Sample records for narrow access holes

  1. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  2. Connections between Narrow Line Seyfert 1 Galaxies and Stellar Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    Negoro, H.

    Connections between narrow line Seyfert 1 galaxies (NLS1s) and black hole candidates are described. It has been pointed out that X-ray properties of NLS1s are simlar to those of stellar black hole candidates (BHCs). It is, however, not clear that NLS1s are corresponding to what `state' in the BHCs. Recently, rapid spectral variations during X-ray flares in a few NLS1s have been discovered using ASCA data. The properties of the spectral variations are very similar to those seen in stellar black hole candidates in the hard state. Such temporal variability accompanying the spectral change has not been recognized in black hole candidates in other states. These and recent theoretical progress based on a time variability model of the BHCs in the hard state imply that the advection plays an important role in the accretion process not only in the BHCs in the hard state, but also in NLS1s.

  3. Novel fiber-based technique for inspection of holes in narrow-bore tubes

    NASA Astrophysics Data System (ADS)

    Bernard, Fabien; Flaherty, Tony; O'Connor, Gerard M.

    2009-06-01

    Optical tools offer a route to increasing throughput and efficiency in industrial inspection operations, one of the most time-consuming and labour-intensive aspects of modern manufacturing. One prominent example in the medical device industry is inspection of drilled holes, particularly in narrow-bore tubes (precision-flow devices, such as catheters for drug delivery, radio-opaque contrast agents, etc). The products in which these holes feature are increasing in complexity (reduced dimensions, increasing number of drilled features- in some products now reaching into the hundreds). These trends present a number of technical challenges, not least to ensure that holes are completed and that no damage to the part occurs as a result of over-drilling, for example. This paper will present a novel sensor based on back-side illumination of the drilled hole using side-glowing optical fibers to detect, qualify and quantify drilled holes. The concept is based on inserting a laser-coupled side-glowing optical fiber into the lumen of the tube to be drilled, and imaging the light emitted from this fiber through a drilled hole using a vision system mounted external to the tube. The light from the fiber allows rapid determination of hole completion, shape and size, as well as quantity in the case of products with multiple holes. If the fiber is mounted in the tube prior to drilling, the light emitted from the fiber can be used as a real-time hole breakthrough sensor, preventing under or overdrilling of the tube.

  4. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  5. Lateral access to the holes of photonic crystal fibers selective filling and sensing applications

    NASA Astrophysics Data System (ADS)

    Cordeiro, Cristiano M. B.; Dos Santos, Eliane M.; Brito Cruz, C. H.; de Matos, Christiano J.; Ferreiira, Daniel S.

    2006-09-01

    A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.

  6. 30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...

  7. 30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...

  8. 30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...

  9. 30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...

  10. Microleakage of different sealing materials in access holes of internal connection implant systems.

    PubMed

    Park, Sung-Do; Lee, Yoon; Kim, Yu-Lee; Yu, Sang-Hui; Bae, Ji-Myung; Cho, Hye-Won

    2012-09-01

    Current implant systems cannot completely prevent microleakage from the access holes of screw-retained implant prostheses, which may constitute risks to the clinical success of the implants. The purpose of this study was to evaluate the levels of microleakage through the access holes of screw-retained implant prostheses sealed with different materials. An implant with an internal hexagonal configuration was connected to a temporary abutment with an acrylic resin crown. The apical 6.5 mm of the access hole was filled with 1 of the following materials: cotton pellet, silicone sealing material, vinyl polysiloxane, or gutta-percha. The remaining coronal 3 mm was sealed with composite resin. Cyclic loading with 21 N at 1 Hz was applied 16,000 times to the specimens in 0.5% basic fuchsin solution according to the long axis of the tooth. Basic fuchsin dye which penetrated into the internal wall of the abutment through the access hole was dissolved with methyl alcohol. Then the absorbance was measured by a spectrophotometer at 540 nm to evaluate the degree of microleakage. The results were statistically analyzed with 1-way ANOVA and the Tukey HSD test. From greatest to least, the levels of microleakage were in the following order: cotton pellet, silicone sealing material, vinyl polysiloxane, and gutta-percha. The microleakage associated with gutta-percha was not significantly different from that of vinyl polysiloxane. When sealing the access holes of screw-retained implant prostheses, gutta-percha or vinyl polysiloxane would help reduce microleakage. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  11. Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at $$ \\sqrt{s}=7 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    A search for narrow resonances and quantum black holes is performed in inclusive and b-tagged dijet mass spectra measured with the CMS detector at the LHC. The data set corresponds to 5 inverse femtobarns of integrated luminosity collected in pp collisions at sqrt(s) = 7 TeV. No narrow resonances or quantum black holes are observed. Model-independent upper limits at the 95% confidence level are obtained on the product of the cross section, branching fraction into dijets, and acceptance for three scenarios: decay into quark-quark, quark-gluon, and gluon-gluon pairs. Specific lower limits are set on the mass of string resonances (4.31more » TeV), excited quarks (3.32 TeV), axigluons and colorons (3.36 TeV), scalar color-octet resonances (2.07 TeV), E(6) diquarks (3.75 TeV), and on the masses of W' (1.92 TeV) and Z' (1.47 TeV) bosons. The limits on the minimum mass of quantum black holes range from 4 to 5.3 TeV. In addition, b-quark tagging is applied to the two leading jets and upper limits are set on the production of narrow dijet resonances in a model-independent fashion as a function of the branching fraction to b-jet pairs.« less

  12. Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at sqrt{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Selvaggi, M.; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Júnior, W. L. Aldá; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Jorge, L. Soares; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Montoya, C. A. Carrillo; Gomez, J. P.; Moreno, B. Gomez; Oliveros, A. F. Osorio; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Awad, A. M. Kuotb; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; s, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Maestre, J. Alcaraz; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerto Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Simili, E.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlí, F. I.; Yücel, M.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; RadburnSmith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Caulfield, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magaña; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-01-01

    A search for narrow resonances and quantum black holes is performed in inclusive and b-tagged dijet mass spectra measured with the CMS detector at the LHC. The data set corresponds to 5 fb-1 of integrated luminosity collected in pp collisions at sqrt{s}=7 TeV. No narrow resonances or quantum black holes are observed. Model-independent upper limits at the 95% confidence level are obtained on the product of the cross section, branching fraction into dijets, and acceptance for three scenarios: decay into quark-quark, quark-gluon, and gluon-gluon pairs. Specific lower limits are set on the mass of string resonances (4.31 TeV), excited quarks (3.32 TeV), axigluons and colorons (3.36 TeV), scalar color-octet resonances (2.07 TeV), E6 diquarks (3.75 TeV), and on the masses of W' (1.92 TeV) and Z' (1.47 TeV) bosons. The limits on the minimum mass of quantum black holes range from 4 to 5.3 TeV. In addition, b-quark tagging is applied to the two leading jets and upper limits are set on the production of narrow dijet resonances in a model-independent fashion as a function of the branching fraction to b-jet pairs.[Figure not available: see fulltext.

  13. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates.

    PubMed

    Shapiro, Stuart L

    2017-05-15

    We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~10 52±1 erg s -1 . A similar result applies to their BH accretion rates upon jet launch, which is ~0.1-10 M ⊙ s -1 . We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB.

  14. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates

    PubMed Central

    Shapiro, Stuart L.

    2018-01-01

    We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~1052±1 erg s−1. A similar result applies to their BH accretion rates upon jet launch, which is ~0.1–10 M⊙ s−1. We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB. PMID:29881790

  15. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2017-03-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.

  16. Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones

    NASA Astrophysics Data System (ADS)

    Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander

    2017-03-01

    Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error

  17. Quantum information versus black hole physics: deep firewalls from narrow assumptions

    NASA Astrophysics Data System (ADS)

    Braunstein, Samuel L.; Pirandola, Stefano

    2018-07-01

    The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes `all the way down' in contrast with earlier work describing only a structure at the horizon. This article is part of a discussion meeting issue `Foundations of quantum mechanics and their impact on contemporary society'.

  18. Quantum information versus black hole physics: deep firewalls from narrow assumptions.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2018-07-13

    The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes 'all the way down' in contrast with earlier work describing only a structure at the horizon.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  19. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2018-04-01

    Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.

  20. Narrow Escape of Interacting Diffusing Particles

    NASA Astrophysics Data System (ADS)

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  1. How A Black Hole Lights Up Its Surroundings

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process

  2. Illegal "no prescription" internet access to narrow therapeutic index drugs.

    PubMed

    Liang, Bryan A; Mackey, Tim K; Lovett, Kimberly M

    2013-05-01

    Narrow therapeutic index (NTI) drugs, because of proximity of therapeutic amounts to toxic amounts, require close professional oversight, particularly when switching formulations. However, safe use may be compromised by unsupervised switching through access to online "no prescription" Web sites. We assessed no prescription online availability of NTI drugs, using an academically published list (core NTI drugs). Using the Google search term "buy DRUG no prescription," we reviewed the first 5 search result pages for marketing of no prescription NTI drugs. We further assessed if National Association of Boards of Pharmacy (NABP) Not Recommended vendors were marketing NTI drugs. Searches were conducted from November 3, 2012 to January 3, 2013. For core NTI drugs, we found 13 of 14 NTI drugs (92%) marketed as available without prescription, all from NABP Not Recommended vendors. On the basis of these initial findings, we expanded our core list to 12 additional NTI drugs; 11 of 12 of these drugs (92%) were available from no prescription Web sites. Overall, 24 of 26 NTI drugs (92%) were illegally marketed as available online without the need for a prescription. Suspect online NTI drug access from no prescription vendors represents a significant patient safety risk because of potential patient drug switching and risk of counterfeit versions. Further, state health care exchanges with coverage limitations may drive patients to seek formulations online. Food and Drug Administration harmonization with tighter international NTI drug standards should be considered, and aggressive action against suspect online marketers should be a regulatory and public health priority. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  3. Hole-Center Locating Tool

    NASA Technical Reports Server (NTRS)

    Senter, H. F.

    1984-01-01

    Tool alines center of new hold with existing hole. Tool marks center of new hole drilled while workpiece is in place. Secured with bolts while hole center marked with punch. Used for field installations where reference points unavailable or work area cramped and not easily accessible with conventional tools.

  4. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  5. A novel narrow profile articulating powered vascular stapler provides superior access and haemostasis equivalent to conventional devices†.

    PubMed

    Ng, Calvin S H; Pickens, Allan; Siegel, Julianne M; Clymer, Jeffrey W; Cummings, John F

    2016-01-01

    Current endoscopic transection devices are not optimized to meet the unique challenges posed by the task of vessel transection in difficult-to-access locations within the pleural cavity. The ECHELON FLEX™ powered vascular stapler (PVS) has been designed with four rows of staples instead of six, to decrease its size and enable more precise placement on fragile pulmonary vessels, using a narrower anvil than other commercially available transecting devices. This study was performed to determine whether the reduced number of staple rows affects haemostasis, and to assess surgeons' initial impression of the smaller stapler during in vivo usage. The new four-row stapler was compared with commercially available six-row articulating staplers via expert graders using a validated scale of haemostasis in vivo after application on porcine gastroepiploic pedicles and other thin- and thick-walled vessels. The new stapler was then compared with current products by practising thoracic surgeons (n = 27) during in vivo usage of simulated pulmonary procedures in a porcine model. The surgeons were also surveyed on the key attributes of the four-row stapler in relation to the six-row predicates. Haemostasis evaluated on an ordered scale was clinically equivalent between the test and predicate staplers, and was deemed acceptable for all thin- and thick-vascular tissue applications. Surgeons found no difference in haemostasis between the four- and six-row staplers (P = 0.486), and judged the four-row stapler superior in terms of access, reduced need for dissection, reduced stress of surgeon and precise control (P < 0.001 for all). The new ECHELON FLEX™ PVS provides haemostasis equivalent to six-row staplers. With a smaller anvil, narrower shaft and wider angle of articulation, the PVS demonstrated improved access capability for pulmonary vessel procedures. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.

  6. A novel narrow profile articulating powered vascular stapler provides superior access and haemostasis equivalent to conventional devices†

    PubMed Central

    Ng, Calvin S.H.; Pickens, Allan; Siegel, Julianne M.; Clymer, Jeffrey W.; Cummings, John F.

    2016-01-01

    OBJECTIVE Current endoscopic transection devices are not optimized to meet the unique challenges posed by the task of vessel transection in difficult-to-access locations within the pleural cavity. The ECHELON FLEX™ powered vascular stapler (PVS) has been designed with four rows of staples instead of six, to decrease its size and enable more precise placement on fragile pulmonary vessels, using a narrower anvil than other commercially available transecting devices. This study was performed to determine whether the reduced number of staple rows affects haemostasis, and to assess surgeons' initial impression of the smaller stapler during in vivo usage. METHODS The new four-row stapler was compared with commercially available six-row articulating staplers via expert graders using a validated scale of haemostasis in vivo after application on porcine gastroepiploic pedicles and other thin- and thick-walled vessels. The new stapler was then compared with current products by practising thoracic surgeons (n = 27) during in vivo usage of simulated pulmonary procedures in a porcine model. The surgeons were also surveyed on the key attributes of the four-row stapler in relation to the six-row predicates. RESULTS Haemostasis evaluated on an ordered scale was clinically equivalent between the test and predicate staplers, and was deemed acceptable for all thin- and thick-vascular tissue applications. Surgeons found no difference in haemostasis between the four- and six-row staplers (P = 0.486), and judged the four-row stapler superior in terms of access, reduced need for dissection, reduced stress of surgeon and precise control (P < 0.001 for all). CONCLUSIONS The new ECHELON FLEX™ PVS provides haemostasis equivalent to six-row staplers. With a smaller anvil, narrower shaft and wider angle of articulation, the PVS demonstrated improved access capability for pulmonary vessel procedures. PMID:26464450

  7. Gamma-ray emission from black holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.

    1991-01-01

    Strong continuum gamma-ray emission at about 1 MeV possibly correlated with a narrow annihilation line at 511 keV has been observed from both Cygnus X-1 and the Galactic center. Such correlated emission has been interpreted as a unique gamma-ray signature for theoretically predicted relativistic, positron-electron pair-dominated plasma in regions surrounding the black holes. In this paper, the Cygnus X-1 results, which have provided important new insights about the source, are reviewed. Cygnus X-1 may be considered a canonical reference stellar black hole whose spectral and temporal characteristics can be used for comparison with those of other black-hole candidates including the Galactic center and AGN.

  8. How black holes saved relativity

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  9. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less

  10. California hospital networks are narrower in Marketplace than in commercial plans, but access and quality are similar.

    PubMed

    Haeder, Simon F; Weimer, David L; Mukamel, Dana B

    2015-05-01

    Do insurance plans offered through the Marketplace implemented by the State of California under the Affordable Care Act restrict consumers' access to hospitals relative to plans offered on the commercial market? And are the hospitals included in Marketplace networks of lower quality compared to those included in the commercial plans? To answer these questions, we analyzed differences in hospital networks across similar plan types offered both in the Marketplace and commercially, by region and insurer. We found that the common belief that Marketplace plans have narrower networks than their commercial counterparts appears empirically valid. However, there does not appear to be a substantive difference in geographic access as measured by the percentage of people residing in at least one hospital market area. More surprisingly, depending on the measure of hospital quality employed, the Marketplace plans have networks with comparable or even higher average quality than the networks of their commercial counterparts. Project HOPE—The People-to-People Health Foundation, Inc.

  11. 30 CFR 75.1403-9 - Criteria-Shelter holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...

  12. 30 CFR 75.1403-9 - Criteria-Shelter holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...

  13. 30 CFR 75.1403-9 - Criteria-Shelter holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...

  14. 30 CFR 75.1403-9 - Criteria-Shelter holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...

  15. 30 CFR 75.1403-9 - Criteria-Shelter holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...

  16. Random-hole optical fiber evanescent-wave gas sensing.

    PubMed

    Pickrell, G; Peng, W; Wang, A

    2004-07-01

    Research on development of optical gas sensors based on evanescent-wave absorption in random-hole optical fibers is described. A process to produce random-hole optical fibers was recently developed that uses a novel in situ bubble formation technique. Gas molecules that exhibit characteristic vibrational absorption lines in the near-IR region that correspond to the transmission window for silica optical fiber have been detected through the evanescent field of the guided mode in the pore region. The presence of the gas molecules in the holes of the fiber appears as a loss at wavelengths that are characteristic of the particular gas species present in the holes. An experimental setup was constructed with these holey fibers for detection of acetylene gas. The results clearly demonstrate the characteristic absorptions in the optical spectra that correspond to the narrow-line absorptions of the acetylene gas, and this represents what is to our knowledge the first report of random-hole fiber gas sensing in the literature.

  17. TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Seitz, F.; Young, G.J.

    1959-02-17

    Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

  18. In vitro evaluation of a modified 4-META/MMA-TBB resin for filling access holes of screw-retained implant prostheses.

    PubMed

    Tanimura, Remy; Suzuki, Shiro

    2015-07-01

    This study evaluates a modified 4-META/MMA-TBB resin (M4M) as a candidate material for filling screw-retained implant access hole. Its characteristics were compared with a conventional composite resin (CR) with or without a bonding agent (BA) or a ceramic primer (CP). Ceramic blocks were divided into five groups, including (A) CR, (B) CR with BA, (C) CR with CP and BA, (D) M4M, and (E) M4M with CP. Shear bond strengths were measured after 5000 times of thermocycling. Groups A, B, and D were excluded from further tests as they showed no adhesion. A cylindrical cavity (2.5 mm diameter, 3 mm depth) simulating access hole was prepared in a ceramic block and glazed to evaluate micro-leakage and wear test of groups C and E. The results were statistically analyzed with Mann-Whitney test (p  <  0.05). Shear bond strength of groups C (7.6 ± 2.2 MPa) and E (8.6 ± 1.0 MPa) was not significantly different. In micro-leakage analysis, average wear depth and wear volume, group E (7.5 ± 3.3%, 59.3 ± 12.9 μm, 0.16 ± 0.04 mm(3) ) showed significantly lower values than those of group C (45.6 ± 24.4%, 76.0 ± 16.4 μm, 0.28 ± 0.03 mm(3) ). It is suggested that the combination of CP and M4M can be one of feasible systems to fill the ceramic access holes of the implant upper structure. © 2014 The Authors. Wiley Periodicals, Inc.

  19. Destroying charged black holes in higher dimensions with test particles

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Liu, Weiyang; Tang, Hao; Yue, Rui-Hong

    2017-07-01

    A possible way to destroy the Tangherlini Reissner-Nordström black hole is discussed in the spirit of Wald’s gedanken experiment. By neglecting radiation and self force effects, the absorbing condition and destruction condition of the test point particle which is capable of destroying the black hole are obtained. We find that it is impossible to challenge the weak cosmic censorship for an initially extremal black hole in all dimensions. Instead, it is shown that the near extremal black hole will turn into a naked singularity in this particular process, in which case the allowed range of the particle’s energy is very narrow. The result indicates that the self-force effects may well change the outcome of the calculation.

  20. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.

    2018-03-01

    This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.

  1. Narrow-band erbium-doped fibre linear–ring laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolegov, A A; Sofienko, G S; Minashina, L A

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  2. Hybrid optical and electronic laser locking using slow light due to spectral holes

    NASA Astrophysics Data System (ADS)

    Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.

    2013-06-01

    We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.

  3. Accessing memory

    DOEpatents

    Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy

    2017-09-26

    A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.

  4. An interpretation of the narrow positron annihilation feature from X-ray nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1993-01-01

    The physical mechanism responsible for the narrow redshifted positron annihilation gamma-ray line from the X-ray nova Muscae 1991 is studied. The orbital inclination angle of the system is estimated and its black hole mass is constrained under the assumptions that the annihilation line centroid redshift is purely gravitational and that the line width is due to the combined effect of temperature broadening and disk rotation. The large black hole mass lower limit of 8 solar and the high binary mass ratio it implies raise a serious challenge to theoretical models of the formation and evolution of massive binaries.

  5. Black hole thermodynamics and heat engines in conformal gravity

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Sun, Yuan; Zhao, Liu

    The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.

  6. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  7. Black holes by analytic continuation

    NASA Astrophysics Data System (ADS)

    Amati, D.; Russo, J. G.

    1997-07-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation-accessible in the 1+1 gravity theory considered-is implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.

  8. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  9. How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Jeremy, E-mail: jdarling@colorado.edu

    We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocitymore » that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.« less

  10. Scientists Observe Light Fighting To Escape Black Hole's Pull

    NASA Astrophysics Data System (ADS)

    2002-06-01

    black hole in its core. (Black holes come in a variety of sizes; supermassive black holes are the heavyweights, weighing in at millions to billions of times the mass of the Sun.) Gas in this central region glows in X-ray radiation as it is heated to temperatures in the millions of degrees under the force of the black hole's extreme gravity. Spectral characteristics are features in a graph of light energy, called a spectrograph, which resembles a jagged line with peaks (emission lines) where light shines brightly at a specific energy. In a laboratory, iron gas bombarded with X rays emits them as a result, producing a spike at a specific energy in a spectrograph. In space, this spike is distorted, depending on the physical conditions in the emitting gas. Hot gas orbiting an object, for example, has a double-horned profile due to the Doppler effect. That is, some gas is moving towards us, slightly boosting the energy of its X-ray emission, and other gas is moving away, slightly reducing the energy of its X-rays. This results in a spectral line with two peaks, one for the boosted X-rays and one for the weakened ones. Seyfert Galaxy NGC 3516 Seyfert Galaxy NGC 3516 Credit: HST/UCLA/M.Malkan Turner and her colleagues observed a very complex profile for the iron K line in NGC 3516. This line showed narrow spikes, likely the Doppler peaks from hotspots in the accretion disk lit up by flaring at 35- and 175-times the black hole radius. These narrow features sit atop a broad line component from light across the entire accretion disk, a spectral feature broadened by gravity's pull. The combination of narrow and broad features supports Einstein's math, Turner said. Some scientists have suggested that the broad iron K line is due to Comptonization, a process in which light particles collide with electrons and lose energy. If Comptonization were afoot, even light emitted farther away from the black hole (at 35 and 175 radii away) would be broadened as this light interacts with

  11. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.

    PubMed

    Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele

    2018-03-30

    We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

  12. Influence of in-hole roughness and high freestream turbulence on film cooling from a shaped hole

    NASA Astrophysics Data System (ADS)

    Schroeder, Robert P.

    Gas turbines are heavily used for electricity generation and aircraft propulsion with a strong desire in both uses to maximize thermal efficiency while maintaining reasonable power output. As a consequence, gas turbines run at high turbine inlet temperatures that require sophisticated cooling technologies to ensure survival of turbine components. One such technology is film cooling with shaped holes, where air is withdrawn from latter stages of the compressor, is bypassed around the combustor, and is eventually ejected out holes in turbine component surfaces. Air ejected from these shaped holes helps maintain components at temperatures lower than flow from the combustor. Many studies have investigated different factors that influence shaped hole performance. However, no studies in open literature have investigated how cooling performance is affected by roughness along interior walls of the shaped hole. The effect of in-hole roughness on shaped hole film cooling was the focus of this research. Investigation of in-hole roughness effects first required the determination of behavior for a shaped hole with smooth walls. A public shaped hole, now used by other investigators as well, was designed with a diffused outlet having 7º expansion angles and an area ratio of 2.5. At low freestream turbulence intensity of 0.5%, film cooling adiabatic effectiveness for this smooth hole was found to peak at a blowing ratio of 1.5. Measurements of flowfields and thermal fields revealed causes of this behavior. Blowing ratio increases above 1.5 caused the jet from the smooth hole to penetrate higher into the surrounding mainstream, exhibit a stronger counter-rotating vortex pair, and have narrower contact with the wall than at lower blowing ratios. Experiments performed at high freestream turbulence intensity of 13% revealed dynamics of how freestream turbulence both diluted and laterally spread coolant. At the high blowing ratio of 3 the dilution and spreading were competing effects

  13. Woods Hole Science Aquarium: VISITING

    Science.gov Websites

    access to the aquarium's back-up area and touch tank is available via a ramp at the rear of the aquarium . Directions from Directions from Boston Directions from Providence Coming by bus The Woods Hole Science

  14. Black Holes Traveling Exhibition: This Time, It's Personal.

    NASA Astrophysics Data System (ADS)

    Dussault, Mary E.; Braswell, E. L.; Sunbury, S.; Wasser, M.; Gould, R. R.

    2012-01-01

    How can you make a topic as abstract as black holes seem relevant to the life of the average museum visitor? In 2009, the Harvard-Smithsonian Center for Astrophysics developed a 2500 square foot interactive museum exhibition, "Black Holes: Space Warps & Time Twists,” with funding from the National Science Foundation and NASA. The exhibition has been visited by more than a quarter million museum-goers, and is about to open in its sixth venue at the Reuben H. Fleet Science Center in San Diego, California. We have found that encouraging visitors to adopt a custom black hole explorer's identity can help to make the science of black holes more accessible and meaningful. The Black Holes exhibition uses networked exhibit technology that serves to personalize the visitor experience, to support learning over time including beyond the gallery, and to provide a rich quantitative source of embedded evaluation data. Visitors entering the exhibition create their own bar-coded "Black Holes Explorer's Card” which they use throughout the exhibition to collect and record images, movies, their own predictions and conclusions, and other black hole artifacts. This digital database of personal discoveries grows as visitors navigate through the gallery, and an automated web-content authoring system creates a personalized online journal of their experience that they can access once they get home. We report here on new intriguing results gathered from data generated by 112,000 visitors across five different venues. For example, an initial review of the data reveals correlations between visitors’ black hole explorer identity choices and their engagement with the exhibition. We will also discuss correlations between learning gains and personalization.

  15. Magnetic Topology of Coronal Hole Linkages

    NASA Technical Reports Server (NTRS)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  16. The Radio-Loud Narrow-Line Quasar SDSS J172206.03+565451.6

    NASA Astrophysics Data System (ADS)

    Komossa, Stefanie; Voges, Wolfgang; Adorf, Hans-Martin; Xu, Dawei; Mathur, Smita; Anderson, Scott F.

    2006-03-01

    We report identification of the radio-loud narrow-line quasar SDSS J172206.03+565451.6, which we found in the course of a search for radio-loud narrow-line active galactic nuclei (AGNs). SDSS J172206.03+565451.6 is only about the fourth securely identified radio-loud narrow-line quasar and the second-most radio loud, with a radio index R1.4~100-700. Its black hole mass, MBH~=(2-3)×107 Msolar estimated from Hβ line width and 5100 Å luminosity, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSS J172206.03+565451.6 in a scarcely populated region of MBH-R diagrams. SDSS J172206.03+565451.6 is a classical narrow-line Seyfert 1-type object with FWHMHβ~=1490 km s-1, an intensity ratio of [O III]/Hβ~=0.7, and Fe II emission complexes with Fe II λ4570/Hβ~=0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [O II]/[O III], is similar to Seyferts, and its high ratio of [Ne V]/[Ne III] indicates a strong EUV-to-soft X-ray excess. We advertise the combined usage of [O II]/[O III] and [Ne V]/[Ne III] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV-soft X-ray continuum shape relatively independently from other parameters.

  17. Energy level diagrams for black hole orbits

    NASA Astrophysics Data System (ADS)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  18. Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.

    PubMed

    López, David; Ríos, Susana

    2010-04-20

    A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.

  19. Black hole event horizons — Teleology and predictivity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Swastik; Shankaranarayanan, S.

    2017-11-01

    General Relativity predicts the existence of black holes. Access to the complete spacetime manifold is required to describe the black hole. This feature necessitates that black hole dynamics is specified by future or teleological boundary condition. Here, we demonstrate that the statistical mechanical description of black holes, the raison d’être behind the existence of black hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm — Einstein’s equations when projected on spacetime horizons resemble Navier-Stokes equation of a fluid — we show that the specific heat and the coefficient of bulk viscosity of the horizon fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black hole evaporation.

  20. Evaluation of the success rate of cone beam computed tomography in determining the location and direction of screw access holes in cement-retained implant-supported prostheses: An in vitro study.

    PubMed

    Neshandar Asli, Hamid; Dalili Kajan, Zahra; Gholizade, Fatemeh

    2018-02-21

    Cement-retained implant-supported restorations have advantages over screw-retained restorations but are difficult to retrieve. Identifying the approximate location of the screw access hole (SAH) may reduce damage to the prosthesis. The purpose of this in vitro study was to evaluate the ability of cone beam computed tomography (CBCT) imaging to determine the location and direction of SAHs in cement-retained implant prostheses. Five clear acrylic resin casts were made based on a mandibular model. Several implant osteotomies (n=30) were created on the models with surgical burs, and crowns were made using the standard laboratory method with a transfer coping and the closed tray impression technique. CBCT images from the acrylic resin casts were evaluated by a maxillofacial radiologist who was blind to the locations and angles of the osteotomies. The locations of the access holes were determined on multiplanar reconstruction images and transferred to the clinical crown surface as defined points. Based on cross-sectional images, the predicted angle of the access hole was provided to a prosthodontist who was requested to pierce the crown at the proposed location in the specified direction. If the location and/or direction of the access hole were found, the process was considered successful, as the crown could then be removed from the implant abutment through the SAH. The success rate in the detection of the location and direction of the SAH was calculated, and chi-square and Fisher exact tests were applied for data analysis (α=.05). According to the results of this study, the success rate of CBCT to define the location of SAHs was 83.3% and 80% to determine the direction. No significant differences were found among the different dental groups in determination of the location (P=.79) or the direction (P=.53) of the SAHs. Most of the failures in determining the location and direction of the access hole in the buccolingual and mesiodistal directions were in the buccal and

  1. Hole-boring through clouds for laser power beaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Walter, R.F.

    Power beaming to satellites with a ground-based laser can be limited by clouds. Hole-boring through the clouds with a laser has been proposed as a way to overcome this obstacle. This paper reviews the past work on laser hole-boring and concludes that hole-boring for direct beaming to satellites is likely to require 10--100 MW. However, it may be possible to use an airborne relay mirror at 10--25 km altitude for some applications in order to extend the range of the laser (e.g., for beaming to satellites near the horizon). In these cases, use of the relay mirror also would allowmore » a narrow beam between the laser and the relay, as well as the possibility of reducing the crosswind if the plane matched speed with the cloud temporarily. Under these conditions, the power requirement to bore a hole through most cirrus and cirrostratus clouds might be only 500-kW if the hole is less than 1 m in diameter and if the crosswind speed is less than 10 m/s. Overcoming cirrus and cirrostratus clouds would reduce the downtime due to weather by a factor of 2. However, 500 kW is a large laser, and it may be more effective instead to establish a second power beaming site in a separate weather zone. An assessment of optimum wavelengths for hole boring also was made, and the best options were found to be 3.0--3.4 {mu}m and above 10 {mu}m.« less

  2. Small black holes in global AdS spacetime

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  3. Crossovers from excitons to plasmons in narrow-gap carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Uryu, Seiji

    2018-06-01

    Plasmons and excitons, bound states of electrons and holes, are collective charge excitations in solids. In this study, we numerically show that in most metallic carbon nanotubes, which are called narrow-gap carbon nanotubes, excitons cross over to plasmons as the wave vector increases. This indicates that resonance with the excitons changes to that with the plasmons by changing the nanotube length, which can explain the origin of observed peaks in the terahertz or far-infrared region in the optical absorption spectra of metallic carbon nanotubes. In the crossovers from excitons to plasmons, a depolarization effect on the many-body wave functions of the plasmons and excitons is clarified.

  4. On the gravitational wave background from black hole binaries after the first LIGO detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias, E-mail: icholis1@jhu.edu

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density)more » of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.« less

  5. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  6. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Superresonance phenomenon from acoustic black holes in neo-Newtonian theory

    NASA Astrophysics Data System (ADS)

    Salako, I. G.; Jawad, Abdul

    2016-03-01

    We explore the possibility of the acoustic analogue of a super-radiance like phenomenon, i.e. the amplification of a sound wave by reflection from the ergo-region of a rotating acoustic black hole in the fluid draining bathtub model in the presence of the pressure to be amplified or reduced in agreement with the value of the parameter (γ = 1 + knρ0n-1 c2 ). We remark that the interval of frequencies depend upon the neo-Newtonian parameter γ (Ω¯H = 2 1+γΩH) and becomes narrow in this work. As a consequence, the tuning of the neo-Newtonian parameter (γ = 1 + knρ0n-1 c2 ) changes the rate of loss of the acoustic black hole mass.

  8. INAS hole-immobilized doping superlattice long-wave-infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1992-01-01

    An approach to long-wave-infrared (LWIR) technology is discussed. The approach is based on molecular beam epitaxy (MBE) growth of hole immobilized doping superlattices in narrow band gap 3-5 semiconductors, specifically, InAs and InSb. Such superlattices are incorporated into detector structures suitable for focal plane arrays. An LWIR detector that has high detectivity performance to wavelengths of about 16 microns at operating temperatures of 65K, where long-duration space refrigeration is plausible, is presented.

  9. Mechanisms of EUV exposure: electrons and holes

    NASA Astrophysics Data System (ADS)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ackerman, Christian; Flynn, Tracy; Denbeaux, Greg; Brainard, Robert L.

    2017-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Current EUV photoresists are composed of photoacid generators (PAGs) in polymer matrices. Secondary electrons (2 - 80 eV) created in resists during EUV exposure play large role in acid-production. There are several proposed mechanisms for electron-resist interactions: internal excitation, electron trapping, and hole-initiated chemistry. Here, we will address two central questions in EUV resist research: (1) How many electrons are generated per EUV photon absorption? (2) By which mechanisms do these electrons interact and react with molecules in the resist? We will use this framework to evaluate the contributions of electron trapping and hole initiated chemistry to acid production in chemically amplified photoresists, with specific emphasis on the interdependence of these mechanisms. We will show measurements of acid yield from direct bulk electrolysis of PAGs and EUV exposures of PAGs in phenolic and nonphenolic polymers to narrow down the mechanistic possibilities in chemically amplified resists.

  10. Is Access to Outpatient Neurosurgery Affected by Narrow Insurance Networks? Results From Statewide Analysis of Marketplace Plans in Louisiana.

    PubMed

    Dossani, Rimal H; Kalakoti, Piyush; Nanda, Anil; Guthikonda, Bharat; Tumialán, Luis M

    2018-02-06

    The main objective of the Affordable Care Act (ACA) was to make health insurance affordable to all Americans while addressing the lack of coverage for 48 million people. In the face of rapidly increasing enrollment and rising demand for inexpensive plans, insurance providers are limiting in-network physicians. Provider networks offering plans with limited in-network physicians have become known as "narrow networks." To assesses the adequacy of ACA marketplace plans for outpatient neurosurgery in Louisiana. The Marketplace Public Use Files were searched for all "silver" plans. A total of 7 silver plans were identified in Louisiana. Using the plans' online directories, a search of in-network neurosurgeons in Louisiana parishes with >100 000 population was performed. The primary outcome was lack of in-network neurosurgeon(s) in silver plans within 50 miles of selected zip code for each parish with >100 000 population. Plans without in-network neurosurgeon(s) are labeled as neurosurgeon-deficient plans. Several plans in Louisiana are neurosurgeon deficient, ie no in-network neurosurgeon within 50 miles of the designated parish zip code. Company A's plan 3 is deficient in all 5 parishes, while company C and company D silver plans are deficient in 4 out of 14 (29%). Combined results from all counties and plans demonstrate that 43% (3 out of 7) of all silver plans in Louisiana are neurosurgeon deficient in at least 4 parishes with population >100 000. In Louisiana, narrow networks have limited access to neurosurgical care for those patients with ACA silver plans. Copyright © 2018 by the Congress of Neurological Surgeons

  11. Super-Eddington accreting massive black holes as long-lived cosmological standards.

    PubMed

    Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai

    2013-02-22

    Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler.

  12. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  13. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  14. Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results

    NASA Astrophysics Data System (ADS)

    Coelho, R. T.; Tanikawa, S. T.

    2009-11-01

    High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.

  15. The supermassive black hole coincident with the luminous transient ASASSN-15lh

    NASA Astrophysics Data System (ADS)

    Krühler, T.; Fraser, M.; Leloudas, G.; Schulze, S.; Stone, N. C.; van Velzen, S.; Amorin, R.; Hjorth, J.; Jonker, P. G.; Kann, D. A.; Kim, S.; Kuncarayakti, H.; Mehner, A.; Nicuesa Guelbenzu, A.

    2018-02-01

    The progenitors of astronomical transients are linked to a specific stellar population and galactic environment, and observing their host galaxies hence constrains the physical nature of the transient itself. Here, we use imaging from the Hubble Space Telescope, and spatially resolved, medium-resolution spectroscopy from the Very Large Telescope obtained with X-shooter and MUSE to study the host of the very luminous transient ASASSN-15lh. The dominant stellar population at the transient site is old (around 1 to 2 Gyr) without signs of recent star formation. We also detect emission from ionized gas, originating from three different, time invariable, narrow components of collisionally excited metal and Balmer lines. The ratios of emission lines in the Baldwin-Phillips-Terlevich diagnostic diagram indicate that the ionization source is a weak active galactic nucleus with a black hole mass of M• = 5-3+8 × 108 M⊙, derived through the M•-σ relation. The narrow line components show spatial and velocity offsets on scales of 1 kpc and 500 km s-1, respectively; these offsets are best explained by gas kinematics in the narrow-line region. The location of the central component, which we argue is also the position of the supermassive black hole, aligns with that of the transient within an uncertainty of 170 pc. Using this positional coincidence as well as other similarities with the hosts of tidal disruption events, we strengthen the argument that the transient emission observed as ASASSN-15lh is related to the disruption of a star around a supermassive black hole, most probably spinning with a Kerr parameter a• ≳ 0.5. Based on observations at ESO, Program IDs: 097.D-1054, 297.B-5035, 099.D-0115.The data used in this manuscript are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A14

  16. Performance characteristics according to the radial position of gas distributor holes in a low-power cylindrical Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuanyuan; Liu, Hui; Hu, Peng

    The effect of radial position of gas holes in the distributor on the performance of cylindrical Hall thruster was investigated. A series of gas distributors with different radial positions (R{sub g}) of holes were designed in the experiment. The results show that the larger R{sub g} leads to the higher ion current and electron current; meanwhile, the beam angle in plume is narrowed. Nevertheless, the peak energy in ion energy distribution function increases, together with the narrowing of ion energy distribution function. As a result, the overall performance is enhanced. It is suggested that the growing of R{sub g} couldmore » lead to the movement of the main ionization region towards anode, which could promote ion velocity and the clearer separation of acceleration region from ionization region. This work can provide some optimal design ideas to improve the performance of the thruster.« less

  17. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; hide

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  18. Narrow vs. Broad line Seyfert 1 galaxies: X-ray, optical and mid-infrared AGN characteristics

    NASA Astrophysics Data System (ADS)

    Lakićević, Maša; Popović, Luka Č.; Kovačević-Dojčinović, Jelena

    2018-05-01

    We investigated narrow line Seyfert 1 galaxies (NLS1s) at optical, mid-infrared (MIR) and X-ray wavelengths, comparing them to the broad line active galactic nuclei (BLAGNs). We found that black hole mass, coronal line luminosities, X-ray hardness ratio and X-ray, optical and MIR luminosities are higher for the BLAGNs than for NLS1s, while policyclic aromatic hydrocarbon (PAH) contribution and the accretion rates are higher for the NLS1s. Furthermore, we found some trends among spectral parameters that NLS1s have and BLAGNs do not have. The evolution of FWHM(Hβ) with the luminosities of MIR and coronal lines, continuum luminosities, PAH contribution, Hβ broad line luminosity, FWHM[O III] and EW(HβNLR), are important trends found for NLS1s. That may contribute to the insight that NLS1s are developing AGNs, growing their black holes, while their luminosities and FWHM(Hβ) consequently grow, and that BLAGNs are mature, larger objects of slower and/or different evolution. Black hole mass is related to PAH contribution only for NLS1s, which may suggest that PAHs are more efficiently destroyed in NLS1s.

  19. Is Perceptual Narrowing Too Narrow?

    ERIC Educational Resources Information Center

    Cashon, Cara H.; Denicola, Christopher A.

    2011-01-01

    There is a growing list of examples illustrating that infants are transitioning from having earlier abilities that appear more "universal," "broadly tuned," or "unconstrained" to having later abilities that appear more "specialized," "narrowly tuned," or "constrained." Perceptual narrowing, a well-known phenomenon related to face, speech, and…

  20. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some ofmore » these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.« less

  1. Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets

    NASA Astrophysics Data System (ADS)

    Poirier, John; Mathews, Grant

    2015-04-01

    It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.

  2. RADIATION FROM ELECTRON PHASE SPACE HOLES AS A POSSIBLE SOURCE OF JOVIAN S-BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodrich, K. A.; Ergun, R. E., E-mail: katherine.goodrich@lasp.colorado.edu

    2015-08-10

    Radio-frequency short burst emissions (10–40 MHz), known as Jovian S-bursts, have been observed from the Jovian aurora for over fifty years. These emissions, associated with Io’s motion, have a rapidly declining frequency and an exceptionally narrow bandwidth. While it is widely believed that S-bursts are generated by the electron cyclotron maser instability, the mechanism responsible for the rapidly declining frequency and narrow bandwidth currently is not well established. We explore a hypothesis that electron phase space holes radiate or stimulate radiation in the Jovian aurora plasma environment as a possible source of S-burst emissions. Electron phase-space holes (EHs) are ubiquitousmore » in an auroral environment and travel at the implied speeds (∼20,000 km s{sup −1}) of the structures creating the Jovian S-bursts. Furthermore, EHs have the proper physical size to create the observed bandwidth, have sufficient energy content, and can create an environment whereby X mode emissions can be excited. If verified, these findings imply that EHs may be an important source of radiation from strongly magnetized or relativistic astrophysical plasmas.« less

  3. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  4. Nonthermal production of dark matter from primordial black holes

    NASA Astrophysics Data System (ADS)

    Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek

    2018-03-01

    We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.

  5. Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang

    2017-08-01

    WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.

  6. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs.

    PubMed

    Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D

    2012-05-08

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  8. Signatures of primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Dmitriev, A. E.; Esipova, E. A.; Gani, V. A.; Grobov, A. V.; Khlopov, M. Yu.; Kirillov, A. A.; Rubin, S. G.; Svadkovsky, I. V.

    2014-11-01

    The nonbaryonic dark matter of the Universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. In the early Universe heavy metastable particles can dominate, leaving primordial black holes (PBHs) after their decay, as well as the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which massive black holes (BHs) and/or their clusters can originate. PBHs can be formed in such transitions within a narrow interval of masses about 1017g and, avoiding severe observational constraints on PBHs, can be a candidate for the dominant form of dark matter. PBHs in this range of mass can give solution of the problem of reionization in the Universe at the redshift z 5-10. Clusters of massive PBHs can serve as a nonlinear seeds for galaxy formation, while PBHs evaporating in such clusters can provide an interesting interpretation for the observations of point-like gamma-ray sources. Analysis of possible PBH signatures represents a universal probe for super-high energy physics in the early Universe in studies of indirect effects of the dark matter.

  9. Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  10. QSO Emission Lines and the Black Hole-Galaxy Bulge Relation

    NASA Astrophysics Data System (ADS)

    Shields, G. A.; Gebhardt, K.; Salviander, S.; Wills, B. J.; Yuan, M.; Xie, B.; Dietrich, M.

    2002-05-01

    Supermassive black holes in galactic nuclei have masses closely related to the properties of the host galaxy bulge. In particular, MBH varies as the fourth power of σ , the stellar velocity dispersion (Tremaine et al. 2002, ApJ in press, and references therein). The origin of the black hole-bulge relation is unknown, although theoretical suggestions abound. An important clue would be provided by knowledge of how the relation has evolved over cosmic time. This requires measurement of black hole masses and galactic potentials at large look-back times, which is difficult to do directly. However, black hole masses may be derived from the continuum luminosity and the widths of the broad Balmer lines of QSOs (e.g., Kaspi et al. 2000, ApJ 533, 631), and σ may be derived from the widths of the narrow [O III] lines (Nelson 2000, ApJ, 544, L91). We have carried out this program for a set of published and unpublished observations of Seyfert galaxies and QSOs. Results for low redshift objects support the use of this method to derive MBH and σ . The few available measurements of high redshift QSOs are consistent little or no change in the MBH-σ relation between the present and redshifts up to z = 3.3, when the universe was only two billion years old. This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-0177-2001.

  11. Numerical analysis of urine flow through the side holes of a double J stent in a ureteral stenosis.

    PubMed

    Kim, Hyoung-Ho; Choi, Young Ho; Lee, Seung Bae; Baba, Yasutaka; Kim, Kyung-Wuk; Suh, Sang-Ho

    2017-07-20

    Ureteral stenosis presents with a narrowing in the ureter, due to an intrinsic or extrinsic ureteral disease, such as ureter cancer or retroperitoneal fibrosis. The placement of a double J stent in the upper urinary system is one of the most common treatments of ureteral stenosis, along with the insertion of a percutaneous nephrostomy tube into the renal pelvis. The effect that the side holes in a double J stent have on urine flow has been evaluated in a few studies using straight ureter models. In this study, urine flow through a double J stent's side holes was analyzed in curved ureter models, which were based on human anatomy. In ureteral stenosis, especially in severe ureteral stenosis, a stent with side holes had a positive effect on the luminal and total flow rates, compared with the rates for a stent without side holes. The more side holes a stent has, the greater the luminal and total flow rates. However, the angular positions of the side holes did not affect flow rate. In conclusion, the side holes in a double J stent had a positive effect on ureteral stenosis, and the effect became greater as the ureteral stenosis became more severe.

  12. σ-holes and π-holes: Similarities and differences.

    PubMed

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Black hole evaporation, quantum hair and supertranslations

    NASA Astrophysics Data System (ADS)

    Gómez, César; Zell, Sebastian

    2018-04-01

    In a black hole, hair and quantum information retrieval are interrelated phenomena. The existence of any new form of hair necessarily implies the existence of features in the quantum-mechanically evaporated radiation. Therefore, classical supertranslation hair can be only distinguished from global diffeomorphisms if we have access to the interior of the black hole. Indirect information on the interior can only be obtained from the features of the quantum evaporation. We demonstrate that supertranslations (T^-,T^+) \\in BMS-⊗ BMS+ can be used as bookkeepers of the probability distributions of the emitted quanta where the first element describes the classical injection of energy and the second one is associated to quantum-mechanical emission. However, the connection between T^- and T^+ is determined by the interior quantum dynamics of the black hole. We argue that restricting to the diagonal subgroup is only possible for decoupled modes, which do not bring any non-trivial information about the black hole interior and therefore do not constitute physical hair. It is shown that this is also true for gravitational systems without horizon, for which both injection and emission can be described classically. Moreover, we discuss and clarify the role of infrared physics in purification.

  14. New Constraints for X-ray Reprocessing Around Supermassive Black Holes: Near and Far with State-of-the-Art Multi-Mission Modeling

    NASA Astrophysics Data System (ADS)

    Tzanavaris, Panayiotis

    Fluorescent Fe K emission from neutral matter in AGN spectracan arise in the accretion disk around the centralsupermassive black hole [SMBH] ("broad" line) and/or in distant matter ("narrow"line). If it is broad, it provides a unique windowto the strong gravity SMBH regime, including information on SMBH spin;if it is narrow, it probesthe distant reprocessor, likely a clumpy torus. We will use broadband X-ray data from four NASA X-ray missionsfor 45 nearby AGNs, and 1. Assess whether any known "broad" relativistic lines can be modeledas "narrow"instead, by means of self-consistent modeling of fluorescence,direct, and scattered continua; 2. Measure absorbing column densities both in and out of the line of sight; 3. Bootstrap measures of intrinsic bolometric AGN luminosity, with X-ray and optical data. This work will provide updated results on a) black hole spin, with implications on AGN jet power and accretion history; b) the census of highly-obscured (Compton thick) vs. Compton thin AGNs, with implications on models of the Cosmic X-ray Background; c) calibrations of Fe K line, X-ray intrinsic continuum, [OIII] and [OIV] luminosities as measures of intrinsc bolometric AGN luminosity, with implications on AGN feedback and galaxy evolution. Key in our approach is a physically based, self-consistent modeling of the narrow line, with finite column density in and out of the line of sight, and the latest relativistic modeling of the broad line.

  15. Multiple core-hole formation by free-electron laser radiation in molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Banks, H. I. B.; Little, D. A.; Emmanouilidou, A.

    2018-05-01

    We investigate the formation of multiple-core-hole states of molecular nitrogen interacting with a free-electron laser pulse. In previous work, we obtained bound and continuum molecular orbitals in the single-center expansion scheme and used these orbitals to calculate photo-ionization and auger decay rates. We extend our formulation to track the proportion of the population that accesses single-site versus two-site double-core-hole (TSDCH) states, before the formation of the final atomic ions. We investigate the pulse parameters that favor the formation of the single-site and TSDCH as well as triple-core-hole states for 525 and 1100 eV photons.

  16. Electrical Control of g-Factor in a Few-Hole Silicon Nanowire MOSFET.

    PubMed

    Voisin, B; Maurand, R; Barraud, S; Vinet, M; Jehl, X; Sanquer, M; Renard, J; De Franceschi, S

    2016-01-13

    Hole spins in silicon represent a promising yet barely explored direction for solid-state quantum computation, possibly combining long spin coherence, resulting from a reduced hyperfine interaction, and fast electrically driven qubit manipulation. Here we show that a silicon-nanowire field-effect transistor based on state-of-the-art silicon-on-insulator technology can be operated as a few-hole quantum dot. A detailed magnetotransport study of the first accessible hole reveals a g-factor with unexpectedly strong anisotropy and gate dependence. We infer that these two characteristics could enable an electrically driven g-tensor-modulation spin resonance with Rabi frequencies exceeding several hundred mega-Hertz.

  17. Role of macular hole angle in macular hole closure.

    PubMed

    Chhablani, Jay; Khodani, Mitali; Hussein, Abdullah; Bondalapati, Sailaja; Rao, Harsha B; Narayanan, Raja; Sudhalkar, Aditya

    2015-12-01

    To evaluate correlation of various spectral-domain optical coherence tomography (SD-OCT) parameters including macular hole angle as well as various indices with anatomical and visual outcomes after idiopathic macular hole repair surgery. Retrospective study of 137 eyes of 137 patients who underwent idiopathic macular hole repair surgery between January 2008 and January 2014 was performed. Various qualitative parameters such as presence of vitreomacular traction, epiretinal membrane and cystic edges at the macular hole as well as quantitative parameters such as maximum diameter on the apex of the hole, minimum diameter between edges, nasal and temporal vertical height, longest base diameter and macular hole angle between the retinal edge and the retinal pigment epithelium were noted. Indices including hole form factor, Macular Hole Index (MHI), Diameter Hole Index and Tractional Hole Index (THI) were calculated. Univariate and multivariate regression analysis was performed separately for final visual acuity (VA) and type of closure as dependent variable in relation to SD-OCT parameters as independent variables. On multivariate regression only minimum diameter between edges (p≤0.01) and longest base diameter (p≤0.03) were correlated significantly with both, type 1 closure and final VA. Among the indices, significant correlation of MHI (p=0.009) was noted with type of closure and that of THI with final VA (p=0.017). Our study shows no significant correlation between macular hole angle and hole closure. Minimum diameter between the edges and longest diameter of the hole are best predictors of hole closure and postoperative VA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Are LIGO's Black Holes Made from Smaller Black Holes?

    NASA Astrophysics Data System (ADS)

    Fishbach, Maya; Holz, Daniel; Farr, Ben; LIGO Collaboration

    2017-01-01

    We consider the hierarchical merger model for the formation of stellar mass black holes (such as the binary black holes observable by LIGO). In the hierarchical merger model, each black hole in a black hole binary is the result of a merger of two lesser black holes from a previous generation, and the previous generation's black holes may themselves be merger products of an even earlier generation. We apply the formulas of Hofmann, Barausse and Rezzolla (2016) to show that if black holes form in this hierarchical merger scenario, their spin magnitudes follow a certain probability distribution. We demonstrate how to compare this spin distribution to LIGO spin measurements in order to constrain the hierarchical merger scenario.

  19. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  20. Phase-noise influence on coherent transients and hole burning

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Szabo, Alex

    1998-10-01

    Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms (TLA) by a stochastic field with phase noise is theoretically investigated. Free-induction decay (FID), hole burning (HB), and transient nutation (TN) are studied. We consider two kinds of driving fields, one with a free walking phase and another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing time, T2, of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the latter case, it is shown that even when the central part of the driving field spectrum is narrower than homogeneous absorption line of the TLA, the wide, low intensity wings of the spectrum (sidebands produced by the locked phase noise), have a strong effect on the FID, TN, and HB induced by the central, narrow part of the spectrum. The influence of sidebands on photon echoes is also discussed.

  1. Film cooling performance of a row of dual-fanned holes at various injection angles

    NASA Astrophysics Data System (ADS)

    Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu

    2017-10-01

    Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.

  2. Black Holes, Worm Holes, and Future Space Propulsion

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  3. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  4. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    USGS Publications Warehouse

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  5. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  6. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  7. Hole-ness of point clouds

    NASA Astrophysics Data System (ADS)

    Gronz, Oliver; Seeger, Manuel; Klaes, Björn; Casper, Markus C.; Ries, Johannes B.

    2015-04-01

    Accurate and dense 3D models of soil surfaces can be used in various ways: They can be used as initial shapes for erosion models. They can be used as benchmark shapes for erosion model outputs. They can be used to derive metrics, such as random roughness... One easy and low-cost method to produce these models is structure from motion (SfM). Using this method, two questions arise: Does the soil moisture, which changes the colour, albedo and reflectivity of the soil, influence the model quality? How can the model quality be evaluated? To answer these questions, a suitable data set has been produced: soil has been placed on a tray and areas with different roughness structures have been formed. For different moisture states - dry, medium, saturated - and two different lighting conditions - direct and indirect - sets of high-resolution images at the same camera positions have been taken. From the six image sets, 3D point clouds have been produced using VisualSfM. The visual inspection of the 3D models showed that all models have different areas, where holes of different sizes occur. But it is obviously a subjective task to determine the model's quality by visual inspection. One typical approach to evaluate model quality objectively is to estimate the point density on a regular, two-dimensional grid: the number of 3D points in each grid cell projected on a plane is calculated. This works well for surfaces that do not show vertical structures. Along vertical structures, many points will be projected on the same grid cell and thus the point density rather depends on the shape of the surface but less on the quality of the model. Another approach has been applied by using the points resulting from Poisson Surface Reconstructions. One of this algorithm's properties is the filling of holes: new points are interpolated inside the holes. Using the original 3D point cloud and the interpolated Poisson point set, two analyses have been performed: For all Poisson points, the

  8. Comparative studies on group III σ-hole and π-hole interactions.

    PubMed

    Gao, Lei; Zeng, Yanli; Zhang, Xueying; Meng, Lingpeng

    2016-05-30

    The σ-hole of M2 H6 (M = Al, Ga, In) and π-hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2 H6 ···NH3 and MH3 ···N2 P2 F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ-hole interactions and π-hole interactions. The two types of interactions are all partial-covalent interactions; the π-hole interactions are stronger than σ-hole interactions. The electrostatic energy is the largest contribution for forming the σ-hole and π-hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ-hole interactions are somewhat greater than those of the π-hole interactions. However, the polarization contributions for the π-hole interactions are somewhat greater than those for the σ-hole interactions. © 2016 Wiley Periodicals, Inc.

  9. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  10. The basic physics of the binary black hole merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2017-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  11. Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.

    PubMed

    Zhuang, Yuyang; Chen, Heming; Ji, Ke

    2017-05-10

    We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.

  12. Super-massive binary black holes and emission lines in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.

    2012-02-01

    It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow

  13. Structural and Functional Characterization of a Hole-Hole Homodimer Variant in a "Knob-Into-Hole" Bispecific Antibody.

    PubMed

    Zhang, Hui-Min; Li, Charlene; Lei, Ming; Lundin, Victor; Lee, Ho Young; Ninonuevo, Milady; Lin, Kevin; Han, Guanghui; Sandoval, Wendy; Lei, Dongsheng; Ren, Gang; Zhang, Jennifer; Liu, Hongbin

    2017-12-19

    Bispecific antibodies have great potential to be the next-generation biotherapeutics due to their ability to simultaneously recognize two different targets. Compared to conventional monoclonal antibodies, knob-into-hole bispecific antibodies face unique challenges in production and characterization due to the increase in variant possibilities, such as homodimerization in covalent and noncovalent forms. In this study, a storage- and pH-sensitive hydrophobic interaction chromatography (HIC) profile change was observed for the hole-hole homodimer, and the multiple HIC peaks were explored and shown to be conformational isomers. We combined traditional analytical methods with hydrogen/deuterium exchange mass spectrometry (HDX MS), native mass spectrometry, and negative-staining electron microscopy to comprehensively characterize the hole-hole homodimer. HDX MS revealed conformational changes at the resolution of a few amino acids overlapping the C H 2-C H 3 domain interface. Conformational heterogeneity was also assessed by HDX MS isotopic distribution. The hole-hole homodimer was demonstrated to adopt a more homogeneous conformational distribution during storage. This conformational change is likely caused by a lack of C H 3 domain dimerization (due to the three "hole" point mutations), resulting in a unique storage- and pH-dependent conformational destabilization and refolding of the hole-hole homodimer Fc. Compared with the hole-hole homodimer under different storage conditions, the bispecific heterodimer, guided by the knob-into-hole assembly, proved to be a stable conformation with homogeneous distribution, confirming its high quality as a desired therapeutic. Functional studies by antigen binding and neonatal Fc receptor (FcRn) binding correlated very well with the structural characterization. Comprehensive interpretation of the results has provided a better understanding of both the homodimer variant and the bispecific molecule.

  14. Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C.; Hutchinson, I. H.

    The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. Themore » behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”.« less

  15. CLOSE-UP LOOK AT A JET NEAR A BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [top left] - This radio image of the galaxy M87, taken with the Very Large Array (VLA) radio telescope in February 1989, shows giant bubble-like structures where radio emission is thought to be powered by the jets of subatomic particles coming from the the galaxy's central black hole. The false color corresponds to the intensity of the radio energy being emitted by the jet. M87 is located 50 million light-years away in the constellation Virgo. Credit: National Radio Astronomy Observatory/National Science Foundation [top right] - A visible light image of the giant elliptical galaxy M87, taken with NASA Hubble Space Telescope's Wide Field Planetary Camera 2 in February 1998, reveals a brilliant jet of high-speed electrons emitted from the nucleus (diagonal line across image). The jet is produced by a 3-billion-solar-mass black hole. Credit: NASA and John Biretta (STScI/JHU) [bottom] - A Very Long Baseline Array (VLBA) radio image of the region close to the black hole, where an extragalactic jet is formed into a narrow beam by magnetic fields. The false color corresponds to the intensity of the radio energy being emitted by the jet. The red region is about 1/10 light-year across. The image was taken in March 1999. Credit: National Radio Astronomy Observatory/Associated Universities, Inc.

  16. Computation of Discrete Slanted Hole Film Cooling Flow Using the Navier-Stokes Equations.

    DTIC Science & Technology

    1982-07-01

    7 -121 796 COMPUTATION OF DISCRETE SLANTED HOLE FILM COOLING FLOW i/ i USING THE NAVIER- ..(U) CIENTIFIC RESEARCH ASSOCIATES INC GLASTONBURY CT H...V U U6-IMSA P/ & .OS,-TR. 82-1004 Report R82-910002-4 / COMPUTATION OF DISCRETE SLAMED HOLE FILM COOLING FLOW ( USING THE XAVIER-STOKES EQUATIONS H...CL SIT %GE (f.en Dae Entere)04 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO] S. RECIPIENT’S CATALOG NUMBERAO

  17. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  18. Spreadsheet Calculations for Jets in Crossflow: Opposed Rows of Inline and Staggered Holes and Single and Opposed Rows with Alternating Hole Sizes

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2010-01-01

    The primary purpose of this jet-in-crossflow study was to calculate expected results for two configurations for which limited or no experimental results have been published: (1) cases of opposed rows of closely-spaced jets from inline and staggered round holes and (2) rows of jets from alternating large and small round holes. Simulations of these configurations were performed using an Excel (Microsoft Corporation) spreadsheet implementation of a NASA-developed empirical model which had been shown in previous publications to give excellent representations of mean experimental scalar results suggesting that the NASA empirical model for the scalar field could confidently be used to investigate these configurations. The supplemental Excel spreadsheet is posted with the current report on the NASA Glenn Technical Reports Server (http://gltrs.grc.nasa.gov) and can be accessed from the Supplementary Notes section as TM-2010-216100-SUPPL1.xls. Calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration. The jets from the larger holes dominate the mixture fraction for configurations with a row of large holes opposite a row of smaller ones although the jet penetration was about the same. For single and opposed rows with mixed hole sizes, jets from the larger holes penetrated farther. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance. However, at a given downstream distance, the variation between cases was small.

  19. The Radio to Gamma-ray SED of the Narrow-line Seyfert 1 1H0323+342

    NASA Astrophysics Data System (ADS)

    Ward, M.

    2017-10-01

    A sub-set of radio-loud narrow line Seyfert 1s, have been detected in gamma-rays by the Fermi Gamma-Ray satellite. Their gamma-ray emission is thought to arise from a relativistic jet. We have obtained new near-infrared spectra and used the profiles of the Paschen lines to estimate the mass of the black hole. Combining this with results from optical lines and X-ray timing analysis we arrive at a value of 2 x 10**E7 solar masses. From modelling the broad-band SED, we drive an Eddington ratio of 0.5, rising to 1.0 for a spinning black hole (a=0.8). Furthermore, we constrain the external photon field, and use a single-zone leptonic jet model to obtain a range of jet-parameters which are consistent with Compton up-scattering to produce the observed gamma-ray spectrum. This low-redshift very well studied AGN can potentially provide a useful laboratory to further our understanding of the jet/disc connection in extragalactic sources.

  20. Effects of Electrostatic Environment on Charged Particle Transport near Lunar Holes

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Nishino, M. N.

    2017-12-01

    The Moon has neither dense atmosphere nor intrinsic magnetic field, and solar wind interactions with lunar surfaces are one of major plasma processes. The near-surface, dayside electrostatic environment is governed mainly by volume charges of solar wind plasma and photoelectrons as well as charged lunar surfaces. In fact, the electric environment strongly depends on surface topologies, as it will produce a shaded region, the electric environment of which can be very different from that in a sunlit condition. As one of high-profile terrains on the Moon, we have been focusing on the lunar vertical holes (or lunar pits), identified by the KAGUYA satellite and the Lunar Reconnaissance Orbiter. In order to model the distinctive electric and dust environments near the holes, we have started three-dimensional particle simulation analysis. The present study addresses the plasma environment of a lunar hole that is accompanied with a subsurface cavern. Besides the topographical effect of having a cavern, an investigation is focused on the following points. The first point is how deeply the solar wind protons are accessible into the hole and cavern. This point is relevant not only to an electric environment but also to possible existence of volatiles at permanently shaded regions of the hole. In order to examine the possibility, we implemented a proton scattering process at lunar surfaces into the simulation model. The other is the role of some minor current components such as secondary electrons, scattered protons, and charged dust grains at the lunar surface. Such minor currents become important for the charging of shaded surfaces, as major current components (solar wind plasma and photoelectrons) are not accessible there. We address these points based on kinetic model descriptions.

  1. Black hole remnants in Hayward solutions and noncommutative effects

    NASA Astrophysics Data System (ADS)

    Mehdipour, S. Hamid; Ahmadi, M. H.

    2018-01-01

    In this paper, we explore the final stages of the black hole evaporation for Hayward solutions. Our results show that the behavior of Hawking's radiation changes considerably at the small radii regime such that the black hole does not evaporate completely and a stable remnant is left. We show that stability conditions hold for the Hayward solutions found in the Einstein gravity coupled with nonlinear electrodynamics. We analyze the effect that an inspired model of the noncommutativity of spacetime can have on the thermodynamics of Hayward spacetimes. This has been done by applying the noncommutative effects to the non-rotating and rotating Hayward black holes. In this setup, all point structures get replaced by smeared distributions owing to this inspired approach. The noncommutative effects result in a colder black hole in the small radii regime as Hayward's free parameter g increases. As well as the effects of noncommutativity and the rotation factor, the configuration of the remnant can be substantially affected by the parameter g. However, in the rotating solution it is not so sensitive to g with respect to the non-rotating case. As a consequence, Hayward's parameter, the noncommutativity and the rotation may raise the minimum value of energy for the possible formation of black holes in TeV-scale collisions. This observation can be used as a potential explanation for the absence of black holes in the current energy scales produced at particle colliders. However, it is also found that if extra dimensions do exist, then the possibility of the black hole production at energy scales accessible at the LHC for large numbers of extra dimensions will be larger.

  2. Are LIGO's Black Holes Made From Smaller Black Holes?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that

  3. High-Resolution Observations of a Binary Black Hole Candidate

    NASA Astrophysics Data System (ADS)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto

    2012-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.

  4. Chandra Imaging of the Outer Accretion Flow onto the Black Hole at the Center of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Bautz, M. W.; McNamara, B. R.

    2017-11-01

    Nowhere is black hole feedback seen in sharper relief than in the Perseus cluster of galaxies. Owing to a combination of astrophysical and instrumental challenges, however, it can be difficult to study the black hole accretion that powers feedback into clusters of galaxies. Recent observations with Hitomi have resolved the narrow Fe Kα line associated with accretion onto the black hole in NGC 1275 (3C 84), the active galaxy at the center of Perseus. The width of that line indicates that the fluorescing material is located 6-45 pc from the black hole. Here, we report on a specialized Chandra imaging observation of NGC 1275 that offers a complementary angle. Using a sub-array, sub-pixel event repositioning, and an X-ray “lucky imaging” technique, Chandra imaging suggests an upper limit of about 0.3 arcsec on the size of the Fe Kα emission region, corresponding to ˜98 pc. Both spectroscopy and direct imaging now point to an emission region consistent with an extended molecular torus or disk, potentially available to fuel the black hole. A low X-ray continuum flux was likely measured from NGC 1275; contemporaneously, radio flaring and record-high GeV fluxes were recorded. This may be an example of the correlation between X-ray flux dips and jet activity that is observed in other classes of accreting black holes across the mass scale.

  5. Open-hole fishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrobono, J.T.

    1988-01-01

    This paper reports on losing equipment in the hole that is one of the most expensive and potentially dangerous things that can go wrong in drilling a well. Drilling must come to a halt until the equipment is recovered, or the hole must be sidetracked. The well also can become hard to control with essential tools out of reach, increasing the risk of a blowout. Fishing, or recovering lost or stuck equipment in the hole, is therefore a critical procedure at any drilling operation. Fishing can be divided into two broad categories: open hole and cased hole. a major differencemore » between the two is timing: open-hole fishing is done as the well is being drilled, whereas cased-hole fishing is performed during production or well workover. Fishing techniques and types of equipment used also vary between the tow. This lesson describes some of the basic techniques and tools used in open-hole fishing-that is, retrieving fish from a hole that is being drilled but is not yet cased.« less

  6. Experimental Tensile Strength Analysis of Woven-Glass/Epoxy Composite Plates with Central Circular Hole

    NASA Astrophysics Data System (ADS)

    Hadi, Bambang K.; Rofa, Bima K.

    2018-04-01

    The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.

  7. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  8. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    PubMed

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  9. Cultural Leverage: Interventions Using Culture to Narrow Racial Disparities in Health Care

    PubMed Central

    Fisher, Thomas L.; Burnet, Deborah L.; Huang, Elbert S.; Chin, Marshall H.; Cagney, Kathleen A.

    2008-01-01

    The authors reviewed interventions using cultural leverage to narrow racial disparities in health care. Thirty-eight interventions of three types were identified: interventions that modified the health behaviors of individual patients of color, that increased the access of communities of color to the existing health care system, and that modified the health care system to better serve patients of color and their communities. Individual-level interventions typically tapped community members’ expertise to shape programs. Access interventions largely involved screening programs, incorporating patient navigators and lay educators. Health care interventions focused on the roles of nurses, counselors, and community health workers to deliver culturally tailored health information. These interventions increased patients’ knowledge for self-care, decreased barriers to access, and improved providers’ cultural competence. The delivery of processes of care or intermediate health outcomes was significantly improved in 23 interventions. Interventions using cultural leverage show tremendous promise in reducing health disparities, but more research is needed to understand their health effects in combination with other interventions. PMID:17881628

  10. Bifurcation from stable holes to replicating holes in vibrated dense suspensions.

    PubMed

    Ebata, H; Sano, M

    2013-11-01

    In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.

  11. STIS RECORDS A BLACK HOLE'S SIGNATURE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    emission) in the nucleus of an active galaxy. It also shows that STIS is ideally suited for efficiently conducting a survey of galaxies to determine the distribution of the black holes and their masses. Each point on STIS's solid-state CCD (Charge Coupled Device) detector samples a square patch at the galaxy that is 12 light-years on a side. The detection of black holes at the centers of galaxies is about 40 times faster than the earlier Faint Object Spectrograph. STIS was configured to record five spectral features in red light from glowing hydrogen atoms as well as nitrogen and sulfur ions in orbit around the center of M84. At each sampled patch the velocity of the entrapped gas was measured. Because the patches are contiguous, the astronomers could map the change of velocity in detail. M84 is located in the Virgo Cluster of galaxies, 50 million light-years from Earth. Credit: Gary Bower, Richard Green (NOAO), the STIS Instrument Definition Team, and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  12. Determining the upper limit on the black hole mass from NGC 4748 X-ray photometry

    NASA Astrophysics Data System (ADS)

    Fedorova, E.

    2017-12-01

    In this paper, we analyze all the available X-ray photometrical data of the narrow-line Seyfert 1 galaxy NGC 4748, namely XMM-Newton (EPIC and OM), INTEGRAL (ISGRI and JEM-X) as well as SWIFT (BAT and XRT) to estimate, if it's possible, the mass of the central black hole from the variability of the lightcurves. In the XMM/EPIC composite lightcurve, we found fast quasiperiodic variations of the 0.5-10.0 keV flux on a timescales of 103 seconds. These variations were interpreted as the result of the emission of a dense hot clump of matter orbiting the central black hole near the innermost stable trajectory. The structure function analysis of this lightcurve allowed us to put an upper limit to the mass of the central BH, as 6.23 * 107Ms.

  13. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have found a black hole where few thought they could ever exist, inside a globular star cluster. The finding has broad implications for the dynamics of stars clusters and also for the existence of a still-speculative new class of black holes called 'intermediate-mass' black holes. The discovery is reported in the current issue of Nature. Tom Maccarone of the University of Southampton in England leads an international team on the finding, made primarily with the European Space Agency's XMM-Newton satellite. Globular clusters are dense bundles of thousands to millions of old stars, and many scientists have doubted that black holes could survive in such an exclusive environment. Computer simulations show that a newly formed black hole would first sink towards the centre of the cluster but quickly get gravitationally slingshot out entirely when interacting with the cluster's myriad stars. Credit: ESA/Hubble Artist's impression of globular star cluster The new finding provides the first convincing evidence that some black hole might not only survive but grow and flourish in globular clusters. What has astonished astronomers is how quickly the black hole was found. "We were preparing for a long, systematic search of thousands of globular clusters with the hope of finding just one black hole," said Maccarone. "But bingo, we found one as soon as we started the search. It was only the second globular cluster we looked at." The search continues to find more, Maccarone said, yet only one black hole was needed to resolve the decades-old discussion about black holes and globular clusters. Scientists say there are two main classes of black holes. Supermassive black holes containing the mass of millions to billions of suns are found in the core of most galaxies, including our own. A quasar is one kind of supermassive black hole. Stellar-size black holes contain the mass of about ten suns. These are created from the collapsed core of massive stars. Our galaxy likely

  14. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  15. Validity of black hole complementarity in the BTZ black hole

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    Based on the gedanken experiment for black hole complementarity in the Schwarzschild black hole, we calculate the energy required to duplicate information in the BTZ black hole under the assumption of absorbing boundary condition and its dual solution of the black string, respectively, in order to justify the validity of the no-cloning theorem in quantum mechanics. For the BTZ black hole, the required energy for the duplication of information can be made fairly small, whereas for the black string it exceeds the total mass of the black string, although they are related to each other under the dual transformation. So, the duplication of information might be possible in the BTZ black hole in contrast to the case of the black string, so that the no-cloning theorem could be violated for the former case. To save the duplication of information for the BTZ black hole, we perform an improved gedanken experiment by using the local thermodynamic quantities near the horizon rather than those defined at infinity, and show that the no-cloning theorem could be made valid even in the BTZ black hole. We also discuss how this local treatment for the no-cloning theorem can be applied to the black string as well as the Schwarzschild black hole innocuously.

  16. The phylogeny of quasars and the ontogeny of their central black holes

    NASA Astrophysics Data System (ADS)

    Fraix-Burnet, Didier; Marziani, Paola; D'Onofrio, Mauro; Dultzin, Deborah

    2017-02-01

    The connection between multifrequency quasar observational and physical parameters related to accretion processes is still open to debate. In the last 20 year, Eigenvector 1-based approaches developed since the early papers by Boroson and Green (1992) and Sulentic et al. (2000b) have been proved to be a remarkably powerful tool to investigate this issue, and have led to the definition of a quasar "main sequence". In this paper we perform a cladistic analysis on two samples of 215 and 85 low-z quasars (z ~ 0.7) which were studied in several previous works and which offer a satisfactory coverage of the Eigenvector 1-derived main sequence. The data encompass accurate measurements of observational parameters which represents key aspects associated with the structural diversity of quasars. Cladistics is able to group sources radiating at higher Eddington ratios, as well as to separate radio-quiet (RQ) and radio-loud (RL) quasars. The analysis suggests a black hole mass threshold for powerful radio emission and also properly distinguishes core-dominated and lobe-dominated quasars, in accordance with the basic tenet of RL unification schemes. Considering that black hole mass provides a sort of "arrow of time" of nuclear activity, a phylogenetic interpretation becomes possible if cladistic trees are rooted on black hole mass: the ontogeny of black holes is represented by their monotonic increase in mass. More massive radio-quiet Population B sources at low-z become a more evolved counterpart of Population A i.e., wind dominated sources to which the "local" Narrow-Line Seyfert 1s belong.

  17. σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond.

    PubMed

    Wang, Hui; Wang, Weizhou; Jin, Wei Jun

    2016-05-11

    The σ-hole and π-hole are the regions with positive surface electrostatic potential on the molecule entity; the former specifically refers to the positive region of a molecular entity along extension of the Y-Ge/P/Se/X covalent σ-bond (Y = electron-rich group; Ge/P/Se/X = Groups IV-VII), while the latter refers to the positive region in the direction perpendicular to the σ-framework of the molecular entity. The directional noncovalent interactions between the σ-hole or π-hole and the negative or electron-rich sites are named σ-hole bond or π-hole bond, respectively. The contributions from electrostatic, charge transfer, and other terms or Coulombic interaction to the σ-hole bond and π-hole bond were reviewed first followed by a brief discussion on the interplay between the σ-hole bond and the π-hole bond as well as application of the two types of noncovalent interactions in the field of anion recognition. It is expected that this review could stimulate further development of the σ-hole bond and π-hole bond in theoretical exploration and practical application in the future.

  18. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    PubMed

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  19. The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.

    2018-07-01

    The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜30 per cent. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the centre of elliptical galaxies.

  20. The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.

    2018-04-01

    The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜ 20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜ 30%. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the center of elliptical galaxies.

  1. Vertical Hole Transport and Carrier Localization in InAs /InAs1 -xSbx Type-II Superlattice Heterojunction Bipolar Transistors

    NASA Astrophysics Data System (ADS)

    Olson, B. V.; Klem, J. F.; Kadlec, E. A.; Kim, J. K.; Goldflam, M. D.; Hawkins, S. D.; Tauke-Pedretti, A.; Coon, W. T.; Fortune, T. R.; Shaner, E. A.; Flatté, M. E.

    2017-02-01

    Heterojunction bipolar transistors are used to measure vertical hole transport in narrow-band-gap InAs /InAs1 -xSbx type-II superlattices (T2SLs). Vertical hole mobilities (μh) are reported and found to decrease rapidly from 360 cm2/V s at 120 K to approximately 2 cm2/V s at 30 K, providing evidence that holes are confined to localized states near the T2SL valence-miniband edge at low temperatures. Four distinct transport regimes are identified: (1) pure miniband transport, (2) miniband transport degraded by temporary capture of holes in localized states, (3) hopping transport between localized states in a mobility edge, and (4) hopping transport through defect states near the T2SL valence-miniband edge. Region (2) is found to have a thermal activation energy of ɛ2=36 meV corresponding to the energy range of a mobility edge. Region (3) is found to have a thermal activation energy of ɛ3=16 meV corresponding to the hopping transport activation energy. This description of vertical hole transport is analogous to electronic transport observed in disordered amorphous semiconductors displaying Anderson localization. For the T2SL, we postulate that localized states are created by disorder in the group-V alloy of the InAs1 -xSbx hole well causing fluctuations in the T2SL valence-band energy.

  2. A Dancing Black Hole

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  3. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  4. HOLE-DOOR SIGN: A Novel Intraoperative Optical Coherence Tomography Feature Predicting Macular Hole Closure.

    PubMed

    Kumar, Vinod; Yadav, Bhupendra

    2017-08-08

    To describe a novel intraoperative finding during pars plana vitrectomy for macular hole using operating microscope-integrated spectral domain optical coherence tomography that predicts the closure of macular hole. Twenty-five eyes of 25 patients with macular hole, who underwent 25-gauge pars plana vitrectomy over a period of 16 months at a tertiary eye care center by a single surgeon, were recruited in this retrospective interventional study. All eyes were assessed with intraoperative spectral domain optical coherence tomography before and after internal limiting membrane peeling. The patients were assessed in terms of best-corrected visual acuity, preoperative minimal hole diameter, and type of hole closure. After the internal limiting membrane was peeled, vertical pillars of tissue were seen at the edges of hole projecting into the vitreous cavity. This appearance was similar to that of an open door over the macular hole and was termed "hole-door sign." Hole-door sign was seen in 15 of 25 eyes (60%). All the eyes with hole-door sign had Type-1 closure of macular hole (100%), whereas only 6 of 10 eyes (60%) without hole-door sign had Type-1 closure of the macular hole. Hole-door sign is a novel intraoperative finding that predicts postoperative Type-1 closure of macular hole. This may add to the utility of intraoperative optical coherence tomography in clinical practice.

  5. An evidence-based concept of implant dentistry. Utilization of short and narrow platform implants.

    PubMed

    Ruiz, Jose-Luis

    2012-09-01

    As a profession, we must remember that tooth replacement is not a luxury; it is often a necessity for health reasons. Although bone augmentation and CBCT and expensive surgical guides are often indicated for complex cases, they are being overused. Simple or straightforward implant cases, when there is sufficient natural bone for narrow or shorter implant, can be predictable performed by well-trained GPs and other trained specialists. Complex cases requiring bone augmentation and other complexities as described herein, should be referred to a surgical specialist. Implant courses and curricula have to be based on the level of complexity of implant surgery that each clinician wishes to provide to his or her patients. Using a "logical approach" to implant dentistry keeps cases simple or straightforward, and more accessible to patients by the correct use of narrow and shorter implants.

  6. A New Approach to Micro-arcsecond Astrometry with SIM Allowing Early Mission Narrow Angle Measurements of Compelling Astronomical Targets

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart; Pan, Xiaopei

    2004-01-01

    The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will

  7. Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.; Psaltis, Dimitrios

    2018-04-01

    The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observation. Natural candidates for these modifications behave like metric fluctuations, with characteristic length scales and timescales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity, without introducing new scales. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require nonimaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a variable black-hole shadow, if present with these parameters, would be readily observable in the individual snapshots that will be obtained by the Event Horizon Telescope.

  8. Reflection Spectra of the Black Hole Binary Candidate MAXI J1535-571 in the Hard State Observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Harrison, Fiona A.; García, Javier A.; Fabian, Andrew C.; Fürst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Madsen, Kristin K.; Miller, Jon M.; Parker, Michael L.; Tomsick, John A.; Walton, Dominic J.

    2018-01-01

    We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently discovered bright black hole candidate MAXI J1535-571. NuSTAR observed the source on MJD 58003 (five days after the outburst was reported). The spectrum is characteristic of a black hole binary in the hard state. We observe clear disk reflection features, including a broad Fe Kα line and a Compton hump peaking around 30 keV. Detailed spectral modeling reveals a narrow Fe Kα line complex centered around 6.5 keV on top of the strong relativistically broadened Fe Kα line. The narrow component is consistent with distant reflection from moderately ionized material. The spectral continuum is well described by a combination of cool thermal disk photons and a Comptonized plasma with the electron temperature {{kT}}{{e}}=19.7+/- 0.4 keV. An adequate fit can be achieved for the disk reflection features with a self-consistent relativistic reflection model that assumes a lamp-post geometry for the coronal illuminating source. The spectral fitting measures a black hole spin a> 0.84, inner disk radius {R}{in}< 2.01 {r}{ISCO}, and a lamp-post height h={7.2}-2.0+0.8 {r}{{g}} (statistical errors, 90% confidence), indicating no significant disk truncation and a compact corona. Although the distance and mass of this source are not currently known, this suggests the source was likely in the brighter phases of the hard state during this NuSTAR observation.

  9. Exploring the physics of the accretion and jet in nearby narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yao, Su; Qiao, Erlin; Wu, Xue-Bing; You, B.

    2018-06-01

    In this paper, we explore the physics of the accretion and jet in narrow-line Seyfert 1 (NLS1) galaxy. Specifically, we compile a sample composed of 16 nearby NLS1 with Lbol/LEdd ≳ 0.1. We investigate the mutual correlation between their radio luminosity LR, X-ray luminosity LX, optical luminosity L5100, and black hole mass MBH. By adopting partial correlation analysis, we find (1) a positive correlation between LX and MBH and (2) a weak positive correlation between LR and L5100. However, we don't find significant correlations between LR and LX or between LX and L5100 after considering the effect of the black hole mass, which leads to a finding that LX/LEdd is independent of L5100/LEdd. Interestingly, the findings that LX is correlated with MBH and LX/LEdd is not correlated with L5100/LEdd support that the X-ray emission is saturated with increasing \\dot{M} for Lbol/LEdd ≳ 0.1 in NLS1, which may be understood in the framework of slim disc scenario. Finally, we suggest that a larger NLS1 sample with high-quality radio and X-ray data is needed to further confirm this result in the future.

  10. CPT-hole closure

    USGS Publications Warehouse

    Noce, T.E.; Holzer, T.L.

    2003-01-01

    The long-term stability of deep holes 1.75 inches. (4.4 cm) in diameter by 98.4 feet (30 m) created by cone penetration testing (CPT) was monitored at a site in California underlain by Holocene and Pleistocene age alluvial fan deposits. Portions of the holes remained open both below and above the 28.6-foot (8.7 m)-deep water table for approximately three years, when the experiment was terminated. Hole closure appears to be a very slow process that may take decades in the stiff soils studied here. Other experience suggests holes in softer soils may also remain open. Thus, despite their small diameter, CPT holes may remain open for years and provide paths for rapid migration of contaminants. The observations confirm the need to grout holes created by CPT soundings as well as other direct-push techniques in areas where protection of shallow ground water is important.

  11. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    PubMed

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical

  12. Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores

    NASA Astrophysics Data System (ADS)

    Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.

    2008-08-01

    Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.

  13. Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasko, I. Y.; Space Research Institute of Russian Academy of Science, Moscow; Agapitov, O. V.

    Electron holes are electrostatic non-linear structures widely observed in the space plasma. In the present paper, we analyze the process of energy exchange between electrons trapped within electron hole, untrapped electrons, and an electron hole propagating in a weakly inhomogeneous magnetic field. We show that as the electron hole propagates into the region with stronger magnetic field, trapped electrons are heated due to the conservation of the first adiabatic invariant. At the same time, the electron hole amplitude may increase or decrease in dependence on properties of distribution functions of trapped and untrapped resonant electrons. The energy gain of trappedmore » electrons is due to the energy losses of untrapped electrons and/or decrease of the electron hole energy. We stress that taking into account the energy exchange with untrapped electrons increases the lifetime of electron holes in inhomogeneous magnetic field. We illustrate the suggested mechanism for small-amplitude Schamel's [Phys. Scr. T2, 228–237 (1982)] electron holes and show that during propagation along a positive magnetic field gradient their amplitude should grow. Neglect of the energy exchange with untrapped electrons would result in the electron hole dissipation with only modest heating factor of trapped electrons. The suggested mechanism may contribute to generation of suprathermal electron fluxes in the space plasma.« less

  14. Fermionic entanglement that survives a black hole

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; León, Juan

    2009-10-01

    We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.

  15. Narrow-headed garter snake (Thamnophis rufipunctatus)

    USGS Publications Warehouse

    Nowak, Erika M.

    2006-01-01

    The narrow-headed garter snake is a harmless, nonvenomous snake that is distinguished by its elongated, triangular-shaped head and the red or dark spots on its olive to tan body. Today, the narrow-headed garter snake is a species of special concern in the United States because of its decline over much of its historic range. Arizona's Oak Creek has historically contained the largest population of narrow-headed garter snakes in the United States. The U.S. Geological Survey (USGS) and the Arizona Game and Fish Department jointly funded research by USGS scientists in Oak Creek to shed light on the factors causing declining population numbers. The research resulted in better understanding of the snake's habitat needs, winter and summer range, and dietary habits. Based on the research findings, the U.S. Forest Service has developed recommendations that visitors and local residents can adopt to help slow the decline of the narrow-headed garter snake in Oak Creek.

  16. Black Hole Simulation

    NASA Image and Video Library

    1999-11-30

    This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science. http://photojournal.jpl.nasa.gov/catalog/PIA04206

  17. Drilling the near cortex with elongated figure-of-8 holes to reduce the stiffness of a locking compression plate construct.

    PubMed

    Chen, Jerry Yongqiang; Zhou, Zhihong; Ang, Benjamin Fu Hong; Yew, Andy Khye Soon; Chou, Siaw Meng; Chia, Shi-Lu; Koh, Joyce Suang Bee; Howe, Tet Sen

    2015-12-01

    To compare the stiffness of locking compression plate (LCP) constructs with or without drilling the near cortex with elongated figure-of-8 holes. 24 synthetic bones were sawn to create a 10-mm gap and were fixed with a 9-hole 4.5-mm narrow LCP. In 12 bones, the near cortex of the adjacent holes to the LCP holes was drilled to create elongated figure-of-8 holes before screw insertion. The stiffness of LCP constructs under axial loading or 4-point bending was assessed by (1) dynamic quasi-physiological testing for fatigue strength, (2) quasi-static testing for stiffness, and (3) testing for absolute strength to failure. None of the 24 constructs had subcatastrophic or catastrophic failure after 10 000 cycles of fatigue loading (p=1.000). The axial stiffness reduced by 16% from 613±62 to 517±44 N/mm (p=0.012) in the case group, whereas the bending stiffness was 16±1 Nm2 in both groups (p=1.000). The maximum axial load to catastrophic failure was 1596±84 N for the control group and 1627±48 N for the case group (p=0.486), whereas the maximum bending moment to catastrophic failure was 79±12 and 80±10 Nm, respectively (p=0.919). Drilling the near cortex with elongated figure-of-8 holes reduces the axial stiffness of the LCP construct, without compromising its bending stiffness or strength.

  18. The black hole binary V404 Cygni: a highly accreting obscured AGN analogue

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Giustini, M.; Kuulkers, E.

    2017-06-01

    Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow on to the black hole and outflows from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent plateau and low-luminosity states, with a dynamical intensity range of several orders of magnitude on time-scales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these plateau states. The simultaneous Swift/XRT + INTRGRAL/JEM-X + INTEGRAL/IBIS-ISGRI spectrum is reminiscent of that of obscured/absorbed active galactic nuclei (AGN). It can be modelled as a Comptonization spectrum, heavily absorbed by a partial covering, high column density material (NH ≈ 1-3 × 1024 cm-2), and a dominant reprocessed component, including a narrow iron Kα line. Such spectral distribution can be produced by a geometrically thick accretion flow able to launch a clumpy outflow, likely responsible for both the high intrinsic absorption and the intense reprocessed emission observed. Similarly to what happens in certain obscured AGN, the low-flux states might not be (solely) related to a decrease in the intrinsic luminosity, but could instead be caused by an almost complete obscuration of the inner accretion flow.

  19. Re-examining the XMM-Newton spectrum of the black hole candidate XTE J1652-453

    NASA Astrophysics Data System (ADS)

    Chiang, Chia-Ying; Reis, R. C.; Walton, D. J.; Fabian, A. C.

    2012-10-01

    The XMM-Newton spectrum of the black hole candidate XTE J1652-453 shows a broad and strong Fe Kα emission line, generally believed to originate from reflection of the inner accretion disc. These data have been analysed by Hiemstra et al. using a variety of phenomenological models. We re-examine the spectrum with a self-consistent relativistic reflection model. A narrow absorption line near 7.2 keV may be present, which if real is likely the Fe XXVI absorption line arising from highly ionized, rapidly outflowing disc wind. The blueshift of this feature corresponds to a velocity of about 11 100 km s-1, which is much larger than the typical values seen in stellar mass black holes. Given that we also find the source to have a low inclination (i ≲ 32°; close to face-on), we would therefore be seeing through the very base of outflow. This could be a possible explanation for the unusually high velocity. We use a reflection model combined with a relativistic convolution kernel which allows for both prograde and retrograde black hole spin, and treat the potential absorption feature with a physical model for a photoionized plasma. In this manner, assuming the disc is not truncated, we could only constrain the spin of the black hole in XTE J1652-453 to be less than ˜0.5 Jc/GM2 at the 90 per cent confidence limit.

  20. Chandra Observes Cloud Powered by Black Hole in Distant Galaxy

    NASA Astrophysics Data System (ADS)

    2000-06-01

    NASA's Chandra X-ray Observatory has shown that a large gas cloud is being blasted by X rays from the vicinity of a giant black hole which lurks in its center. The observation is of special interest because it shows the disruptive effects that a massive black hole can have over thousands of light years. The results are being presented today by Drs. Patrick M. Ogle, Herman L. Marshall, Julia C. Lee, and Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 196th national meeting of the American Astronomical Society in Rochester, NY. The observation also demonstrates that the searchlight beam of X rays from the black hole can be used to probe the environment around a black hole. The galaxy NGC 4151 is located at a distance of 50 million light years in a direction just south of the Big Dipper. It is a prominent example of a class of galaxies that show unusual energetic activity in their nucleus. This activity is now known to be due to the presence of a giant black hole in the nucleus with an estimated mass 10 million times that of the Sun. As matter swirls toward the black hole, it releases a prodigious amount of energy, much of it in X rays. Previous observations showed that X rays are also coming from an enormous cloud 3000 light years across that surrounds the black hole. The precise mirrors of Chandra allowed astronomers to make an X-ray image showing unprecedented detail of the massive cloud in the center of NGC 4151. The brightest regions in the cloud correspond to wisps that were previously observed in visible light by the Hubble Space Telescope. The shape of the cloud confirms that X rays from the black hole are collimated into a narrow beam, and illuminate only certain quadrants of the galaxy. "The black hole is shining an X-ray searchlight which illuminates the clouds in the night sky of NGC 4151" said Ogle. By using the High Energy Transmission Grating (HETG), astronomers were able to resolve the X-ray spectrum from the

  1. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garica, M.

    2001-01-01

    In 1995 we proposed to carry out ground-based observations in order to securely identify stellar mass black holes in our galaxy. This type 4 proposal under NASA's UV, Visible, and Gravitational Astrophysics program compliments NASA's space-based research by following up black hole candidates found and studied with space-based observatories, in order to determine if they are indeed black holes. While our primary goal is to securely identify black holes by measuring their masses, a secondary goal is identifying unique visible-range signatures for black holes.

  2. Does positive affect broaden and negative affect narrow attentional scope? A new answer to an old question.

    PubMed

    Huntsinger, Jeffrey R

    2012-11-01

    The current research challenges the common view that positive affect and negative affect generate a broadened or narrowed attentional focus, respectively. Contrary to this view, two studies found that the link between affect and attentional focus as measured by a traditional flanker task (Study 1) and a modified flanker task (Study 2) reflects whatever focus is momentarily dominant. Further, in these studies when neither focus was dominant, the link between affect and attentional focus vanished. These results demonstrate that, like reward, positive affect and negative affect are not dedicated to a particular broadened or narrowed attentional scope but rather provide embodied information about the value of currently accessible attentional orientations. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  3. Anyon black holes

    NASA Astrophysics Data System (ADS)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 < α < 1) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α <αc. By defining a general form of the metric for the (2 + 1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2 + 1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For α <αc, the solution exhibits a quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  4. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  5. Electron hole tracking PIC simulation

    NASA Astrophysics Data System (ADS)

    Zhou, Chuteng; Hutchinson, Ian

    2016-10-01

    An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.

  6. Investigation of Spiral and Sweeping Holes

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  7. Chandra Reviews Black Hole Musical: Epic But Off-Key

    NASA Astrophysics Data System (ADS)

    2006-10-01

    give the strongest evidence to date of a shock wave produced by the supermassive black hole, a clear sign of a powerful explosion. This shock wave appears as a nearly circular ring of high-energy X-rays that is 85,000 light years in diameter and centered on the black hole. Other remarkable features are seen in M87 for the first time including narrow filaments of X-ray emission -- some over 100,000 light years long -- that may be due hot gas trapped by magnetic fields. Also, a large, previously unknown cavity in the hot gas, created by an outburst from the black hole about 70 million years ago, is seen in the X-ray image. Animation Showing a Supermassive Black Hole Outburst in M87 Animation Showing a Supermassive Black Hole Outburst in M87 "We can explain some of what we see, like the shock wave, with textbook physics," said team member Christine Jones, also of the CfA. "However, other details, like the filaments we find, leave us scratching our heads." Sound has been detected from another black hole in the Perseus cluster, which was calculated to have a note some 57 octaves below middle C. However, the sound in M87 appears to be more discordant and complex. A series of unevenly spaced loops in the hot gas gives evidence for small outbursts from the black hole about every 6 million years. These loops imply the presence of sound waves, not visible in the Chandra image, which are about 56 octaves below middle C. The presence of the large cavity and the sonic boom gives evidence for even deeper notes -- 58 or 59 octaves below middle C -- powered by large outbursts. These new results on M87 were presented at the High-Energy Astrophysics Division meeting being held in San Francisco. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are

  8. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a

  9. An Integrated Finite Element-based Simulation Framework: From Hole Piercing to Hole Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaohua; Sun, Xin; Golovashchenko, Segey F.

    An integrated finite element-based modeling framework is developed to predict the hole expansion ratio (HER) of AA6111-T4 sheet by considering the piercing-induced damages around the hole edge. Using damage models and parameters calibrated from previously reported tensile stretchability studies, the predicted HER correlates well with experimentally measured HER values for different hole piercing clearances. The hole piercing model shows burrs are not generated on the sheared surface for clearances less than 20%, which corresponds well with the experimental data on pierced holes cross-sections. Finite-element-calculated HER also is not especially sensitive to piercing clearances less than this value. However, as clearancesmore » increase to 30% and further to 40%, the HER values are predicted to be considerably smaller, also consistent with experimental measurements. Upon validation, the integrated modeling framework is used to examine the effects of different hole piercing and hole expansion conditions on the critical HERs for AA6111-T4.« less

  10. Narrow band vacuum ultraviolet radiation, produced by fast conical discharge

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.

    2018-04-01

    The article presents the experimental study of discharges in a conical cavity, filled with Ar at pressure 80 Pa. The electrical current driver (inductive storage with plasma erosion opening switch) supplies to the load electrical current pulse with growth rate about 1012 A s‑1 and maximal value 30–40 kA. The convergent conical shock wave starts from the inner surface of the discharge cavity and collapses in ‘zippering’ mode. The pin hole camera imaging with MCP detector (time resolution 5 ns) have demonstrated the appearance of effectively fast moving compact plasma with visible velocity v  =  (1.5  ±  0.14)  ×  107 cm s‑1. Plasma emits narrow band radiation in the spectral range of Rydberg series transitions of Ar VII, Ar VIII with quantum number up to n  =  9 (wavelength about 11 nm). The intensity of radiation is comparable with the total plasma emission in the range 10–50 nm. Charge exchange between multiply charged Ar ions and cold Ar atoms of working gas is proposed as the possible mechanism of the origin of the radiation.

  11. Hole-pin joining structure with fiber-round-hole distribution of lobster cuticle and biomimetic study.

    PubMed

    Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun

    2014-12-01

    Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The ordinary life of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Doi, A.; ...

    2013-06-03

    In this paper, we report on multifrequency observations of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to γ-rays during 2008 August–2012 November by Fermi-Large Area Telescope (LAT), Swift (X-ray Telescope and Ultraviolet/Optical Telescope), Owens Valley Radio Observatory, Very Long Baseline Array (VLBA) and Very Large Array. No significant variability has been observed in γ-rays, with 0.1–100 GeV flux that ranged between (3–7) × 10 –8 ph cm –2 s –1 using 3-month time bins. The photon index of the LAT spectrum (Γ = 2.60 ± 0.06) and the apparent isotropic γ-ray luminosity (L0.1-100 GeV =more » 7.8 × 10 45 erg s –1) over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed γ-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and γ-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. As a result, this is in agreement with what has been found in the case of the other γ-ray emitting narrow-line Seyfert 1 SBS 0846+513.« less

  13. Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gußmann, Alexander

    2016-12-01

    We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.

  14. An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).

  15. Narrow Networks on the Individual Marketplace in 2017.

    PubMed

    Polski, Daniel; Weiner, Janet; Zhang, Yuehan

    2017-09-01

    This Issue Brief describes the breadth of physician networks on the ACA marketplaces in 2017. We find that the overall rate of narrow networks is 21%, which is a decline since 2014 (31%) and 2016 (25%). Narrow networks are concentrated in plans sold on state-based marketplaces, at 42%, compared to 10% of plans on federally-facilitated marketplaces. Issuers that have traditionally offered Medicaid coverage have the highest prevalence of narrow network plans at 36%, with regional/local plans and provider-based plans close behind at 27% and 30%. We also find large differences in narrow networks by state and by plan type.

  16. Studies to overcome the manufacturing problems in blast furnace tap hole clay of Integrated Steel Plants: Experimental approach

    NASA Astrophysics Data System (ADS)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.

  17. Personnel Management in Access Services: A General Overview of the Literature, 1990-2002

    ERIC Educational Resources Information Center

    Lee, Leslie A.; Wu, Michelle M.

    2003-01-01

    Access services is not unique in its need for effective personnel management. A review of the literature indicates that there are many publications on or relating to library personnel administration; however, relatively few of them are dedicated to the narrow topic of access services. As such, this review encompasses literature that is general to…

  18. Deforming regular black holes

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-06-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass functions. By using linear constraints in the energy-momentum tensor to generate metrics, the solutions presented in this work are either regular or singular. That is, within this approach, it is possible to generate regular or singular black holes from regular or singular black holes. Moreover, contrary to the Bardeen and Hayward regular solutions, the deformed regular black holes may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  19. A spectroscopic analysis of a sample of narrow-line Seyfert 1 galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cracco, V.; Ciroi, S.; Berton, M.; Di Mille, F.; Foschini, L.; La Mura, G.; Rafanelli, P.

    2016-10-01

    We revisited the spectroscopic characteristics of narrow-line Seyfert 1 galaxies (NLS1s) by analysing a homogeneous sample of 296 NLS1s at redshift between 0.028 and 0.345, extracted from the Sloan Digital Sky Survey (SDSS-DR7) public archive. We confirm that NLS1s are mostly characterized by Balmer lines with Lorentzian profiles, lower black hole masses and higher Eddington ratios than classic broad-line Seyfert 1 (BLS1s), but they also appear to be active galactic nuclei (AGNs) contiguous with BLS1s and sharing with them common properties. Strong Fe II emission does not seem to be a distinctive property of NLS1s, as low values of Fe II/Hβ are equally observed in these AGNs. Our data indicate that Fe II and Ca II kinematics are consistent with the one of Hβ. On the contrary, O I λ8446 seems to be systematically narrower and it is likely emitted by gas of the broad-line region more distant from the ionizing source and showing different physical properties. Finally, almost all NLS1s of our sample show radial motions of the narrow-line region highly ionized gas. The mechanism responsible for this effect is not yet clear, but there are hints that very fast outflows require high continuum luminosities (>1044 erg s-1) or high Eddington ratios (log (Lbol/LEdd) > -0.1).

  20. Fe XXV and Fe XXVI Diagnostics of the Black Hole and Accretion Disk in Active Galaxies: Chandra Time-Resolved Spectroscopy of NGC 7314

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane

    2003-01-01

    We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.

  1. Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-03-12

    Our search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at √s=8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 fb -1. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalarmore » diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. Furthermore, the first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.« less

  2. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  3. Gamma-Ray-emitting Narrow-line Seyfert 1 Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Ajello, M.; Rakshit, S.; Mandal, Amit Kumar; Stalin, C. S.; Kaur, A.; Hartmann, D.

    2018-01-01

    The detection of significant γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1s) galaxies enables us to study jets in environments different than those in blazars. However, due to the small number of known γ-ray-emitting NLSy1 (γ-NLSy1) galaxies, a comprehensive study could not be performed. Here, we report the first detection of significant γ-ray emission from four active galactic nuclei (AGNs), recently classified as NLSy1 from their Sloan Digital Sky Survey (SDSS) optical spectrum. Three flat-spectrum radio quasars (FSRQs) present in the third Large Area Telescope AGN catalog (3LAC) are also found as γ-NLSy1 galaxies. Comparing the γ-ray properties of these objects with 3LAC blazars reveals their spectral shapes to be similar to FSRQs, however, with low γ-ray luminosity (≲1046–47 erg s‑1). In the Wide-field Infrared Survey Explorer color–color diagram, these objects occupy a region mainly populated by FSRQs. Using the H β emission line parameters, we find that on average γ-NLSy1 have smaller black hole masses than FSRQs at similar redshifts. In the low-resolution SDSS image of one of the γ-NLSy1 source, we find the evidence of an extended structure. We conclude by noting that overall many observational properties of γ-NLSy1 sources are similar to FSRQs, and therefore these objects could be their low black hole mass counterparts, as predicted in the literature.

  4. Policy Considerations for Enhancing Student Access and Persistence in a World in Which Tuition Keeps Rising

    ERIC Educational Resources Information Center

    Ehrenberg, Ronald G.

    2007-01-01

    The United States no longer leads the world in college completion rates. Inequality in college access rates by income have barely narrowed over the last 25 to 30 years and inequality in college completion rates have narrowed even less. The groups in the population that are growing the most rapidly are those that have historically been…

  5. Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

    NASA Technical Reports Server (NTRS)

    T.Dauser; Garcia, J.; Wilms, J.; Boeck, M.; Brenneman, L. W.; Falanga, M.; Fukumura, Keigo; Reynolds, C. S.

    2013-01-01

    X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given

  6. From black holes to white holes: a quantum gravitational, symmetric bounce

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier; Saini, Sahil; Singh, Parampreet

    2017-11-01

    Recently, a consistent non-perturbative quantization of the Schwarzschild interior resulting in a bounce from black hole to white hole geometry has been obtained by loop quantizing the Kantowski-Sachs vacuum spacetime. As in other spacetimes where the singularity is dominated by the Weyl part of the spacetime curvature, the structure of the singularity is highly anisotropic in the Kantowski-Sachs vacuum spacetime. As a result, the bounce turns out to be in general asymmetric, creating a large mass difference between the parent black hole and the child white hole. In this manuscript, we investigate under what circumstances a symmetric bounce scenario can be constructed in the above quantization. Using the setting of Dirac observables and geometric clocks, we obtain a symmetric bounce condition which can be satisfied by a slight modification in the construction of loops over which holonomies are considered in the quantization procedure. These modifications can be viewed as quantization ambiguities, and are demonstrated in three different flavors, all of which lead to a non-singular black to white hole transition with identical masses. Our results show that quantization ambiguities can mitigate or even qualitatively change some key features of the physics of singularity resolution. Further, these results are potentially helpful in motivating and constructing symmetric black to white hole transition scenarios.

  7. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  8. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, Michael R.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both "stellar mass" x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  9. The Nearest Black Hole

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Garcia, Michael

    2005-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  10. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  11. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Coleman Miller, M.; Colbert, E. J. M.

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3-20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106-1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102-104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  12. The Hunt for Low-Mass Black Holes in the JWST Era

    NASA Astrophysics Data System (ADS)

    Cann, Jenna; Satyapal, Shobita; Abel, Nicholas; Ricci, Claudio; Gliozzi, Mario; Blecha, Laura; Secrest, Nathan

    2018-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) millions to billions of times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency, because the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth of SMBH ‘seeds’, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass (dwarf) galaxies, the SMBHs will likely be less massive, and can be energetically weak and possibly deeply embedded in their host galaxies. As a result, the optical emission lines may be dominated by star formation regions, severely limiting the diagnostic power of optical surveys in finding and characterizing the properties of the AGN in dwarf galaxies. In such galaxies, infrared coronal lines provide a robust method of finding AGNs. Furthermore, as the black hole mass decreases, the Schwarzschild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation spectral energy distribution therefore changes with black hole mass, which will affect the emission line spectrum from the surrounding gas. In this work, we investigate the diagnostic power of infrared coronal lines and the effect of black hole mass on the emission line spectra from AGNs, with a particular focus on the emission lines accessible by JWST.

  13. Mind the Gap: Why Closing the Doughnut Hole Is Insufficient for Increasing Medicare Beneficiary Access to Oral Chemotherapy.

    PubMed

    Dusetzina, Stacie B; Keating, Nancy L

    2016-02-01

    Orally administered anticancer medications are among the fastest growing components of cancer care. These medications are expensive, and cost-sharing requirements for patients can be a barrier to their use. For Medicare beneficiaries, the Affordable Care Act will close the Part D coverage gap (doughnut hole), which will reduce cost sharing from 100% in 2010 to 25% in 2020 for drug spending above $2,960 until the beneficiary reaches $4,700 in out-of-pocket spending. How much these changes will reduce out-of-pocket costs is unclear. We used the Medicare July 2014 Prescription Drug Plan Formulary, Pharmacy Network, and Pricing Information Files from the Centers for Medicare & Medicaid Services for 1,114 stand-alone and 2,230 Medicare Advantage prescription drug formularies, which represent all formularies in 2014. We identified orally administered anticancer medications and summarized drug costs, cost-sharing designs used by available plans, and the estimated out-of-pocket costs for beneficiaries without low-income subsidies who take a single drug before and after the doughnut hole closes. Little variation existed in formulary design across plans and products. The average price per month for included products was $10,060 (range, $5,123 to $16,093). In 2010, median beneficiary annual out-of-pocket costs for a typical treatment duration ranged from $6,456 (interquartile range, $6,433 to $6,482) for dabrafenib to $12,160 (interquartile range, $12,102 to $12,262) for sunitinib. With the assumption that prices remain stable, after the doughnut hole closes, beneficiaries will spend approximately $2,550 less. Out-of-pocket costs for Medicare beneficiaries taking orally administered anticancer medications are high and will remain so after the doughnut hole closes. Efforts are needed to improve affordability of high-cost cancer drugs for beneficiaries who need them. © 2015 by American Society of Clinical Oncology.

  14. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  15. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  16. Growth of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  17. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    PubMed

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect

  18. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    PubMed

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Prospects for measuring supermassive black hole masses with future extremely large telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Tuan; Wright, Shelley A.; Barth, Aaron J.

    2014-04-01

    The next generation of giant-segmented mirror telescopes (>20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from Z band (0.9 μm)more » to K band (2.2 μm). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of ∼10{sup 4} M {sub ☉} to the most massive black holes known today of >10{sup 10} M {sub ☉}. We find that IRIS will be able to observe Milky Way mass black holes out the distance of the Virgo Cluster, and will allow us to observe many more of the brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of ∼8000 will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in Sloan Digital Sky Survey DR7, we find that over 10{sup 5} massive black holes will be observable at distances between 0.005 < z < 0.18 with the estimated sensitivity and angular resolution provided by access to Z-band (0.9 μm) spectroscopy from IRIS and the TMT adaptive optics system. These observations will provide the most accurate dynamical measurements of black hole

  20. The 67 Hz Feature in the Black Hole Candidate GRS 1915+105 as a Possible Diskoseismic Mode

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wagoner, Robert V.; Begelman, Mitchell C.; Lehr, Dana E.

    1997-01-01

    The Rossi X-Ray Timing Explorer has made feasible for the first time the search for high-frequency (greater than or equal to 100 Hz) periodic features in Black Hole Candidate (BHC) systems. Such a feature, with a 67 Hz frequency, recently has been discovered in the BHC GRS 1915+105 (Morgan, Remillard, & Greiner). This feature is weak (rms variability approx. 0.3%-1.6%), stable in frequency (to within approx. 2 Hz) despite appreciable luminosity fluctuations, and narrow (quality factor Q approx. 20). Several of these properties are what one expects for a 'diskoseismic' g-mode in an accretion disk about a 10.6 M(solar mass) (nonrotating) to 36.3 M(solar mass) (maximally rotating) black hole (if we are observing the fundamental-mode frequency). We explore this possibility by considering the expected luminosity modulation, as well as possible excitation and growth mechanisms-including turbulent excitation, damping, and 'negative' radiation damping. We conclude that a diskoseismic interpretation of the observations is viable.

  1. A Socially Inclusive A-Star Is Only Possible through the Understanding of Black Holes

    ERIC Educational Resources Information Center

    Draper, Ciara; Houghton, Jack; Read, Beth; Bird, Danny; Tatten, J. J.

    2016-01-01

    This article is written by young people who attend an open-access youth project in the city centre of Hull. Although they describe themselves as "educational failures" (the "black holes"), they argue that they have a significant contribution to make to discussions about how to develop socially just education in schools. In the…

  2. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    PubMed

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  3. Intramyocardial arterial narrowing in dogs with subaortic stenosis.

    PubMed

    Falk, T; Jönsson, L; Pedersen, H D

    2004-09-01

    Earlier studies have described intramyocardial arterial narrowing based on hyperplasia and hypertrophy of the vessel wall in dogs with subaortic stenosis (SAS). In theory, such changes might increase the risk of sudden death, as they seem to do in heart disease in other species. This retrospective pathological study describes and quantifies intramyocardial arterial narrowing in 44 dogs with naturally occurring SAS and in eight control dogs. The majority of the dogs with SAS died suddenly (n=27); nine had died or been euthanased with signs of heart failure and eight were euthanased without clinical signs. Dogs with SAS had significantly narrower intramyocardial arteries (P<0.001) and more myocardial fibrosis (P<0.001) than control dogs. Male dogs and those with more severe hypertrophy had more vessel narrowing (P=0.02 and P=0.02, respectively), whereas dogs with dilated hearts had slightly less pronounced arterial thickening (P=0.01). Arterial narrowing was not related to age, but fibrosis increased with age (P=0.047). Dogs that died suddenly did not have a greater number of arterial changes than other dogs with SAS. This study suggests that most dogs with SAS have intramyocardial arterial narrowing and that the risk of dying suddenly is not significantly related to the overall degree of vessel obliteration.

  4. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  5. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  6. Elongated Coronal Hole

    NASA Image and Video Library

    2016-03-24

    NASA Solar Dynamics Observatory shows a long coronal hole has rotated so that was temporarily facing right towards Earth Mar. 23-25, 2016. Coronal holes appear dark when viewed in some wavelengths of extreme ultraviolet light.

  7. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less

  8. The Thermodynamics of Black Holes.

    PubMed

    Wald, Robert M

    2001-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  9. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  10. The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactions.

    PubMed

    Wang, Jingjing; Mo, Lixin; Li, Xiaoyan; Geng, Zongke; Zeng, Yanli

    2016-12-01

    The σ-hole and π-hole of the protonated 2-halogenated imidazolium cation (XC 3 H 4 N 2 + ; X = F, Cl, Br, I) were investigated and analyzed. The monomers of (CH 3 ) 3 SiY(Y=F, Cl, Br, I), considered as the Lewis base, were combined with the σ-hole and π-hole of XC 3 H 4 N 2 + to form the σ-hole and π-hole interactions in the bimolecular complexes (CH 3 ) 3 SiY · · · XC 3 H 4 N 2 + and (CH 3 ) 3 SiY · · · C 3 (X)H 4 N 2 + (X/Y=F, Cl, Br, I), respectively. For both the σ-hole and π-hole interactions, the equilibrium geometries of complexes show regular changes according to the sequence of heavy sequence of the noncovalent interaction acceptors and donors. The electrostatic energy is the main contribution in the formation of both kinds of interactions, it has linear relations with the V S,max values of σ-hole and the V' S,max values of π-hole. Both the σ-hole and π-hole interactions belong to the closed-shell and noncovalent interactions. The π-hole interactions are stronger than the σ-hole interactions. For the π-hole interactions, the contribution percents of the dispersion energies are somewhat greater than those of the σ-hole interactions, while it is contrary for the polarization energy. Graphical Abstract The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactionsᅟ.

  11. Attitudes and Practices of Parents: Disadvantage and Access to Education

    ERIC Educational Resources Information Center

    De Luigi, Nicola; Martelli, Alessandro

    2015-01-01

    This article focuses on different ways in which socially disadvantaged parents engage with their children's educational experiences, and provides evidence of the role they play in opening or narrowing their children's access to education. Disadvantaged parents are usually associated with weak or difficult educational trajectories for their…

  12. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  13. Merging Black Holes

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  14. 30 CFR 57.7055 - Intersecting holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  15. 30 CFR 57.7055 - Intersecting holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  16. 30 CFR 57.7055 - Intersecting holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  17. 30 CFR 57.7055 - Intersecting holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  18. 30 CFR 57.7055 - Intersecting holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  19. Substantial Coronal Holes

    NASA Image and Video Library

    2016-10-21

    A pair of large coronal holes rotated into view over the past few days (Oct. 20-21, 2016). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light, such as in the wavelength used here. These holes are areas of open magnetic field that spew solar wind into space. Sometimes, when they are facing Earth, they can cause geomagnetic disturbances that generate aurora. The lines you see were drawn to represent how solar scientists are modeling the magnetic field lines. Movies are available at the Photojournal http://photojournal.jpl.nasa.gov/catalog/PIA15378

  20. Black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    2014-10-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  1. 30 CFR 56.7055 - Intersecting holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  2. 30 CFR 56.7055 - Intersecting holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  3. 30 CFR 56.7055 - Intersecting holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  4. 30 CFR 56.7055 - Intersecting holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  5. 30 CFR 56.7055 - Intersecting holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  6. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  7. Acceleration of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  8. DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:

  9. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  10. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  11. LAMELLAR HOLE-ASSOCIATED EPIRETINAL PROLIFERATION IN LAMELLAR MACULAR HOLE AND FULL-THICKNESS MACULAR HOLE IN HIGH MYOPIA.

    PubMed

    Lai, Tso-Ting; Yang, Chung-May

    2017-05-18

    To report findings and surgical outcomes of lamellar macular hole (LMH) or full-thickness macular hole (FTMH) accompanied by lamellar hole-associated epiretinal proliferation (LHEP) in eyes with high myopia (HM). Consecutive cases of HM with LMH or FTMH containing LHEP were retrospectively reviewed (study group, 43 cases). Cases of HM without LHEP (22) and those of non-HM with LHEP (30) served as Control A and B. The study group showed larger (928.7 ± 381.9 μm) and deeper (remained base thickness: 79.7 ± 23.7 μm) LMH retinal defect than that in Control A (466.2 ± 179.1 and 99.9 ± 24.9) and B (647.1 ± 346.7 and 99.1 ± 38.1). Lamellar hole-associated epiretinal proliferation in the study group had a higher rate of wide extension (42.3%) and growing along the posterior hyaloid (PH, 53.8%). Patients with LMH who underwent surgery in the study group and Control A showed limited best corrected visual acuity (BCVA) improvement (0-1 and 1-2 ETDRS lines, respectively), while Control B had significant improvement (4-5 lines). For full-thickness macular holes, the study group was the youngest (50.0 ± 11.4) and LHEP was more likely to grow on the posterior hyaloid (23.5%); the postoperative best corrected visual acuity, however, was similar to that in Control A (20/63-20/80). Lamellar hole-associated epiretinal proliferation in HM tended to be more widespread and adherent to the posterior hyaloid than in eyes without HM. Visual outcomes after LMH repair in eyes with LHEP and HM are less favorable than eyes with LHEP and without HM, but similar to eyes with HM and without LHEP.

  12. Infants Experience Perceptual Narrowing for Nonprimate Faces

    ERIC Educational Resources Information Center

    Simpson, Elizabeth A.; Varga, Krisztina; Frick, Janet E.; Fragaszy, Dorothy

    2011-01-01

    Perceptual narrowing--a phenomenon in which perception is broad from birth, but narrows as a function of experience--has previously been tested with primate faces. In the first 6 months of life, infants can discriminate among individual human and monkey faces. Though the ability to discriminate monkey faces is lost after about 9 months, infants…

  13. Supersymmetric black holes and Freudenthal duality

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Mandal, Taniya; Tripathy, Prasanta K.

    2017-07-01

    We study the effect of Freudenthal duality on supersymmetric extremal black hole attractors in 𝒩 = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the dyonic black hole charges as an anti-involution which keeps the black hole entropy and the critical points of the effective black hole potential invariant. We analyze its effect on the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black holes, related to the existence of nontrivial involutory constant matrices. In particular, we consider a supersymmetric D0 - D4 - D6 black hole and we explicitly Freudenthal-map it to a supersymmetric D0 - D2 - D4 - D6 black hole. We thus show that the charge representation space of a supersymmetric D0 - D2 - D4 - D6 black hole also contains mutually exclusive domains.

  14. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks.

    PubMed

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-10-12

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  15. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    PubMed Central

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-01-01

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316

  16. Black holes and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Samir D., E-mail: mathur.16@osu.edu

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in themore » bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.« less

  17. Magnetic fields threading black holes: restrictions from general relativity and implications for astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David

    2017-07-01

    The idea that black hole spin is instrumental in the generation of powerful jets in active galactic nuclei and X-ray binaries is arguably the most contentious claim in black hole astrophysics. Because jets are thought to originate in the context of electromagnetism, and the modeling of Maxwell fields in curved spacetime around black holes is challenging, various approximations are made in numerical simulations that fall under the guise of `ideal magnetohydrodynamics'. But the simplifications of this framework may struggle to capture relevant details of real astrophysical environments near black holes. In this work, we highlight tension between analytic and numerical results, specifically between the analytically derived conserved Noether currents for rotating black hole spacetimes and the results of general relativistic numerical simulations (GRMHD). While we cannot definitively attribute the issue to any specific approximation used in the numerical schemes, there seem to be natural candidates, which we explore. GRMHD notwithstanding, if electromagnetic fields around rotating black holes are brought to the hole by accretion, we show from first principles that prograde accreting disks likely experience weaker large-scale black hole-threading fields, implying weaker jets than in retrograde configurations.

  18. Charged Galileon black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less

  19. Returning Coronal Hole

    NASA Image and Video Library

    2017-02-06

    A substantial coronal hole rotated across the face of the sun this past week and is again streaming solar wind towards Earth (Jan. 30 - Feb. 2, 2017). This same coronal hole was facing Earth about a month ago and has rotated into a similar position again. Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light it appears as a dark area near the center and lower portion of the sun. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11177

  20. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  1. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  2. Self-organized micro-holes on titania based sol-gel films under continuous direct writing with a continuous wave ultraviolet laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhti, S.; Destouches, N.; Gamet, E.

    The microstructuring of titania based sol-gel films is investigated by direct writing with a continuous wave ultraviolet laser beam emitting at 244 nm. Depending on the exposure conditions, the films exhibit a volume expansion, a volume shrinkage, a self-shaped delamination, or are damaged. This paper is mainly focused on the regime where spontaneous local delamination occurs, which corresponds to a narrow range of laser irradiances and writing speeds. In this regime, self-organized round-shape micro-holes opened on the substrate are generated.

  3. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  4. σ-Hole and π-Hole Synthon Mimicry in Third-Generation Crystal Engineering: Design of Elastic Crystals.

    PubMed

    Saha, Subhankar; Desiraju, Gautam R

    2017-04-06

    Designing elastic crystals is a difficult task and is of relevance in potential applications from materials to biology. Here, multi-step crystal engineering based on σ-hole and π-hole synthon mimicry is performed to obtain binary organic molecular crystals with a high degree of flexibility. A structural model is proposed based only on σ-hole-oriented type-II halogen bonds with their characteristic orthogonal geometry. These σ-hole contacts are then partly replaced by chemically and geometrically similar π-hole synthons to obtain new crystals in the second step. In the final step, all the σ-hole interactions are replaced with π-hole interactions and elastic crystals of non-halogenated compounds are obtained. All the crystals obtained according to our protocols are found to be elastic. When crystals that do not conform to the desired structure type appeared, they were found to be brittle. This underlines the role of orthogonal-type interactions, whether they are of the σ-hole or π-hole type, in achieving elasticity. This is the first report in which π-hole interactions are used for property engineering. This example may illustrate a new generation of crystal engineering in which a particular property is associated more with topological rather than chemical attributes, although the significance of the latter cannot be completely excluded. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  6. Black Hole Magnetospheres

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-01

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  7. Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate

    NASA Astrophysics Data System (ADS)

    Cruzeiro, E. Zambrini; Tiranov, A.; Usmani, I.; Laplane, C.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M.

    2017-05-01

    We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd3 +:Y2SiO5 . The lifetime is measured as a function of magnetic field strength and orientation, temperature, and Nd3 + doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundred mT, and then finally decays rapidly for high field strengths. This behavior can be modeled with a relaxation rate dominated by Nd3 +-Nd3 + cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd3 + ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field-independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.

  8. Energy dependence of the band-limited noise in black hole X-ray binaries★

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2015-10-01

    Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.

  9. Can we track holes?

    PubMed Central

    Horowitz, Todd S.; Kuzmova, Yoana

    2011-01-01

    The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361

  10. Black Holes and Qubits

    NASA Astrophysics Data System (ADS)

    Borsten, L.; Duff, M. J.; Rubens, W.

    These notes have been compiled to accompany a series of four lectures given at the Kinki University Quantum Computing Series Summer School on Decoherence, Entanglement and Entropy, August 2009 at the Oxford Kobe Institute (Kobe, Japan). Each of the four lectures focuses on a particular topic falling under the broad umbrella of the "black-hole/qubit correspondence". Lecture I introduces the first instance of the black-hole/qubit correspondence, the relationship between the entanglement of three qubits and the entropy of STU black holes. Lecture II develops this correspondence to the case of {N} = 8 black holes and the tripartite entanglement of seven qubits. Lecture III examines the use of Jordan algebras and the Freudenthal triple system, which capture the U-duality symmetries of these black hole systems, in entanglement classification. Lecture IV introduces the superqubit, a natural candidate to represent supersymmetric quantum information. These lectures draw on work done with D. Dahanayake, H. Ebrahim, S. Ferrara and A. Marrani whose efforts are most gratefully acknowledged.

  11. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  12. Spontaneous closure of traumatic macular hole

    PubMed Central

    Sanjay, Srinivasan; Yeo, Tun Kuan; Au Eong, Kah-Guan

    2012-01-01

    Macular hole formation is a well-known complication following ocular trauma. Less commonly recognised is the spontaneous closure of such holes. A 27-year-old man presented with a history of blunt trauma to his left eye. Eye evaluation showed conjunctival laceration, diffuse retinal oedema and multiple retinal haemorrhages in that eye. A month later, he developed a full thickness macular hole. Two months later, there was spontaneous complete closure of the full-thickness macular hole in the left eye as confirmed on optical coherence tomography. Spontaneous closure of hole is not uncommon. Observation for a period of up to 12 months is a reasonable management option. Macular hole surgery for traumatic macular holes may be delayed in such cases. PMID:23961017

  13. Spontaneous closure of traumatic macular hole.

    PubMed

    Sanjay, Srinivasan; Yeo, Tun Kuan; Au Eong, Kah-Guan

    2012-07-01

    Macular hole formation is a well-known complication following ocular trauma. Less commonly recognised is the spontaneous closure of such holes. A 27-year-old man presented with a history of blunt trauma to his left eye. Eye evaluation showed conjunctival laceration, diffuse retinal oedema and multiple retinal haemorrhages in that eye. A month later, he developed a full thickness macular hole. Two months later, there was spontaneous complete closure of the full-thickness macular hole in the left eye as confirmed on optical coherence tomography. Spontaneous closure of hole is not uncommon. Observation for a period of up to 12 months is a reasonable management option. Macular hole surgery for traumatic macular holes may be delayed in such cases.

  14. A Black Hole Choir.

    NASA Image and Video Library

    2016-07-28

    The blue dots in this field of galaxies, known as the COSMOS field, show galaxies that contain supermassive black holes emitting high-energy X-rays. The black holes were detected by NASA's Nuclear Spectroscopic Array, or NuSTAR, which spotted 32 such black holes in this field and has observed hundreds across the whole sky so far. The other colored dots are galaxies that host black holes emitting lower-energy X-rays, and were spotted by NASA's Chandra X-ray Observatory. Chandra data show X-rays with energies between 0.5 to 7 kiloelectron volts, while NuSTAR data show X-rays between 8 to 24 kiloelectron volts. http://photojournal.jpl.nasa.gov/catalog/PIA20865

  15. Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    2000-01-01

    The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.

  16. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  17. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  18. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.

    1998-01-01

    Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.

  19. Photo-Detection on Narrow-Bandgap High-Mobility 2D Semiconductors

    NASA Astrophysics Data System (ADS)

    Charnas, Adam; Qiu, Gang; Deng, Yexin; Wang, Yixiu; Du, Yuchen; Yang, Lingming; Wu, Wenzhuo; Ye, Peide

    Photo-detection and energy harvesting device concepts have been demonstrated widely in 2D materials such as graphene, TMDs, and black phosphorus. In this work, we demonstrate anisotropic photo-detection achieved using devices fabricated from hydrothermally grown narrow-bandgap high-mobility 2D semiconductor. Back-gated FETs were fabricated by transferring the 2D flakes onto a Si/SiO2 substrate and depositing various metal contacts across the flakes to optimize the access resistance for optoelectronic devices. Photo-responsivity was measured and mapped by slightly biasing the devices and shining a laser spot at different locations of the device to observe and map the resulting photo-generated current. Optimization of the Schottky barrier height for both n and p at the metal-2D interfaces using asymmetric contact engineering was performed to improve device performance.

  20. Black holes and the multiverse

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  1. Black holes and the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleatingmore » during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.« less

  2. Black Hole Jerked Around Twice

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole itself, so this result differs from recently published work on recoiling black holes. "We think this is the best evidence ever seen for a black hole having been jerked around like this," said Edmund Hodges-Kluck of the University of Maryland. "We're not exactly sure what caused this behavior, but it was probably triggered by a collision between two galaxies." A team of astronomers used Chandra for a long observation of a galaxy known as 4C+00.58, which is located about 780 million light years from Earth. Like most galaxies, 4C+00.58 contains a supermassive black hole at its center, but this one is actively pulling in copious quantities of gas. Gas swirling toward the black hole forms a disk around the black hole. Twisted magnetic fields in the disk generate strong electromagnetic forces that propel some of the gas away from the disk at high speed, producing radio jets. A radio image of this galaxy shows a bright pair of jets pointing from left to right and a fainter, more distant line of radio emission running in a different direction. More specifically, 4C+00.58 belongs to a class of "X-shaped" galaxies, so called because of the outline of their radio emission. The new Chandra data have allowed astronomers to determine what may be happening in this system, and perhaps in others like it. The X-ray image reveals four different cavities around the black hole. These cavities come in pairs: one in the top-right and bottom-left, and another in the top-left and bottom-right. When combined with the orientation of the radio jets, the complicated geometry revealed in the Chandra image may

  3. The dissociations of visual processing of "hole" and "no-hole" stimuli: An functional magnetic resonance imaging study.

    PubMed

    Meng, Qianli; Huang, Yan; Cui, Ding; He, Lixia; Chen, Lin; Ma, Yuanye; Zhao, Xudong

    2018-05-01

    "Where to begin" is a fundamental question of vision. A "Global-first" topological approach proposed that the first step in object representation was to extract topological properties, especially whether the object had a hole or not. Numerous psychophysical studies found that the hole (closure) could be rapidly recognized by visual system as a primitive property. However, neuroimaging studies showed that the temporal lobe (IT), which lied at a late stage of ventral pathway, was involved as a dedicated region. It appeared paradoxical that IT served as a key region for processing the early component of visual information. Did there exist a distinct fast route to transit hole information to IT? We hypothesized that a fast noncortical pathway might participate in processing holes. To address this issue, a backward masking paradigm combined with functional magnetic resonance imaging (fMRI) was applied to measure neural responses to hole and no-hole stimuli in anatomically defined cortical and subcortical regions of interest (ROIs) under different visual awareness levels by modulating masking delays. For no-hole stimuli, the neural activation of cortical sites was greatly attenuated when the no-hole perception was impaired by strong masking, whereas an enhanced neural response to hole stimuli in non-cortical sites was obtained when the stimulus was rendered more invisible. The results suggested that whereas the cortical route was required to drive a perceptual response for no-hole stimuli, a subcortical route might be involved in coding the hole feature, resulting in a rapid hole perception in primitive vision.

  4. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  5. General Relativistic Simulations of Magnetized Plasmas Around Merging Supermassive Black Holes

    NASA Technical Reports Server (NTRS)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-01-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe, total amplification of the magnetic field of approx 2 orders of magnitude which is driven by the accretion onto the binary and that leads to stronger electromagnetic signals than in the force-free regime where such amplifications are not possible.

  6. 2. Photocopied July 1971 from photostat Jordan Narrows Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied July 1971 from photostat Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. JORDAN NARROWS STATION. PLAN AND SECTION. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  7. When Supermassive Black Holes Wander

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  8. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  9. The 2002 Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  10. Using LISA to Learn How Pairs of Black Holes Formed

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    measurable eccentricity anymore. But the upcoming space-based LISA mission, which will operate in a lower frequency band, might be able to pick up this signature.To determine if LISA can pull it off, Breivik and collaborators simulate two populations of binary black holes: one evolved in isolation in galactic fields, and the other formed dynamically in globular clusters and then ejected. The authors then explore the evolution of these populations masses and eccentricities as their orbits narrow into the LISA-detectable frequency band.Eccentricity evolution tracks as a function of gravitational-wave frequency for black-hole binaries formed in dynamical scenarios (black) and in isolation (blue for those with a common-envelope episode, green for those without). Eccentricities above 10-2 are measurable for all binaries; those above 10-3 are measurable for 90%. LISAs frequency band is shown in grey. [Breivik et al. 2016]Separating PopulationsBreivik and collaborators find that LISA will be able to make several important distinctions. First, if LISA detects binary black holes with eccentricities of e 0.01 at frequencies above 10-2 Hz, we can be fairly certainthat these originated from dynamical processes in dense stellar environments.For binary black holes detected with eccentricities of e 0.01 at lower frequencies, they could either have formed in dense stellar environments or they could have formed in isolation. Based on this studys results, however, those with measurable eccentricities that formed in isolation mostlikely originated from a common-envelope formation. Measuring eccentricities of such systems in the future could provide constraints on the physics of how this formation mechanism works.Though the field of gravitational-wave astronomy is only just beginning, its future is promising! Theoretical studies like this one will help us to extracta greater understanding from the observations we can expect down the road.BonusCheck out this beautiful simulationfrom Northwestern

  11. "Iron-Clad" Evidence For Spinning Black Hole

    NASA Astrophysics Data System (ADS)

    2003-09-01

    Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out

  12. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  13. Epiretinal proliferation in lamellar macular holes and full-thickness macular holes: clinical and surgical findings.

    PubMed

    Lai, Tso-Ting; Chen, San-Ni; Yang, Chung-May

    2016-04-01

    To report the clinical findings and surgical outcomes of lamellar macular holes (LMH) with or without lamellar hole-associated epiretinal proliferation (LHEP), and those of full-thickness macular holes (FTMH) presenting with LHEP. From 2009 to 2013, consecutive cases of surgically treated LMH, and all FTMH cases with LHEP were reviewed, given a follow-up time over 1 year. In the LMH group (43 cases), those with LHEP (19 cases) had significantly thinner bases and larger openings than those without (24 cases). The rate of disrupted IS/OS line was higher in the LHEP subgroup preoperatively (68.4 % vs 37.5 %), but similar between subgroups postoperatively (36.8 % and 33.3 %). The preoperative and postoperative visual acuity showed no significant difference between two subgroups. In the FTMH group (13 cases), the average hole size was 219.2 ± 92.1 μm. Permanent or transient spontaneous hole closure was noted in 69.2 % of cases. An intact IS-OS line was found in only 23 % of cases at the final follow-up. In the LMH group, LHEP was associated with a more severe defect but didn't affect surgical outcomes. In the FTMH group, spontaneous hole closure was frequently noted. Despite small holes, disruption of IS-OS line was common after hole closure.

  14. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  15. Black Hole in 3-D

    NASA Image and Video Library

    1999-11-30

    This three-dimensional illustration shows how the rotating space around a black hole twists up the magnetic field in the plasma falling toward the black hole. The black sphere at the center of the figure is the black hole itself. http://photojournal.jpl.nasa.gov/catalog/PIA04207

  16. Climate Change: Providing Equitable Access to a Rigorous and Engaging Curriculum

    ERIC Educational Resources Information Center

    Cardichon, Jessica; Roc, Martens

    2013-01-01

    This report examines how implementing rigorous and engaging curriculum aligned with college- and career-ready standards fosters positive school climates in which students are motivated to succeed, achievement gaps narrow, and learning and outcomes improve. It includes federal, state, and local recommendations for increasing access to high-quality,…

  17. Drilling Holes in Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Minlionica, Ronald

    1987-01-01

    Relatively long-lived bit produces high-quality holes. Effective combination of cutting-tool design, feed, and speed determined for drilling 3/16-and-1/4-in. (0.48-and 0.65-cm) diameter holes in 0.18 in. (0.46cm) thick GM3013A or equivalent graphite/epoxy corrugated spar without backup material and without coolant. Developed to produce holes in blind areas, optimal techniques yielded holes of high quality, with minimal or acceptable delamination and/or fiber extension on drill-exit side.

  18. The Black Hole Masses and Star Formation Rates of z>1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.

    2011-04-01

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  19. Force-feeding Black Holes

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2012-04-01

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few percent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees kelvin, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion σ of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and σ that resembles the empirical M BH-σ relation.

  20. Associations between narrow angle and adult anthropometry: the Liwan Eye Study.

    PubMed

    Jiang, Yuzhen; He, Mingguang; Friedman, David S; Khawaja, Anthony P; Lee, Pak Sang; Nolan, Winifred P; Yin, Qiuxia; Foster, Paul J

    2014-06-01

    To assess the associations between narrow angle and adult anthropometry. Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p < 0.001; vs height p < 0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women.

  1. Structural and Lithologic Characterization of the SAFOD Pilot Hole and Phase One Main Hole

    NASA Astrophysics Data System (ADS)

    Barton, D. C.; Bradbury, K.; Solum, J. G.; Evans, J. P.

    2005-12-01

    Petrological and microstructural analyses of drill cuttings were conducted for the San Andreas Fault Observatory at Depth (SAFOD) Pilot Hole and Main Hole projects. Grain mounts were produced at ~30 m (100 ft) intervals from drill cuttings collected from the Pilot Hole to a depth of 2164 m (7100 ft) and from Phase 1 of the SAFOD main hole to a depth of 3067 m (10062 ft). . Thin-section grain mount analysis included identification of mineral composition, alteration, and deformation within individual grains, measured at .5 mm increments on an equally spaced, 300 point grid pattern. Lithologic features in the Quaternary/Tertiary deposits from 30 - 640 m (100-2100 ft) in the Pilot Hole, and 670 - 792 m (2200 - 2600 ft) in the Phase 1 main hole, include fine-grained, thinly bedded sediments with clasts of fine-grained volcanic groundmass. Preliminary grain mount analysis from 1920 - 3067 m (6300 - 10062) in the Phase 1 main hole, indicates a sedimentary sequence consisting of fine-grained lithic fragments of very fine-grained shale. Deformation mechanisms observed within the cuttings of granitic rocks from 914 - 1860 m (3000 - 6100 ft.) include intracrystalline plasticity and cataclasis. Intracrystalline plastic deformation within quartz and feldspar grains is indicated by undulatory extinction, ribbon grains, chessboard patterns, and deformation twins and lamellae. Cataclastic deformation is characterized by intra- and intergranular microfractures, angular grains, gouge zones, iron-oxide banding, and comminution. Mineral and cataclasite abundances were plotted as a function of weight percent vs. depth. Plots of quartz and feldspar abundances are also correlated with XRD weight percent data from 1160 - 1890 m (3800 - 6200 ft.) in the granitic and granodioritic sequences of the Phase 1 main hole. Regions of the both of the drill holes with cataclasite abundances ranging from 20 - 30 wt% are interpreted as shear zones. Shear zones identified in this study from 1150 - 1420

  2. 30 CFR 57.9360 - Shelter holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  3. 30 CFR 57.9360 - Shelter holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  4. 30 CFR 57.9360 - Shelter holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  5. 30 CFR 57.9360 - Shelter holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  6. 30 CFR 57.9360 - Shelter holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  7. Elongated Coronal Hole

    NASA Image and Video Library

    2018-03-19

    Over the past week, the single, largest feature on the sun was a long coronal hole that stretched out across more than half the diameter of the sun (Mar. 13-15, 2018). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light like the one you see here. They are areas of open magnetic fields from which solar wind rushes out into space. This area likely generated the beautiful aurora that were reportedly observed on March 14th in regions near Earth's poles. With the Earth set in the image to show scale, you get a good sense of just how extensive this hole is. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22345

  8. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  9. Remarks on non-singular black holes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2018-01-01

    We briefly discuss non-singular black hole models, with the main focus on the properties of non-singular evaporating black holes. Such black holes possess an apparent horizon, however the event horizon may be absent. In such a case, the information from the black hole interior may reach the external observer after the complete evaporation of the black hole. This model might be used for the resolution of the information loss puzzle. However, as we demonstrate, in a general case the quantum radiation emitted from the black hole interior, calculated in the given black hole background, is very large. This outburst of the radiation is exponentially large for models with the redshift function α = 1. We show that it can be suppressed by including a non-trivial redshift function. However, even this suppression is not enough to guarantee self-consistency of the model. This problem is a manifestation of a general problem, known as the "mass inflation". We briefly comment on possible ways to overcome this problem in the models of non-singular evaporating black holes.

  10. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  11. Shaping Globular Clusters with Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  12. Stability of squashed Kaluza-Klein black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Masashi; Ishihara, Hideki; Murata, Keiju

    2008-03-15

    The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1){approx_equal}U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Kleinmore » black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.« less

  13. Newborn Black Holes

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  14. Scalarized hairy black holes

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Yazadjiev, Stoytcho

    2015-05-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  15. 30 CFR 77.1010 - Collaring holes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  16. 30 CFR 77.1010 - Collaring holes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  17. 30 CFR 77.1010 - Collaring holes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  18. 30 CFR 77.1010 - Collaring holes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  19. 30 CFR 77.1010 - Collaring holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  20. Conformal Field Theory and black hole physics

    NASA Astrophysics Data System (ADS)

    Sidhu, Steve

    2012-01-01

    This thesis reviews the use of 2-dimensional conformal field theory applied to gravity, specifically calculating Bekenstein-Hawking entropy of black holes in (2+1) dimensions. A brief review of general relativity, Conformal Field Theory, energy extraction from black holes, and black hole thermodynamics will be given. The Cardy formula, which calculates the entropy of a black hole from the AdS/CFT duality, will be shown to calculate the correct Bekenstein-Hawking entropy of the static and rotating BTZ black holes. The first law of black hole thermodynamics of the static, rotating, and charged-rotating BTZ black holes will be verified.

  1. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    PubMed

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.

    2015-01-01

    Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840

  3. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  4. Simulations of nearly extremal binary black holes

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  5. Quantum information erasure inside black holes

    DOE PAGES

    Lowe, David A.; Thorlacius, Larus

    2015-12-15

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has beenmore » erased by the black hole singularity. Furthermore, this property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.« less

  6. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  7. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  8. A Triumvirate: Three Coronal Holes

    NASA Image and Video Library

    2015-09-10

    Three substantial coronal holes rotated across the face of the Sun the week of Sept. 8-10, 2015 as seen by NASA Solar Dynamics Observatory. Coronal holes are areas where the Sun magnetic field is open and a source of streaming solar wind. They appear darker in extreme ultraviolet light because there is less material in the hole areas being imaged in this specific wavelength of light. It is a little unusual to have three coronal holes at the same time, but neither is it a rare occurrence. http://photojournal.jpl.nasa.gov/catalog/PIA19950

  9. Black holes as antimatter factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Petrov, Alexey A.; Dolgov, Alexander D., E-mail: cosimo.bambi@ipmu.jp, E-mail: dolgov@fe.infn.it, E-mail: apetrov@physics.wayne.edu

    2009-09-01

    We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of the higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 10{sup 20} g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron-positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back-captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.

  10. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  11. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  12. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  13. FORCE-FEEDING BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begelman, Mitchell C., E-mail: mitch@jila.colorado.edu

    2012-04-10

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ({sup h}yperaccretion{sup )}. This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few percent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below amore » few thousand degrees kelvin, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion {sigma} of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and {sigma} that resembles the empirical M{sub BH}-{sigma} relation.« less

  14. Consequences of narrow cyclotron emission from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Weaver, R. P.

    1978-01-01

    The implications of the recent observations of a narrow cyclotron line in the hard X-ray spectrum of Hercules X-1 are studied. A Monte Carlo code is used to simulate the X-ray transfer of an intrinsically narrow feature at approximately 56 keV through an opaque, cold magnetospheric shell. The results of this study indicate that if a narrow line can be emitted by the source region, then only about 10% of the photons remain in a narrow feature after scattering through the shell. The remaining photons are scattered into a broad feature (FWHM approximately 30 keV) that peaks near 20 keV. Thus, these calculations indicate that the intrinsic source luminosity of the cyclotron line is at least an order of magnitude greater than the observed luminosity.

  15. Black holes with halos

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  16. Coronal Hole Coming Around

    NASA Image and Video Library

    2016-12-06

    A substantial coronal hole began to rotate into view over the past few days (Dec. 1-2, 2016). Coronal holes are magnetically open areas of the sun's magnetic field structure that spew streams of high speed solar wind into space. In about a week or so that coronal hole might send streams of particles in the direction of Earth. Often times these streams can interact with Earth's magnetosphere and generate aurora. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21208

  17. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less

  18. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  19. Simulations of binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2017-01-01

    Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.

  20. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  1. The case for artificial black holes.

    PubMed

    Leonhardt, Ulf; Philbin, Thomas G

    2008-08-28

    The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.

  2. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  3. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    DTIC Science & Technology

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  4. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    PubMed Central

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants’ face recognition abilities are subject to “perceptual narrowing,” the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in developing humans and primates. Though the phenomenon is highly robust and replicable, there have been few efforts to model the emergence of perceptual narrowing as a function of the accumulation of experience with faces during infancy. The goal of the current study is to examine how perceptual narrowing might manifest as statistical estimation in “face space,” a geometric framework for describing face recognition that has been successfully applied to adult face perception. Here, I use a computer vision algorithm for Bayesian face recognition to study how the acquisition of experience in face space and the presence of race categories affect performance for own and other-race faces. Perceptual narrowing follows from the establishment of distinct race categories, suggesting that the acquisition of category boundaries for race is a key computational mechanism in developing face expertise. PMID:22709406

  5. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  6. Testing quantum gravity through dumb holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7

    We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate thatmore » such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.« less

  7. Multipole moments of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.

    General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metricmore » depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.« less

  8. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  9. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.

  10. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  11. Black Hole Paradoxes

    NASA Astrophysics Data System (ADS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-10-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals.

  12. BOOK REVIEW: Introduction to Black Hole Physics Introduction to Black Hole Physics

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro

    2012-07-01

    Introduction to Black Hole Physics is a large volume (504 pages), and yet despite this it is still really an introductory text. The book gives an introduction to general relativity, but most of the text is dedicated to attracting the reader's attention to the interesting world of black hole physics. In this sense, the book is very distinct from other textbooks on general relativity. We are told that it was based on the lectures given by Professor Frolov, one of the authors, over the last 30 years. One can obtain the basic ideas about black holes, and also the necessary tips to understand general relativity at a very basic level. For example, in the discussion about particle motion in curved space, the authors start with a brief review on analytical mechanics. The book does not require its readers to have a great deal of knowledge in advance. If you are familiar with such a basic subject, you can simply omit that section. The reason why I especially picked up on this topic as an example is that the book devotes a significant number of pages to geodesic motions in black hole spacetime. One of the main motivations to study black holes is related to how they will actually be observed, once we develop the ability to observe them clearly. The book does explain such discoveries as, for instance, how the motion of a particle is related to a beautiful mathematical structure arising from the hidden symmetry of spacetime, which became transparent via the recent progress in the exploration of black holes in higher dimensions; a concise introduction to this latest topic is deferred to Appendix D, so as not to distract the reader with its mathematical complexities. It should be also mentioned that the book is not limited to general relativistic aspects: quantum fields on a black hole background and Hawking radiation are also covered. Also included are current hot topics, for instance the gravitational waves from a system including black holes, whose first direct detection is

  13. Phonon-mediated high-T c superconductivity in hole-doped diamond-like crystalline hydrocarbon

    DOE PAGES

    Lian, Chao-Sheng; Wang, Jian-Tao; Duan, Wenhui; ...

    2017-05-03

    We here predict by ab initio calculations phonon-mediated high-T c superconductivity in hole-doped diamond-like cubic crystalline hydrocarbon K 4-CH (space group I2 1/3). This material possesses three key properties: (i) an all-sp 3 covalent carbon framework that produces high-frequency phonon modes, (ii) a steep-rising electronic density of states near the top of the valence band, and (iii) a Fermi level that lies in the σ-band, allowing for a strong coupling with the C-C bond-stretching modes. The simultaneous presence of these properties generates remarkably high superconducting transition temperatures above 80 K at an experimentally accessible hole doping level of only amore » few percent. These results identify a new extraordinary electron-phonon superconductor and pave the way for further exploration of this novel superconducting covalent metal.« less

  14. Black Holes Have Simple Feeding Habits

    NASA Astrophysics Data System (ADS)

    2008-06-01

    The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study

  15. Entropy of black holes with multiple horizons

    NASA Astrophysics Data System (ADS)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  16. Parametric Dynamic Load Prediction of a Narrow Gauge Rocket Sled

    DTIC Science & Technology

    2006-12-01

    Monorail λ Compared to Sled Tests.......................................................... 11 Figure 2.1 Application of Vertical λ to a Narrow Gauge sled...Three distinct sled configurations are used: monorail , dual rail wide gauge, and dual rail narrow gauge. Of the three, the narrow gauge...weight and the resulting value was termed λ. Monorail λ factor loading was first documented by Mixon (1971) where a few measured data points were

  17. Opportunity Leaves a Trail of 'Rat' Holes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Opportunity's rock abrasion tool, known informally as the 'Rat,' has nibbled seven holes into the slope of 'Endurance Crater.' This image from the rover's navigation camera was released previously (PIA06716) without the Rat holes labeled so that viewers could try to find the holes themselves. Here, the holes have been identified. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the Rat hole targets are: 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' These holes were drilled on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter.

  18. Plasma electron hole kinematics. I. Momentum conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, I. H.; Zhou, C.

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, includingmore » self-acceleration at formation, and hole pushing and trapping by ion streams.« less

  19. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  20. Electroformed screens with uniform hole size

    NASA Technical Reports Server (NTRS)

    Schaer, G. R.

    1968-01-01

    Efficient method electroforms fine-mesh nickel screens, or plagues, with uniform hole size and accurate spacing between holes. An electroformed nickel mandrel has nonconducting silicone rubber projections that duplicate the desired hole size and shape in the finished nickel screen.

  1. Resource Letter BH-1: Black Holes.

    ERIC Educational Resources Information Center

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  2. Black holes at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-03-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the Large Hadron Collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC.

  3. Sizes of Black Holes Throughout the Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    What is the distribution of sizes of black holes in our universe? Can black holes of any mass exist, or are there gaps in their possible sizes? The shape of this black-hole mass function has been debated for decades and the dawn of gravitational-wave astronomy has only spurred further questions.Mind the GapsThe starting point for the black-hole mass function lies in the initial mass function (IMF) for stellar black holes the beginning size distribution of black holes after they are born from stars. Instead of allowing for the formation of stellar black holes of any mass, theoretical models propose two gaps in the black-hole IMF:An upper mass gap at 50130 solar masses, due to the fact that stellar progenitors of black holes in this mass range are destroyed by pair-instability supernovae.A lower mass gap below 5 solar masses, which is argued to arise naturally from the mechanics of supernova explosions.Missing black-hole (BH) formation channels due to the existence of the lower gap (LG) and the upper gap (UG) in the initial mass function. a) The number of BHs at all scales are lowered because no BH can merge with BHs in the LG to form a larger BH. b) The missing channel responsible for the break at 10 solar masses, resulting from the LG. c) The missing channel responsible for the break at 60 solar masses, due to the interaction between the LG and the UG. [Christian et al. 2018]We can estimate the IMF for black holes by scaling a typical IMF for stars and then adding in these theorized gaps. But is this initial distribution of black-hole masses the same as the distribution that we observe in the universe today?The Influence of MergersBased on recent events, the answer appears to be no! Since the first detections of gravitational waves in September 2015, we now know that black holes can merge to form bigger black holes. An initial distribution of black-hole masses must therefore evolve over time, as mergers cause the depletion of low-mass black holes and an increase in

  4. Lectures on Black Hole Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space-time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear Physics B380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear Physics B378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of

  5. Coronal Hole Faces Earth

    NASA Image and Video Library

    2017-08-14

    A substantial coronal hole rotated into a position where it is facing Earth (Aug. 9-11, 2017). Coronal holes are areas of open magnetic field that spew out charged particles as solar wind that spreads into space. If that solar wind interacts with our own magnetosphere it can generate aurora. In this view of the sun in extreme ultraviolet light, the coronal hole appears as the dark stretch near the center of the sun. It was the most distinctive feature on the sun over the past week. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21874

  6. Universally stable black holes

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    We argue that, when certain higher-curvature corrections are added to the four-dimensional Einstein-Hilbert action, black holes become stable below certain mass. We show this to be the case for an infinite family of ghost-free theories involving terms of arbitrarily high order in curvature. The thermodynamic behavior of the new black holes is universal for arbitrary values of the couplings, with the only exception of the Schwarzschild solution itself, which is recovered when all the couplings are set to zero. For this class of theories, the issue of non-unitary evolution is inexistent, as black holes never evaporate completely.

  7. LIGO Discovers the Merger of Two Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    is: how do binary black holes form? Two primary mechanisms have been proposed:A binary star system contains two stars that are each massive enough to individually collapse into a black hole. If the binary isnt disrupted during the two collapse events, this forms an isolated black-hole binary.Single black holes form in dense cluster environments and then because they are the most massive objects sink to the center of the cluster. There they form pairs through dynamical interactions.Now that were able to observe black-hole binaries through gravitational-wave detections, one way we could distinguish between the two formation mechanisms is from spin measurements. If we discover a clear preference for the misalignment of the two black holes spins, this would favor formation in clusters, where theres no reason for the original spins to be aligned.The current, single detection is not enough to provide constraints, but if we can compile a large enough sample of events, we can start to present a statistical case favoring one channel over the other.What does GW150914 mean for the future of gravitational-wave detection?The fact that Advanced LIGO detected an event even before the start of its first official observing run is certainly promising! The LIGO team estimates that the volume the detectors can probe will still increase by at least a factor of ~10 as the observing runs become more sensitive and of longer duration.Aerial view of the Virgo interferometer near Pisa, Italy. [Virgo Collaboration]In addition, LIGO is not alone in the gravitational-wave game. LIGOs counterpart in Europe, Virgo, is also undergoing design upgrades to increase its sensitivity. Within this year, Virgo should be able to take data simultaneously with LIGO, allowing for better localization of sources. And the launch of (e)LISA, ESAs planned space-based interferometer, will grant us access to a new frequency range, opening a further window to the gravitational-wave sky.The detection of GW150914 marks

  8. Flows of X-ray gas reveal the disruption of a star by a massive black hole.

    PubMed

    Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial

    2015-10-22

    Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

  9. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  10. Archival policies and collections database for the Woods Hole Science Center's marine sediment samples

    USGS Publications Warehouse

    Buczkowski, Brian J.; Kelsey, Sarah A.

    2007-01-01

    The Woods Hole Science Center of the U.S. Geological Survey (USGS) has been an active member of the Woods Hole research community, Woods Hole, Massachusetts, for over 40 years. In that time there have been many projects that involved the collection of sediment samples conducted by USGS scientists and technicians for the research and study of seabed environments and processes. These samples were collected at sea or near shore and then brought back to the Woods Hole Science Center (WHSC) for analysis. While at the center, samples are stored in ambient temperature, refrigerated and freezing conditions ranging from +2º Celsius to -18º Celsius, depending on the best mode of preparation for the study being conducted or the duration of storage planned for the samples. Recently, storage methods and available storage space have become a major concern at the WHSC. The core and sediment archive program described herein has been initiated to set standards for the management, methods, and duration of sample storage. A need has arisen to maintain organizational consistency and define storage protocol. This handbook serves as a reference and guide to all parties interested in using and accessing the WHSC's sample archive and also defines all the steps necessary to construct and maintain an organized collection of geological samples. It answers many questions as to the way in which the archive functions.

  11. Pulse stretcher for narrow pulses

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1974-01-01

    A pulse stretcher for narrow pulses is presented. The stretcher is composed of an analog section for processing each arriving analog pulse and a digital section with logic for providing command signals to the gates and switches in the analog section.

  12. Dynamical manifestations of quantum chaos: correlation hole and bulge

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; Santos, Lea F.

    2017-10-01

    A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  13. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  14. Do Hypervolumes Have Holes?

    PubMed

    Blonder, Benjamin

    2016-04-01

    Hypervolumes are used widely to conceptualize niches and trait distributions for both species and communities. Some hypervolumes are expected to be convex, with boundaries defined by only upper and lower limits (e.g., fundamental niches), while others are expected to be maximal, with boundaries defined by the limits of available space (e.g., potential niches). However, observed hypervolumes (e.g., realized niches) could also have holes, defined as unoccupied hyperspace representing deviations from these expectations that may indicate unconsidered ecological or evolutionary processes. Detecting holes in more than two dimensions has to date not been possible. I develop a mathematical approach, implemented in the hypervolume R package, to infer holes in large and high-dimensional data sets. As a demonstration analysis, I assess evidence for vacant niches in a Galapagos finch community on Isabela Island. These mathematical concepts and software tools for detecting holes provide approaches for addressing contemporary research questions across ecology and evolutionary biology.

  15. 2009 Antarctic Ozone Hole

    NASA Image and Video Library

    2009-09-16

    The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html

  16. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  17. Internal limiting membrane flap transposition for surgical repair of macular holes in primary surgery and in persistent macular holes.

    PubMed

    Leisser, Christoph; Hirnschall, Nino; Döller, Birgit; Varsits, Ralph; Ullrich, Marlies; Kefer, Katharina; Findl, Oliver

    2018-03-01

    Classical or temporal internal limiting membrane (ILM) flap transposition with air or gas tamponade are current trends with the potential to improve surgical results, especially in cases with large macular holes. A prospective case series included patients with idiopathic macular holes or persistent macular holes after 23-G pars plana vitrectomy (PPV) and ILM peeling with gas tamponade. In all patients, 23-G PPV and ILM peeling with ILM flap transposition with gas tamponade and postoperative face-down position was performed. In 7 of 9 eyes, temporal ILM flap transposition combined with pedicle ILM flap could be successfully performed and macular holes were closed in all eyes after surgery. The remaining 2 eyes were converted to pedicle ILM flap transposition with macular hole closure after surgery. Three eyes were scheduled as pedicle ILM flap transposition due to previous ILM peeling. In 2 of these eyes, the macular hole could be closed with pedicle ILM flap transposition. In 3 eyes, free ILM flap transposition was performed and in 2 of these eyes macular hole could be closed after surgery, whereas in 1 eye a second surgery, performed as pedicle ILM flap transposition, was performed and led to successful macular hole closure. Use of ILM flaps in surgical repair of macular hole surgery is a new option of treatment with excellent results independent of the diameter of macular holes. For patients with persistent macular holes, pedicle ILM flap transposition or free ILM flap transposition are surgical options.

  18. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  19. How to regulate energy levels and hole mobility of spiro-type hole transport materials in perovskite solar cells.

    PubMed

    Chi, Wei-Jie; Sun, Ping-Ping; Li, Ze-Sheng

    2016-10-21

    Methoxyaniline-based organic small molecules with three-dimensional structure have been proven as the most promising hole conductor for state-of-the-art perovskite devices. A fundamental understanding of the electronic properties and hole transport behavior of spiro-CPDT analogues, which is dependent on the number and position of the -OCH 3 groups, is significant for their potential applications as hole transport materials of perovskite solar cells. Our results from density functional theory calculations indicate that meta-substitution is more beneficial to reduce the highest occupied molecular orbital (HOMO) levels of molecules compared with ortho- and para-substitution. Furthermore, the hole mobility can be improved by ortho-substitution or mixed ortho- and para-substitution. Most interestingly, it is found that the improvement in hole mobility is at the expense of raising the HOMO level of spiro-CPDT analogues. These results can be useful in the process of designing and synthesizing excellent hole transport materials with suitable HOMO levels and high hole mobility.

  20. REVIEWS OF TOPICAL PROBLEMS: Search for black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    2003-04-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed.

  1. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  2. Familial trends in a population with macular holes.

    PubMed

    Kay, Christine Nichols; Pavan, Peter Reed; Small, Laurie Buccina; Zhang, Tao; Zamba, Gideon K D; Cohen, Steven Myles

    2012-04-01

    To determine if patients with macular hole report an increased family history of macular hole compared with control patients and compare the report of family history between patients with unilateral and bilateral macular holes. This was a multicenter case-control study. Charts of patients coded with diagnosis of macular hole were reviewed, and the diagnosis of idiopathic full-thickness macular hole was ascertained in 166 patients. The control group comprised 136 patients without macular hole or trauma who presented with senile cataract. Family history was obtained from all patients through a telephone interview. Six of 166 (3.6%) macular hole patients surveyed reported a history of macular hole in a primary relative compared with none of 136 (0.0%) control patients (odds ratio is infinity, with 95% confidence interval 1.295 to infinity); however, this finding may be explained by confounders such as age and number of family members. Two of the 142 (1.4%) patients with unilateral holes versus 4 of the 24 (16.7%) patients with bilateral holes reported a family history (odds ratio is 0.0714, with 95% confidence interval 0.0063 to 0.5537), and this finding remains significant when logistic regression is performed to evaluate variables of age and number of family members as potential confounders. There is an increased report of familial occurrence of macular hole in patients with macular holes compared with control patients; however, logistic regression relates this finding to variables of age and number of family members. Patients with bilateral macular holes are more likely to report a family history of macular hole than patients with unilateral macular holes, and this finding remains significant in the presence of age and number of family members. These findings may suggest a familial component to macular hole.

  3. Black holes as parts of entangled systems

    NASA Astrophysics Data System (ADS)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  4. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  5. High precise measurement of tiny angle dimensional holes for the unit-holes of the LAMOST Focal Plane Plate

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng

    2008-07-01

    In the LAMOST project, the unit-holes on the Focal Plane Plate are the final installation location of the optical fiber positioning system. Theirs precision will influence the observation efficiency of the LAMOST. For the unique requirements, the unit-holes on the Focal Plane Plate are composed by a series of tiny angle dimensional holes which dimensional angle are between 16' to 2.5°. According to these requirements, the measurement of the tiny angle dimensional holes for the unit-holes needs to less than 3'. And all the unit-holes point to the virtual sphere center of the Focal Plane Plate. To that end, the angle departure of the unit-holes axis is changed to the distance from the virtual sphere center of Focal Plane Plate to the unit-holes axis. That is the better way to evaluate the technical requirements of the dimensional angle errors. In the measuring process, common measuring methods do not fit for the tiny angle dimensional hole by CMM(coordinate measurement machine). An extraordinary way to solve this problem is to insert a measuring stick into a unit-hole, with a target ball on the stick. Then measure the low point of the ball center and pull out the stick for the high station of center. Finally, calculate the two points for the unit-hole axis to get the angle departure. But on the other hand, use this methods will bring extra errors for the measuring stick and the target ball. For better analysis this question, a series experiments are mentioned in this paper, which testify that the influence of the measure implement is little. With increasing the distance between the low point and the high point position in the measuring process should enhance the accuracy of dimensional angle measurement.

  6. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  7. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  8. High precision, rapid laser hole drilling

    DOEpatents

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  9. Pregalactic black holes - A new constraint

    NASA Technical Reports Server (NTRS)

    Barrow, J. D.; Silk, J.

    1979-01-01

    Pregalactic black holes accrete matter in the early universe and produce copious amounts of X radiation. By using observations of the background radiation in the X and gamma wavebands, a strong constraint is imposed upon their possible abundance. If pregalactic black holes are actually present, several outstanding problems of cosmogony can be resolved with typical pregalactic black hole masses of 100 solar masses. Significantly more massive holes cannot constitute an appreciable mass fraction of the universe and are limited by a specific mass-density bound.

  10. 21 CFR 882.5250 - Burr hole cover.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a) Identification. A burr hole cover is a plastic or metal device used to cover or plug holes drilled into the skull...

  11. 21 CFR 882.5250 - Burr hole cover.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a) Identification. A burr hole cover is a plastic or metal device used to cover or plug holes drilled into the skull...

  12. 21 CFR 882.5250 - Burr hole cover.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a) Identification. A burr hole cover is a plastic or metal device used to cover or plug holes drilled into the skull...

  13. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  14. Dual jets from binary black holes.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  15. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    NASA Astrophysics Data System (ADS)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  16. Caves in caves: Post depositional holes in stalagmites

    NASA Astrophysics Data System (ADS)

    Shtober Zisu, Nurit; Schwarcz, Henry P.; Chow, Tom; Konyer, Norman B.; Noseworthy, Michael D.

    2010-05-01

    Previous studies of speleothems for the purposes of isotopic analysis and U-series dating have resulted in preparation of stalagmites by sectioning longitudinally along the growth axis. We frequently observe holes in such sections, both along the growth axis, and laterally to it, ranging in size up to several mm in diameter. Our initial supposition was that these holes are produced during the growth of the stalagmite under constant dripping conditions, but it was found that two kinds of holes exist within the stalagmites. "Axial holes" were formed syngenetically as is shown by the depression of growth layers into the holes and the persistence of the axial hole over many cm of the growth history. Some cut the active growth surface of the stalagmite. "Off-axis holes" are seen in many stalagmites (as well as stalactites); they cut discordantly through growth layers, and never terminate at a growth surface. They range in size from a few mm to several cm in maximum dimension, and may not be coaxially oriented. They are lined with micron-sized, randomly oriented calcite crystals and under which lies an organic-rich coating. We used CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) scanning in order to locate holes, and to search for water trapped in these macro-inclusions. These methods, allow us to visualize the holes without destruction of the stalagmite, the holes and the surrounding calcite. To our best knowledge, the present paper is the first to combine CT and MRI methods in the study of fluid inclusions in rocks, or in visualizing the distribution of holes in speleothems. CT scans reveal abundant off-axis holes in some speleothems, while most display at least a few holes. MRI scans shows that, in uncut speleothems, these holes never contain water (although Genty et al. [2002] found water-filled holes in some stalagmites). Off-axis holes may be a result of bioerosion, possibly bacterial, followed by partial refilling of the hole with calcite which is

  17. Advantage of hole stimulus in rivalry competition.

    PubMed

    Meng, Qianli; Cui, Ding; Zhou, Ke; Chen, Lin; Ma, Yuanye

    2012-01-01

    Mounting psychophysical evidence suggests that early visual computations are sensitive to the topological properties of stimuli, such as the determination of whether the object has a hole or not. Previous studies have demonstrated that the hole feature took some advantages during conscious perception. In this study, we investigate whether there exists a privileged processing for hole stimuli during unconscious perception. By applying a continuous flash suppression paradigm, the target was gradually introduced to one eye to compete against a flashed full contrast Mondrian pattern which was presented to the other eye. This method ensured that the target image was suppressed during the initial perceptual period. We compared the initial suppressed duration between the stimuli with and without the hole feature and found that hole stimuli required less time than no-hole stimuli to gain dominance against the identical suppression noise. These results suggest the hole feature could be processed in the absence of awareness, and there exists a privileged detection of hole stimuli during suppressed phase in the interocular rivalry.

  18. Visual Outcomes of Macular Hole Surgery.

    PubMed

    Khaqan, Hussain Ahmad; Lubna; Jameel, Farrukh; Muhammad

    2016-10-01

    To determine the mean visual improvement after internal limiting membrane (ILM) peeling assisted with brilliant blue staining of ILM in macular hole, and stratify the mean visual improvement in different stages of macular hole. Quasi-experimental study. Eye outpatient department (OPD), Lahore General Hospital, Lahore from October 2013 to December 2014. Patients with macular hole underwent measurement of best corrected visual acuity (BCVA) and fundus examination with indirect slit lamp biomicroscopy before surgery. The diagnosis of all patients was confirmed on optical coherence tomography. All patients had 23G trans-conjunctival three ports pars plana vitrectomy, ILM peeling, and endotamponade of SF6. The mean visual improvement of different stages of macular hole was noted. Paired t-test was applied. There were 30 patients, 15 males and 15 females (50%). The mean age was 62 ±10.95 years. They presented with low mean preoperative visual acuity (VA) of 0.96 ±0.11 logMar. The mean postoperative VAwas 0.63 ±0.24 logMar. The mean visual increase was 0.33 ±0.22 logMar (p < 0.001). In patients with stage 2 macular hole, mean visual increase was 0.35 ±0.20 logMar (p < 0.001). In patients with stage 3 macular hole, mean visual increase was 0.44 ±0.21 logMar (p < 0.001), and in patients with stage 4 macular hole it was 0.13 ± 0.1 logMar (p = 0.004). ILM peeling assisted with brilliant blue is a promising surgery for those patients who have decreased vision due to macular hole, in 2 - 4 stages of macular hole.

  19. Boosting jet power in black hole spacetimes.

    PubMed

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  20. Plasmonically enhanced electromotive force of narrow bandgap PbS QD-based photovoltaics.

    PubMed

    Li, Xiaowei; McNaughter, Paul D; O'Brien, Paul; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-30

    Electromotive force of photovoltaics is a key to define the output power density of photovoltaics. Multiple exciton generation (MEG) exhibited by semiconductor quantum dots (QDs) has great potential to enhance photovoltaic performance owing to the ability to generate more than one electron-hole pairs when absorbing a single photon. However, even in MEG-based photovoltaics, limitation of modifying the electromotive force exists due to the intrinsic electrochemical potential of the conduction band-edges of QDs. Here we report a pronouncedly improved photovoltaic performance by constructing a PbS QD-sensitized electrode that comprises plasmon-active Au nanoparticles embedded in a titanium dioxide thin film. Significant enhancement on electromotive force is characterized by the onset potential of photocurrent generation using MEG-effective PbS QDs with a narrow bandgap energy (Eg = 0.9 eV). By coupling with localized surface plasmon resonance (LSPR), such QDs exhibit improved photoresponses and the highest output power density over the other QDs with larger bandgap energies (Eg = 1.1 and 1.7 eV) under visible light irradiation. The wavelength-dependent onset potential and the output power density suggest effective electron injection owing to the enhanced density of electrons excited by energy overlapping between MEG and LSPR.

  1. INDICATION OF THE BLACK HOLE POWERED JET IN M87 BY VSOP OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi, E-mail: asada@asiaa.sinica.edu.tw, E-mail: nakamura@asiaa.sinica.edu.tw, E-mail: hypu@asiaa.sinica.edu.tw

    2016-12-10

    In order to study the collimation and acceleration mechanism of relativistic jets, the jet streamline of M87 at milliarcsecond scale is extensively investigated with images from VSOP observations at 1.6 and 5 GHz. Thanks to the higher angular resolution of VSOP, especially in the direction transverse to the jet, we resolved the jet streamline into three ridgelines at the scale of milli arcseconds. While the properties of the outer two ridgelines are in good agreement with those measured in previous observations and can be expressed by one power-law line with a power law index of 1.7, an inner ridgeline ismore » clearly observed for the first time. We compared the measured size with the outermost streamline expected by Blandford and Znajek's parabolic solutions, which are anchored at the event horizon, with different black hole spin parameters. We revealed that the observed inner ridgeline is narrower than the prediction, suggesting the origin of the inner ridgeline to be part of a spine originating from the spinning black hole. The inner ridgeline becomes very dim at large distances from the central engine at 5 GHz. We considered two possible cases for this; Doppler beaming and/or radiative cooling. Either case seems to be reasonable for its explanation, and future multi-frequency observations will discriminate those two possibilities.« less

  2. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Stephen A.; Schauffler, Sue

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  3. LIGO Finds Lightest Black-Hole Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses

  4. Excitation of photonic atoms (dielectric microspheres) on optical fibers: application to room-temperature persistent spectral hole burning

    NASA Astrophysics Data System (ADS)

    Serpenguzel, Ali; Arnold, Stephen; Griffel, Giora

    1995-05-01

    Recently, photonic atoms (dielectric microspheres) have enjoyed the attention of the optical spectroscopy community. A variety of linear and nonlinear optical processes have been observed in liquid microdroplets. But solid state photonic devices using these properties are scarce. A first of these applications is the room temperature microparticle hole-burning memory. New applications can be envisioned if microparticle resonances can be coupled to traveling waves in optical fibers. In this paper we demonstrate the excitation of narrow morphology dependent resonances of microparticles placed on an optical fiber. Furthermore we reveal a model for this process which describes the coupling efficiency in terms of the geometrical and material properties of the microparticle-fiber system.

  5. Simulations of high-spin black-hole binaries

    NASA Astrophysics Data System (ADS)

    Scheel, Mark; Lovelace, Geoffrey

    2014-03-01

    Black holes can in principle have spins up to the Kerr limit a = 1 , and some (highly uncertain) estimates from X-ray binaries yield a > 0 . 98 . Because binaries with highly-spinning black holes may be detectable by LIGO, it is important to be able to simulate and understand these systems. We present binary black hole simulations with large spins, including a generic, precessing simulation with a spin of a > 0 . 99 on one of the black holes. We discuss some of the difficulties with simulating high-spin black holes and how to overcome them.

  6. The narrow pentaquark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diakonov, Dmitri

    2007-02-27

    The experimental status of the pentaquark searches is briefly reviewed. Recent null results by the CLAS collaboration are commented, and new strong evidence of a very narrow {theta}+ resonance by the DIANA collaboration is presented. On the theory side, I revisit the argument against the existence of the pentaquark - that of Callan and Klebanov - and show that actually a strong resonance is predicted in that approach, however its width is grossly overestimated. A recent calculation gives 2 MeV for the pentaquark width, and this number is probably still an upper bound.

  7. Boosting jet power in black hole spacetimes

    PubMed Central

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  8. Magnetic Black Hole Waves

    NASA Image and Video Library

    2015-07-09

    This cartoon shows how magnetic waves, called Alfvén S-waves, propagate outward from the base of black hole jets. The jet is a flow of charged particles, called a plasma, which is launched by a black hole. The jet has a helical magnetic field (yellow coil) permeating the plasma. The waves then travel along the jet, in the direction of the plasma flow, but at a velocity determined by both the jet's magnetic properties and the plasma flow speed. The BL Lac jet examined in a new study is several light-years long, and the wave speed is about 98 percent the speed of light. Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a study using data from the National Radio Astronomy Observatory's Very Long Baseline Array. Scientists used this instrument to explore the galaxy/black hole system known as BL Lacertae (BL Lac) in high resolution. http://photojournal.jpl.nasa.gov/catalog/PIA19822

  9. Optimal management of idiopathic macular holes

    PubMed Central

    Madi, Haifa A; Masri, Ibrahim; Steel, David H

    2016-01-01

    This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs), including vitrectomy, ocriplasmin (OCP), and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA), vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM), the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (<250 µm), it is uncertain whether peeling is always required. It has been increasingly recognized that long-acting gas and face-down positioning are not always necessary in patients with small- and medium-sized holes, but large (>400 µm) and chronic holes (>1-year history) are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with intravitreal OCP and its potential complications. Expansile gas can be considered as a further option in small holes with VMA; however, larger studies are required to provide guidance on its use. PMID:26834454

  10. Optimal management of idiopathic macular holes.

    PubMed

    Madi, Haifa A; Masri, Ibrahim; Steel, David H

    2016-01-01

    This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs), including vitrectomy, ocriplasmin (OCP), and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA), vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM), the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (<250 µm), it is uncertain whether peeling is always required. It has been increasingly recognized that long-acting gas and face-down positioning are not always necessary in patients with small- and medium-sized holes, but large (>400 µm) and chronic holes (>1-year history) are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with intravitreal OCP and its potential complications. Expansile gas can be considered as a further option in small holes with VMA; however, larger studies are required to provide guidance on its use.

  11. 49 CFR 230.38 - Telltale holes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...

  12. 49 CFR 230.38 - Telltale holes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...

  13. 49 CFR 230.38 - Telltale holes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...

  14. 49 CFR 230.38 - Telltale holes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...

  15. 49 CFR 230.38 - Telltale holes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...

  16. Compensating Scientism through "The Black Hole."

    ERIC Educational Resources Information Center

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  17. Woods Hole Science Aquarium: VOLUNTEERS

    Science.gov Websites

    Turtle Conservation Woods Hole Seals NEFSC Volunteering in the Woods Hole Science Aquarium Feeding a , although occasionally there may be a short waiting period. Anyone interested in volunteering may contact

  18. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  19. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. In this talk we will demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating 61 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area's variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  20. Management of traumatic macular holes: case report.

    PubMed

    Brasil, Oswaldo Ferreira Moura; Brasil, Oswaldo Moura

    2008-01-01

    Traumatic macular hole is a disease whose pathogenesis is not fully understood and the best treatment guideline is controversial. We report 2 cases of traumatic macular hole with different treatment approaches. In the first case, a 9-year-old boy presented with a traumatic macular hole secondary to blunt ocular trauma with a stone, and initial vision of 20/300. He underwent surgical repair and his final vision was 20/70 with hole closure after a 1 year follow-up. In the second case, a 20-year-old woman suffered a penetrating bullet wound on the left side of her forehead. The injury caused optic nerve head avulsion in the left eye with loss of light perception. The right eye had a traumatic macular hole and signs suggestive of sclopetaria chorioretinitis, with 20/60 vision. This case was initially observed and vision improved to 20/30 with reduction of the hole diameter. Vision and hole diameter remained stable after 8 months.

  1. Black holes as bubble nucleation sites

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Moss, Ian G.; Withers, Benjamin

    2014-03-01

    We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.

  2. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  3. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  4. REVIEWS OF TOPICAL PROBLEMS: "Magnetized" black holes

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gal'tsov, D. V.

    1989-01-01

    Physical aspects of the theory of black holes in an external electromagnetic field are reviewed. The "magnetized" black hole model is currently widely discussed in astrophysics because it provides a basis for the explanation of the high energy activity of galactic cores and quasars. The particular feature of this model is that it predicts unusual "gravimagnetic" phenomena that arise as a result of a natural combination of effects in electrodynamics and gravitation, namely, the appearance of an inductive potential difference during the rotation of a black hole in a magnetic field, the drift of a black hole in an external electromagnetic field, the change in the chemical potential of the event horizon, the creation of an effective ergosphere of a black hole in a magnetic field, and so on. Questions relating to the description of electromagnetic fields in Kerr space-time are examined, including their influence on the space-time metric, the interaction between a rotating charged black hole and an external electromagnetic field, the motion of charged particles near "magnetized" black holes, including their spontaneous and stimulated emission, and the influence of magnetic fields on quantum-mechanical processes in black holes.

  5. Three Coronal Holes

    NASA Image and Video Library

    2018-04-16

    For much of this week the sun featured three substantial coronal holes (Apr. 3-6, 2018). Coronal holes appear as large dark areas which are identified with arrows in the still image. These are areas of open magnetic field from which high speed solar wind rushes out into space. This wind, if it interacts with Earth's magnetosphere, can cause aurora to appear near the poles. They are not at all uncommon. Animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22414

  6. The Effect of Divided Attention on Emotion-Induced Memory Narrowing

    PubMed Central

    Steinmetz, Katherine R. Mickley; Waring, Jill D.; Kensinger, Elizabeth A.

    2014-01-01

    Individuals are more likely to remember emotional than neutral information, but this benefit does not always extend to the surrounding background information. This memory narrowing is theorized to be linked to the availability of attentional resources at encoding. In contrast to the predictions of this theoretical account, altering participants’ attentional resources at encoding, by dividing attention, did not affect the emotion-induced memory narrowing. Attention was divided using three separate manipulations: a digit ordering task (Experiment 1), an arithmetic task (Experiment 2), and an auditory discrimination task (Experiment 3). Across all three experiments, divided attention decreased memory across-the-board but did not affect the degree of memory narrowing. These findings suggest that theories to explain memory narrowing must be expanded to include other potential mechanisms beyond limitations of attentional resources. PMID:24295041

  7. The effect of divided attention on emotion-induced memory narrowing.

    PubMed

    Mickley Steinmetz, Katherine R; Waring, Jill D; Kensinger, Elizabeth A

    2014-01-01

    Individuals are more likely to remember emotional than neutral information, but this benefit does not always extend to the surrounding background information. This memory narrowing is theorised to be linked to the availability of attentional resources at encoding. In contrast to the predictions of this theoretical account, altering participants' attentional resources at encoding by dividing attention did not affect emotion-induced memory narrowing. Attention was divided using three separate manipulations: a digit ordering task (Experiment 1), an arithmetic task (Experiment 2) and an auditory discrimination task (Experiment 3). Across all three experiments, divided attention decreased memory across the board but did not affect the degree of memory narrowing. These findings suggest that theories to explain memory narrowing must be expanded to include other potential mechanisms beyond the limitations of attentional resources.

  8. "Survivor" Black Holes May Be Mid-Sized

    NASA Astrophysics Data System (ADS)

    2010-04-01

    New evidence from NASA's Chandra X-ray Observatory and ESA's XMM-Newton strengthens the case that two mid-sized black holes exist close to the center of a nearby starburst galaxy. These "survivor" black holes avoided falling into the center of the galaxy and could be examples of the seeds required for the growth of supermassive black holes in galaxies, including the one in the Milky Way. For several decades, scientists have had strong evidence for two distinct classes of black hole: the stellar-mass variety with masses about ten times that of the Sun, and the supermassive ones, located at the center of galaxies, that range from hundreds of thousands to billions of solar masses. But a mystery has remained: what about black holes that are in between? Evidence for these objects has remained controversial, and until now there were no strong claims of more than one such black hole in a single galaxy. Recently, a team of researchers has found signatures in X-ray data of two mid-sized black holes in the starburst galaxy M82 located 12 million light years from Earth. "This is the first time that good evidence for two mid-sized black holes has been found in one galaxy," said Hua Feng of the Tsinghua University in China, who led two papers describing the results. "Their location near the center of the galaxy might provide clues about the origin of the Universe's largest black holes - supermassive black holes found in the centers of most galaxies." One possible mechanism for the formation of supermassive black holes involves a chain reaction of collisions of stars in compact star clusters that results in the buildup of extremely massive stars, which then collapse to form intermediate-mass black holes. The star clusters then sink to the center of the galaxy, where the intermediate-mass black holes merge to form a supermassive black hole. In this picture, clusters that were not massive enough or close enough to the center of the galaxy to fall in would survive, as would any

  9. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    ERIC Educational Resources Information Center

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  10. Spacetime and orbits of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-15

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation ismore » zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.« less

  11. Cosmic microwave background radiation of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  12. Black hole evaporation in conformal gravity

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  13. Black hole evaporation in conformal gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  14. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  15. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  16. Coronal hole evolution by sudden large scale changes

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.

    1978-01-01

    Sudden shifts in coronal-hole boundaries observed by the S-054 X-ray telescope on Skylab between May and November, 1973, within 1 day of CMP of the holes, at latitudes not exceeding 40 deg, are compared with the long-term evolution of coronal-hole area. It is found that large-scale shifts in boundary locations can account for most if not all of the evolution of coronal holes. The temporal and spatial scales of these large-scale changes imply that they are the results of a physical process occurring in the corona. It is concluded that coronal holes evolve by magnetic-field lines' opening when the holes are growing, and by fields' closing as the holes shrink.

  17. Escape of black holes from the brane.

    PubMed

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  18. Chandra Data Reveal Rapidly Whirling Black Holes

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  19. Fermions tunnelling from the charged dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao

    2008-10-01

    Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.

  20. Visualizing, Approximating, and Understanding Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian approximation; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5

  1. Flaring Black Hole Artist Concept

    NASA Image and Video Library

    2011-09-20

    This artist concept illustrates what the flaring black hole called GX 339-4 might look like. Infrared observations from NASA WISE reveal the best information yet on the chaotic and extreme environments of this black hole jets.

  2. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  3. Very narrow excited Ωc baryons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-06-01

    Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.

  4. Long term X-ray variability characteristics of the narrow-line Seyfert 1 galaxy RE J1034+396

    NASA Astrophysics Data System (ADS)

    Chaudhury, K.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.; Bhattacharyya, Sudip; Dewangan, G. C.; Chakraborty, S.; Chandra, S.; Stewart, G. C.; Mukerjee, K.; Dey, R. K.

    2018-05-01

    We present the results of our study of the long term X-ray variability characteristics of the Narrow Line Seyfert 1 galaxy RE J1034+396. We use data obtained from the AstroSat satellite along with the light curves obtained from XMM-Newton and Swift-XRT. We use the 0.3 - 7.0 keV and 3 - 20 keV data, respectively, from the SXT and the LAXPC of AstroSat. The X-ray spectra in the 0.3 - 20 keV region are well fit with a model consisting of a power-law and a soft excess described by a thermal-Compton emission with a large optical depth, consistent with the earlier reported results. We have examined the X-ray light curves in the soft and hard X-ray bands of SXT and LAXPC, respectively, and find that the variability is slightly larger in the hard band. To investigate the variability characteristics of this source at different time scales, we have used X-ray light curves obtained from XMM-Newton data (200 s to 100 ks range) and Swift-XRT data (1 day to 100 day range) and find that there are evidences to suggest that the variability sharply increases at longer time scales. We argue that the mass of the black hole in RE J1034+396 is likely to be ˜3 × 106 M⊙, based on the similarity of the observed QPO to the high frequency QPO seen in the Galactic black hole binary, GRS 1915+105.

  5. Before Inflation and after Black Holes

    NASA Astrophysics Data System (ADS)

    Stoltenberg, Henry

    This dissertation covers work from three research projects relating to the physics before the start of inflation and information after the decay of a black hole. For the first project, we analyze the cosmological role of terminal vacua in the string theory landscape, and point out that existing work on this topic makes very strong assumptions about the properties of the terminal vacua. We explore the implications of relaxing these assumptions (by including "arrival" as well as "departure" terminals) and demonstrate that the results in earlier work are highly sensitive to their assumption of no arrival terminals. We use our discussion to make some general points about tuning and initial conditions in cosmology. The second project is a discussion of the black hole information problem. Under certain conditions the black hole information puzzle and the (related) arguments that firewalls are a typical feature of black holes can break down. We first review the arguments of Almheiri, Marolf, Polchinski and Sully (AMPS) favoring firewalls, focusing on entanglements in a simple toy model for a black hole and the Hawking radiation. By introducing a large and inaccessible system entangled with the black hole (representing perhaps a de Sitter stretched horizon or inaccessible part of a landscape) we show complementarity can be restored and firewalls can be avoided throughout the black hole's evolution. Under these conditions black holes do not have an "information problem". We point out flaws in some of our earlier arguments that such entanglement might be generically present in some cosmological scenarios, and call out certain ways our picture may still be realized. The third project also examines the firewall argument. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and

  6. Coronal Hole Front and Center

    NASA Image and Video Library

    2016-05-18

    A substantial coronal hole had rotated so that it temporarily faced right towards Earth May, 17-19, 2016. This coronal hole area is the dark area at the top center of this image from NASA Solar Dynamics Observatory.

  7. Aspects of hairy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl; Astefanesei, Dumitru

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  8. Different Flavors of Black Holes

    NASA Image and Video Library

    2014-01-09

    A range of supermassive black holes lights up this new image from NASA NuSTAR. All of the dots are active black holes tucked inside the hearts of galaxies, with colors representing different energies of X-ray light.

  9. Post-Kerr black hole spectroscopy

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele

    2017-09-01

    One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.

  10. Black Holes Collide

    NASA Image and Video Library

    2017-12-08

    When two black holes collide, they release massive amounts of energy in the form of gravitational waves that last a fraction of a second and can be "heard" throughout the universe - if you have the right instruments. Today we learned that the #LIGO project heard the telltale chirp of black holes colliding, fulfilling Einstein's General Theory of Relativity. NASA's LISA mission will look for direct evidence of gravitational waves. go.nasa.gov/23ZbqoE This video illustrates what that collision might look like.

  11. Black holes and Higgs stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetradis, Nikolaos; Physics Department, Theory Unit, CERN,CH-1211 Geneva 23

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  12. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  13. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  14. Numerical analysis of drilling hole work-hardening effects in hole-drilling residual stress measurement

    NASA Astrophysics Data System (ADS)

    Li, H.; Liu, Y. H.

    2008-11-01

    The hole-drilling strain gage method is an effective semi-destructive technique for determining residual stresses in the component. As a mechanical technique, a work-hardening layer will be formed on the surface of the hole after drilling, and affect the strain relaxation. By increasing Young's modulus of the material near the hole, the work-hardening layer is simplified as a heterogeneous annulus. As an example, two finite rectangular plates submitted to different initial stresses are treated, and the relieved strains are measured by finite element simulation. The accuracy of the measurement is estimated by comparing the simulated residual stresses with the given initial ones. The results are shown for various hardness of work-hardening layer. The influence of the relative position of the gages compared with the thickness of the work-hardening layer, and the effect of the ratio of hole diameter to work-hardening layer thickness are analyzed as well.

  15. New entropy formula for Kerr black holes

    NASA Astrophysics Data System (ADS)

    González, Hernán A.; Grumiller, Daniel; Merbis, Wout; Wutte, Raphaela

    2018-01-01

    We introduce a new entropy formula for Kerr black holes inspired by recent results for 3-dimensional black holes and cosmologies with soft Heisenberg hair. We show that also Kerr-Taub-NUT black holes obey the same formula.

  16. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2005-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  17. When will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  18. Black Hole Spin Evolution and Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Chen, W.; Cui, W.; Zhang, S. N.

    1999-04-01

    We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.

  19. Grumblings from an Awakening Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404

  20. Hawking temperature of constant curvature black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ronggen; Myung, Yun Soo; Institute of Basic Science and School of Computer Aided Science, Inje University, Gimhae 621-749

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both themore » static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.« less

  1. Coronal holes and high-speed wind streams

    NASA Technical Reports Server (NTRS)

    Zirker, J. B.

    1977-01-01

    Coronal holes, regions of unusually low density and low temperature in the solar corona, are identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. Phenomenological models for the birth and decay of coronal holes have been proposed.

  2. Rotating black holes with non-Abelian hair

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2016-12-01

    We here review asymptotically flat rotating black holes in the presence of non-Abelian gauge fields. Like their static counterparts these black holes are no longer uniquely determined by their global charges. In the case of pure SU(2) Yang-Mills fields, the rotation generically induces an electric charge, while the black holes do not carry a magnetic charge. When a Higgs field is coupled, rotating black holes with monopole hair arise in the case of a Higgs triplet, while in the presence of a complex Higgs doublet the black holes carry sphaleron hair. The inclusion of a dilaton allows for Smarr type mass formulae.

  3. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  4. Ineffective higher derivative black hole hair

    NASA Astrophysics Data System (ADS)

    Goldstein, Kevin; Mashiyane, James Junior

    2018-01-01

    Inspired by the possibility that the Schwarzschild black hole may not be the unique spherically symmetric vacuum solution to generalizations of general relativity, we consider black holes in pure fourth order higher derivative gravity treated as an effective theory. Such solutions may be of interest in addressing the issue of higher derivative hair or during the later stages of black hole evaporation. Non-Schwarzschild solutions have been studied but we have put earlier results on a firmer footing by finding a systematic asymptotic expansion for the black holes and matching them with known numerical solutions obtained by integrating out from the near-horizon region. These asymptotic expansions can be cast in the form of trans-series expansions which we conjecture will be a generic feature of non-Schwarzschild higher derivative black holes. Excitingly we find a new branch of solutions with lower free energy than the Schwarzschild solution, but as found in earlier work, solutions only seem to exist for black holes with large curvatures, meaning that one should not generically neglect even higher derivative corrections. This suggests that one effectively recovers the nonhair theorems in this context.

  5. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  6. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  7. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  8. Unveiling early black holes with JWST

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada

    The formation of direct collapse black hole seeds with masses ~104 - 105 ~M⊙ could help explain the assembly of supermassive black holes powering high redshift quasars. Conditions conducive to the formation of these massive initial seeds exist at high redshift. Halos hosting these massive seeds merge promptly with a nearby galaxy. These early stage mergers at high redshift produce a new class of transient galaxies that contain an accreting black hole that is over-massive compared to the newly acquired stellar component - Obese Black hole Galaxies (OBGs). During this phase, the accretion luminosity of the direct collapse black hole seed exceeds that of the acquired stellar component. Here we calculate the multi-wavelength spectrum of this short-lived OBG stage, and show that there exist unique observational signatures in long wavelengths spanning near, mid to far-infrared that should be detectable by instruments aboard the upcoming James Webb Space Telescope (JWST).

  9. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  10. Dance of Two Monster Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This past December, researchers all over the world watched an outburst from the enormous black hole in OJ 287 an outburst that had been predicted years ago using the general theory of relativity.Outbursts from Black-Hole OrbitsOJ 287 is one of the largest supermassive black holes known, weighing in at 18 billion solar masses. Located about 3.5 billion light-years away, this monster quasar is bright enough that it was first observed as early as the 1890s. What makes OJ 287 especially interesting, however, is that its light curve exhibits prominent outbursts roughly every 12 years.Diagram illustrating the orbit of the secondary black hole (shown in blue) in OJ 287 from 2000 to 2023. We see outbursts (the yellow bubbles) every time the secondary black hole crosses the accretion disk (shown in red, ina side view) surrounding the primary (the black circle). [Valtonen et al. 2016]What causes the outbursts? Astronomers think that there is a second supermassive black hole, ~100 times smaller, inspiraling as it orbits the central monster and set to merge within the next 10,000 years. In this model, the primary black hole of OJ 287 is surrounded by a hot accretion disk. As the secondary black hole orbits the primary, it regularly punches through this accretion disk, heating the material and causing the release of expanding bubbles of hot gas pulled from the disk. This gas then radiates thermally, causing the outbursts we see.Attempts to model this scenario using Newtonian orbits all fail; the timing of the secondary black holes crossings through the accretion disk (as measured by when we see the outbursts) can only be explained by a model incorporating general-relativistic effects on the orbit. Careful observations and precise timing of these outbursts therefore provide an excellent test of general relativity.Watching a Predicted CrossingThe model of OJ 287 predicted another disk crossing in December 2015, so professional and amateur astronomers around the world readied more

  11. Superfluid Black Holes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson

    2017-01-01

    We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  12. Magnonic Black Holes.

    PubMed

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  13. Superfluid Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  14. New drug regulations in France: what are the impacts on market access? Part 2 – impacts on market access and impacts for the pharmaceutical industry

    PubMed Central

    Rémuzat, Cécile; Toumi, Mondher; Falissard, Bruno

    2013-01-01

    Access to the French drug market is being impacted by an ongoing dramatic shift in practice as well as by two laws that came into force in December 2011. This new environment has been described and analyzed in two separate articles. This second article analyzes how this new environment will actually impact the access to French drug market. French drug market access will be increasingly driven by comparative-effectiveness and cost-effectiveness data, and an increased role of postmarketing studies in the years to come. This access is evolving in a more complex environment for stakeholders due to the uncertainties surrounding these changes and it will be more complex and difficult for the pharmaceutical industry to address. The main issue faced by the pharmaceutical companies will be to minimize uncertainty at the time of a drug's launch to narrow the decision window. This is a major change of paradigm for the pharmaceutical business, in which pre- and postlaunch risks are directed toward the pharmaceutical industry. PMID:27226829

  15. Violent flickering in Black Holes

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the

  16. Recovery of the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve; Schauffler, Sue; Stolarski, Richard S.; Douglass, Anne R.; Pawson, Steven; Nielsen, J. Eric

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS and OMI instruments. The severity of the hole has been assessed using the minimum total ozone value from the October monthly mean (depth of the hole), the average size during the September-October period, and the ozone mass deficit. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. We use two methods to estimate ozone hole recovery. First, we use projections of halogen levels combined with age-of-air estimates in a parametric model. Second, we use a coupled chemistry climate model to assess recovery. We find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. Furthermore, full recovery to 1980 levels will not occur until approximately 2068. We will also show some error estimates of these dates and the impact of climate change on the recovery.

  17. Black Hole Mergers in the Universe.

    PubMed

    Portegies Zwart SF; McMillan

    2000-01-01

    Mergers of black hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates that are too low to be of observational interest. In this Letter, we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black hole binaries become more tightly bound by superelastic encounters with other cluster members and are ultimately ejected from the cluster. The majority of escaping black hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black hole merger rate of about 1.6x10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first-generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first 2 years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.

  18. Quantum Spacetime: Mimicry of Paths and Black Holes

    NASA Astrophysics Data System (ADS)

    Spaans, Marco

    2015-08-01

    Since its inception, general relativity has been unreceptive to a marriage with the quantum aspects of our universe. Following the ideas of Einstein, one may pursue an approach that allows spacetime itself to take center stage. The quantum properties of matter are then carried by the dynamics of spacetime shape and connectivity. This monograph introduces the reader to the foundations of quantum spacetime in a manner accessible to researchers and students. Likewise, interested laymen that lack a strong background in quantum mechanics or spacetime studies but are keen to learn will find this book worthwhile. It is shown from first principles how spacetime is globally built up by paths which constitute entire histories in four dimensions. The central physical idea is that the collective existence of observers and observed derives from one mimicking the other unremittingly, thereby inducing tangible reality. This world of identity by mimicry creates a multitude of interacting histories. Throughout the text, thought experiments are used to derive physical principles. Obtained results are therefore intuitive and accessible to non-experts. This monograph also discusses consequences of quantum spacetime for black holes, dark energy, inflation, the Higgs boson, and the multiverse.

  19. Electron holes appear to trigger cancer-implicated mutations

    NASA Astrophysics Data System (ADS)

    Miller, John; Villagran, Martha

    Malignant tumors are caused by mutations, which also affect their subsequent growth and evolution. We use a novel approach, computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)], to compute spectra of enhanced hole probability based on actual sequence data. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of reveal a correlation between hole spectrum peaks and spikes in human mutation frequencies. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with cancer-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential cancer `driver' mutations. Such integration of DNA hole and variance spectra could also prove invaluable for pinpointing critical regions, and sites of driver mutations, in the vast non-protein-coding genome. Supported by the State of Texas through the Texas Ctr. for Superconductivity.

  20. A preferred mass range for primordial black hole formation and black holes as dark matter revisited

    NASA Astrophysics Data System (ADS)

    Georg, Julian; Watson, Scott

    2017-09-01

    Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.

  1. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  2. Magnetohydrodynamic Simulations of Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  3. Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.

    PubMed

    Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang

    2011-01-31

    Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

  4. Gravitational polarizability of black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Lecian, Orchidea Maria; APC, UMR 7164 du CNRS, Universite Paris 7, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  5. 3. Photocopied July 1971 from Photo 741, Jordan Narrows Folder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopied July 1971 from Photo 741, Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. INTERIOR VIEW, JULY 2, 1909. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  6. Hole 504B reclaimed for future drilling

    NASA Astrophysics Data System (ADS)

    Leg 137 Scientific Drilling Party

    Hole 504B, perhaps the most important in situ reference section for the structure and composition of the oceanic crust, has been reopened for future drilling and downhole measurements after remedial operations during Leg 137 of the Ocean Drilling Program. By far the deepest penetration into oceanic crust, Hole 504B had been feared lost when a large diamond bit and assorted hardware (“junk”) broke off in the bottom of the hole at the end of ODP Leg 111 in 1986. Since then ODP's drill ship, JOIDES Resolution, has circumnavigated the globe, with no opportunity to redress this situation. But the objective of deep penetration into the oceanic crust and the hole itself are considered so important by marine Earth scientists that remedial measures in Hole 504B were undertaken as soon as the drill ship returned to the eastern Pacific. These measures succeeded better than had been hoped. Hole 504B was reopened after less than a week of cleaning operations, which included grappling for the lost junk with tools to pull it from the hole (called “fishing”) and grinding or milling the junk away.

  7. MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Meter, James R.; Centrella, Joan; Baker, John G.

    2010-03-10

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne Laser Interferometer Space Antenna. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step toward solving this problem by mapping the flow ofmore » pressureless matter in the dynamic, three-dimensional general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm these differences, it may allow assessment of the properties of the binaries as well as yielding an identifiable electromagnetic counterpart to the attendant gravitational wave signal.« less

  8. Mass of a black hole firewall.

    PubMed

    Abramowicz, M A; Kluźniak, W; Lasota, J-P

    2014-03-07

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).

  9. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and

  10. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and

  11. Reconditioning of Cassini Narrow-Angle Camera

    NASA Image and Video Library

    2002-07-23

    These five images of single stars, taken at different times with the narrow-angle camera on NASA Cassini spacecraft, show the effects of haze collecting on the camera optics, then successful removal of the haze by warming treatments.

  12. Lubricating Holes for Corroded Nuts and Bolts

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Clemons, J. M.; Ledbetter, Frank E., III

    1986-01-01

    Corroded fasteners taken apart more easily. Lubricating holes bored to thread from three of flats. Holes facilitate application of penetrating oil to help loosen nut when rusted onto bolt. Holes make it possible to apply lubricants and rust removers directly to more of thread than otherwise reachable.

  13. Separability of black holes in string theory

    NASA Astrophysics Data System (ADS)

    Keeler, Cynthia; Larsen, Finn

    2012-10-01

    We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.

  14. Hawking radiation power equations for black holes

    NASA Astrophysics Data System (ADS)

    Mistry, Ravi; Upadhyay, Sudhaker; Ali, Ahmed Farag; Faizal, Mir

    2017-10-01

    We derive the Hawking radiation power equations for black holes in asymptotically flat, asymptotically Anti-de Sitter (AdS) and asymptotically de Sitter (dS) black holes. This is done by using the greybody factor for these black holes. We observe that the radiation power equation for asymptotically flat black holes, corresponding to greybody factor at low frequency, depends on both the Hawking temperature and the horizon radius. However, for the greybody factors at asymptotic frequency, it only depends on the Hawking temperature. We also obtain the power equation for asymptotically AdS black holes both below and above the critical frequency. The radiation power equation for at asymptotic frequency is same for both Schwarzschild AdS and Reissner-Nordström AdS solutions and only depends on the Hawking temperature. We also discuss the power equation for asymptotically dS black holes at low frequency, for both even or odd dimensions.

  15. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  16. Analytic treatment of the black-hole bomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hod, Shahar; Hod, Oded; School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978

    2010-03-15

    A bosonic field impinging on a rotating black hole can be amplified as it scatters off the hole, a phenomenon known as superradiant scattering. If in addition the field has a nonzero rest mass {mu}, the mass term effectively works as a mirror, reflecting the scattered wave back towards the black hole. In this physical system, known as a black-hole bomb, the wave may bounce back and forth between the black hole and some turning point, amplifying itself each time. Consequently, the field grows exponentially over time and is unstable. In this paper we study analytically for the first timemore » the phenomenon of superradiant instability (the black-hole bomb mechanism) in the regime M{mu}=O(1) of greatest instability. We find a maximal instability growth rate of {tau}{sup -1}=1.7x10{sup -3}M{sup -1}. This instability is 4 orders of magnitude stronger than has been previously estimated.« less

  17. Understanding the rotation of coronal holes

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1993-09-01

    In an earlier study we found that the rotation of coronal holes could be understood on the basis of a nearly current-free coronal field, with the holes representing open magnetic regions. In this paper we illustrate the model by focusing on the case of CH1, the rigidly rotating boot-shaped hole observed by Skylab. We show that the interaction between the polar fields and the flux associated with active regions produces distortions in the coronal field configuration and thus in the polar-hole boundaries; these distortions corotate with the perturbing nonaxisymmetric flux. In the case of CH1, positive-polarity field lines in the northern hemisphere 'collided' with like-polarity field lines fanning out from a decaying active region complex located just below the equator, producing a midlatitude corridor of open field lines rotating at the rate of the active region complex. Sheared coronal holes result when nonaxisymmetric flux is present at high latitudes, or equivalently, when the photospheric neutral line extends to high latitudes. We demonstrate how a small active region, rotating at the local photospheric rate, can drift through a rigidly rotating hole like CH1. Finally, we discuss the role of field-line reconnection in maintaining a quasi-potential coronal configuration.

  18. Meditope-Fab interaction: threading the hole.

    PubMed

    Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra N; Horne, David A; Williams, John C

    2017-12-01

    Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.

  19. Harmonic maps and black holes

    NASA Astrophysics Data System (ADS)

    Lopes Costa, João

    2010-05-01

    We address two applications of existence and uniqueness properties of harmonic maps to the theory of stationary and axisymmetric electro-vacuum black holes. More specifically, we will consider: (1) The classification of such black hole space-times and (2) the proof of a Dain inequality with charge.

  20. Black Hole Safari: Tracking Populations and Hunting Big Game

    NASA Astrophysics Data System (ADS)

    McConnell, N. J.

    2013-10-01

    Understanding the physical connection, or lack thereof, between the growth of galaxies and supermassive black holes is a key challenge in extragalactic astronomy. Dynamical studies of nearby galaxies are building a census of black hole masses across a broad range of galaxy types and uncovering statistical correlations between galaxy bulge properties and black hole masses. These local correlations provide a baseline for studying galaxies and black holes at higher redshifts. Recent measurements have probed the extremes of the supermassive black hole population and introduced surprises that challenge simple models of black hole and galaxy co-evolution. Future advances in the quality and quantity of dynamical black hole mass measurements will shed light upon the growth of massive galaxies and black holes in different cosmic environments.

  1. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  2. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2011-06-01

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  3. 1. Photocopied July 1971 from Photo 745, Jordan Narrows Folder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopied July 1971 from Photo 745, Jordan Narrows Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. JORDAN STATION, JULY 2, 1909. GENERAL VIEW. - Salt Lake City Water & Electrical Power Company, Jordan Narrows Hydroelectric Plant, Jordan River, Riverton, Salt Lake County, UT

  4. Jet impinging onto a laser drilled tapered hole: Influence of tapper location on heat transfer and skin friction at hole surface

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-02-01

    Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.

  5. Decreased airway narrowing and smooth muscle contraction in hyperresponsive pigs.

    PubMed

    Turner, Debra J; Noble, Peter B; Lucas, Matthew P; Mitchell, Howard W

    2002-10-01

    Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.

  6. Gravitational tension, spacetime pressure and black hole volume

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.; Sanchioni, Marco

    2016-09-01

    We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.

  7. An equatorial coronal hole at solar minimum

    NASA Technical Reports Server (NTRS)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  8. Schwarzschild black holes can wear scalar wigs.

    PubMed

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  9. Positive Holes Flowing through Stressed Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akihiro

    Igneous rocks generally involve positive hole pairs (PHPs), a kind of lattice defects also known as peroxy links: O3X-OO-YO3 with X, Y = Si4+, Al3+ etc. When a portion of such a rock block is stressed or heated, PHPs are deformed and positive holes (p-holes) are activated. They are defect electrons corresponding to the O- electronic state in the O2- sublattice and can spread away into unstressed portion. Currents and positive surface electrifications detected in laboratory stressed igneous rocks can be explained by the p-holes. When the p-holes are activated in the Earth's crust accompanied with seismic or volcanic events, they would lead to anomalous electromagnetic phenomena and could affect our electronic communication.

  10. Regimes of mini black hole abandoned to accretion

    NASA Astrophysics Data System (ADS)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  11. Photovoltaic measurement of bandgap narrowing in moderately doped silicon

    NASA Astrophysics Data System (ADS)

    del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto

    1983-05-01

    Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.

  12. Lengthy Coronal Hole

    NASA Image and Video Library

    2017-01-09

    An elongated coronal hole rotated across the face of the sun this past week so that it is now streaming solar wind towards Earth (Jan. 2-5, 2017). Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light it appears as a dark area near the center and lower portion of the sun. The particle stream will likely generate aurora here on Earth. Check spaceweather.com for updates on auroral activity. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA14093

  13. Extensive Coronal Hole

    NASA Image and Video Library

    2017-09-02

    A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942

  14. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.

  15. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, T.; Amand, T.; Kunz, S.

    2010-08-02

    We report strong heavy hole-light hole mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k{center_dot}p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.

  16. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  17. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  18. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  19. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...

  20. 30 CFR 77.1505 - Auger holes; blocking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...