and VdΔpls1, which are unable to initiate colonization in cotton plants, our data demonstrate that VdNoxB/VdPls1-mediated ROS production activates VdCrz1 signaling through Ca2+ elevation in hyphopodia, infectious structures of V. dahliae, to regulate penetration peg formation during the initial colonization of cotton roots.

  14. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase (MCAT) (fab D) and complementation of an E. coli MCAT mutant.

    PubMed

    Simon, J W; Slabas, A R

    1998-09-18

    The GenBank database was searched using the E. coli malonyl CoA:ACP transacylase (MCAT) sequence, for plant protein/cDNA sequences corresponding to MCAT, a component of plant fatty acid synthetase (FAS), for which the plant cDNA has not been isolated. A 272-bp Zea mays EST sequence (GenBank accession number: AA030706) was identified which has strong homology to the E. coli MCAT. A PCR derived cDNA probe from Zea mays was used to screen a Brassica napus (rape) cDNA library. This resulted in the isolation of a 1200-bp cDNA clone which encodes an open reading frame corresponding to a protein of 351 amino acids. The protein shows 47% homology to the E. coli MCAT amino acid sequence in the coding region for the mature protein. Expression of a plasmid (pMCATrap2) containing the plant cDNA sequence in Fab D89, an E. coli mutant, in MCAT activity restores growth demonstrating functional complementation and direct function of the cloned cDNA. This is the first functional evidence supporting the identification of a plant cDNA for MCAT.

  15. Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.)

    PubMed Central

    Li, Feng; Chen, Biyun; Xu, Kun; Wu, Jinfeng; Song, Weilin; Bancroft, Ian; Harper, Andrea L.; Trick, Martin; Liu, Shengyi; Gao, Guizhen; Wang, Nian; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Li, Hao; Xiao, Xin; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed. PMID:24510440

  16. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus.

    PubMed

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-04-10

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.

  17. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus

    PubMed Central

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-01-01

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed. PMID:28393910

  18. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocytemore » diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of

  19. A two-component rain model for the prediction of attenuation statistics

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1982-01-01

    A two-component rain model has been developed for calculating attenuation statistics. In contrast to most other attenuation prediction models, the two-component model calculates the occurrence probability for volume cells or debris attenuation events. The model performed significantly better than the International Radio Consultative Committee model when used for predictions on earth-satellite paths. It is expected that the model will have applications in modeling the joint statistics required for space diversity system design, the statistics of interference due to rain scatter at attenuating frequencies, and the duration statistics for attenuation events.

  20. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  1. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP#5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 gigahertz attenuation from the disdrometer and the 20 gigahertz time-series as well as to directly measure the 40 gigahertz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data. In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer-derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  2. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments

    PubMed Central

    Hill, Terence E.; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Slack, Olga A. L.; Ly, Hoai J.; Lokugamage, Nandadeva; Freiberg, Alexander N.

    2015-01-01

    ABSTRACT Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to

  3. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments.

    PubMed

    Ikegami, Tetsuro; Hill, Terence E; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Slack, Olga A L; Ly, Hoai J; Lokugamage, Nandadeva; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other

  4. On the estimation of risk associated with an attenuation prediction

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1992-01-01

    Viewgraphs from a presentation on the estimation of risk associated with an attenuation prediction is presented. Topics covered include: link failure - attenuation exceeding a specified threshold for a specified time interval or intervals; risk - the probability of one or more failures during the lifetime of the link or during a specified accounting interval; the problem - modeling the probability of attenuation by rainfall to provide a prediction of the attenuation threshold for a specified risk; and an accounting for the inadequacy of a model or models.

  5. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    PubMed Central

    de Jonge, Ronnie; Peter van Esse, H.; Maruthachalam, Karunakaran; Bolton, Melvin D.; Santhanam, Parthasarathy; Saber, Mojtaba Keykha; Zhang, Zhao; Usami, Toshiyuki; Lievens, Bart; Subbarao, Krishna V.; Thomma, Bart P. H. J.

    2012-01-01

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, and plants in turn use immune receptors to try to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and Verticillium albo-atrum, but the corresponding Verticillium effector remained unknown thus far. By high-throughput population genome sequencing, a single 50-Kb sequence stretch was identified that only occurs in race 1 strains, and subsequent transcriptome sequencing of Verticillium-infected Nicotiana benthamiana plants revealed only a single highly expressed ORF in this region, designated Ave1 (for Avirulence on Ve1 tomato). Functional analyses confirmed that Ave1 activates Ve1-mediated resistance and demonstrated that Ave1 markedly contributes to fungal virulence, not only on tomato but also on Arabidopsis. Interestingly, Ave1 is homologous to a widespread family of plant natriuretic peptides. Besides plants, homologous proteins were only found in the bacterial plant pathogen Xanthomonas axonopodis and the plant pathogenic fungi Colletotrichum higginsianum, Cercospora beticola, and Fusarium oxysporum f. sp. lycopersici. The distribution of Ave1 homologs, coincident with the presence of Ave1 within a flexible genomic region, strongly suggests that Verticillium acquired Ave1 from plants through horizontal gene transfer. Remarkably, by transient expression we show that also the Ave1 homologs from F. oxysporum and C. beticola can activate Ve1-mediated resistance. In line with this observation, Ve1 was found to mediate resistance toward F. oxysporum in tomato, showing that this immune receptor is involved in resistance against multiple fungal pathogens. PMID:22416119

  6. Using seismic coda waves to resolve intrinsic and scattering attenuation

    NASA Astrophysics Data System (ADS)

    Wang, W.; Shearer, P. M.

    2016-12-01

    Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Characterizing scattering and absorbing properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing problem in seismology. The wavetrain following the direct body wave phases is called the coda, which is caused by scattered energy. Many studies have analyzed the coda of local events to constrain crustal and upper-mantle scattering strength and intrinsic attenuation. Here we examine two popular attenuation inversion methods, the Multiple Lapse Time Window Method (MLTWM) and the Coda Qc Method. First, based on our previous work on California attenuation structure, we apply an efficient and accurate method, the Monte Carlo Approach, to synthesize seismic envelope functions. We use this code to generate a series of synthetic data based on several complex and realistic forward models. Although the MLTWM assumes a uniform whole space, we use the MLTWM to invert for both scattering and intrinsic attenuation from the synthetic data to test how accurately it can recover the attenuation models. Results for the coda Qc method depend on choices for the length and starting time of the coda-wave time window. Here we explore the relation between the inversion results for Qc, the windowing parameters, and the intrinsic and scattering Q structure of our synthetic model. These results should help assess the practicality and accuracy of the Multiple Lapse Time Window Method and Coda Qc Method when applied to realistic crustal velocity and attenuation models.

  7. Patient position alters attenuation effects in multipinhole cardiac SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca

    2015-03-15

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic andmore » a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase

  8. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L.

    PubMed Central

    Zhu, Bin; Shao, Yujiao; Pan, Qi; Ge, Xianhong; Li, Zaiyun

    2015-01-01

    Aneuploidy with loss of entire chromosomes from normal complement disrupts the balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype and transcriptome. The monosomics gave a plant phenotype very similar to the original donor, but the nullisomics had much smaller stature and also shorter growth period. By the comparative analyses on the global transcript profiles with the euploid donor, genome-wide alterations in gene expression were revealed in two aneuploids, and their majority of differentially expressed genes (DEGs) resulted from the trans-acting effects of the zero and one copy of C2 chromosome. The higher number of up-regulated genes than down-regulated genes on other chromosomes suggested that the genome responded to the C2 loss via enhancing the expression of certain genes. Particularly, more DEGs were detected in the monosomics than nullisomics, contrasting with their phenotypes. The gene expression of the other chromosomes was differently affected, and several dysregulated domains in which up- or downregulated genes obviously clustered were identifiable. But the mean gene expression (MGE) for homoeologous chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2 were correlated with the phenotype deviations in the aneuploids. These results provided new insights into the transcriptomic perturbation of the allopolyploid genome elicited by the loss of individual chromosome. PMID:26442076

  9. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step.

    PubMed

    Mei, Jiaqin; Liu, Yao; Wei, Dayong; Wittkop, Benjamin; Ding, Yijuan; Li, Qinfei; Li, Jiana; Wan, Huafang; Li, Zaiyun; Ge, Xianhong; Frauen, Martin; Snowdon, Rod J; Qian, Wei; Friedt, Wolfgang

    2015-04-01

    Sclerotinia resistance was transferred into rapeseed from a wild relative of Brassica oleracea (B. incana) using hexaploids derived from crosses between B. incana and rapeseed as a bridge. A high level of resistance against Sclerotinia sclerotiorum has been documented in wild Brassica oleracea, but not in cultivated rapeseed (Brassica napus). To transfer sclerotinia resistance from a wild relative into rapeseed, a strategy was proposed using hexaploids (AACCCC) derived from crosses between the wild B. oleracea-related B. incana genotype 'C01' and the Chinese rapeseed variety 'Zhongshuang 9' as a bridge. Progenies (BC1F1) generated by backcrossing the hexaploid to 'Zhongshuang 9' could be generated with a high crossability (average 18.3 seeds per pod). Seventy-three individuals in BC1F1 were firstly screened for resistance with five molecular markers linked to the major resistance QTL on chromosome C09 in 'C01', and 11 individuals harboring resistance loci were selected to develop vegetative clones. Of these, five exhibited significantly higher resistance than 'Zhongshuang 9' and the most resistant individual was chosen to develop the BC1F2 progeny. Finally, five individual genotypes with nearly twofold higher resistance than 'Zhongshuang 9' were found among 100 BC1F2 individuals by using marker-assisted selection and resistance evaluation. Hereof, one rapeseed-type individual with 38 chromosomes and good self-fertility (15.0 ± 3.56 seeds/pod) was identified. Our results indicate that the proposed strategy is effective for transferring sclerotinia resistance from a wild relative of B. oleracea into rapeseed.

  10. Intensity attenuation in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Szanyi, Gyöngyvér

    2015-04-01

    Ground motion prediction equations play a key role in seismic hazard assessment. Earthquake hazard has to be expressed in macroseismic intensities in case of seismic risk estimations where a direct relation to the damage associated with ground shaking is needed. It can be also necessary for shake map generation where the map is used for prompt notification to the public, disaster management officers and insurance companies. Although only few instrumental strong motion data are recorded in the Pannonian Basin, there are numerous historical reports of past earthquakes since the 1763 Komárom earthquake. Knowing the intensity attenuation and comparing them with relations of other areas - where instrumental strong motion data also exist - can help us to choose from the existing instrumental ground motion prediction equations. The aim of this work is to determine an intensity attenuation formula for the inner part of the Pannonian Basin, which can be further used to find an adaptable ground motion prediction equation for the area. The crust below the Pannonian Basin is thin and warm and it is overlain by thick sediments. Thus the attenuation of seismic waves here is different from the attenuation in the Alp-Carpathian mountain belt. Therefore we have collected intensity data only from the inner part of the Pannonian Basin and defined the boundaries of the studied area by the crust thickness of 30 km (Windhoffer et al., 2005). 90 earthquakes from 1763 until 2014 have sufficient number of macroseismic data. Magnitude of the events varies from 3.0 to 6.6. We have used individual intensity points to eliminate the subjectivity of drawing isoseismals, the number of available intensity data is more than 3000. Careful quality control has been made on the dataset. The different types of magnitudes of the used earthquake catalogue have been converted to local and momentum magnitudes using relations determined for the Pannonian Basin. We applied the attenuation formula by Sorensen

  11. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    USGS Publications Warehouse

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These goals can be reached by maintaining and restoring channel-flood plain connectivity, maintaining and restoring healthy riparian zones along streams, managing point and nonpoint nutrient loads to streams and rivers, and restoring channel features that promote attenuation such as the addition of woody debris and maintaining pool-riffle morphologies. Many of these management approaches are already being undertaken during projects aimed to restore quality salmon habitat. Therefore, there is a dual benefit to these projects that also may lead to enhanced potential for nitrogen and phosphorus attenuation.

  12. MicroRNA-mediated species-specific attenuation of influenza A virus.

    PubMed

    Perez, Jasmine T; Pham, Alissa M; Lorini, Maria H; Chua, Mark A; Steel, John; tenOever, Benjamin R

    2009-06-01

    Influenza A virus leads to yearly epidemics and sporadic pandemics. Present prophylactic strategies focus on egg-grown, live, attenuated influenza vaccines (LAIVs), in which attenuation is generated by conferring temperature sensitivity onto the virus. Here we describe an alternative approach to attenuating influenza A virus based on microRNA-mediated gene silencing. By incorporating nonavian microRNA response elements (MREs) into the open-reading frame of the viral nucleoprotein, we generate reassortant LAIVs for H1N1 and H5N1 that are attenuated in mice but not in eggs. MRE-based LAIVs show a greater than two-log reduction in mortality compared with control viruses lacking MREs and elicit a diverse antibody response. This approach might be combined with existing LAIVs to increase attenuation and improve vaccine safety.

  13. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  14. Rain attenuation statistics over millimeter wave bands in South Korea

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Choi, Dong-You

    2017-01-01

    Rain induced degradations are significant for terrestrial microwave links operating at frequencies higher than 10 GHz. Paper presents analyses done on rain attenuation and rainfall data for three years between 2013 till 2015, in 3.2 km experimental link of 38 GHz and 0.1 km link at 75 GHz. The less link distance is maintained for 75 GHz operating frequency in order to have better recording of propagation effect as such attenuation induced by rain. OTT Parsivel is used for collection of rain rate database which show rain rate of about 50 mm/h and attenuation values of 20.89 and 28.55 dB are obtained at 0.01% of the time for vertical polarization under 38 and 75 GHz respectively. Prediction models, namely, ITU-R P. 530-16, Da Silva Mello, Moupfouma, Abdulrahman, Lin and differential equation approach are analyzed. This studies help to identify most suitable rain attenuation model for higher microwave bands. While applying ITU-R P. 530-16, the relative error margin of about 3%, 38% and 42% along with 80, 70, 61% were obtained in 0.1%, 0.01% and 0.001% of the time for vertical polarization under 38 and 75 GHz respectively. Interestingly, ITU-R P. 530-16 shows relatively closer estimation to measured rain attenuation at 75 GHz with relatively less error probabilities and additionally, Abdulrahman and ITU-R P. 530-16 results in better estimation to the measured rain attenuation at 38 GHz link. The performance of prominent rain attenuation models are judged with different error matrices as recommended by ITU-R P. 311-15. Furthermore, the efficacy of frequency scaling technique of rain attenuation between links distribution are also discussed. This study shall be useful for making good considerations in rain attenuation predictions for terrestrial link operating at higher frequencies.

  15. Shock wave attenuation in a micro-channel

    NASA Astrophysics Data System (ADS)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  16. MODIS Solar Diffuser Attenuation Screen Modeling Results

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xuong, Xiaoxiong; Guenther, Bruce; Barnes, William

    2004-01-01

    On-orbit calibration of the reflected solar bands on the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) is accomplished by have the instrument view a high reflectance diffuse surface illuminated by the sun. For some of the spectral bands this proves to be much too bright a signal that results in the saturation of detectors designed for measuring low reflectance (ocean) surfaces signals. A mechanical attenuation device in the form of a pin hole screen is used to reduce the signals to calibrate these bands. The sensor response to solar illumination of the SD with and without the attenuation screen in place will be presented. The MODIS detector response to the solar diffuser is smooth when the attenuation screen is absent, but has structures up to a few percent when the attenuation screen is present. This structure corresponds to non-uniform illumination from the solar diffuser. Each pin hole produces a pin-hole image of the sun on the solar diffuser, and there are very many pin hole images of the sun on the solar diffuser for each MODIS detector. Even though there are very many pin-hole images of the sun on the solar diffuser, it is no longer perfectly uniformly illuminated. This non-uniformly illuminated solar diffuser produces intensity variation on the focal planes. The results of a very detailed simulation will be discussed which show how the illumination of the focal plane changes as a result of the attenuation, and the impacts on the calibration will be discussed.

  17. In vivo monitor oxidative burst induced by Cd2+ stress for the oilseed rape (Brassica napus L.) based on electrochemical microbiosensor.

    PubMed

    Xu, Qiao; Wei, Fang; Wang, Zhan; Yang, Qin; Zhao, Yuan-Di; Chen, Hong

    2010-01-01

    Since the mechanism of Cd(2+) stress for plants is not clear, an in vivo method to monitor Cd(2+) stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd(2+) stress for plants. To establish an electrochemical method with poly-o-phenylenediamine and Pt microparticle modified Pt electrode (POPD-Pt-MP-Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd(2+) stress in oilseed rape (Brassica napus L.). The optimal fabrication of POPD-Pt-MP-Pt biosensor was achieved. Electrochemical signal was collected by amperometry. After oilseed rape was exposed to 84.9 mM CdCl(2) stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. This contribution presents the in vivo monitoring of the OB process induced by Cd(2+) stress in oilseed rape by POPD-Pt-MP-Pt microbiosensor in real-time. The novel electrochemical microbiosensor not only facilitates the real-time study in plant self-defence response to the adverse environment such as Cd(2+) stress, but also provides an effective tool for probing the self-defence mechanism in plants.

  18. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  19. Significant Attenuation of Lightly Damped Resonances Using Particle Dampers

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Knight, Joseph Brent

    2015-01-01

    When equipment designs must perform in a broad band vibration environment it can be difficult to avoid resonances that affect life and performance. This is especially true when an organization seeks to employ an asset from a heritage design in a new, more demanding vibration environment. Particle dampers may be used to provide significant attenuation of lightly damped resonances to assist with such a deployment of assets by including only a very minor set of modifications. This solution may be easier to implement than more traditional attenuation schemes. Furthermore, the cost in additional weight to the equipment can be very small. Complexity may also be kept to a minimum, because the particle dampers do not require tuning. Attenuating the vibratory response with particle dampers may therefore be simpler (in a set it and forget it kind of way) than tuned mass dampers. The paper will illustrate the use of an "equivalent resonance test jig" that can assist designers in verifying the potential resonance attenuation that may be available to them during the early trade stages of the design. An approach is suggested for transforming observed attenuation in the jig to estimated performance in the actual service design. KEY WORDS: Particle Damper, Performance in Vibration Environment, Damping, Resonance, Attenuation, Mitigation of Vibration Response, Response Estimate, Response Verification.

  20. Attenuation of midinfrared free electron laser energy with eyewear

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Gabella, William

    2005-04-01

    Purpose: To determine the attenuation of free electron laser (FEL) energy at several wavelengths through microscope objective and eyeglass lenses. Materials and Methods: The FEL at wavelengths of 2.3 um, 2.5 um, 3.0 um, 3.5 um, 4.0 um, 4.5 um, 5.0 um, 6.45 um, 7.0 um, 7.5 um, and 8.0 um was telescoped using a 500 mm nominal focal length lens and a 200 mm focal length lens. The beam had a final spot of about 3 mm and was passed through a 3 mm aperture and onto the 8 mm active area of a J9LP Molectron detector. The eyeglass sample was placed 3 cm in front of the detector. Energy readings were averaged over multiple pulses. Results: Attenuation varied greatly with wavelength and sample from a low attenuation of 0.46 dB, 90% transmission, for short wavelengths through common glass to greater than 60 dB attenuation (transmission at the detector noise level) for IR safe glass by Aura, Inc. Conclusion: Only the designated laser safety goggles effectively attenuate free electron laser energy at 2.3 um and 2.5 um. A microscope objective lens, polycarbonate, and silica glass eyewear is capable of effectively attenuating FEL energy at wavelengths greater than 4.5 um, but the polycarbonate lenses demonstrated material damage.

  1. Global Attenuation Tomography and Implications for Upper-Mantle Thermal Structure

    NASA Astrophysics Data System (ADS)

    Dalton, C. A.; Ekström, G.; Dziewonski, A. M.

    2007-12-01

    Observation of seismic-wave attenuation provides a direct measure of the Earth's anelasticity. The sensitivity of attenuation to temperature, composition, partial melt, and water content is different from that of seismic velocity, and joint interpretation of elastic and anelastic models may be used to improve constraints on these properties throughout the Earth. Historically, the development of attenuation models has lagged behind velocity models. However, the availability of large seismic datasets and improved techniques to treat these data have recently led to better and higher-resolution attenuation models. We have developed a new 3-D global model of shear attenuation in the upper mantle. This new model, QRFSI12, is derived from > 30,000 fundamental-mode Rayleigh wave amplitude measurements at each period (period range 50-250 s). The amplitudes are inverted simultaneously for the coefficients of the 3-D model as well as frequency-dependent amplitude correction factors for each source and receiver. We have found that focusing by elastic heterogeneity can significantly influence surface-wave amplitudes and that this effect can be modeled at long periods using ray-theoretical approximations. We therefore subtract focusing effects from the data prior to inversion by using phase-velocity maps determined from jointly inverting amplitude and phase-delay datasets. In the shallow mantle, QRFSI12 exhibits a strong correlation with tectonic features, and different tectonic provinces are characterized by distinct attenuative properties. At depths > 250 km, the model is dominated by high attenuation beneath the southeastern Pacific and eastern Africa and low attenuation associated with subduction zones in the western Pacific. Comparison of QRFSI12 with global shear-velocity models shows a strong anti-correlation throughout the upper mantle. At 100-km depth, a clear trend of increasing velocity and decreasing attenuation with increasing age of the seafloor is apparent, and

  2. Measuring coronary calcium on CT images adjusted for attenuation differences.

    PubMed

    Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert

    2005-05-01

    To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and

  3. Millimeter wave attenuation prediction using a piecewise uniform rain rate model

    NASA Technical Reports Server (NTRS)

    Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.

    1980-01-01

    A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.

  4. GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.

    2012-09-01

    Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large

  5. Infrared attenuation of thallium bromo-iodide fibers

    NASA Technical Reports Server (NTRS)

    Magilavy, B.; Goebel, J.

    1986-01-01

    Analysis of attenuation measurements in the near infrared of an unclad fiber of Thallium Bromo-Iodide (Th(Br,I)), a polycrystalline thallium halide, is presented. A general overview is given of the properties of fiber optics. Two groups of attenuation measurements, for the region 1.2 to 3.4 and for 3 to 11 microns, respectively, are presented, analyzed, and compared with those of two other groups of researchers.

  6. Thin-Layering Effect On Estimating Seismic Attenuation In Methane Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Lee, K.; Matsushima, J.

    2012-12-01

    Seismic attenuation is one of the important parameters that provide information concerning both the detection and quantitative assessment of gas-hydrates. We estimated seismic attenuation (1/Q) from surface seismic data acquired at Nankai Trough in Japan. We adapt the Q-versus offset (QVO) method to calculate robust and continuous interval attenuations from CMP gathers. We could observe high attenuation in methane hydrate bearing sediments over the BSR region. However some negative 1/Q values are also shown. This means that the amplitude of high frequency components is increasing with depth. Such results may be due to tuning effect. Here, we carried out numerical test to see how thin-layering effect influences on seismic attenuation results. The results showed that tuning considerably influences the attenuation results, and causes the lower 1/Q values (lower attenuation) and negative 1/Q values.

  7. Mapping PrBn and Other Quantitative Trait Loci Responsible for the Control of Homeologous Chromosome Pairing in Oilseed Rape (Brassica napus L.) Haploids

    PubMed Central

    Liu, Zhiqian; Adamczyk, Katarzyna; Manzanares-Dauleux, Maria; Eber, Frédérique; Lucas, Marie-Odile; Delourme, Régine; Chèvre, Anne Marie; Jenczewski, Eric

    2006-01-01

    In allopolyploid species, fair meiosis could be challenged by homeologous chromosome pairing and is usually achieved by the action of homeologous pairing suppressor genes. Oilseed rape (Brassica napus) haploids (AC, n = 19) represent an attractive model for studying the mechanisms used by allopolyploids to ensure the diploid-like meiotic pairing pattern. In oilseed rape haploids, homeologous chromosome pairing at metaphase I was found to be genetically based and controlled by a major gene, PrBn, segregating in a background of polygenic variation. In this study, we have mapped PrBn within a 10-cM interval on the C genome linkage group DY15 and shown that PrBn displays incomplete penetrance or variable expressivity. We have identified three to six minor QTL/BTL that have slight additive effects on the amount of pairing at metaphase I but do not interact with PrBn. We have also detected a number of other loci that interact epistatically, notably with PrBn. Our results support the idea that, as in other polyploid species, metaphase I homeologous pairing in oilseed rape haploids is controlled by an integrated system of several genes, which function in a complex manner. PMID:16951054

  8. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  9. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.

  10. Theoretical Analysis of Rain Attenuation Probability

    NASA Astrophysics Data System (ADS)

    Roy, Surendra Kr.; Jha, Santosh Kr.; Jha, Lallan

    2007-07-01

    Satellite communication technologies are now highly developed and high quality, distance-independent services have expanded over a very wide area. As for the system design of the Hokkaido integrated telecommunications(HIT) network, it must first overcome outages of satellite links due to rain attenuation in ka frequency bands. In this paper theoretical analysis of rain attenuation probability on a slant path has been made. The formula proposed is based Weibull distribution and incorporates recent ITU-R recommendations concerning the necessary rain rates and rain heights inputs. The error behaviour of the model was tested with the loading rain attenuation prediction model recommended by ITU-R for large number of experiments at different probability levels. The novel slant path rain attenuastion prediction model compared to the ITU-R one exhibits a similar behaviour at low time percentages and a better root-mean-square error performance for probability levels above 0.02%. The set of presented models exhibits the advantage of implementation with little complexity and is considered useful for educational and back of the envelope computations.

  11. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus).

    PubMed

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Hu, Chengxiao

    2015-01-01

    Cadmium (Cd) is a toxic metal which harms human health through food chains. The mechanisms underlying Cd accumulation in oilseed rape are still poorly understood. Here, we investigated the physiological and genetic processes involved in Cd uptake and transport of two oilseed rape cultivars (Brassica napus). L351 accumulates more Cd in shoots but less in roots than L338. A scanning ion-selective electrode technique (SIET) and uptake kinetics of Cd showed that roots were not responsible for the different Cd accumulation in shoots since L351 showed a lower Cd uptake ability. However, concentration-dependent and time-dependent dynamics of Cd transport by xylem showed L351 exhibited a superordinate capacity of Cd translocation to shoots. Additionally, the Cd concentrations of shoots and xylem sap showed a great correlation in both cultivars. Furthermore, gene expression levels related to Cd uptake by roots (IRT1) and Cd transport by xylem (HMA2 and HMA4) were consistent with the tendencies of Cd absorption and transport at the physiological level respectively. In other words, L351 had stronger gene expression for Cd transport but lower for Cd uptake. Overall, results revealed that the process of Cd translocation to shoots is a determinative factor for Cd accumulation in shoots, both at physiological and genetic levels. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Laser Doppler Radar System Calibration and Rainfall Attenuation Measurements

    DOT National Transportation Integrated Search

    1978-10-01

    The atmospheric attenuation and backscatter coefficients have been measured at the 10.6-micrometers wavelength of the CO2 laser in rainstorms. Data are presented to show the increase in attenuation coefficient with rainfall rate. Backscatter coeffici...

  13. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  14. Monitored Natural Attenuation and Enhanced Attenuation for Chlorinated Solvent Plumes - It’s All About Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VANGELAS, KAREN

    2005-05-19

    Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC ofmore » the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept.« less

  15. THE NATIONAL RESEARCH COUNCIL REPORT ON MONITORED NATURAL ATTENUATION

    EPA Science Inventory

    The National Research Council recently released a report titled Natural Attenuation for Groundwater Remediation, available from the National Academy Press(http://www.nap.edu>). The report made a number of observations and recommedations, including the following. -Natural attenu...

  16. Measurement of acoustic attenuation in South Pole ice

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2011-01-01

    Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.

  17. Stratospheric mountain wave attenuation in positive and negative ambient wind shear

    NASA Astrophysics Data System (ADS)

    Kruse, C. G.; Smith, R. B.

    2016-12-01

    Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.

  18. Attenuation of Ricin Toxin under Ambient Conditions and ...

    EPA Pesticide Factsheets

    Report This study focused on the attenuation of ricin toxin on six types of materials representative of a mail sorting facility and/or indoor building materials. Attenuation tests were conducted under various combinations of temperature, relative humidity (RH), and contact time, using two forms of ricin toxin: a commercially-available pure preparation and a crude preparation from castor beans.

  19. Evaluation of Linkage Disequilibrium Pattern and Association Study on Seed Oil Content in Brassica napus Using ddRAD Sequencing.

    PubMed

    Wu, Zhikun; Wang, Bo; Chen, Xun; Wu, Jiangsheng; King, Graham J; Xiao, Yingjie; Liu, Kede

    2016-01-01

    High-density genetic markers are the prerequisite for understanding linkage disequilibrium (LD) and genome-wide association studies (GWASs) of complex traits in crops. To evaluate the LD pattern in oilseed rape, we sequenced a previous association panel containing 189 B. napus inbred lines using double-digested restriction-site associated DNA (ddRAD) and genotyped 19,327 RAD tags. A total of 15,921 RAD tags were assigned to a published genetic linkage map and the majority (71.1%) of these tags was uniquely mapped to the draft reference genome "Darmor-bzh." The distance of LD decay was 1,214 kb across the genome at the background level (r2 = 0.26), with the distances of LD decay being 405 kb and 2,111 kb in the A and C subgenomes, respectively. A total of 361 haplotype blocks with length > 100 kb were identified in the entire genome. The association panel could be classified into two groups, P1 and P2, which are essentially consistent with the geographical origins of varieties. A large number of group-specific haplotypes were identified, reflecting that varieties in the P1 and P2 groups experienced distinct selection in breeding programs to adapt their different growth habitats. GWAS repeatedly detected two loci significantly associated with oil content of seeds based on the developed SNPs, suggesting that the high-density SNPs were useful for understanding the genetic determinants of complex traits in GWAS.

  20. Adaptive attenuation of aliased ground roll using the shearlet transform

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.